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OPTIMAL MAGNETIC ATTITUDE CONTROL
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Abstract: Magnetic torquing is attractive as means of control for small satellites.
The actuation principle is to use the interaction between the earth’s magnetic field
and a magnetic field generated by a coil set in the satellite. This control principle
is inherently time-varying, and difficult to use because control torques can only be
generated perpendicular to the local geomagnetic field vector. This has been a serious
obstacle for using magnetorquer based control for three-axis attitude control. This
paper deals with three-axis stabilization of a low earth orbit satellite. The problem
of controlling the spacecraft attitude using only magnetic torquing is realized in the

form of a infinite horizon periodic controller.

Keywords: Attitude control, satellite control, time-varying systems, quaternion

feedback.

1. INTRODUCTION

Several control methods have been developed
over the past years since the first satellite was
launched. Generally speaking all those techniques
may be classified as active or passive. Active tech-
niques are needed for missions where high pointing
accuracy is vital, and typical actuators are: gas
jets, reaction or momentum wheels and electro-
magnetic coils. Magnetic torquing addressed in
this paper is attractive for small, cheap satellites
in low Earth orbits. Magnetic control systems are
relatively lightweight, require low power and are
inexpensive.

There is extensive literature covering satellite at-
titude control design. Though most of the algo-
rithms presented assume application of reaction
wheels and/or thrusters. Attitude control with
use of magnetorquers has the significant limitation
that the control torque is always perpendicular to
the local geomagnetic field vector. The problem
of three-axis magnetic control was addressed in

Martel et al. (1988), where the linearized time-
varying satellite motion model was approximated
by a linear time-invariant counterpart. Three-axis
stabilization with use of magnetic torquing of a
satellite without appendages was treated by Wis-
niewski (1998), where sliding control was proposed
to stabilize a tumbling satellite. General concept
presented in the previous work was to calculate
desired control torque and project it on the plane
perpendicular to the geomagnetic field vector.

In this paper the attitude control problem is
solved by an infinite horizon periodic control. The
controller gain is a periodically changing depen-
dent on the local geomagnetic field. The paper is
organized as follows. Section 2 addresses lineariza-
tion technique for a LEO satellite motion. It is
shown that a satellite on a near polar orbit actu-
ated by a set of perpendicular magnetorquers may
be considered as a periodic system. The solution
of the Riccati equation is essential for the control
synthesis of the periodic systems. Section 3 is
devoted to study of the periodic Riccati equation



and related problems. The features of the periodic
Riccati equation: properties of its solutions, the
methods to calculate the solutions are very similar
to the algebraic Riccati equation. The problem of
infinite horizon controller is formulated in 4 and
the simulation results are given in 5.

2. MAGNETIC ACTUATED SATELLITE AS
A LINEAR PERIODIC SYSTEM

The satellite considered in this study is modeled
as a rigid body in the Earth gravitational field in-
fluenced by the aerodynamic drag torque and the
control torque generated by the magnetorquers

thrl(t) = m(t) X B(t)7 (1)

where N4y is the control torque, and B(t) is the
magnetic flux vector of the Earth. The magnetic
moment, m, is considered as the control signal in
the following.

The attitude is parameterized by the unit quater-
nion providing a singularity free representation of
the kinematics. The details about mathematical
modeling of a LEO satellite can be found in Wis-
niewski (1996). In this paper only a satellite linear
model will be investigated.

2.1 Coordinate Systems

The motion of a spacecraft is related to three
coordinate systems: Principal Coordinate System
(PCS), built on the spacecraft principal axes, a
Local-Vertical-Local-Horizontal Coordinate Sys-
tem (LVLH) referring to the current position of
the satellite in orbit, and an Earth Centered Iner-
tial Coordinate System (SCI), an inertial frame
with the origin in the Earth’s center of mass.
These coordinate systems are denoted in the text
by the following indices: PCS by p, LVLH by o
SCI by i, thus e.g. £p; is the velocity of the PCS
rotation in SCI.

2.2 Linearized Equation of Motion

The attitude control problem can be considered
from a linear and purely nonlinear point of view.
If performance of the control system is analyzed in
the neighbourhood of the reference point (steady-
state performance) a linear model of the space-
craft’s motion is sufficient.

