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Preface

This document is a reduced version of a technical report describing an adaptive time-
segmentation strategy for use in real-time voice communications with frame losses, such
as voice over IP (VoIP). The copyrights for parts of this work was handed over to the
IEEE in conjunction with the following two papers:

C. A. Rødbro, J. Jensen, and R. Heusdens,
Adaptive Time-segmentation for Speech Coding with Limited Delay,

Proc. IEEE ICASSP, vol. 1, 465–468,
2004.

and

C. A. Rødbro, J. Jensen, and R. Heusdens,
Rate-Distortion Optimal Time-segmentation and Redundancy Selection for VoIP,

Submitted to: IEEE Transactions on Speech and Audio Processing,
June 2004.

The document at hand is the result of removing the copyrighted material from the
original technical report and serves as a reference for information that could not be
included in the papers due to space limitations. The remaining content is:

1. A frame-independent harmonic sinusoidal coder upon which the the above-mentioned
papers are based.

2. A receiving end PLC algorithm employed in the latter of the two papers.
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Chapter 1

Harmonic Sinusoidal Speech Coder

Because of the possibility of packet losses a speech coding algorithm for VoIP should
produce self-contained frames. By this we mean that no information from previous (or
future) frames should be necessary in order to decode the current. This limitation rules
out the use of inter-frame differential parameters. In the following we will describe a
harmonic sinusoidal coding scheme that fulfills this requirement.

1.1 Signal Model

In a harmonic sinusoidal model a frame of speech (denoted by the vector s) is represented
by a weighted sum of harmonically related sinusoids:

ŝ =
K∑

k=1

Ak cos (kω0t + φk) (1.1)

Here we used Matlab-style notation, i.e. cos(·) is applied elementwise and the + denotes
φk being added to each component of the vector kω0t. Moreover,

• ω0 is the fundamental frequency in radians

• t is a time index vector, t = [0, 1, . . . , L− 1]T where L is the frame length and (·)T

denotes the transpose.

• Ak is the amplitude of the k’th component

• φk is the initial phase of the k’th component

• K is the number of components (determined by the fundamental frequency)

This model is physiologically founded for strictly voiced speech only, however we will later
show how - with some modifications - it can be applied to unvoiced speech as well.

1.2 Fundamental frequency estimation

The fundamental frequency ω0 is estimated based on the YIN algorithm proposed in
[dCK02]. The algorithm has been modified here in order to increase robustness towards
halvings and multiples. This is achieved by considering local minima of the YIN cost-
function C(P0), examples of which are shown in Figure 1.1. The fundamental frequency
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period P0 is chosen as the time-lag minimizing the cost-function that is a measure of
the unvoiced-to-total power ratio [dCK02]. In the left-hand plot, the global minimum is
significantly lower than the second lowest local minimum and the estimate is therefore
classified as being “confident”. On the right-hand side, two local minima attain almost the
same value, and thus the estimate is “non-confident”. Specifically, an estimate is classified
as being “confident” if the ratio between the two lowest local minima exceeds 2.
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Figure 1.1: The YIN cost-function in a “confident” (left) and a “non-confident” (right) case. Using the
right hand side directly would result in a ω0 halving error (doubling of P0), since in both cases the true
P0 is around 5 ms corresponding to f0 ≈ 200Hz.

Increased robustness is achieved through storing 5 recent “confident” estimates and
finding the median of these. Any “non-confident” estimate is then compared to this me-
dian value in order to detect if a halving, doubling, or higher multiple error has occurred.
If so, the estimate is modified accordingly, e.g. divided by two if a doubling was detected.

Note that when the fundamental frequency is determined so is the number of compo-
nents, since K = � π

ω0
�.

1.2.1 Voiced/unvoiced classification

An mentioned earlier the HSM must be modified when applied to unvoiced speech frames.
Since the YIN cost function is a measure of the unvoiced-to-total power ratio we found its
minimum value (i.e. the value at the fundamental frequency estimate) to be a reasonable
voiced/unvoiced classifier. Specifically, if min (C(P0)) > 0.3 the unvoiced model is used.
When the voiced model is chosen, this measure can also be used for determining a voicing
cut-off frequency (sec. 1.3.3).

