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A B S T R A C T 

We present a new method of predicting the ages of galaxies using a machine learning (ML) algorithm with the goal of providing 

an alternative to traditional methods. We aim to match the ability of traditional models to predict the ages of galaxies by training 

an artificial neural network (ANN) to recognize the relationships between the equi v alent widths of spectral indices and the 
mass-weighted ages of galaxies estimated by the MAGPHYS model in data release 3 (DR3) of the Galaxy and Mass Assembly 

(GAMA) surv e y. We discuss the optimization of our hyperparameters e xtensiv ely and investigate the application of a custom 

loss function to reduce the influence of errors in our input data. To quantify the quality of our predictions we calculate the mean 

squared error (MSE), mean absolute error (MAE) and R 

2 score for which we find MSE = 0.020, MAE = 0.108 and R 

2 = 

0.530. We find our predicted ages have a similar distribution with standard deviation σ p = 0.182 compared with the GAMA 

true ages σ t = 0.207. This is achieved in approximately 23 s to train our ANN on an 11th Gen Intel Core i9-11900H running at 
2.50 GHz using 32 GB of RAM. We report our results for when light-weighted ages are used to train the ANN, which impro v es 
the accuracy of the predictions. Finally, we detail an e v aluation of our method relating to physical properties and compare with 

other ML techniques to encourage future applications of ML techniques in astronomy. 

Key words: methods: data analysis – galaxies: stellar content – galaxies: fundamental parameters. 

1

T
t  

a  

j  

t
p
t
t
p  

p  

a
o
a
i  

o
s
a
u  

s  

t
u

c
i  

�

m
p
t
o
o  

i
m  

c  

e
S
w  

1  

e  

c
(  

s

t  

fl
(  

(  

s
2  

H  

o

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/1/479/7609069 by guest on 05 M
arch 2024
 I N T RO D U C T I O N  

he field of astronomy is inundated with vast amounts of data 
hat is unable to be processed by humans alone. Automation is
lready implemented in many areas of the field; ho we ver, larger
umps in the efficiency of data processing must be made in order
o accommodate the large amounts of observations and data being 
roduced. One solution is to apply machine learning (ML) techniques 
o astrophysical problems. This involves training an ML algorithm 

o automatically recognize patterns within data sets in order to make 
redictions about unseen data (for a re vie w of ML in astronomy
lease see: Baron 2019 ; Smith & Geach 2023 ). While this may
ct as an alternative method to circumvent the laborious process 
f modelling and analysis by providing tools to process data and 
nalyse the patterns within observations to draw new conclusions, it 
s important to note that traditional methods are still a vital part
f the process of analysis. ML algorithms may offer additional 
peed for processing but traditional models have a longer history 
nd therefore the science and systematics behind them are better 
nderstood. Ho we ver, for the purpose of quickly processing a data
et, ML algorithms should be utilized further such that we are able
o characterize them in a similar manner to traditional models and 
nderstand the science they are built upon. 
Artificial neural networks (ANNs) are a ML technique used most 

ommonly for supervised classification. They were first implemented 
n 1992 to study galaxies by Storrie-Lombardi et al. ( 1992 ) as a
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ethod to predict morphological classification based on the physical 
roperties of galaxies. This process entails visual classification of a 
raining set of galaxies provided by researchers alongside calculation 
f 13 observable parameters such as surface brightness and measures 
f asymmetry. The ANN correctly classifies 64 per cent of galaxies,
n comparison ESO AUTO, a non-ANN automated classification 
ethod, only correctly classifies 56 per cent. In subsequent years the

lassification of galaxies with ANNs has been impro v ed and re vie wed
 xtensiv ely with comparison to human based visual classification. 
ome methods of classification include classifying Hubble types 
ith an ANN (Adams & Woolley 1994 ; Naim 1994 ; Lahav et al.
995 ; Lahav 1997 ; Odewahn 1997 ; Goderya & Lolling 2002 ; Ball
t al. 2004 ) and using Galaxy Zoo data (Banerji et al. 2010 ). Other
lassifications include stellar spectral classification using ANNs 
Gulati et al. 1994 ), in the UV (Gulati et al. 1996 ) and for low-
ignal-to-noise (Folkes, Lahav & Maddox 1996 ). 

The application of ANNs to astrophysical problems is not limited 
o classification as one of the major benefits of ANNs is their
exibility. In the study of galaxies, ANNs and multilayer perceptrons 
MLPs) are able to predict properties such as star formation rate
SFR; Ellison et al. 2016 ) and photometric redshifts based on
pectral energy distributions (SEDs) (Firth, Lahav & Somerville 
003 ; Vanzella et al. 2004 ; Brescia et al. 2014 ; Bilicki et al. 2018 ).
o we ver, in the field of galactic astronomy there is a noticeable lack
f galaxy age estimations with ANNs. 
A galaxy’s integrated light spectra provides insight into its un- 

erlying processes and properties. Historically, the study of spectral 
volution stems from the analysis of full integrated light spectra; 
o we ver, recent studies of the emission and absorption of various
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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pectral lines allow us to infer these properties with less free parame-
ers. Some of these methods involve using models based on the stellar
opulation synthesis (SPS) technique which is based on the idea that
he stellar components of galaxies evolve on evolutionary tracks
alled isochrones that dictate the way in which their spectra evolves
e.g. Tinsley 1968 ; Spinrad & Taylor 1971 ; Faber 1972 ; Tinsley 1972 ;
’Connell 1976 ; Tinsley & Gunn 1976 ; Bruzual A. 1983 ; Pickles
985 ; Rose 1985 ; Bruzual & Charlot 2003 ). More recent methods
nclude the flexible stellar population synthesis (FSPS) model that
ntegrates essential aspects of SPS in a flexible manner so different
ets of isochrones and stellar spectral libraries may be used (Conroy,
unn & White 2009 ; Conroy & Gunn 2010 ). MILES (Medium

esolution INT Library of Empirical Spectra) models are able to
xtend from intermediate ages to much older ages by incorporating
mpirical properties and e xtensiv e photometric libraries rather than
ust stellar spectra (Vazdekis et al. 2010 ). Extended-MILES (E-

ILES) models (Vazdekis et al. 2016 ) are UV extended SPS
odels that provide better resolution, stellar parameter coverage,

nd signal-to-noise ratio (SNR) by using the next-generation spectral
ibrary (Gregg et al. 2006 ). MaStar (MaNGA stellar library (Yan
t al. 2019 ) stellar population models (Maraston et al. 2020 ) are
apable of predicted SEDs for stellar populations of various chemical
ompositions and ages. These approaches take the stellar initial
ass function (IMF), SFR and sometimes the chemical enrichment

bundance to determine the integrated spectral evolution of the stellar
opulation. Important properties of galaxies such as age, metallicity,
nd abundance ratios affect the line-strength indices present in their
pectra (Faber 1973 ; Worthey 1994 ; Bressan, Chiosi & Tantalo 1996 ;
azdekis et al. 1996 ; Cardiel et al. 1998 ). Equi v alent widths (EWs)
re commonly used to quantify spectral lines as they measure the
raction of energy remo v ed from the spectrum by the line rather the
eight or position of the line (Spitzer 1978 ), for which we use the
efinition of EWs described by Cardiel et al. ( 1998 ) 

 λ( ̊A ) = 

∫ 
t ime 

(1 − S ( λ) /C ( λ)) dλ, (1) 

where S ( λ) is the observed spectrum and C ( λ) is the local
ontinuum usually found through interpolation of S ( λ) between
wo adjacent spectral regions. Specific EWs are tracers for specific
rocesses within the stellar population such as starbursts and ongoing
tar formation (e.g. Worthey & Ottaviani 1997 ; Bruzual & Charlot
003 ; S ́anchez Almeida et al. 2012 ; Moresco et al. 2018 ). For this
eason, it is possible to estimate the ages of galaxies based on the
heir spectral information. Galactic ages can be defined as the median

ass-weighted age of the stellar population. Mass-weighted age is
efined by Citro et al. ( 2016 ) based on the definition of Gallazzi et al.
 2005 ) 

 t 〉 mass = 

∫ t 
0 SF R( t − t ′ ) M( t ′ ) t ′ dt ′ ∫ t 
0 SF R( t − t ′ ) M( t ′ ) dt ′ 

, (2) 

where SFR ( t − t ′ ) is the SFR at time ( t − t ′ ) when the star was
ormed, M ( t ′ ) is the stellar mass given by a single-stellar population
SSP) of age t ′ . 

A number of EWs are commonly used as tracers for star formation
uch as D n 4000 (Hamilton 1985 ), H α, H β (Worthey et al. 1994 ),
 γ A (Worthey & Ottaviani 1997 ), but other indices are also asso-

iated with other processes that may indirectly be associated with
tellar age. Line indices can be used as metallicity indicators which
n turn may be related back to age, with the caveat that there are many
actors that relate to both. It has been long since established that there
re particular strong features in the spectra of late-type galaxies
uch as CH G band (G) features, the magnesium b triplet (MgG)
NRAS 529, 479–498 (2024) 
e.g. Vazdekis et al. 1996 ; Jørgensen 1999 ), the magnesium hydride
rough (MH), the sodium D doublet (NaD) (Faber 1973 ; Brodie &
anes 1986 ; Brodie & Huchra 1990 ). Whereas other indices such

s H α, H β, [O III ] and [S II ] are associated with the star formation,
he presence of AGN, Seyferts, and LINERs (Baldwin, Phillips &
erle vich 1981 ; Kauf fmann et al. 2003b ; K e wley et al. 2006 ; Cid
ernandes et al. 2010 ). 
There are already various models that use integrated light spectra

r SEDs to determine the physical properties of galaxies. Optimiza-
ion of these models to run quickly through large amounts of data is
aramount to the future of galaxy evolution. MOPED is a Multiple
ptimized Parameter Estimation and Data compression algorithm
escribed by Heavens, Jimenez & Lahav ( 2000 ) that is able to
eco v er physical parameters from galaxy spectra such as emission
nd absorption lines for which physical properties such as SFR may
e determined (Reichardt, Jimenez & Heav ens 2001 ). The y describe
 method of linear compression for data sets that are dependent on
ultiple parameters. This method is aimed at galaxy spectra as they

re based on a few parameters such as age and SFR, etc. MOPED
s able to take an entire spectra and compress it into this handful of
seful parameters. Before MOPED, methods involved the estimation
f single parameters; whereas, MOPED not only enables multiple
arameter estimations but reduces the error of previous compression
ystems such Principal Component Analysis (PCA) whilst also being
aster to compute. 

