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Abstract

The constraints of pure functional programs are often applauded for the resulting
safety and correctness guarantees. It is also claimed that these programs are easier to
reason about and, therefore, verify. Despite being taken as fact within the community,
the availability of effective verification tools tells a different story. This thesis focuses
on two verification problems specific to functional programs — pattern-match safety
and functional correctness. We develop two automated, lightweight verification tools
with a focus on performance.

The first problem is to verify that a given functional program does not crash due to
inexhaustive pattern-matching expressions in a function’s definition. To this end, we
present a refinement type system with a restricted form of structural subtyping and
environment-level intersection. We describe a fully automated, sound and complete
type inference procedure for this system which, under reasonable assumptions, is
worst-case linear-time in the size of the program. Compositionality is essential to
obtaining this complexity guarantee but is only enabled by the novel restriction we
place on refinement types.

Other than expressive type systems, pure functional programs naturally lend them-
selves to equational specifications. These specifications are a desirable target for an
automated verification tool because they are immediately accessible to the average
programmer. Nevertheless, such a tool must tackle the thorny issue of proof by in-
duction when verifying recursive programs over algebraic datatypes. We propose a
new cyclic proof system that is well-adapted to equational reasoning over inductively
defined datatypes. The key to our system is the way in which cyclic proofs and equa-
tional reasoning are mediated through the use of contextual substitution as a cut-like
rule. We outline a performant proof search algorithm that relies on a number of sup-
porting theoretical developments, including an alternative, incremental technique for
checking the correctness of a candidate proof.
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Chapter 1

Introduction

Functional programming is a paradigm with rigorous guiding principles. Its declar-
ative style and a high-level of abstraction often results in code that is more concise,
readable, and easier to maintain [1]. In particular, the prioritisation of immutable data
and pure functions, i.e. those without side effects, eradicate most bugs related to mem-
ory management — some of the most prolific issues in industrial code bases [2]. The
ensuing referential transparency also enables substitution and simplification princi-
ples that contribute to the comprehensibility of programs.

Nevertheless, these programs are not without faults. While testing is prevalent, it
is fundamentally limited to detecting violations of, but not formally verifying, a lim-
ited set of properties. It is also worth noting that traditional approaches to testing,
e.g. unit testing, can require a not-insignificant amount of additional work from the
programmer, accounting for 50% of their time in some cases [3]. Although initially
confined to academia, functional programming is becoming increasingly prevalent
in a variety of safety-critical industries [4, 5, 6] as well as those processing highly-
structured data [7]. Thus, developing practical tools that can automatically, formally
verify the correctness of such programs is increasingly important. In this thesis, we
develop two verification tools targeting functional programs and evaluate their effec-
tiveness.

1.1 Lightweight Verification

In contrast to testing, formal verification aims to prove that a given program satis-
fies a formal specification of some desirable properties. Verification techniques differ
depending on the language paradigm and target specification. However, they can be
broadly categorised into model-checking algorithms and deductive verification [8].
Model-checking proceeds by exploring the program’s state space, over which the
specification is evaluated, whereas deductive verification derives proof obligations
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2 CHAPTER 1. INTRODUCTION

that ensure the program meets its specification. As model checking is designed for
automation, it usually requires a finite model of the program derived from an ab-
straction or explicit depth-bounds. Deductive verification, on the other hand, is tra-
ditionally performed in a semi-interactive environment using a combination of proof
assistants such as Coq or Isabelle and SMT (satisfiability modulo theory) solvers and
thus is more general [9].

The effort required for deductive verification can make it impractical for many
projects. Likewise, model checking suffers from the “state explosion” problemwhereby
the verification task grows exponentially with the complexity of the system [10].
There has, therefore, been a shift in the formal methods’ community towards more
pragmatic, “lightweight” approaches to verification [11, 12]. Here lightweight refers
to a partial analysis of a partial specification that may result in false positives or false
negatives but can readily be integrated into the day-to-day software development cy-
cles, thus providing immediate feedback to the programmer. Lightweight verification
is usually an automated, or “push button”, process. Nevertheless, it is important for
the programmer to have some knowledge of the tool’s limitations so that they can
program defensively around these constraints or provide hints to the tool where nec-
essary.

1.2 Refinement Type Systems

The first verification technique we develop is a refinement type system. Broadly
speaking, refinement type systems are formal proof systems for asserting safety prop-
erties. That is, they demonstrate some undesirable behaviour, such as diving by zero,
does not occur; hence the adage “well-typed programs don’t go wrong” [13]. These
systems are, by far, the most widespread form of program analysis due to their ease of
use and scalability, and have a close connection to higher-order model checking [14].

Traditionally, there are two ways to interpret a type system: an intrinsic system
distinguishes structurally different categories of expressions to ensure the program
has a meaningful interpretation, whereas an extrinsic system predicates over some
pre-existing semantics [15]. A refinement type system is, in essence, an extrinsic
extension of an underlying intrinsic type system. In other words, these types “re-
fine” underlying types by requiring their inhabitants to satisfy some additional prop-
erties [16, 17]. Refinement types are usually equipped with a partial order known
as subtyping, which implies the inclusion of their respective inhabitants. Subtyping
allows for the omission of irrelevant properties, enabling expressions to be given a
precise type without restricting their use in more general contexts.

The verification problem for which we devise a refinement type system is that of
pattern-match safety, i.e. the non-reachability of pattern-matching failures. Consider
the simple function program in Figure 1.1. This program results in a pattern-matching
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failure as the head function does not have a case corresponding to the [] constructor.
As most standard type checkers do not distinguish between empty and non-empty
lists, it cannot infer a sufficiently precise type for the head function. Rejecting such a
primitive function would be overly restrictive, however. Instead, the notion of “going
wrong” is weakened so that there is no guarantee of pattern-matching safety.

let head : List α → α
head (x :: xs) = x

in head []

Figure 1.1: An unsafe application of the head function.

The first refinement type system aiming to retain pattern-matching safety while
permitting inexhaustive function definitions considered regular refinements of alge-
braic datatypes via intersection types, implicitly describing a regular tree grammar
in the first-order case [16]. Under this system, refinement types encode a contract,
guaranteeing that a given function does not result in a pattern-matching failure on
the given set of inputs whilst also provide an over-approximation of the function’s
output in order to be compositional. For example, it could be correctly inferred that
the head function is only well-defined on non-empty lists and that the subsequent
call is unsafe. Note that the non-empty list refinement is still a subtype of lists mak-
ing this approach less invasive than merely introducing a new, disjoint datatype that
is isomorphic to the refinement such as Haskell’s Data.List.NonEmpty datatype1.
Nevertheless, this system still required the programmer to specify the relevant refine-
ments and so is only partially automated.

Constraint-baseType Inference Many type systems, including theHindley-Milner
system, are implemented with constraints, either as part of type inference or persist-
ing in the resulting type schemes [13, 18, 19]. In this context, constraints are a formal
language for restricting a family of types, which can be instantiated differently de-
pending on the demands of the context.

While a tractable unification algorithm enables the Hindley-Milner type system
to scale well, it lacks support for subtyping and, thus, has limited use as a precise pro-
gram analysis. Many type inference algorithms go further and emit subtyping con-
straints [20, 21]. However, this increase in expressivity naturally leads to an increase
in complexity. Unlike the Hindley-Milner type system, the type variables appearing
in the subtyping constraints cannot necessarily be assigned a most general solution
due to their mixed variance, leading to an exponential number of type variables in the
worst-case [22]. Even for non-polyvariant analyses, where there is no duplication, it

1https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-List-NonEmpty.
html

https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-List-NonEmpty.html
https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-List-NonEmpty.html


4 CHAPTER 1. INTRODUCTION

is typical to have quadratically-many constraints and a cubic-time upper-bound on
testing satisfiability [23, 24].

Continuing this line of work, we propose a refinement type system for ensur-
ing pattern-matching safety with a fully automated, constraint-based inference algo-
rithm. As this system doesn’t rely on user annotations, it must restrict the space of
possible refinements. Our restriction is carefully designed so that constraints have
limited complexity and, consequently, the inference algorithm is linear in the size of
the program.

1.3 Inductive Equational Reasoning

Equational reasoning exploits the referential transparency of pure functional pro-
grams to represent specifications as equations. This highly expressive style of specifi-
cation may include the equivalence of an optimised function and a more lucid imple-
mentation or the correctness of a typeclass instance which is required to uphold some
algebraic theory, e.g. the associativity of monoids. A significant advantage of these
specifications is that they can be immediately understood by any programmer famil-
iar with the language’s syntax, such as the functor laws for the list datatype displayed
in Figure 1.2. Consequently, equational reasoning has seen widespread adoption in
the functional programming community and often comprises a core element of intro-
ductory courses [25].

∀xs : List α. map id xs = xs

∀xs : List α, f : b → c, g : a → b.
map (f ◦ g) xs = map f (map g xs)

Figure 1.2: The functor laws for the list datatype.

Unlike type systems, equational reasoning is not structural in that proof obli-
gations are not derived from the structure of expressions nor are specifications as-
sociated with a single function. It also differs in that it does not necessarily over-
approximate the semantics of a function. Although some properties concern abstrac-
tions such as the length of a list, e.g. length ◦ map f = length, other algebraic
properties including associativity, commutativity, and idempotence do not fall into
this category.

It is worth noting, however, that certain type systems can be simulated by equa-
tional reasoning. In particular, deterministic top-down tree automata can be directly
embedded as functions in the programming language and used to assert type assign-
ments as conditional equations. More generally still, by permitting a mixture of pro-
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gram expressions and abstract symbols representing types, type checking and infer-
ence can be framed as a term rewriting problem [26].

In the latter part of this thesis, we will devise an automated equational reasoning
tool. The objective of this system is to determine the universal validity of equations
representing a program’s specification, thus serving as a specialised, automated theo-
rem prover for deductive verification. As such, it is necessary to take advantage of the
domain’s structure when creating the underlying proof system if it is to be practically
automatable.

The Difficulty of Automating Induction Algebraic datatypes are a fundamen-
tal aspect of functional programming on which many standard algorithms rely [27].
As these datatypes and the functions manipulating them are typically recursive, an
equational reasoning tool must have some support for proof by induction or analo-
gous apparatus. Automating proof by induction is, however, notoriously difficult [28].
This complexity is formally described by its non-analyticity — the inability to, in gen-
eral, construct a proof from sub-formulas of the goal alone. In other words, proofs
by induction often require synthesising stronger hypotheses or auxiliary lemmas that
might not be direct syntactic generalisations [29]. The main body of research towards
the automation of proof by induction has thus focused on strategies for hypothesis
strengthening and lemma generation [30, 31, 32, 33, 34]. Significant progress has been
made in this area but often relies on heuristics that can impede performance even for
simple properties.

In contrast to work described above, we put aside the issue of lemma generation
and focus on developing an efficient proof system and proof search algorithm that can
serve as the kernel of a verification system. As any lemma generation or hypothesis
strengthening procedure is inherently inexhaustive, there is always a role for pro-
grammer guidance, which is likely to be more directed due to their understanding
of the code base. Many people believe that deductive verification is overly challeng-
ing because it requires specific expertise from the user. However, this is not true
of equational reasoning since the logic and target language overlap. What is more,
the focus on heuristics in existing research has left core concerns, such as support
for mutual induction, underdeveloped. When dealing with mutually inductive struc-
tures, the issue of non-analyticity becomes compounded as complementary induction
hypotheses are required. Yet, mutual induction is not reducible to a combination of
non-mutual induction and synthesis techniques; mutually inductive structures may
contain an unbounded number of inductive sub-positions, e.g. rose trees, and thus
cannot be represented by a standard inductive structure.

Cyclic Proofs Traditional proof systems consider finite derivation trees, for which
soundness is justified by structural induction over the tree. Non-well-founded proof
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theory generalises such systems to admit infinite derivations. The individual infer-
ences constituting an infinite derivation must be well-formed, and thus the argument
is locally sound, but this property is no longer sufficient to establish soundness as an
argument can be constructed by assuming the conclusion ad infinitum. Instead, an
additional “global soundness” condition ensures that only a finite, initial segment of
the proof is required by any given instance of its conclusion.

A cyclic proof is a non-well-founded proof that only has finitelymany distinct sub-
derivations, i.e. an ω-regular derivation tree. This class is of particular importance for
automated reasoning as they can be represented by finite graphs and typically have
a decidable global soundness condition [35, 36, 37]. As the recursive structure of the
problem is delegated to the cyclic structure of the proof graph, proof search is more
flexible locally. In particular, there is no need to fix an induction scheme or even
an induction hypothesis — all previously encountered judgements can be treated as
candidate induction hypotheses and used cyclically to discharge related proof obliga-
tions, as long as these cycles satisfy the global soundness condition. This demand-
driven approach to induction is distinctly powerful in the case of mutual induction
that otherwise cannot proceed without synthesis.

Cyclic proofs have recently been proposed for a number of program analysis
and synthesis tasks, as well as being used to formalise existing model-checking al-
gorithms [38, 39, 40, 41]. However, prior to our work, no specialised system for equa-
tional reasoning about functional programs had been developed. Although Cyclist, a
generic cyclic theorem prover, has been able to prove basic equational properties, its
lack of first-class support for equational reasoning is limiting in practice [42]. Cyclic
proofs are highly suited to reasoning about functional programs due to their first-
class support for mutually and nested inductive datatypes and the capacity to mimic
complex patterns of recursion by delaying the choice of induction schemes and hy-
potheses. Nevertheless, it is clear that equational reasoning requires distinguished
proof mechanisms due to its intractable search space.

Thus, to suppose mutual induction and an efficient proof search algorithm, we
base our proof system on cyclic proofs. Unlike existing cyclic proof systems, however,
we prioritise equational reasoning by directly integrating it into cycle formation. This
combination allows it to excel at automatically proving the equational properties of
functional programs.

1.4 Thesis Outline and Contributions

As program verification is generally undecidable, there is a hard limit on the capacity
of fully automated verification tools. In light of this, a common goal of our work is
not to maximise the expressivity or coverage of our verification systems but rather
their ease of use and efficiency. For example, we limit refinement types to eliminate
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the need for user annotations, and we forgo hypothesis generalisation or lemma syn-
thesis in pursuit of an effective core proof mechanism. As a result, the lightweight
approaches we develop are sufficiently performant to be integrated into compilation
pipelines and interactive development environments.

The structure and contributions of this thesis is as follows. Proofs that are not
found inline are listed in the appendix.

• Chapter 2 introduces a simple functional programming language, including
higher-order functions and algebraic datatypes, which our verification systems
target. We provide an operational semantics for this language with a somewhat
novel presentation that enables later theoretical developments.

In actuality, our prototype tools are implemented as plugins for the Glasgow
Haskell Compiler (GHC), targeting the GHC Core language [43]. This setup
allows them to be used within the existing compilation pipeline and paves the
way for more mature implementations in the future. As GHC Core is a more
complex language than our calculus, we will comment on any significant and
relevant differences throughout.

• The first verification system— intensional refinement types is presented in Chap-
ter 3. Initially, we introduce a declarative refinement type system based on the
novel notion of an intensional refinement. The purpose of this system is to pro-
vide the programmer with a formal understanding of which programs will be
deemed safe by our type inference system, allowing them to program defen-
sively within the system and decide whether to act on warnings produced by
the type checker.

Building on this, we present our constrained type inference system that is sound
and complete with respect to the declarative system. We demonstrate that, un-
der reasonable assumptions, our analysis is linear in the size of the program
due to the novel restriction we place on the shape of refinements. To conclude
this chapter, we discuss our prototype implementation and its performance and
limitations.

This work is derived from the paper ‘Intensional datatype refinement: with ap-
plication to scalable verification of pattern-match safety’, which was presented
at POPL ’21 [44]. The present author’s contribution was principally in the de-
velopment of the type inference system and its implementation.

• Chapter 4 concerns CycleQ — a novel proof system for cyclic equational rea-
soning designed for automated proof search. After motivating the use of cyclic
proofs for reasoning about functional programs at a high-level, we present our
core proof system. The key contribution of the proof system is a novel cut-like
rule that integrates equational reasoning directly into the formation of cycles,
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thus largely mitigating the intractable search space associated with naïve equa-
tional reasoning. We go onto to show that this system, although remarkably
simple, subsumes two alternatives to traditional proof by induction known as
proof by consistency and rewriting induction when restricted to functional pro-
grams [45, 46].

The main technical difficulty associated with a cyclic proof system is in verify-
ing the global soundness condition. To overcome this challenge, we introduce
an alternative verification technique that can be performed incrementally, dur-
ing proof construction. We then discuss the performance and limitations of our
prototype implementation.

The work presented in this chapter is based on ‘CycleQ: An Efficient Basis for
Cyclic Equational Reasoning’, which was published at PLDI ’22 [47]. As the
principal contributor to that paper, the core ideas, theoretical and empirical
results are attributed to the present author.

• One of the principal limitations discovered by our evaluation of CycleQ is that
many equational reasoning tasks require conditional reasoning, even if no con-
ditions are explicitly present in the goal. In Chapter 5, we report on unpublished
work that extends our proof system with support for conditional reasoning. As
our focus is on efficiency, we replace the non-deterministic application of hy-
potheses, which would quickly lead to an intractable search space, with a novel
algorithm for integrating hypotheses into the program’s operational semantics
as a confluent and terminating rewrite system. This mechanism is further ac-
companied by a narrowing-based procedure for determining viable instances
of conditional lemmas. We conclude by showing that these additional mecha-
nisms significantly expand the set of solvable problems without impeding the
tool’s performance.

The work of this chapter is entirely attributed to the present author.



Chapter 2

Preliminaries

Throughout this thesis, we will work with MiniHask — a simple function program-
ming language with algebraic datatypes and Hindley-Milner style polymorphism. As
the name suggests, MiniHask is intended to represent a small subset of the Haskell
programming language, for which we formalise our verification systems. In this chap-
ter, we introduce its syntax and semantics and prove some basic properties of the
language.

2.1 Syntax

2.1.1 Types and Type Schemes

Definition 2.1. We assume a finite collection of datatype identifiers D, ranged over
by d, each of which is equipped with a fixed arity, written arity(d) ∈ N.

These datatype identifiers can be thought of as the names of (first-order) type con-
structors. The arity of a datatype identifier indicates the number of type parameters
it takes, e.g. arity(Bool) = 0 and arity(List) = 1. For simplicity, our formalism
does not account for higher-order type constructors; hence, type parameters are not
differentiated by kind. However, it is straightforward to extend the system to include
higher-order type constructors.

As is standard in Hindley-Milner style type systems, we distinguish types from
type schemes. Proper type schemes apply to top-level definitions and constructors,
encoding parametric polymorphism whereby their quantified variables can be instan-
tiated with concrete types as required. Within the body of a function definition, on
the other hand, expressions are only assigned monomorphic types, although these
types may include type variables from their ambient context.

9
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Definition 2.2. Types and type schemes are defined by the following grammar:

Ty τ, σ ::= α | d τ1 · · · τarity(d) | τ → σ

Sch ρ ::= ∀α. ρ | τ

where α, β, γ etc. range over a countable set of type variables A.
The function arrow associates to the right by default and type schemes are iden-

tified up to α-equivalence. Types of the form d τ1 · · · τarity(d), such as List Nat, are
referred to as datatypes and we write Dt to denote the set of such types. When we
wish to restrict types to those containing only a subset of datatype identifersD ⊆ D,
we write Ty(D), Sch(D), and Dt(D).

Definition 2.3. The free type variables FTV(τ) ⊆ A of a type or type scheme τ is
defined by recursion over the type as follows:

FTV(α) := {α} FTV(τ1 → τ2) := FTV(τ1) ∪ FTV(τ2)

FTV(∀α. ρ) := FTV(ρ) \ {α} FTV(d τ1 · · · τn) :=
⋃
i≤n

FTV(τi)

A type or type scheme is said to be closed is it contains no free type variables.

Definition 2.4. A type-level substitutionΘ : A⇀ Ty is a partial map from type vari-
ables to types. The standard homomorphic extension of a substitution to a function
on types, written using postfix notation τΘ, is defined by recursion over the type as
follows:

αΘ :=

Θ(α) if α ∈ dom(Θ)

α otherwise

(d τ1 · · · τn)Θ := d (τ1Θ) · · · (τnΘ)

(τ → σ)Θ := τΘ→ σΘ

We will denote substitutions as sets of pairs α 7→ τ or, when directly applied to a
type, using the notation [τ/α].

2.1.2 Expressions

Definition 2.5. We assume a finite set of constructors K, ranged over by k and its
variants, that are equipped with a fixed arity, written arity(k) ∈ N.

Definition 2.6. The expressions of MiniHask are defined by the following grammar:

Exp e ::= x | k | e1 e2 | λx. e
| case e of {k1 x1 7→ e1; . . . ; kn xn 7→ en}

where x, y, z etc., range over a countable set of expression variables V.
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Application associates to the left by default and expressions are identified up to
α-equivalence. The branch of a case expression associated with the constructor k
is required to bind exactly arity(k) pattern variables. Furthermore, the branches of
a case expression are assumed to be non-overlapping, i.e. there is no i ̸= j such
that ki = kj . Thus, we also equate case expressions up to the permutation of their
branches.

Definition 2.7. The free variables FV(e) ⊆ V of an expression e is defined by recur-
sion over the expression as follows.

FV(x) := {x} FV(k) := ∅

FV(e1 e2) := FV(e1) ∪ FV(e2) FV(λx. e) := FV(e) \ {x}

FV(case e of {ki xi 7→ ei | i ≤ n}) :=
FV(e) ∪

⋃
i≤n

{FV(ei) \ {xi}}

Definition 2.8. An (expression-level) substitution θ : V ⇀ Exp is a partial map from
variables to expressions. As with type-level substitutions, substitutions written in a
postfix position are interpreted by their homomorphic extension to expressions which
is defined recursively as follows:

xθ :=

θ(x) if x ∈ dom(θ)

x otherwise
kθ := k

(e1 e2)θ := (e1θ) (e2θ) (λx. e)θ := λx. eθ

(case e of {ki xi 7→ ei | i ≤ n})θ :=
case eθ of {ki xi 7→ eiθ | i ≤ n}

Following the Barendregt naming convention, we assume that any locally bound
variables are distinct from those appearing in the ambient context (including those
appearing in the substitution). In which case, the preceding definition is implicitly
capture-avoiding.

Expression-level substitutions are denoted in the same manner as type-level sub-
stitutions: as a set of pairs x 7→ e or with the notation [e/x] when directly applied to
an expression. We write FV(θ) ⊆ V for the free variables of a substitution, which is
defined as the set

⋃
x∈dom(θ) FV(θ(x)), i.e. the free variables of the expressions in the

substitutions codomain.

Definition 2.9. The composition of two substitution, written θθ′, is defined by the
map: x 7→ (xθ)θ′ for all x ∈ dom(θ) ∪ dom(θ′). Substitution forms a monoid action
with respect to composition; that is, e∅ = e and e(θθ′) = (eθ)θ′ for all expressions.
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2.1.3 Typing Judgement

Definition 2.10. A datatype environment ∆ : K ⇀ Sch is a partial function from
constructors to closed type schemes of the form:

∀α1 · · ·αarity(d). τ1 → · · · → τarity(k) → d α1 · · · αarity(d)

where d ∈ D is some datatype identifier. We write k : ρ ∈ ∆ for some k ∈ K to
indicate that∆(k) is defined as ρ.

Note that constructors are required to be polymorphic in the parameters of the
datatype that they ultimately return. In particular, we do not consider generalised
algebraic datatypes or existential type parameters.

Definition 2.11. The restricted datatype environment ∆(d) ⊆ ∆ is defined as the
subset of typings k : ρ where the type scheme ρ ultimately returns an instance of the
datatype identifier d ∈ D. For some constructor k : ρ ∈ ∆(d), we identify ∆(d)(k)

with the sequence of argument types τ1, . . . , τarity(k) to the type scheme ρ as its
return type is uniquely determined.

Typically, wewill present datatype environments usingHaskell-style data declara-
tions such as the following example, which defines a datatype environment associated
with the datatypes identifiers Nat, List, and Tree.

data Nat data List α
= Z = []
| S Nat | α :: List α

data Tree α
= Leaf
| Node (Tree α) α (Tree α)

Figure 2.1: Example algebraic datatypes.

In order to aid readability, we will use the double colon to denote the “cons” con-
structor for lists when presenting MiniHask programs so that it is distinguished from
the typing judgement. We will also use conventional list notation [e1, . . . , en] (to be
understood as e1 :: · · · :: en :: []) when convenient.

Definition 2.12. A type environment Γ : V ⇀ Sch is a partial map from variables
to type schemes, with x : ρ ∈ Γ, as usual, indicating that Γ(x) is defined as ρ. We
will write FTV(Γ) ⊆ A for the set

⋃
x:ρ∈Γ FTV(ρ). As usual, we say that Γ is closed

whenever FTV(Γ) is empty.
Type-level substitutions Θ are extended to act on type environments in the usual

manner so that ΓΘ denotes the type environment {x : τΘ | x : τ ∈ Γ}.
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Definition 2.13. For a given datatype environment ∆, the judgement Γ ⊢ e : τ ,
which indicates that the expression e can be given the type τ when its free variables
are typed according to Γ, is defined inductively by the inference rules in Figure 2.2.

x : ∀α. τ ∈ Γ
Γ ⊢ x : τ [σ/α]

k : ∀α. τ ∈ ∆
Γ ⊢ k : τ [σ/α]

Γ ⊢ e1 : τ → σ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : σ

Γ ∪ {x : τ} ⊢ e : σ
Γ ⊢ λx. e : τ → σ

Γ ⊢ e : d τ (∀i ≤ n) Γ ∪ {xi : ∆(d)(ki)[τ/α]} ⊢ ei : σ
Γ ⊢ case e of {ki xi 7→ ei | i ≤ n} : σ

Figure 2.2: The typing rules for expressions.

Definition 2.14. The typing judgement Γ ⊢ θ : Γ′, for a substitution θ, indicates that
Γ ⊢ θ(x) : τ for all x : ∀α1, . . . , αn. τ ∈ Γ′, where the type variables α1, . . . , αn do
not appear freely in Γ. In which case, by induction, the homomorphic extension of θ
preserves the well-typedness of expressions under the environment Γ′, transforming
the judgement Γ′ ⊢ e : τ into Γ ⊢ eθ : τ .

Definition 2.15. A Σ-program P , for some closed type environment Σ, is a substi-
tution such that Σ ⊢ P : Σ. That is, a program maps each variable in the environ-
ment f : ∀α1, . . . , αn. τ ∈ Σ to an expression P (f) such that the typing judgement
Σ ⊢ P (f) : τ holds. Note that these definitions may themselves contain variables
from the environment Σ, and thus allow for (mutually) recursive functions.

For a given program, we refer to the corresponding type environment Σ as the
program environment and will typically reserve Σ for this role. Any variable bound
by the program, i.e. an element of dom(Σ), will be referred to as a program variable,
for which we reserve f, g, h. In general, we assume that any given type environment
only map program variables to proper type schemes, and any other variables are as-
signed monomorphic types. That is to say all type environments should decompose
into a program environment Σ and a local environment Γ such that only Σ contains
proper type schemes. This restriction corresponds to the fact that we do not permit
higher-ranked types and, therefore, any variables bound within an expression will be
monomorphic.

Definition 2.16. A (well-typed) expression e is said to be closed, with respect to a
given Σ-program, if its free variables are contained within Σ, i.e. Σ ⊢ e : τ for some
type τ .
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Aswith datatype environments, wewill typically present programs usingHaskell-
esque syntax as a set of equations. For example, the program in Figure 2.3 is to
be understood as assigning the program variable map to an expression with two λ-
abstractions that performs case analysis on its second argument in the body.

map : (α → β) → List α → List β
map f [] = []
map f (x :: xs) = f x :: map f xs

Figure 2.3: The definition of the map function.

Our type system is sufficient to ensure that programs don’t go wrong in a very
basic sense, e.g. expressions evaluating to a datatype are not treated as a function.
However, programs can still get stuck due to inexhaustive pattern-matching expres-
sions. The existence of such scenarios is the subject of the next chapter of this thesis.
However, we will sometimes rely on a simple, conservative approximation of this
property that is easily checked by compilers.

Definition 2.17. A program or expression is said to be exhaustive if it is well-typed
under the following refinement of the typing rule for case expressions:

Γ ⊢ e : d τ (∀i ≤ n) Γ ∪ {xi : ∆(d)(ki)[τ/α]} ⊢ ei : σ
Γ ⊢ case e of {ki xi 7→ ei | i ≤ n} : σ

in which, additionally, dom(∆(d)) is required to be a subset of {k1, . . . , kn}, i.e. each
possible constructor of the datatype d has a corresponding case. Otherwise, we say it
is inexhaustive.