The satellite motion is considered in a neigh-
bourhood of the following reference: the angular
velocity of the satellite rotation (PCS) in LVLH is
zero (Qpe = 0), and the attitude is such that PCS
coincides with LVLH, i.e. the attitude quaternion

describing the rotation of PCS in LVLH equals the
identity, Pq = e.

The angular velocity of PCI in LVLH (£2,;) be-
longs to E? therefore linearization of the angular
velocity is commonplace and based on the first
order extension of the Taylor series

(i), =PA[0 —w, 0] + AQ, (2)

P o

where A2 is an infinitesimal perturbation of the
angular velocity Qp; from the reference, PA is
the rotation matrix from LVLH to PCS, w, is
the orbital rate. The subscript p means that the
angular velocity vector is resolved in PCS.

Linearization of the attitude parameters is differ-
ent. They geometrically form a differential mani-
fold SO3(R) for the rotation matrices and S® for
the unit quaternions. infinitesimal perturbations
of a real orthogonal matrix can be written as

A = E + ¢, where ¢ is an infinitesimal anti-
symmetric 3 by 3 matrix
0o 6, —40,
e=1|-6, 0 6, |. 3)
0, —6. 0

The nonzero components of e: 8y, 6, and 8, can
be used for parameterization of a linear approxi-
mation of the spacecraft motion. In fact, it can
be shown that the sum of the quaternion %@
(having zero scalar part) and the unit quaternion
represents infinitesimal rotation. For this purpose

define
6. 6, 6,]" =@ =2Aq (4)

and consider a quaternion Ag = e + Agq, see
Jurdjevic (1997). This is a unit quaternion since
Agq is infinitesimal, hence (Aq, Aq) = 0. Now the
mapping A : S? — SO3(R) is applied in order
to show that that the unit quaternion Ag can be
used for representation of a infinitesimal rotation.

A(AqQ) =E +2S(Aq) =, (5)

where E is 3 by 3 identity matrix and S is a
mapping of a vector to an anti-symmetric matrix,
such that S(®) = € in Eq. (3). The quaternion
Aq has a nice physical interpretation
- A . A
Ag = cos —¢e + sin —¢e, (6)
2 2
where € gives the axis of rotation, and A¢ is
the angle of rotation. But for a small angle A¢

(sin%:%andcos%zl)

A
Ad=e+ T(be. (7
Therefore, only the vector par of the unit quater-

nion will be used for the local attitude represen-
tation.



2.3 Linearized Dynamics

The equation of dynamics is divided into the cross
coupling, the contribution of the gravity gradient
torque, aerodynamic torque and the part due to
control torque. Modeling of the satellite dynamics
is treated in details in Wertz (1990), here only the
aerodynamic drag model is addressed.

2.3.1. Aerodynamic Torque  The aerodynamic
drag is the main disturbance torque acting on
LEO spacecraft. Its magnitude can be as large
as 10~! Nm for orbits with 100 km altitude. As-
suming that the energy of the molecules is totally
absorbed on impact with the spacecraft, the force
df,ero On a surface element dA is described by

dfaero = _%CDPV2(TL . ’U)’UdA, (8)

where n is an outward normal to the surface, v is
the unit vector in the direction of the translational
velocity of the surface element relative to the
incident stream of the molecules. The atmospheric
density is denoted by p, and the drag coefficient
by Cp. The total aerodynamic torque is the sum
of the torques acting on individual parts of the
satellite

k
Naero:Z"'iXFi; (9)
i=1

where 7; is the vector from the spacecraft center of
mass to the center of pressure of the i-th element.

Eq. (9) can be furthermore decomposed into a
sum of 3 surfaces: A; perpendicular to the x-axis
of PCS, the cross section surface perpendicular
to the y-axis of PCS, As, and the cross section
surface perpendicular to the z-axis of PCS, As.

1 . .
Naero = §CDPUZ (A1 ([100]" +45) 4o x 71

+ A5 ([010]" - 45) 4 X 72

+ A3 ([001]" - 45) 4o X 73) (10)
where 2, is the unit vector in the direction of the
translational velocity vector (the direction of the
x-axis of LVLH). Thus the linear approximation
of the aerodynamic torque is

1
Naero = §CDP'U2A1 [[0 —T1z le]T (11)
0 —-Airyy —A1r1,
+Cppv® | 0 Arrix — Asrs, Asra, Agq.
0 A3T3y Ay — A27"2y

Eq. (12) consists of two parts: constant and de-
pendent on the spacecraft’s attitude.

