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Abstract:   An essential l imitation in using the classical optimal control has been its limited robustness to modeling
inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-
optimal approach: hard and soft ones. The hard structure is defined by parameters selected in accordance with the rules of
the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values.
The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process. The
methodology proposed here is of a universal nature and may easily be applied with respect to other elements of
uncertainty of time-optimal controlled mechanical systems.

Keywords:  Optimal control, mechanical system, uncertain mass, stochastic process, suboptimal structure, robustness.

I . INTRODUCTION

The main constraint of the application possibiliti es of systems based on the principles of the classical optimal

control theory (Athans and Falb, 1966) has been their excessive sensitivity to the modeling inaccuracy of object

dynamics, the identification of object parameters, as well as perturbations and noise naturally accompanying real

processes. In extreme cases, even a small error in parameter identification, which is unavoidable in practice, completely

disqualifies an optimal control system. However, the very idea of optimal control often turns out to be a proper basis to

design a suboptimal structure in which excessive sensitivity would be eliminated; for details, see (Friedland, 1996;

Isidori, 1995; Khalil , 1996; Lyshevski, 2001; Weinmann, 1991; Zhou et al., 1996).

The two basic types of optimal control are related with quadratic and time-optimal (minimum-time) performance

indexes. The time-optimal approach is very significant from the viewpoint of many technological processes, because it

allows to maximally reduce considerable technological interruptions, which are economically ineffective. On the other

hand, time-optimal structures, as controls with extreme values, are exceptionally sensitive to the above-mentioned
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identification inaccuracies and disturbances.

In this paper, the time-optimal control of an object described using the second principle of Newton’s dynamics,

i.e. from physical point of view, representing mass subjected to force, will be considered. Such a mechanical system is a

basic element accompanying all considerations in robotics (Sciavicco and Siciliano, 1996). The uncertainty problem will

be considered in the example of the main parameter of such an object, i.e. the value of mass (or the moment of inertia). In

practice, that value can only be given with the precision that results from accurate measurement. Moreover, in many

applications (e.g. shifting or transport tasks) this value is not subject to measurement at all , but rather grossly estimated

on the basis of the assumed value. Furthermore, in other situations, a mass may be variable, in tandem with the

consumption of fuel or other substances used in the technological process.

In this paper, the above problem has been solved by the introduction of a random factor; namely, a load will be

treated as the realization of a stochastic process with almost all realizations being piecewise continuous and jointly

bounded. The introduction of a random factor makes it possible to take into account errors in the identification of mass,

whereas the fluctuations of the particular realizations describe its changes, including also those of a discontinuous nature.

The paper is organized as follows. Section II specifies mathematical grounds regulating strict theoretical

justification for practical controlli ng structures presented in Section III : a hard one, where parameters are selected in

accordance with the rules of statistical decision theory, and a soft one, which allows additionally to eliminate rapid

changes of control values by making the function of a feedback controller continuous. The conception presented is

universal and may be supplemented by and generalized with a number of various aspects occurring in such tasks. Those

tasks, together with the results of numerical verification constitute the subject of the last Section V.

The material presented provides a summary of the previous research on the hard structure (Kulczycki, 1996a, 1996b,

2000; Kulczycki and Wisniewski, 2002), which creates here a basis for new investigations concerning soft approach. This

material was presented in its preliminary version as (Kulczycki et al., 2004).

II . THEORETICAL RESULT S

The random approach for the control task worked out in this paper has been based on the concept of an almost

certain time-optimal control. This is defined as a stochastic process such that almost all it s realizations are controls

which, for proper deterministic systems obtained by fixing the random factor, bring the state of the system to the target

set in a minimal and finite time. The almost certain time-optimal control is unique if every time-optimal control is a

process stochastically equivalent to it. This notion was introduced in (Kulczycki, 1996b). Similarly, an almost certain

solution of a random differential equation means such a stochastic process that almost all i ts realizations are solutions of

proper deterministic equations obtained for a fixed random factor. The almost certain solution is unique if every almost

certain solution is a process stochastically equivalent to it. The solution of a deterministic differential equation will be

considered below in Caratheodory sense, i.e. as a function which is absolutely continuous at every compact subinterval of

its time domain and fulfils the differential equation almost everywhere; for details see (Kulczycki, 1996c).