For example, the aforementioned map function is considered exhaustive as the sole
case expression has a branch for each constructor associated with the List datatype
identifier, i.e. [] and ::. In contrast, the head function defined in the introduction is
inexhaustive.

2.2 Operational Semantics

The semantics of MiniHask programs are given operationally as a reduction relation.
In subsequent chapters, we will study equational properties over expressions where
its operational semantics serves as a basis for symbolic reasoning. To minimise book-
keeping required when manipulating these expressions, we restrict our attention to
those without binders, following the approach of Zeno that distinguishes applicative
“terms” from “expressions” [32].
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Definition 2.18. An applicative expression is an expression without binders, and an
applicative context is just an applicative expression with a distinguished “hole” vari-
able appearing exactly once. These two categories are formally defined by the follow-
ing grammar:

a, b ::= x | k | a b
C[·] ::= · | C[·] a | a C[·]

As usual, we write C[a] to denote the applicative expression that results from
instantiating the hole with the applicative expression a.

It is not possible to simply unfold program definitions without introducing non-
applicative expressions. Instead, we determine a series of applicative rewrite rules
from a given program, effectively recovering the equation presentation of a program.
Defining the reduction relation in this manner is also motivated by the desire to lever-
age well-established results concerning rewrite systems in subsequent chapters.

Definition 2.19. A definitional expression is an element of the following grammar:

d ::= λx. d | case x of {k1 x1 7→ d1; . . . ; kn xn 7→ dn} | a

where a is an arbitrary applicative expression.

To construct the reduction relation, the program is first transformed so that each
function definition is a definitional expression. This initial pre-processing is done by
abstracting over the scrutinee of case expressions and then lifting any λ- or case-
expressions into new top-level definitions when appearing in a non-definitional po-
sition, e.g. an argument. We do not formally justify the semantic preserving nature
of such a transformation as λ-lifting is a standard technique and its extension to han-
dle case expressions in this manner is merely an instance of β-expansion [48]. Thus,
without loss of generality, wewill assume programs only bind variables to definitional
expressions.

2.2.1 Incremental Matching

Definitional expressions correspond closely to the “definitional trees” used to define
strictly orthogonal rewrite systems, i.e. systems that distinguish between construc-
tors and defined functions and for which there are no overlapping rules [49]. The
advantage of presenting rewrite rules as definitional trees is that they provide addi-
tional control, analogous to fixing an evaluation strategy but for matching, making it
easier to prove basic properties about the system such as confluence. In our case, the
reduction relation is derived from the following matching operation.

Definition 2.20. Incremental matching d a1 · · · an ⇓θ a is a partial function from
a definitional expression d, a series of applicative arguments a1 through to an, and a
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substitution θ, to an applicative expression a, which is defined in Figure 2.4 by recur-
sion over the definitional expression d. For this function, we assume the substitution
only contains applicative expressions.

a a1 · · · an ⇓θ aθ a1 · · · an

d a2 · · · an ⇓θ∪{x 7→a1} a

(λx. d) a1 · · · an ⇓θ a

di a1 · · · am ⇓θ∪{xi 7→b} a
θ(x) = ki b1 · · · bℓ

case x of {ki xi 7→ di | i ≤ n} a1 · · · am ⇓θ a

Figure 2.4: The incremental matching function.

Intuitively, incremental matching permits the minimal amount of reduction nec-
essary to eliminate a definitional expression, which may contain binders, resulting in
an applicative expression that does not. For simplicity, the substitution is accumu-
lated in the judgement instead of being directly applied to the definitional expression
as this would result in a non-definitional expression.

Definition 2.21. For a given program P , we define the one-step reduction relation as
the least binary relation on applicative expressions such that:

C[f a1 · · · an]→P C[a]

whenever f is program variable for which P (f) a1 · · · an ⇓∅ a.
The (many-step) reduction relation→∗

P is then defined as the reflexive-transitive
closure of the one-step rewrite relation.

The program’s reduction relation alternates between exposing definitional expres-
sions and eliminating them via incremental matching. Note that incremental match-
ing must entirely eliminate the definitional expression before the reduction relation
can move on to another sub-expression. In particular, incremental matching can-
not reduce the expression that becomes the scurtinee of a case expression. How-
ever, as definitional expressions only pattern-match against λ-bound variables, their
scurtinees are only instantiatedwith sub-expressions that can be reduced in a separate
reduction step.

Lemma 2.1. Let P be a Σ-program. If Σ ∪ Γ ⊢ f a1 · · · an : τ is an applicative
expression and P (f) a1 · · · an ⇓∅ b is defined, then Σ ∪ Γ ⊢ b : τ .

Corollary 2.2. Let P be a Σ-program. If Σ ∪ Γ ⊢ a : τ is an applicative expression
and a→∗

P b, then Σ ∪ Γ ⊢ b : τ .
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The correspondence between incrementalmatching and a set of strictly-orthogonal
rewrite rules is captured by the following two lemmas. The first show that incremen-
tal matching is closed under substitution and the application of additional arguments.
Consequently, it is sufficient to consider a subset of incremental matches, i.e. instances
of the incremental matching relation, as the underlying rewrite rules of the reduction
relation from which all other incremental matches can be derived by instantiation.

Lemma 2.3. If P (f) a1 · · · an ⇓∅ a, then P (f) a1θ · · · anθ ⇓∅ aθ for any sub-
stitution θ and P (f) a1 · · · an an+1 · · · am ⇓∅ a an+1 · · · am for any applicative
expressions an+1, . . . , am.

The second lemma characterises such a subset of incremental matches as those
linear, applicative expressions without program variables, referred to as patterns.

Definition 2.22. Formally, a pattern is an element of the following grammar:

p, q ::= x | k p1 · · · parity(k)

where x /∈ dom(P ) and each variables appears in at most one position, i.e. for any
variable x there is at most one applicative context C[·] for which p = C[x].

Note that, as constructors must be fully applied in a pattern, only variables are
matched against higher-order expressions.

Lemma 2.4. If P (f) a1 · · · an ⇓∅ a, then there exists some patterns p1, . . . , pn
such that FV(pi) ∩ FV(pj) = ∅ for all i ̸= j and a substitution θ such that piθ = ai

for all i ≤ n for which P (f) p1 · · · pn ⇓∅ is defined.

Proof. For this proof, we must first consider which generalisations of incremental
matches are admissible. The following lemma implies that any sub-expressions that
are applications with constructors in head position can be generalised.

Lemma 2.5. If P (f) a1θ · · · anθ ⇓∅ a but P (f) a1 · · · an ⇓∅ is undefined, then
θ(y) is of the form k b1 · · · barity(k) for at least one variable x ∈

⋃
i≤n FV(ai).

Now suppose P (f) a1 · · · an ⇓∅ a is defined and consider the minimal linear-

generalisation of the arguments to patterns p1, . . . , pn by a substitution θ such that
piθ = ai for all i ≤ n. The patterns are linear in that FV(pi) ∩ FV(pj) = ∅ for all
i ̸= j as well as the requirement that each variable appears in at most one position
within a given pattern. Here, minimality refers to the subsumption order where p
is said to be at least as general as q just if pθ = q for some substitution θ. The
existence of a minimal linear-generalisation is plain to see by structural induction
over the expressions.

If P (f) p1 · · · pn ⇓∅ were not defined, then Lemma 2.5 would imply that there
is some variable x for which θ(x) is of the form k b1 · · · bm, where m is the ar-
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ity of k. However, if this were the case, then p1, . . . , pn and θ cannot be a mini-
mal linear-generalisation as we could consider the less general sequence of patterns
(p1, . . . , pn)[k x1 · · · xm/x] where x1, . . . , xm are fresh variables and the corre-
sponding substitution θ′ defined as:

θ′(z) =

bi if z = xi

θ(z) otherwise

Thus P (f) p1 · · · pn ⇓∅ is defined as required.

Having shown that all incremental matches can be generated from patterns, it
is easy to see that the program’s reduction relation corresponds to a set of rewrite
rules where the left-hand sides are of the form f p1 · · · pn for some program variable
f ∈ dom(P ) and a linear series of patterns.

Corollary 2.6. The least binary relation such that C[f p1θ · · · pnθ] →P C[aθ]

whenever P (f) p1 · · · pn ⇓∅ a and FV(pi) ∩ FV(pj) = ∅ for all i ̸= j is exactly the
one-step reduction relation.

The rewrite system is clearly orthogonal as any overlapping matches are resolved
by stability, see Lemma 2.3, and it is well-known that such systems are locally conflu-
ent. Finally, assuming the program is terminating in that there are no infinite reduc-
tion sequences a1 →P a2 →P · · ·, we can show that every expression has a unique
normal form, written a↓P , i.e. there is a unique expression b such that a→∗

P b but for
which there does not exist an expression c such that b→P c.

Theorem 2.7. If a →P b1 and a →P b2, then there exists an applicative expression
c such that b1 →∗

P c and b2 →∗
P c.

Corollary 2.8. Suppose P is a terminating program. Then, for any applicative ex-
pression a, the unique normal form a↓P is well defined.

2.2.2 Contextual Equivalence

The closed normal forms of a datatype can be characterised by applications with con-
structors in head position; when all case expressions are exhaustive, any program
variable becomes reducible once fully applied to closed arguments. This lemma is of
particular importance as it allows us to justify case analysis on datatype expressions.

Lemma 2.9. If P is an exhaustive Σ-program, then the normal form a↓P of a closed
expression Σ ⊢ a : d τ1 · · · τn is necessarily of the form k a1 · · · am for some
k ∈ dom(∆(d)).
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Unfortunately, no such characterisation is possible for normal forms of higher-
order type as they may only become reducible when provided with additional argu-
ments. As a result, although the reduction relation is confluent, it is not sufficient to
define the equivalence of closed expressions in purely syntactic terms via their normal
forms. Instead, we employ contextual equivalence — the inability of the program to
distinguish expressions by a certain class of contexts. In our case, we assume a nullary
datatype identifier Bool ∈ D with two constructors False, True : Bool ∈ ∆(Bool)

that serve as a the basis for distinguishable values.

Definition 2.23. For a Σ-program P , we write a ≡P b for two closed, applicative
expressions of the same type Σ ⊢ a, b : τ such that (C[a])↓P = (C[b])↓P for all
Boolean-valued typed contexts Σ ∪ {x : τ} ⊢ C[x] : Bool. In which case, we say
they are P -equivalent.

Lemma 2.10. For any well-typed program, equivalence is a congruence relation that
contains the reduction relation. That is, it is closed under reflexivity, symmetry, tran-
sitivity, congruence, and reduction.

It is worth noting that, as we only consider applicative contexts, equivalence
can be overly permissive. For example, in order to distinguish the two functions
λf. f False True and λf. f True False it is necessary to provide a function such
as λx y. x as an argument. However, there might not be a program variable assigned
to this definitional expression, in which case we cannot construct an applicative con-
text that distinguishes the two expressions. To resolve this problem, we assume the
program already includes a complete set of combinators, such as S, K, and I, as well
as pattern-matching primitives for each datatype identifier, e.g. a program variable
caseNat of type Nat → α → (Nat → α) → α with the obvious definitions.
These combinators allow us to construct applicative contexts that simulate any non-
recursive expression, giving us a precise notion of contextual equivalence [50].

As expected, datatype expressions are contextually equivalent just if they result
in matching constructors and all their arguments are also contextually equivalent.
For expressions of a function type, equivalence asserts that they produce equivalent
results on all equivalent arguments, thus satisfying function extensionality. Although
the proof of function extensionality is outside the scope of this thesis, informally, it
follows form the fact that definitional expressions can only branch according to the
value of a datatype sub-expression and thus expressions of a function type can only
be distinguished once fully applied.

Lemma 2.11. Let P be an exhaustive Σ-program. If Σ ⊢ a, b : d τ1 · · · τn are two
P -equivalent applicative expressions, then a→∗

P k a1 · · · am and b→∗
P k b1 · · · bm

for some k ∈ dom(∆(d)) where ai ≡P bi for all i ≤ m. Furthermore, the converse
holds by congruence.
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Lemma 2.12. Let P be an exhaustive Σ-program. If Σ ⊢ a, b : τ → σ are two
P -inequivalent applicative expressions, then there exists some Σ ⊢ c : τ such that
a c ̸≡P b c. Again, the converse holds by congruence.

2.2.3 An Aside on the Issue of Semantics

Haskell has become known as the de facto lazy programming language where, for
example, it is a common idiom to take a prefix of an infinite list. The assumption
that MiniHask programs terminate without regard to evaluation context, however,
means that MiniHask programs can only simulate programs which behave equiva-
lently under strict semantics; in particular, first-order datatypes must correspond to
inductively defined finite trees. Despite this mismatch, it is by design that MiniHask
is restricted in this manner, as variables should only be bound to finite values in order
to be amenable to proof by induction. Furthermore, it is generally acknowledged that
functional programmers are used to reasoning under the assumption that values are
finite [51]. For example, if we consider infinite values, it would no longer be the case
that the equation leq x x = True holds as the left-hand side might diverge.

Although one could instead imagine an equation conditional on the finiteness of a
value, e.g. isFinite x⇒ leq x x = True, constructing a meaningful proof system
for such properties remains challenging. Denotationally, infinite values are defined
in domain theory as the least-upper bound of a chain of finite approximations [52].
In order to perform induction over domains, it is necessary to restrict our attention
to continuous or “admissible” properties. However, conditional equations such as
x = S x⇒ True = False, which only holds of finite values, are not monotonic and,
therefore, cannot be continuous.

Another common approach to reasoning about the equivalence of semantically
infinite values is via bisimulation, which argues coinductively that no finite sequence
of observations can distinguish two expressions [53]. Taking constructors as the basis
for observation works well for closed expressions, but an effective proof system must
also be able to construct a bisimulation for all instances of open expressionswhere free
variables might prevent observation. Consider, the expression leq x x as an example.
In order to make an observation, we must perform case analysis on the variable x but,
under the substitution x 7→ S x′, no progress can been made as the expression merely
reduces to leq x′ x′ without producing a constructor. Thus one must appeal to some
form of induction in order to consider all ground instances. Alternatively, a proof
system based on bisimulation could incorporate reduction steps as observations and
thusmake progress even on open expressions. However, it is then necessary to choose
between strong bisimulation where expressions are equivalent only if they reduce in
parallel, so that leq x x = True does not hold, or weak bisimulation which doesn’t
support standard equational reasoning within proofs [54, 55, 56].



Chapter 3

Intensional Datatypes

A scalable approach to the pattern-matching safety problem

3.1 Introduction

The pattern-match safety problem is to determine whether a given program can crash
due to a non-exhaustive pattern-matching expression. One solution is to use a cover-
age checker that ensures all pattern matches are exhaustive for the entire datatype, as
in Definition 2.17 [57, 58]. This approach disregards the possibility that some omitted
cases are never actually reached and forces the programmer to code defensively, writ-
ing code they know will never be executed or refactoring their datatypes accordingly.

Consider, for example, the program in Figure 3.2 that converts arbitrary propo-
sitional formulas, defined by the following datatypes, into disjunctive normal form
(represented as a list of lists of literals).

data Lit α data Fm α
= Atom α = Lit (Lit α)
| NegAtom α | And (Fm α) (Fm α)

| Or (Fm α) (Fm α)
| Not (Fm α)

Figure 3.1: Algebraic datatypes representing literals and
propositional formulas.

The formula is first transformed into negation normal form by the nnf function,
whereby any Not constructors are recursively eliminated from the formula, before
being passed to the nnf2dnf function. Although the latter function uses an inex-
haustive pattern-matching expression, i.e. it doesn’t have a clause corresponding to
the Not constructor, if nnf has been implemented correctly no pattern-matching error
will occur at runtime, and it would be redundant to provide such a clause. As it hap-

21
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pens, there is a bug (highlighted in the program) that can cause a pattern-matching
error to occur at runtime. Instead of correctly deriving the negation normal form of
the first conjunct, it is merely wrapped in the Not constructor and will ultimately
reach the inexhaustive pattern-matching expression in nnf2dnf.

dnf : Fm α → List (List α)
dnf = nnf2dnf ◦ nnf

nnf2dnf : Fm α → List (List α)
nnf2dnf (Lit a) = [[a]]
nnf2dnf (And p q) =

[ append xs ys,
| xs ← nnf2dnf p,

ys ← nnf2dnf q
]

nnf2dnf (Or p q) =
append (nnf2dnf p) (nnf2dnf q)

nnf : Fm α → Fm α
nnf (Lit l) = Lit l
nnf (And p q) =

And (nnf p) (nnf q)
nnf (Not (And p q)) =

Or (Not (nnf p)) (nnf (Not q))
...

Figure 3.2: A program snippet that converts arbitrary propositional
formulas to disjunctive normal form.

In this chapter, we present a refinement type system that can be used to auto-
matically detect possible pattern-matching errors or verify their absence. With our
compositional and incremental approach, type inference can easily be incorporated
into modern development environments. In particular, this means that open pro-
gram expressions can be analysed, and only the modified parts of the code need to
be reanalysed as changes are made. Our prototype implementation exhibits excel-
lent performance, processing a range of production-scale packages from the Hackage
database in the order of seconds.

3.1.1 Intensional Datatype Refinements

Sound and terminating program analyses are often conservative — there are programs
without bugs that are rejected. Nevertheless, it is helpful to provide a large fragment
of safe programs for which the analysis is guaranteed to be correct as this gives the
programmer the opportunity to take action, such as by programming more defen-
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sively, in order to manipulate their program into this fragment and thus be certain
of verification success. One such fragment that we have already seen is restricted
to exhaustive case expressions; our type system provides a tighter-bound with the
following features:

• The set of datatypes is “completed” by adding all datatypes obtained by remov-
ing constructors from datatypes provided by the programmer. The key restric-
tion is that the removal of constructors applies recursively, giving rise to inten-
sional refinements. For example, the type of formulas in negation normal form
is an intensional refinement that intuitively corresponds to the following data
declaration:

data NNF α
= Lit (Lit α)
| And (NNF α) (NNF α)
| Or (NNF α) (NNF α)

Figure 3.3: An intensional refinement that is included in the
completed environment.

Notice how not only is the Not constructor absent from this datatype, but every
recursive occurrence of a formula is also required to be in negation normal form.
In this way, intensional refinements can be seen as inductive invariants.

• Unlike the original set of datatypes, constructors no longer belong to a sin-
gle datatype. Therefore, there is a natural notion of subtyping between inten-
sional refinements incorporated into the type system through an unrestricted
subsumption rule. Subtyping allows for increased compositionality, e.g. a con-
junction of literals can always be passed to a function expecting a formula in
negation normal form.

• The typing rule for case expressions enforces that the patterns are exhaustive
with respect to the refinement type ascribed to the scrutinee. This constraint
ensures that the analysis of matching is sound. In particular, programs can
omit branches of a case expression just if typing of the scrutinee indicates that
they are unreachable.

• Moreover, the typing rule for case expressions is path-sensitive so that the re-
turned type only depends on those branches that are indeed reachable according
to the type of scrutinee. Although path-sensitivity foregoes principal typing, it
allows for increased precision in exchange. Path-sensitivity is essential for han-
dling typical use cases where a single large datatype is defined, but parts of the
program only work within a given fragment. Such scenarios are particularly
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common in Elm-style web applications where certain pages may only be pre-
pared to handle a subset of events defined by a global datatype.

The following function, for example, can be assigned two refinement types,
neither of which can be substituted for the other: (α→ β)→ Fm α→ Fm α as
well as (α→ β)→ NNF α→ NNF α.

fmMap f (Lit a) =
Lit (litMap f a)

fmMap f (And p q) =
And (fmMap f p) (fmMap f q)

fmMap f (Or p q) =
Or (fmMap f p) (fmMap f q)

Figure 3.4: A function with no principal type.

To account for the lack of principal typings, our type system permits environ-
ments with more than one refinement type binding for each free program vari-
able, i.e. an environment-level intersection, making it a polyvariant analysis [59]

3.1.2 Compositionality and Complexity

Our analysis takes the form of a type inference procedure for the system described
above. As is typical, inference proceeds by generating and solving typing constraints
rather than directly considering all possible typings. The constraints represent the
flowof data and can be conditional on the presence of certain constructors in datatypes
in order to account for path-sensitivity.

A key goal of ourwork is to give some guarantee of the scalability of the analysis to
large, real-world programs. We do this by ensuring that type inference, i.e. constraint
generation and constraint solving, is linear in the size of the program. This complexity
guarantee is achieved by exploiting compositionality in the type inference algorithm.

Compositional program analysis computes a summary of the behaviour of each
component separately, such as a set of constraints in solved form that restrict the
safe instances of a type scheme. For a component fi, however, the size of its sum-
mary depends not only on its own complexity but also the size of summaries for
f1, . . . , fi−1 on which it may depend. In effect, summaries are duplicated under
polyvariant analyses and can lead to a whole program analysis that is exponential in
the number of components [22]. Even for non-polyvariant analyses, where there is
no duplication, summaries can be quadratic in the number of components and have a
cubic time lower bound on their solvability [23, 24]. Since this blow-up can often oc-
cur in practice, there is an extensive literature on simplification techniques by which
large summaries may sometimes be replaced by more concise equivalents [22, 60, 61].
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However, these approaches tend to be heuristical meaning that there will always be
reasonable programs for which the heuristics are not well-tuned1.

By contrast, the summaries of our system are designed so that their complexity
doesn’t increase with the number of dependencies but is instead bounded by the size
of the component’s “interface”, i.e. the number of datatype identifiers in its under-
lying type scheme. We can thus guarantee a (parameterised) linear-time complexity
for the overall analysis, as our compositional approach ensures that each set of con-
straints is unrelated to the size of the program. This remarkable property follows from
Theorem 3.12:

Suppose C is a set of constraints in solved form and I is an arbitrary
subset of its refinement variables. Let C↾I , referred to as the restriction
of C to I , be those constraints in C that only concern the variables from
I . Then every solution to C↾I can be extended to a solution to C .

In the restriction C↾I , entire constraints are culled, including those involving a
mixture of variables from both I and V \ I , where V is the total set of refinement
variables. Intuitively, these mixed constraints impose compatibility requirements on
the different components. What is significant about the above property is that the
solved form guarantees not only that the part of the constraints concerned with V \ I
are internally consistent but, moreover, that the mixed constraints will be satisfiable
no matter which solution to C↾I is chosen.

Theorem 3.12 relies on the existence of a most-general solution to non-interface
variables, i.e. V \I , with respect to interface variables. Any constraint systemwith the
property of having most-general solutions can be used to perform a whole program
analysis that is linear in the number of components. Such systems form “cylindric al-
gebras” which are Boolean algebras with an internal notion of projection — a seman-
tic analogue of existential quantification [19]. This framework includes the standard
Hindley-Milner type systems via equality constraints (whereby the most-general uni-
fier provides an appropriate solution to non-interface variables) and its extension to
Haskell-style typeclass constraints. Nevertheless, this property should not be over-
looked as we are unaware of any path-sensitive, polyvariant analysis satisfying it; in
our case, it is only achieved through the novel, intensional restriction on datatype
refinements.

Implementation

It is worth noting that our complexity analysis relies on the assumption that other
parameters, such as the size of underlying types and size of the program, has a fixed
upper-bound. The processes of computing a solved form that is sufficient to guarantee

1Although the “constraint abstraction” technique guarantees a quadratic complexity, it is limited to
simple variable-variable constraints [62].
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the above property is not straightforward. Our constraint solver, which is inspired by
the resolution-based approach used in set constraint based program analysis [20, 63]
and optimal solutions to the HORNSAT problem [64, 65], is worst-case exponential
time in the number of constructors and refinement variables appearing in the inter-
face.

Of course asymptotic complexity is only part of the story, and especially so when
the constant factors depend upon several assumptions. Hence, we have implemented
our system as a core plugin for GHC and tested it on a selection of packages from the
Hackage database. The plugin takes a Haskell module to be compiled and performs
our type inference algorithm to output a function summary for each top-level defini-
tion, as well as any type errors encountered. The average time taken to process each
module is in the order of seconds and the results show very stark contrast between the
total number of refinement variables generated during type inference (often greater
than 10000) and the number of refinement variables in the interfaces (typically less
than 20). As the number of variables with respect to which saturation is computed
significantly contributes to the complexity of saturation, the scale of this reduction
illustrates the importance of our restriction result.

3.2 Declarative System

3.2.1 Intensional Datatype Environment

In this chapter, we assume a fixed datatype environment∆, which we will refer to as
the underlying datatype environment and think of as being specified by the program-
mer via datatype definitions. We also define D ⊆ D as the set of datatype identifiers
appearing in the type schemes of this environment. Throughout, we will use the fol-
lowing datatypes — a locally nameless representation of a λ-calculus with arithmetic
constants — as a running example of the underlying datatype environment.

data Lam data Arith
= Cst Arith = Lit Int
| BVr Int | Add
| FVr String | Mul
| Abs Lam
| App Lam Lam

Figure 3.5: Algebraic datatypes representing locally nameless
λ-terms with arithmetic constants.

Within this chapter, other than the underlying environment, we will use a more
general definition of datatype environments that can be relations between construc-
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tors and type schemes, rather than mere functions, and likewise for the type envi-
ronments. That is to say constructors and program variables may be equipped with
several type schemes. This flexibility is important as constructors may belong to dif-
ferent refinements of the same underlying datatype and, as discussed in the preceding
section, there are no longer principal types for functions defined within the program.

Datatype environments are, however, restricted so that each datatype identifier as-
signs unique argument types of its inhabiting constructors. Thus, first-order datatypes
resemble deterministic top-down tree automata. It is through this constraint that we
only consider intensional refinements, whereby refinements must be applied consis-
tently to the entire datatype environment; in particular, recursive occurrences of a
datatype identifier inherit the same refinement.

Definition 3.1. A datatype environment ∆ ⊆ K× Sch is a binary relation between
constructors and closed type schemes such that:

• As usual, for each k : ρ ∈ ∆, the type scheme ρ is of the form:

∀α1 · · ·αarity(d). τ1 → · · · → τarity(k) → d α1 · · · αarity(d)

• Moreover, the restricted datatype environment ∆(d) ⊆ ∆, i.e. those typings
k : ρ where the type scheme ρ ultimately returns an instance of the datatype
identified d ∈ D, is functional.

Definition 3.2. As relations between constructors and their type schemes, datatype
environments are naturally ordered by inclusion written ∆1 ⊆ ∆2. In which case,
we say ∆1 is a (intensional) refinement of ∆2.

data CloApp data LArith
= Cst LArith = Lit Int
| App CloApp CloApp | Add

Figure 3.6: Datatypes representing an intensional refinement of
λ-terms and arithmetic constants.

As datatype environments must assign unique type schemes to constructors for
each given datatype identifier, the refinements of a given environment are determined
just by the set of constructors associated with a given datatype identifier. More pre-
cisely, each function ϕ : D→P(dom(∆))maps a datatype identifier d ∈ D to a sub-
set of constructors from dom(∆(d)) determines an intensional refinement ∆ϕ ⊆ ∆

containing k : σ ∈ ∆ϕ just if k : σ ∈ ∆(d) and k ∈ ϕ(d). We write Refine(∆) for
the set of such refinement functions. Consider, for example, the intensional refine-
ment of our underlying environment∆ presented in Figure 3.6 that describes closed,
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applicative λ-terms with linear arithmetic. This datatype environment is determined
precisely by a function ϕ1 mapping the datatype identifier Lam to the set {Cst, App}
and, likewise, mapping Arith to the set {Lit, Add}.

For most typical programs, no one refinement environment will be universally
applicable. Therefore, programs are assigned types under an expanded datatype en-
vironment consisting of all possible intensional refinements of the underlying envi-
ronment.

Definition 3.3. For each underlying datatype identifier d ∈ D and refinement func-
tion ϕ ∈ Refine(∆), we assume there is an intensional datatype identifier, written
injϕ(d) ∈ D, that is not an element of D. We write D∗ ⊆ D for the set of inten-
sional datatype identifiers and, likewise, wewriteDt∗ for the set of derived intensional
datatypes. These datatype identifiers inherit their arity from the underlying datatype
identifier, i.e. arity(injϕ(d)) = arity(d).

To help differentiate intensional datatype identifiers from their underlying coun-
terparts, we will use d for elements ofD and d for elements ofD∗. Likewise, we will
use τ to range over those types with underlying datatype identifiers Ty(D), in con-
trast to τ , which ranges over types constructed from intensional datatype identifiers
Ty(D∗). These types (or type schemes) are referred to as refinement types, and we
refer to type environments with intensional datatype identifiers as refinement envi-

ronments.

Definition 3.4. The intensional refinement environment ∆∗, is the coproduct of all
intensional refinements of the underlying environment:

∆∗ :=
⊔

ϕ∈Refine(∆)

{
k : injϕ(ρ) | k : ρ ∈ ∆ϕ

}
where injϕ(ρ) denotes the type scheme derived from ρ by replacing all underlying
datatype identifier with their intensional refinement.

