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Abstract

If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group
action. This property leads to substantial simplification of the description of movement. The standpoint
in this article is a mechanical system affected by an external force of a control action. Assuming that
the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-
Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This
becomes of particular interest for modeling, estimation and control of mechanical systems. A control
system generates an external force, which may break the symmetry in the dynamics. This paper shows
how to model and to control a mechanical system on the reduced phase space, such that complete state
space asymptotic stabilization can be achieved. The paper comprises a specialization of the well-known
Euler-Poincaré reduction to a rigid body motion with forcing. An example of satellite attitude control
illustrates usefulness of the Euler-Poincaré reduction in control engineering. This work demonstrates how

the energy shaping method applies for Euler-Poincaré equations.

I. INTRODUCTION

A description of a mechanical system with forcing is addressed in this paper. It focuses
on modelling of a particular system, a rigid body. It has been exhaustively analyzed in the
literature of classical mechanics. This gives freedom to treat it from a Hamiltonian or a
Lagrangian point of view, as motion on: Riemannian, symplectic or Poisson manifold. The
standard references on this subject are [1], [2], and [3]. It is the variational principles that
are assumed in this article as axioms and the equations of motion are derived therefrom.
Let I C R be an open interval. A motion in a set S denotes a smooth curve v : I — S.
The equations of motion are differential equations, which flow lines correspond to motions.
If the configuration manifold is a Lie group and the Lagrangian becomes invariant under a
group action, in this work the left translation, the motion can be transformed using Euler-
Poincaré reduction into two sets of equations: kinematics and dynamics; [3] Ch. 13.6.
This description is of particular interest for modelling in [4], control in [5], and estimation
in [6].

The work merges two known techniques: Euler-Poincaré reduction of classical mechanics
and the energy shaping of control engineering. The main focus in the literature of mechan-
ics is on reducing differential equations describing motion of a mechanical system, which

are invariant under the action of a Lie group. Hence one obtains equations with fewer



coordinates or even a globally defined differential operator on a quotient manifold; [7], [3],
and [8]. Control of mechanical systems with symmetry was treated before e.g. in [9], [10].
In these works the internal forces gave rise to the control action, however, the effect of
general forces was not discussed. The energy shaping method will be applied in this paper.
In its most common formulation it gives a control action, being the sum of the gradient
of potential energy and the dissipation force; [11], Ch. 12 and [12]. In this article the en-
ergy shaping method will be adopted to a mechanical system with symmetry. It is shown
that the reduction of the motion of mechanical system can be used for feedback synthesis,
despite the symmetry breaking property of the control action.

The article constitutes a tutorial on modelling the motion of a rigid body. Relevant
notions of classical mechanics are recalled first. Subsequently, the article introduces the
Euler-Poincaré reduction for a mechanical system with forcing, which is then implemented
for the rotary motion of a rigid body. Two configuration manifolds are of interest, the
special orthogonal group SOj3 of particular interest in robotics, and the group of unit
quaternions Sp; used in aerospace for a global representation of the attitude. An exam-
ple of satellite attitude control, wherein the Euler-Poincaré description of the rigid body
motion is applied to the energy shaping method concludes this article.

In this work M stands for a C'*° n-manifold with smooth structure {(Uy, ¢a)}acu. The
system 7rg : TM — M defines the tangent bundle, and 7y« : T*M — M the cotangent
bundle of M. The main concern of this work will be motion of a system with forcing.

Definition 1: A force field on a configuration manifold M is a fiber preserving map,
F . TM — T*M over the identity. It means that for each U,, a € U the following

diagram commutes

TU, L~ T*U,

lWTG lWT*G

Ua T) Ua.

O
The Lagrange-d’Alembert principle is in the sequel stated in terms of the variational
calculus. If 7 : [a,b] — M denotes a piecewise smooth curve, a variation of v means a

family T' : [—¢, €] X [a,b] — M of piecewise smooth curves such that T'o(t) = ~(¢) for all



t € [a,b]. It is called a proper variation if in addition I's(a) = y(a) and T's(b) = ~(b)
for all s € [—¢,€]. A variation field 67 of the variation I means the vector field along ~,

67 : [a,b] — Ty M defined by

59(t) = (L), (aﬁ) _ et

?
5=0

where (dI';), : T;R — Tt,(5yM denotes the differential of I'; at s, and % stands for the
basis of T,R. A vector field V' along v is proper if it vanishes at the endpoints, i.e.
dv(a) = dy(b) = 0. Thus the variation field of a proper variation is proper. For details,
refer to [13].

