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Abstract— A model based approach for fault detection and
isolation in a centrifugal pump is proposed in this paper.
The fault detection algorithm is derived using a combination
of structural analysis, Analytical Redundant Relations (ARR)
and observer designs. Structural considerations on the system
are used to indentify four subsystems each sensitive to a subset
of the faults under consideration. Either an ARR or a residual
observer is designed for each of the four subsystems. The
four obtained residuals are then used for fault isolation. The
applicability of the algorithm is illustrated by applying it to
an industrial benchmark. The benchmark tests have shown
that the algorithm is capable of detection and isolation of five
different faults in the mechanical and hydraulic parts of the
pump.

I. INTRODUCTION

Centrifugal pumps are used in a variety of different
applications. This could for example be in a water supply
application where submersible pumps are used in water
wells to lift water to the surface. Some of these installations
are crucial for a larger system to work. Failures can lead to
substantial economic losses and can affect the life comfort
of many people when they occur. Therefore detection of
faults, if possible in an early stage, and isolation of their
causes are of great interest. Especially fault detection, which
can be used for predictive maintenance, could save money
and increase reliability of the application in which the pump
is placed.

Different approaches have been used for fault detection
in centrifugal pumps. In [7], [8] current spectrum signatures
are used for detection of different faults like blockage,
cavitation, and damaged impeller. In [9], [4] model based
approaches are used. In [9] the nonlinear system is modelled
by a set of fuzzy functions and in [4] a linearized version
of the system model is used. Both of these consider both
detection and isolation of faults in systems containing
centrifugal pumps.

In this work a model-based approach is used for residual
generation. The presented approach utilizes a nonlinear
model of the submersible application. This makes the
obtained algorithm independent of the operating point in
which the pump is running. The algorithm utilizes torque,
speed, pressure and flow signals to generate the residuals.

The algorithm is derived by first identifying four subsys-
tem using structural analysis [3], [6]. From the structural
model of the system it is seen that all of these subsystems
includes different subsets of the faults considered in this
work. Therefore they can be used for fault isolation. Three
of these sets contain differential constraints [3] meaning
that derivatives of the output are necessary if an Analytical
Redundancy Relation (ARR) is derived. To overcome this
problem residual observers are designed in these three
cases. An overview of the contribution to observer design
for residual generation can be found in [5]. In the single
case where the subsystem does not contain differential
constraints an ARR is used for residual generation.

As a model-based approach is used in this work, this
paper starts by presenting the model of a submersible pump
application in section III. The fault detection algorithm is
considered in section IV. This includes identifying sub-
systems using structural analysis, designing the residual
observers, and the ARR. Section V presents test results
obtained on an industrial benchmark, which has been par-
ticularly developed for this purpose. Finally concluding
remarks end the paper.

II. NOMENCLATURE

The parameters in the model presented in section III are
decribed in the following.

J Moment of inertia of the rotor and the impeller.
B Linear friction.
Kj Derived moment of inertia of the water in the

system.
Kp Pressure losses inside the pipeline.
Kv Pressure losses inside the valve.
ahi Parameters in the pressure model of the pump,

i ∈ {1, 2, 3}.
ati Parameters in the torque model of the pump,i ∈

{1, 2, 3}.
g Gravity constant.
ρ The density of the liquid in the system.

III. THE SUBMERSIBLE PUMP APPLICATION

This section presents the mathematical model of a sub-
mersible pump application including faults and distur-



bances. The submersible pump application is depicted in
figure 1.

p
in


p

out


z
in


z

out


H
p


V
1


Q


Fig. 1. A sketch of a submersible pump application including a well, a
pipe, a valve, and a centrifugal pump.

This figure illustrates a pump placed at the bottom of a
well pumping water to the surface. The variables assumed
known in the system are the shaft torque, the shaft speed,
the pressure produced by the pump, and the volume flow
through the pump. In figure 1 the pressure is labeledHp

and the volume flow is labeledQ. Moreover the water in
the well is lifted from levelzin to zout and the volume flow
Q can be controlled by a valveV1 at the top of the well.
The inlet and outlet pressure of the pipe system are labeled
respectivelypin andpout.