The intensional refinement environment contains a distinguished datatype iden-
tifier for every intensional refinement. For example, the aforementioned refinement
of λ-terms to closed, applicative terms over linear arithmetic occurs within ∆∗ as
injϕ1

(Lam) alongside the type of closed, applicative λ-terms with arbitrary arithmetic
which is represented by injϕ2

(Lam) under the definition ϕ2(Lam) = {Cst, App} and
ϕ2(Arith) = {Lit, Add, Mul}. Importantly, both these types can be used within the
same program under our refinement type system even though they are derived from
distinct intensional refinements. We shall write CloAppLin and CloApp to denote the
datatypes injϕ1

(Lam) and injϕ2
(Lam) respectively. Note, that underlying datatypes are

also reflected in the intensional datatype environment by the trivial refinement ϕ∗,
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which maps each d ∈ D to the complete set of constructors dom(∆(d)). Thus, we
will sometimes identify d ∈ D with its trivial refinement injϕ∗

(d) ∈ D∗.

Definition 3.5. For a refinement type or type scheme τ , the corresponding under-

lying type or type scheme, written U(τ) is an underlying type defined recursively as
follows:

U(∀α. ρ) := ∀α.U(ρ)
U(τ1 → τ2) := U(τ1)→ U(τ2)

U(injϕ(d) τ1 · · · τn) := d U(τ1) · · · U(τn)

In subsequent sections, we will assume that we are given a program equipped
with a complete underlying typing; that is, every sub-expression is associated with a
unique underlying type. Our task will be to find refinement types for expressions and
a refinement environment for the program, whose underlying types coincide with the
original.

3.2.2 Subtyping Relation

As we have already seen, datatype environments can be ordered by the set of con-
structors they support. In the intensional refinement environment, the combination
of datatypes from different intensional refinements gives rise to a more substantial
notion of refinement between individual types.

(SShape) U(τ) ̸= U(σ)
τ ̸⊑ σ

(SMis) dom(∆∗(d1)) ̸⊆ dom(∆∗(d2))
d1 τ ̸⊑ d2 σ

∆∗(d1)(k)i[τ/α] ̸⊑ ∆∗(d2)(k)i[σ/α](SSim) k ∈ dom(∆∗(d1))
i ≤ arity(k)d1 τ ̸⊑ d2 σ

τ2 ̸⊑ τ1(SArrL)
τ1 → σ1 ̸⊑ τ2 → σ2

σ1 ̸⊑ σ2(SArrR)
τ1 → σ1 ̸⊑ τ2 → σ2

Figure 3.7: The complement of the subtyping relation.

Definition 3.6 (Subtyping). The subtyping relation τ ⊑ σ is defined coinductively
via its complement, which is characterised inductively by the inference rules in Fig-
ure 3.7. For type schemes, we define ∀α. τ ⊑ ∀α. σ simply as τ ⊑ σ.
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Furthermore, we write Γ ⊑ Γ′ when, for all x : ρ ∈ Γ′, there exists x : ρ ∈ Γ

such that ρ ⊑ ρ′ (recall that refinement type environments may contain several types
associated with a single variable).

Lemma 3.1. Subtyping is a preorder, i.e. it is reflexive and transitive.

We give the definition of subtyping coinductively because, as usual, there is a
notion of simulation that arises naturally from our coalgebraic view of datatype envi-
ronments. Consequently, it is most straightforward to think of the inference rules as
constructing finite refutations of subtype inequalities τ1 ̸⊑ τ2, which ultimately fail to
hold either because the types τ1 and τ2 have a different underlying shape, or because
τ1 provides some constructor that τ2 does not. Returning to our running example, the
fact that CloAppLin → String is not a subtype of CloApp → String can be wit-
nessed by the following derivation that relies on Mul ∈ injϕ1

(Arith) \ injϕ2
(Arith).

(SMis) ϕ1(Arith) ̸⊆ ϕ2(Arith)injϕ1
(Arith) ̸⊑ injϕ2

(Arith)
(SSim)

CloApp ̸⊑ CloAppLin
(SArrL)

CloAppLin→ String ̸⊑ CloApp→ String

Conversely, we can use the coinduction principle to show that τ1 ⊑ τ2 by con-
structing amodel of the subtyping relation that contains the pair of types in question,
i.e. a set of pairs whose complement satisfies all defining rules from Figure 3.7. For
example, the subtyping CloApp → String ⊑ CloAppLin → String is witnessed
by the following model:

(CloApp→ String, CloAppLin→ String),

(CloAppLin, CloApp), (String, String),

(injϕ2
(Arith), injϕ1

(Arith)), (Int, Int)


Such models quickly become unwieldy when the types increase in complexity as

they contain redundant information. For example, the first pair of types (CloApp →
String, CloAppLin → String) is already implied by the two subsequent pairs
(CloAppLin, CloApp) and (String, String) as a result of the rules for subtyping
function arrows. We can improve this situation by observing that the definition of a
model is approximated by a coinductive part, concerning just datatypes, and an in-
ductive part, by which a subtyping relationship between datatypes is then lifted to all
types. Consequently, we need only find amodel of the coinductive part. In Lemma 3.2,
we formalise this argument by lifting of a well-behaved relation between datatypes to
a model of subtyping. As a result, we can derive the aforementioned subtyping by ex-
hibiting the simpler relation: {(injϕ2

(Arith), injϕ1
(Arith)), (CloAppLin, CloApp)}.
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Ty(R)(α, α)
(d1 τ , d2 σ) ∈ R

Ty(R)(d1 τ , d2 σ)

Ty(R)(τ ′, τ) Ty(R)(σ, σ′)

Ty(R)(τ → σ, τ ′ → σ′)

Figure 3.8: Inductively defined rules for simulation.

Definition 3.7. Let R ⊆ Dt∗ × Dt∗ be a binary relation on intensional datatypes.
Then its lifting to types, written Ty(R), is defined inductively by the inference rules
in Figure 3.8.

Lemma 3.2 (Simulation). Suppose R ⊆ Dt∗ × Dt∗ is a binary relation on inten-
sional datatypes such that, for any pair of intensional datatypes (d1 τ , d2 σ) ∈ R and
constructor k ∈ dom(∆∗(d1)), the following properties hold:

1. k ∈ dom(∆∗(d2))

2. U(d1 τ) = U(d2 σ).

3. Ty(R)(∆(d1)(k)[τ/α]i, ∆(d2)(k)[σ/α]i) for all i ≤ arity(k).

Then it follows that Ty(R) is included in the subtyping relation.

3.2.3 Refinement Type System

In this section, we present a refinement type system whose purpose is to exclude the
possibility of pattern-matching errors. To achieve this, the typing rule for pattern-
matching expressions requires that cases are exhaustive according to the type of the
scrutinised expression. However, the use of intensional refinements means that the
scrutinised expression can be given amore precise type than is possible in the underly-
ing type system. Its refinement type allows the system to safely conclude that it never
evaluates to certain constructors, i.e. those not included according to its refinement
function. Thus, the case expression can be deemed exhaustive despite constructors
from the underlying type not being handled, distinguishing this system from exhaus-
tivity as defined in Definition 2.17.

As our generalisation of type environments allow for multiple types, top-level def-
initions can be given several type schemes, which is equivalent to allowing environment-
level intersection types. However, all types assigned to a given variable will refine the
same underlying type.

Definition 3.8. The type assignment system Γ ⊩ e : τ is defined inductively by the
inference rules in Figure 3.9. Note that these derivations ensure that U(Γ) ⊢ e : U(τ),
where U(·) distributes over environments in the obvious way.
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(TVar) x : ∀α. τ ∈ Γ
Γ ⊩ x : τ [σ/α]

Γ ⊩ e : τ
(TSub) τ ⊑ σ

Γ ⊩ e : σ

(TCon) k : ∀α. τ ∈ ∆∗(d)
Γ ⊩ k : τ [σ/α]

Γ ∪ {x : τ} ⊩ e : σ
(TAbs)

Γ ⊩ λx. e : τ → σ

Γ ⊩ e1 : τ → σ Γ ⊩ e2 : τ
(TApp)

Γ ⊩ e1 e2 : σ

Γ ⊩ e : d τ (∀ki ∈ dom(∆∗(d))) Γ ∪ Γi ⊩ ei : σ(TCase)
Γ ⊩ case e of {ki xi 7→ ei | i ≤ n} : σ

where dom(∆∗(d)) ⊆ {k1, . . . , kn}
and Γi = {xi : ∆∗(d)(ki)[τ/α]}

Figure 3.9: Refinement typing rules for expressions.

The system is conceptually similar to the underlying Hindley-Milner style system
presented in Chapter 2, but note the following deviations:

• Any suitable intensional refinement of a datatype identifier, in accordance with
the intensional environment, can be used in order to type a constructor or the
scrutinee of a case statement.

• The notion of subtyping from the previous section is incorporated through a
subsumption rule.

• Pattern-matching expressions must be exhaustive in order to guarantee that
programs cannot lead to a pattern-matching error at runtime. Nevertheless,
this restriction is with respect to the refinement type of the scrutinee and thus
is distinct from our earlier definition of exhaustivity.

• The rule (TCase) not only requires that the branches are exhaustive but only
considers those that are reachable, i.e. when the constructor of the correspond-
ing pattern is in the datatype of the scrutinee. That is to say, unreachable
branches can safely be ignored and do not contribute to the type of the case
expression. This relaxation incorporating path-sensitivity only makes sense
for a refinement-type system because reachability is encoded by choosing an
appropriate refinement for the scrutinee.
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Consider, as an example, the function in Figure 3.10 that applies a substitution to
a λ-term and has underlying type List (String × Lam) → Lam→ Lam, assuming
that lookup has underlying type ∀α. List (String× α)→ String→ α2.

subst theta t =
case t of

FVr x → lookup theta x
Cst c → Cst c
App u v →

App (subst theta u) (subst theta v)

Figure 3.10: Function performing substitution on closed λ-terms.

Recall that ClosApp denotes closed, applicative terms, i.e. the subtype of Lamwith-
out the FVr, Abs, and BVr constructors. Let us also define AppLam as the subtype of
Lam datatype under the intensional refinement that removes the Abs and BVr con-
structors but retains Cst, FVar, and App. Then the refinement type List (String×
ClosApp) → AppLam → ClosApp can be assigned to this function, encoding the
fact that the resulting expression is also closed when a substitution replaces all free
variables with a closed expression. This refinement typing is possible due to a combi-
nation of the features of the system. First, the abstraction rule can assume the bound
variable theta has the refinement type List (String × ClosApp). It then follows
that the sub-expression lookup theta x can be given the refinement type ClosApp.
Second, the rule (TCase) is applicable only because we have chosen a refinement of
the scrutinee without the Abs and BVr constructors and thus the pattern-matching
expression is exhaustive. Then, in the body of the case expression, u and v are also
assigned the type ClosApp, as intensional refinements apply recursive throughout
a datatype, so that the sub-expressions subst theta u and subst theta v can be
assigned the type ClosApp as required.

Definition 3.9. The central problem in which we are interested is the typeability
under the aforementioned system of a program P , which is assumed to be well-typed
with respect to some underlying program environment Σ but is not necessarily ex-
haustive under Definition 2.17. This involves finding a closed refinement environ-
ment Σ such that, for each f : ∀α. τ ∈ Σ, we can derive Σ ⊩ P (f) : τ . When such
an environment exists, we say that (∆, Σ, P ) constitutes a positive instance of the
refinement typeability problem.

The following theorem shows that a positive instance of the refinement typeability
is sufficient to ensure that datatype expressions do not fail to evaluate and, therefore,

2In reality, no exhaustive function of the aforementioned type exists and such a function would more
typically wrap its return type in a failure or “option” monad. We omit this detail from our example for the
sake of simplicity.
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there are no reachable pattern-matching failures. Conceptually, this proof is similar
to Lemma 2.9 but relies on our refinement type system instead of the coarser notion
of exhaustivity.

Theorem 3.3. Suppose (∆, Σ, P ) is a positive instance of the refinement typeabil-
ity problem witnessed by the refinement environment Σ. Then the normal form
a↓P of an applicative expression Σ ⊩ a : d τ1 · · · τn is necessarily of the form
k a1 · · · aarity(k) for some k ∈ dom(∆∗(d)).

As discussed in the introduction, allowing several types for each expression en-
sures they can be used in different contexts. This approach is more lightweight than
a full intersection type system as intersections are not permitted under function ar-
rows, and arguably easier for programmers to reason about if types are to be con-
sidered as specifications. When it comes to algorithmic inference, however, the non-
deterministic aspects of this system are problematic. Instead of enumerating possible
types, we rely on refinement polymorphism to summarise every possible typing of a
program variable compactly by a single constrained type scheme. Polymorphism of
this kind is no different from that of the Hindley-Milner system, which could equally
be viewed as an infinite intersection type system, or indeed allowing several typings
of the same variable in an environment. The rest of this chapter concerns the algo-
rithmic solution to aforementioned typeability problem.

3.3 Algorithmic System

3.3.1 Constructor Set Constraints

We assume a countable set of refinement variables X, ranged over byX, Y, Z etc. The
purpose of these refinement variables is to represent an unknown refinement function
ϕ ∈ Refine(∆), in the same way that a type variable represents an unknown type.
Notice that these refinements functions are in 1–1 correspondence with intensional
refinements of ∆. By abuse of notation, we will treat X ∈ X as both a refinement
function and the corresponding datatype environment.

Definition 3.10. A constructor set expression, typically S, is either a finite set of con-
structors {k1, . . . , kn} or a pairX(d) consisting of a refinement variableX ∈ X and
an underlying datatype identifier d ∈ D. The underlying datatype identifier of a set
expression is defined as follows:

U(X(d)) := d U({k1, . . . , kn}) := d

where ∀i ≤ n. ki ∈ dom(∆(d))
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We only consider those constructor set expression for which the underlying datatype
identifier is well-defined, i.e. we do not consider sets of constructors belonging to
different underlying datatypes.

Definition 3.11. An inclusion constraint is a pair of constructor set expressions with
the same underlying datatype identifier, written S1 ⊆ S2. When S1 is a singleton
{k}, we will write the constraint as k ∈ S2 instead.

A conditional constraint, hereafter just constraint, is a pair ϕ ? S1 ⊆ S2 consisting
of a set of inclusion constraints ϕ, referred to as the guard, and an inclusion constraint
S1 ⊆ S2, referred to as the body. We will only consider conditional constraints in
which each element of the guard is of the form k ∈ X(d). When the guard is trivial,
i.e. the empty set, we shall omit it and just write the body. Furthermore, we shall
sometimes guard a set of constraints C , writing ϕ ? C to denote the set of constraints
of the form ϕ ∪ ψ ? S1 ⊆ S2 where ψ ? S1 ⊆ S2 ∈ C .

Definition 3.12. The free refinement variables of a set expression, constraint, or set
of constraints FRV(C) ⊆ X is defined recursively as follows:

FRV(X(d)) := {X} FRV({k1, . . . , kn}) := ∅

FRV(S1 ⊆ S2) := FRV(S1) ∪ FRV(S2)

FRV(ϕ ? S1 ⊆ S2) := FRV(ϕ) ∪ FRV(S1) ∪ FRV(S2)

FRV(C) :=
⋃

ϕ?S1⊆S2∈C FRV(ϕ ? S1 ⊆ S2)

Constraints restrict the possible datatype environments that a refinement variable
can represent. Intuitively, an inclusion S1 ⊆ S2 implies that the constructors denoted
by S1 are included in the constructors denoted by S2, and this is lifted to conditional
constraints in the obvious manner. In particular, the constraint k ∈ X(d) implies that
whatever refinement function is assigned toX must include the constructor k, i.e. an
expression of the type injX(d) may evaluate to the constructor k, and the constraint
X(d) ⊆ {k1, . . . , kn} limits the refinement function so that X can only include
these constructors, i.e. an expression of the type injX(d) may not evaluate to some
constructor k ̸∈ {k1, . . . , kn}.

Definition 3.13. A constructor set assignment, hereafter just assignment, is a total map
θ : X → Refine(∆) from refinement variables to refinement functions. Constructor
set expressions are interpreted by such an assignment as follows:

θJX(d)K := θ(X)(d) θJ{k1, . . . , kn}K := {k1, . . . , kn}

We write θ1 ≡U θ2, and say that θ1 and θ2 are equivalent on the set U ⊆ X, just
if θ1(X) = θ2(X) for each X ∈ U .



36 CHAPTER 3. INTENSIONAL DATATYPES

Definition 3.14. An inclusion constraint S1 ⊆ S2 is said to be satisfied by an as-
signment θ, written θ ⊨ S1 ⊆ S2, just if θJS1K is included in θJS2K. Furthermore,
a conditional constraint ϕ ? S1 ⊆ S2 is said to be satisfied by an assignment, writ-
ten θ ⊨ ϕ ? S1 ⊆ S2, just if θ ⊨ S1 ⊆ S2 or there exists some inclusion constraint
k ∈ X(d) ∈ ϕ in the guard such that θ ̸⊨ k ∈ X(d).

Definition 3.15. A solution to a set of constraints C is an assignment θ that satisfies
every constraint in C . In which case we write θ ⊨ C . A set of constraints is said to
be solvable or satisfiable whenever it has a solution.

The full set constraint language is known to correspond to the monadic class of
first-order propositions [66]. By applying the translation of that paper, it can be shown
that guarded constraints of the form laid out above are (monadic) Horn clauses where
constructors are interpreted as constants. This observation will become relevant later
when we discuss the process by which the solvability of a set of constraints is deter-
mined.

3.3.2 Type Inference System

Since our system is effectively syntax directed, the subsumption rule can be factored
into the other syntax-directed rules and type inference follows a standard pattern of
constraint generation and satisfiability checking (see e.g. [19]). The constraints are
derived from subtype inequalities between refinement types, which, as a result of
Lemma 3.2, can be reduced to conditional inclusion constraints between refinement
variables and sets of datatype constructors. To enable this approach, we extend the
language of types so as to allow datatypes parameterised by refinement variables.

Definition 3.16. The extended types are types where datatype identifiers are replaced
by intensional refinements parameterised by a refinement variable:

τ, σ ::= · · · | injX(d) τ

with X ∈ X. Note that the arguments to an intensional datatype identifier are also
extended types. Therefore, types such as injX(List) injY (String) are well-formed.

Assignments extend to extended types homomorphically, where τθ is the unex-
tended type that results from replacing injX(d) by injθ(X)(d). Likewise, we define
FRV(τ) ⊆ X as the set of refinement variables occurring in the type τ in the obvious
manner.

Recall that refinement datatype identifiers are of the form injϕ(d) and should be
thought of as specifying the refinement of d ∈ D whose datatype definition is given
by the refinement function ϕ. The task of inference is to constrain these refinement
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functions so that the expression in question is typeable under any satisfying assign-
ment. If the constraints are solvable, there exists appropriate refinement functions
with respect to which the program can be deemed well-typed.

Definition 3.17. A constrained type scheme ρ has the form ∀α.∀X.C ⊃ τ where
C is a set of constraints such that FRV(C) ⊆ X and τ is an extended type such that
FRV(τ) ⊆ X ; that is, constrained type schemes don’t contain any free refinement
variables. When C is the empty set, we will just write ∀α.∀X. τ .

Typically, there is not a most general instance of a constrained type scheme. By
which we mean, there is not a single assignment to the constrained type scheme’s
refinement variables that satisfies its constraints and for which all other satisfying
instances are supertypes. For example, consider the following recursive function that
acts as the identity on the Lam datatype:

lamId (Cst a) = Cst a
lamId (BVr x) = BVr x
lamId (FVr x) = FVr x
lamId (Abs u) = Abs (lamId u)
lamId (App u v) =

App (lamId u) (lamId v)

Figure 3.11: The identify function on λ-terms.

Let us suppose this function is assigned a constrained type scheme of the form
∀XY.C ⊃ injX(Lam) → injY (Lam). The constraints appearing in C must ensure
that, if the input type contains the Cst constructor, then the output type also contains
the Cst constructor. Thus, the constraint Cst ∈ X(Lam) ? Cst ∈ Y (Lam)will appear
in C and likewise for each other constructor of the Lam datatype. Equivalently, we
may assert that X(Lam) ⊆ Y (Lam).

Informally speaking, the most general instances of a constrained type scheme
must balance the assignment to refinement variables appearing in covariant and con-
travariant positions with respect to subtyping. Types are more general when their
contravariant refinement variables (e.g. an input to a function type) are assigned more
constructors, but they are less general when their covariant refinement variables (e.g.
the output of a function type) are assigned more constructors. In the above example,
the refinement variableX appears in a contravariant position and Y appears in a co-
variant position and, therefore, the most general type must maximise the assignment
to X whilst minimising the assignment to Y . However, this requirement is at odds
with the inclusion constraint X(Lam) ⊆ Y (Lam) — a more general input type must
have a less general output type in order to satisfy this constraint, and likewise a more
general output type requires a less general input type. For example, both the types
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ClosApp → ClosApp and AppLam → AppLam are valid instances of the constrained
type scheme but, whilst the latter is more general with regards to the arguments it
can be passed, its output type contains more constructors and thus can be passed to
fewer functions. As a result, there is no universally most general type.

Definition 3.18. A constrained type environment Γ is a function from variables to
constrained type schemes, for which we write f : ρ ∈ Γ as usual where ρ is a con-
strained type scheme.

For such an environment, FRV(Γ) ⊆ X is defined as the set of refinement vari-
ables appearing in any type in the constrained type environment. Note that this set
will be empty for the program environment but may contain refinement variables as-
sociated with locally bound variables. Additionally, we define Γθ as the refinement
type environment whose types result from instantiating any free refinement variables
appearing in Γ according to the assignment θ.

Note that constrained type environments are functional, i.e. there is only one con-
strained type scheme assigned to each variable. Although there is no best solution to a
set of constraints, constrained type schemes give us an internal representation of the
set of all possible type schemes; hence it is sufficient to have a single constrained type
scheme for each program variable. Constrained program environments can be under-
stood as compact descriptions of an intersection of ordinary program environments,
which is made precise by the following definition.

Definition 3.19. For a constrained type environment Γ, we define LΓM as the refine-
ment environment obtained by instantiating every constrained type scheme with all
of its solution: {

x : ∀α. τθ | ∀α.∀X.C ⊃ τ ∈ Γ, θ ⊨ C
}

For the purpose of defining type inference algorithmically, we will assume pro-
grams are given as a finite sequence of function definitions with their underlying type
f1 : ρ1 = e1, . . . , fn : ρn = en such that each ei can only use a program variable fj
if i ≤ j, i.e. function definitions are topologically sorted by their dependencies. A con-
strained type environment for the program can thus be inferred incrementally, with
recursive calls being handled standardly by forbidding polymorphic recursion. For
simplicity, we do not permit mutually recursive functions as these can be simulated
by direct recursion. In the implementation, however, several function definitions can
belong to the same recursive group.

Typical presentations of type inference by constraint generation involve choos-
ing fresh type variables, which are then constrained. Since we work with refinement
types, it is more convenient to choose fresh refinement type templates, which are re-
finement types that are parameterised everywhere by fresh refinement variables. This
construction is possible in the setting of a refinement type system as, at the point at



3.3. ALGORITHMIC SYSTEM 39

which inference would choose a fresh type, the underlying shape of the type is already
known. In other words, a type is said to be fresh if each occurrence of a free refine-
ment variables is fresh in the sense that they are not already in scope or elsewhere in
the type.

Definition 3.20. We write Fresh(X) to assert thatX is a refinement variable that is
not already in scope, e.g. in the free refinement variables of the local typing environ-
ment. This predicate is extended to types by Freshτ (τ) which is defined recursively
as follows:

• For all α ∈ A, Freshα(α).

• For any d ∈ D, Freshd(injX(d) τ) just if Fresh(X) and, for each Freshτi(τi) for
each type-level argument.

• Finally, Freshτ→σ(τ → σ) just if Freshτ (τ) and Freshσ(σ).

We will also write Freshτ (τ) to assert that a sequence of types are fresh.

Definition 3.21. Constrained type inference is split into three components:

Subtyping (Figure 3.12) For a given pair of extended types τ and σ, the judgement
H ⊩ τ ⊑ σ =⇒ C is used to infer a set of constraintsC that imply τθ ⊑ σθ for
any satisfying assignment θ. HereH , referred to as the history, is a set of pairs of
the form (injX(d) τ , injY (d) σ) that is used to track which subtyping relations
have already been covered by the inferred constraints, capturing the coinduc-
tive nature of subtyping. Algorithmically, these parameters are used to prevent
loops occurring when inferring constraints between recursive datatypes as we
will discuss below. We simply write⊩ τ ⊑ σ =⇒ C when the history is empty.

Expressions (Figure 3.13) In the context of a constrained environment Γ, and an
underlying type τ , the judgement Γ ⊩ e : τ =⇒ τ, C algorithmically infers an
extended type τ and constraints C that describes the assignments under which
the expression is typeable.

The underlying type is used to generate fresh, extended types in the case of
(IAbs) and (ICase) and to determine the type parameters of program variables
and constructors. We will sometimes omit the underlying type from the judge-
ment when it is superfluous, simply writing Γ ⊩ e =⇒ τ, C .

Programs (Figure 3.14) Finally, the judgement for programs ⊩ P =⇒ Σ produces
a constrained type environment Σ containing a constrained type scheme for
each variable defined by P .

Constrained type generation via these inference systems follows awell established
pattern for expressions and programs (see e.g. [19] for a general treatment of the
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(ISTyVar)
H ⊩ α ⊑ α =⇒ ∅

H ⊩ τ ′ ⊑ τ =⇒ C1 H ⊩ σ ⊑ σ′ =⇒ C2(ISArr)
H ⊩ τ → σ ⊑ τ ′ → σ′ =⇒ C1 ∪ C2

(∀ki) H ′ ⊩ injX(∆(d)(k)i)[τ/α] ⊑ injY (∆(d)(k)i)[σ/α] =⇒ Cki(ISData)
H ⊩ injX(d) τ ⊑ injY (d) σ =⇒ C

where C =
⋃

k, i k ∈ X(d) ? Cki ∪ {X(d) ⊆ Y (d)}
and H ′ = H ∪ {(injX(d) τ , injY (d) σ)}

(ISStop)
H ⊩ injX(d) τ ⊑ injY (d) σ =⇒ ∅

where (injX(d) τ , injY (d) σ) ∈ H

Figure 3.12: Constraint inference for subtyping.

non-refinement case), so we concentrate on the inference rules for subtyping. Like
the more standard inference rules for expressions, the inference rules for subtyping
generate a derivation tree and a system of constraints whose solution guarantees the
correctness of the corresponding instance of the derivation tree. However, in the
case of a subtyping inference, the derivation tree is not a coinductive proof under the
system presented in Figure 3.7 but rather a proof that the solution constitutes a sim-
ulation in the sense of Lemma 3.2. For example, the conclusion of (ISData) yields the
constraints {X(d) ⊆ Y (d)}∪

⋃
k∈K k ∈ X(d) ? Cki

. The first constraint encodes the
requirement that all constructors in X(d) appear in Y (d) whereas the second con-
straint arises from the second requirement placed upon a simulation: ifX is assigned
a refinement function ϕ for which k ∈ ϕ(d), the corresponding argument types of
this constructor should again be related. This latter set of constraints ensures that no
refutation could be derived via the (SSim) rule.

When constructing a simulation argument for recursive algebraic datatypes, it
is not sufficient to inductively derive constraints that ensure the subtyping relation
holds between the type of constructors as such a process will evidently enter into a
loop so that no (non-trivial) subtyping relations could be inferred! It is for this reason
that the algorithm subtyping judgement H ⊩ τ ⊑ σ =⇒ C is additionally parame-
terised by a history H consisting of pairs of the form (injX(d) τ , injY (d) σ). Infor-
mally speaking, this set denotes those subtyping relations that are already implied by
the set of constraints being accumulated. When a new subtyping constraint between
datatypes is encountered, the rule (ISData) is applied and the history is extended ac-
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cordingly. Upon encountering a subtyping constraint that arises from recursive oc-
currences of a datatype, on the other hand, we do not derive any new constraints but
rather terminate the inference via the (ISStop) rule. Intuitively, the history can be
thought of as a coinductive hypothesis that prevents subtyping inference from enter-
ing lead into a loop when accumulating constraints.

To show that the subtyping inference judgement is sound, in the sense that any
solution to the constraints will ensure the subtyping relation holds, we borrow the
idea of stratification that is often useful when dealing with coinductive structures [67,
68]. Stratification introduces an infinite sequence of over-approximations to a coin-
ductive relation that ultimately converge upon it. Aswith the subtyping relation itself,
each approximation is defined via its complement, which is restricted to only support
derivations of lengths up to the given stratification level.

Definition 3.22. We write τ ̸⊑j σ if there exists a derivation using the inference
rules of the system presented in Figure 3.7 with at most j ≥ 0 inferences, otherwise
we write τ ⊑j σ when no such derivation exists. Additionally, we will write θ ⊨j H
if τ ⊑j σ holds for each pair (τ, σ) ∈ H .