STARLIGHT (Cid Fernandes et al. 2005 ) is a spectral synthesis
odel that is able to reco v er information such as stellar ages and

tellar metallicities from observed galaxy spectra. They achieve this
y fitting spectra with a linear combination of simple theoretical
tellar populations computed with evolutionary synthesis models at
he same spectral resolution as that of the SDSS. This involves a

ix of computational techniques developed for empirical population
ynthesis but applied with aspects of evolutionary synthesis models.
hey use STARLIGHT to produce a catalogue of properties for 50 000
DSS DR2 galaxies with an increased computing speed when
ompared with MOPED. 

Ocvirk et al. ( 2006 ) describes a method called STEllar Content
ia Maximum A Posteriori (STECMAP) which is based on a
on-parametric inversion for analysis of integrated light spectra
ased on the synthetic spectra of SSPs. Their main aim is to
eco v er star formation history (SFH) and stellar age–metallicity
elationships for galaxies. STECMAP has a non-parametric approach
n order to a v oid constraints on the shape of the distribution
or derived properties such as stellar age distribution. With this
ethod they find that STECMAP is not easily able to reco v er age

stimations for the optical range of spectra no matter the spectral
esolution. 

Tojeiro et al. ( 2007 ) describes a direct impro v ement from MOPED
hat involves a method of VErsatile SPectral Analysis (VESPA) that
s able to reco v er properties such as SFH and metallicity histories
rom galactic spectra. VESPA differs from previous models as it can
dapt the number of parameters reco v ered from a given spectrum
epending on its SNR, wav elength co v erage, and presence of a
oung stellar population whilst again improving computational time.
ojeiro et al. ( 2007 ) estimates VESPA reduces computational time
rom 170 yr for MOPED to process the entire SDSS DR5 to just 1 yr
or VESPA. 

A brief summary of various more recent, commonly used SED
tting methods includes the method of Bayesian SED fitting called
12 developed by Pacifici et al. ( 2012 ) that can take into account

he combination of stellar and nebulae emission from galaxies across
 broad range of wa velengths. SpeedyMC (Acqua vi v a, Gawiser &
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uaita 2012 ) is based on the SED fitting software GalMC which
s a Markov Chain Monte Carlo algorithm (Acquavi v a et al. 2011 ).
peedyMC uses pre-computed template libraries which makes it 
ossible to run very quickly, even on a laptop. 
BayEsian Analysis of gaLaxy sEds (or BEAGLE) also uses a 

ombination of the MULTINEST algorithm and a flexible, fully self- 
onsistent physical model in the UV to the NIR to model any
ombination of photometric and spectroscopic observables including 
alaxy age (Che v allard & Charlot 2016 ). AGNFitter fits SEDs of
GN between submillimeter and UV using a fully Bayesian Markov 
hain Monte Carlo method (Calistro Rivera et al. 2016 ). 
The Dense Basis method of SED fitting is also based in PYTHON

inimizes bias and reduces scatter caused by SFH parametrization 
y using four different functional families to create a basis of SFHs
rom their combinations in order to determine an optimal number of
FH components statistically (Iyer & Gawiser 2017 ; Iyer et al. 2019 ).
nother PYTHON based method of SED fitting is Prospector (Leja 

t al. 2017 ; Johnson et al. 2021 ). They use a flexible method to derive
tellar population parameters from photometry and spectroscopy 
cross UV to IR. 

Bayesian Analysis of Galaxies for Physical Inference and Param- 
ter EStimation (BAGPIPES) is a PYTHON tool that can generate 
omplex model spectra for galaxies using spectroscopic and photo- 
etric data (Carnall et al. 2018 , 2019a ). BAGPIPES uses Bayesian
tting to model emission from FUV to microwav e re gimes then
ts these models with the MULTINEST nested sampling algorithm 

Feroz & Hobson 2008 ; Feroz, Hobson & Bridges 2009 ; Feroz
t al. 2019 ) to varying spectroscopic and photometric observations. 
ode Investigating GALaxy (CIGALE) is another PYTHON code that 
ses a Bayesian based method that incorporates FUV to radio to 
erive physical properties from SEDs of galaxies (Boquien et al. 
019 ). 
MIRKWOOD uses an ensemble of supervised ML models to 

ypass computationally heavy Bayesian-based SED fitting (Gilda, 
ower & Narayanan 2021 ). It is trained on mock SEDs generated
y galaxy formation simulations in which the physical properties 
re known which allows the MIRKWOOD algorithms to derive an 
ccurate relationship between inputted photometry and the phys- 
cal properties of galaxies. The PRObabilistic ValueAdded BGS 

PROVABGS) Bayesian SED modelling framework used on the 
ESI Bright Galaxy Surv e y (BGS; (Hahn et al. 2023 ; Myers

t al. 2023 )) photometry and spectroscopy can be used to derive
hysical properties such as mass-weighted age. PROVABGS uses 
on-parametric SFH and metallicity history prescriptions to model 
EDs with SPS. For a more in-depth re vie w and comparison of recent
ED fitting methods please see Pacifici et al. ( 2023 ). 
Considering such massive data sets as SDSS, it is imperative that 

ew, faster methods of analysis are developed for galaxy spectra. 
cci et al. ( 2017 , 2018 ) describes a supervised ML algorithm that

alculates physical properties of galaxies based on their emission- 
ine spectra with a combination of AdaBoost and Decision Trees, 
alled GAME (GAlaxy Machine learning for Emission lines). They 
re able to train the algorithm in approximately 10 min on a set size
f 3 × 10 4 spectra. Once trained the model is able to predict the
ensity , metallicity , column density , and ionization parameters of a
ingle spectra in less than a few seconds, to make predictions for
he entirety of the SDSS DR5 it would take approximately 417 h.
ompared with traditional models this is a vast impro v ement in
rocessing time. 
Liew-Cain et al. ( 2021 ) describes a method to reco v er the age

nd metallicities of galaxies from SEDs using a convolutional neural 
etwork (CNN). CNNs use convolutional filters that are able to pass
 v er data arrays, reducing their size in a specific way in order to
erive patterns that the network is then able to decide is important or
ot important with backpropagation. This process allows the network 
o relate patterns in the input data to a given output, in this case age
r metallicity. Once the network is trained it is then able to use these
atterns to predict the outcomes of new input data. This paper is a
uccessful proof of concept for which CNNs are found to robustly
redict age and metallicity from the SEDs of galaxies. 
The process of analysis can be further sped up with the use

f photometric data as this does not require e xpensiv e and time-
onsuming spectroscopic observations and generally has better SNRs 
nd less calibration systematic errors. Ho we ver, this is at the expense
f losing more subtle signals that allow us to break the de generac y
etween metallicity and dust to constrain age. Li et al. ( 2022 ) uses
 CNN with the similar goal of estimating physical properties of
alaxies; ho we v er, the y achiev e this with photometric data rather than
EDs. They train their algorithm, called Painting IntrinsiC Attributes 
nto SDSS Objects (PICASSO), with multiband photometric images 
o reconstruct 2D maps of stellar mass, metallicity, age and gas mass,
as metallicity, and SFR. 

A simpler ML algorithm such as an ANN could reduce this
 v erall time to make predictions even further if used to predict
ess parameters. F or e xample, as CNNs generally use 2D input data
uch as images, spectra or SEDs, the number of input features can
e significantly larger than a simple ANN as even a small 50 ×50
mage would require 2500 input features. Though a slightly longer 
raining time would not make a significant impact on the o v erall
omputational time, the time it would take to predict outputs for
 large data set of 2D images after training is completed could
ignificantly increase this time. Though 1D data like galaxy spectra 
ay be used in CNNs like those described by Lo v ell et al. ( 2019 ) that

redicts star formation histories based on synthetic galaxy spectra 
enerated by two cosmological hydrodynamic simulations, EAGLE 

Schaye et al. 2015 ) and Illustris (Genel et al. 2014 ). Therefore, we
rovide the proof of concept of an ANN 

1 that is able to predict
he ages of galaxies based on the EWs of their spectra with the
im matching the predictive power of more traditional models but 
ith a shorter computing time. We aim to encourage future studies

hat incorporate faster and simpler ML techniques to predict smaller 
umbers of properties that would otherwise take many hours worth of
imulations to predict. The use of more simple ML algorithms should
e more widely utilized by the field as a whole as an additional
ool for data processing and analysis rather than only researchers 
ith specialisms in ML. Therefore, we aim to show that a simple
NN coded with Tensorflow Keras could be used by any 

esearchers to predict the ages of galaxies based on their EWs. Our
aper is structured as follows: in Section 2 we describe the data set,
his includes a description of data cleaning, feature selection and 
rawbacks of our data set. In Section 3 we describe the framework of
he ANN we employ, this includes hyperparameter tuning. We report 
ur results in Section 4 in which we describe different techniques
imed at improving the overall performance of the predictions. We 
iscuss the results further in Section 5 and provide comparison other
L methods and the use of light-weighted ages instead of mass-
eighted ages. 
We assume H 0 = 68 km s −1 Mpc −1 , �M 

= 0.31, and �	 

= 0.69,
n concordance with 	 CDM (Planck Collaboration et al. 2020 ). 
MNRAS 529, 479–498 (2024) 
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Table 1. To reduce errors when predicting age we use EWs that have a high 
proportion of observations with good SNRs. Out of a total 51 EWs provided 
by GAMA we choose the top 24. We then narrow this down to 14 that have 
the best predictive performance. 

EW Count EW (cont.) Count (cont.) 

D n 4000 54 473 NaD 18 831 
H α 37 238 [OIII] R 15 262 
MH 30 239 FC 14 353 
[S II ] B 29 019 [OIII] B 12 049 
[S II ] R 25 199 CNB 11 542 
G 22 304 H γ A 11 452 
MgG 19 043 H β 7957 
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 INPUT  DATA  

ur data is sourced from the GAlaxy and Mass Assembly (GAMA)
urv e y (Driv er et al. 2009 ; Liske et al. 2015 ). GAMA is a spec-
roscopic and photometric surv e y that spans ∼300 000 galaxies
 v er ∼286 deg 2 up to r < 19.8 mag. From data release 3 (DR3)
Baldry et al. 2018 ), we use median mass-weighted ages generated
y SED fitting programme MAGPHYS v06 , which is described in
ull by da Cunha, Charlot & Elbaz ( 2008 ), as opposed to synthetic
bservations or ages derived from other models because MAGPHYS
s a physically moti v ated model that consistently is able to interpret
alaxy emission across ultraviolet, optical, and infrared wavelengths.
hese are median ages as the MAGPHYS model produces percentile
stimations for mass-weighted ages such that each observation has
6–84th and 2.5–97.5th percentile ranges with a median age with
hese ranges. To reiterate, our true ages have an associated error
s they are estimations within a given range. Therefore, the aim
f our ANN is predict these ‘true’ ages as accurately as possible
n an attempt to match the age estimations from GAMA ho we ver
here will al w ays be a limit on the ANNs performance as it could
e making more accurate predictions to the real true ages but not
he GAMA true age estimations. It is important to note that MAGPHYS
se exponentially declined SFH models which have known issues
n predicting ages (e.g. Carnall et al. 2019b ; Lower et al. 2020 )
nd as such the bias for the true ages must be estimated to be
pproximately > 0.2 dex as the distribution of true values is affected
y this. MAGPHYS follows the methods of Kauffmann et al. ( 2003a )
o parametrize the star formation histories from a stellar library by
haracterizing an underlying continuous model by an age t g and a star
ormation time-scale parameter γ and introduce random bursts on
he continuous model. They use models with exponentially declining
FRs 

 ( t ) ∝ exp ( −γ t) , (3) 

where γ is the star formation time-scale parameter which corre-
ponds to models with γ = 0, 0.07 and 0.25 Gyr -1 at ages t = 1.4,
0, and 10 Gyr which represent starburst, normal star-forming, and
uiescent star-forming galaxies. Biases may be introduced by their
ttempt to a v oid o v ersampling galaxies with ne gligible current star
ormation and the inclusion of random bursts that occur with equal
robability at any given time until t g . In addition, they state that the
ikelihood of a galaxy having experienced a burst in the last 2 Gyr is
et to 50 per cent. 