The next definition expresses the Lagrange-d’Alembert principle. It is an axiom stating
conditions for a mechanical system, with a given Lagragian and known external forces, to
follow a motion (v,%) € TM.

Definition 2 (7.8.4 in [3]) Given a Lagrangian L : TM — R and a force field F' : TM —
T*M, the integral Lagrange-d’Alembert principle for a curve v(¢) with the proper variation
[s(t) is
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The motion appears particularly simple for the configuration manifold being a finite

dimensional Lie group G. The emphasis in this work lays on this class of configuration

manifolds. The Lie algebra T,G of G is denoted by g. Every group element a € G

defines a left translation £, : G — G, g — ag. It also gives rise to an automorphism
¢g:G— G, ars gag

Definition 8 (2.10 in [14]) The adjoint representation is a homomorphism
Ad : G — Aut(g), g — (dcy). = Ad,,

where Ad, means the differential of ¢, at the unit element (dcy). : ¢ — g. The adjoint

representation Ad induces a homomorphism of Lie algebras
ad : g — End(g), X — (dAdx). = adx,
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where Adx : G — g, g — Ad,X. O
The map ad sends X to the homomorphism Y +— [X,Y]. Thus

[X, Y] == adXY.

As mentioned before the Lagrange-d’Alembert principle gives the condition for a curve on
the tangent bundle T'G to represent a motion. However, if the Lagrangian L : TG — R
turns out to be invariant under the left translation, the equations of motion are particularly
simple. They break up into two separate equations: the kinematics and the dynamics,
hence the motion corresponds to a curve I — G X g. This constitutes the contents of
Section II. Rotary motion of the rigid body comprises an important example of the
above. Its motion is defined on a linear Lie group. Section III addresses the case of the
special orthogonal group SOs3, and Section IV treats the group of unit quaternions Sp;.
Section V gives an example of a control application. It shows that the energy shaping
method applies to systems modeled by the Euler-Poincaré equations, and a controller for

three-axis stabilization of a rigid body is synthesized.

II. EULER-POINCARE MOTION

The Euler-Poincaré equation with forcing will be formulated in this section. A mechan-
ical system may experience a certain symmetry, expressed in the sequel by the invariance
of the Lagrangian under the left translation.

Definition 4: The Lagrangian L : TG — R is left invariant if the following diagram

commutes
1,6 — " 1 oG
R

|

Assuming the Lagrangian invariant under the left translation, the objective is to consider
independently the dynamics, i.e. the motion on the Lie algebra g and the kinematics, the
motion on the Lie group G. For this purpose, the translation of the variation vector field

will be examined. Namely, the differential of the left translation (d£771(t)) TG —

Y(t)
T.G is allowed to act on .



Proposition 1 (5.1 in [15]) Let ['(s,t) : U C R* — G be a variation of a curve ¥(t) on a
Lie group G, and denote =, A : U — g by

Z(5,8) = (A€ o 1) oy <8F§? t)) @
and
A T (s, t)
(5,8) = (dL r(s,-1 ) < s ) (3)
Then _
0=(s,t) B OA(s,1) 2(s,8), A(5. )] n

0s ot

Conversely, if U is simply connected and =, A : U — g are smooth functions satisfying (4)
then there exists a smooth function I' : U — G satisfying (2) and (3). O
The tangent space T=(, g in Proposition 1 is isomorphic to the Lie algebra g, and through
the rest of the paper Tz, g and g are canonically identified with R", where n denotes the
dimension of the manifold G. The theorem below states the main results.

Theorem 1: Let G be a Lie group with Lie algebra g, L : TG — R be a left invariant
Lagrangian, [ : g — R be its restriction to the Lie algebra and F' : TG — T*G a force
field. For a curve 7 : [a,b] — G, let € : [a,b] — g, £(t) = (d£7(t)71)7(t) F(t).

Then the integral Lagrange-d’Alembert principle

0

5| | o ns [Ro.seee=o 5

holds for all proper variations, is equivalent to the Euler-Poincaré equation with forcing

Sl = adyydigy + (d£,00); F(1(0), (1) (6)
i) = () (1), (™)
O

Equation (6) denotes the dynamics and (7) the kinematics.
Proof of Theorem 1: Vector fields Z, A : U — g are defined as in Proposition (1)

_ ol (s, t)
E(s,t) = (dfr(s,t)*f)r(s,t) < ot >

or(s.1)
Asi8) = (10 )y ()
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£(t) = =2(0,t) and A(t) = A(s,1).
Since L is left invariant, meaning

ol (s, t)