Consider a mechanical system with a single degree of freedom, whose dynamics are described by the second law

of Newtonian mechanics

)()( tt ��� =��
  , (1)

where  � ,  � ,  �  mean the load (mass or moment of inertia), position (linear or angular), and control (force or moment),

respectively. If the parameter   �  is treated as a realization of a stochastic process M, then denoting by Ω∈ω  a random
factor, and by 1X , 2X , U  real stochastic processes which represent the position, velocity and control respectively, the

dynamics of the system under consideration can now be described by the following random differential equation:
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given these assumptions
(A1)

�∈0t , ),[ 0 ∞= tT ;

(A2) 2T
02010 ],[

�∈= xxx  and 2T
21 ],[ �∈= fff xxx  constitute initial and target states, respectively;

(A3) the values of admissible controls are limited to the interval [–1,1];
(A4) ),,( PΣΩ  denotes a complete probabilit y space;

(A5) M is a real stochastic process with almost all realizations being piecewise continuous and satisfying the
boundary condition ],[),( +−∈ω mmtM  for Tt ∈ , where +− ≤< mm0 .

Introduce also the following subdivision of the state space 2�
 into the disjoint sets +R , −R , +Q , −Q , }{ fx ; see Fig. 1.

Specifically, let −+K , ++K denote sets of all states which can be brought to the target by the control 1+≡U , if −≡ mM

or +≡ mM , respectively; analogously −−K  and +−K  for 1−≡U , if −≡ mM  or +≡ mM . Moreover, let:

2T
21 ],{[ �∈=+ xxQ    such that there exist   −+∈′ Kxx T

21 ],[    and   ++∈′′ Kxx T
21 ],[    with

111 xxx ′′≤≤′    or   111 xxx ′≤≤′′ } (5)

2T
21 ],{[ �∈=− xxQ    such that there exist   +−∈′ Kxx T

21 ],[    and   −−∈′′ Kxx T
21 ],[    with

111 xxx ′′≤≤′    or   111 xxx ′≤≤′′ } (6)

QxxR \],{[ 2T
21 �∈=+    such that there exists   Qxx ∈′ T

21 ],[    with   11 xx ′< } (7)

QxxR \],{[ 2T
21 �∈=−    such that there exists   Qxx ∈′ T

21 ],[    with   11 xx <′ }   , (8)

where −+ ∪∪= QxQQ f }{ . Therefore, the sets −+K , ++K  represent all those states which can be brought to the target

by the control 1+ , at the minimum and maximum possible values of a mass. The set +Q  contains intermediate points.

The sets +−K , −−K , and −Q  may be interpreted analogously for the control 1− . Note also that −+K  and ++K  belong to

+Q  as +−K  and −−K  belong to −Q . For ill ustration, see Fig. 1.

Theorem
For a dynamic system described by random differential equation (2)-(4), under assumptions (A1)-(A5), there exists a

unique almost certain time-optimal control oU , generating a unique almost certain solution T
21 ],[ XXX = , where with

probabili ty 1:
(T1) if −∈ Rx0 , the function ),(o ⋅ωU  takes on the value –1 for ))(,[ 0 ω∈ sttt  and +1 for )](),([ ωω∈ fs ttt ,

where ∞<ω<ω< )()(0 fs ttt  and +∈ω QtX ),(  for ))(),([ ωω∈ fs ttt ; (for interpretation see Fig. 1);

(T2) if +∈ Rx0 , the function ),(o ⋅ωU  takes on the value +1 for ))(,[ 0 ω∈ sttt  and –1 for )](),([ ωω∈ fs ttt ,

where ∞<ω<ω< )()(0 fs ttt  and −∈ω QtX ),(  for ))(),([ ωω∈ fs ttt ;

(T3) if −∈ Qx0 , the function ),(o ⋅ωU  takes on the form described above in points (T1) or (T2) or takes on the

value –1 for )](),([ 0 ωω∈ fttt , where ∞<ω< )(0 ftt  and −∈ QtX )(  for ))(),([ 0 ωω∈ fttt ;

(T4) if +∈ Qx0 , the function ),(o ⋅ωU  takes on the form described above in points (T1) or (T2) or takes on the

value +1 for )](),([ 0 ωω∈ fttt , where ∞<ω< )(0 ftt  and +∈ QtX )(  for ))(),([ 0 ωω∈ fttt .