2.4 Linearized Equation of Spacecraft’s Motion

The matrix form of the linearized spacecraft’s
motion is

4 [AQ] A [AQ] +B®m, (12)

dt | Aq Aq
where
Al A
A=
[Am A22] ’
0 0 —oxwo 1
A11 == 0 0 0 5 A21 == §E,
—weo, 0 0
0 0wy
A22 = 0 0 0 5 .A.12 =
—wo 0 0
—6wioy —kiy/Ix —k1,/Ix
0 6wio, + (kix — k3,) /L, ko, /I,
0 ksy /1, (kix — kay) /1,
) 0 —B,y,(t) Bgyl(t)
|1 B,,(t) 0 —Box(t)
B(t) = “Boy(t) Bo(t) 0 )
0

kij = CDp’U2Ai’I'ij fori= 1,2,3 and J =X,¥,Z. Wy

is the orbital rate, I = diag([Ilx Iy L]T) is the
inertia tensor resolved in PCS. o, = IyI; I’,

_ L—1 . . .
L yI", » = . The time-varying matrix B

consists of the components of the local geomag-
netic field vector resolved in LVLH.

Oy =

The following observation is used for the design
of the infinite horizon attitude controller. The
geomagnetic field on a near polar orbit is approx-
imately periodic with a period T' = 27 /wgy. Due
to periodic nature of the geomagnetic field, seen
from LVLH, the linearized model of the satellite
can be considered as periodic. The solution of the
infinite horizon problem is based on the solution of
a periodic Riccati equation addressed in the next
section.

3. PERIODIC RICCATI EQUATION

The Riccati equation was a theme of an extensive
research work from early seventies. The interested
reader is referred to Bittanti (1991) for a collection
of studies on the subject. Here, only the main
results are stated, which are directly related to
the design of a periodic attitude controller.

Consider the Riccati equation

7



—-P(t)=P(H)A(t) + AT(H)P(t)
- P(t)B(t)BT(t)P(t) + CT(1)C(1),

(13)

where the matrices A(t), B(t), C(t) are T-

periodic, i.e. A(t+T) = A(t), B(t+T) = B(¢t),

and C(t+ T) = C(¢).

The solution of the Riccati equation can be re-

duced to an iterative solution of the Lyapunov

equation. This method is known as Bellman’s

quasi linearization. In the method the solution to

the Riccati equation is found using a Newton-type
algorithm.

Consider an operator

Ric: P(t)— P(t) + AT(t)P(t) + P(t)A(t)
— P@t)B(t)BT(t)P(t) + CT(t)C(t).
(14)
A symmetric solution to the Riccati equation
satisfies the operator equation
Ric(P(t)) = 0. (15)

Suppose that P;(#) is a symmetric matrix function
approximating the solution of Eq. (15) with a
certain accuracy. A Newton algorithm can then
be used for computing a new and more accurate
approximation

Pi1(t) = Pi(t) + AP;(b). (16)

More precisely, Pi11(¢) is computed from P;(¢) by
solving the differential equation

—Pi 1 (t) = AT (1)Pig1 (t) + Piy1 (H)Ai(t) + Q(t)
+ KT ()K;(t), (17)
where
Ai(t) = A(t) - BOK;(2),
K;(t) = B (t)Pi(t). (18)

It turns out that Eq. (17) is the Lyapunov equa-
tion, and the Riccati equation can be considered
as a limit of a series of the Lyapunov equa-
tions. Furthermore, the stabilizability of the pair
(A(t), B(t)) is sufficient for the existence of a peri-
odic, positive semidefinite solution to the Riccati
equation. Before a theorem showing this results
will be formulated the notion of a maximal and a
strong solution has to be introduced.

Definition 3.1. A solution Py (t) is maximal if
for any symmetric and periodic solution P(t) of
the Riccati equation the following inequality is
true Py () > P(t). A solution P(t) is strong
if the closed loop system has its characteristic
multipliers belonging to the closed unit disk.