Note that, although τ ⊑j σ does not necessarily imply τ ⊑ σ for any given j ≥ 0,
the true subtyping relation is recovered as the intersection of this family.

Lemma 3.4. Suppose H ⊩ τ ⊑ σ =⇒ C is a subtyping inference and θ is an
assignment such that θ ⊨j H and θ ⊨ C . Then we have that τθ ⊑j σθ.

Lemma 3.5. Suppose H ⊩ τ ⊑ σ =⇒ C is a subtyping inference and θ is an
assignment such that θ ⊨j H for all j ≥ 0 and τθ ⊑ σθ. Then we have that θ ⊨ C .

Corollary 3.6. Suppose ⊨ τ ⊑ σ ⇒ C is a subtyping inference and θ is an assign-
ment. Then τθ ⊑ σθ if, and only if, θ ⊨ C .

Having shown the subtyping inference is sound and complete, we show that the
type inferred for an expression guarantees that it is typeable under any assignment
that satisfies associated constraints. To show the completeness of inference for expres-
sions is somewhat more complex as the declarative system permits the unrestricted
use of (SSub), i.e. the type of an expression can be arbitrarily weakened at any point
in the derivation. Therefore, we show instead that, for any type derivable under the
declarative system, there is an assignment to the constraints generated by type infer-
ence that provides a stronger type.

Lemma 3.7. Suppose Γ ⊩ e =⇒ τ, C is an instance of type inference and θ is an
assignment such that θ ⊨ C . Then LΓθM ⊩ e : τθ.

Lemma 3.8. Suppose Γ′ ⊩ e : τ ′ and Γ ⊩ e =⇒ τ, C is an instance of type inference
for which there exists some assignment θ such that LΓθM ⊑ Γ′. Then there exists an
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(IVar) Fresh(Y ), Freshσ(σ)
Γ ⊩ x : τ [σ/α] =⇒ τ [Y/X][σ/α], C[Y/X]

where f : ∀α.∀X.C ⊃ τ ∈ Γ

(ICon) Fresh(X), Freshσ(σ)
Γ ⊩ k : τ [σ/α] =⇒ injX(τ)[σ/α], {k ∈ X(d)}

where k : ∀α. τ ∈ ∆(d)

Γ, x : τ ⊩ e =⇒ σ, C
(IAbs) Freshτ (τ)

Γ ⊩ λx. e : τ → σ =⇒ τ → σ, C

Γ ⊩ e1 =⇒ τ → σ, C1 Γ ⊩ e2 =⇒ τ ′, C2 ⊩ τ
′ ⊑ τ, C3(IApp)

Γ ⊩ e1 e2 =⇒ σ, C1 ∪ C2 ∪ C3

Γ ⊩ e =⇒ injX(d) τ , C0

(∀i ≤ m) Γ ∪ Γi ⊩ ei =⇒ σi, Ci

(∀i ≤ m) ⊩ σi ⊑ σ =⇒ C ′
i(ICase) Freshσ(σ)

Γ ⊩ case e of {ki xi 7→ ei | i ≤ n} : σ =⇒ σ, C0 ∪ C

where Γi = {xi : injX(∆(d)(ki))[τ/α]}
and C = {X(d) ⊆ {k1, . . . , km}}

∪
⋃

i≤m ki ∈ X(d) ? Ci ∪ C ′
i

Figure 3.13: Type inference for expressions.

assignment θ′ that (1) satisfies C , (2) agrees with θ on the refinement variables of Γ,
i.e. θ′ ≡FRV(Γ) θ, and such that (3) τθ′ ⊑ τ ′.

Finally, we can prove the soundness and completeness for program inference and
thereby provide an algorithmic solution to the typeability problem.

Theorem 3.9. Let P be a program such that ⊢ P =⇒ Σ. Then, (∆, Σ, P ) is a
positive instance of the refinement typeability problem if, and only if, LΣM provides at
least one type to every program variable.

3.4 Solving Constraints

Determining the solvability of constraints can be achieved through a process of satu-
ration, which involves deriving all the consequences under a simple set of inference
rules. This process is a generalisation of the transitive closure of simple inclusion
constraint graphs and, more generally, an instance of Horn clause resolution. We will
show that, once saturated, the solvability of a set of constraints depends solely on the
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⊩ ε =⇒ ∅

⊩ P =⇒ Σ Σ ∪ {f : τ} ⊩ e =⇒ τ ′, C1 ⊩ τ
′ ⊑ τ =⇒ C2

Freshτ (τ)
⊩ P ; f : ∀α. τ = e =⇒ Σ ∪ {f : ρ}

where ρ = ∀α.∀X.C1 ⊃ C2 ⊂ τ

Figure 3.14: Type inference for programs.

presence of constraints without refinement variables i.e. k ∈ {k1, . . . , km}. These
constraints are either trivially valid or unsatisfiable.

Furthermore, saturated sets of constraints have a remarkable property — they can
be restricted to a subset of refinement variables whilst remaining faithful to the set of
satisfying assignments. That is to say, it is possible to safely omit constraints from the
saturated set except those that only relate to a given subset of refinement variables.
Any solution to this restricted set can be extended to a complete solution without any
loss of generality. The subset of refinement variables in question are those that appear
in the function’s type, e.g. its inputs and outputs, which wewill refer to as its interface.
To allow for full generality with regards to the context in which a function is used,
the interface variables of a type should not be instantiated. On the other hand, it is
sufficient to merely know that non-interface variables have a solution with respect
to the interface variables, as their assignment only imposes compatibility constraints
and does not directly affect a function’s type nor the contexts in which it can be
used. Thus, non-interface variables can be viewed as existentially quantified forwhich
saturation implicitly determines a solution in terms of the interface variables. It is
from this construction that we derive our linear-time (parameterised) complexity. As
the size of the restricted constraints no longer depends on the number of preceding
function definitions or their complexity, the exponential blow-up is avoided.

3.4.1 Saturation and Restriction

Definition 3.23. A constraint is said to be atomic just if its body has one of the
following four shapes:

X(d) ⊆ Y (d) X(d) ⊆ {k1, . . . , km} k ∈ X(d) k ∈ ∅

i.e. it is not of the form {k1, . . . , km} ⊆ S or k ∈ {k1, . . . , km} wherem > 0.
An atomic constraint is said to be trivially unsatisfiable if it is unguarded and its

body is of the form k ∈ ∅. Any constraint set with a trivially unsatisfiable constraint
is itself trivially unsatisfiable.
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By applying standard identities, every constraint is equivalent to a set of atomic
constraints. In particular, a constraint of the form k ∈ {k1, . . . , km} is equivalent
to the empty set of atomic constraints (i.e. can be eliminated) whenever k is equal to
some ki, and is equivalent to k ∈ ∅ otherwise.

Definition 3.24. An atomic constraint set, i.e. one that only contains atomic con-
straints, is said to be saturated just if it is closed under the saturation rules in Fig-
ure 3.15. We write Sat(C) for the smallest saturated atomic constraint set containing
C , which is clearly finite for any finite C as there are finitely many constructors and
finitely many refinement variables appearing in the original set.

Recall that the full set constraint language is exactly the monadic class of first-
order propositions [66] and that our guarded fragment corresponds to (monadic) Horn
clauses. The aforementioned saturation rules, therefore, amount to special cases of
resolution for Horn clauses.

ϕ ? S1 ⊆ S2 ψ ? S2 ⊆ S3(Trans)
ϕ ∪ ψ ? S1 ⊆ S3

ϕ ? k ∈ X(d) ψ ∪ {k ∈ X(d)} ? S1 ⊆ S2(Sat)
ϕ ∪ ψ ? S1 ⊆ S2

ϕ ?X(d) ⊆ Y (d) ψ ∪ {k ∈ Y (d)} ? S1 ⊆ S2(Weak)
ϕ ∪ ψ ∪ {k ∈ X(d)} ? S1 ⊆ S2

Figure 3.15: Saturation rules for atomic constraints.

Theorem 3.10. For any assignment θ and atomic set of constraints, we have that
θ ⊨ C if, and only, if θ ⊨ Sat(C).

When there are no trivially unsatisfiable constraints in Sat(C), we can construct
a solution to the constraints as follows. For each variable X occurring in C , let the
refinement function ϕX be defined by:

ϕX(d) := {k | k ∈ X(d) ∈ Sat(C)}

and let the assignment θ map each refinement variable X to the refinement func-
tion ϕX . This constitutes a solution as any guards which the solution satisfies are
eliminated in the saturated set through the (Sat) rule, likewise indirect inclusions are
accounted for by (Trans) and (Weak). Note that this solution is, in particular, the
minimal solution.
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Theorem 3.11. A set of atomic constraintsC is satisfiable if, and only if, Sat(C) does
not have any trivially unsatisfiable constraints.

Having established that a constraint set is solvable, we are interested in con-
structing a general solution to a certain subset of the refinement variables, i.e. the
non-interface variables that correspond to the sub-expression of a function’s body,
in terms of those appearing in its interface. However, the interface variables should
be left uninstantiated as there is not generally a most general instance that will be
applicable in all contexts. More formally, for constraints C describing a set of types
{τθ | θ ⊨ C}, we should consider two solutions θ1 and θ2 to be equivalent when-
ever they agree on the free refinement variables of τ , i.e. the interface. That is to say,
typeability is agnostic to the refinement function assigned to internal variables.

Definition 3.25. Let C be a saturated set of constraints and I ⊆ X be some set of
refinement variables, called the interface variables. Then we define the restriction C↾I
as the set {ϕ ? S1 ⊆ S2 ∈ C | FRV(ϕ ? S1 ⊆ S2) ⊆ I}.

The restriction of a set of constraints is quite severe, since it simply discards any
constraints that are not solely comprised of interface variables. However, a remark-
ably strong consequence of saturation is that, whenever C is solvable, every solution
of Sat(C)↾I may be extended to a solution of C , independent of the choice of I . Since
every solution to Sat(C) trivially restricts to a solution of Sat(C)↾I , it follows that the
solutions of Sat(C)↾I are exactly the restriction of the solution of C , i.e. no solutions
are lost through restriction.

If we were not to saturate, however, then solutions to the restriction cannot nec-
essarily be extended. Consider, for example, the following constraint set C :

Cst ∈ X(Lam) X(Lam) ⊆ Y (Lam)

FVr ∈ Y (Lam) ? Y (Lam) ⊆ Z(Lam) Z(Lam) ⊆ {FVr, Cst}

This set is not saturated as we can derive FVr ∈ X(Lam) ?X(Lam) ⊆ {FVr, Cst}
through the rules presented in Figure 3.15. Therefore, although the solution:

θ(Z)(d) = ∅ θ(X)(d) =

{Cst, FVr, App} if d = Lam

∅ otherwise

satisfies the restriction to {X, Z}, it is not a solution to the constraint set; in partic-
ular, it violates the aforementioned derivable constraint.

Theorem 3.12 (Restriction/Extension). Suppose C is a set of saturated constraints
and I ⊆ X is a subset of refinement variables. Let θ be an assignment such that
θ ⊨ C↾I , i.e. a solution to the restricted set. Then there exists an assignment θ′ such
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that θ′ ≡I θ and θ′ ⊨ C , i.e. a solution to the original set that agrees on the refinement
function assigned to interface variables.

Proof. To construct our extended solution, we generalise the argument presented in
Section 3.4.1. That construction assigned each refinement variable its minimal refine-
ment function by considering atomic constraints of the form k ∈ Y (d). In this more
general setting, we must also consider constraints of the form X(d) ⊆ Y (d) where
X is an interface variable and those guarded by interface variables as we cannot as-
sume the interface assignment is minimal. Nevertheless, saturation ensures that the
constructed assignment is indeed a solution.

Let θ be our assignment to interface variables that is a solution to the restricted
set. We consider an extended assignment θ′ that is defined as θ(X) for any interface
variable X ∈ I and, for each non-interface variable Y ∈ X \ I , it defines as the
refinement function that maps each underlying datatype d ∈ D to the set:⋃

ϕ?S⊆Y (d)∈C

{Sθ | θ ⊨ ϕ, FRV(ϕ) ∪ FRV(S) ⊆ I}

First, we shall show that, whenever the guards of a constraint are satisfied by θ′,
the body of the constraint must have already been satisfied by θ. In other words, the
extended solution does not make any arbitrary choices.

Lemma 3.13. If there is an atomic constraint ϕ ? S1 ⊆ S2 ∈ C in a saturated set of
constraints such that θ′ ⊨ ϕ, then there is another constraint ψ ? S1 ⊆ S2 ∈ C such
that θ ⊨ ψ and FRV(ψ) ⊆ I .

Proof. Our proof is by induction on the cardinality of ϕ↾X\I , i.e. the number of con-
straints k ∈ Y (d) ∈ ϕ in the guard where Y is a non-interface variable. Note that,
for this proof, we treat guards as multisets of constraints.

• The base case is trivial as θ ⊨ ∅.

• Otherwise, suppose we have that ϕ = {k ∈ Y (d)} ⊎ ϕ′ where Y ∈ X \ I and
k ∈ θ′(Y (d)). There must exist, therefore, some constraint ψ ? S ⊆ Y (d) such
that θ ⊨ ψ and k ∈ Sθ where FRV(S) ∪ FRV(ψ) ⊆ I . There are two possible
forms S may have:

– If it is the {k}, then there is an additional constraint ψ ∪ ϕ′ ? S1 ⊆ S2

as the set is closed under the (Sat) rule. Note that the guard of this con-
straint contains one fewer non-interface constraints and is still satisfied
by θ′. Thus, by induction, there is a constraint ψ′ ? S1 ⊆ S2 whose guard
contains no non-interface variables as required.

– If, on the other hand, S is of the form X(d) for some X ∈ I , then we
have that {k ∈ X(d)} ⊎ ϕ′ ? S1 ⊆ S2 is in the saturated set as a result of
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the (Weak) rule. Again, there is one fewer non-interface constraint in the
guard of this constraint and is still satisfied by θ′. Thus, by induction,
there is a constraint ψ′ ? S1 ⊆ S2 whose guard contains no non-interface
variables as required.

Now suppose we have a constraint ϕ ? S1 ⊆ S2 ∈ C whose guard is satisfied by
θ′. As a consequence of the above lemma, there is also a constraint ψ ? S1 ⊆ S2 ∈ C
whose guard, which only concerns interface variables, is satisfied by θ. If FRV(S1) ∪
FRV(S2) ⊆ I , then we immediately know that the constraint is satisfied as it appears
in the restricted set, for which θ is a solution. Now consider the possible forms of S1

and S2 containing non-interface variables:

• An inclusion S1 ⊆ Y (d) where Y ∈ X \ I and FRV(S1) ⊆ I is clearly satisfied
by construction.

• Suppose, on the other hand, we have a constraint of the form Y (d) ⊆ S2 where
Y ∈ X\ I and FRV(S2) ⊆ I . For each k ∈ θ′(Y )(d), there must be a constraint
ϕ′ ? S ⊆ Y (d) such that θ ⊨ ϕ′ and k ∈ Sθ where FRV(S) ∪ FRV(ϕ′) ⊆ I . By
(Trans), therefore, we can derive the additional constraint ψ ∪ ϕ′ ? S ⊆ S2. As
this constraint appears in the restriction, it must be satisfied by θ. Therefore,
k ∈ S2θ

′ as required.

• Finally, suppose both S1 and S2 contain non-interface variables, i.e. the con-
straint is of the form Y (d) ⊆ Z(d) where Y, Z ∈ X \ I . As before, for each
k ∈ θ′(Y )(d), there must be a constraint ϕ′ ? S ⊆ Y (d) such that θ ⊨ ϕ′ and
k ∈ Sθ where FRV(S) ∪ FRV(ϕ′) ⊆ I . And, therefore, by (Trans), there is
an additional constraint ψ ∪ ϕ′ ? S ⊆ Z(d). In which case, k ∈ θ′(Z)(d) by
construction.

3.4.2 Complexity Analysis

Although our inference procedure is compositional, i.e. it breaks programs down into
top-level definitions, and expressions into sub-expressions that can be analysed in iso-
lation, this is no guarantee of its efficiency. As we have described it in Section 3.3, the
number of constraints inferred by type inference depends on the size of the expres-
sion — constraints are generated at most syntax nodes and propagated to the root.
In fact, as is well known for constrained type inference, the situation is much worse
as a whole set of constraints is imported from the program signature when inferring
the type of a program variable. Again, the number of constraints associated with



48 CHAPTER 3. INTENSIONAL DATATYPES

that program variable will depend on not only its definition, but the number of con-
straints associated with program variables on which it depends and so on. As a result
of this duplication, the number of constraints generated across the entire program can
quickly become exponential in the number of function definitions.

Consider an inference Γ ⊩ e =⇒ τ, C . As it stands, the number of refinement
variables occurring inC will depend upon the size of e and the size of every definition
on which e depends. To avoid the constraint explosion problem caused by duplicat-
ing previously inferred constraint sets, we utilize the restriction operator. At each
step during inference, we compute Sat(C)↾I where the interface I is taken to be the
free refinement variables of the context and the inferred type, i.e. FRV(Γ) ∪ FRV(τ).
Clearly no context in which this expression appears can directly interact with any
other refinement variables and, as previously discussed, any solution to the restricted,
saturated set can be extended to a solution to the original set.

By applying our restriction strategy, the number of refinement variables appearing
in the constrained type scheme of a top-level function depends only on the number of
refinement variables appearing in its type. In other words, the number of constraints
appearing in the type scheme ascribed to a program variable is independent on the
number of preceding definitions.

Theorem 3.14. Under the assumption that the size of types and the size of each
function definition is bounded, the complexity of type inference is O(N) whereN is
the number of function symbols.

There is, however, an extensive cost associated with performing saturation before
we can take the restriction. Let us take K to be the number of constructors and D
to be the number of datatypes. A simple analysis of the form of atomic constraints
over V refinement variables exploiting the fact that constructors uniquely determine
an underlying datatype yields the bound:

O(2K·V · (K · V + V 2 ·D + V · 2K))

⊆ O(2K·V+K ·K · V 2 ·D)

as a subset of simple inclusions k ∈ X(d) appears in the guard and the body may
either be of the form k ∈ X(d), X(d) ⊆ Y (d), or X(d) ⊆ {k1, . . . , kn} for a subset
of constructors.

In light of the large number of possible constraints, it is crucial that the algorithm
for computing the saturated set of constraints is efficient. To this end, we observe
that the construction in Theorem 3.12 can also be framed as computing a minimal
solution, merely over a different partial order to the one used in Theorem 3.11. Recall
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the assignment to a non-interface variable Y :⋃
ϕ?S⊆Y (d)∈C

{Sθ | θ ⊨ ϕ, FRV(ϕ) ∪ FRV(S) ⊆ I}

By abstracting over the assignment θ, it is plain to see that the set of constructors can
be recovered from the set of pairs (ϕ, S) for which there exists some ϕ ? S ⊆ Y (d) ∈
C such that FRV(ϕ) ∪ FRV(S) ⊆ I . We refer to such pairs as interface values; for
any assignment to the interface variables θ, an interface value (ϕ, S) is interpreted
as the set {k | k ∈ Sθ, θ ⊨ ϕ}. In other words, non-interface variables can first be
interpreted by a set of interface values, which is then used to determine their lower
bound for any given assignment.

Using this insight, we employ a standard algorithm for computing the least-fixed
point over the set of interface values instead of the naïve saturation algorithm that
iteratively applies the rules in Figure 3.15. This algorithm generalises the optimal
solution to the HORNSAT problem to partial orders of finite height, where there are
no infinite chains [64, 65]. At a high-level, the algorithm not only keeps track of
the current, accumulated valuation mapping refinement variables to sets of interface
values, but also creates amap that associates constraints with the refinement variables
on which they depend. This structure ensures that only the affected constraints are
revisited when a new interface value for a refinement variable is encountered.

The asymptotic complexity of this algorithm is linear in the number of entries in
the valuation V · D and the height of the partial order, i.e. the longest chain [69].
In our case, the partial order is defined as inclusion on sets of interface values, of
which there are at most O(2K·I · (K + I)). Therefore, the worst-case complexity of
saturation can be bounded by:

O(2K·I · (K + I) · V ·D)

or O(2I · I · V ), once we fix the number of constructors and datatype identifiers.

Although this result is still exponential in the number of interface variables, this
is a drastic improvement on the naïve saturation algorithm that can only be bounded
by the total number of possible constraints, which is exponential in non-interface
variables as well. Our experimental evaluation found that, while interface variables
rarely exceed a hundred, there may be several thousand refinement variables in total
associated with large recursive groups. Therefore, the distinction between these two
complexity results is significant. In the following section, we will show that the expo-
nential cost of saturation does not prevent our performant program-level algorithm.
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3.5 Implementation

We have implemented a prototype of the inference algorithm presented in the preced-
ing chapters as a core plugin for GHC 9.2.8 [43]. Through an additional compiler flag,
the user can run our type checker as another stage of compilation whereby any unsat-
isfiable set of constraints raises a warning that specifies the source of the constructor
and the incomplete pattern matching expression that it may reach. In addition to
running the type checker on individual modules, a binary interface file is generated,
enabling other modules within the same package to use the inferred constraints.

The resulting analysis provides a certificate of safety for the package modulo the
safe use of its dependencies. Since we do not analyse the dependencies of packages
unless an interface file is present, datatypes that are defined outside the current pack-
age are treated as base types and not refined. Not permitting refinements of standard
datatypes, such as lists, was particularly beneficial for efficiency. In practice, consid-
ering their refinements leads to unnecessary constraints without actually improving
expressivity. For the sake of performance, we also do not consider refinements of
datatypes with less than two constructors (e.g. boxed integers and records). This rel-
atively small departure from the theory is a substantial improvement to the efficiency
of the tool due to the number of records and newtypes that are found in typical Haskell
programs. Likewise, when a case expression is exhaustive, we do not infer a constraint
of the form X(d) ⊆ {k1, . . . , kn} as this is universally valid.

As previously mentioned, GHC’s core language is significantly more powerful
than the small language presented in Chapter 2. Specifically, our prototype implemen-
tation does not have a proper treatment of higher-rank types, type classes (which are
represented as higher-ranked functions in GHC core), or casts and coercions. These
features are simply over-approximated by an “ambiguous” refinement type. One rel-
evant difference from our formalism, however, is that case expressions in GHC core
are necessarily complete, with missing branches being implemented by an explicit ex-
ception. Our tool uses the results of internal analyses in GHC to identify expressions
that necessarily throw an exception and treat such branches as missing [70].

3.5.1 Performance

To test the performance of our prototype, we applied it to a number of packages taken
from the Hackage database:

• aeson 2.2.0 a performant JSON serialisation library.

• algebraic-graphs 0.8 a library for algebraic graph construction and trans-
formation.
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• containers 0.6.7 a standard selection of classic functional data structures such
as sets and finite maps.

• haskeline 0.8.2 a library for writing command-line interfaces.

• pretty 1.1.3 a collection of pretty printing combinators.

• sbv 10.2 an SMT based theorem prover.

• time 1.12.2 a library for manipulating time, clocks, and calendars.

• unordered-containers 0.2.19 a set of hashing-based containers for datatypes
without a natural/efficient ordering.

These packages were selected to test our tool in a range of contexts and scales. In
the case of the containers package, we have removed the Data.Sequence module
and any functions that depend on it for reasons which we discuss below. We recorded
the time taken for our inference algorithm to process each module within these pack-
ages across an average 10 runs on the Windows Subsystem for Linux, running on an
11th Gen Intel® Core™ i7–1185G7 @ 3.00GHz/1.80GHz processor with 16.0GB of
RAM. A summary of the results3 are presented in Table 3.1.

In addition to the elapsed time, we recorded the total number of top-level defi-
nitions (N), the total number of refinement variables generated during inference (V),
and the largest interface encountered (I). The contrast between these latter two fig-
ures gives some indication of how intractable the analysis may become be without
the restriction operator.

The two columns labelled (D) and (K) are a metric of the number of underlying
datatypes identifiers and constructors respectively. Rather than being the total num-
ber, however, they denote the largest number of underlying datatypes identifiers and
constructors in any given slice. A slice of a given underlying datatype identifier d
is the set of datatypes Dd ⊆ D that are transitively reachable through the type of
constructor, e.g. Arith is in the slice of Lam due to the Cst constructor. The slice
of a datatype is a more accurate predictor of the number of constraints generated by
inference as subtyping, which tends to contribute the most constraints, reconstructs
the slices of datatype identifiers through the (ISData) rule. Consider, for example, the
subtyping constraint injX(Lam) ⊑ injY (Lam) that induces set inclusion constraints
concerning X(Arith) and Y (Arith) as well as X(Lam) and Y (Lam), but it will not
give rise to any constraints of datatype identifiers outside its slice.

The final two columns indicate the number of warnings found in the given pack-
age and the average time taken. Typically, many of the warnings can be traced to a
single pair of constructor and inexhaustive case expression but as they factor through

3The results here differ from those presented in the original paper due to a bug causing the elapsed
times to be incorrectly reported as well as updates to GHC and the benchmark packages.
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Package N D K V I Warnings Time (s)
aeson 499 6 24 1408 21 0 0.66
algebraic-
graphs

768 4 16 1494 8 0 0.15

containers 785 2 6 8705 23 38 0.89
haskeline 482 4 15 2964 10 0 0.21
pretty 163 4 16 1037 16 8 1.31
sbv 1550 12 173 13584 36 98 11.59
time 352 2 10 464 5 20 0.08
unordered-
containers

230 3 17 2203 15 0 0.29

Table 3.1: Intensional benchmark summaries for packages taken
from the Hackage database.

different functions and appear in different top-level definitions they are reported sep-
arately. We did not find any true positives, but this is not surprising since these are
mature packages. Recall that our inference algorithm is sound and complete with

respect to the declarative system presented in Section 3.2. This means that, if the al-
gorithm produces a warning for a given program, then that program cannot be typed
by an intensional program environment and, if no warnings are produced, then the
program cannot produce a pattern-matching error. However, it is not the case that our
declarative system (and, therefore, our inference algorithm) is complete with respect
to the pattern-match safety problem. It is in this sense that we observe false positives:
there exists programs that are pattern-match safe but are not typeable by our system.

3.5.2 Limitations and Future Work

As previously mentioned, we did not include the Data.Sequence module from the
containers package. The reason for this omission is that the tool was unable to
process the large number of constraints produced by this module. More specifically,
the top-level recursive group consisting of the functions addDigits2, addDigits3,
addDigits4, appendTree2, appendTree3, and appendTree4 has an abnormally
large interface consisting of 90 refinement variables, due to the large number of in-
puts and the nesting of datatypes. As our inference algorithm is exponential in the
number of interface refinement variables, it is no surprise that it was unable to fully
saturate the associated constraints. This scenario clearly outlines the drawback of
our approach: when the number of interface variables is small, the tool is extremely
performant and exhibits an asymptotically linear-time complexity; on the other hand,
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when the number of interface variable grows with the complexity of the project, the
algorithm becomes exponentially expensive.

Fully automated program analyses necessarily compromise on expressivity. In our
case, we emphasised performance and imposed the intensional restriction of refine-
ments in order to achieve a linear-time asymptotic complexity under the assumption
that functions have a bounded interface, leading to good performance in practice. As
a consequence of this restriction, our system is unable to express certain common
patterns of refinement, the most notable of which is the lack of a non-empty list re-
finement. Recall that the intensional refinements of a datatype identifier are defined
by the removal of constructors. For the list datatype, therefore, there are three proper
refinements: one with no constructors, one with just the [] constructor, and one with
just the :: constructor.

data List1 α data List2 α data List3 α
= [] = α :: List3 α

Figure 3.16: The possible refinements of the List datatype.

The datatype identifier does not characterise non-empty lists but rather infinite
lists, as the refinement must apply recursively throughout the datatype environment.
For most programs, these refinements will not be useful. Following the coalgebraic
view of datatype environments as a generalisation of tree automata, intensional re-
finements give us the option to remove transitions, i.e. constructors, from a given
state, i.e. datatype identifier. Creating a non-empty list refinement, on the other hand,
requires the introduction of a new state of the automaton.

As it is often useful to distinguish a “non-empty” or “singleton” case from a variety
of data structures, it may be prudent to consider unrolling datatype definitions by ex-
plicitly introducing a new datatype identifier, defined in the underlying environment
as the following.

data List α data List ′ α
= [] = []
| α :: List ′ α | α :: List ′ α

Figure 3.17: An unrolling of the List datatype.

From these datatypes, the type of non-empty and singleton lists can be constructed
as intensional refinements of the List α datatype. The introduction of overlapping
datatype identifiers into the underlying environmentwould complicate type inference
as it is no longer clear which datatype the constructor [] should refine. However, it
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is worth noting that any intensional refinement of List′ α can be simulated as an
intensional refinement of List α.