L <F(s,t),

oI (s, t) _
) =L <£F(s,t)—1 F(S, t), (do‘EF(s’t)—l)F(s,t) 91 ) = L(e,:(s,t),

the first part of (5) becomes
0 ' : 0 b ot
55 SZO/a L(Ts(#),T(s,1)) dt = == Szo/a (2(s,t)) dt _/a (d)ewy(5E(2)) dt.  (8)

In (8) the chain rule was used

W = (d(I 0 Zy(5))), <%> = (dl)z(s.) (dZ4(5))s <%> ~ (d)=on 85;2, )

According to Proposition (1) the variation field of Z(s,t) is of the form

6E(t) = % = ag—(tt) + adepy A(t). (9)

Substituting (9) into (8) and using integration by parts gives

/a (d)ew (06(1)) dt - = / (d)e (ag—ff)wdw) dt

_ / ’ <_%(d5)w) + ad’g(t)(dl)g(t)> (A(t)) dt. (10)
The right hand side of (5) can be rewritten as
[ Fow a0 a = [ R0 @00 N0) @
= [ FO@ 5000
= [ Ea.A000) @ 1)

Comparing (10) and (11) with (5) and using the fundamental lemma of calculus of varia-
tions, the Euler-Poincaré equation (6) follows. |
Theorem 1 gives a general expression of motion on a Lie group. The next two sections

address equations of motion for a particular mechanical system, a rigid body.



III. REDUCTION ON SO4

The objective of this section is to derive equations of motion for a rigid body. The

special orthogonal group
G =S803={A€GL3(R): ATA=T and det(A) =1}

comprises the configuration manifold. The Lie algebra of SOz will be first identified, and
its properties will be subsequently examined. The section concludes with formulation of
the equation of motion for the rigid body with forcing.

The Lie algebra of SO3 consists of all skew symmetric matrices
503 — TeSOg = 553 = {A € GLg(R) . AT = —A}

and it is spanned by F;, Ey and Fj

00 0 0 01 0 -1 0
Er=10 0 1|, E=] 00 0|, E3=1|1 00
01 0 -1 0 0 0 00

The following isomorphism of vector spaces shall be introduced

0 —T3 T2
S RS — SS3, (£U1,$2,$3) — xlEl + QTQEQ + ZU3E3 == T3 0 -z
—T9 T 0

The map s can be used to represent the cross product a x b = s(a)b. This makes s a Lie

algebra isomorphism

s (R?, x) = (SSs, [, ]),

taking a x b to [s(a),s(b)]. Since SOj is a subgroup of GL3(R) the multiplication of

matrices describes the differential of the left translation, i.e.
(d£A)B : TBSOg — TABSOg, C— AC.
The kinematics for a matrix group follows

Y(E) = (d€yp))e £(8) = v(1)E(0). (12)

8



Equation (12) defines relation between the velocity §(t) € T, SOz and &(t), an element
of the Lie algebra sos.
Define an angular velocity as w(t) = s~'(£(t)) and the Lagrangian [ =los: R® — R.

The Lagragian comprises of the kinetic energy only

~ 1

l(w)=T(w) = §wTJw,
where J denotes the inertia matrix. The Lagrangian turns out to be left invariant and the
assumption of Theorem 1 is satisfied. To establish the equations of motion, the differential
of the Lagrangian

dl, = Jw

and an explicit expression for adidl(t)
adzde(X) = dig([€, X)), (13

where X € sog, are provided. Since s is the Lie algebra isomorphism, Eq. (13) becomes
ad’,dl, (s 1 (X)) = dl, - (w x s X)) = (dI, x w) - s HX).
Concluding

ad’dl, = dl, x w,

and the dynamics follows

%(Jw(t)) = Jw(t) x w(t) + s~ (y(&)"F(v(t), ¥(t)))- (14)

Equation (14) is indeed the celebrated equation of the rigid body dynamics, where the
second summand corresponds to the external torque. However, it appears central for
this work that the torque can be computed explicitly from the force field. Thus, the
control algorithms derived from the Lagrangian or Hamiltonian formalism, which provide
the control force field, can be directly implemented for an Euler-Poincaré system. In

particular, the energy shaping method in Section V applies for control of a rigid body.



IV. REDUCTION ON UNIT (QUATERNIONS

Alternatively, a group of all unit quaternions could be taken as the configuration man-
ifold. This attitude representation pays an important role in aerospace and robotics.
Quaternions owe their significance due to simple physical interpretation of an angle and an
axis of rotation. For small angles the three components of the vector part of a quaternion
approximate pitch, roll and yaw. Furthermore there is a variety of estimation algorithms
based on quaternionic representation of the attitude, [6] and [16].