The functions �→Ω:st  and �→Ω:ft  introduced above, representing the time of the changes in the value of the

function ),(o ⋅ωU  and the time to reach the target by the solution ),( ⋅ωX , respectively, are random variables.  �

The proof of the above Theorem is analogous to one for the auxiliary task of motion resistance, presented in

papers (Kulczycki, 1996a, 1996b). The optimality can be shown based on the theory of differential inequalities
(Kulczycki, 1996a), while the measurability of the functions st  and ft  as well as ),(o tU ⋅  and ),( tX ⋅  can be shown by

a superposition of the corresponding mappings (Kulczycki, 1996b).
The change of sign in the particular realizations of the control oU  (switching of the control) can occur only when

the system state belongs to the set Q. For this reason it will be called a switching region. Finally: the switching curve γ
familiar from the classic case of the time-optimal point-to-point transfer of the fixed mass  �  (Athans and Falb, 1966;
Chapter 7.2), has been generalized by the above to the switching region Q  ( Q=γ  when �== +− mm ).
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III . APPLICATIONAL CONCLUSIONS: SUBOPTIMAL CONTROL STRUCTURES

Besides specific cases, the direct implementation of a system generating the almost certain time-optimal control

encounters difficulties because of its dependence on the random factor, in fact unknown a priori. However, thanks to the

results of Theorem given in Section II , the presented material constitutes a useful basis for the creation of suboptimal

control laws, in which such a dependence is removed.

A.  Hard Structure
The following concept will be based on the form of differential equation (3). Namely, after its bilateral integration

one may observe that the impact of the particular realizations of the stochastic process M can be estimated by using their

mean-values over any interval of time in which no special event – for example control switching – occurs. To obtain a

suboptimal controller, consider a particular case of the probabili ty measure P connected with the process M (see

Assumptions (A4)-(A5) ) which is concentrated on constant realizations (interpreted as the average values). If the value

of these constant realizations is known and equal to m, then with the notation of Theorem 1 presented in the previous
section, mmm == +− , therefore, ++−+ = KK  and −−+− = KK , hence the switching region Q is confined to the switching

curve whose shape is dependent on the value of the parameter m. Denote as m̂  its estimate used in the feedback control

law; therefore, it can be interpreted as an (indefinite) knowledge about the parameter m needed for the purpose of the

synthesis of the feedback controller equations.
The analysis of sensitivity to the error of the estimation of the parameter m by the value m̂  will be presented

below.
The case where the second coordinate of the target state is equal to zero, i.e. with 02 =fx , will be considered

first. If mm =ˆ , the control is time-optimal; the state of the system is brought to the switching curve, and being

permanently included in this curve hereafter, it reaches the target in a minimal and finite time. When mm <ˆ ; as a result

of its having oscill ations around the target, over-regulations occur in the system; the target is reached in a finite time. If
mm >ˆ , after the switching curve is crossed, sliding trajectories appear in the system; here, too, the target is reached in a

finite time. In both of the last two cases, i.e. with mm ≠ˆ , the time to reach the target state increases from the optimal

more or less proportionally to the difference between the values m̂  and m.
The remaining case, 02 ≠fx , will now be presented. If mm =ˆ , the control is time-optimal, and the phenomena

are identical as before for 02 =fx . When mm <ˆ , the trajectories occurring in the system generate limit cycles; the target

is not reached. Finally if mm >ˆ , even though some of the trajectories temporarily diverge from the switching curve in
the part between the axis 1x  and the target state, ultimately the target is reached in a finite time; sliding trajectories exist

on the switching curve; the time to reach the target increases in tandem with the growth in the difference mm −ˆ .