1.3 Estimation of amplitudes and phases

Amplitudes and phases are estimated from the Weighted Least Squares (WLS) principle,
see [MAT90] for the original idea and [Jen00] for the matrix-vector formulation used here.
The basic idea is to minimize the energy of the weighted error signal:

J = ‖W (s − ŝ) ‖2 (1.2)
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Here W is a diagonal matrix representing the analysis window, e.g. hanning. In order to
solve this minimization problem we rewrite (1.1) using Euler’s equation:

ŝ =
K∑

k=1

Ak

2

(
ejkω0t+jφk + e−jkω0t−jφk

)
=

[
V V∗] [

c
c∗

]
(1.3)

where

V =




...
...

...
ejω0t ej2ω0t · · · ejKω0t

...
...

...


 and c =




A1
2 ejφ1

A2
2 ejφ2

...
AK
2 ejφK


 (1.4)

We see that minimizing J over c becomes a linear LS problem. Writing the solution in
terms of a pseudo inverse we obtain1:[

c
c∗

]
=

(
W

[
V V∗])+ Ws (1.5)

One should note that the pseudo-inverse will yield the LS solution as long as the system
of equations is over-determined, i.e. when L > 2K since

[
V V∗] ∈ C

L×2K . If L = 2K
the system is square and we get a unique solution with perfect reconstruction, but if
L < 2K the system is under-determined with non-unique solutions. In the latter case,
which may occur in short (< 20 ms), low-pitched frames the pseudo-inverse will yield the
minimum 2-norm perfect reconstruction solution.

Now, amplitudes and phases can readily be found from c as the absolute values and
angles, respectively. Because the basis vectors are harmonic, in practice2 VTV ≈ 0, which
results in a nearly block-diagonal matrix in the pseudo-inverse of (1.5). Simulations show
that we can therefore compute c by

c ≈ (WV)+ Ws, (1.6)

which reduces computational complexity from O (
L(2K)2

)
to O (

LK2
)

i.e. by a factor
of 4 if a QR algorithm is used for solving the LS problem, see [GL96] for details.

1.3.1 Modified basis functions

Using the LS approach for estimating amplitudes and phases directly can lead to problems
in frames that are not perfectly harmonic. The reason for this is that often, due to small
inaccuracies in the f0 estimate, the estimated harmonics do not match the power spec-
trum peaks of the original signal at high frequencies (see Figure 1.2), and consequently,
amplitude values are underestimated. Perceptually, this results in slight “low-pass” char-

1It is straight forward to show that the right hand side is indeed structured
[
x
x∗

]
as required

2To see this, consider the (m, n)’th element of VHV given by vH
mvn =

∑T−1
t=0 exp(j(n−m)ω0t) versus

the elements of VT V given by vT
mvn =

∑T−1
t=0 exp(j(n + m)ω0t). Using the identity:

T−1∑
t=0

exp(jωt) =

{
T if exp(jω) = 1
ejωT −1
ejω−1

otherwise
,

we see that as long as T is large and ωn, ωm are not both close to zero (or π), the elements of VT V will
be small as compared elements near to or on the diagonal of VHV.
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Figure 1.2: Modification of harmonic frequencies to match peaks in the power spectral density (PSD)

acteristics in the reconstructed signal. Similarly to [MQ95] the problem can be relieved
by modifying the harmonic frequencies such that they match the nearest peaks in the
power spectrum. Denoting the modified k’th harmonic by ω̃k (≈ kω0) we use the modified
Vandermonde matrix in the LS estimate:

Ṽ =




...
...

...
ejω̃1t ejω̃2t · · · ejω̃Kt

...
...

...


 (1.7)

If the modified frequencies ω̃k were to be used for synthesis they would have to be quan-
tized and transmitted thereby adding to the overall bit rate. Instead, we merely estimate
amplitudes and phases using Ṽ but synthesize using the original Vandermonde V since
this only requires transmission of the fundamental frequency ω0.

The discrepancy between the analysis and synthesis basis functions calls for a mod-
ification of the estimated phases. To see this, consider the point in time where each
modified frequency component has its maximum (denoting the estimated phases by φ̃k):

ω̃ktk + φ̃k = 0 ⇔ tk =
−φ̃k

ω̃k
(1.8)

Now, the components to be synthesized should be time-aligned with those estimated by
LS. Therefore, we seek to maintain these points when synthesizing with the harmonic
frequencies instead:

tk =
−φ̃k

ω̃k
=

− ˆ̃
φk

kω0
⇔ ˆ̃

φk = φ̃k
kω0

ω̃k
(1.9)

where ˆ̃
φk are the phases to be quantized and transmitted.