It is vital for this exposition to examine its geometric and algebraic properties. The
unit quaternions can be viewed as a three sphere imbedded in R* or more convenient for
computation as a complex matrix group. Both interpretations are treated in this section.

The quaternion algebra H will be defined first. The R-algebra H(+,-) is the division

algebra of 2 by 2 complex matrices of the form

a b
H= ~ ca,be Cy
—-b a
with matrix addition and multiplication. Another definition of quaternions is the algebra

R*(+, ) with standard addition in R* and a product given by the following formula:

z-y = Q(z)y, (15)
where
[0 ol 2 3]
N (o B,
Qlw) = 22 2 20 a2t
P S R B

The algebras H(+,-) and R*(+, ) are isomorphic with a ring isomorphism given by
Ty — 1Ty —Tg —IT
W RY = H, (29, 21, T2, 73) = ‘ ’ 2 '
To — ifL’l Ty + i.’L’g
Since a configuration manifold of a Lie group is in focus, only the group properties of

H will be further exploited. Specifically, the quaternions with the norm
a b
N ) = |a|* + |b]?

10



equal one, are of interest. The unit quaternions form a group
Spr={zxe€H:N(x) =1},
with the product inherited from H. In fact Sp; is the same as the special unitary group
SU, ={A € GLy(C) : A”A =T and det(A) = 1},

and makes up a subgroup of the Lie group GLy(C). The matrix group SU, appears
particularly important for this work.

The three-sphere constitutes the second interpretation of the unit quaternion. The
differential manifold SU, becomes indeed diffeomorphic to the three-sphere S® = {z €
RY : ||z|| = 1} with a diffeomorphism

3 "l’o — iiUg —T9 — Zl’l-l
w:S° — SUZ, (l’o, Ty, T2, £U3) — . . .
sz —1ry Ty +1x3 J

It appears useful to treat the three-sphere as a Lie subgroup of (R?,-), then the map
w: (S3,) = (SUs,-) is a group isomorphism, and z - y = v (w(z)w(y)).

The Lie algebra of SU, consists of the 2 by 2 skew-Hermitian traceless matrices sus C H
SUg = TeSUZ = {A € GLQ((C) A= A" and tT(A) = O}

It shall be noted that the Pauli spin matrices

0 1 0 — 1 0
01 = , O2 = , 03 =
10 t 0 0 -1
span suy. The map
1 1| —tw3  —x2—ix

3
r:R — suUg, (l‘l, X2, l‘g) —> X101 + X209 —|—£U30'3) = — ,

2t To — 7:1'1 7:1'3

defines a Lie algebra isomorphism (R?, x) — (suy, [-,]) taking X x Y to [r(X),r(Y)]. It

will be useful to write r as follows

r= 5121 oi, where i : R® < R, (21, o, x3) = (0, 71, 72, 23),

11



then its left inverse becomes
-1 _ ~—1 . R4 3
r =2m oW sy, where m: R* — R, (xq, x1, T2, x3) — (71, T2, T3).

The remaining of this section relies on Theorem 1 and the equations of motion for
the rigid body are formulated. Since SUj, is a subgroup of GLy(C) the multiplication of

matrices gives the differential of the left translation
(d£A)B : TBSU2 — TABSUQ, C— AC.

The kinematics follows
Y(t) = (dLywy)e E(E) = 7(1)E(E).

Defining an angular velocity as w(t) = r~1(£(¢)) and q(t) = w'(y(¢)) the kinematics

takes the familiar form

q(t) = (dw)g¥(t) =0 (w(g(t))r(w(t) =

1 1

= S0 iw(t) = 5QMa)iw ().

Consider a Lagragian [=1lor: R® — R then the Euler-Poincaré motion can be written

d

(1) = adLd(t) + (dr): (L) F(0),7(0).

Each term of the equation above will be computed separately in the sequel. As in Sec-

tion III the Lagragian corresponds to the kinetic energy only
- 1
l(w)=T(w) = Jv Juw,

where J denotes the inertia matrix. The Lagrangian is left invariant and Theorem 1

applies. As in the case of SOs, the differential of the lagrangian equals
dl, = Jw,
and the expression for adgdl¢(t) takes on the form

adgdle(X) = dl¢([€, XT), (16)

12



where X € suy. Since 7 is the Lie algebra isomorphism, (16) becomes

ad’dl,(r Y(X)) = dl, - (w x r Y(X)) = (dI, x w) -7 1(X),
which gives

ad’dl, = dl, x w.