A similar system could also be used to allow arbitrary, user specified refinements
by ensuring there is enough datatype identifiers to be simulated by intensional refine-
ments. As part of future work, we plan to investigate the integration of these features
into our inference algorithm.



Chapter 4

CycleQ

An Efficient Basis for Cyclic Equational Reasoning

4.1 Introduction

Equational properties are a powerful yet terse way of expressing the behaviour of
pure functional programs. A key advantage of this style of specification, which has
led to its widespread use, is that the programmer needn’t familiarise themself with an
external logic, e.g. separation logic. Such properties are immediately recognisable to
any functional programmer, e.g:

∀xs : List α. map id xs = xs

Figure 4.1: The first functor law for lists.

When reasoning about recursive programs that manipulate algebraic datatypes,
proof by induction is often essential. Unfortunately, inductive theorem proving is
notoriously difficult to automate. The incompleteness and non-analyticity of suffi-
ciently expressive proof systems excludes the possibility of a universal decision pro-
cedure [71]. Here, non-analyticity refers to the inability to perform cut elimination
on inductive proofs; that is to say, a proof cannot necessarily be constructed from
sub-formulas of the goal alone. Thus, in many cases, auxiliary lemmas are required,
and induction hypotheses must be strengthened.

Even if we restrict our attention to what we might loosely imagine as those func-
tional programs that occur in practice, the situation is still extremely complex. Func-
tional programmers readily employ a variety of inductive and mutually inductive
datatypes and rarely restrict themselves to functions defined by structured recursion
schemes. Hence, if we are to rely on explicit induction schemes, not only do we need
a scheme for each datatype, but we should expect that these schemes can be nested,

55
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combined for mutual induction, or generalised to account for complex patterns of
recursion that are not directly structural [72].

Despite the apparent difficulties, there are already several tools that have been
successfully able to automatically prove equational properties of functional programs.
However, to the best of our knowledge, none have a smooth treatment of the more
complicated induction schemes that are frequently required in practice. For example,
proofs that require mutual induction are not supported by default in HipSpec [73],
IsaPlanner [74], or Zeno [32], and reasoning about mutually recursive functions
is described as being “a bit awkward” in the ACL2 manual [75]. This limitation is
unsurprising as mutual induction not only depends on strengthening an induction
hypothesis but entirely synthesising a complementary hypothesis for other datatypes
within the recursive group.

Consider, for example, the following mutually inductive datatypes:

data Tm α data Exp α
= Var α = MkExp (Tm α) Int
| Cst Int
| App (Exp α) (Exp α)

mapE : (α → β) → Exp α → Exp β
mapE f (MkExp t n) = MkExp (mapT t) n

mapT : (α → β) → Tm α → Tm β
mapT f (Var x) = Var (f x)
mapT f (Cst n) = Cst n
mapT f (App e1 e2) =

App (mapE f e1) (mapE f e2)

Figure 4.2: Datatypes for Int annotated expressions and their
mapping functions.

These datatypes are intended to model a simple expression language where each
sub-expression is annotated with an integer, perhaps a line numbermarking its prove-
nance. The function mapE witnesses the functoriality of the Exp datatype. However,
it is not possible to show that Figure 4.1 holds without simultaneously showing that
it holds for mapT, which is not a syntactic generalisation. Even in this case, where it
should be quite straightforward to infer the required property, the process of strength-
ening the hypothesis cannot be performed as part of proof search itself because the
mutual induction scheme requires both induction hypotheses to be known upfront.

Instead of generating specialised induction schemes, most recent advances in the
area of automated proof induction have been focused on discovering suitable lem-
mas to compensate. Lemma discovery and hypothesis strengthening techniques can
be powerful but have a number of weaknesses including the generation of irrelevant
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lemmas, a tendency to over generalise, and lack of scalability for complex formu-
las [29]. Ultimately, such techniques are crucial in all but the simplest proofs, and so
any improvement to the underlying induction mechanism, reducing the burden on
lemma generation heuristics, is worthwhile. It is also worth noting that no lemma
discovery strategy can be complete, and so there will always be a role for the user in
supplementing proof search with their own insight.

Thus, leaving aside the issues of lemma discovery and hypothesis strengthening,
we explore an alternative system that doesn’t rely on explicit induction schemes —
cyclic proofs. In this context, we introduce a novel technique for equational reasoning
and a simple proof system based on our mechanism that seamlessly supports complex
forms of inductive arguments, such as nested or mutual induction.

4.1.1 Cyclic Proofs

Non-well-founded proof theory is distinguished from classic proof theory by the use
of possibly infinitely deep derivation trees, which are well suited to expressing argu-
ments by infinite descent. Cyclic proofs occur within this field as those proofs whose
derivations are regular, i.e. have finitely many distinct sub-derivations, and are thus
representable as a finite graph [76, 77]. Of course, not all circular proofs represent
sound arguments; an additional correctness criterion is required to compensate, usu-
ally taking the form of an ω-regular condition on the infinite paths through a proof.

Cyclic proofs are naturally of theoretical interest in domains with some notion
of fixed-point and have enabled a number of elegant proof theoretic results [78, 79,
80, 81]. In the case of first-order logic extended with inductive definitions, for exam-
ple, they are known to be stronger than traditional proof systems in terms of logical
complexity, i.e. degree of quantifier alternation [82]. One of the major forces driving
research into cyclic proofs, however, has been applications in the field of program-
ming languages, whereby their first-class support for recursion has the potential to
improve on the state-of-the-art. For example, cyclic proofs have already been em-
ployed in program synthesis and to verify termination [38, 40].

Automated cyclic proof systems are also better suited to the exploratory nature
of goal-directed proof search in settings involving recursion or inductive domains as
they can avoid committing to a fixed induction scheme in advance, instead discov-
ering a bespoke circular argument justified post-hoc [42]. Although the generation
of induction schemes specific to the recursive functions in question, i.e. “recursion
analysis”, and the selection of induction hypotheses based on deductive proof search,
i.e. “lazy induction”, have previously been considered, these approaches have only
been shown applicable to problems of limited complexity [71, 83]. Cyclic proofs can
imitate such approaches when appropriate but is not limited to them.
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The cyclic proof in Figure 4.3 demonstrates the “lazy” style of induction whereby
the recursive structure of the argument is postponed until an instance of a previous
equation is required. Here, and elsewhere, the cycle is represented by labelling a
node in the proof graph, e.g. labelling the root 1, and referencing this label elsewhere
as a premise, e.g. (1), without further justification. The proof can be read in a goal-
orientedmanner with the root node, which ultimately acts as an induction hypothesis,
reoccurring naturally through a combination of case analysis, reduction, and simple
equational reasoning without being pre-determined as an induction hypothesis or
requiring the corresponding property of Tm to be known up-front.

(2)
(Refl)

⊢ n = n
(Cong)

⊢ MkExp (mapT id t) n = MkExp t n
(Reduce)

⊢ mapE id (MkExp t n) = MkExp t n
(Case)

1: ⊢ mapE id e = e

(Refl)
⊢ Var x = Var x

(Reduce)
⊢ mapT id (Var x) = Var x

····
⊢ mapT id (Cst n) = Cst n (3)

(Case)
2: ⊢ mapT id t = t

(1)
(Inst)

⊢ mapE id e1 = e1

(1)
(Inst)

⊢ mapE id e2 = e2(Cong)
⊢ App (mapE id e1) (mapE id e2) = App e1 e2(Reduce)

3: ⊢ mapT id (App e1 e2) = App e1 e2

Figure 4.3: A cyclic proof of ⊢ mapE id e = e.

4.1.2 Cyclic Equational Reasoning

The cycles that feature in Figure 4.3 instantiate an ancestral node to directly justify
their conclusion without requiring any other premises. In Brotherston, Gorogiannis
and Petersen’s state-of-the-art Cyclist theorem prover, cycles are formed precisely
in this manner — a node that is logically stronger than the current proof obligation
is identified and used to discharge it [42]. Being generic across logics, the exact justi-
fication used to form cycles in their system will vary but typically is limited to some
combination of weakening, instantiation, or, in the case of separation logic, the frame
rule. When it comes to equational reasoning, however, this mechanism is insufficient.
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The standard axiomatisation of equational reasoning quickly leads to an intractable
space of proofs and cannot be handled effectively by a goal-oriented theorem prover
without a specialised mechanism that takes advantage of structural information. For
example, while Cyclist has been shown to handle mutual induction problems with
ease, its lack of native support for equational reasoning means that it has difficulty
with heavily-equational properties, such as ⊢ add x y = add y x which encodes the
commutativity of addition. The authors conjecture that a proof could be obtained if
the auxiliary lemma ⊢ add x (S y) = S (add x y) were supplied as a hint.

However, a variant of this required lemma can be derived from information al-
ready present in the proof without relying on generalisation or some other ad-hoc
means of synthesis. The partial proof in Figure 4.4 shows the S case of the commu-
tativity property, where the original goal is labelled (1). This proof is not discovered
by Cyclist because the cycle is obscured behind several equational reasoning steps,
which crucially omits additional obligations in the right-hand branch.

(1)
(Inst)

⊢ add x′ y = add y x′
(Cong)

⊢ S (add x′ y) = S (add y x′)

····
⊢ S (add y x′) = add y (S x′)

(Trans)
⊢ S (add x′ y) = add y (S x′)

(Reduce)
⊢ add (S x′) y = add y (S x′)

Figure 4.4: A partial proof of commutativity of addition.

It is disingenuous to claim that nothing has been synthesised when reading this
proof in a strictly bottom-up, i.e. goal-oriented, manner as transitivity seemingly in-
troduces a new expression (in pink) for the transitivity step. Our key observation,
however, is that endeavouring to form cycles can itself be used to guide equational
reasoning. The aforementioned expression can be derived, without synthesis, through
a combination of bottom-up and top-down reasoning, exploiting the fact that the
equation labelled (1) is already known. Standardly, proof rules that are suitable for
goal-oriented reasoning should have only a few variants of the premises that justify
a given instance of the conclusion, so that proof search has a low branching factor,
which is not the case for the standard presentation of transitivity. In a cyclic proof
system, on the other hand, ancestral nodes can also be used as premises allowingmore
flexible proof rules without drastically increasing the branching factor.

Since, in general, we cannot expect there to be an exact syntactical relationship
between the target node and its ancestor, the formation of cycles is closely related to
the use of cuts in the proof. Indeed, Tsukada and Unno [41], have demonstrated that
many efficient model checking techniques can be viewed as the introduction of cut-
like rules into cyclic proofs that allow proof obligations to be discharged earlier. In
line with this body of work, we propose to incorporate basic equational reasoning into
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the formation of cycles through a cut-like rule (Subst), which uses an ancestral and
non-ancestral nodes alike to rewrite a sub-expression of the current proof obligation
instead of completely discharging it.

⊢ a = b ⊢ C[bθ] = c
(Subst)

⊢ C[aθ] = c

We refer to the left-hand premise of this rule as the lemma and the right-hand
premise as the continuation. As these names might suggest, the rule says that a given
lemma a = b can be used to simplify the current conclusionC[aθ] = c and emit a new
proof obligation C[bθ] = c. This rule doesn’t involve any generalisation or synthesis,
however, as the choice of lemmas is restricted to pre-existing nodes or externally
supplied lemmas. As an example of its application, the proof segment in Figure 4.4
can be compressed to a single instance of (Subst) that our proof search algorithm will
successfully discover:

(1) ⊢ S (add y x′) = add y (S x′)
(Subst)

⊢ S (add x′ y) = add y (S x′)

Because this acts as a single rule, there is no need to heuristically generate proof
segments with the hope of forming a cycle but instead apply it directly to simplify a
proof obligation. Note also that the (Inst) rule used in Figure 4.3 is actually shorthand
for the combination of (Subst) with a continuation that is trivially discharged by (Refl).
That is to say, our contextual substitution rule subsumes instantiation.

Although, in principle, the lemma needn’t be derived from the proof’s root node,
e.g. it may be supplied by a human or conjectured by a theory exploration tool, we
found that our proof search algorithm is often able to produce proofs whilst only
selecting lemmas that already occur as nodes within the same proof graph without
the need to invoke any potentially costly lemma discovery strategies.

4.2 The CycleQ Proof System

In the rest of this chapter, we shall assume an exhaustive and terminating MiniHask
program P with program environment Σ and datatype environment ∆.

Definition 4.1. An equation is of the form Γ ⊢ a = b, where Γ is a type environment
and where a and b are applicative expressions such that Γ ⊢ a, b : τ . We write Eq
for the set of well-formed equations. For convenience, we will also use .

= to indicate
an unordered equation rather than duplicating proof rules or including a specific rule
for symmetry.

The type environment of an equation contains any universally quantified vari-
ables in addition to the program variables. We will assume that Γ always contains the
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program environmentΣ and, as usual, that all other variables are monomorphic. Fur-
thermore, we will sometimes omit the equation’s type environment as it can typically
be inferred from the context.

Standardly, equations are interpreted as the set of valuations, i.e. closing assign-
ments to their universally quantified variables, for which both sides are contextually
equivalent according to Definition 2.23.

Definition 4.2. A valuation of a type environment Γ is a pair (Θ, θ) where Θ is a
type-level substitution such that Θ(α) is closed for each type variable α ∈ FTV(Γ)

and θ is an expression-level substitution such that Σ ⊢ θ : ΓΘ \ Σ. Through the
abuse of notation, we will typically identify a valuation just by its expression-level
substitution as a suitable type-level substitution can be inferred.

An equation Γ ⊢ a = b is said to be satisfied by a valuation of Γ just if both sides
are equivalent under θ, i.e. aθ ≡P bθ, in which case we write θ ⊨ a = b. When an
equation is satisfied by all valuations, then it is said to be valid.

4.2.1 Cyclic Pre-proofs

(Refl)
Γ ⊢ a .

= a

Γ ⊢ a′ .= b′
(Reduce) a→∗

P a′

b→∗
P b′Γ ⊢ a .

= b

(∀i ≤ n) Γ ⊢ ai
.
= bi(Cong)

Γ ⊢ k a1 · · · an
.
= k b1 · · · bn

Γ ∪ {x : τ} ⊢ a x .
= b x

(FunExt)
Γ ⊢ a .

= b

where Γ ⊢ a, b : τ → σ

Γ2 ⊢ a
.
= b Γ1 ⊢ C[bθ]

.
= c

(Subst) Γ1 ⊢ θ : Γ2Θ \ Σ
Γ1 ⊢ C[aθ]

.
= c

(∀k ∈ K) Γ ∪ Γk ⊢ a[k x1 · · · xn/x]
.
= b[k x1 · · · xn/x](Case)

Γ ∪ {x : d τ} ⊢ a .
= b

whereK = dom(∆(d))

and Γk = {x : ∆(d)(k)[τ/α]}

Figure 4.5: The inference rules for CycleQ pre-proofs.
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As previously mentioned, the infinitary nature of cyclic proofs means that they
require an additional condition in order to correspond to sound arguments. Thus, the
standard approach to defining cyclic proofs first introduces pre-proofs before consid-
ering the subclass of proofs proper [77, 84]. In this section, we define pre-proofs and
the inference rules that can be used to construct them.

In addition to the (Subst) rule, the proof system consist of: reflexivity for dis-
charging trivial equations, a rule for simplifying an equation according to the re-
duction relation, congruence for constructors, function extensionality, and a rule for
performing case analysis on variables. The proof rules are named according to their
goal-oriented interpretation, hence the reductions in the (Reduce) rule go from con-
clusion to premise and, in the case of the (Subst) rule, the titles lemma and continuation
are used for left- and right-hand premises respectively.

Although the congruence rule can be simulated by (Subst), we distinguish it be-
cause it is not intended as a mechanism for creating cycles. This rule is restricted
to only apply to constructors so that it can be applied eagerly during proof search
without lost of generality. Note also that transitivity can be simulated by (Subst) and
symmetry is included by the use of unordered equations.

Definition 4.3. A cyclic pre-proof is a tuple (V, E, λ, ρ) consisting of:

• A finite set of nodes V and an edge function E : V ⇀ V ∗ that determines the
underlying structure of the proof graph, mapping conclusions to their premises.

ForE(v) = v1 · · · vn, we say that each vi is a child of v and, when a node has no
children we say it is a leaf. Notices that the edge function distinguishes nodes
with no children from those for which the edge function is undefined. When
E(v) is undefined, we say that v is an axiom, and we denote the set of such
nodes as Ax. Unlike other nodes, axioms are not justified within the proof and
thus allow for lemmas supplied externally, e.g. as guided by the user or from a
lemma discovery tool.

• Each node is labelled with an equation by λ : V → Eq and each non-axiomatic
node is labelled with an instance of a rule from Figure 4.5 by ρ : V \Ax→ Rule,
which are subject to the requirement that, for any node v ∈ V \Axwith children
E(v) = v1, . . . , vn, the following inference is well-formed.

λ(v1) · · · λ(vn)
ρ(v)

λ(v)

We informally assume that ρ fully determines the value of meta-variables in
the inference rules. For example, if ρ(v) is (Subst), then the substitution and
context are also known.
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A trivial example of a pre-proof can be constructed using substitution to rewrite
any equation according to itself, thus assuming the exact equation which is to be
proven, as in Figure 4.6. Recall that, when depicting cyclic proofs, the premise (1) is
to be understood as a reference to the labelled node 1: ⊢ True = False, which forms
the cycle in this case.

(1)
(Refl)

⊢ False = False
(Subst)

1: ⊢ True = False

Figure 4.6: A trivially unsound pre-proof.

Although this example clearly illustrates that pre-proofs do not necessarily repre-
sent sound arguments, they are, however, locally sound in the sense that the premises
of each inference rule justify its conclusion. In the context of a pre-proof, this prop-
erty is witnessed by directly relating each valuation of an equation to valuations of
its premises that are necessary for concluding that it is satisfied.

Definition 4.4. Let (V, E, λ, ρ) be a pre-proof. For a pair of nodes v1, v2 ∈ V such
that v2 is a child of v1, i.e. a premise, with valuations θ1 and θ2 of their respective
equations λ(v1) and λ(v2), the necessary precursor relation (v1, θ1) _ (v2, θ2) is
defined as follows depending on the rule ρ(v1):

• (Refl) As there are no premises to reflexivity, there are no necessary precursors.

• (Reduce), (Cong) Across these rules, the necessary precursor of a valuation is
just the valuation itself. That is, (v1, θ1) _ (v2, θ1) where v2 is any child of
the node v1.

• (FunExt) When the type environment Γ is extended with a fresh variable x : τ1

in accordance with function extensionality, a valuation of the sole premise v2 is
a necessary precursor if it agrees on all variables other than the fresh variable.
That is, (v1, θ1) _ (v2, θ2) whenever θ1(y) = θ2(y) for all y ∈ dom(Γ).

• (Subst) Let θ be the substitution instance of the lemma.

– The necessary precursor of the first premise, i.e. the lemma, is related to
the valuation of the conclusion by the instance of the lemma in question.
That is, (v1, θ1) _ (v2, θθ1) when v2 is the lemma.

– For the continuation, on the other hand, the necessary precursor is the
same valuation: (v1, θ1)_ (v2, θ1) when v2 is the continuation.

• (Case) Supposex : d τ is the variable uponwhich case analysis is performed and
x1, . . . , xn are the fresh variables. We know that the expression θ(x)↓P is of



64 CHAPTER 4. CYCLEQ

the form k a1 · · · an for some k ∈ ∆(d). Thus, (v1, θ1) _ (v2, θ1∪{x 7→ a})
whenever v2 is the premise associated with this constructor. Clearly, no other
premise is necessary as, by Lemma 2.11, there is no other way to satisfy the
equation implicit in case analysis.

Consider the partial proof taken from Figure 4.3:

...

...

(1) (Refl)
⊢ y1 = y1(Subst)

⊢ mapE id y1 = y1(Cong)
⊢ App (mapE id y1) (mapE id y2) = App y1 y2(Reduce)

⊢ mapE id (App y1 y2) = App y1 y2(Case)
⊢ mapT id x = x

A valuation θ of the conclusion may be of the form {x 7→ App a1 a2} where a1
and a2 are closed expressions. In which case, its satisfaction only depends on the
App case. Hence, there the valuation θ ∪ {y1 7→ a1, y2 7→ a2} associated with the
right-hand premise is a necessary precursor and there are no necessary precursors
for the left-hand premise. Now considering the node justified by (Subst) with the
lemma 1: ⊢ mapE id x = x, there are two necessary precursors to the valuation
θ ∪ {y1 7→ a1, y2 7→ a2}: one associated with the continuation, which is the same
valuation, and one associated with the lemma, corresponding to the specific instance
in use, namely {x 7→ a1}.

The following states the essential property that precursors must witness — the
contrapositive of local soundness, i.e. from an invalid conclusion, we can derive an
invalid premise.

Theorem 4.1 (Local Soundness). Let v1 ∈ V \Ax be a non-axiomatic node within the
pre-proof (V, E, λ, ρ) such that θ1 ̸⊨ λ(v1) for some valuation θ1. Then, there exist a
child node v2 ∈ E(v1) with a necessary precursor θ2, i.e. where (v1, θ1) _ (v2, θ2),
for which θ2 ̸⊨ λ(v2).

4.2.2 Global Soundness

In a proof system with finite derivation trees, local soundness is sufficient for con-
cluding the validity of any given node by induction — an invalid node must have an
invalid child and so on until we reach a leaf. However, in a cyclic proof system, we
may never reach a leaf and instead follow an infinite sequence of invalid nodes. In
the pre-proof from Figure 4.6, for example, there is an infinite sequence of necessary
precursors (1, ∅) _ (1, ∅) _ · · · that follows from the fact that the root node is
justified in terms of itself.

The soundness of a cyclic pre-proof depends instead on the precursor relation
being well-founded, i.e. there are no such infinite sequences. In essence, for any given
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valuation, we should be able to restrict and unfold a sound pre-proof into a finite
derivation tree that is still a sufficient witness for that instance. Clearly, this would
exclude our trivially false pre-proof as the sequence of precursors remains constant.

Definition 4.5. Within a given pre-proof (V, E, λ, ρ), sequences of necessary pre-
cursors follow paths — a (possibly) infinite sequence of nodes (vi)i∈N where vi+1 ∈
E(vi) is a child of vi ∈ V for each i ∈ N. A path segment is a finite sequence of nodes
that meets the same criteria.

In a proof without cycles, there are only finitely many paths and, consequently,
the necessary precursor relation is well-founded. To ensure the necessary precursor
relation is well-founded in general, however, each path is equippedwith a correspond-
ing sequence of expressions that, once instantiated with the precursors, is infinitely
decreasing. If the order on expressions is itself well-founded, then the necessary pre-
cursor relation must be as well. We refer to this property as the global soundness

condition.

Definition 4.6. A partial order on applicative expressions≤ is said to be stable if the
inequality a ≤ b implies aθ ≤ bθ for any substitution θ.

Definition 4.7. Let ≤ be a well-founded, stable partial order. A ≤-trace along the
path (vi)i∈N is an infinite sequence of applicative expressions (ti)i∈N subject to the
following constraints:

• If λ(vi) = Γi ⊢ ai = bi, then FV(ti) ⊆ dom(Γi \ Σ), i.e. the trace expression
may only depend on the free variables of the equation associated with the given
node.

• If ρ(vi) is (Case) for some i ∈ N where x : d τ is the variable upon which case
analysis is performed and vi+1 is the premise associated with the constructor
k ∈ ∆(d) using fresh variables x1, . . . , xn, then ti+1 ≤ ti[k x1 · · · xn/x].

• If ρ(vi) is (Subst) with substitution θ and vi+1 is the lemma, then ti+1θ ≤ ti

and, if vi is the continuation, then ti+1 ≤ ti.

• Finally, in all other cases, it is required that ti+1 ≤ ti.

In each of the above cases, when the inequality is strict ti+1 < ti, we say that the
index i is a progress point of that trace. As with paths, a finite sequence of applicative
expressions meeting the above criteria is referred to as a trace segment.

Naturally, the content of a trace depends on the cyclic proof system in question. In
Brotherston’s work on first-order logic with inductive definitions, for example, traces
consists of inductively defined atoms appearing in the antecedent and progress points
occur through unfolding their definition [77]. As we discuss in a future section, part
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of our intention with this work is to relate cyclic proofs to rewriting induction [46]. To
accommodate this goal, we do not consider a fixed ordering on expressions, and, as a
result, the proof rules responsible for creating progress points will vary. For example,
our implementation of proof search is based on the substructural orderwhere progress
points are introduced by the (Case) rule, but they would arise from the (Reduce) rule
under a reduction order. It is for this reason that progress points are not tied to a
specific proof rule as is the case in Brotherston’s generic cyclic proof system [85].

The following lemma shows that the requirement placed on traces is sufficient to
witness a decrease once instantiated with a sequence of necessary precursors along its
path. In particular, if a path has a trace with infinitely many progress points and the
trace’s ordering is well-founded, there can be no corresponding infinite sequences of
precursors. And, if every path has such a trace, the precursor relation is well-founded.

Lemma 4.2. Let (V, E, λ, ρ) be a cyclic pre-proof with some path (v)i∈N and sup-
pose (t)i∈N is a ≤-trace along this path. If θi is a valuation of some node vi ∈ V

and (vi, θi) _ (vi+1, θi+1), then ti+1θi+1 ≤ tiθi and ti+1θi+1 < tiθi when i is a
progress-point.

A cyclic pre-proof is said to satisfy the global soundness condition if every path has
a suffix that can be equipped with a trace that has infinitely many progress points. In
which case, we will refer to it as a cyclic proof. Allowing for traces that only cover
a suffix of their associated paths makes the global soundness conditional more gen-
eral as traces might not extend to the root node. For example, a trace may follow
an expression that is introduced by an inference rule such as (Subst). Moreover, if a
path doesn’t have an infinitely decreasing trace, then there exists an ultimately peri-
odic path that doesn’t have an infinitely decreasing trace, although it is not the case
that every path is ultimately periodic. This property follows from the fact that non-
empty ω-regular languages (e.g. paths without an infinitely decreasing trace) nec-
essarily contain a regular word (e.g. an ultimately period path without an infinitely
decreasing trace). Therefore, it suffices to find a trace for every cycle, rather than ev-
ery infinite path, where the traces of this cycle need not extend to the root. It is not,
however, always sufficient to assign a single trace expression to each node as distinct
cycles may overlap.

Lemma 4.3. Let (V, E, λ, ρ) be a cyclic pre-proof and≤ a stable, well-founded par-
tial order. If, for every path (vi)i∈N, there is some index j ∈ N and a ≤-trace (ti)i∈N
along the corresponding suffix (vi+j)i∈N with infinitely many progress points. Then,
the precursor_ relation is well-founded.

It follows from local soundness that a valuation not satisfying the equation of a
given node induces an infinite sequence of necessary precursors, which contradicts
the preceding lemma if the global soundness condition is satisfied. Therefore, every
node in a cyclic proof is labelled by a valid equation.
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Theorem 4.4 (Global soundness). Let (V, E, λ, ρ) be a cyclic proof such that, for
every axiom v ∈ Ax, the associated equation λ(v) is valid. Then, for every other
node v ∈ V \ Ax, the associated equation λ(v) is also valid.

Commutativity of Addition Revisited

(2)
(1)

(Refl)
⊢ S x′ = S x′ (4)

(Case)
3: ⊢ S (add y x′) = add y (S x′)

(Subst)
⊢ S (add x′ y) = add y (S x′)

(Case)
1: ⊢ add x y = add y x

(Refl)
⊢ Z = Z

(2)
(Refl)

⊢ S y′ = S y′
(Subst)

⊢ S y′ = S (add y′ Z)
(Case)

2: ⊢ y = add y Z

(3)
(Refl)

⊢ S (add y′ (S x′)) = S (add y′ (S x′))
(Subst)

4: ⊢ S (S (add y′ x′)) = S (add y′ (S x′))

Figure 4.7: A cyclic proof of the commutativity of addition.

As an example of a global soundness condition, consider the pre-proof in Fig-
ure 4.7 for the commutativity of addition where (Reduce) nodes have been elided for
compactness. We will show that this is indeed a cyclic proof using the substructural
ordering.

Lemma4.5. The substructural order⊴ on applicative expressions, defined as follows,
is well-founded and stable.

a ⊴ b⇐⇒ ∃C[·]. C[a] = b

To this end, we must consider each of the following cycles and show they each
have a tracewith infinitelymany progress points. These traces are informally depicted
as coloured lines in the pre-proof with progress points marked by circles, following
their presentation in [81].