1.3.2 Phase reference point

In (1.1) the phase is referenced to the beginning of the window, i.e. φk is the instantaneous
phase at the start of the frame. This poses no problem as long as the amplitudes and
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phases are estimated by the LS method and the same Vandermonde matrix V is used
for both analysis and synthesis. However, when modifying the analysis frequencies as
described above, the analysis- and synthesis sinusoids are only in phase at the phase
reference point. Specifically, when referencing to the beginning of the frame, the phase
dispersion will be 0 here, but grow to L

2 (kω0− ω̂k) at the center of the frame and L(kω0−
ω̂k) at the end of the frame. If the phase is instead referenced to the center of the frame,
the dispersion will be −L

2 (kω0− ω̂k) at the beginning, 0 at the center, and L
2 (kω0− ω̂k) at

the end, i.e. the maximum dispersion is halved. Also, the phase dispersion is located near
the frame boundaries, where the synthesis window is close to zero. The phase reference
point is easily modified in the Vandermonde/LS framework simply by changing the time
index vector from t = [0, 1, . . . , L − 1]T to t = [−L/2,−L/2 + 1, . . . , 0, . . . , L/2 − 1]T .
The need for referencing the phase to the frame center was also reported in e.g. [MQ95].

1.3.3 Voicing cut-off frequency

In many speech frames the harmonic structure is only present in a part of the spectrum.
The observation that the harmonic part is often in the low frequency area has lead to
the introduction of a voicing cut-off frequency [MVSH78]. The main idea is to estimate
a frequency ωc above which a “noise” model is used instead of the harmonic model. We
adopt the same idea albeit in a slightly different manner: no change is made to the model
above ωc, instead subframe phase randomization [MC97] is applied to these sinusoidal
components when synthesized. This simply means that the components in question are
synthesized in short, overlapping frames each with a random phase offset, the effect being
a smearing of the reconstructed spectrum.

In [MQ95], ωc is estimated based on a SNR-like measure due to the observation that
the more voiced the frame, the better the harmonic sinusoidal model is able to represent
it. We take a similar approach here but base it on the LS estimation. Specifically,
note that the (windowed) modeled signal segment will be a projection of the (windowed)
original signal onto the (windowed) basis functions:

Wŝ = PWs (1.10)

Here P is the projection matrix onto W
[
Ṽ Ṽ∗]. Using that the modeling error e is

orthogonal to the modeled segment: ‖Ws‖2 = ‖Wŝ‖2 + ‖e‖2,this in turn implies that,

‖Wŝ‖2

‖Ws‖2
≤ 1 (1.11)

with equality only if3 s ∈ R ([
Ṽ Ṽ∗]), i.e. if the (modified) harmonic model holds.

This provides a “fix-point” for determining the voicing cut-off frequency, i.e. if the ratio
is 1 the frame is completely voiced and we choose ωc = π.

Now we will find a similar fix-point for a completely unvoiced frame. Here, the
basis functions will correspond to a uniform sampling of the relatively smooth unvoiced
spectrum. Therefore, on average, the energy along each of the basis vectors will be 1

L ’th of
the energy of the windowed signal. Moreover, since the 2K basis vectors in W

[
Ṽ Ṽ∗]

are nearly orthogonal we get that:

Unvoiced : E

[‖Wŝ‖2

‖Ws‖2

]
=

2K

L
(1.12)

3R(A) denotes the column space of A
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That is, in unvoiced frames the power in the modeled signal is determined by the number
of basis functions used to represent it. Remember however, that the basis functions are
modified to fit the spectral peaks which implies that the ratio will actually be higher
than indicated. For this reason, we scale the fraction above with a constant a > 1. This
provides a fix-point so that if ‖Wŝ‖2

‖Ws‖2 ≤ a2K
L the cut-off frequency is set to ωc = 0.

Having determined the two extreme points these are linearly interpolated for deter-
mining the voicing cut-off frequency as illustrated in Figure 1.3.

