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Abstract: A geometric approach for input-a�ne nonlinear systems is brie�y described
and then applied to a ship propulsion benchmark. The obtained results are used to
design a diagnostic nonlinear observer for successful FDI of the diesel engine gain
fault.
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1. INTRODUCTION

Interest in fault detection and isolation (FDI) for
nonlinear systems has grown signi�cantly in re-
cent years. The design of FDI is motivated by the
need for knowledge about occurring faults in fault-
tolerant control systems (FTCS); (Patton, 1997).
The idea of FTCS systems is to detect, isolate,
and accommodate occurring faults in such a way
that the systems can still perform in a required
manner. One prefers reduced performance after
occurrence of a fault to the shut down of sub-
systems; (Blanke, 1999). Hence, the idea of fault-
tolerance can be applied to ordinary industrial
processes that are not categorized as high risk
applications, but where high availability is desir-
able, e.g. a ship propulsion system. In the past
mainly linear FDI methods were developed, but
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as most plants show nonlinear behavior, nonlinear
methods are preferred (Frank et al., 1999).

Among di�erent approaches for FDI the geomet-
ric methods are of high interest. The geomet-
ric theory o�ers various advantages as it gives
a general formulation of the FDI problem, and
is more compact and more transparent for more
general systems (like the nonlinear systems) than
the algebraic approach. In recent years the ex-
isting geometric theory for the residual genera-
tion in linear systems based on the original work
by Massoumnia (Massoumnia et al., 1989; Mas-
soumnia, 1986) has been extended. Formulations
for di�erent classes of nonlinear systems were
derived in order to handle state-a�ne nonlinear
systems (Hammouri et al., 1998) and lately also
the class of input-a�ne systems (DePersis and
Isidori, 2000a; Hammouri et al., 1999). (DePersis
and Isidori, 2000a) presents a detailed geometric
description of how to tackle the residual genera-
tion problem for nonlinear systems.



The geometric approach towards FDI for input-
a�ne nonlinear systems has gained high interest
in the last two years. However, until now, only
little experience with its application has been
obtained.

In this paper the geometric approach is brie�y
described and then applied to a ship propulsion
benchmark. As a result a locally observable sub-
system is obtained. The subsystem is only a�ected
by the gain fault when the pitch measurement
is considered to be fault-free. Correspondingly, a
diagnostic nonlinear observer is designed to detect
and isolate the engine gain fault. Simulation re-
sults obtained by applying the residual generator
to the simulation model of the ship propulsion
system are presented. Finally, the residual perfor-
mance is discussed in detail.

2. GEOMETRIC APPROACH TO
NONLINEAR FDI

In the following the geometric approach to nonlin-
ear FDI by (DePersis, 1999; DePersis and Isidori,
2000a) is brie�y reviewed for systems of the form:

_x = f(x) +

mX
i=1

gi(x)ui +

sX
i=1

pi(x)wi + l(x)�

yj = hj(x); j 2 l

(1)

where the states x are de�ned on a neighborhood
N of the origin in Rn . ui, i 2 m = f1; : : : ;mg,
denotes the inputs and yj , j 2 l, the outputs of
the system. � 2 R is a scalar fault signal with the
nonlinear fault signature l(x). f(x), gi(x); i 2 m,
l(x), and pi(x); i 2 s are smooth vector �elds and
hj(x); j 2 l are smooth functions. Furthermore,
let f(0) = 0 and h(0) = 0. The disturbances
and fault signals from which the fault � has to be
isolated are denoted by w = [w1 w2 : : : ws]

T 2 Rs .