In addition, we use EW measurements of absorption and emission
ines and from the DirectSummation table in the SpecLineSFR
05 DMU (Gordon et al. 2017 ). A number of steps are taken

o build our sample. First, we use galaxies that are observed with
AMA using surv e y code 5. We then discard observations that do
ot have corresponding SPECIDs in both the MAGPHYS v06 and
pecLineSFR v05 DMUs. We follow the recommendation of
AMA to use a number of given parameters in the SpecLineSFR
05 to ensure each observation has been reliably detected. These

ecommendations include using NQ ≥4 and SN ≥3 which yields a
ample of 54 473 galaxies. 

We take further steps to clean our data by calculating SNRs for
ach observation for each EW. We use the EW errors provided in the
irectSummation table of SpecLineSFR v05 to calculate SNRs

or every EW for every galaxy. We then rank each EW based on
ow many observations have a good SNR (SNR ≥3) to provide
 reliable sample. 24 of the original 51 EWs are chosen based
n their SNR, ho we ver, we run the network a number of times to
etermine the best EWs for training the network. We determine this
NRAS 529, 479–498 (2024) 
y removing each EW in turn and training the network with the
emaining 23. We then confirm the performance of the EWs by
tarting with one EW then adding the better performing EWs one
y one, retraining the network each time until the performance starts
o decrease. We take these steps to find the best EWs for our data
et to take into account the different SNRs for each observation
s some EWs that are more associated with age. We find the
est performance with the 14 chosen EWs that are illustrated in
able 1 . For definitions of each EW please refer to (Gordon et al.
017 ). 
Finally, with this sample we limit the age distribution to maintain

niformity across our sample. We do this to prevent the ANN from
eing trained to predict the most common age. If the distribution of
ges is even across the sample then the ANN will be forced to train on
he patterns across EWs rather than predicting ages based on the most
ommon and therefore the most probable age. We want the network
o find the most probable age based on the EWs for each galaxy,
ot the most statistically probable age based on the distribution of
nput ages. This is seen more commonly in classification problems
hat have very unbalanced data sets that cause the network to predict
hichever class there happens to be more of without considering

he data itself. If a network is only trained on 10 000 galaxies of
imilar ages and 100 with much younger/older ages, it will predict
he most probable outcome based on the distribution of ages in the
raining data and predict an age similar to those 10 000 galaxies
ecause it is 99 per cent likely to be correct. Ho we ver, this does not
ean the network has learned the relationship between the EWs of

alaxies and their associated ages. Generally, for regression problems
e see that the network will predict the mean of the training set if

t is not balanced. Balancing the training set also means we can
erify whether the network has correctly found the most probable
ge by comparing the means of the unbalanced validation set and its
orresponding predicted ages. 

 A N N  

n ANN is a supervised ML algorithm that consists of a fully
onnected set of layers including an input layer, hidden layers
nd an output layer. A supervised ML algorithm is given a set
f training samples and accompanying labels in order to predict
he relationship between a sample and its given label in order to
ake future predictions. ANNs are simple to create and train using
YTHON package Tensorflow Keras , for this reason they are
n ideal candidate for smaller studies in which the relationship
etween different parameters needs to be explored. Our aim for
his work is to determine whether a ML algorithm is able to find the
elationship between EWs and galaxy ages, therefore a simple ANN
rovides proof of concept for further work into this relationship. ANN
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Table 2. Metrics calculated for each number of hidden layers to determine 
the optimal ANN depth. For each number of hidden layers we train the ANN 

10 times to find an average for MSE, MAE and R 

2 score for which we 
calculate the standard error. We determine that 4 layers is the optimal number 
of hidden layers as this gives closest R 

2 score to 1 and the lowest MSE and 
MAE. 

Layers MSE MAE R 

2 score 

1 0.059 ± 0.004 0.164 ± 0.006 − 0.07 ± 0.07 
2 0.045 ± 0.002 0.159 ± 0.004 0.18 ± 0.04 
3 0.040 ± 0.003 0.150 ± 0.005 0.28 ± 0.05 
4 0.032 ± 0.001 0.138 ± 0.002 0.42 ± 0.02 
5 0.032 ± 0.001 0.140 ± 0.003 0.41 ± 0.02 
6 0.033 ± 0.001 0.140 ± 0.002 0.41 ± 0.02 
7 1.2 ± 0.4 0.7 ± 0.2 − 21 ± 7 

Table 3. Metrics calculated for the different scales of hidden nodes. We use 
MSE, MAE, and R 

2 score to show that scale a = 1 gives the best metrics 
using equation ( 7 ) for which we calculate the standard error. This gives a total 
of 456 nodes in the hidden layers; starting with 256 hidden nodes in the first 
hidden layer and halving this for each subsequent hidden layer. 

Scale MSE MAE R 

2 score 

1 0.0326 ± 0.001 0.137 ± 0.003 0.41 ± 0.02 
2 0.0404 ± 0.003 0.152 ± 0.006 0.26 ± 0.05 
3 0.0504 ± 0.004 0.162 ± 0.008 0.08 ± 0.08 
4 0.09 ± 0.03 0.21 ± 0.04 −0.6 ± 0.6 
5 0.0516 ± 0.003 0.164 ± 0.005 0.06 ± 0.06 
6 0.14 ± 0.09 0.24 ± 0.08 −2 ± 2 
7 0.2 ± 0.2 0.3 ± 0.1 −3 ± 3 
8 0.4 ± 0.4 0.3 ± 0.2 −7 ± 7 
9 1.1 ± 0.7 0.6 ± 0.3 −19 ± 13 
10 1.8 ± 0.7 0.9 ± 0.3 −31 ± 12 
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rchitecture is based on the neurons in human brains (McCulloch & 

itts 1943 ; Hopfield & Tank 1986 ). The network is trained by learning
he patterns between a set of input features ( x 1 , x 2 ,..., x i ,) and their
espective output y . It learns this pattern by updating the weights
nd biases of the nodes through a process called backpropagation in 
hich the nodes and weights are tuned to reduce the output error as
uch as possible in order to produce the most accurate predictions. 
here are a number of factors that go into this process that optimize

he performance of the network such as increasing the number of
idden layers, changing the number of nodes in each layer and 
uning the hyperparameters. In order to e v aluate the performance 
f the different ANN architecture and hyperparameters we use a set
f e v aluation metrics to quantify the quality of the network. For each
yperparameter we tune, we run the network 10 times with 40 epochs
uring each training phase in order to calculate averages values for
ur e v aluation metrics. 

.1 Evaluation metrics 

he e v aluation metrics we use are chosen based on the data we
re working with. As our data is fully numerical and we are using
 regression ANN we choose mean squared error (MSE), mean 
bsolute error (MAE) and the coefficient of determination score also 
nown as the R-squared score ( R 

2 ). 
MSE is a metric used to compare actual values against predicted 

alues by computing the mean of the squares of the errors between
he values (Bickel & Doksum 2015 ). For our ANN we use the MSE

etric included with the Tensorflow Keras package which 
escribes MSE as 

SE = 

1 

n 

n ∑ 

i= 1 

( y i − ˆ y i ) 
2 , (4) 

where n is equal to the total number of data points, y i is the actual
alue, and ˆ y i is the predicted value. The closer to zero the calculated
SE is, the more accurate the predictions are. 
MAE is similar to MSE as it also measures the errors between

ctual and predicted values, as shown 

AE = 

1 

n 

n ∑ 

i= 1 

| y i − ˆ y i | , (5) 

where ˆ y i is the predicted value, y i is the corresponding true value, 
nd n is the number of data points. Similarly to MSE, the closer to
ero the more accurate the predictions are. We choose to use both
f these metrics as even though they are similar they show slight
uances about the prediction ability of the ANN. The MAE value is
ess sensitive to large errors in prediction whereas MSE is able to
enalize this more. 
The R 

2 score, also known as the coefficient of determination, 
uantifies the ability of a model to predict the y values of an unseen
ata set through the proportion of explained variance 

 

2 = 1 −
∑ n 

i= 1 ( y i − ˆ y i ) 2 ∑ n 

i= 1 ( y i − ȳ ) 2 
, (6) 

where y i is the true value, ˆ y i is the predicted value, and ȳ i is equal
o 1 

n 

∑ n 

i= 1 y i . An R 

2 score equal to 1 means the model is able to
erfectly predict the true y v alues. A v alue of 0 means the model is
ompletely disregarding the input features to predict random y values 
nd finally R 

2 value may be arbitrarily worse, which results in R 

2 

alues from 0 to ne gativ e infinity depending on how poor the models
erformance is. 
.2 ANN ar chitectur e 

he architecture of our ANN consists of an input layer with 14 nodes
or each of the 14 input EWs, four hidden layers with a total of 465
odes and an output layer with one node. We calculate the e v aluation
etrics for 1–7 hidden layers and determine 4 hidden layers perform

he best as shown in T able 2 . W e choose 4 layers as opposed to 5
r 6 even though they have nearly the same result for all metrics
ecause we want a network with the smallest size that achieves this
est o v erall score as this will help to prev ent o v er fitting. 
Generally, the number of nodes in the first hidden layer will be

etween the input size and the output size to prev ent o v er fitting,
o we ver, after testing v arious sizes of ANN we determine the best to
e given by the equation 

 h = 

N s 

a( N i + N o ) 
, (7) 

where N h is the total number of nodes in the hidden layers, N s is the
umber of samples in the data set, N i is the number of input nodes, N o 

s the number of output nodes, and a is a scale factor generally found
o be between 1 and 10 through testing (see supplementary material
f Liu et al. 2020 ). We find a = 1 to perform the best according
o our MSE, MAE and R 

2 scores shown in Table 3 . The final ANN
rchitecture is shown in Fig. 1 , the network has 14 nodes in the input
ayer, 4 hidden layers and 1 node in the output layer. 
MNRAS 529, 479–498 (2024) 
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M

Figure 1. Our ANN has six layers which include an input layer ( i ), four hidden layers ( h 1 , h 2 , h 3 , h 4 ) and an output layer ( o ). There are 14 nodes in the input 
layer as we have 14 input features in the form of EWs. h 1 has 248 nodes and every subsequent layer has half the previous layer, such that h 2 has 124 nodes, h 3 
has 62, and h 4 has 31 nodes. The output layer has 1 node that gives the predicted age of the galaxy based on its input EWs. 
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Table 4. The results of our acti v ation function tests. Each acti v ation function 
is implemented as part of the PYTHON package Tensorflow Keras and 
tested by training the ANN on ten separate occasions for which we average 
the metrics MSE, MAE, and R 

2 score and find the standard error. Softsign 
performs the best but is not dissimilar to tanh. 