ωc

1

π

0
a2K

L
‖Wŝ‖2

‖Ws‖20

Figure 1.3: Determination of voicing cut-off frequency from the modeled-to-original signal power ratio.

The measure described here makes no sense in short, low-pitched frames, since then
a2K

L > 1. In this case we revert to determining the cut-off frequency from the unvoiced-
to-total power ratio as found by the YIN algorithm, see [RJ02] for details.

1.4 Unvoiced frames

So far, we have described the parameter estimation in voiced frames. When a frame is
classified as being unvoiced there is no reliable fundamental frequency and the HSM has
no physiological meaning. It has been argued, however, that the HSM can still be used
as long as the frequency spacing ω0 is keep low enough [MQ95]. The reason for this is
easily understood when considering the LS estimation technique: the lower the ω0 the
more columns (basis functions) we get in V which in turn means that the system of linear
equations becomes “less over-determined”. When the number of components reaches half
the frame length (2K = L) the linear system solved by (1.5) is square and we in principle
have perfect reconstruction. From initial listening experiments we found that picking ω0

such that K = L
4 gives a sufficiently dense sampling of the frequency spectrum. Note

that since the frequency spacing is uniquely determined from the frame length it does
not have to be transmitted.

In principle, once the frequency spacing has been determined, the LS estimation
procedure that was used in voiced frames could also be used for estimating amplitudes
and phases in unvoiced frames. However, the computational complexity is quite high
for long frames (and thus high K). Moreover, an LS fit of amplitudes and phases is
overkill since we will actually not need the phases (randomized at synthesis, see sec. 1.7).
Instead, we simply determine the amplitudes through sampling of the power spectral
density. Finally, to “smear” the reconstructed spectrum, subframe randomization is used
in the synthesis in the same way as for the unvoiced components in semi-voiced frames
(sec. 1.3.3).
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1.5 Quantization of fundamental- and cut-off frequency

The fundamental frequency is quantized in the log-domain, the range set between 55 Hz
and 400 Hz for which 8 bits has been found adequate. In [MAT90] only 7 bits very used
for a log-domain quantizer but from listening experiments we found improvements for
some speakers when using 8 bits.

The voicing cut-off frequency is simply quantized linearly in the range [0, π] using 4
bits.

1.6 Amplitude quantization

Speech spectral envelopes are usually represented by an AR model, often estimated by
Linear Prediction (LP). When representing a discrete under-sampled spectrum as in this
case, however, LP leads to aliasing in the autocorrelation function which makes Discrete
All-Pole (DAP) modeling a better choice [EJM91]. Very briefly, this method minimizes
the Itakura-Saito distance between the measured amplitudes and the AR model sampled
at the same frequencies. The minimization problem is solved iteratively using conven-
tional LP as the initial estimate. In [MPSC98] it is reported that DAP is more accurate
than other methods, including the cubic spline approach of [MQ95].

The DAP curve is fitted to the frequency-amplitude pairs (kω0, Ãk) where Ãk are the
amplitudes estimated using the modified frequencies ω̃k. The reason for this is that the
harmonics kω0 define the points at which the DAP curve is resampled at the receiver. This
way, the problem with overshoot at high frequncies as reported in [MHC00] is avoided.

The AR model gain factor is readily quantized in the logarithmic domain using 5 bits.
Quantization of the AR polynomial coefficients has received a great deal of attention, the
prevailing technique being split vector quantization of the LSF parameters. In this report
we do not quantize AR model coefficients; instead we refer to [PA93] where transparent
quantization of a 10th order AR model is achieved using 24 bits. Since we will need to be
able to work with other AR model orders, a linear relationship between the model order
P and the number of bits RAR required to obtain transparent quantization is assumed.
Specifically, the following relationship is used:

RAR =
3
2
P + 9 (1.13)

1.7 Phase quantization

The quantizations of fundamental frequency, power and AR model all follow conventional
methods. In case of the phases, however, we develop a new scheme. The reason for
this is that in harmonic sinusoidal coding schemes, phases are usually encoded through
exploitation of phase prediction, i.e. the phases of each frame is represented partly as a
function of the phases and frequencies of the previous frame, see e.g. [AS96], [MAT90].
This approach is not feasible in our case because of the probability of packet losses.