A. Model Without Faults

The equations describing the submersible pump system
under no fault conditions are given by the following set of
relations,

c1 : J dωr

dt = Te −Bωr − Tp

c2 : KJ
dQ
dt = Hp − pl

c3 : Hp = −ah2Q
2 + ah1Qωr + ah0ω

2
r

c4 : Tp = −at2Q
2 + at1Qωr + at0ω

2
r

c5 : y1 = Hp

c6 : y2 = ωr

c7 : y3 = Q

(1)

Relation c1 and c2 respectively describe the dynamics of
the mechanical and the hydraulic system. In theseωr is the
shaft speed of the pump andQ is the volume flow through
the pump. The relationc4 models the pressure delivered by
the pumpHp and the relationc5 models the load torque on
the shaft generated by the pumpTp. Finally the relations
c5 to c7 model the sensor system of the application. Here
y1 is the differential pressure measurement,y2 is the speed
measurement andy3 is the flow measurement. Beside the
measurements the input torqueTe of the system is assumed
known.

In the model presented in (1) the pressurepl is the load
pressure of the well and is given by,

pl =(pout − pin + ρg(zout − zin))− (Kv + Kp)Q2

This pressure is derived from the depth of the well denoted
by zout − zin, the inlet and outlet pressure of the pipeline
system, and the flow dependent pressure loss in the pipe and
valve. All of these are assumed unknown in the following,
meaning that the pressurepl must be assumed unknown in
the development of the detection algorithm.

The model presented in (1) is only valid for positive speed
and positive flow, since the valve model and the relations
c4 and c5 are only valid for positive flow and speed i.e.
ωr, Q ∈ R+.

B. Model Including Disturbances and Faults

Five faults are considered in this work, these are,

1) clogging inside the pump,
2) increased friction due to either rub impact or bearing

faults,
3) increased leakage flow,
4) performance degradation due to cavitation,
5) dry running.

The first three faults are internal faults caused by respec-
tively impurities in the liquid and wear. The 4th fault,
cavitation, is caused by too low inlet pressure, meaning
that the fault is external. However, in this work it is treated
as an internal fault. Finally, the last fault, dry running, is
a phenomenon caused by faults in the surrounding system,
hence it is an external fault and is treated as so. Even though
it is not a fault in the pump, this fault is important to detect
as sealing rings and bearings will be destroyed when the
pump is running without water for only a few seconds.

The mentioned faults all affect the hydraulic part of the
pump. The performance of the hydraulic part of the pump
is in this model described by relationc4, c5 and c7 in (1).
These relations respectively describe the pressure and the
torque produced by the pump and the flow measurement.
Introducing the faults, these relations become,

c3 : Hp = fH(Q, ωr)−KfQ2 − Cchfc − Cdhfd

c4 : Tp = fT (Q, ωr) + ∆Bωr − Cctfc − Cdtfd

c7 : y3 = Q−Kl

√
Hp

wherefH(Q,ωr) andfT (Q,ωr) are given by,

fH(Q, ωr) = −ah2Q
2 + ah1Qωr + ah0ω

2
r

fT (Q, ωr) = −at2Q
2 + at1Qωr + at0ω

2
r

(2)

In this fault modelKf ∈ R+ represents clogging,∆B ∈
R+ represents rub impact,Kl ∈ R+ represents increased
leakage flow,fc ∈ R+ represents cavitation andfd ∈
R+ represents dry runnning. The first three signals model
the faults accurately, while the last two terms are linear
approximations.

IV. FAULT DETECTION AND ISOLATION

In this section the model presented in the previous
section is used to develop a fault detection and isolation
algorithm. To do so structural analysis is used to identify
over-determined subsystems containing information about
different subsets of the faults. When the subsystems are



identified the residuals are obtained using respectively an
ARR and three simple observers. The simplicity of these
observers is due to the utilization of structural analysis to
obtain simple submodels for use in the observer design.

A. Structure Analysis

The system is described by the relations shown in (1).
These relations can be represented by the graph shown in
table I, where the constraintsc1, · · · , c7 are given by (1)
and the constraintsd1 andd2 are differential constraints, as
defined in [3], meaning thatdx

dt = ẋ in this context.
Using the definitions and procedures described in [6] and

[3] four over-determined subsystems are identified. These
are,

F1 = {c1, c4, d1, c5, c7}
F2 = {c3, c5, c6, c7}
F3 = {c1, c3, c4, d1, c5, c6}
F4 = {c1, c3, c4, d1, c6, c7}

From these four over-determined subsystems, or matchings,
it is seen that the constraintc2 is not used in any of
the matchings. This constraint describes the application in
which the pump is placed. When this constraint is not used
in a matching it means that the matching is independent of
the application model. Therefore the four above matchings
can be used for fault detection and isolation in centrifugal
pumps placed in any possible application.