In order to detect the fault � and isolate it
from the disturbances and other faults (wi) in
System (1) the following problem is formulated
as described in (DePersis, 1999):

De�nition 1. Considering a system of the form
(1) the local nonlinear fundamental problem of
residual generation (l-NLFPRG) is to �nd, if pos-
sible, a �lter:

_z = ~f(y; z) +

mX
i=1

~gi(y; z)ui

r = ~h(y; z)

(2)

where z 2 Rq , r 2 Rp , 1 � p � l. ~f(y; z),
~gi(y; z); i 2 m, and ~h(y; z) are smooth vector
�elds, with ~f(0; 0) = 0 and ~h(0; 0) = 0, such that
on a neighborhood N e of xe = (x; z) = (0; 0),

where xe describes of the cascaded system formed
by (1) and (2), the following properties hold:

(i) if � = 0, then r is una�ected by ui, wj , 8i; j;
(ii) r is a�ected by �;
(iii) limt!1 kr(t;x0; z0;u; � = 0; w)k = 0 for any

initial condition x0, z0 in a suitable set con-
taining the origin (x; z) = (0; 0).

For linear systems De�nition 1 reduces exactly
to the linear Fundamental problem of residual
generation (FPRG) de�ned in ((Massoumnia et
al., 1989)). Both describe the problem of detecting
a fault and isolating it from disturbances and
other faults. Condition (i) in De�nition 1 assures
that the control signals u and the disturbances
(and other faults) w do not a�ect (i.e. do not
become visible in) the residual r in the fault-
free case (� = 0). If fault � occurs Condition
(ii) assures that the fault a�ects the residual.
Condition (iii) considers the stability of Filter (2).
Note that the convergence to zero of the residual
is required in absence of the fault (� = 0).

A solution for the l-NLFPRG can be obtained
by the help of the results presented in (DePersis
and Isidori, 2000b). It is based on the calcu-
lation of the largest observability codistribution
(o.c.a.((�P

� )
?)) contained in P? the annihilator

of P (i.e. P? = fx
0

; x
0

x = 0;8x 2 Pg), where
P is the distribution spanned by the disturbance
vectors pi; i 2 s: P =spanfp1; : : : ; psg. For System
(1) one can calculate o.c.a.((�P

� )
?) by the follow-

ing two algorithms (details are given in (DePersis
and Isidori, 2000b)):

Computing �P
� :

S0 = P

Sk+1 = Sk +
mX
i=0

[gi; Sk \Kerfdhg]
(3)

where � denotes the involutive closure of a dis-
tribution �. For every constant distribution �
it holds that � = �. The notation [�; �] with
�; � 2 Rn denotes the Lie bracket. g0 : : : gm stand
for the column vectors of g(x) and for f(x), which
is written as f(x) = g0(x) to ease the notation.
Kerfdhg denotes the distribution annihilating the
di�erentials of the rows of the mapping h(x). If
there exists a k� such that:

Sk�+1 = Sk�

then set�P
� = Sk� and continue with the following

algorithm.

Computing o.c.a.((�P
� )
?):

Q0 = (�P
� )
? \ spanfdhg

Qk+1 = (�P
� )
? \

 
mX
i=0

LgiQk + spanfdhg

!
(4)



where spanfdhg is the codistribution spanned
by the di�erentials of the rows of the mapping
h(x) and L denotes the Lie derivative. Suppose
that all codistributions Qk of this sequence are
nonsingular, so that there is an integer k� � n�1
such that Qk = Qk� for all k > k�, then

o.c.a.((�P
� )
?) = Qk� :

When the distribution �P
� is well-de�ned and

nonsingular, and �P
� \Kerfdhg is a smooth dis-

tribution, then o.c.a.((�P
� )
?) is the maximal (in

the sense of codistribution inclusion) observability
codistribution which is locally spanned by ex-
act di�erentials and contained in P?. The cor-
responding unobservability distribution Q can be
obtained by:

Q = (o.c.a.((�P
� )
?))?

For more details about the o.c.a. algorithm and
the calculation of Q the reader is referred to
(DePersis and Isidori, 2000a).

As a result of the algorithms Q is the smallest in-
volutive unobservability distribution that contains
P (the disturbance e�ects) due to the maximality
of o.c.a.((�P

� )
?).