Instead we take another approach that exploits the relationship between the phases
within each frame. First, the time instants where each sinusoidal component has its
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maxima are calculated by:

tk = arg max
t

{cos (kω0t + φk)}

=
2πq − φk

kω0
, q ∈ Z (1.14)

These points are plotted versus the harmonic frequencies in Figure 1.4 for a frame of
voiced speech. In this plot, note that if one + is known at each harmonic the phases
can be reconstructed without error. If the speech signal was produced by a zero phase
system (as assumed in e.g. [QM89]), a straight horizontal line would fit perfectly a + for
each harmonic. For natural speech this is usually not the case, but the +’s are clearly
correlated from harmonic to harmonic. We exploit this relationship in the encoding by
using a piecewise linear representation that can readily be quantized as will be explained
in the following.
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Figure 1.4: Phase quantization principle. The +’s represents the time instants where each sinusoidal
component has its maxima. The piecewise linear function represents these points quantized and thus the
phases, whereas the vertical lines represents the phase bands.

1.7.1 Phase bands

The first step in forming the piecewise linear representation is determining the phase
bands, i.e. the domain for each linear component of the piecewise linear function. These
bands should cover the interval from the fundamental frequency up to the voicing cut-off
frequency ωc since the phases are randomized above. Moreover, because speech signal
energy is usually concentrated in the low frequency area, it seems feasible that the bands
are more narrow here; this frequency division is also well in line with the “critical band
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decomposition” typically used in perceptual audio coding [PS00]. Finally, it should be
possible to reconstruct the bands at the receiver without additional side information.
The requirements are fulfilled in the following way, which has been found to work well in
initial simulation studies:

1. The first band contains the first two frequency components, i.e. it covers the interval
B1 =]0, 2ω0], so that width(B1) = 2ω0.

2. The lengths of the following bands increase exponentially so that width(Bm) =
2ω0α

m−1 for m = 2 : M , where M is the predetermined number of bands.

The factor α is determined so that the bands cover the interval ]0, ωc]:

2ω0

M∑
m=1

αm−1 = ωc (1.15)

i.e. we pick α as the positive, real root of this polynomial4. An example of this band
design is included in Figure 1.4.

The number of bands is determined from the trade-off between a high number of
bands and a high number of bits to represent the phases within each band (how this is
done will be explained below). Simulations showed that using 4-5 bits in each phase band
resulted in a reconstruction of reasonable quality. Therefore, having a total of, say, Rp

bits for representing all voiced phases the number of bands is determined by:

M = �Rp

4.5
� (1.16)

This leaves between 4 and 5 bits for each band, therefore 5 bits are used in low frequency
bands and 4 bits in higher frequency bands.

1.7.2 Estimation and quantization of piecewise linear phase function

We now want to fit a piecewise linear function to the sinusoidal maxima, as illustrated
by the black curve in Figure 1.4. The basic approach is to start in B1, and then work
from the left to the right, using the end point in Bm as the starting point in Bm+1.

To explain the principle in finding the possible line end points in each band we zoom
into two of the phase bands from Figure 1.4, as shown in Figure 1.5. The candidate
end points are constructed as follows: one point is at the level of the starting point, as
indicated by the horizontal dashed lines. The rest of the points are now placed relative
to this, the spacing being a fraction of the period of the last (i.e. highest frequency)
sinusoidal component in the band, e.g. in figure 1.5 the spacing is 1

4 of the period. It
turns out to be necessary to span two periods “up” and two “down”. This in turn means
that the resolution will be 1

4 periods (for 4 bits per band) or 1
8 periods (for 5 bits per

band).

4The uniqueness of this solution follows directly since each term in the polynomial (1.15) is monoton-
ically increasing for α > 0 and thus the left-hand side is monotonically increasing for α > 0. Moreover,
if ωc < 2ω0M there will not be “room” for increasing bandwidths and we will get α < 1, i.e. decreasing
bandwidths. In this case we use equal bandwidths, width(Bm) = ωc

M
, ∀m = 1 : M .
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Picking linear components

As indicated in Figure 1.5 each component of the piecewise linear function is chosen as
the one best matching the sinusoidal maximum points. Specifically, in each band m there
is Im possible line end points and thus Im possible linear functions. Each of these can be
seen as a vector:

t̃i,m =
{

ti(ω(1)
m ), ti(ω(2)

m ), . . . , ti(ω(Gm)
m )

}
, for i = 1 : Im

where Gm is the number of components in the m’th band and ω
(g)
m is the g’th harmonic

frequency within this band. That is, the vector t̃i,m contains locations of the sinusoidal
maxima in band m, attained at synthesis is the i’th possible line was used. In Figure 1.5,
the dimension of t̃i,m will be 2 in the left band and 3 in the right band.