Looking at the column to the right in table I the faults
affecting each of the over-determined subsystemsFi can
be identified. The connection between the faults and the
over-determined subsystems is shown below,

F1 : {Kl, ∆B, fc, fd}
F2 : {Kf ,Kl, fc, fd}
F3 : {Kf ,∆B, fc, fd}
F4 : {Kf ,Kl, ∆B, fc, fd}

(3)

This connection is a necessary, but not sufficient, condition
for a givenFi to be sensitive to a given fault. These con-
nections show that the faultsfc andfd are indistinguishable
from a structural point of view, meaning that isolation of
these faults is impossible for almost all set of parameters
in (1).

From the connection between faults and relations pre-
sented in (3) it is seen that no additional information is
added usingF4. Therefore the set,

{F1, F2, F3}

contains the obtainable information about the faults in the
system. The last relationF4 could be used for validation in
a robust fault detection scheme.

B. The Residual Generators

Looking at the relations forming the matchingF2 it is
seen that no differential constraints are included in this.

Therefore an ARR obtained from this matching does not
include derivatives. The ARR is given by,

r2 = −ah2y
2
3 + ah1y1y3 + ah0y

2
1 − y2 (4)

It is also possible to obtain ARR’s from the setsF1,
F3 and F4, but as differential constraint is used in each
of these matchings it is necessary to use derivatives of the
output in these cases. To avoid this, three residual observers
are developed in the following.

The three matchingsF1, F3 andF4 are all on a form
given by definition 1,

Definition 1 A system on the form,

ẋ = ax + f(x, z, u) + e1(x, z)f1

y1 = h1(x, z) + e2(x, z)f2

y2 = h2(x, z) + e3(x, z)f3

(5)

is said to be on over-measured form. In (5)x, y1, y2, u, z ∈
R1 and e1 e2 and e3 are nonlinear functions ofx and z.

Assumption 1 It is assumed that in the case where no
sensor faults have occurred, i.e.f2 = f3 = 0, the output
mapsh1 and h2 in definition 1 can by solved forx and z
locally. The solutions are given by the following expressions,

x = g1(y1, y2)
z = g2(y1, y2)

(6)

The implicit function theorem [1] can for example be used
to show that a solution exist locally. Using the above as-
sumption the following lemma describes a residual observer
for the system defined in definition 1.

Lemma 1 Under assumption 1 the following observer is a
residual observer for systems described by definition 1,

˙̂x = ax̂ + f(g1(y1, y2), g2(y1, y2), u) + k(g1(y1, y2)− x̂)
r = q(g1(y1, y2)− x̂)

(7)

The residual observer is asymptotical stable ifa − k < 0.
The fault input to this observer is given by,

ff =(f(x, z)− f(x− δxf , z − δzf ))
+ e1(x, z)f1 − kδxf

where ff is a derived fault signal, which is strongly
detectable. In the expression offf the signalsδxf and δzf

are given by,

δxf = g1(y1 − e2(x, z)f2, y2 − e3(x, z)f3)− g1(y1, y2)
δzf = g2(y1 − e2(x, z)f2, y2 − e3(x, z)f3)− g2(y1, y2)

The proof of the lemma is given in appendix I.

Remark 1 The derived faultff is strongly detectable using
this observer. This is not the case for the faultsf1, f2 and
f3, as the nonlinear expression offf can equal zero even
though one of the faultsf1, f2 or f3 is different from zero.



TABLE I

THE STRUCTURAL MODEL OF THE CENTRIFUGAL PUMP. x DENOTES UNI-DIRECTIONAL RELATIONS AND 1 DENOTES BI-DIRECTIONAL RELATIONS.

UNI-DIRECTIONAL MEANS THAT THE GIVEN VARIABLE IS NOT CALCULABLE FROM THE RELATION, SEE DEFINITIONS IN[6].

Known Unknown Fault signals
y1 y2 y3 Te pl Q̇ ω̇r Tp ωr Hp Q Kf Kl ∆B fc fd

c2 1 1 1 1
d2 1 x
d1 1 x
c1 1 1 1 1
c4 1 1 1 1 1 1
c3 1 1 1 1 1 1
c5 1 1
c6 1 1
c7 1 1 1

Remark 2 The observer described by lemma 1 is designed
under the assumption that a perfect model exists, and that
the measurements are not affected by noise. This is of cause
not fulfilled in a real life applications. To overcome this the
gain k of the observer is chosen such that errors due to
small model mismatchs and noise will be suppressed.