(DePersis and Isidori, 2000b) show that if

spanfl(x)g * (o.c.a.((�P
� )
?))? = Q

it is possible under certain conditions to �nd a
change of state coordinates ~x = �(x) and a change
of output coordinates ~y = 	(y), de�ned locally
around x = 0 and, respectively, y = 0, such that,
in the new coordinates, the system (1) admits the
following normal form (Proposition 3 in (DePersis
and Isidori, 2000b)):

_~x1 = ~f1(~x1; ~x2) + ~g1(~x1; ~x2)u+ ~l1(~x1; ~x2; ~x3)�
_~x2 = ~f2(~x1; ~x2; ~x3) + ~g2(~x1; ~x2; ~x3)u

+~p2(~x1; ~x2; ~x3)w + ~l2(~x1; ~x2; ~x3)�
_~x3 = ~f3(~x1; ~x2; ~x3) + ~g3(~x1; ~x2; ~x3)u

+~p3(~x1; ~x2; ~x3)w + ~l2(~x1; ~x2; ~x3)�
~y1 = h1(~x1)
~y2 = ~x2

where the states ~x2 are all measured. Output ~y1
is a�ected by the states ~x1, but not by the other
states ~x2 and ~x3. Hence, the following subsystem
can be subtracted:

_~x1 = ~f1(~x1; ~y2) + ~g1(~x1; ~y2)u+ ~l1(~x1; ~y2; ~x3)�
~y1 = h1(~x1)

(5)

which, obviously, when it admits an observer can
be used to solve the corresponding l-NLFPRG.
The estimation error e = ~y1 � ~̂y1 is only a�ected
by the unknown fault signal �. Hence, it can by
construction be used as residual r that ful�lls
all conditions given in De�nition 1 as long as
~l1(~x1; ~x2; ~x3) 6= 0.

3. SHIP PROPULSION BENCHMARK

The complete mathematical model for the bench-
mark is described in (Izadi-Zamanabadi and
Blanke, 1998). The subsystems of interest in this
paper include dynamics for ship speed, propeller,
and the prime mover. The essence is a model
where developed thrust and torque are function
of diesel throttle position Y , pitch angle �, shaft
speed n and ship speed U . The corresponding
measured variables are Ym; �m; nm and Um.

Diesel engine and shaft dynamic equations are:

Qeng = kyY (6)

Im _n=Qeng �Qprop; (7)

where Qeng is the engine's generated torque, ky
is gain constant, Im the shaft inertia, and Qprop

denotes the propellers developed torque.

Developed propeller thrust Tprop and torque
Qprop are given by the following (approximate)
quadratic relations (for forward movement)

Tprop= Tnn�n
2 + TnUnU (8)

Qprop=Qnn�n
2 +QnU�nU (9)

The coe�cients Tnn; TnU ; Qnn andQnU are in fact
complex functions of pitch angle � (see (Izadi-
Zamanabadi and Blanke, 1998) for details). They
are calculated from tables of data which are ob-
tained from sea trial.

Ship speed dynamics with corresponding hull re-
sistance is described by the �rst order equation

m _U = R(U) + (1� tT )Tprop (10)

Ship's resistance to motion R(U) through the
water can be described by a resistance curve,
which is a third to �fth order polynomial in U .
m is the the ship weight and tT is the thrust
deduction number (is a known value).

Fault scenarios: In the described subsystem two
faults are considered (in compliance with the
original FDI scenario of the benchmark (Izadi-
Zamanabadi and Blanke, 1998)). These are the
diesel engine gain fault �ky and the shaft speed
measurement fault �nsensor. The pitch measure-
ment �m is assumed to be non-faulty in this case.