Based on the sensitivity analysis presented above, some elements of statistical decision theory will be applied to
obtain the optimal value of the estimator m̂  needed for the purpose of the synthesis of the feedback controller equations.

The basic task of statistical decision theory (Berger, 1980) is the optimal selection of one element from among all

possible decisions on the sole basis of probabili stic information about the state of nature (reali ty), especiall y when its

actual state is unknown. In the problem considered here, the real value of the parameter m is treated as an unknown state
of reali ty, while the fixed value of the estimator m̂  constitutes a decision. The loss function l is required, which value

),ˆ( mml  is interpreted as losses resulting from making the decision m̂  when hypothetically the value m occurs in reali ty.

Two basic procedures are commonly used: the “ flexible” Bayes rule minimizes the expected value of losses, whereas the

“radical” minimax rule minimizes the greatest possible loss that may occur after a given decision is made. For details, see

(Berger, 1980).

Assume – according to the results of the sensitivity analysis – that the loss function is described in the linear and

nonsymmetrical form:









>−−
=−
<−−−

=
0ˆif)ˆ(

0ˆif0

0ˆif)ˆ(

),ˆ(

mmmmq

mm

mmmmp

mml   , (9)

where }{, ∞∪∈ +
�

qp , but only one of them can be infinite. Suppose – in reference to Assumption (A5) – that the

random variable characterizing the distribution of the mass m has a support of the form ],[ +− mm  such that

),0(],[ ∞⊂+− mm .
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It is readily shown (Kulczycki and Wisniewski, 2002) that if ∞=p , i.e. with infinite values of loss function (9)

for mm <ˆ , the minimax decision is realized by

+= mm̂   . (10)

In turn, the Bayes decision with the positive numbers p and q, is given as a solution of the following equation with the
argument m̂ :

 )ˆ(
qp

p
mF

+
=   , (11)

where F denotes the distribution function of the random variable characterizing the mass m. This solution is unique

thanks to connectivity of its support. The practical algorithm to solve equation (11) is presented in (Kulczycki, 2001). For

this purpose, one can also use artificial neural networks, according to the procedure presented in (Schiøler and Kulczycki,

1997).

The results given by formulas (10) and (11) will be applied below.
Once again the case 02 =fx  is considered first.

If over-regulations can be allowed, it is worthwhile using the flexible Bayes rule with real values for the loss
function, i.e. according to equation (11). Such a choice is possible because the determination of the estimator m̂  value

that is either less than, equal to, or greater than m allows the system state to be brought to the target in a finite time.
(However, this time increases approximately proportionally to the difference between the values m̂  and m.)

If over-regulations are not allowed, this determination needs to be carried out on the basis of the minimax rule,
assuming infinite values of the loss function for mm <ˆ , i.e. using formula (11). This enables the over-regulations to be

avoided, because they occur only if mm <ˆ .
Let now 02 ≠fx .

The value of the parameter m̂  should be determined using the minimax rule with infinite values of the loss

function for mm <ˆ , i.e. by dependence (10). Such a choice guarantees that the generation of the inadmissible limit cycles

which appear when mm <ˆ  is avoided. If, however, this value is greater than m, the state of the system is brought to the
target in a finite time. (Note that in the case 02 ≠fx , the over-regulations cannot be avoided at all .) A somewhat

improved structure can be obtained by dividing the switching region (curve) Q into two parts at the point of its
intersection with the axis 1x . For each of them, the values of the parameter m̂  should be determined in a different

manner. Namely, in the case of the part which lies on the same side of the axis 1x  as the target state, it should be done

– as previously – by using the minimax rule with infinite values of the loss function for mm <ˆ , i.e. using formula (10); in

the case of the part located on the opposite side, however, by the Bayes rule with real values of the loss function, i.e.

according to equation (11). This change does not pose the risk that a cycle will occur, while the use of the flexible Bayes

rule makes it possible to render more efficiently the potential sliding process occurring along the part of the switching
curve located on the side of the axis 1x  opposite to the target.