The matchingsF1, F3 and F4 are all on the form
defined in definition 1 and fulfill assumption 1. Therefore
lemma 1 can be utilized for observer design for these three
matchings. The dynamics of the matchings are in all three
cases govern by the following differential equation,

J
dω

dt
= Te −Bω + at2Q

2 − at1ωQ− at0ω
2 (8)

This equation is formed by using the constrainsc1 and c4

in (1). Each of the matchings utilizes different subsets of
the following set of output maps,

y1 = ω
y2 = −ah2Q

2 + ah1ωQ + ah0ω
2

y3 = Q
(9)

The output maps are formed by using respectively constraint
c5 to obtain the expression fory1, the constraintsc3 andc6

to obtain the expression fory2, and finally the constraint
c7 to obtain the expression fory3. The constraints are all
given in (1).

From (9) it is seen that each subset of the output maps,
containing two elements, fulfills assumption 1. Therefore
lemma 1 can be used to obtain residual observers for the
matchings. The obtained observers are given by,

O1 :





J dω̂
dt = −Bω̂ − fT (y3, y1) + Te+

k1 (y1 − ω̂)
r1 = q1 (y1 − ω̂)

(10)

O3 :





J dω̂
dt = −Bω̂ − fT (g3(y1, y2), y1) + Te+

k3 (y1 − ω̂)
r3 = q3 (y1 − ω̂)

(11)

O4 :





J dω̂
dt = −Bω̂ − fT (y3, g4(y2, y3)) + Te+

k4 (g4(y2, y3)− ω̂)
r4 = q4 (g4(y2, y3)− ω̂)

(12)

whereki is designed according to lemma 1 andqi is chosen
such that the residuals have a reasonable value in the case
of faults. The functionfT is given in (2) and the functions
g3 andg4 are derived from the output maps in (9), and are
given by,

g3(y1, y2) =
ah1y1 +

√
a2

h1y
2
1 − 4ah2(y2 − ah0y2

1)
2ah2

g4(y2, y3) =
−ah1y3 +

√
a2

h1y
2
3 + 4ah0(y2 + ah2y2

3)
2ah0

These expressions are valid fory1, y3 ∈ R+ when using
the parameters of the pump used in the test described in
the following section. Therefore the expressions are valid
in the state spaceωr, Q ∈ R+, which is exactly the state
space in which the model is valid, see section III-A.

V. TEST RESULTS

The detection algorithm, derived in the previous sections,
is in this section tested on a Grundfos 1.5(KW ) CR5-10
pump. This pump placed in a tank system as depicted in
figure 2. The measurements used in the detection algorithm
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Fig. 2. Sketch of the test setup. The measurements are the shaft torque
Te, the differential pressureHp delivered by the pump and the volume
flow through the pumpQ.

are the torque on the shaftTe, the differential pressureHp



delivered by the pump and the volume flow through the
pump Q. The valveV1 is used to model disturbances in
the system. Clogging inside the pump is modelled by the
valve Vc and dry running is modelled by closingV2 and
openingV3. Rub impact is modelled adding an extra force
to the shaft and cavitation is modelled by closing valveV2

gradually. Leakage flow is modelled by openingVl.
Test results have shown that the sensitivity to the faults

fc andfd of the observerO4 is very low. Infact it is so low
that changes due to the faults are smaller than changes due
to noise and parameter variations. Moreover in section IV-A
it is shown that the obtainable fault information is included
in the residualr1, r2, andr3. Therefore only these residuals
are considered in the test presented in this section.

Since the tests are performed on a real system, noise
is expected on the residuals. To overcome this problem
a CUSUM algorithm [2] is used to detect changes in the
mean of the residuals and thereby detect the faults. In the
following, outputs of the CUSUM algorithms are denoted
D1 to D3, whereD1 is the decision signal ofr1 and so
forth.

All test results are shown in figure 3. First robustness
with respect to the operating point is tested. In this test
both the position of the valveV1 and the speed of the pump
are changed during operation. During the test the valve is
changed in three steps from medium to maximum opened.
The speed of the pump is changed between 2380 and 2910
(rpm) each 2 (sec) during the test. The result of this test
is shown in figure 3(a), wherer1 to r3 is shown in the
top figure and the decision signalsD1 to D3 in the bottom
figure. The test shows that the three residual generatores are
robust with respect to the tested operating points, but also
that there are some dependency to the operating point, see
top figure of figure 3(a), This is partly due to problems with
the flow sensor at zero flow and partly due to dependency
between the parameters and the operating point.