We now arrange the measured sinusoidal maxima in a similar vector tm. Note that
since each harmonic has multiple maxima it will be necessary to determine which of these
to use. A discussion of this follows below, but for now we assume that the decision is
made already. Then the best linear function is chosen as the one minimizing the weighted
distance measure:

Di = ‖Wm

(
t̃i,m − tm

) ‖2, (1.17)

where Wm is a diagonal weighting matrix:

Wm = diag
{

A(1)
m ω(1)

m , A(2)
m ω(2)

m , . . . , A(Gm)
m ω(Gm)

m

}

Here, A
(g)
m is the amplitude of the g’th sinusoid within the band. Weighting by the ampli-

tudes ensures that high-energy harmonics are modeled most precisely, whereas weighting
by the frequencies normalizes the distance between t̃i,m and tm with respect to the si-
nusoidal period. The latter is necessary since otherwise the contribution to the distance
measure at higher frequencies would be negligible, see Figure 1.4.

Choosing “best” sinusoidal maximum points

In the description above we did not specify which of the sinusoidal maxima in the vertical
time-axis (+’s in plots) the fit is actually matched to. Since we only have to model one +
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for each harmonic, a straight-forward way of doing this is to calculate (1.17) for the +’s
(tm’s) nearest to each possible line segment t̃i,m. This approach can lead to problems,
though, as illustrated in Figure 1.6. Here, the algorithm will take either the solid or the
dashed path through the +’s (ignore the dotted line for now). Which one is actually taken
depends on which of the two +’s at ωk is closest to a possible line ending point. However,
the chosen line ending point may be a poor starting point for the line in the next band.
Supported by listening experiments we therefore found it reasonable always to follow the
“smoothest” path through the +’s, found by going from the left to the right, picking each
new + as the one closest to the current. Another argument is that when the harmonics
are highly aligned (linear phases) the smooth path will approximate a horizontal line,
whereas other paths will approximate hyperbolas, see e.g. Figure 1.4.

t
[s

am
pl

es
]

Frequency

ωk

Figure 1.6: Different paths through the sinusoidal maximum points. The solid and dashed lines show
two alternative paths, but by finding the smoothest track of +’s, the solid line will always be chosen.
The dotted line is a better representation that is not found due to greediness.

Greediness

While using the smooth path as described above increases speech quality, it does not solve
the inherent problem of greediness in the proposed method: we try to solve a sequence
of dependent subproblems (selecting a linear function for each band) by choosing the
optimal solution for each. As a result there may be a better representation of the harmonic
maxima than found by the proposed method, such as the one sketched in Figure 1.6. A
possible work-around is to apply a delayed decision technique such as the M-algorithm
[GG92] or modified methods as those applied to Matching Pursuit in [CR01].

Starting point - onset time

The starting point in the first band is encoded separately as an “onset time” using 8
bits. Since the minimum allowable fundamental frequency is 55 Hz this onset time can
occur at most 8kHz

55Hz ≈ 145 samples after the frame start. This results in a resolution of
approximately half a sample in the onset quantization.

Unfortunately, for some signals the first harmonic has very low energy (this can also
be caused by high pass filtering), resulting in an unreliable onset estimate. Therefore we

11



instead use the second harmonic for the onset estimation. Note however that there will be
two possible onset times for this approach (in Figure 1.4 above sample 0 or below sample
40). Which of these to use is determined by carrying out the entire phase quantization
for both and then picking the one that results in the best piecewise linear match.