Blue There is a cycle starting at node (1) that follows the successor case and the
lemma of the (Subst) rule, returning to the root node. For its trace, consider the
sequence of expressions x, x′, x, . . .. This sequence is a valid trace as it meets
the two criteria x′ ◁ x[S x′/x] and x[x′/x] ⊴ x′ for the (Case) and (Subst)
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rules respectively. What is more, in the first edge along this path, the trace
strictly decreases via the transition from the variable x to the variable x′, which
corresponds to a proper sub-expression in any sequence of necessary precursors
along this path. Therefore, this trace segment contains a progress point. As we
are considering a cycle, this trace will pass through infinitely many progress
points as required.

Orange, Pink There are two similar cycles starting at nodes (2) and (3) respectively
that again follow the successor case and the lemma of the (Subst) rule, before re-
turning to their respectively start nodes. A trace for each of these cycles is con-
structed much like the previous trace but following the expressions y, y′, y, . . .
and equally has infinitely many progress points.

4.3 Rewriting Induction

In the introduction to this chapter, we contrasted cyclic proofs with explicit induction,
by which we mean proof systems based on induction schemes. However, cyclic proof
systems are not the only paradigmatic alternatives to be proposed in response to the
shortcomings of automated explicit induction. In this section, we will explore the re-
lationship between cyclic proofs and two such alternatives: “inductionless induction”
and “implicit induction”.

4.3.1 Inductionless and Implicit Induction

Inductionless Induction

Originally proposed by Musser in the 80s, “inductionless induction” or “proof by con-
sistency” relies on a rare proof theoretic property— strong completeness [86] A proof
system is strongly complete if every consistent formula is a theorem. In which case,
one can prove a formula is a theorem by assuming it holds and then demonstrating
that there is no contradiction [45]. The strongly consistent proof system in question
is inductive equational logic where an equation holds whenever all closed instances
are derivable from the standard inference rules of equational reasoning, i.e. reflexivity,
symmetry, transitivity, congruence, and instantiation. Assuming a sufficiently expres-
sive theory, consistency is encoded by an assertion which is evidently true under the
initial model, e.g. False ̸= True.

The difficulty associated with proving the consistency of a theory limits the appli-
cation of this strategy to saturation-based systems, such as the Knuth-Bendix proce-
dure, that dynamically derive consequences [87]. The Knuth-Bendix procedure takes
as input a set of universally quantified equations and, when successful, produces an
equivalent, confluent and terminating rewrite system. If the equation in question, in
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conjunction with the original theory, can be converted into such a rewrite system,
then it is straightforward to test that False ̸= True by comparing their unique nor-
mal forms.

A more recent line of work has investigated the integration of induction into stan-
dard saturation-based theorem proving [88, 89]. However, as the theorem to be shown
is incorporated as a goal clause, i.e. in its negated form, and combined with an induc-
tion axiom, these approaches do not fall into the category of inductionless induction.

Implicit Induction

At a high-level, the Knuth-Bendix completion proceeds by simplifying and deleting
equations before orienting them so as to be interpreted as rewrite rules. The orien-
tation is determined by a well-founded order on expressions that is compatible with
context and substitution so that no infinite reduction sequences can occur, thus guar-
anteeing termination. In order to produce a confluent rewrite system, the procedure
must also consider critical pairs — expressions that can be rewritten in two differ-
ent ways by overlapping rules. Critical pairs are resolved by the addition of a new
hypothesis to be incorporated.

A large body of work considers a specialisation of this procedure to the task of per-
forming inductionless induction [90]. In particular, the “inductive completion” pro-
cedure directly incorporates rules governing constructors, eschewing the need for an
additional consistency check [91]. A further refinement of the inductive completion
procedure noted that only those critical pairs arising between the original theory and
the hypotheses need to be considered, not the critical pairs deduced from hypotheses
themselves [92]. Although such frameworks are still categorisable as inductionless in-
duction, their soundness is no longer derived from confluence. Later, Reddy distilled
the simple essence of this mechanism into ‘Term rewriting induction’, now often re-
ferred to simply as rewriting induction, which relies on the well-founded nature of the
ordering directly [46]. Rewriting induction is not a form of proof by consistency but,
nevertheless, avoids selecting an explicit induction scheme beforehand; hence, “im-
plicit induction”. As part of this work, Reddy also demonstrated how this approach
subsumes proof by consistency under the Knuth-Bendix completion procedure.

Beware the Old Jade and the Zombie!

Do not to fumble around with the zombie of “inductionless induction”!

The experts in implicit induction have spent a lot of time with it, mostly to

bury it — Clause-Peter Wirth [93]

The inductionless and implicit approaches to inductive theorem proving are pleas-
ingly, yet deceptively, simple. Ultimately, they must still solve the same problem as
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faced by the explicit approach — namely, finding a finite cyclic representation for an
infinite argument.

Saturation may be guaranteed, eventually, to expose any inconsistencies, but it
will encounter many superfluous inferences in the process, limiting its efficiency [94].
The refinements of the completion procedure attempt to ameliorate this limitation
but do not address the fact that equations must be orientable with respect to the fixed
ordering. As a result, these systems are not only highly sensitive to the choice of order
but are thwarted by theorems such as the commutativity of addition, the symmetry
of which is inherently unorientable.

Although there are extensions to the completion procedure and rewriting induc-
tion that allow for unorientable equations, the increase in complexity detracts from
the principal advantage of these approaches, namely their simplicity [95, 96]. Instead
of further refining the completion strategy, the most actively developed automated
theorem prover based on implicit induction — spike — has incorporated some ele-
ments of explicit induction [97, 98]. And, as far as the authors are aware, there is no
active automated theorem prover based on proof by consistency alone.

4.3.2 Translation into CycleQ

Despite the aforementioned problems with inductionless and implicit induction, these
approaches sharemany of the advantages of cyclic proofs. For example, they naturally
support mutual induction and do not require a fixed induction scheme in advance. In
the remainder of this section, we will show that inductionless induction is subsumed
by our cyclic proof calculus, presented in Section 4.2, using rewriting induction as
a stepping stone. The key observation is that the unconstrained use of hypotheses
in Reddy’s system naturally gives rise to the structure of cyclic pre-proofs, and that
global soundness is guaranteed by construction as the lemmas are oriented. From the
subsumption of rewriting induction, it follows transitively that proof by consistency
is also subsumed:

Inductive Completion
Section 5 [46]
≤ Rewriting Induction

Theorem 4.10
≲ CycleQ

One of the principal developments of the inductive completion procedure and
rewriting induction was its independence from confluence, although the rewrite sys-
tem is still required to be terminating. Because we target functional programs how-
ever, the equational theory is inherently confluent and thus CycleQ only subsumes
rewriting induction in this case. Nevertheless, it is worth noting that the soundness
of our proof system is not derived from confluence.
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Expansion and Case Analysis

As previously mentioned, rewriting induction implicitly considers critical pairs, i.e.
expressions that can be rewritten in multiple ways, that arise between the program
and the equations that are being proven (but not between these equations and any
existing hypotheses).

As our rewrite system is defined by a set of strictly orthogonal rewrite rules, it is
sufficient to consider basic expressions to determine the critical pairs. We then define
the critical pairs associated with an equation via the expansion operator that unifies a
given basic sub-expression with a reduction rule from the program.

Definition 4.8. Abasic expression is an applicative expression of the form f p1 · · · pn
where f ∈ dom(Σ) is a program variable and pi are (possibly non-linear) patterns.

Definition 4.9. For a given contextC[·], the expansion operator is defined as follows:

Expand(C[f p1 · · · pn] = b) =

{C[c]θ = bθ | P (f) p′1 · · · p′n ⇓∅ c, θ = mgu(p, p′)}

where f p1 · · · pn is a basic expression, p′1, . . . , p′n are patterns, and the substitution
θ = mgu(p, p′), when it is defined, denotes the most-general unifier such that piθ =
p′iθ for all i ≤ n.

The expansion of a basic expression generates a “cover set” of substitutions — a
set of instances to which every closed expression reduces. As our rewrite rules are
determined by patterns, it effectively performs case analysis instantiating variables
with constructors. The first component of our translation from rewriting induction
to CycleQ takes advantage of this fact to simulate expansion via a case analysis tree.
However, another critical part of the definition of expansion is that a reduction step
has occurred, and the left-hand side is, therefore, strictly smaller. In other words, it
marks a progress point under the reduction order. Each branch of the constructed tree
thus must also simulate this reduction step.

Lemma 4.6. For any equation Γ ⊢ C[a] = b where Γ ⊢ a : d τ is a basic expression,
there is a finite derivation tree using only instances of the (Case) rule and exactly one
instance of the (Reduce) rule per branch where the leaves are labelled by equations
from the set Expand(C[a] = b) and the root is labelled Γ ⊢ C[a] = b.

From Derivations to Pre-proof

Definition 4.10. A well-founded partial order on applicative expressions ≤ is stable
if a ≤ b implies aθ ≤ bθ for any substitution θ. If such an order is also closed under
context, i.e. a ≤ b implies C[a] ≤ C[b] for any applicative context C[·], then we say
it is a reduction order.
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An example of a reduction order is →∗
P for a terminating program P . For this

section, we shall assume that ≤ is a fixed reduction order that is compatible with the
program’s reduction relation. That is, if a →P b, then a > b. One could consider
the reduction relation itself as the choice of ordering. However, this would be overly
limiting as lemmas and induction hypotheses must also be orientable, and are unlikely
to be mere instances of reduction.

Definition 4.11. The inference rules of rewriting induction manipulate pairs (H, G)
where H consists of oriented equations Γ ⊢ a = b such that a > b and G is a set
of unoriented equations, by which we mean the set is closed under symmetry. We
refer to these sets as the hypotheses and goals respectively. The judgement ⊢ (H, G)

defined inductively in Figure 4.8 expresses that all the goals are valid when all the
hypotheses are also valid.

(End)
⊢ (H, ∅)

⊢ (H, G)
(Delete)

⊢ (H, G ∪ {Γ ⊢ a .
= a})

⊢ (H, G ∪ {Γ ⊢ a′ .= b})
(Simplify) a→∗

P a′
⊢ (H, G ∪ {Γ ⊢ a .

= b})

⊢ (H, G ∪ {Γ ⊢ C[a′θ] .= b})
(Hypothesis) ∆ ⊢ a = a′ ∈ H

Γ ⊢ θ : ∆Θ⊢ (H, G ∪ {Γ ⊢ C[aθ] .= b})

⊢ (H ∪ {Γ ⊢ C[a] = b}, G ∪ Expand(C[a] = b))
(Expand)

⊢ (H, G ∪ {Γ ⊢ C[a] .= b})
where C[a] < b
and Γ ⊢ a : d τ is basic

Figure 4.8: The proof rules of rewriting induction.

As the program P is not presented as a set of rewrite rules, we have two sepa-
rate rules for the use of hypotheses and the program’s reduction relation, whereas
rewriting induction was originally presented with a single simplification rule that
combined the two. Although the hypotheses are treated as rewrite rules that sup-
plement the program’s reduction relation, they needn’t be strictly orthogonal. For
example, ⊢ add (add x y) z = add x (add y z) is a valid hypothesis despite overlap-
ping with the existing rules governing the reduction of add and matching against a
non-pattern expression.

The translation into a cyclic pre-proof proceeds by structural induction on the
rewriting induction derivation, following the close correspondence between the in-
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ference rules of the two systems:

(Delete) ⇝ (Refl)

(Simplify) ⇝ (Reduce)

(Hypothesis) ⇝ (Subst)

(Expand) ⇝ (Case), (Reduce)

As cyclic pre-proofs discharge their hypotheses globally rather than locally, inter-
mediate stages in the translation use axioms to simulate hypotheses that are justified
later in the construction of the pre-proof.

Lemma 4.7. If ⊢ (H, G) is a rewriting induction derivation, then there exists a cyclic
pre-proof (V, E, λ, ρ) where λ(Ax) ⊆ H and, for each goal Γ ⊢ a .

= b in the set G,
there is a node v ∈ V \ Ax such that λ(v) = Γ ⊢ a .

= b modulo orientation.

Global Soundness by Construction

The pre-proof constructed in Lemma 4.7 can be equipped with the structure of a cyclic
proof, i.e. a trace with infinitely many progress points for a suffix of each path, using
a variation of the reduction order. The trace follows the left-hand side of each equa-
tion in the pre-proof, where progress points occur as a result of the reduction step in
Lemma 4.6. For this trace to be preserved following the (Subst) rule into the lemma,
we need an ordering that also includes the sub-expression relation. We can construct
a suitable order with this property from any given reduction order.

Definition 4.12. The reflexive-transitive closure of the union of the partial order ≤
and the substructural order, i.e. (≤ ∪⊴)∗, is referred to as the substructural extension
of ≤ and is denoted ≤sub.

Lemma 4.8. If ≤ is a reduction order, then ≤sub is stable and well-founded.

Wewill now show that the global soundness condition is indeed satisfied using the
substructural extension of the given ordering. It is plain to see that all cycles arising
in the constructed pre-proof use a hypothesis that was introduced via (Expand). As
this rule is represented as a case analysis tree that ultimately enables a reduction step,
there is a progress point in each branch.

Lemma 4.9. For any rewriting induction derivation ⊢ (H, G), the pre-proof con-
structed in Lemma 4.7 satisfies the following invariants:

• Along a path (vi)i∈N, let λ(vi) = Γi ⊢ ai = bi be the corresponding equa-
tion. The sequence of left-hand sides (ai)i∈N is monotonically decreasing with
respect to the substructural extension of the reduction order ≤.
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• Within every cycle v1, . . . , vn, there is at least one i ≤ n for which ρ(vi) is an
instance of (Reduce) and where the trace expression has a progress point.

Theorem 4.10. For any rewriting induction derivation ⊢ (∅, G), there exists a cyclic
proof (V, E, λ, ρ) where, for all goals Γ ⊢ a .

= b ∈ G, there is a node v ∈ T \ Ax
such that λ(v) = Γ ⊢ a .

= b modulo orientation.

As a simple example of our translation, Figure 4.9 shows a rewriting induction
derivation of the equation ⊢ append xs [] = xs where H denotes the hypothesis
set {⊢ append xs [] = xs}. The corresponding cyclic proof is shown in Figure 4.10
where the trace, i.e. the left-hand expression of each equation, is indicated in blue.
Note the progress point occurs at the reduction step.

(End)
⊢ (H, ∅)

(Delete)
⊢ (H, {⊢ y :: ys = y :: ys})

(Hypothesis)
⊢ (H, {⊢ y :: append ys [] = y :: ys})

(Delete)
⊢ (H, {⊢ [] = [], ⊢ y :: (append ys []) = y :: ys})

(Expand)
⊢ (∅, {⊢ append xs [] = xs})

Figure 4.9: A rewriting induction derivation of
⊢ append xs [] = xs.

(2)

(1)
(Refl)

⊢ y :: ys = y :: ys
(Subst)

⊢ y :: append ys [] = y : ys
(Reduce)

⊢ append (y :: ys) [] = y :: ys
(Case)

1: ⊢ append xs [] = xs

(Refl)
⊢ [] = []

(Reduce)
2: ⊢ append [] [] = []

Figure 4.10: The cyclic proof corresponding to the rewriting
induction derivation in Figure 4.9.

Since our publication of this work, it has separately been shown that rewriting
induction proofs can be transformed into a restricted form of cyclic proof and back
again [99, 100]. The cyclic proof systems in these results, however, are not specialised
for equational reasoning and the relationship is instead characterised by treating in-
ference rules as rewriting rules over sequents. Furthermore, their translation only
applies to cut-free proofs and thus is not able to simulate our calculus. The combi-
nation of implicit and explicit induction employed in the spike prover, which closely
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resembles a cyclic proof system, is also known to subsume rewriting induction. How-
ever, the conjectures are associated with a history to be individually checked in lieu
of a more general global soundness condition [97].

4.4 Efficient Proof Search

Thus far, we have seen a cyclic proof system specialised to equational reasoning. Its
subsumption of rewriting induction, a significantly more constrained system, already
provides one possible proof search algorithm. In the implementation of our CycleQ
tool, however, we follow a different approach that is less hampered by the use of
a reduction ordering to orient lemmas so that it can serve as a basis for a practical
inductive theorem prover.

It is not hard to see a tension between being more general and focusing on ef-
ficiency. Not requiring lemmas to be oriented immediately leads to an intractable
number of lemmas with many redundancies. Furthermore, as the cyclic proof will no
longer satisfy the global soundness condition by construction, we must also consider
its verification. In this section, we will address these concerns by restricting both the
creation and application of lemmas and adapting an existing technique concerning
program termination to verify the global soundness condition.

4.4.1 Needed Sub-expressions

As with the Zeno inductive theorem prover [32], a guiding principle of our proof
search strategy is the aim to reduce expressions. Intuitively, each reduction step pro-
vides more information about the behaviour of an expression and thus provides an
opportunity to witness the equivalence or inequivalence of two expressions. This di-
rective manifests itself in the prioritisation of (Reduce) over any other rule and the
strategy by which variables chosen for case analysis are selected. The possible vari-
ables selected for case analysis are those that are “needed” in order to reduce the target
equation. More specifically, a variable is needed within some expression if it must ul-
timately be instantiated by a constructor-lead application for the parent expression to
reach a normal form, i.e. some part of the parent expression’s definition branches on
the value of the variable [101]. Although the program’s reduction relation isn’t tied
to a particular evaluation strategy, whether a variable is needed or not is determined
by a lazy evaluation strategy.
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Definition 4.13. The set of needed sub-expressions Need(a) for a given applicative
expression a is defined as follows:

Need(x a1 · · · an) := ∅
Need(k a1 · · · an) := ∅
Need(f a1 · · · an) := NeedP (f)

∅ (a1, . . . , an)

Needaθ(a1, . . . , an) := Need(aθ a1 · · · an)

Needλx. dθ (a1, . . . , an) := Needdθ∪{x 7→a1}(a2, . . . , an)

Needcase x of {ki xi 7→di|i≤n}
θ (a1, . . . , an)

:=


Needdi

θ∪{xi 7→bi}
(a1, . . . , an) if θ(x) = ki b1 · · · bℓ

θ(x) ∪ Need(θ(x)) otherwise

A needed variable is merely a variable sub-expression that is needed. We do not
consider the set of needed variables directly as, in the subsequent chapter, we will
discuss an extension of CycleQ with support conditional equations whereby case
analysis can be performed on whole sub-expressions.

The set of needed sub-expressions is naturally in close correspondence with the
program reduction relation, alternating between applicative and definitional expres-
sions. It is well-defined for a terminating program and, in the implementation, is
computed simultaneously alongside the expression’s normal form. The following two
lemmas show the correctness of the definition, i.e. a needed sub-expression is indeed
a proper sub-expression and that it must be instantiated for the parent expression to
reduce to a normal form.

Lemma 4.11. Suppose Γ ⊢ a : τ and b ∈ Need(a), then b is a proper datatype sub-
expression, i.e. b ◁ a and Γ ⊢ b : d τ , and is not an application with a constructor in
head position.

Lemma 4.12. If a→∗
P k a1 · · · an, then Need(a) is empty.

Note the final case in the definition of a needed sub-expression: if a definitional
expression attempts to pattern match on an argument that is not an application with
a constructor in head position, then both the scrutinee itself and, transitively, any
needed sub-expressions of the scrutinee are considered needed. For example, in the
following expression both leq x y and x are considered needed.

case leq x y of {· · ·}
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While performing case analysis on x will provide us with more precise information;
it is not necessarily more advantageous than performing case analysis on leq x y due
to the non-analytic nature of induction.

4.4.2 Refining Cycle Formation

While the substitution of equals for equals is an appropriate technique for detecting
cycles, its unconstrained use also creates many redundancies during proof search, in-
curring a severe performance penalty. Instead of requiring lemmas or their instances
to be oriented, we restrict lemmas based on the inference rule used to justify them.
Specifically, only those nodes that are axioms or justified by (Case) or (FunEx) can be
used as lemmas in the (Subst) rule.

Despite its simplicity, this rule-based restriction is surprisingly effective. For ex-
ample, while the cyclic proof of the commutativity of addition in Figure 4.7 has 12
nodes, only 2 are applicable lemmas. Nevertheless, we conjecture that any proof that
respects the aforementioned strategy where nodes are normalised before proceeding
can be simulated under this restriction. We informally justify this claim by consider-
ing the following set of proof transformations, which translates part of the lemma’s
proof into the continuations proof.

• (Refl) Clearly, any lemma justified by reflexivity is redundant.

• (Reduce)
⊢ a′ .= b′

(Reduce)
⊢ a .

= b

⊢ b′′ .= c
(Reduce)

⊢ C[bθ] .= c
(Subst)

⊢ C[aθ] .= c

For a proof fragment of this form, we already know the conclusion C[aθ] .= c

is in normal form, else the (Reduce) rule would be applied instead. Therefore,
it must also be the case that a is in normal form and the reduction step only
applies to the complementary side of the lemma, i.e. a = a′ and b →∗

P b′.
By stability under substitution and context, the continuation ⊢ C[bθ] .

= c is
evidently reducible and thus must be justified by the reduction C[bθ] →∗

P b′′

as, again, equations are eagerly normalised by the (Reduce) rule.

To translate such a proof into a proof where the lemma is not justified by reduc-
tion is straightforward as we can use the reduced lemma in its place. It follows
from confluence that the new continuation C[b′θ] also reduces to b′′, and thus
we may reuse the continuation from the original proof as its justification:

⊢ a .
= b′

⊢ b′′ .= c
(Reduce)

⊢ C[b′θ] .= c
(Subst)

⊢ C[aθ] .= c



78 CHAPTER 4. CYCLEQ

Note that the possible traces annotating paths through the proof remain un-
changed as no new cycles have been introduced, merely cut short, and trace
expressions are unaffected by the (Reduce) rule.

• (Cong)

(∀i ≤ n) ⊢ ai
.
= bi(Cong)

⊢ k a1 · · · an
.
= k b1 · · · bn ⊢ C[(k b1 · · · bn)θ]

.
= c

(Subst)
⊢ C[(k a1 · · · an)θ]

.
= c

The application of a lemma justified by congruence can be simulated by ap-
plying each of its premises in sequence, as in the following proof fragment.
Again, the space of possible traces is unchanged as (Cong) does not affect trace
expressions.

⊢ a1
.
= b1

⊢ an
.
= bn ⊢ C[(k b1 b2 · · · bn)θ]

.
= c

····
⊢ C[(k b1 a2 · · · an)θ]

.
= c

(Subst)
⊢ C[(k a1 · · · an)θ]

.
= c

. .
.

• (Subst)

⊢ a .
= b1 ⊢ C1[b1θ1]

.
= b2(Subst)

⊢ C1[aθ1]
.
= b2 ⊢ C2[b2θ2]

.
= c

(Subst)
⊢ C2[(C1[aθ1])θ2]

.
= c

Finally, we consider lemmas that are themselves justified by the use of another
lemma. In this case, we can perform a re-association of the nested (Subst) using
the composition of contexts and substitutions to directly apply the latent lemma
to the conclusion.

⊢ a .
= b1

⊢ C1[b1θ1]
.
= b2 ⊢ C2[b2θ2]

.
= c

(Subst)
⊢ C2[(C1[b1θ1])θ2]

.
= c

(Subst)
⊢ C2[(C1[aθ1])θ2]

.
= c

The traces following the continuations are unchanged, as in the previous cases.
Any path passing through both lemmas in the original proof is equipped with
trace expression t1, t2, t3 such that t1 ≥ t2θ2 and t2 ≥ t3θ1. By stability, we
can use the trace t1 ≥ t3θ1θ2, corresponding to the composed substitutions, to
annotate the new path segment.
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For traditional proof systems with finite derivation trees, the above local transfor-
mation could be extended by induction to eliminate all instances of the (Subst) rule
from a complete proof tree that do not comply with our search strategy. The same can
not easily be said of a cyclic proof system where the creation, deletion, and alteration
of proof nodes can impact a completely different part of the proof. Instead, we argue
that this transformation can be applied at the frontier of proof search. In particular,
as our proof search strategy is goal-oriented and uses a lemma to derive a new proof
obligation, i.e. the continuation, it is fair to assume that the nodes of the continuation
are not used elsewhere in the proof and can be modified freely.

A natural question to ask is whether this restriction is without loss of generality:
if there exists a cyclic proof with a given conclusion, is it possible to re-create it so
that only axiomatic lemmas and those justified by (Case) and (FunEx) are used? It is
important to set aside those proofs that cannot be discovered by our proof search algo-
rithmwhen answering this question, hence the assumption that nodes are normalised
with (Reduce) in the above transformations. Unfortunately, it still is not obvious that
our transformation can simulate any such proof as there are two important caveats
to the final case:

• First, the equationC1[b1θ1]
.
= b2 was emitted as obligation in the original proof

but, appearing as a lemma in the resulting proof, is implicitly assumed to exist
elsewhere.

• Second, the new expression C2[(C1[b1θ1])θ2] appearing in the continuation
might be reducible; in which case, the aforementioned lemma would not be
applied even if it did exist as the (Reduce) rule takes priority.

Although the resulting proof is well-formed, it is not necessarily within the target
fragment, i.e. “discoverable”, and we cannot claim that the reduction is complete with-
out further investigation. However, we are yet to find a proof that can be discovered
in a goal-oriented manner that falls outside this fragment.

4.4.3 Verifying Cycles

As our definition of a trace and its progress points is highly generic, it is undecidable
whether a sufficient set of traces exists or not, even once given an ordering. This is
a significant divergence from proofs by structural induction, whose validity is effec-
tively a syntactic well-formedness condition, and existing cyclic proof systems with
a finite space of possible traces [77]. As the declarative proof system is designed to
support a number of proof search algorithms, we opted to retain generality and do
not, for example, restrict trace expressions to be a sub-expression of its associated
node as is done with cyclic arithmetic [102].
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Nevertheless, having given up the correct-by-construction approach to cyclic proof
search that relies on overly restrictive expression orderings, we must limit our atten-
tion to a decidable fragment of traces. In particular, we only consider traces composed
of variables and restrict our attention to those that are well-formed under the sub-
structural ordering. In this case, the global soundness condition becomes decidable.

A comparable result was first shown by reduction to Büchi automata in the context
of a cyclic proof system for the modal µ-calculus with explicit approximants [35]. In
essence, two ω-regular languages are extracted from a cyclic pre-proof, capturing
the language of paths and traces respectively. It can then be decided whether the
path language is included in the trace language, thus ensuring every path has an
infinitely progressing trace. Since then, this approach has been adapted to a number of
cyclic proof systems including Brotherston’s work on first-order logic with inductive
definitions [77].

Unfortunately, deciding the inclusion of Büchi automata involves the construction
of the complement automaton which is, in the worst case, exponential in the number
of states and is known to produce large automata in practice [103]. Here the number
of states in the automata is proportional to the number of nodes in the proof graph.
Therefore, the procedure becomes too onerous if several candidate proofs, the major-
ity of which may be unsound, need to be checked throughout the proof search. In the
Cyclist theorem prover, for example, verifying the global soundness condition could
take a significant proportion of the proof time [42]. This approach to verifying cyclic
proofs fails to take advantage of the incremental nature of the goal-oriented proof
search where possible pre-proofs share a common prefix, and thus much of the work
can be re-used. Furthermore, as soon as a cycle that does not satisfy the global con-
dition is detected, there is no benefit in attempting to complete the pre-proof. Thus,
maintaining the global soundness condition as an invariant of proof search, rather
than verifying it upon completion, is advantageous.

To this end, we adapt previous work on termination analysis to develop a more
incremental solution to the problem of verifying global soundness. The edges of a
cyclic pre-proof are annotated with an abstract domain that encodes the ω-regular
language of traces — size-change graphs [103]. Size-change graphs are composed
along path segments to encode the space of possible traces. Their compositionality
allows the workload to be performed as each node is uncovered, through a gener-
alised transitive closure of the pre-proof. As a result, the global soundness condition
is represented explicitly. Furthermore, our size-change based approach is only cubic
in the number of states and exponential in the number of variables within proof node,
which is likely to be significantly smaller.

It is no coincidence that the termination problem and global soundness condition
are intimately linked. The Curry-Howard correspondence tells us that traditional
well-founded proofs can be seen as well-typed programs. The generalisation of this
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correspondence that applies to cyclic pre-proofs produces programs with general re-
cursion. For the logical interpretation to be sound, however, the programs must ter-
minate, or else some types will be incorrectly inhabited by divergence. Interactive
theorem provers such as Agda do not require the explicit use of structural induction
(e.g. combinators capturing recursion schemes) but instead admit recursive programs
that are subsequently checked for termination [104]. The underlying logic of such
systems is thus most aptly described by a cyclic proof system.

Although the size-change based approach to verifying the global soundness con-
dition has previously been alluded to, we are unaware of any cyclic proof system that
implements it [85]. After the publication of the work on which this chapter is based,
a closely related “Ramsey-based” trace condition was formalised for an abstract cyclic
proof calculus [84].