Acti v ation MSE MAE R 

2 score 

Linear 0.07 ± 0.01 0.22 ± 0.02 −0.3 ± 0.2 
ReLU 0.10 ± 0.02 0.23 ± 0.03 −0.9 ± 0.4 
Swish 0.037 ± 0.003 0.148 ± 0.007 0.33 ± 0.06 
Sigmoid 0.051 ± 0.002 0.196 ± 0.005 0.07 ± 0.04 
Softmax 0.64 ± 0.02 0.76 ± 0.01 −10.6 ± 0.3 
Softplus 0.035 ± 0.001 0.15 ± 0.01 0.36 ± 0.09 
Softsign 0.0252 ± 0.0001 0.1253 ± 0.0004 0.543 ± 0.002 
Tanh 0.0253 ± 0.0002 0.1241 ± 0.0005 0.540 ± 0.003 
SeLU 0.0301 ± 0.0009 0.137 ± 0.002 0.45 ± 0.02 
eLU 0.029 ± 0.001 0.134 ± 0.002 0.47 ± 0.02 
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.3 Hyperparameters 

ere, we detail the chosen hyperparameters of our ANN. We offer
escriptions of the processes used to determine which hyperparame-
ers are the most ef fecti ve for our data and model. For the acti v ation
unctions in the hidden layers, the loss function and the optimizer
e compare the performance of our model with various pre-built

unctions provided by the PYTHON package Tensorflow Keras .
e compare by training the model 10 times and averaging the metrics

escribed in subsection 3.1 similarly to how we conduct our tests
or the number of hidden layers and scale of the nodes. For all of
ur tests we use a test-train split of 20 per cent and 80 per cent,
espectively. 

.3.1 Activation function 

n acti v ation function can be used in each layer of an ANN to
ontrol how the network learns the training set in a linear or non-
inear capacity, enabling more complex relationships to develop
Sibi, Jones & Siddarth 2013 ). In simple terms, it achieves this by
cti v ating and deacti v ating the nodes by calculating the weighted
um and further adding bias through backpropagation. We choose
wo acti v ation functions for our hidden layers and output layer to
ptimize the performance of our ANN. First, we choose the linear
cti v ation function provided with Tensorflow Keras for our
utput layer as our method requires unbounded output values for y.
he linear function is calculated as y = x . 
NRAS 529, 479–498 (2024) 
The acti v ation function for the hidden layers is chosen by testing
he performance of various activation functions. We train our model
n 10 separate occasions for each acti v ation function in order to find
n average for the metrics described earlier. The result of these tests
how that the softsign acti v ation function performs the best, with the
yperbolic tangent (tanh) function following in a close second place
s shown in Table 4 . 

Softsign is an s-shaped function, similar to tanh, that tends to 1 and
1. Ho we ver, softsign dif fers from tanh as it converges polynomially
ather than exponentially which reduces the impact of the vanishing
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Table 5. The results for the MAE, MSE, mean absolute percentage error 
(MAPE), mean squared logarithmic error (MSLE), huber, and log cosh loss 
functions. Each loss function is implemented as part of the PYTHON package 
Tensorflow Keras and tested by training the ANN on ten separate 
occasions for which we average the metrics MSE, MAE, and R 

2 score and 
find the standard error. The MSE loss function and Huber loss function have 
the best MSE metric at 0.025. MAPE has the best MAE at 0.122 and the MSE 

loss has the best R 

2 metric at 0.539. Therefore, we choose MSE to be the loss 
function for our ANN. 

Loss 
function MSE MAE R 

2 score 

MAE 0.0260 ± 0.0004 0.125 ± 0.001 0.519 ± 0.008 
MSE 0.0250 ± 0.0002 0.1260 ± 0.0008 0.539 ± 0.004 
MAPE 0.0260 ± 0.0004 0.1220 ± 0.0008 0.532 ± 0.007 
MSLE 0.09 ± 0.03 0.203 ± 0.008 −0.7 ± 0.6 
Huber 0.0250 ± 0.0003 0.1250 ± 0.0006 0.536 ± 0.006 
Log cosh 0.0260 ± 0.0004 0.126 ± 0.001 0.535 ± 0.007 
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Table 6. The results of our optimizer tests. Each optimizer is implemented 
as part of the PYTHON package Tensorflow Keras and tested by training 
the ANN on 10 separate occasions for which we average the metrics MSE, 
MAE, and R 

2 score and find the standard error. Across the board the Adam 

optimizer has the best average metrics with an MSE of 0.0252, an MAE of 
0.1241 and R 

2 score of 0.5421. 

Optimizer MSE MAE R 

2 score 

Nadam 0.027 ± 0.001 0.128 ± 0.003 0.52 ± 0.02 
RMSprop 0.0273 ± 0.0006 0.129 ± 0.001 0.50 ± 0.01 
Adam 0.0252 ± 0.0002 0.1241 ± 0.0004 0.542 ± 0.002 
Adamax 0.0257 ± 0.0003 0.1261 ± 0.0006 0.528 ± 0.005 
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radient problem (Turian, Bergstra & Bengio 2009 ; Glorot & Bengio 
010 ; Szandała 2021 ). This is an issue that relates to the gradient of
he loss function approaching zero when certain acti v ation functions 
re used in the hidden layers. It is caused by acti v ation functions
hat transform data from a large range to a smaller range such as 0
nd 1 in the case of a sigmoid function. The result of the vanishing
radient problem is that the network is harder to train. Ho we ver,
ven though the softsign function constrains data between –1 and 1, 
t converges polynomially which prevents the vanishing gradient 
roblem from occurring. Softsign is implemented as part of the 
cti v ation functions provided by Tensorflow Keras . In which 
hey calculate softsign as 

 = 

x 

1 + | x| . (8) 

.3.2 Loss function 

 loss function acts to e v aluate a models performance after each
raining epoch. It quantifies the error between the true value and 
he predicted value, this then allows the optimizer to update its
eights through backpropagation. The choice of loss function 
epends on the output data as a regression problem requires different 
 v aluation metrics to classification problems. Again, we test each 
egression-appropriate loss function available with Tensorflow 
eras and find the MSE function performs the best with our 
odel, the results of which are shown in Table 5 . The MSE loss

unction is calculated in the same manner as the MSE e v aluation
etric 

SE = 

1 

n 

n ∑ 

i= 1 

( y i − ˆ y i ) 
2 . (9) 

The MSE function calculates the average of the MSEs between a 
ample n predicted ages ˆ y i and their corresponding true ages y i in a
ample of size n . 

The error in GAMA age estimates can be taken into account such
hat the ANN should penalize poor observations more than good 
bservations. The Tensorflow Keras package offers capabili- 
ies to implement custom loss functions which offer a wider range 
f options when tuning hyperparameters. We write a simple custom 

oss function that builds on the MSE loss function by weighting the
oss depending on the error on the age estimation from GAMA. A
ustom loss function can be used to apply weights to the calculated
 d  
oss such that better observations have a higher weight and therefore
he loss will be reduced. 

We calculate the weights based on the width of the percentiles for
he mass-weighted age estimates from GAMA. We find the range 
etween the 2.5th-97.5th percentiles and normalize between 0 and 
 such that a wider range between the percentiles corresponds to a
igher weight being placed on observations with wider errors. To 
reate the custom loss function we alter the MSE loss function by
ividing the MSE by the weight for each galaxy so the loss during
raining will be lower for galaxies with a smaller percentile range as
his indicates a lower error 

oss = 

1 

n 

n ∑ 

i= 1 

( y i − ˆ y i ) 2 

w i 

, (10) 

where w i is the weight for a galaxy with a true age y i and a predicted
ge ˆ y i in a sample of size n . To implement this we include the weight
or a given observation in the y input data by adding it as an extra
imension in the y array before applying the train test split. This is
ecessary given Keras custom loss function capabilities which only 
ccept one input for a given observation. This minimization of loss
or smaller errors acts to help the network by prioritizing the more
ccurate true ages and therefore, fa v our learning the relationships
etween EW and age from these observations more than poorer 
bservations. 

.3.3 Optimizer 

n optimizer updates the weights and learning rate of the model
ith the goal of reducing the loss as much as possible. We choose the

tochastic gradient descent optimizer function called Adam provided 
ith Tensorflow Keras (Kingma & Ba 2014 ). Adam stands for
daptiv e Mo v ement Estimation and is a combination of the AdaGrad
ptimizer’s ability to deal with sparse gradients (Duchi, Hazan & 

inger 2011 ) and RMSprop’s ability to deal with non-stationary 
bjectives (Tieleman, Hinton et al. 2012 ). Adam works by estimating
rst-order and second-order moments. We choose Adam with the 
ame method as the other hyperparameters and detail our results in
able 6 . 