1.8 Summary

In this chapter we described a speech coder based on harmonic sinusoidal modeling.
The coder has a “voiced” and an “unvoiced” coding mode and is flexible in that it can
work on any input frame lengths. The main difference between the two coding modes is
that a pitch estimate is used as a fundamental frequency in voiced frames, whereas the
frequency spacing in unvoiced frames is determined exclusively from the frame length.
Moreover, phases are randomized in unvoiced frames and need thus not to be transmitted.
Amplitudes are represented using an AR model estimated through DAP. A new coding
scheme that does not rely on interframe information were developed for the phases since
this is an important requirement for speech coding in VoIP.
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Chapter 2

Receiving end PLC algorithm

In the following we will describe a PLC algorithm based on that of [RCAJ03] but modified
to fit the framework at hand.

As in most PLC algorithms the frame loss is sought compensated for through the
contents of neighbor packets. In the case of a harmonic sinusoidal coder two possibilities
seem feasible:

1. Interpolation of the sinusoids over the lost interval.

2. Stretching sinusoids from neighboring packets into the lost interval.

A straight-forward extension is to use a combination of the two possibilities: if two com-
ponents on each side of the loss seem similar these should be linked through interpolation
whereas dissimilar could be stretched from each side ending up as overlap-add, see Fig-
ure 2.1. The figure also indicates that interpolation is carried out by replacing the lost
interval with a windowed set of new parameters.

Loss

Interpolation

Stretching/OLA

Θ(a)Θ(p)

Θ(p) Θ(a)

Θ(a)Θ(p)

Θ(i)

M (p) M (a)

Figure 2.1: Top: shaded frames represent lost frames. Middle: lost frames replaced by interpolated
components. Bottom: neighbor packets stretched into lost interval. Note that actual window slopes
are hanning but shown linear to ease the illustration. Θ(p) and Θ(a) denote the sets of sinusoidal
parameters in the frames previous to and after the loss, respectively, whereas Θ(i) is the set of interpolated
parameters.
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2.1 Component classification

The first step in the PLC algorithm is to classify which components to interpolate and
which to overlap-add. Because the sinusoidal model is harmonic the frequency linking
problem (see e.g. [MQ86]) is trivial since the k’th harmonic in one frame is simply linked
to the k’th in another. The k’th harmonic is classified for interpolation over the missing
interval if the following three conditions are met (using the (p) and (a) superscripts to
denote frames previous to and after the loss as above):

1. The k’th harmonics are below the voicing cut-off frequencies both before and after
the loss,

kω
(p)
0 < ω(p)

c and kω
(a)
0 < ω(a)

c

2. The absolute frequency difference does not exceed 100 Hz,∣∣∣kω
(p)
0 − kω

(a)
0

∣∣∣ <
2π · 100 Hz

8 kHz

3. The ratio between the amplitudes of the components is below 5,

max

{
A

(a)
k

A
(p)
k

,
A

(p)
k

A
(a)
k

}
< 5

These heuristic rules are similar to those used in [RCAJ03], and tuned through informal
listening. The first rule simply ensures that unvoiced components are overlap-added
whereas the second and third prevent interpolation of dissimilar components.

In practice, one additional rule is necessary: if no packet after the losses is present
interpolation is not possible, and thus OLA has to be used. How this is exactly done will
be explained below.

2.2 Overlap-added components

Overlap-adding is simply carried out by extrapolating the sinusoidal components into the
missing interval and applying the corresponding window slope. Subframe randomization
is applied to components above the voicing cut-off frequency ωc as usual.

For very long packet losses the stretching/OLA strategy indicated in Figure 2.1 is not
possible because the packet proceeding the losses will not yet be available in the jitter
buffer. In this case OLA is carried out as sketched in Figure 2.2. The basic principle is
that play-out of the packet proceeding the losses is started as soon as it arrives.

2.3 Interpolated components

When working on a sinusoidal model, interpolating over missing frames bears strong
resemblances to time-scale modification operations, see e.g. [QM86]. Such applications
usually utilize a cubic phase model since this allows for perfect matching of phases and
frequencies at both frame boundaries. However, in our experience such an approach leads
to problems in PLC applications, because the cubic phase model tends to break down the
harmonic signal structure. Instead we use a quadratic phase model, which preserves the
harmonic structure at the cost of a phase mismatch at frame boundaries. The quadratic
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Θ(a)Θ(p)

Θ(p) Θ(a)

Stretching/OLA

Loss

LJ

Figure 2.2: OLA in case of long packet losses. LJ denotes the jitterbuffer length.