Theorem 3.1. Suppose that the pair (A(t), B(¢))
is stabilizable and consider the sequence of the
periodic Lyapunov equations defined in Egs. (17)
and (18). Let K¢ (t) be a T-periodic matrix func-
tion such that Ag(t) is stable. Then

(1) For each i > 0, there exists a unique symmet-
ric periodic and semidefinite solution Pj1(t)
to (17) and A4 (¢) is stable.

(2) The sequence {P;(t)} is a monotonically
nonincreasing sequence of symmetric peri-
odic positive semidefinite matrices, i.e., 0 <
Pit1(t) < Pi(?).

(3) The sequence {P;(t)} is such that lim;_, o, P;(?)
= Pup(t), where Py(t) is a maximal and
strong solution to the Riccati equation.

Stabilizability of the pair (A(¢),B(t)) does not
solve the problem of existence of a stable solution
since the characteristic multiplier can lay on the
unit circle, the solution Py(t) is strong. If addi-
tionally no unit modulus characteristic multipliers
of A(t) is (A(¢), C(t)) unobservable then there ex-
ists a stabilizing symmetric periodic solution. As
a matter of fact these two conditions are necessary
and sufficient.

Theorem 3.2. There exists a stabilizing symmet-
ric periodic solution P4 (¢) to the Riccati Equa-
tion (13) if, and only if ((A(t),B(¢))) is stabiliz-
able and no unit-modulus characteristic multipli-
ers of A(t) are (A(t), C(t)) unobservable.

The last objective of this section is to show that
”the steady state” solution to the Riccati equation
is periodic. This statement is a conclusion from
Theorem 3.1.

Theorem 3.3. Let P(t) be solution to the Ric-
cati Equation (13) for positive semidefinite final
condition defined at infinity and Pps(t) be the
periodic solution to the Riccati equation defined
in Theorem 3.1, then

lim P (%)

t—0 =Pu(t).

4. INFINITE HORIZON CONTROL

After the results on periodic Riccati equation have
been established the problem of periodic infinite
horizon control can be formulated. Let a dynamic
system be described by

&(t) = A(t)z(t) + B(t)u(t)
z(t) = C(t)z(t) + D(t)u(t), (19)

where A(T +t) = A(t), BT +t) =B(), C(T +
t) = C(t), and D(T +t) = D(t). Assume that the



full state information is available. Furthermore
suppose that the periodic system (25) fulfills the
following assumptions:

(1) D(t) has full column rank with [D(t) D ()]
being unitary.
(2) The pair (A(t),B(t)) is stabilizable
(3) No unit-modulus characteristic multipliers of
A(t)=A(H) -BHD'(HCE)  (20)
are (A(t), DT (t)C(t)) unobservable.

The assumption (1) is technical, it states that
DT(#)D(t) = E and D(#)D™(¢t) + D, (t)DT(¢) =
E, where E is the identity matrix of a compatible
dimension.

The assumption (2) together with (3) states that
the periodic Riccati equation

~P(t) =P(t)A(t) + AT (t)P(t)
—P()B(t)B” ()P (t) (21)
+CH(t)DL(HDLE)C(t)

has a stabilizing symmetric periodic solution, see
Theorem 3.2. Let P(t) be a stabilizing periodic
solution of the Riccati equation (21). If we define
periodic feedback gain

F(t) = -(BY(t)P(t) + D' (t)C(1)) (22)

then the closed loop system Ap(t) = A(¢) +
B(t)F(t) is stable and it minimizes the L, norm
of the signal to be regulated, z(t)

e n | 2(8) 3= a7 (to)P(to)z(to).  (23)

To prove this statement denote Cr(t) = C(t) +
D(¢)F(t) then the Riccati equation (21) can be
rearranged into a Lyapunov equation

~P(t) = P(t)Ar () + A (t)P(t) + C§ ()Cr (?).
(24)

After the change of variable v(t) = u(t) —F(t)x(t)
the system (25) can be rewritten as

z(t) = Ap(t)x(t) + B(t)u(t)

z(t) = Cr(t)z(t) + D(t)v(t), (25)
now we define the following quadratic function
I(t) = 2V (t)P(t)x(t). The time derivative of I(t)
is given by

d - T T . T -
%l:w Pr+x Pr+x Px
=2TAlPz + 2TPApx 4+ 2¢"PBv + 2 Pz
=—2Tz4+ 00, (26)
Integrating both sides of Eq. (26) from 0 to oo and
using the definition of the Ly norm we get

min | 2(t) [3= =7 (to) P (to)2(to)+ || v(t) [I3 -
(27)

Clearly the optimal control is given for v(t) = 0
and u(t) = F(t)z(t). In the next section the
control law (22) is implemented for the attitude
control stabilization of a magnetic actuated satel-
lite.