If one possesses the value m̂  obtained according to the above procedure, the feedback controller equations can be

calculated. Thus, the equations of the switching curve K take on the form

1
2

2
2

21 )(
2

ˆ
ff xxx

m
x +−−=      for   ),( 22 ∞∈ fxx (12)

1
2

2
2

21 )(
2

ˆ
ff xxx

m
x +−=      for   ),( 22 fxx −∞∈   . (13)

Formula (12) defines the set −−+− = KK , while dependence (13), the set ++−+ = KK . In the case when, for 02 ≠fx ,

the switching curve is divided into two parts at the point of its intersection with the axis 1x , the equation for the part

lying on the side of this axis opposite to the target should be modified as follows:

1
2

2
2

221 )
2

ˆ

2

ˆ
)(sgn( ff

b
f xx

m
x

m
xx +−=   , (14)

where bm̂  denotes the additional estimator defining that part, obtained through Bayes rule with real values of the loss

function, i.e. by equation (11). The sets −R  and +R  constitute adequate areas resulting from the division of the plane 2�
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by the curve K, according to formulas (7)-(8). For the sets −K , +K , −R , +R  obtained in this way, the value of the

suboptimal control is defined by the equation










∪∈+

∈
∪∈−

=

++

−−

)()](),([if   1

}{)](),([if   0 

)()](),([if   1

)(
T

21

T
21

T
21

hard

KRtxtx

xtxtx

KRtxtx

tu f   , (15)

where T
21 )](),([ txtx  means the object state, obtained by a real-time measurement process for any Tt ∈ . Figure 2

provides an ill ustration of the control structure worked out here with the representative trajectory it generates.

B.  Soft Structure
The control designed in the previous subsection may lead to frequent switchings between the extreme – according

to the assumption (A3) – values 1+  and 1−  along sliding trajectories, which should be avoided in mechanical systems,

since it can have a negative impact on the endurance of a device and user comfort. Based on the results of Theorem
presented in Section II and under the condition that the control may take any value in the interval ]1,1[− , this goal can be

obtained by substituting a modified control law, rendered “soft” instead of “hard” (15). A general concept of soft

structures is described in (Lyshevski, 2001).
Let the sets −−K  and −+K , be defined as previously but for the value of the parameter m̂  calculated in the

previous section for the discontinuous structure. Let also the additional positive constant m̂∆  be given and the sets +−K

and ++K  be defined for the value mm ˆˆ ∆+ .

As before, the case 02 =fx  will be considered first. Let a feedback controller be as follows















∈+
∈

∈
∈
∈−

=

+

+

−

−

Rtxtx

Qtxtxtxtxz

xtxtx

Qtxtxtxtxz

Rtxtx

tu f

T
21

T
2121

T
21

T
2121

T
21

soft

)](),([if    1            

)](),([if    ))(),((

}{)](),([if    0             

)](),([if    ))(),((

)](),([if    1            

)( (16)

with the function �� →2 : z  continuously and strictly increasing from the value 1−  on the sets −−K  and ++K  to the

value +1 on the sets +−K  and −+K  (see also Fig 1). If the solution ),( ⋅ωX  is “ too close” – with respect to real value of

the mass – to the set −+K , then control (16) is “ too great” and it makes this solution further from the set −+K  to the

interior of the set +Q . And inversely, if the solution is “ too far” to the set −+K , then control (16) is “ too small ” and

brings the trajectory closer to this set (see Figs. 1 and 3). The result obtained in the above manner is similar to the effect

achieved on a bob-sled track thanks to the appropriate modeling of its shape. It is a fluid movement, therefore, allowing
such a structure to be named “soft” . An analogous situation occurs between the sets +−K  and −−K . The value of the

parameter m̂∆  influences the speed of the control fluctuations in the set Q : the greater the value, the milder the
fluctuations. To the primary researches one can suggest 10ˆˆ mm =∆ .