 RESULTS  

n order to fully e v aluate the predictive power of the network we
ompare our e v aluation metrics described in subsection 3.1 which
llows us to directly compare the performance of the ANN with
ifferent data sets. We predict the ages for 500 randomly selected
alaxies that are not included in the training or testing phases, such
hat the ANN has never seen the samples before. We choose a
ifferent random set of 500 galaxies 20 times in order to calculate
MNRAS 529, 479–498 (2024) 
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M

Figure 2. Here we show the ability of the ANN to predict galaxy ages in 
direct comparison with their true ages with a kernel density estimate (KDE) 
plot. There is some scatter in the results but a clear linear relationship. A 

perfect set of predictions should follow a one-to-one relationship as shown 
with the line of equality. The KDE contour levels represent isoproportions of 
density such that the most outer contour excludes 10 per cent of the probability 
mass and the most inner contour excludes 90 per cent. Each contour increases 
in 10 per cent per cent intervals between 10 and 90 per cent. The contours show 

that the distribution of predicted ages is skewed towards a higher true age. 
This shows that the ANN is underestimating older ages and o v erestimating 
younger ages. 
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Figure 3. Here we represent the linked uncertainty in the true ages t t 
estimated by GAMA with our predicted ages t p . We find the difference 
between the true ages and the predicted ages corresponding to Fig. 2 such 
that the difference in age t d = t t − t p . The line of equality in Fig. 2 equates to 
a vertical line where the true ages would perfectly match the predicted ages at 
x = 0. This shows that the older galaxies are more likely to be underestimated 
as opposed to the younger galaxies, whereas younger galaxies are more likely 
to be o v erestimated than older galaxies. We see this in the diagonal shape 
apparent within the scatter plot. This appears to have an equal distribution 
between young and old galaxies as the histograms show an even spread of 
galaxies. As such, the network does not seem to o v erestimate young ages 
anymore than it underestimates older galaxies. 
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verage results for our metrics. The purpose of this is to ensure the
NN does not get lucky with a good sample of observations that

auses the ANN to appear more accurate than it really is. We plot the
redicted ages against the true ages from GAMA, as shown in Fig. 2 ,
ith the aim of having a perfect linear correlation in which t t = t p ,
here t t is the true GAMA estimated age and t p is our ANN predicted

ge. We find our e v aluation metrics to give an average MSE of 0.020,
AE of 0.108 and R 

2 of 0.530. 
Fig. 2 shows the ANN is able to predict the ages with appreciable

ccuracy. To compare the overall distribution of the predictions in
omparison with the true ages, we calculate the mean and standard
eviation (scatter) of each, respectively – this is with the goal of
atching the distributions and means. The true ages have a mean

nd standard deviation of μt = 9.405 and σ t = 0.207, whereas the
redicted ages have a mean and standard deviation equal to μp =
.377 and σ p = 0.182 which gives a residual value of σ r = 0.025,
his shows that our ANN is matching the general distribution of
ges but o v erall is underpredicating ages. The standard deviation
f the true ages is larger than that of the predicted ages which
ndicates the network is susceptible to the phenomenon of regression
oward the mean. As such, in future work it would be important
o include a larger range of ages which would introduce more
xtreme samples to our training set. We confirm the correlation
etween the true and predicted ages with the Pearson and Spearman
ank coefficients for which we find p = 0.756 and s = 0.755.
ig. 3 shows how the true age relates to the prediction ability
f the ANN. We calculate the difference between the predicted
nd true ages of the galaxies and plot this against their true ages.
e find that the older the true age of a galaxy is the more the
NN underestimates the predicted age which can be seen in the
imodality of Fig. 2 . The affects of this underestimation appear
NRAS 529, 479–498 (2024) 
tronger than the o v erestimation of the young ages. The o v erall affect
f this is most likely because these galaxies have more extreme
Ws, as shown in Fig. 4 is comparison to the intermediate aged
alaxies. 

.1 Correlation of results with properties 

o determine whether the worse predictions are a result of outliers
n our true data set, we plot the results of Fig. 2 coloured by
ifferent features of the data. We compare the properties sSFR,
etallicity, and stellar mass in Fig. 5 . High sSFR, metallicity, and

tellar mass all correlate with higher ages ho we ver, the galaxies
hat have been more mispredicted do not seem to be extreme
ases and therefore do not show any trend correlating to these
roperties. 
Fig. 6 shows how the results correspond to the true median age

ercentile range estimates for each galaxy from GAMA. Similarly
o Fig. 4 , there appear to be extreme values of percentile width
o we v er the y do not necessarily correspond to the outlying age
redictions. Though the 2.5–97.5th percentile range shows a wider
ange for the younger galaxies which suggests the GAMA ages
re less precise when their are younger stellar components. The
alaxies with very narrow percentile widths tend to be close to the
ine of equality whereas the wider ranges tend to fall closer to the
uter edges of the mispredictions, though there is a number of wide
anges towards the middle. 
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Figure 4. To compare the different observations of EWs with the predictions versus true ages we colour Fig. 2 based on a normalized SNR for each galaxy. We 
normalize the SNRs in order to more closely compare them. 

Figure 5. The results of Fig. 2 are coloured based on their sSFR, metallicity, and stellar mass. A darker blue corresponds to higher value for each respective 
property whereas light yellow shows a low value. 
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We compare the EW values for each galaxy and how they relate
o predicted and true age by colouring Fig. 2 based on normalized
W v alues, as sho wn in Fig. 7 . General trends can be seen across

he different EWs, such as high H α, [O III ]R and [S II ]B values
eing associated with younger galaxies. The important thing to 
ote from this figure is that there do not appear to be outlying
W values associated with the outlying predictions. In addition, 

here is only one galaxy that is more than 3 σ away from the
ean predicted age which is located at approximately (9.64 dex, 9.1

ex). 
MNRAS 529, 479–498 (2024) 
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Figure 6. We colour the points of Fig. 2 based on the percentile range of 
the true mass-weighted ages from GAMA. The darker points correspond to 
galaxies with a wider percentile range that the true median mass-weighted 
age falls within. This shows that the outliers are not necessarily dependent on 
the precision of the true ages. 
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Figure 7. To compare the different observations of EWs with the predictions 
versus true ages we colour Fig. 2 based on a normalized EW for each galaxy. 
We normalize the EWs in order to more closely compare them. 
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In order to compare how the different observations of EWs relate
o the results of Fig. 2 , we colour each galaxy by a its normalized
NR for each EW used in training, as show in Fig. 4 . Most of

he plots show that lower SNRs are associated with the worse
ispredictions which suggests the network is ne gativ ely affected by

oor observations of EWs. The plots for average, [O III ]R, [O III ]B,
S II ]R, [S II ]B, D4000n, and H α SNRs show that the high SNRs
re associated with the younger galaxies whereas the low SNRs
or H γ A , G, MgG, NaD, and CNB are correlated with younger
alaxies. 
NRAS 529, 479–498 (2024) 
.2 Prediction uncertainty 

s discussed in Section 2 , our EW input features from GAMA each
ave an associated observation error. As this error could introduce
ncertainty into the network predictions, we calculate an aggregated
roxy for uncertainty for our predicted ages by perturbing the input
eatures within their errors before training the network and predicting
he ages for the same 500 validation galaxies. We perturb the input
ata within its errors with a normal distribution. Once the training
ata is perturbed we train the network and predict the ages for
00 validation galaxies. We do this 25 times to find an average
rediction uncertainty for the age for each galaxy in the validation
et. This method differs from the previous method of evaluation
escribed in Section 4 because we do not use a random 500 galaxies
or every run, we use the same 500 galaxies in order to find the
ange in predictions and therefore find the average uncertainty across
he 500 galaxies. The results of this are shown in Table 7 for
ach test. 

The calculated uncertainty is a proxy for prediction error as this is
nly taking the error in the input data into account, not the error in the
etwork predictions themselv es. F or this reason, we do not show the
ean true age errors as this would be misleading. With this in mind

he proxy for uncertainty shows that the network does not appear to
e affected by fluctuations in the input data as our average prediction
ncertainty and mean predicted age is 9.377 ± 0.004 dex (yr). This
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Table 7. For both the mass- and light-weighted ages we show our prediction 
uncertainties. The predicted mass-weighted ages are split into the respective 
loss functions and sets to show how the uncertainty is affected by these 
different tests. The mean true age and predicted age are measured in dex (yr). 

Loss function Set True age Predicted age 

Mass-weighted 
MSE Mixed 9.405 9.377 ± 0.004 
MSE Set 1 9.457 9.419 ± 0.008 
MSE Set 2 9.355 9.323 ± 0.005 

Custom Mixed 9.405 9.368 ± 0.005 
Custom Set 1 9.457 9.397 ± 0.006 
Custom Set 2 9.355 9.316 ± 0.005 

Light-weighted 

MSE Mixed 9.380 9.348 ± 0.004 

Figure 8. We plot the average error of the true galaxies from Fig. 2 to show 

how large the GAMA errors are. The mean predicted age is plotted alongside 
the upper and lower bounds for the average errors. This shows that though 
there appears to be a large amount of scatter in the predictions, they still follow 

the line of equality within the error bands. Therefore, the ANN is making 
good predictions despite the ground truth not being perfectly accurate. 
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hows the network is underpredicting the o v erall distribution of
redicted ages, though the uncertainty is quite small. We discuss 
his further in relation to the different evaluation tests in subsection 
.3 , subsection 4.5 , and subsection 5.1 in order to compare how the
ncertainties are affected by different stellar populations. We also 
iscuss how the properties of the galaxies and EW SNRs may affect
his uncertainty in subsection 4.6 . 

.3 Effect of error on age predictions 

s the GAMA ages are only median estimates calculated from a 
ercentile range there may be a large margin of error for some
bservations which means the ANN is being trained on ages that 
e do not al w ays have accurate estimates on. To visualize the errors

ssociated with the GAMA estimations we show the average error 
n Fig. 8 by plotting the mean line of best fit with upper and lower
ounds to show the average error at any given age for the predicted
ges corresponding to the results shown in Fig. 2 . This shows that
hough our predictions show a large amount of scatter, they still
ollow the line of equality within the error band which means the
NN is making good predictions despite the error associated with 

he true ages. 
To demonstrate this further we test the ANN by splitting the data

et to calculate the results into two sets based on the percentile
rror of the ages. We continue to use 500 galaxies in each of the sets
imilarly to the method described in Section 4 . We determine the sets
y finding the mean range between the 2.5th and 97.5th percentiles.
ny galaxies with a range less than the mean are put into Set 1,
hereas galaxies with a greater range are placed in Set 2. Therefore,
alaxies with a more accurate estimated age from GAMA are in Set
 and galaxies with a greater age error are in Set 2. We ensure that
ll galaxies in the sets are not present in the training set. 

To calculate our e v aluation metrics we use a random set of 500
alaxies that the network has not seen before in order to find
n average for our metrics similarly to our method in Section 4 .
o we ver, to plot our figures we choose a set of 500 galaxies that
roduce metrics similar to that of the average. We do this to ensure
he figures are comparable as the ANNs performance, in this instance, 
s not dependent on the selected 500 galaxies. 