The external forcing is formulated by

(@)@L): FOuAD(V) = (dE,)E i) (d)o(V) =7 F o A)(dr)e( V)
= Y FAV) = 57 FA) i oi(V))

= Srod(r F3,)(V)),

where V' € T,5% = T,(T,5?). With a definition f(q,w) = w*(F(v,7)) the torque becomes

(@r)L((dLy); P A)) = gmod (7 F(r4) = grod* () (a)(w') (1)
= Lrod ()¢ 1) = gmoq’ - Flg.w) = 2m(Q"(0)(g.))

The dynamics of the rigid body follows

(1)) = Juo(t) x wo(t) + 5m(Q (a() F(al1), (1), (17)

The second summand in (17) gives an explicit expression for the external torque. This
form appears particularly useful for control synthesis. The energy shaping technique will

be applied in the next section for computing the control force field f: T'S® — T*S3.

V. CONTROL SYNTHESIS

The energy shaping has been formulated for a general mechanical system in [12] and
[17]. The idea is to produce a control input consisting of a term contributing to potential
energy and a part providing dissipation. In a simplest case, if a system lives in R" and
has potential energy U : R* — R, the energy shaping puts forward a feedback control
of the form _a\g_L(Iq) + My, where V : R* — R is a continuously differentiable function.
The term M, denotes a dissipative force. Assuming that the time derivative of its work
W= M G be negative definite, and the minimum of the potential energy U +V is reached

at a point p, the control law makes the system asymptotically stable to the equilibrium

13



point (¢(t),¢(t)) = (p,0). The name ”"shaping” comes form the property of the feedback
that shapes the potential energy of the system to the desired form using the controller
contribution V.

The energy shaping has its generalization for an arbitrary manifold G. Again, the
control consists of a differential of a potential function ¢ : G — R and a dissipative force

field fy : TG — T*G as indicated in the following equation:

FOn, ) = =do(v) + falv, ). (18)

The dissipative force field f; satisfies fy(v)(v) < 0 for all nonzero v € TG. If p is a local
minimum of ¢, then according to Theorem 1 in [12], (p, 0) becomes asymptotically stable
equilibrium state of the closed loop system.

It follows from Section II that the control law (18) applies to the systems described by

the Euler-Poincaré . The control input becomes

M (y(t),¥(t) = —(d£y))edp(y(1)) + (dLyy))e fa(y(t),7(1)). (19)

The first component in (19) will be called the conservative force and is denoted by M.,
whereas the second one constitutes the dissipative force, Mj.

An illustration of the energy shaping for the Euler-Poincaré system will be given in the
remaining part of the article. Consider a rigid body, e.g. a spacecraft, to be stabilized in
the inertial coordinate system with use of gas jets. The task is to design a suitable control
law. For this purpose quaternionic parametrization of the attitude will be applied.

Consider the inclusion j : S* — R*, and let the potential function ¢ parameterize
through some smooth function ¢ : R* — R, i.e. ¢ = ¢oj. Since (dop), = (dgz;)j(q)|Tq53, the
differential (d¢), is

(d9), = Q()inQ" (4)(dd) (o) (20)

where ¢; are the canonical coordinate functions in R", and (dgz;)j(q) =37, g—j’_dqi.

Making use of (17) and (20), the conservative force equals
1 06(q) _ 1

M, = __WQT(Q)—

. L = S & " e1)

14



where

Pola) d'ola) Ela) dol)] = “2LQ0)

Taking a dissipative force field

fd = _an

where D indicates a positive definite matrix, and combining Eqgs. (19), (21), the control
law follows

M= —1d'6 d% d*g]" ~ 11" () Di.

It was shown in [5] that for a particular choice of D = 4k;Fy.4 and the potential function
#(q) = ky(1 — go) having the global minimum at the identity e and the maximum at —e
the differential d¢(q) equals

[d°p d'¢ d*p d®0] = k|1 ¢ ¢' ¢ ¢*|- (22)
Now the control law reduces to the well known PD form

M = —ky[q1 ¢z q3]" — kaw. (23)

This shows that the energy shaping approach presented in this paper agrees with the
previous results on the 3-axis attitude control summarized in [18]. For other examples of

potential functions used in guidance one is referred to [19].

VI. CONCLUSION

This work applied the calculus of variations to derive Euler-Poincaré equations of motion
with forcing. It showed that if the Lagrangian L : TG — R was invariant under the left
translation, the equations of motion broke up into two separate expressions: the kinematics
and the dynamics. The rigid body motion comprised an illustrative example. The paper
focused on two configuration manifolds: the special orthogonal group and the group of
unit quaternions. It showed that the energy shaping method could be applied for the
Euler-Poincaré system. The findings were applied for the rigid body stabilization in three
axes. The resulting control consisted of the sum of the conservative and the dissipative

force fields.

15
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