model arises when linearly interpolating frequencies (and amplitudes) over the missing
interval (remembering that phases are referenced to the center of each frame):

s
(i)
k (t) = A

(i)
k (t) cos

(
θ
(i)
k (t)

)
, t = −L(i)

2
, . . . ,

L(i)

2
− 1 (2.1)

where

A
(i)
k (t) =

A
(p)
k + A

(a)
k

2
+

A
(a)
k − A

(p)
k

L(i)
t

θ
(i)
k (t) = kαt2 + kω

(i)
0 t + φ

(i)
k

ω
(i)
0 =

ω
(p)
0 + ω

(a)
0

2

α =
ω

(a)
0 − ω

(p)
0

2L(i)

By inspection we see that this model ensures that the amplitudes and instantaneous fre-
quencies at the beginning and end of the frame equal the parameters from the neighboring
frames, i.e.

A
(i)
k

(
−L(i)

2

)
= A

(p)
k

A
(i)
k

(
L(i)

2

)
= A

(a)
k

d

dt
θ
(i)
k

(
−L(i)

2

)
=

d

dt

[
kαt2 + kω̄0t + φ

(i)
k

]
t=−L(i)

2

= kω
(p)
0

d

dt
θ
(i)
k

(
L(i)

2

)
=

d

dt

[
kαt2 + kω̄0t + φ

(i)
k

]
t= L(i)

2

= kω
(a)
0

The only parameter yet to be determined is the phase of each component φk. This is
done by minimizing the total phase mismatch at the center of the OLA regions denoted
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by M (p) and M (a) in Figure 2.1. The cost function to minimize is1

J(φ(i)
k ) =

min
P (p),P (a)∈Z

{(
θ
(i)
k (M̃ (p)) − θ

(p)
k (M̃ (p)) − 2πP (p)

)2
+

(
θ
(i)
k (M̃ (a)) − θ

(a)
k (M̃ (a)) − 2πP (a)

)2
}

(2.2)

Here θ
(p)
k (M̃ (p)) and θ

(a)
k (M̃ (a)) are the instantaneous phases of the k’th component in

the neighbor frames, directly found from the (constant) frequencies and center phases
here:

θ
(p)
k (M̃ (p)) = φ

(p)
k + kω

(p)
0

L(p) − LOL

2

θ
(a)
k (M̃ (a)) = φ

(a)
k − kω

(a)
0

L(a) − LOL

2

where L(p) is the length of the of the frame (p) previous to the loss and LOL is the length
of the analysis frame overlap region so that M̃ (p) = L(p)−LOL

2 is the distance from the
center of frame (p) to M (p). Similarly we have that

θ
(i)
k (M̃ (p)) = φ

(i)
k + kω

(i)
0

L(i) − LOL

2
+ kα

(
L(i) − LOL

2

)2

= φ
(i)
k + ∆θ

(i)
k (M̃ (p))

θ
(i)
k (M̃ (a)) = φ

(i)
k − kω

(i)
0

L(i) − LOL

2
+ kα

(
L(i) − LOL

2

)2

= φ
(i)
k + ∆θ

(i)
k (M̃ (a))

where ∆θ
(i)
k (M̃ (p)) and ∆θ

(i)
k (M̃ (a)) are introduced for notational reasons.

In (2.2) the terms 2πP (p) and 2πP (a) are included in order to obtain the phase dif-
ference modulo 2π and can be found by:

P (p) = round

(
θ
(i)
k (M̃ (p)) − θ

(p)
k (M̃ (p))

2π

)

= round

(
∆θ

(i)
k (M̃ (p)) − θ

(p)
k (M̃ (p)) + φ

(i)
k

2π

)

= round

(
∆θ

(i)
k (M̃ (p)) − θ

(p)
k (M̃ (p))

2π

)
+ q(p), q(p) ∈ {0, 1} (2.3)

where in the last line we used that φ
(i)
k ∈ [0, 2π]. A very similar expression is obtained

for P (a) resulting in a total of 4 possible combinations of P (p) and P (a). Now we simply
minimize (2.2) for each of the 4 possibilities and pick the one yielding the least minimum.
The minimization itself is straight-forward since (2.2) is reduced to a quadratic function
in φ

(i)
k .

1 ˜M (p) indicate that the time index is not the absolute M (p) but instead the center of the OLA region
measured relative to the center of the index frame.
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