Having the value m̂  obtained according to the material presented in subsection A, and assuming the constant m̂∆ ,
one can calculate the equation of the set −+K

ε−+= 1
2

21 2

ˆ
fxx

m
x      for   )0,(2 −∞∈x (17)

and for the set ++K

ε++∆+= 1
2

21 2

ˆˆ
fxx

mm
x      for   )0,(2 −∞∈x   , (18)

where the additional parameter 0≥ε  is closer to (but is not greater than) precise positioning (i.e. assumed in practice

precision of reaching the target state) and has been introduced to avoid the over-increasing of the function z near the axis

1x . The function z can be proposed in the following manner:

1)]()[(),( 21221 −−= dxcxxaxxz      for   )0,(2 −∞∈x (19)
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with

ε+∆
=

4 ˆ

4
)(

2
2

2
xm

xa (20)

ε++∆+= 1
2

22 2

ˆˆ
)( fxx

mm
xc   , (21)

while the value of the positive parameter d presents a compromise between speed of action of the sub-time-optimal
control system and its robustness. Namely, 1=d  can be treated as neutral; the values 1<d , results in making the
solutions nearer to the curves +−K  or ++K  which slows down the process but increases robustness; and the inverse

when 1>d . For primary experimental research 25.0=d  is proposed.
The analogous dependencies are outlined in the sets −−K  and +−K , respectively

ε++−= 1
2

21 2

ˆ
fxx

m
x      for   ),0(2 ∞∈x (22)

ε−+∆+−= 1
2

21 2

ˆˆ
fxx

mm
x      for   ),0(2 ∞∈x   . (23)

The function z can be proposed here as

1)]()[(),( 1
21221 −−= dxcxxaxxz      for   ),0(2 ∞∈x (24)

with

ε+∆

−=
4 ˆ

4
)(

2
2

2
xm

xa (25)

ε++−= 1
2

22 2

ˆ
)( fxx

m
xc   . (26)

Let now 02 ≠fx . The concept introduced in the preceding paragraph should be transferred here in a natural way.

For simplicity of notation, the case 02 >fx  will be investigated below; if 02 <fx  considerations are symmetrical. A

feedback controller is also defined here by formula (16).
The sets −+K  and ++K  in the part between the target and the axis 1x , should be given as for the hard structure,

both defined by the equation

1
2

2
2

21 )(
2

ˆˆ
ff xxx

mm
x +−∆+=      for   ),0[ 22 fxx ∈   . (27)

with

1),( 21 =xxz      for   ),0[ 22 fxx ∈   . (28)

For the part lying in lower half-plane, the set ++K  is defined by

1
2

2
2

21 )(
2

ˆˆ
ff xxx

mm
x +−∆+=      for   )0,(2 −∞∈x (29)

and the set −+K  by

ε−+∆+−= 1
2

2
2

21 2

ˆˆ

2

ˆ
ff xx

mm
x

m
x      for   )0,(2 −∞∈x   . (30)

The function z is given as

1)]()[(),( 21221 −−= dxcxxaxxz      for   )0,(2 −∞∈x (31)

with

ε+∆

−=
4 ˆ

4
)(

2
2

2
xm

xa (32)
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ε++−∆+= 1
2

2
2

22 )(
2

ˆˆ
)( ff xxx

mm
xc   , (33)

Finally, the sets −−K  and +−K  are defined by

ε++−−= 1
2

2
2

21 )(
2

ˆ
ff xxx

m
x      for   ),( 22 ∞∈ fxx (34)

ε−+−∆+−= 1
2

2
2

21 )(
2

ˆˆ
ff xxx

mm
x      for   ),( 22 ∞∈ fxx   , (35)

respectively, and the function z is given as

1)]()[(),( 1
21221 −−= dxcxxaxxz      for   ),( 22 ∞∈ fxx (36)

with

ε+−∆

−=
4)(ˆ

4
)(

2
2

2
2

2
fxxm

xa (37)

ε++−−= 1
2

2
2

22 )(
2

ˆ
)( ff xxx

m
xc   . (38)

An il lustration of the control structure thus obtained, along with the trajectories it generates, is provided in Fig. 3.

Frequent switchings of the control along sliding trajectories have been eliminated, according to the assumed goal of the
soft structure. The control changes its value fluently in full range of the interval ]1,1[− .