Size-Change Graphs

Definition 4.14. Let (V, E, λ, ρ) be a cyclic pre-proof with two nodes v1, v2 ∈ V
labelled by the equations Γ1 ⊢ a1 = b1 and Γ2 ⊢ a2 = b2 respectively. A size-change

graph G : v1 → v2 between these two nodes is a labelled bipartite graph whose
nodes are drawn from the non-program variables of Γ1 and Γ2. That is, G is a subset
of triples (x1, ℓ, x2) consisting of x ∈ dom(Γ1 \Σ), y ∈ dom(Γ2 \Σ), and some label
ℓ ∈ {=, ▷}. We refer to edges labelled by = as equality edges and those labelled by ▷
as progress edges.

As we shall see later, size-change graphs describe the set of possible traces along
a given path segment. More specifically, an edge (x, ℓ, y) indicates that a valid trace
segment can be formed starting from the variable x and ending with the variable y
and, when labelled ▷, that the trace contains a progress point. Crucially, the size-
change graphs for any given path segment do not need to be constructed indepen-
dently but are the result of composition.

Definition 4.15. If G1 : v1 → v2 and G2 : v2 → v3 are two size-change graphs,
then the composition G1 ◦G2 : v1 → v3 is defined as follows:

G1 ◦G2 := {(x1, ℓ1 ◦ ℓ2, x3) | (x1, ℓ1, x2) ∈ G1, (x2, ℓ2, x3) ∈ G2}

where ℓ1 ◦ ℓ2 is defined as ▷ just if either label is ▷ and = otherwise.

The composition of size-change graphs includes an edge (x1, =, x3) whenever
there exists an intermediate variable x2 and two edges (x1, =, x2) and (x2, =, x3),
and likewise there is a progressing edge if either edge is a progressing. Intuitively, this
definition corresponds to the fact that a trace segment x1, . . . , x2 can be combined
with a trace segment x2, . . . , x3 between their respective nodes and that the resulting
trace segment will contain a progress point if either sub-trace has a progress point.
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Definition 4.16. Initially, a size-change graphGv1, v2 is associated with each pair of
nodes v1, v2 ∈ V in a cyclic pre-proof (V, E, λ, ρ) where v2 ∈ E(v1) is a child of
v1 ∈ V . As size-change graphs are intended to capture the space of possible traces
along their path segments, the definition of this family is dependent on the justifica-
tion of v1 mimicking Definition 4.7:

• When ρ(v1) is an instance of (Reduce), (Cong), or (FunEx), the size-change
graph Gv1, v2 is the size-change graph {(x, =, x) | x ∈ dom(Γ)}, where Γ

is the type environment consisting of non-program variables that are common
to both equations.

• When ρ(v1) is (Case) and v2 is the premise associated with the constructor k
and substitution {x 7→ k x1 · · · xn}, the corresponding size-change graph has
a progressing edge (x, ▷, xi) for all i ≤ n as xi is a proper sub-expression of
the x under the necessary precursor of a valuation. For all other non-program
variables x ∈ Γ \ Σ, there is an equality edge (x, =, x).

• Finally, when ρ(v1) is an instance of (Subst) using the substitution θ and v2 is
the lemma, there is an equality edge (θ(y), =, y) ∈ Gv1, v2 whenever θ(y) is
variable for some y ∈ dom(∆) in the lemma’s type environment. This size-
change graph simply captures the corresponding trace condition t1θ ≤ t2 but
restricted to variable trace expressions. Otherwise, if v2 is the continuation,
there is an equality edge (x, =, x) for any non-program variable x ∈ Γ \ Σ.

The following two results formalise the intuition that size-change graphs repre-
sent possible trace segment along a given path segment.

Lemma 4.13. Let (V, E, λ, ρ) be a cyclic pre-proof with nodes v1, v2 ∈ V where
v2 ∈ E(v1). Then, whenever there is an edge (x1, ℓ, x2) ∈ Gv1, v2

, there is also a
trace x1, x2 along this path segment. Furthermore, if labelled ▷, this trace segment
has a progress point.

Corollary 4.14. Let (V, E, λ, ρ) be a cyclic pre-proofwith a path segment v1, . . . , vn
where n > 1. Then, whenever there is an edge (x1, ℓ, xn) in the composition of size-
change graphs along this path segment Gv1, v2

◦ · · · ◦Gvn−1, vn , there is also a trace
x1, . . . , xn consisting solely of variables along this path segment. Furthermore, if
labelled ▷, this trace segment has a progress point.

Having defined the size-change graphs for each edge in a pre-proof and shown
that they do indeed give rise to trace segments, we can derive trace segments for a
given path segment in the pre-proof by composing the size-change graphs along it.
This process is applied to all path segments in the pre-proof by the construction of
the closure of the proof graph.
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Definition 4.17. For a given cyclic pre-proof C = (V, E, λ, ρ), we define Cl(C) as
the least family of size-change graphs such that:

• For each v1, v2 ∈ V such that Gv1, v2
is defined, Gv1, v2

∈ Cl(C).

• If G1 : v1 → v2 ∈ Cl(C) and G2 : v2 → v3 ∈ Cl(C), then G1 ◦G2 ∈ Cl(C).

It is plain to see that the closure of a cyclic pre-proof is finite as there are finitely
many nodes, each of which has finitely many variables, and thus there can only be
finitely many size-change graphs between two nodes. Nevertheless, this property
should not be disregarded as it is essential for deriving decidability. The following
theorem, derived from [103], shows that the global soundness condition can be de-
cided just by verifying that all idempotent size-change graphs in the closure have a
variable that decreases to itself, the infinite iteration of which clearly constitutes an
infinitely progressing trace.

Theorem 4.15 (Ramsey’s theorem). LetN2 denote the 2-element sets {i, j} ⊆ N and
suppose f : N2 → A is a function from these sets to a finite set A. Then there exists
some a ∈ A and an infinite set I ⊆ N such that, for any 2-element set {i, j} ⊆ I , we
have that f({i, j}) = a.

Theorem 4.16. SupposeC = (V, E, λ, ρ) is a cyclic pre-proof for which every size-
change graphG : v → v ∈ Cl(C) in the closure that is idempotent, in thatG◦G = G,
has a progressing edge (x, ▷, x) ∈ G. ThenC satisfies the global soundness condition
and is a cyclic proof.

Proof. Suppose, for the sake of contradiction, that C = (V, E, λ, ρ) is a cyclic pre-
proof that does not satisfy the global soundness condition. Therefore, there must exist
a path (vi)i∈N with no infinitely progressing trace.

Consider the function that associates a pair of indices i < j ∈ N to the size-change
graph Gvi, vi+1 ◦ · · · ◦Gvj−1, vj ∈ Cl(C). Ramsay’s theorem implies the existence of
some infinite set of indices I ⊆ N for which any pair i < j ∈ I corresponds to the
same size-change graph, which we shall denoteG⋆. That is, the subset of size-change
graphs from the closure {Gvi, vi+1 ◦ · · · ◦Gvj−1, vj | i < j ∈ I} ⊆ Cl(C) is uniquely
inhabited by G⋆.

By the pigeonhole principle, some node v⋆ ∈ V must be visited infinitely often
in the sub-sequence generated by indices I . That is to say, G⋆ ∈ Cl(C) is associated
with a path from v⋆ to v⋆. Furthermore, from any three indices i < j < k ∈ I , we
can observe that G⋆ is idempotent:

G⋆ = (Gvi, vi+1 ◦ · · · ◦Gvj−1, vj ) ◦ (Gvj , vj+1 ◦ · · · ◦Gvk−1, vk)

= G⋆ ◦G⋆

It thus follows from our assumption that there exists some variable x with a pro-
gressing edge (x, ▷, x) in G⋆. And, therefore, by Corollary 4.14 there is a trace seg-
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ment x, . . . , xwith a progress point for any path segment vi, . . . , vj with i < j ∈ I .
Finally, as there are infinitely many indices from I in the path, we can construct an
infinitely progressing trace from each of these trace segments.

Although we do not formally reproduce the proof here, size-change based termi-
nation is also complete for variable traces, see [103]. That is, if a cyclic pre-proof
satisfies the global soundness condition using only variable traces, then every size-
changeG : v → v ∈ Cl(C) such thatG◦G = G has a progressing edge (x, ▷, x) ∈ G.
Intuitively, if this were not the case and there were such an idempotent size-change
graph G without a progressing edge, we could construct an infinite path by iterating
this path segment whose traces are described byG (as it is idempotent) but for which
there is no corresponding progressing trace.

Complexity Analysis

Although the size-change based termination problem is also known to be worst-case
exponential-time, in practice it is often more efficient than checking the inclusion
of Büchi automata due to the subsumption between size-change graphs [103]. The
exponential worst-case complexity comes from the number of possible size-change
graphs between two nodes O(3m·m) where m is the maximum number of variables
appearing in any equation of a pre-proof graph. In practice, however, m is likely to
be small and only a few of the possible size-change graphs will be encountered in
a given pre-proof. Assuming a fixed upper-bound on the number of variables, the
construction of the closure is cubic O(n3) in the number of proof nodes as it can be
derived from the generalisation of the Floyd-Warshall algorithm [105].

Our principal motivation for switching to size-change based global soundness,
however, is the possibility of constructing the closure of the pre-proof in an incre-
mental manner during proof search. The addition of a fixed number of nodes only
incurs a cost of O(n2) in the worst-case [106]. Thus, if we assume proof search pro-
ceeds up to depth d and each stage introduces a constant number of nodes, then the
worst-case complexity associated with computing the closure incrementally for the
ℓth stage of proof search is O(ℓ2 · 2ℓ) and the sum over all stages:

O

(
d∑

ℓ=1

ℓ2 · 2ℓ
)

= O

(
d2 ·

d∑
ℓ=1

2ℓ

)

= O
(
d2 · 2d

)
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Verifying the leaves of proof search in a non-incremental manner, on the other hand,
is asymptotically worse with a complexity ofO(d3 ·2d) as there areO(2d) leaves each
of which has O(d) nodes.

Alternative Global Soundness Conditions

As the global soundness condition is inherently non-local and cycles may overlap,
several different traces segment may be required for any given cycle. A trace manifold,
as proposed by Brotherston, is an alternative trace-based condition where only basic
cycles are equipped with trace segments but restricted in such a way that they can
be “glued together” to form consistent traces for derived cycles [85]. Although the
trace manifold condition is less complex, it requires pre-proofs to be in cycle normal

form where the companion of each bud is one of its ancestors. The conversion of an
arbitrary pre-proof into cycle normal form can result in an exponentially larger proof
and thus brings into question whether any efficiency is gained in practice.

An alternative line of work validates the global soundness condition locally for
each basic cycle using ordering constraints [107, 108]. Although their algorithm is
worst-case polynomial-time, it is unclear exactly what class of cyclic proofs are ver-
ifiable under this approach. On the other hand, a restriction of size-change based
termination has been developed that is also worst-case polynomial-time with the in-
tuition that trace terms cannot “move between” variables [109]. We do not adopt
this restriction as again it is not clear what impact this has on the space of provable
properties or the size of their corresponding proofs.

4.5 Implementation

We implemented a prototype of our CycleQ as a plugin for GHC 9.2.8. As a core
plugin, it receives the small subset of Haskell used internally by the GHC compiler
and converts this code into a MiniHask program. The user adds properties of interest
to their program as top-level functions, using the following syntax, and the plugin
will attempt to prove them at compile-time.

{-# ANN mapId CycleQ.assertion # -}
mapId :: List α → Formula
mapId xs = map id xs ≡ xs

Figure 4.11: Haskell syntax for specifying equations to be proven.

The pragma specifies to the CycleQ plugin that the associated definition is to
be interpreted as an assertion that it will then attempt to prove. Each universally
quantified variable is encoded as an argument to a function whose body ultimately
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dictates the form of the equation. The pragma in Figure 4.11, in particular, specifies
that CycleQ should attempt to construct a proof of the equation map id xs = xs.

The annotation additionally allows the user to specify a number of parameters
for proof search: the “fuel” which controls the depth of proof search, any axiomatic
lemmas that can be used, and optionally an output destination to which a visualisation
of the proof is written if proof search is successful.

The authors of the Cyclist theorem prover originally conjectured that breadth-
first search would be most efficient when attempting to construct a cyclic proof due
to the possibility of using non-ancestral links which significantly reduce the size of
proofs [42]. However, in practice, it was observed that the high branching factor
makes depth-first search more practical. These analyses, in fact, belong to two or-
thogonal dimensions: the choice of node to be justified and the higher-level strategy
used by proof search to select from candidate proofs. In our implementation, we
select nodes within a partial proof in a first-in-first-out order as to retain the pos-
sibility of discovering non-ancestral links, e.g. using cousin nodes as lemmas. At
the proof search level, on the other hand, we employ iterative deepening depth-first
proof search where the depth bound is determined by the fuel parameter. Although
iterative deepening ultimately pursues proofs in a breadth-first search manner, our
proof search algorithm has a lower branching factor due to the optimisations dis-
cussed in the preceding sections and thus performs well in practice. Furthermore,
iterative deepening favours smaller proofs where the cost associated with verifying
the global soundness condition is generally lower whilst avoiding the large memory
requirements of breadth-first search.

When several of the inference rules from Section 4.2 are applicable, they are pri-
oritised in the following order: (Refl), (Cong), (FunEx), (Reduce) with no prioritisation
given to (Case) or (Subst). Proof search applies the former rules eagerly without back-
tracking, whereas, if none of them are applicable, the latter two rules produce a branch
point in the search space. In the implementation, this behaviour is encoded by only
reducing the fuel, i.e. increasing the depth, when an instance of the (Case) or (Subst)
rules are applied. While we have not formally justified the relative completeness of
this strategy, it greatly reduces the branching factor of proof search as previously
discussed and, in practice, doesn’t appear to limit the set of provable properties.

4.5.1 Performance

There are very few implementations of cyclic proof systems, and their performance on
equational problems is not well understood. The Cyclist system, which is certainly
the most developed, is known to have difficulty with equational reasoning [42]. The
primary objective of this evaluation is to demonstrate that our system, although sim-
ple, is reasonably efficient and the incremental use of size-change based termination
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provides a significant improvement over the offline approach, which itself is known
to be more efficient in practice than approaches based on Büchi automata [103]. As
mentioned in the introduction, our objective was not to develop a tool that solves as
many problems as possible without human intervention, but rather one that could
adequately serve as a robust basis for a more interactive model of proof search.
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Figure 4.12: Number of benchmark problems solved within the
given time bound.

We tested the tool against a standard benchmark suite of 85 induction problems
concerning natural numbers, lists, and trees, originally used to test the IsaPlanner
tool [74]. The results were obtained as an average over 10 runs with the fuel pa-
rameter set to 10 on the windows sub-system for Linux, running on an 11th Gen
Intel® Core™ i7–1185G7 @ 3.00GHz/1.80GHz processor with 16.0GB of RAM. The
number of benchmark problems solved in a given time is shown in Figure 4.12, in-
cluding both the incremental and offline approach to checking the global soundness
condition. Our tool was able to solve 44 of the problems (14 were not in scope as
they concerned conditional equations), with most being solved in under 1ms and all
but one in under 30ms. Furthermore, these results confirm that verifying the global
soundness condition in an incremental manner is superior to the offline approach in
terms of performance. On average, it was approximately 5 times faster and, in the
worst-case, it was nearly 60 times faster.

Since the original benchmark set was not designed to test mutual induction, and
indeed many tools simply do not support mutual induction, we also designed a small
number of problems around the representation of annotated, mutually recursive syn-
tax trees, as shown in the introduction to this chapter. The mutual induction bench-
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marks were solved, on average, in approximately 1.5ms. The specification of these
problems can be found in Figure 2 of the appendix.

We have compared the efficiency of our prototype implementation with CVC4
version 1.8 using the --quant-ind flag and a time out of 30s [110]. Unlike most other
automated inductive theorem provers, it is possible to disable sub-goal generation in
CVC4, i.e. limit strengthening and lemma synthesis. This restrictionmeans thatwe are
able to draw a fair comparison as the heuristics used in sub-goal generation and more
complex techniques such as theory exploration naturally increase the cost of proof
search. As the figure demonstrates, CycleQwas able to solve a number of benchmark
problems significantly faster. It is hard to draw a comprehensive comparison from this
data, however, asCVC4 ultimately solvesmore problems for reasonswe discuss below.

4.5.2 Limitations

Although the tool performs efficiently on those 44 benchmark problems that it is able
to solve, this number is relatively small. By comparison: HipSpec solved 80, Zeno 82,
CVC4 80 (68 without sub-goal generation), ACL2 74, Inductive Horn Clause Solving
68, IsaPlanner 47, and Dafny 44 (as reported by [73, 111]). Our analysis of the prob-
lems that CycleQ was unable to solve indicates that its limitations can be attributed
to two missing features: conditional equations and lemma discovery. Both limitations
are essentially orthogonal to cyclic reasoning; they are not a consequence of our cycle
formation method nor our overall proof search strategy. In the subsequent chapter,
we will outline an extension to CycleQ with conditional equations that will enable a
more meaningful comparison with CVC4.

Many of the standard benchmark problems are conditional equations and are thus
out of scope for the proof system presented in this chapter. What is more, the tool’s
inability to express conditional equations, and perform hypothetical reasoning, limits
its ability to prove unconditional equations. Many properties concern functions that
are defined by pattern matching on non-variable expressions, such as count, filter,
and sort. As we will discuss in the following chapter, the proofs of such properties
often depend on imitating the program definitions by performing case analysis on the
scrutinees. In general, case analysis of a non-variable expression cannot be reduced to
a finite case analysis of the variables it concerns, and thus it is necessary to introduce
a conditional equation to express these hypothetical cases.

Most comparable tools incorporate some form of lemma discovery technique,
which is very powerful but orthogonal to this work. Of the remaining 7 benchmark
problems, all were designed to test a tool’s capacity to synthesise lemmas and in-
deed required lemmas before being proven by the state of the art HipSpec theorem
prover [112]. Although CycleQ does not attempt to synthesis the necessary lemmas,
it is able to solve most of these problems when supplied with very simple lemmas.
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Specifically, property 47 was provable if the commutativity of maxwas assumed, like-
wise properties 54, 65, 69, and 81 were provable if the commutativity of add was
assumed.

It is worth noting, however, that CycleQ solved a number of the benchmark prob-
lems designed to test hypothesis strengthening and lemma discovery, despite not hav-
ing a specialised tactic for either. For example, problem 50 was solved in approxi-
mately 0.5ms with no user supplied lemmas. By comparison, HipSpec fails to prove
the same result after approximately 40s, an attempt that involved 15 synthesised lem-
mas, 4 of which failed [112]. This particular problem illustrates the need for a robust
basis for inductive theorem proving regardless of heuristics for generalisation or syn-
thesis — one which is not sensitive to problem specific parameters such as the choice
of induction variable and scheme.



Chapter 5

CycleQ
⇒

5.1 Introduction

In the previous chapter, we introduced a cyclic proof system for equational reasoning
about functional programs — CycleQ. The main theoretical innovation of this work
was the way in which cycle formation and equational reasoning are mediated through
the use of a cut-like rule that performs contextual substitution. Although the system
demonstrated promising results in terms of efficiency, it’s lack of support for condi-
tional equations seriously limited the number of verification problems for which it
could automatically derive a proof. In particular, 14 out of the 85 standard bench-
mark problems were themselves conditional equations. What is more, as this chapter
will demonstrate, the inability of the system to prove an additional 20 unconditional
problems is due to the need to perform conditional reasoning internally within proofs.

count : Nat → List Nat → Nat
count x [] = Z
count x (y :: ys) =

case x == y of
True → S (count x y)
False → count x y

∀x xs. count x (x :: xs) ≡ S (count x xs)

Figure 5.1: An example function that depends on the case analysis
of a non-variable expression.

To understand why conditional reasoning is necessary, even when trying to proof
an unconditional property, consider the program and equational property in Fig-
ure 5.1. Upon reducing the left-hand side of this equation under the program defi-

90
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nitions, we see that reduction is blocked by the needed sub-expression x == x. One
way to proceed with proving the stated equation is to perform case analysis on this
sub-expression. In the case where we assume that x == x = True, the resulting
proof obligation may be trivially discharged by using this hypothesis to simplify the
target equation, and the complementary case can be proven to be absurd by induction
on x. The proof in Figure 5.2 gives a fragment of this proof where (Reduce) is used
to indicate the application of a hypothesis.

(Refl)
⊢ x == x = True⇒ S (count x xs) = S (count x xs)

(Reduce)
⊢ x == x = True⇒ count x (x :: xs) = S (count x xs)

...
(Case)

⊢ count x (x :: xs) = S (count x xs)

Figure 5.2: A partial proof of count x (x :: xs) = S (count x xs).

In order to perform case analyses as described in the previous example, it is neces-
sary to express conditional equations and perform hypothetical reasoning. In particu-
lar, the assumed equations cannot be characterised by finite case analysis on variables
alone. It is worth noting that, in this particular example, it would also be possible to
conjecture, and then prove, the desired equation as the alternative case is absurd.
However, this strategy does not extend to properties such as all (filter p xs) =

True where the needed sub-expressions of the form p x do not take on a single, uni-
versal value.

In this chapter, we present a new proof systemCycleQ⇒ which extends our cyclic
proof system with support for conditional reasoning. To avoid drastically increasing
the size of the search space, whilst accommodating this increase in expressivity, we
develop two specialised mechanisms for managing hypotheses: one for determining
how and when hypotheses should be used to simplify the consequent of conditional
equations and one for determining which instances of a conditional lemma are appli-
cable in a given context.

Normalising Conditional Equations

The first challenge when integrating conditional reasoning is to determine how and
when hypotheses should be used to simplify the consequent of a conditional equa-
tion, corresponding to the application of the (Reduce) rule in the previous proof frag-
ment. Ideally, the proof search algorithm should be able to use as much of the in-
formation present in the hypotheses as possible to simplify the consequent. How-
ever, naïvely considering the arbitrary application of hypotheses would lead to an
intractable search space.
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One initial solution you might imagine is to represent all equivalent represen-
tation of the consequent modulo hypotheses as a single node within a proof, i.e. the
equivalence classes generated by the congruence closure of the hypotheses. Although
it is possible to compactly represent these equivalence classes using a data structure
such as an e-graph, and thereby reduce the redundancy of naïve equational reasoning,
there are a number of complications to this approach [113]. First, it would no longer
be possible to normalise proof obligations under the program’s reduction relation. As
each proof obligation would depend on a regular language of expressions under this
scheme, normalisation involves constructing the language of normal forms for each
element in the original language. However, the set of normal forms is not necessar-
ily regular, and the known algorithms for constructing this set are only guaranteed
to terminate in overly restrict cases [114]. As a result, only an approximation to the
(Reduce) rule could be used in practice. Second, compact representations of equiva-
lence classes such as e-graphs do not support “destructive” rewriting. That is to say
that redexes persist after reduction, nullifying any advantage gained by our prioriti-
sation of reduction discussed in the previous chapter, as well as leading to extremely
large memory usage. Finally, detecting the relevant instances of a lemma (i.e. those
that relate to a sub-expression of the current proof obligation) would require match-
ing one regular language against another. Here, matching regular language involves
instantiating variables, which are treated as elements of the language’s signature, so
that the two languages have a non-empty intersection. The problem with matching
regular languages in practice is that it is known to be EXPTIME-hard [115]. Conse-
quently, computing relevant lemmas could become exponentially costly for complex
expressions even before determining whether the lemma’s hypotheses are satisfied.

Clearly, neither selecting an arbitrary representation of the consequent through
ad-hoc use of hypotheses nor attempting to simultaneously manage each equivalent
representation are practical from the perspective of proof search. Instead, we adapt
the inductive completion procedure to convert the hypotheses of a conditional equa-
tion, in the conjunctionwith the program definitions, into a confluent and terminating
rewrite system. Subsequently, we can derive a normal form for the consequent of a
conditional equation that subsumes normalisation under the program’s reduction re-
lation whilst integrating much of the information present in its hypotheses. Providing
a canonical representative for the consequent in this manner enables the efficiency of
our proof search algorithm to extend to the conditional setting as it avoids drastically
increasing the search space due to the multitude of ways in which hypotheses could
be applied, as well as maintaining a simple method for matching proof obligations
against lemmas.

Although the inductive completion procedure results in a terminating rewrite sys-
tem, the procedure itself may diverge. The essential issue that the inductive comple-
tion procedure encounters is the same as that encountered during the normalisation
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of a regular language — the inability to finitely represent the equational classes gen-
erated by a rewrite system and a set of closed equations. In contrast, our procedure
is guaranteed to terminate as we carefully restrict those hypotheses that can be ori-
ented. Instead of rejecting cases with unorientable hypotheses, however, the resulting
rewrite system under-approximates the equational theory of the antecedent by mark-
ing such hypotheses as unusable. These unusable hypotheses are set aside as theymay
later become orientable.

Refuting Hypotheses

The second mechanism we introduce for managing hypotheses determines which in-
stances of a conditional lemma are applicable in a given context. In order to under-
stand the full generality of this problem, it will be useful to first explore an additional
cycle mechanism that is required when handling conditional equations.

The introduction of hypotheses creates the possibility that a conditional equation
is vacuously true, i.e. there are no valuations satisfying the hypotheses and nothing is
said about the consequent. It is essential that a proof system for conditional reasoning
can complete such branches by refuting the satisfiability of hypotheses. Demonstrat-
ing that a set of hypotheses is unsatisfiable, however, may itself require inductive
reasoning and thus the formation of cycles.

In the original version of CycleQ, the only mechanism for forming cycles was
via the (Subst) rule that uses a lemma to rewrite the goal equation with the objective
of making progress towards reflexivity, whereby the branch can ultimately be dis-
charged. When trying to refute the satisfiability of a set of hypotheses, cycles may
take on a different form: showing that the hypotheses are unsatisfiable by relating
them to the hypotheses of a lemma that is cyclically known to be unsatisfiable. In
purely logical terms, there is no need to distinguish these two modes as any equation
follows vacuously from unsatisfiable hypotheses and thus can be used to immedi-
ately discharge the goal. In practice, however, there is no guarantee of a syntactic
correspondence between the vacuously true instance of the lemma and the required
equation.

Consider the example problem given in Figure 5.1 where a proof may be con-
structed by performing case analysis on the needed sub-expression x == x. One
resulting proof obligation can be discharged by rewriting the consequent according
to the hypothesis x == x = True under the normalisation procedure before ap-
plying reflexivity. We previously claimed that the complementary branch, with the
assumed hypothesis x == x = False, can be proven absurd by induction on x. Let
us examine the structure of this argument more closely.

The induced proof obligation x == x = False ⇒ count x (x :: xs) =

S (count x xs) is first normalised using the given hypothesis, resulting in the sim-
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plified conditional equation x == x = False ⇒ count x xs = S (count x xs).
To this end, we perform case analysis on the variable x, leaving use with two cases
to consider. In the first case, where x is taken to be Z, we have the hypothesis
Z == Z = False that is clearly unsatisfiable, and so the proof obligation can be
immediately discharged. On the other hand, when x is taken to be S x′, we are left
with the following proof obligation after simplification:

x′ == x′ = False⇒ count (S x′) xs = S (count (S x′) xs)

If we are to complete this inductive proof using the (Subst) rule to form a cycle, we
must instantiate a previously encountered lemma to simplify the current proof obli-
gation. However, the only lemmas that matches the consequent require instantiating
x with S x′, which would not admit an infinitely progressing trace. As a result, we
are unable to complete this proof using the existing cycle formation mechanism. The
problem here arises from the fact that we should not be focused on the consequent
at all; rather, it is the hypotheses that we’re trying to show are absurd and the form
of consequent is incidental. In particular, we can see that matching the hypothesis
x′ == x′ = False against its ancestor x == x = False would admit an infinitely
progressing trace, namely x, x′, x etc.

Instead of relying on the syntactic form of the lemma’s consequent in these cases,
we introduce a new mode of proof search — refutation, which is characterised by
formulas with no positive literals, i.e. with hypotheses but no consequent. Formulas
in refutation mode can no longer be discharged through reflexivity and instead must
be shown to have unsatisfiable hypotheses. As lemmas, however, these formulas allow
for a more flexible cycle formation mechanism so that branches of a pre-proof can be
completely discharged without relying on a syntactic correspondence and rewriting
some sub-expression. This mechanism is encoded in the proof system through an
additional cut-like rule:

Γ2 ⊢ H2 ⇒ ⊥
(Subst)⊥

Γ1 ⊢ θ : (Γ2 \ Σ)Θ
⊨ H1 ⇒ H2θΓ1 ⊢ H1 ⇒ ϕ

This rule takes a proof obligation that can be either a normal formula or one in
refutationmode and discharges it via a lemma that is (cyclically) known to have unsat-
isfiable hypotheses. As with the original (Subst) rule, the premise serves as a lemma
and may be another node within the proof graph or an externally supplied lemma.
The key difference with this rule is that it does not require a sub-expression of the
conclusion to be matched with the lemma, merely requiring that an instance of the
lemma’s hypotheses are implied by the conclusion’s hypotheses, encoded through the
side-condition ⊨ H1 ⇒ H2θ. For example, we may complete the previous example
by showing that the obligations hypotheses x′ == x′ = False imply an instance of
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the lemma’s hypotheses (x == x = False)[x′/x]. Figure 5.3 displays this branch of
the proof. Note that this proof segment additionally uses the (Refute) rule to move
into the proof obligation into refutation mode and uses (Absurd) to discharge triv-
ially unsatisfiable hypotheses. Instances of the (Reduce) rule have been omitted for
compactness.