4. RESULTS OBTAINED BY THE
GEOMETRIC APPROACH

The geometric method for FDI in Section 2 is
applied to the ship propulsion system described in
the previous section. In order to obtain a system
as given by (1) the considered subsystem of the
benchmark can be stated as follows:



_x = f(x) + g(x)u+ p(x)w + l(x)�
y1 = nm = n+ x�n

y2 = Um = U
(11)

where

x =
�
n U x�n

�T
; u1 = Y ; u2 = �m

� = �kyY ; w = _�nsensor

and

f(x) =

0
B@

0
1

m
R(U) +

1� tT
m

TjnjUnU

0

1
CA ;

g1(x) =

0
B@

1

Im
ky

0
0

1
CA

g2(x) =

0
BBB@
�

1

Im

�
Qjnjnn

2 +QjnjUnU
�

1� tT
m

Tjnjnn
2

0

1
CCCA

p(x) =

0
@ 0

0
1

1
A ; and l(x) =

0
B@

1

Im
0
0

1
CA

In (11) the shaft speed sensor fault is implemented
as a pseudo-actuator fault _�nsensor in order to
obtain the form (1). This is done following a
procedure described in (Hashtrudi-Zad and Mas-
soumnia, 1999) by adding the following additional
linear dynamics to the original system:

_x�n = A�nx�n + L�n��n

y�n = C�nx�n = �nsensor

where ��n = _�nsensor =w, A�n =0, and L�n =
C�n=1.

The diesel engine gain fault is in its nature a mul-
tiplicative fault a�ecting the system parameter
ky. In (11) it is modeled as an additive fault by
considering �=�kyY . Its magnitude depends on
the diesel throttle position Y . This is natural as
the gain fault's impact becomes bigger the higher
the diesel intake to the engine. If Y = 0 the diesel
engine is not running, hence, the fault would not
a�ect the system's operation anyway.

The goal is now to solve the l-NLFPRG for system
(11), i.e. to detect the diesel engine gain fault
� = �kyY and isolate it from the shaft speed
measurement fault �nsensor. Hence, the latter is
considered as disturbance w. The algorithms (3)
and (4) are initiated with:

P = spanfp1g = spanf
�
0 0 1

�T
g

and lead to the following result (detailed calcula-
tions can be found in (Lootsma, 2001)):

Q = (o.c.a.((�P
� )
?))? = P = spanf

�
0 0 1

�T
g

hence

spanfl(x)g * Q and spanfp(x)g � Q

Following Proposition 3 in (DePersis and Isidori,
2000b) one can then obtain the following subsys-
tem, which corresponds to (5) and obviously is not
a�ected by the shaft speed sensor fault:

_n =
1

Im
(ky Y + �)�

1

Im
QjnjU nU �m

�
1

Im
Qjnjn n

2 �m
(12)

_U =
1

m
R(U) +

1� tT
m

�
TjnjU nU + Tjnjn n

2 �m
�

y = U

(13)

5. DIAGNOSTIC OBSERVER DESIGN

Subsystem (12) and (13) is a good starting point
to obtain successful FDI that enables detection
of the diesel engine gain fault and isolation from
the shaft speed sensor fault. Hence, the following
diagnostic observer is proposed to achieve FDI:

_̂n =
1

Im
ky Ym �

1

Im
QjnjU n̂ Û �m

�
1

Im
Qjnjn n̂

2 �m +Kn̂
�ky

(Um � Û)
(14)

_̂
U =

1

m
R(Û) +

1� tT
m

h
TjnjU n̂ Û + Tjnjn n̂

2�m

i
+KÛ

�ky
(Um � Û)

ŷ = Û

(15)

with the diesel throttle position Y and the pitch
measurement �m as external inputs. The observer
structure corresponds to a form like:

_̂x = f̂(x̂) + ĝ(x̂)u+K(y � ŷ)
ŷ = h(x̂)

The function f̂(x)+ ĝ(x)u is globally Lipschitz for
the complete operating range:

x = fxj0 < n < nmax; 0 < U < Umaxg and

u = fu j � 1 < � < 1; 0 < Y < 1g;
i.e. kf̂(x) + ĝ(x)u � f̂(x̂) � ĝ(x̂)uk � �kx � x̂k,
with Lipschitz constant � 2 R and x; x̂ 2 
x.
This is due to the physical limitations and the
upper-level control of the propulsion system. It
is designed to keep the signals (n; �) inside cer-
tain boundaries (corresponding to 
x) to achieve
desired operation and to avoid overload situations
for the shaft and the pitch. Furthermore, there are
the following physical limitations: The pitch signal
is physically limited by construction �1 < � < 1
like the fuel index 0 < Y < 1. The ship speed U
is limited by the top speed of the ship. The shaft
speed n is limited by an emergency shut-o�.