Fig. 11 demonstrates the performance of the network predictions 
y showing where predicted ages fall with respect to the true age
rror bars. This shows that the network is successfully predicting 
ges within the error of the true ages for 96.7 per cent of the total
00 galaxies, as shown in Table 11 . Set 1 has a larger number
f mispredictions than Set 2. We calculate 5.2 per cent of Set 1
redictions fall outside the error bars, whereas Set 2 has 1.4 per cent
f predictions outside the errors. Furthermore, Set 1 has a tighter
istribution within the error bars as 82.4 per cent of the predictions
or Set 1 fall within the 16–84th percentile range as opposed to
8.2 per cent of Set 2 predictions, this is apparent with the more
oncentrated band of dark purple stars for Set 1 whereas Set 2 appears
ore spread out and sparse. It is interesting to note the amount of

redictions outside the 16–84th percentiles but within the 2.5–97.5th 
s approximately the same as Set 1 has 16.6 per cent in this group
nd Set 2 has 16.2 per cent. This means the increased precision in
et 1 predictions that comes from the 16–84th group is being held
ack by the number of predictions outside the error bars and vice
ersa for Set 2. Ho we ver, if we take into account the e v aluation
etrics shown in Table 8 we can see that the closer fit of the Set
 predictions within the 16–84th error bars results in lower MSE
nd MAE and higher R 

2 scores with Set 1 producing MSE = 0.018,
AE = 0.101, and R 

2 = 0.550, whereas Set 2 has MSE = 0.023,
AE = 0.115, and R 

2 = 0.422. The linear correlation between true
nd predicted age can be seen in Figs 9 and 10 for Set 1 and Set 2,
espectively. Here it is apparent that there is a stronger correlation
or Set 1 than Set 2 which we quantify as p = 0.786 and s =
.791 for Set 1 and p = 0.683 and s = 0.690 for Set 2. This shows
hat the ANN is able to predict Set 1 ages more precisely but less
eliably than Set 2 as there are more mispredictions for Set 1 than
et 2 but more accurate predictions within the 16–84th percentile 
ange. 

To compare the distribution in the predicted ages we calculate the
esidual scatter σ r which we determine to be the difference between 
he standard deviations of the true ages σ t and the predicted ages

p such that σ r = σ t − σ p . We find that Set 2 has a higher residual
catter with σ r = 0.032 compared with σ r = 0.12 for Set 1 which
eans the Set 2 predicted ages have a distribution closer to their true

ounterparts than Set 1 ages. To further investigate the distributions 
MNRAS 529, 479–498 (2024) 
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Table 8. The results for the ANN when the 500 test galaxies used to calculate the results are split into sets. Set 1 performs better as expected because 
the ages have a smaller error associated with them. For comparison we also include the results for a combined set. We find the mean true and predicted 
ages and the residual standard deviation σ r in order to compare the different sets as the standard deviation of the true ages varies between samples. We 
calculate σ r = σ t − σ p where p = predicted, t = true, and r = residual. 

Set MSE MAE R 

2 score μt σ t μp σ p σ r p rank s rank Time (s) 

Combined 0.020 0.108 0.530 9.405 0.207 9.377 0.182 0.025 0.756 0.755 23.52 
Set 1 0.018 0.101 0.550 9.457 0.202 9.419 0.190 0.012 0.786 0.791 25.316 
Set 2 0.023 0.115 0.422 9.355 0.198 9.323 0.166 0.032 0.683 0.69 23.624 

Figure 9. Results for predicting Set 1 ages show that the ANN is able to make 
more precise predictions. This is demonstrated by less scatter and narrower 
contours that follow the line of equality closer than those in Fig. 2 or Fig. 10 . 
We calculate the Pearson and Spearman rank coefficients to be p = 0.786 and 
s = 0.791 which show a stronger correlation between the true and predicted 
ages for Set 1. 

Figure 10. The results for Set 2 show a higher level of scatter between the 
true and predicted ages. This shows that the ANN performs worse when the 
true ages estimates have a greater error. There is still some correlation as we 
calculate the Pearson and Spearman rank coefficients to be p = 0.683 and s = 

0.690. Ho we ver, the residual scatter is greater than that of Set 1 with a value 
of σ r = 0.032 for Set 2 and σ r = 0.012 for Set 1. 
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e find that the mean of the predicted ages of both sets is comparable
o the mean of their true ages. Set 1 has a mean true age of 9.457 dex
yr) and a mean predicted age of 9.419 ± 0.008 dex (yr) whereas Set
 has a mean true age of 9.355 dex (yr) and a mean predicted age
f 9.323 ± 0.005 dex (yr). First, the mean true ages suggest that the
ore accurate ages from GAMA are from older galaxies which the

etwork is able to pick up on as the mean predicted ages are similarly
igher for Set 1 galaxies. The uncertainties are also comparably small
or the mixed set and both Set 1 and 2, this suggests the network is
ot affected by fluctuations of the EWs within their uncertainties. 
One more feature in Fig. 11 to note is that the predictions tend

o fall on the right side of the true age line for which we quantify
n Table 12 . We find that 60.2 per cent of the predictions fall on
he right which means the ANN is tending towards predicting ages
oo low for their true age. This is most apparent for the predictions
etween the 2.5–16th and 84–97.5th percentiles (light purple stars)
nd the predictions outside the the error bars (red crosses). This can
e seen in Fig. 3 as the histograms bins closest to the line of equality
re fairly even but there is a higher number of points at 0.2 dex and
igher. This combined with our contour plots and numerical results
hows that, though the ANN is predicting more accurately in terms of
umerical results and o v erall distribution it is struggling with some
et 1 predictions. 
The ANN is therefore better at predicting the ages that have more

recise estimations. To reiterate, the true ages are not necessarily
 xactly correct. The y are estimated percentiles with a median most
ikely age. Thus, the ANN is able to predict the ages of galaxies more
recisely for observations that have more certainty and a smaller
ercentile range. This is reflected in the performance of the ANN for
alaxies with ages that are less certain for which the ANN predicts
ges less precisely when compared with the true age estimates. This
hows it is successfully finding the links between various EWs and
rue age as the ANN performs better for Set 1 galaxies. 

.4 Uncertain input data 

o e v aluate the performance of the network on data outside of
he trained range, we test out-of-distribution ages and EWs. First,
e train the network we the MSE loss function and custom loss

unction in order to compare the predictions. Then we use validation
alaxies with ages outside the trained range, as shown in Fig. 12 .
he predictions for out of range ages using the MSE loss function
otably perform better according to the metrics in comparison to the
redictions of ages within the trained range, as shown in Table 9 .
he out of range predictions using the custom loss function are
omparable to those within the trained age range. 

Similarly, we e v aluate the networks ability to predict ages for
alaxies that have out-of-distribution EWs. To achieve this, we take
arying portions of the validation data set and alter the EWs by
ncreasing or decreasing the EW value by 2 times the uncertainty.

e show the results of altering the EWs for 25 per cent, 50 per cent,
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Figure 11. We show the predicted ages within the error bars of the true age estimates which we determine as the difference between the median mass-weighted 
age (true age) and the 2.5th and 97.5th percentiles as this is the maximum range for a galaxies age estimated by GAMA and as such our predicted ages should fall 
within. We represent the error of the true age with green error bars that are centred at 0 as to represent the true age and the x -axis corresponds to the difference 
between the true ages and the 2.7th percentile, 97.5th percentile, and predicted ages. The lower and upper limits of the error bars correspond to the difference 
between the median age and the 2.5th and 97.5th percentile estimates respectively, such that a galaxy with a median estimated age of 9.5 dex, 2.7th percentile 
equal to 9.4 dex and 97.5th percentile equal to 9.7 dex would have an error bar centred at 0, a lower error bar limit at –0.1 and an upper limit of + 0.2. Predicted 
ages are marked with stars when they fall within the error bars and red crosses when they fall outside the error bars. Purple stars represent Set 1 galaxies as they 
have error bars below the average range between the 2.5–97.5th percentile range, whereas Set 2 predicted ages are shown as blue stars. The shade of purple and 
blue indicates whether the prediction falls within the 16–84th percentile range or the 2.5–97.5th range within the error bars. Furthermore, we rank the width of 
the error bars such that the narrowest range is at 1, the widest range is at 1000 and all of Set 1 is between rank 1–499 and Set 2 is between rank 500–1000. In 
addition, we count the number of galaxies that have predicted ages that fall outside the error bars for which Set 1 galaxies have a significant number more than 
Set 2. We plot the same 500 galaxies for both the MSE loss function and the custom loss function which do not show a significant difference in performance of 
the ANNs predictions. 
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5 per cent, and 100 per cent of the validation galaxies in Table 10 .
he e v aluation metrics become considerably worse the more the 
alidation set is altered which is apparent in the contours of Fig. 13 .

.5 Custom loss function 

e calculate our e v aluation metrics for a combined set, Set 1 and
et 2 in the same method used in subsection 4.3 . Using this method
e find that the ANN performs better with Set 1 than Set 2 or the

ombined set, as shown in Table 13 . However, the overall results
how that the ANN with the custom loss function is not matching
he performance we see with the MSE loss function. The only metric
hat impro v es is the av erage time as the Set 1 av erage run time is
 s faster ho we ver, both the Set 2 and combined run times are ∼2 s
onger. Our e v aluation metrics MSE and MAE perform similarly with
nd without the custom loss function with but the R 

2 score performs
orse for Set 2 and combined but slightly better for Set 1. We show

he predicted ages of the combined set in Fig. 14 , Set 1 in Fig. 15
nd Set 2 in Fig. 16 for the same 500 galaxies used in Section 4 and
ubsection 4.3 . The predictions for all sets appear nearly identical 
or the custom loss and MSE loss functions which we quantify with
he Pearson and Spearman rank correlation coef ficients, as sho wn in
able 13 . The uncertainties shown in Table 7 are similarly low when
ompared with the uncertainties for the MSE loss function predicted 
ges. 

The ANN is able to predict Set 1 ages more precisely than
et 2 which confirms the findings in subsection 4.3 . This shows

he network is able to make better predictions for galaxies that
ave more precise age estimates from GAMA which means the 
etwork is successfully learning the patterns between the EWs 
nd the ages. The most likely reason that weighting the poorer
bservations with higher losses does not impro v e the predictions
s that the netw ork w as already doing its best to predict patterns
etween EWs and ages and being told which true ages are poorer
oes not circumvent just how much error is associated with the data as 
ot only the label data (true ages) has errors but also the input features
EWs). 

We compare the ability of the custom loss function at increasing the
ccuracy of predictions within the errors from the true ages with the
SE loss function in Fig. 11 . This confirms there is little difference

n the predictions which indicates our ANN is already working well
ithout the need for a custom loss function despite the error on the
riginal data. Fig. 11 confirms that 96.6 per cent of points fall within
he true age error bars which matches the predictions without the
ustom loss function which has 96.7 per cent of predictions within
he error bars. We show the percentage distribution for the predictions 
MNRAS 529, 479–498 (2024) 
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Figure 12. We show the predicted ages versus the corresponding true ages for 
galaxies outside of the trained age range. The upper panel of the figure shows 
the results when using the MSE loss function whereas the lower panel shows 
the results using a custom loss function that takes into account the error on 
the true ages by weighting the samples used for training. 

Table 9. The results for the predictions on true ages that are out of the 
networks trained range in comparison to the results for galaxies within the 
trained age range. We also compare the results between the MSE loss function 
and our custom loss function. 

Range MSE MAE R 

2 score p rank s rank 

MSE – in 0.020 0.108 0.530 0.756 0.755 
MSE – out 0.059 0.179 0.715 0.897 0.616 
Custom – in 0.021 0.107 0.522 0.752 0.760 
Custom – out 0.096 0.18 0.534 0.863 0.61 
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Table 10. We test the training network on a validation set that has a number 
of EWs outside their uncertainties. For each proportion of the validation set 
we calculate average values for 20 runs each. 