Figure 3(b) to 3(f) shows test results concerning isolabil-
ity of the five faults of interest in this work. All these tests
are performed withV1 half opened and an angular speed
of approximately 2650 (rpm). Comparing the five figures
3(e) and 3(f) it is seen that the faults are distinguishable
except for cavitation and dry running. This was expected as
the structural analysis in section IV-A already had foreseen
this.

VI. CONCLUSION

The topic of this work is fault detection and isolation in
a centrifugal pump placed in a submersible application. An
algorithm is developed, which is capable of detection and
isolation of the faults in a centrifugal pump. The proposed
alogrithm is independent of the application in which the
pump is placed. This makes the algorithm robust and usable
in a wide range of applications including the submersible
application under consideration in this work.

Tests have shown that it is possible to distinguish between
the four of the five faults under consideration with the three

chosen residuals. But it is also shown that the algorithm
is sensitive to the operating point. This is partly due to
dependency between the operating point and the parameters
in the model and partly due to flow sensor problems. Even
though there are some dependencies between the operating
point and the performance of the algorithm, the algorithm
still performs considerable better than algorithms build on
a linearized model.
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APPENDIX I
PROOF OF LEMMA 1

From assumption 1 the inverse of the output maps of the
system in definition 1 exists, meaning the following function
can be obtained,

x = g1(y1, y2)
z = g2(y1, y2)

(13)

where it is assumed that the faultsf2 = f3 = 0.
Choosing the observer dynamics as a copy of the dynam-

ics of the system defined by definition 1, and using the the
inverse of the output maps the observer becomes,

˙̂x = ax̂ + f(g1(y1, y2), g2(y1, y2), u) + k(g1(y1, y2)− x̂)
(14)

when it is assumed that the faultf1 = 0. Using the
expression for the system the error equation of the observer
becomes,

ė = (ax + f(x, z, u))− (ax̂ + f(x, z, u) + k(x− x̂))
ė = (a− k)e (15)

where (13) is used in the observer expression (14), meaning
thatg1(y1, y2) = x andg2(y1, y2) = z. Equation (15) shows
that the error dynamic of the observer is asymptotical stable
if a− k < 0.
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(a) Robustness test.
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(b) Detection of the faultKf clogging.
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(c) Detection of the faultKl leakage flow.
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(d) Detection of the fault∆B rub impact.
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(e) Detection of the faultfc cavitation.
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(f) Detection of the faultfd dry running.

Fig. 3. Test results from test of the developed algorithms on the test setup. The top figures shows the obtained residuals and the bottom figures shows
decision signals obtained from CUSUM algorithms.



The expression of the derived fault signalff is obtained
in the following by introducing the fault signals in the
error equation of the observer. Before this can be done, an
expression of the fault when mapped through theg1 andg2

must be obtained. First the signalsy1f andy2f are defined
as,

y1f = y1 − e2(x, z)f2 = h1(x, z)
y2f = y2 − e3(x, z)f3 = h2(x, z)

From these expression it is seen that the signalsy1f andy3f

must be used in the mapsg1 and g2 to obtain the correct
value ofx andz, e.i.

x = g1(y1f , y2f )
z = g2(y1f , y2f )

Thenδxf andxf is defined as,

δxf = x− xf

δxf = g1(y1f , y2f )− g1(y1, y2)

andδzf andzf is defined likewise. Using these signals the
error equation, including the faults, becomes,

ė =ae + f(x, z, u)− f(xf , zf , u) + e1(x, z)f1

− k(xf − x̂)
ė =(a− k)e + (f(x, z, u)− f(x− δxf , z − δzf , u))

+ e1(x, z)f1 − kδxf (16)

From this expression the following nonlinear expression of
the fault can be identified,

ff =(f(x, z, u)− f(x + δxf , z + δzf , u))
+ e1(x, z)f1 − kδxf

Including this derived fault signal into the error equation in
(16) it becomes,

ė = (a− k)e + ff

r = qe

From this expression it is seen that the derived fault signal
ff is strongly detectable. This is not the case for the faults
f1, f2 or f3 due to the nonlinearities of the expressionff

making it possible thatff = 0 even though one of the faults
f1, f2 or f3 is different from zero.