Subsystem (12) and (13) is observable over the
complete operating range 
x. This can be seen
when looking at the system and its correspond-
ing observability codistribution (Nijmeijer and
van der Schaft, 1990, Theorem 3.32). The observ-
ability codistribution can be obtained as follows
(Nijmeijer and van der Schaft, 1990):

dO(x) = spanfdH(x)jH 2 Og; x 2 
x

where the observation space O(x) denotes the
linear space (over R) of functions on 
x containing
h(x), and all the repeated Lie derivatives

LX1
LX2

� � �LXk
hj(x); j 2 l; k = 1; 2; : : :

with Xi, i 2 k, in the set of ff; g1 : : : gmg. For the
considered subsystem it can be seen that

dh(x) = (0 1)

dLfh(x) =

�
1� tT
m

TjnjUU

1

m

@R(U)

@U
+

1� tT
m

TjnjUn

�

) dim dO(x) = 2 = n = dim
x for u 2 
u

Hence, the subsystem is observable over the com-
plete operating range 
x.

Using the facts that f̂(x) + ĝ(x)u is globally Lip-
schitz, the subsystem (12) and (13) is observable
over the complete operating range 
x, and that
the inputs are bounded (u 2 
u) the stability of
the proposed observer can be proven by using the
result of (Gauthier et al., 1992). In (Gauthier et
al., 1992) it is also shown how the observer gain
K has to be chosen. For the simulations in the
following it is chosen ad hoc.

6. SIMULATION RESULTS

The obtained observer (14) and (15) is imple-
mented and the residual is shown in �gure 1. A
sample sequence of 600 sec. from the total se-
quence of 3500 sec. is su�cient to illustrate the
applicability of the observer. Measurement noise
is not simulated to enhance visibility. The residual
is generated as:

r = Um � Û

where Û is the observer output. The gains and
initial conditions are chosen as:
Kn̂
�ky

= 0:001, KÛ
�ky

= 0:01, n̂(t = 0) = 9 rad=s,

and Û(t=0)=0:1 m=s.
The shaft speed measurement fault as well as
dynamic transient e�ect due to fast change in set-
points is shown to have minimum impact on the
residual. Their e�ect can be handled by choosing
an appropriate threshold. The gain fault can be
detected within the required time-to-detect pro-
posed in (Izadi-Zamanabadi and Blanke, 1998).
Measurement noise can be dealt with by using
statistical methods such as CUSUM.

2600 2700 2800 2900 3000 3100 3200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

r 
[m

/s
]

Gain fault

Shaft measurement fault 

Transient
impact 

Fig. 1. Residual, r = Um�Û . Both the shaft speed
measurement and gain fault are present.

7. CONCLUSIONS

This paper brie�y reviewed the algorithms used
for a geometric approach to nonlinear fault de-
tection and isolation. A ship propulsion system
was used to illustrate its applicability. As a result
a subsystem was obtained that is only a�ected
by the diesel engine gain fault. A diagnostic non-
linear observers for the obtained subsystem was
constructed. Simulation results showed that in
contrast to earlier published results (Åström et
al., 2000, Chapter 13) the gain fault could be
detected and isolated from the shaft speed mea-
surement fault by using the nonlinear observer.
However, the detection is slower, because the re-
sult is based on the ship speed dynamic which is
signi�cantly slower than the shaft speed dynamic
used in other existing approaches. The results
illustrate the strong ability of the geometric ap-
proach to analyze a system in a systematic way. As
a result, dedicated subsystems are extracted under
certain conditions that can be used for observer-
based FDI.
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