Proportion MSE MAE R 

2 score p rank s rank 

0 per cent 0.020 0.108 0.530 0.756 0.755 
25 per cent 0.025 0.116 0.418 0.746 0.746 
50 per cent 0.026 0.117 0.391 0.716 0.742 
75 per cent 1.026 0.174 −23.061 0.193 0.736 
100 per cent 1.054 0.177 −23.727 0.191 0.734 

Figure 13. Here we show the results of altering the EWs to values outside 
their error ranges. The upper left and upper right panels show the results when 
25 per cent and 50 per cent of the validation EWs are altered, respectively. The 
lower left and right panels show the results for 75 per cent and 100 per cent 
alteration of the validation EWs. 
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n comparison to the error bars for their corresponding true age in
able 11 . 
The main difference between the MSE and custom loss function

pparent in Fig. 11 is that Set 2 has more predictions below the
edian true age (to the left of the 0 line) for the 16–84th percentile
NRAS 529, 479–498 (2024) 
ut similar values for outside and 2.5–97.5th such that the o v erall
ercentage is 53.4 per cent to the left, as shown in Table 12 . 
To summarize, our network does not seem to perform better with a

ustom loss function that weights the more accurate estimated ages.
o we v er, in other conte xts, adding weights based on uncertainties

n the data should generally impro v e the networks ability to learn
s it is able focus on less noisy data much faster. Therefore, it is
mportant to note that our results do not necessarily reflect those of
ny other network or training data. We believe that our network is
lready performing as well as it could with the MSE loss function
uch that the network is able to recognize the pattern between age and
W v alues. Ho we ver, as the EWs also have a level of error associated
ith them the network could potentially be impro v ed if this is taken

nto account as well.This is all to say that a custom loss function that
pplies weights according to the quality of the label observations
ay work for a different data set but as ours not only has error on

he labels (estimated ages) and error on the input features (EWs)
his may be preventing the custom loss function from significantly
ncreasing the performance of the ANN. 
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Figure 14. When the ANN is trained with the custom loss function there 
is less scatter present between the true and predicted ages. There is a strong 
correlation between the true ages and the predicted ages. 

Figure 15. The ANN performs well when predicting the ages for galaxies 
present in Set 1. There is a strong positive correlation between true and 
predicted such that the Pearson and Spearman rank coefficients are calculated 
to be p = 0.782 and s = 0.797. The scatter is reduced which can be seen 
in the shape of the contours as they are more concentrated o v er the line of 
equality. This can be quantified with the residual scatter which we find to be 
σ r = 0.008. 

4

W  

d
s
s
t  

s  

p
w  

w

Figure 16. The predicted ages for Set 2 are less accurate than the Set 1 
predictions. There is more scatter present between the true and predicted ages 
which can be quantified with the residual scatter σ r = 0.036 which is much 
higher than that of Set 1 and the combined sets, as shown in Table 13 . 

Table 11. We calculate the percentage of predictions that fall within the 16–
84th percentile range (In 16–84), outside the 16–84th range but within the 
2.5–97.5th range (in 2.5–97.5), the total within the error bars (Total In) and 
total outside the error bars (Outside). We calculate this for Set 1, Set 2, and 
the combined sets for both the MSE and custom loss functions to compared 
the difference between predictions. The results correspond the predictions in 
Fig. 11 . The percentage of predictions within each band are almost exactly the 
same between the MSE and custom loss functions with ∼ 96 % of predictions 
falling within the error bars and ∼ 80 %. 

MSE Total in In 16–84 In 2.5–97.5 Outside 

Combined 96.7 per cent 80.3 per cent 16.4 per cent 3.3 per cent 
Set 1 94.8 per cent 78.2 per cent 16.6 per cent 5.2 per cent 
Set 2 98.6 per cent 82.4 per cent 16.2 per cent 1.4 per cent 
Custom Total in In 16–84 In 2.5–97.5 Outside 

Combined 96.6 per cent 80.4 per cent 16.2 per cent 3.4 per cent 
Set 1 94.2 per cent 79.2 per cent 15 per cent 5.8 per cent 
Set 2 99 per cent 81.6 per cent 17.4 per cent 1 per cent 
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.6 Effect of properties and SNRs on age predictions 

e relate the network to physical properties of the galaxies in our
ata set by comparing the mean ages and uncertainties to different 
ets of galaxies. We use the physical properties: specific SFR and 
tellar mass from GAMA in the MAGPHYS DMU in combination with 
he SNRs of our input EWs. For each test we split our validation
et into high and low sets based on the median value of each
roperty. This allows us to compare our networks predictions and 
hether they follow the trends seen in the true ages for each set
hilst comparing the prediction uncertainties for each property. This 
ives us insight into whether the physical properties themselves may 
ffect the network predictions. We find that the network is able to
ifferentiate between the high and low sets, as shown in Fig. 17 .
hough, the distribution of mean ages can be seen to be o v erall
igher for Set 1 galaxies in comparison to Set 2 galaxies with an
 v erall difference of ∼0.1 dex (yr) The prediction uncertainties are
enerally not affected by the difference in properties, as can be seen
ith the error bars for the mean predicted ages in Fig. 17 . 
Higher sSFRs are associated with younger, star-forming galaxies 

hereas lower sSFRs are generally associated with older, quiescent 
alaxies in which star formation has been quenched. Fig. 17 shows
his relationship clearly as there is a large difference in the mean true
ges when separated by high versus low sSFR. The mean predicted
ges for the high sSFR set also shows good agreement with the mean
rue age which suggests the network is predicting the younger ages

ore accurately. This is in agreement with previous discussions about 
he network underpredicting the older ages as the low sSFR, older
et has a lower mean predicted age with a difference of 0.5 dex (yr).
MNRAS 529, 479–498 (2024) 
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Table 12. To demonstrate whether the network is under- or o v erpredicted 
ages we find the percentage of predictions abo v e and below the true age 
similarly to the method used for Table 11 . For Set 1, Set 2, and the combined 
set we find the percentage of predictions that fall within the error bands and 
the total that fall abo v e or below their corresponding true age. If a prediction 
is lower than the true age it will fall to the right of the Fig. 11 as the difference 
will be positive, whereas predictions that are higher than their true age will 
fall to the left as the difference will be ne gativ e. 

MSE Custom 

Left Right Left Right 

Combined 

In 16–84 37.7 per cent 42.7 per cent 34.5 per cent 45.8 per cent 
In 2.5–95.7 6.4 per cent 9.8 per cent 5 per cent 11.4 per cent 
Total in 44.1 per cent 52.5 per cent 39.5 per cent 57.2 per cent 
Outside 0.3 per cent 0.8 per cent 0.3 per cent 3 per cent 
Total 44.4 per cent 55.6 per cent 39.8 per cent 60.2 per cent 

Set 1 

In 16–84 30.8 per cent 48.4 per cent 31.6 per cent 46.6 per cent 
In 2.5–95.7 4.2 per cent 10.8 per cent 4.8 per cent 11.8 per cent 
Total in 35 per cent 59.2 per cent 36.4 per cent 58.4 per cent 
Outside 0.4 per cent 5.4 per cent 0.6 per cent 4.6 per cent 
Total 35.4 per cent 64.6 per cent 37 per cent 63 per cent 

Set 2 

In 16–84 44.6 per cent 37 per cent 37.4 per cent 45 per cent 
In 2.5–95.7 8.6 per cent 8.8 per cent 5.2 per cent 11 per cent 
Total in 53.2 per cent 45.8 per cent 42.6 per cent 56 per cent 
Outside 0.2 per cent 0.8 per cent 0 per cent 1.4 per cent 
Total 53.4 per cent 46.6 per cent 42.6 per cent 57.4 per cent 
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Figure 17. For each property listed, we split the 500 validation galaxies into 
a high and low sets using the median value. The order in The mean true age for 
the high sets are shown with pale blue diamonds whereas the mean true age 
for the low sets are shown with pale red diamonds. The mean predicted ages 
for the high and low sets are shown with blue and red circles. The prediction 
uncertainties are also shown with black error bars, ho we v er, these are v ery 
small in comparison to the ages. We show the mean true and predicted ages 
for the 17 properties for the mixed set, Set 1 and Set 2. EWs with ‘BH’ 
preceding them refer to Huchra et al. ( 1996 ) definitions. 
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he higher a galaxy’s stellar mass, the higher their age is generally.
imilarly to the sets based on high sSFR, Fig. 17 shows the distinction
etween high-stellar mass and low-stellar mass clearly. Again, we see
he o v erall underprediction of all ages with a difference of 0.2 dex
yr). 

Finally, we investigate how the SNR affects the network predic-
ions by comparing the input EW SNRs and the average SNR across
ur 14 input features. This is to explore the networks utilization
f the EWs to determine physical relationships e.g. is the network
ffected by the SNR for H α as this could affect its ability to predict
ounger galaxies ages as H α is associated with recent star formation.
s shown in Fig. 17 , higher SNRs for H α, [S II ]B, [S II ]R, and

O III ]R are significantly associated with the younger galaxies in our
alidation set. Less significantly, the higher average SNR, D4000 n ,
O III ]B, and H β SNRs are also associated with younger galaxies.

hereas higher SNRs for MgG, G, and NaD are significantly related
o the older galaxies, and less significantly H γ A , MH, FC, and CNB.

Additionally, the sets associated with lower SNRs match the mean
rue and predicted ages more frequently whereas the higher SNRs

ore commonly have discrepancy between the true and predicted
ean ages and o v erall are generally more underpredicted. When

aking into account the sets described in subsection 4.3 we can see
NRAS 529, 479–498 (2024) 

able 13. Results for the ANN predictions when incorporating the custom loss fun
etrics; ho we ver, the combined set performs the best with very similar results pred

tandard deviation σ r in order to compare the different sets as the standard deviation
 = predicted, t = true and r = residual. 

et MSE MAE R 

2 score μt σ t 

ombined 0.021 0.107 0.522 9.405 0.208 
et 1 0.019 0.100 0.534 9.457 0.203 
et 2 0.023 0.116 0.404 9.355 0.196 
hat o v erall the Set 1 galaxies are generally older than the Set 2
alaxies. 