IV. FINAL SUGGESTIONS AND REMARKS

The material presented in this paper is of a universal nature, and owing to its clear interpretation it may be easily

supplemented by a number of auxili ary aspects frequently occurring in robust control tasks. As a representative example,
the problem of velocity limitation, described by the condition wtX ≤ω |),(| 2  for almost every Ω∈ω  and every

)](),([ 0 ωω∈ fttt , while 0>w  and wxw f <<− 2 , will be investigated. Let also the auxili ary parameter w∆ , such that

ww ≤∆<0  and wwxww f ∆−≤≤−∆ 2 , be introduced. By defining the function �� →2 : v  (similar to the function z)

continuously and strictly increasing from the value 1−  on the set }{ w×�  to the value +1 on the set }{ ww ∆−×� , with

the formula

12),( 2
21 −





∆
−

=
D

w

xw
xxv      for   ],[2 wwwx ∆−∈   , (39)

where the parameter 0>D  plays the same role as d introduced in dependence (19), one can obtain soft structure (16)

supplemented with the problem of velocity limitation:





















−−∞×∪∈+
−∆−×∩∈−−−
−∆−×∩∈−−

∆−−∆×∩∈

∈
∆−−∆×∩∈

∆−×∩∈
∆−×∩∈

∞×∪∈−

=

+

−

+

+

−

−

+

−

)},({R  )](),([if1

]},[{R  )](),([if))(),((

]},[{Q  )](),([if))}(),(()),(),((max{

)},({Q  )](),([if))(),((

}{)](),([if0

)},({Q  )](),([if))(),((

]},[{Q  )](),([if))}(),(()),(),((min{

]},[{R  )](),([if))(),((

)},({R  )](),([if1

)(

T
21

T
2121

T
212121

T
2121

T
21

T
2121

T
212121

T
2121

T
21

soft

wtxtx

wwwtxtxtxtxv

wwwtxtxtxtxztxtxv

wwwwtxtxtxtxz

xtxtx

wwwwtxtxtxtxz

wwwtxtxtxtxztxtxv

wwwtxtxtxtxv

wtxtx

tu f

�
�
�

�

�
�

�
�

  . (40)

For interpretation, see Fig. 3.

The presented concept can also be applied for many other similar, auxiliary issues appearing in optimal control,

e.g. modeling of motion resistance (Kulczycki, 1996a, 1996b). As an example, consider initial system (1) supplemented
with the discontinuous model of motion resistance ))(sgn( t�� �

− , i.e.
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))(sgn( )()( ttt �
���� ��� −=   , (41)

where )1,0[∈
�

; then under- or overestimating the value of the parameter  
�

 will entail similarly raising or lowering the

parameter  � , and further considerations are analogous to that presented above for the concepts of hard and soft

controlli ng structures.

The correct functioning of the suboptimal structures investigated in this paper has been verified by numerical
simulation. The object is a mechanical system (1) with unknown (random) and/or varying load. In the case 02 =fx , if it

is assumed that over-regulations are undesirable, then they did not occur in the controlled object. For 02 ≠fx , limit

cycles did not appear. If the Bayes rule was applied for determining hard structure parameters, the sliding trajectories

occurring there did not have frequent switches. In the case of the soft structure, sliding trajectories were eliminated.

Typical trajectories generated by control structures (15) and (16) are shown in Figs. 2 and 3. Tables 1 and 2 show
times to reach the target set when 02 =fx  and 02 ≠fx , respectively. The results are shown for the optimal control

(under the practically unrealistic assumption that the true value of the mass m is known exactly) and the suboptimal

structures: hard and soft ones. It is not surprising that the shortest times to reach the target were obtained for optimal

control (owing to the hypothetical assumption of an exactly known mass), followed by the hard structure (although at the

cost of frequent and arduous switches on sliding trajectories), while the longest times for the soft structure are inversely

proportional to the value of the parameter d. If, however, each value of m was supplemented by perturbation, with the
value of )25sin(5.0 tm , the results favored the soft structure at small values of the parameter d, as the most robust. Note

that in the case of the soft structure, the results were satisfying even when temporarily ],[ +−∉ mmm .
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