5. IMPLEMENTATION

Due to periodic nature of the geomagnetic field,
seen from the LVLH, the linearized model of the
satellite can be considered as periodic. It is though
necessary to find an ideally periodic counterpart
of the real magnetic field of the Earth. This is done
by averaging the geomagnetic field over N = 15
number of orbits covering 24 hours. Furthermore,
the geomagnetic field is parameterized by the
mean anomaly M, since the geomagnetic field and
the mean anomaly have the common period T’

N
(Bave(M))o = S (BOD., (29

where the subscript o indicates that the the ge-
omagnetic field vector is resolved in LVLH. The
resultant linear periodic system is

d [AQ AQ -

— B(M 2
@l an] =420 +Bonm, o
where B(M) is given in Eq. (12) after substitut-
ing the symbol B(¢t) for B(M), and the compo-
nents of the vector (B(t)), for the components of

(Bave(M))o-

The difference between the time varying matrix
B(t) and the ideal periodic counterpart B(M (t))
used for the controller design is considered an
additional external disturbance torque acting on
the satellite.

The controller gain is calculated from the steady
state solution of the Riccati equation, which is
periodic. The solution to the Riccati equation
is calculated off-line and stored in the computer
memory.

The periodic solution of the Riccati equation,
P, (t) is found from the periodic extension of
the steady state solution P, (t) of the Riccati
equation (21).

Po- {70 ST @
P, (t) = i P(t — kT) (31)

k=0
The solution P (t) is calculated using backward
integration of the Riccati equation for an arbitrary
final condition. This solution converges to the pe-
riodic solution, Theorem 3.3. The matrix function
P, (t) corresponding to one orbital passage is



ql
ur q2
[ q3
e ) ) ) ) ) ) g4

0 1 2 3 4 5 6 7 8
Orbits
03 pitch [deg] roll [deg] yaw [deg]
. 1
Al
!
|
02) 05 05 ’ |
|
0.1 ‘\ \ 0 H N Can
- / Iy v
y\ /! \ AR HEALRH i
0 AR \ -0.5 T lJ
Vi Lo —05} v !
-0.1f N -1 ’
/
-0.2 -15 -1
6 7 8 7 8 6 7 8
Orbits Orbits Orbits

Fig. 1. Performance of the infinite horizon con-
troller for the (rsted satellite. The steady
state attitude error is below 1 deg.

stored in the computer memory, and then used
for the subsequent orbits.

Again, the mean anomaly M can be used for
parameterization of P (M), since both P, (¢) and
M (t) are T-periodic. In fact the controller gain
matrix is also T-periodic and can be parameter-
ized by M

K. (M) = -B(M)P,(M).  (32)

An option is to parameterize K (M) in terms of
the Fourier coefficients, benefiting in a reduction
of the data stored. A satisfactory approximation
of the gain matrix K, has been obtained with
16th order Fourier series. For example 172800
floating point memory is needed for a sampling
time of 10 sec and the orbital period of 6000 sec.

Simulation results of the infinite horizon atti-
tude control are performed for the Orsted satel-
lite. The satellites moments of inertia are I =
diag [182 181 1]. The Qrsted orbit is low earth
near polar with apogee 850 km, perigee 450 km,
and the inclination 96.4 deg. A simulation test
of the infinite horizon controller for the Orsted
satellite is depicted in Fig. 1. It is seen that the
steady state attitude error is kept below 1 deg.

6. CONCLUSION

This work is believed to contribute to the devel-
opment of linear periodic feedback based only on
magnetic torquing for low earth orbit satellites.
A computational expense for the infinite horizon
controller lies in the off-line numeric solution to
the Riccati equation, but relatively large com-
puter memory is required for keeping the gain
data for one orbit. It is concluded that the infi-
nite horizon magnetic controller is applicable for
missions with pointing requirements of couple of
degrees.
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