The prediction uncertainties described in subsection 4.2 are not
ffected by particular properties or SNRs as they remain unchanged
cross the different sets, as shown with the error bars in Fig. 17 .
his shows that fluctuating the EWs within their errors does not have
n affect on the predictions when separated by set. In terms of the
ifference in between the mean true and predicted ages for each set
e can see that for most of the property sets, the set that is o v erall
lder in age tends to have more accurate predictions as the mean
 alues sho w less discrepancy. 
ction. Set 1 performs better than Set 2 and the combined sets in all e v aluation 
icted without the custom loss function. We find mean ages and the residual 
 of the true ages varies between samples. We calculate σ r = σ t − σ p , where 

μp σ p σ r p rank s rank Time (s) 

9.368 0.185 0.023 0.752 0.760 25.594 
9.397 0.195 0.008 0.782 0.797 22.908 
9.316 0.160 0.036 0.663 0.682 25.005 
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Table 14. Comparison between the performance of the ANN when trained on mass-weighted ages versus light-weighted ages. We compare the MSE, MAE, 
R 

2 score, the scatter of the predicted in comparison with the true ages, the Pearson rank coefficient p , the Spearman rank coefficient s and the total time taken 
by the ANN to train and predict 500 galaxies. In all regards the ANN performs better when trained with light-weighted ages. 

Age MSE MAE R 

2 score μt σ t μp σ p σ r p rank s rank Time (s) 

Mass weighted 0.020 0.108 0.530 9.405 0.207 9.377 0.182 0.025 0.756 0.755 23.52 
Light weighted 0.015 0.094 0.643 9.380 0.204 9.348 0.168 0.036 0.808 0.836 24.25 

Figure 18. The ANN predicts light-weighted ages more accurately than 
mass-weighted ages. This can be seen in the o v erall relationship as the shape 
of the contours more closely follows the line of equality as opposed to the 
mass-weighted ages. We quantify this with the Pearson and Spearman rank 
coefficients which we find to be p = 0.808 and s = 0.836, respectively. 
The contours show that the ANN is no longer underestimating old ages and 
o v erestimating young ages like it does when it is trained on mass-weighted 
ages. 
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In conclusion, the network is able to replicate the trends we see in
he properties and SNRs of young and old galaxies (e.g. high sSFR,
 α, [S II ]B, [S II ]R, and [O III ]R for young galaxies and high-stellar
ass and SNRs of MgG, G, and NaD). 

 DISCUSSION  

e have demonstrated that our ANN is successful at predicting the 
ges of galaxies based on their EWs despite the true ages having
 significant errors associated with them. To thoroughly e v aluate 
ur predictions we compare with the results of GAMA and other ML
echniques trained on emission lines or used for stellar age prediction.

.1 Mass- versus light-weighted ages 

irst, we discuss the affect of using mass- or light-weighted ages 
s discussed in Section 4 . The ANN is underpredicting the ages of
he older galaxies and o v erpredicting the younger ones, for which
he results are shown in Fig. 3 . This may be due to the difference
n how mass-weighted ages are calculated in comparison to light- 
eighted ages. Mass-weighted ages are dependent on the stellar mass 
hereas light-weighted ages are dependent on the flux at a given 
avelength. As such, light-weighted ages are biased by younger 
opulations that dominate the luminosity but contribute very little to 
he total mass (Trager et al. 2000 ; Conroy 2013 ; Citro et al. 2016 ).
or this reason, we investigate whether the network picks up on the
ifferences between light- and mass-weighted ages. However, due 
o light-weighted ages being more sensitive to recent star formation 
ather than the full SFH they are easier for the network to train with
ut less physically meaningful. To test this we use the restframe i-
and luminosity-weighted mean stellar ages provide by GAMA in the 
tellarMasses v19 DMU. The light-weighted ages perform 

etter in all e v aluation metrics, as sho wn in Table 14 . We calculate
ur e v aluation metrics of the light-weighted age predictions to be
SE = 0.015, MAE = 0.094, and R 

2 score = 0.643. 
To show the performance of the ANN we plot the contour graph

f the true ages against the predicted ages according to the method
escribed in Section 4 . We predict the ages of 500 random galaxies
hat the ANN has not been trained or tested on, as shown in Fig. 18 .
he light-weighted ages are being predicted with less bias towards 
nderpredicting than the mass-weighted ages as there is a more 
ven distribution which is apparent in the shape of the contours. We
emonstrate this further in Fig. 19 , in which we plot the difference
etween the true and predicted ages against the true ages. When
ompared with the mass-weighted ages it can be seen that the ANN
s no longer underpredicting the older galaxies and o v erpredicting
he younger galaxies when trained on the light-weighted ages. 
his supports our theory that this skew is caused by the biases

elated to light-weighted ages with recent star formation are skewed 
owards younger values. To compare the scatter between the true 
MNRAS 529, 479–498 (2024) 
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nd predicted ages we calculate the mean predicted age and standard
eviation as μt = 9.380 σ t = 0.204 and μp = 9.348 and σ p = 0.168.
e find the light-weighted ages have a residual standard deviation

f σ r = 0.036 which shows a smaller distribution in the predicted
ges than the predicted mass-weighted ages though the mean of
he light-weighted predicted ages more closely matches that of the
rue ages. Therefore, the network is not o v erall underpredicating the
ight-weighted ages as much as the mass-weighted ages ho we ver it
s still narrowing the prediction distribution. Finally, we compare the
earson and Spearman rank coefficients which we find to be p =
.808 and s = 0.836, respectively. 

.2 Comparison to other ML algorithms 

ere, we compare our ANN to other ML algorithms that have
imilar purposes to ours. This is due to a lack of literature describing
NNs that specifically predict the ages of galaxies. Therefore, we

ompare our ANN with predictions of galaxy ages via other ML
echniques. 

The AdaBoost and Decision Tree based ML algorithm described
y Ucci et al. ( 2017 , 2018 ) successfully predicts the physical proper-
ies of galaxies (density , metallicity , column density , and ionization
arameter) based on their emission lines. They note that GAME still
erforms well when 80 per cent of their emission lines are discarded
ue to weak observations. This supports our decision to remo v e 10 of
he 14 good EWs in fa v our of increased prediction performance and
s in agreement with the increased training performance when sample
eights are placed on the EWs with higher SNRs. They achieve good

raining times with their algorithm such that processing the SDSS
R5 would take approximately 417 h. 
To compare with the CNN described by Li et al. ( 2022 ), they find

 scatter of ±20 per cent between their true and predicted values.
pecifically, they find stellar age and SFR reconstructed with a
opulation wide scatter of 20 − 50 per cent . Ho we v er, their av erage
tellar masses are predicted to be 0.09 dex more accurate. Again, it is
nteresting to note that they find all predicted properties are slightly
nderpredicted. 
For comparison with the CNN described by (Liew-Cain et al. 2021 )

t is important to note that they use two different sets of data for their
raining phase, Set A and Set B. Their Set A is intended to mimic a
arge, diverse number of galaxies such that all galactic evolutionary
istory is co v ered. Set B is more realistic as it is made from a random
election of galaxies which acts as a true surv e y would, as there is
o previous knowledge of the data set. Their results show a standard
eviation between the true and predicted ages and metallicities are
= 0.03 for Set A which is considerably better than Set B for

hich the y achiev e a standard deviation of σ = 0.16 for both age and
etallicity. They use the Pearson’s correlation coefficient to evaluate

he age and metallicity residuals for which they find a value of p =
0.24 for both Set A and Set B. This demonstrates that the model

s able to make predictions that are no more affected by the age–
etallicity de generac y than the true values found with full spectral
tting. It is worth noting that their true versus predicted figures also
how significant scatter in the results. It is interesting to note that not
nly are their estimates for Set B more spread out and scattered but
hey state their CNN is systematically predicting lower ages than the
rue spectroscopic ages. They go on to suggest that the reason for
his discrepancy may lie with the fact that there is less diversity in
he SFHs in Set B which means the CNN is unable to derive enough
atterns to be able to predict unseen galaxies of different types. They
uggest this may be resolved in future works with a larger data set or
ynthetically increasing the diversity of the training set. 
NRAS 529, 479–498 (2024) 
 C O N C L U S I O N S  

e present a successful proof of concept for an ANN that is able to
redict the ages of galaxies based off their spectral EWs. Our key
ndings are detailed below 

(i) we calculated a proxy for prediction error by perturbing our
nput data which gives an uncertainty of ±0.004 dex (yr). 

(ii) We confirm a strong positive correlation between the true and
redicted ages by quantifying this relationship with the Pearson rank
oefficient p = 0.756 and the Spearman rank coefficient s = 0.755.
ur ANN achieves these results with a total training and predicting

ime of ∼23 s for 500 galaxies. 
(iii) We show that the ANN is able to predict the ages of more

ccurate estimates better than less certain estimates by splitting our
ata into two sets based on the percentile range the GAMA age
stimates have. This means the ANN is able to pick up on patterns
etween the EWs in order to predict ages which shows it is predicting
ased on quantifiable differences between observations rather than
andomly. 

(iv) We determine that weighting the loss for observations based
n how accurate the age percentiles are does not significantly impro v e
he performance of the ANN. This is not to say that weighted loss
unctions do not work for all data, but for our specific data set the
rrors on even the most accurate ages are too broad for the weighting
o make a difference to the ANN. To see better results from the
ustom loss function we would hope that future work would focus
n the quality of data rather than the amount of it. 
(v) We relate our network to the physical proprieties of the galaxies

nd the effects of SNRs. 
(vi) When trained with light-weighted ages the ANNs accuracy

mpro v es which we demonstrate by calculating the residual standard
eviation between the true ages and the predicted ages. When trained
ith mass-weighted ages the ANN has a residual standard deviation
f σ r = 0.025 between the predictions and their true ages ho we ver,
hen we train with light-weighted ages the residual decreases to σ r =
.036. This shows that the ANN is more restricted in its distribution
f light-weighted ages. 
(vii) The ANN is able to predict the ages of galaxies much faster

han traditional models whilst retaining comparable accuracy. This
ould be invaluable for future studies that only require a handful of
roperties such as age but a large sample of objects. A simple neural
etw ork lik e an ANN could be easily implemented to produce these
inds of data sets for future studies. 
(viii) We compare the predictive performance of our ANN with

ther ML algorithms. We consider ANNs to be powerful predictors
s they are fairly simple to code in Python with the ML packages
ensorflow and Keras which are able to be run on most
omputers. 

To conclude, our method of predicting ages is a promising tech-
ique for future studies as an alternative to full simulation modelling.
o we ver, no w that a proof of concept has been established, it is

mportant to account for systematic biases of the underlying SED
tting used to produce the ages and from the network itself to
ccount for the underprediction of older galaxies and o v erprediction
f younger galaxies and o v erall underprediction of all ages. The
tudies that would benefit most from ANNs would be smaller studies
hat only require one or two properties for large sets of data for
hich modelling would take too long. These uses may also include
etermining the ages for large data sets such as SDSS in order
o further study of specific age categories. This would aid in the
etermination of galactic evolution and formation or other studies
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nvolving ML algorithms that require an even split of ages for the
rediction of other physical properties of galaxies. 

 DATA  AVAILABILITY  

he data underlying this article will be shared on reasonable request 
o the corresponding author. 
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