(Absurd)
⊢ True = False⇒ ⊥

(1)
(Subst)⊥⊢ x′ == x′ = False⇒ ⊥
(Case)

1: ⊢ x == x = False⇒ ⊥
(Refute)

⊢ x == x = False⇒ count x xs = S (count x xs)

Figure 5.3: The complementary branch of the proof in Figure 5.2.

Solving Hypotheses

An important aspect of proof search is computing a set of inferences that could be
applied to a given proof obligation. The newly introduced (Subst)⊥ rule is only appli-
cable in cases where the conclusion’s hypotheses (i.e. the assumptions of the current
proof obligation) imply the desired instance of the lemma’s hypotheses, as enforced
by its side-condition. Therefore, in order to make use of this rule with a given lemma,
proof search must first compute a set of instances of the lemma’s hypotheses that are
implied by the assumptions of the current proof obligation. In the case of our previous
example, we arrived at the proof obligation x′ == x′ = False⇒ ⊥ that we wish to
discharge via the (Subst)⊥ rule, using the lemma x == x = False⇒ ⊥. In order to
do so, we wish to find a substitution for which the implication x′ == x′ = False⇒
(x == x = False)θ is universally valid. The second procedure introduced in this
chapter builds on our mechanism for normalising conditional equation to compute an
applicable set of substitution.

In the original proof system presented in Section 4.2, the (Subst) rule is applied
when an instance of one side of the lemma’s equationmatches against a sub-expression
of the current proof obligation. Matching expressions in this way partially determines
the instance of the lemma, but it might not be fully determined if there are variables
appearing in only one side of the lemma’s equation, or indeed in its hypotheses. In
the unconditional case, any uninstantiated variables may simply persist into the con-
tinuation, which is sound under the assumption that all types are inhabited. However,
the same strategy cannot be applied in the presence of conditional equations: once a
possible match has been detected, we can partially instantiate the lemma’s hypothe-
ses but, unlike the unconditional case, there is no guarantee of a solution. Thus, the
application of the (Subst) rule also requires us to find instance of the lemma’s hy-
potheses that valid under the hypotheses of the current proof obligation, albeit where
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the instance is partially determined by matching the consequent of the lemma with a
sub-expression of the proof obligation.

Logically, this task can be framed as a unification problemmodulo theory — to find
instances of a set of equations that are valid in a given equational theory. In our case,
the equational theory consists of the program’s reduction relation and the hypotheses
of the current proof obligation. Here the variables appearing in the lemma and the
proof obligation take on distinct roles. The former we will refer to as existential as
proof search is concerned with finding an appropriate substitution instance, whereas
the latter are deemed universal as the implication must hold for all valuations of these
variables, and thus they cannot be instantiated.

Having organised hypotheses into a confluent and terminating rewrite system, we
provide a procedure for solving a lemma’s hypotheses using narrowing [116]. Narrow-
ing is a powerful technique that extends a rewrite relation so that syntactic unification
is used in lieu of matching. In other words, under the narrowing relation, existential
variables (i.e. those appearing in the lemma’s hypotheses) are instantiated precisely
when this enables a reduction step. For example, the expression x == x is in normal
form, but it may be narrowed to False under the hypothesis x′ == x′ = False

by unifying the existential variable x with the universal variable x′ (i.e. under the
substitution {x 7→ x′}).

For a confluent and terminating rewrite system, narrowing is a semi-decision pro-
cedure for solving unification problems modulo equational theory. The fact that it
is only a semi-decision procedure is to be expected from the infinitary set of most-
general unifiers and the undecidable nature of such problems. As non-termination
is clearly not viable when computing applicable inference rules, we limit narrow-
ing steps to only unify with the hypotheses of the proof obligation, rather than the
program’s reduction relation. Unlike the program’s reduction relation, the variables
appearing in the proof obligation’s hypotheses (i.e. the universal variables) cannot
be instantiated in order to make a narrowing step. Therefore, non-decreasing nar-
rowing steps reduce the number of existential variables by instantiating them with
expressions built from universal variable, and thus can only be applied a finite num-
ber of times. It is worth noting, however, that the program’s reduction relation is still
eagerly used to simplify expressions that arise during unification.

5.2 Working with Hypotheses

In Section 5.3, we will introduce the proof rules for handling conditional equations.
First, however, we will define their syntax and semantics and the novel mechanisms
for normalising and solving hypotheses outlined in the introduction to this chapter.
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5.2.1 Conditional Equations

Definition 5.1. The syntax for equations is extended to clauses generated by the
following grammar:

Clause C ::= H ⇒ a = b | H ⇒ ⊥
Hypotheses H ::= ⊤ | H1 ∧H2 | a = b

The left- and right-hand side of the implication are referred to as the hypotheses
and the consequent respectively. We will use ϕ, ψ, etc., to range over the consequents.
If the consequent of a clause is ⊥, then it is said to be in refutation mode, and it is
said to be in normal mode otherwise. Conjunction is implicitly assumed to satisfy
the usual axioms of commutativity, associativity, and idempotence, thus we will treat
hypotheses as a set of atomic equations where⊤ denotes the empty set. As in the pre-
vious chapter, we will also use .

= to denote an unordered equation in the consequent
of a clause, but hypotheses are always oriented, as we will discuss in the subsequent
sections.

Γ ⊢ H wf Γ ⊢ a : τ Γ ⊢ b : τ
Γ ⊢ H ⇒ a = b wf

Γ ⊢ H wf

Γ ⊢ H ⇒ ⊥ wf

Γ ⊢ ⊤ wf

Γ ⊢ a : τ Γ ⊢ b : τ
Γ ⊢ a = b wf

Γ ⊢ H1 wf Γ ⊢ H2 wf

Γ ⊢ H1 ∧H2 wf

Figure 5.4: Well-formedness rules for clauses.

Definition 5.2. A clause is said to be well-formed for a given type environment if the
judgement Γ ⊢ C wf can be derived from the inference rules in Figure 5.4.

Unless stated otherwise, all clauses and hypotheses are equipped with a type en-
vironment for which they are well-formed and that, as usual, contains the program
environment. We will sometimes annotate equations in a set of hypotheses by their
type, writing a = b : τ ∈ H to indicate that Γ ⊢ a, b : τ where Γ is the type
environment for which the hypotheses and consequent are well-formed.

Definition 5.3. Awell-formed clause, set of hypotheses, or equation Γ ⊢ C wf is said
to be satisfied by a valuation of its type environment θ (see Definition 4.2) following
the standard logical interpretation of the connectives:

θ ⊨ H ⇒ ⊥ ⇐⇒ θ ̸⊨ H θ ⊨ ⊤ ⇐⇒ ⊤

θ ⊨ H1 ∧H2 ⇐⇒ θ ⊨ H1 ∧ θ ⊨ H2 θ ⊨ a = b ⇐⇒ aθ ≡P bθ

θ ⊨ H ⇒ a = b⇐⇒ θ ̸⊨ H ∨ θ ⊨ a = b
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Likewise, a clause is said to be valid if it is satisfied by all valuations of its type
environment, in which case we write ⊨ C . Note that a clause in refutation mode is
valid just if its hypotheses are unsatisfiable.

5.2.2 Hypothetical Reduction

Hypotheses can be employed to simplify the consequent of a clause, providing addi-
tional information about sub-expressions under local assumptions. Rather than define
a separate proof rule to encode this mechanism, we extend the program’s reduction
relation with the hypotheses — hypothetical reduction. Combining the program’s re-
duction relation with hypotheses in this manner will give us a setting in which a
normal form for conditional equations can be established.

Definition 5.4. For a set of well-formed hypotheses H , the hypothetical reduction
relationH ⊢ a⇝ b is defined by the inference rules in Figure 5.5. Recall that hypothe-
ses are oriented so that a = b ∈ H does not necessarily imply that b = a ∈ H . As
with the program reduction relation, we write H ⊢ a1 ⇝∗ a2 for reflexive-transitive
closure of the hypothetical reduction relation.

a = b ∈ H
H ⊢ C[a]⇝ C[b]

P (f) p1 · · · pn ⇓∅ b
p1, . . . , pn patternsH ⊢ C[(f p1 · · · pn)θ]⇝ C[bθ]

Figure 5.5: Rules of hypothetical reduction.

Note that hypothetical reduction does not instantiate the variables of a hypothe-
sis when it is applied. This is because the hypotheses constrain their free variables,
rather than being quantified equations that describe a general property of the pro-
gram. Therefore, from the point of view of hypothetical reduction, the free variables
of the hypotheses are effectively constants. We will refer to these variables are uni-
versal variables.

Hypothetical reduction clearly subsumes the program’s reduction relation as a
consequence of Lemma 2.4. Furthermore, as the following lemmas indicate, hypo-
thetical reduction preserves the type of expressions and their equivalence under any
valuation satisfying the hypotheses. We also show a limited form of stability, where
the substitution instance is required to be disjoint from the hypotheses.

Lemma 5.1. Suppose Γ ⊢ H wf and Γ ⊢ a : τ . If H ⊢ a⇝ b, then Γ ⊢ b : τ .

Lemma 5.2. If H ⊢ a⇝∗ b, then H ⇒ a = b is valid.
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Lemma 5.3. Suppose Γ ⊢ H wf and H ⊢ a ⇝∗ b. Then H ⊢ C[aθ] ⇝∗ C[bθ] for
any context C[·] and any substitution θ such that dom(θ) ∩ dom(Γ) = ∅.

5.2.3 Hypothesis Completion

For certain sets of hypotheses, hypothetical reduction is neither terminating nor con-
fluent. That is to say, some expressions may diverge or not reduce to a common nor-
mal forms. As the motivation for introducing hypothetical reduction was to replace
the non-deterministic application of proof rules governing the use of hypotheses with
a deterministic procedure for normalising goals, both termination and confluence
are essential. Unless hypothetical reduction is terminating, even depth-bound proof
search may diverge. Furthermore, if there were multiple normal forms for conditional
equations proof search would not be able to comply with the various restrictions to
proof search discussed in Section 4.4, from which the system derives its efficiency.

Hypotheses that lead to multiple normal forms can be immediately constructed
from visibly contradictory conjunction such as p = True ∧ p = False. Such unsat-
isfiable hypotheses cannot be discounted since the role of the antecedent is to limit
the cases in which its consequent must be satisfied, else they are redundant. How-
ever, expressions can also have multiple normal forms under satisfiable hypotheses.
Consider, for example, the hypotheses xs = y :: ys and reverse xs = z :: zs.
Under these hypotheses, the expression reverse xs can be reduced to both z :: zs

and append (reverse ys) [y]. Finally, a hypothesis such as xs = x :: xs evidently
induces divergence for the expression xs under hypothetical reduction.

To prevent each of the aforementioned scenarios, we adapt the Knuth-Bendix
completion procedure for transforming a set of equations into a confluent and termi-
nating rewrite system [87]. At a high-level, the Knuth-Bendix completion proceeds
by simplifying and deleting equations before orienting them as to be interpreted as
rewrite rules. The orientation is determined by a well-founded order on applicative
expressions that is compatible with reduction (i.e. closed under context and substitu-
tion) so that no infinite reduction sequences can occur, thus guaranteeing normalisa-
tion. In order to produce a confluent rewrite system, however, we must also consider
critical pairs. Critical pairs are expressions that can be rewritten in two different ways
by overlapping rules, such as reverse xs in the previous example. This conflict is
resolved by adding a new equation, e.g. z :: zs = append (reverse ys) [y], that
must also be oriented and incorporated into the rewrite system. The tension between
these two processes makes the Knuth-Bendix completion procedure, in general, only
a semi-decision procedure.

Constructing an ordering that extends the program’s reduction relation in a non-
trivial way is a challenging task as the union of well-founded relations is rarely well-
founded. Additionally, although the program is assumed to terminate, there are many
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different termination schemes encountered in practice, e.g. those based on size-change
graphs vs lexicographical path orderings, that cannot easily be unified [103, 117]. For
this reason, we merely assume a reduction ordering≤, in the sense of Definition 4.10,
that is compatible with the program’s reduction relation, i.e. if a →P b, then a > b.
In Section 5.4, we will discuss the ordering used in our prototype implementation.

As previously mentioned, in addition to orienting hypothesis, the completion pro-
cedure must also consider critical pairs. The relevance of critical pairs is that they can
be used to characterise confluence, as the Critical Pairs Lemma, stated below, demon-
strates. In particular, if all critical pairs are joinable, then hypothetical narrowing is
locally confluent. It is for this reason that the completion procedure derives additional
equations to resolve critical pairs. As with the orthogonality of the program’s reduc-
tion relation, the Critical Pairs Lemma implies global confluence if the rewrite system
does not contain any infinite reduction sequences.

Definition 5.5. Formally, a hypothesis a = b ∈ H has critical overlap with:

1. A hypothesis of the form C[a] = c ∈ H , for which the corresponding critical
pair is the equation C[b] = c.

2. A reduction a →P c for some applicative expression c, producing the critical
pair b = c.

3. Or, if there is some non-trivial context C[·] and a non-variable applicative ex-
pression a′ such that a = a′θ for some substitution θ, whereC[a′] is of the form
f p1 · · · pn and P (f) p1 · · · pn ⇓∅ c is defined for some c. Then the hypothesis
has a critical overlap with the reduction C[a′]θ →P cθ and the corresponding
critical pair is the equation C[b] = cθ.

Note that the use of linear patterns in the program’s reduction relation, see
Lemma 2.4, implies that C[a′]θ is simply equivalent to C[a].

In the latter case, the context must be non-trivial else it merely degenerates to
an instance of a type 2 overlap. If, on the other hand, a′ is a variable x, then the
quasi-critical pair is already joinable as C[b]→P c[b/x] (see Lemma 2.3) and the hy-
pothetical reduction H ⊢ c[a/x] ⇝∗ c[b/x] is derivable by repeated application of
the hypothesis a = b ∈ H in each sub-position. Type 1 and type 2 overlaps are less
involved than the usual definition of critical pairs as free variables appearing in a hy-
pothesis are effectively constants; being quantified at the clause level and not within
the hypotheses themselves they cannot be instantiated by hypothetical reduction.

Lemma 5.4 (The Critical Pairs Lemma [118]). Suppose every critical pair a = b of a
hypothesis set H is joinable, i.e. there exists some applicative expression c such that
H ⊢ a ⇝∗ c and H ⊢ b ⇝∗ c. Then the applicative reduction relation H ⊢ · ⇝∗ ·
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is locally confluent. That is, if H ⊢ a⇝ b1 and H ⊢ a⇝ b2, then H ⊢ b1 ⇝∗ c and
H ⊢ b2 ⇝∗ c for some applicative expression c.

Corollary 5.5. Suppose H is a hypothesis set satisfying the pre-condition of the
Critical Pairs Lemma and such that hypothetical reduction terminates, i.e. there does
not exist an infinite chain of applicative expressions H ⊢ a1 ⇝ a2 ⇝ · · ·, then
hypothetical reduction is confluent.

Despite starting with a confluent and terminating program, we could very quickly
run into a diverging instance of the completion procedure when trying to incor-
porate hypotheses. For example, the equation xs = x :: xs must be oriented as
x :: xs = xs if the ordering under by completion is both well-founded and closed
under context. But this orientation will induce type 3 critical pairs with expressions
such as map f (x :: xs), which could be reduced to both f x :: map f xs and map f xs
under the aforementioned hypothesis. The completion procedure attempts to resolve
critical pairs by introducing a new equation that restores confluence; in this case,
f x :: map f xs = map f xs. However, the new equation induces a further criti-
cal overlap arising from the expression map g (x :: map f xs), which can be also be
reduced in two separate ways, and so on ad infinitum.

The first two types of critical overlap always yield smaller critical pairs as they
merely involve simplify an existing hypothesis with another oriented hypothesis or
a reduction step. Diverging instances of the completion procedure, therefore, result
from type 3 overlaps, which introduces a non-trivial context and instantiates pattern
variables, and thus doesn’t necessarily result in a smaller critical pair. Fortunately,
due to the strictly orthogonal nature of programs, type 3 overlaps can be isolated to
the cases where there are higher-order equations or equations oriented so that the
left-hand side is an application headed by a constructor. We can thus characterise the
expressions that can yield such divergence instances of the completion procedure by
the following definition.

Definition 5.6. For a given type environment Γ, a stable expression is an applicative
expression that is either of the form:

• x a1 · · · an for some non-program variable x,

• Or, f a1 · · · an for some program variable f such that Γ ⊢ f a1 · · · an : d τ

or Γ ⊢ f a1 · · · an : α

Otherwise, it is said to be unstable.

Lemma 5.6. Let Γ ⊢ H wf be a set of hypotheses and suppose there is some hypoth-
esis a = b ∈ H that has a type 3 critical overlap. Then a is unstable.
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With the preceding lemma in mind, we restrict the orientation of a hypothesis
so that the left-hand side must be stable. When the greater of the two expressions is
unstable, the hypothesis cannot be oriented. The ordering used to orient equations
should, therefore, be designed so that unstable expressions are smaller than stable
ones. In particular, constructor should be dominated by variables and applications
where possible. Although unstable left-hand sides cannot always be avoided, when
both sides of an equation are headed by a constructor, we can either emit smaller
equations concerning their arguments whilst preserving the set of satisfied valuation
or deduce there are no satisfying valuations if the constructors in question do not
match.

We are now ready to define the hypothesis completion procedure. Recall that the
objective of this procedure is to transform a set of hypotheses so that hypothetical
reduction is confluent and terminating. The resulting set of hypotheses is constructed
by simplifying and orienting equations, in addition to the introduction of critical pairs
of type 1 and type 2. Type 3 critical pairs are not considered, as unlike the other two
they may lead to divergence. Consequently, the procedure may terminate with some
additional hypotheses that failed to be integrated.

Definition 5.7. The hypothesis completion procedure is presented as an inference sys-
tem over configurations that are either pairs ⟨E, R⟩, whereE are hypotheses yet to be
oriented and R are hypotheses that have already been oriented, or the contradictory
configuration  . We write ⟨E, R⟩ ⊢ ⟨E′, R′⟩ (or ⟨E, R⟩ ⊢  resp.) to indicate that
⟨E′, R′⟩ is obtained from ⟨E′, R′⟩ by the inference rules in Figure 5.6, in which ⊎
denotes the disjoint union.

A configuration is said to be terminal if there are no further derivable configura-
tions and well-oriented if a > b and a is stable for any equation a = b ∈ R. Note that
contradictory configurations are always terminal.

First, we will show that hypothesis completion is sound in that any derived equa-
tion or rewrite rule is implied by its premise. It therefore preserves the set of satisfying
valuations or correctly deduces unsatisfiability.

Lemma 5.7 (Soundness). Let ⟨E, R⟩ ⊢ ⟨E′, R′⟩ be an inference of the hypothesis
completion procedure. Then, the set of satisfying instances is preserved, i.e. the clause
E ∧R⇒ a = b is valid for any hypothesis a = b ∈ E′ ∪R′.

Lemma 5.8 (Soundness). If ⟨E, R⟩ ⊢  is an inference of the hypothesis completion
procedure, then there is no valuation θ such that θ ⊨ E ∧R.

Next, we show that once there are no applicable rules for hypothesis completion
the hypotheses satisfy the pre-condition of the critical pairs lemma and thus lead
to a locally confluent system. Moreover, as they are necessarily oriented, hypothesis
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⟨E ⊎ {a .
= a}, R⟩

(Delete)
⟨E, R⟩

⟨E ⊎ {a .
= b}, R⟩

(Orient) a > b
a is stable⟨E, R ∪ {a = b}⟩

⟨E ⊎ {a .
= b}, R⟩

(Simplify) R ⊢ b⇝ b′
⟨E ∪ {a .

= b′}, R⟩

⟨E, R ⊎ {a = b}⟩
(Compose) R ⊢ b⇝ b′

⟨E, R ∪ {a = b′}⟩

⟨E, R ⊎ {a = b}⟩
(Collapse) R ⊢ a⇝ a′

⟨E ∪ {a′ .= b}, R⟩

⟨E ⊎ {k a1 · · · an
.
= k b1 · · · bn}, R⟩(Match) k ∈ K

⟨E ∪ {ai
.
= bi | i ≤ n}, R⟩

⟨E ⊎ {k a1 · · · an
.
= k′ b1 · · · bm}, R⟩(Fail) k ̸= k′ ∈ K
 

Figure 5.6: The inference rules of the hypothesis completion
procedure.

reduction is globally confluent. Note that, unlike the Knuth-Bendix completion proce-
dure, terminal configurations may have hypotheses that cannot be incorporated into
the rewrite system without possibly leading to a divergent instance of the completion
procedure, i.e. may induce type-3 overlaps, and thus are left as unoriented equations.
It is for this reason that the hypothetical reduction under the resulting set of oriented
hypotheses cannot be said to be complete.

Lemma 5.9 (Correctness). Suppose ⟨E, R⟩ is a terminal configuration that is well-
oriented. Then R has no critical overlaps, i.e. hypothetical reduction under R is con-
fluent and terminating.

Wewill conclude this section by showing that, for any starting set of hypotheses, a
terminal configuration is reachedwhose oriented hypotheses satisfy the pre-condition
of the preceding lemma and thus, for which, hypothetical reduction is confluent and
normalising. This result amounts to showing that the completion procedure cannot
diverge. First, note that the side-condition on the (Orient) rule means hypothesis
completion preserves well-orientation.

Lemma 5.10. Suppose ⟨E, R⟩ ⊢ ⟨E′, R′⟩ is an inference of the hypothesis comple-
tion procedure where ⟨E, R⟩ is well-oriented. Then ⟨E′, R′⟩ is also well-oriented.
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To see that hypothetical completion has no infinite runs, we adapt the Dershowitz-
Manna multiset ordering [119]. Configurations are treated as multisets of labelled
expressions (a, o) or (a, u)where the second component indicates whether it appears
in an oriented or unoriented equation respectively.

Definition 5.8. For a given configuration ⟨E, R⟩, let *E, R+ denote the following
function on labelled expressions:

*E, R+(a, o) := #{a1 = a2 ∈ R | a ∈ {a1, a2}}
*E, R+(a, u) := #{a1

.
= a2 ∈ E | a ∈ {a1, a2}}

which counts the occurrences of the given expression in the oriented or unoriented
equations of the configuration respectively.

Intuitively, the multiset extension of a given ordering permits a decrease if an
element has been removed and replaced by any number of smaller elements. This
ordering is well-founded whenever the underlying ordering is well-founded. In our
case, these steps primarily consist of replacing an equation with a smaller equation,
i.e. where either side is smaller under the compatible ordering. However, it must also
support the (Orient) rule, which does not decrease the expressions of an equation but
rather changes the label associated with the equation. Hence, we consider oriented
equations as smaller than unoriented equations.

Definition 5.9. The ordering p >u/o q on labelled expressions is defined by the
following cases:

• (a, ℓ) >u/o (a′, ℓ′) whenever a >sub a
′ regardless of the labellings ℓ and ℓ′.

• Or, (a, u) >u/o (a′, o) whenever a ≥sub a
′.

where ≥sub refers to the substructural extension of the ordering used by completion,
see Definition 4.12.

Definition 5.10. The ordering on labelled equation is extended to non-contradictory
configurations, written ⟨E, R⟩ ≫ ⟨E′, R′⟩, whenever the following conditions are
met:

• E ̸= E′ or R ̸= R′

• And, if *E, R+(p) < *E′, R′+(p) for any labelled expression p, there exists
some other labelled expression q such that p <u/o q and *E, R+(q) > *E′, R′+(q).

Lemma 5.11. >u/o is well-founded.

Corollary 5.12. ≫ is well-founded [119].



5.2. WORKING WITH HYPOTHESES 105

Having established a well-founded ordering on configurations, we can conclude
that there can be no infinite runs of the hypothesis completion if each inference re-
sults in a decrease with respect to this order. The following lemma shows exactly
that. Most rules result in a decrease as the first component of a labelled expression,
i.e. the applicative expression itself, decreases through hypothetical reduction under
a well-oriented set of rules. The (Match) rule is similar, although it relies on the inclu-
sion of the sub-expression relation in the substructural extension of our compatible
ordering. Finally, the (Orient) rule does not change any expressions but relabels them
as oriented, thus also resulting in a decrease.

Lemma5.13. Suppose ⟨E, R⟩ is awell-oriented configuration and ⟨E, R⟩ ⊢ ⟨E′, R′⟩
is an inference of the hypothesis completion. Then, ⟨E, R⟩ ≫ ⟨E′, R′⟩.

Corollary 5.14. There is no infinite run of the hypothesis completion starting from
a well-oriented configuration ⟨E, R⟩.

For any starting set of hypotheses, the hypothesis completion procedure can be
used to either demonstrate that a set of hypotheses is unsatisfiable or extract an im-
plied set of well-oriented hypotheses for which hypothetical reduction is confluent
and terminating. The former case allows us to completely discharge a proof obligation
as the clause is trivially valid, and the latter case allows us to simplify the consequent
of a clause in a deterministic manner.

Definition 5.11. We write ⟨E, R⟩ ↓ R′ to denote that there exists a sequence of
hypothesis completion inferences starting from ⟨E, R⟩ and ending in a terminal con-
figuration ⟨E′, R′⟩. Similarly, we write ⟨E, R⟩ ↓  if a contradictory configuration
is reached.

As Corollary 5.14 shows, it must either be the case that ⟨E, R⟩ ↓  or there exists
a set of hypotheses R′ such that ⟨E, R⟩ ↓ R′. Furthermore, in the latter case, R′

is well-oriented as a result of Lemma 5.10. Note, however, that there is no guarantee
that the completion procedure is functional as the terminal configuration may depend
on the order in which rules are applied. Nevertheless, any resulting set of hypotheses
will enable proof search to normalise the consequent.

Consider the hypothesis set xs = y :: ys ∧ reverse xs = z :: zs from our
earlier example of a non-confluent hypothetical reduction. One possible run of the
hypothesis completion is as follows:

⟨{xs .
= y :: ys, reverse xs = z :: zs}, ∅⟩
⊢ ⟨{xs .

= y :: ys}, {reverse xs = z :: zs}⟩
⊢ ⟨∅, {xs = y :: ys, reverse xs = z :: zs}⟩
⊢ ⟨{reverse (y :: ys)

.
= z :: zs}, {xs = y :: ys}⟩

⊢ ⟨{append (reverse ys) [y]
.
= z :: zs}, {xs = y :: ys}⟩

⊢ ⟨∅, {xs = y :: ys, append (reverse ys) [y] = z :: zs}⟩
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First, both equations are oriented by the (Orient) rule assuming xs > y, ys. As
we have already seen, this hypothesis set isn’t confluent, and thus we cannot have
reached a terminal configuration. Indeed, the hypothesis concerning reverse xs

can be rewritten under the (Collapse) rule, producing a new unoriented equation.
This expression is simplified further by the (Simplify) before being re-oriented by
the (Orient) rule. As there are no further applicable rules, hypothetical reduction
under the hypotheses xs = y :: ys and append (reverse ys) [y] = z :: zs, which
result from the completion procedure, is confluent and terminating. In particular, the
expression reverse xs now has a unique normal form, namely z :: zs.

To demonstrate how the hypothesis completion procedure can be used in an incre-
mental manner, now consider adding the hypothesis xs .

= x :: xs. This new equation
would be simplified under the existing hypotheses and deconstructed by the (Match)
rule. Only one of the resulting equations is orientable, however, and the terminal
configuration still has unoriented equations as the larger side is unstable.

⟨{xs .
= x :: xs}, R⟩
⊢ ⟨{y :: ys

.
= x :: xs}, R⟩

⊢ ⟨{y :: ys
.
= x :: y :: ys}, R⟩

⊢ ⟨{y .
= x, ys

.
= y : ys}, R⟩

⊢ ⟨{ys .
= y :: ys}, {x = y} ∪ {R}⟩

where R denotes the set {xs = y :: ys, append (reverse ys) [y] = z :: zs} that
results from the previous instance of hypothesis completion.

As the correctness of the hypothesis completion procedure is derived solely from
the well-orientation of configurations, which is an invariant, we do not need to re-
compute the completion in its entirety, i.e. starting with an empty set of oriented
equation, when a new equation is introduced. We exploit this fact in the implementa-
tion of our proof search algorithm by directly representing the hypotheses of a clause
as a configuration of the hypothesis completion procedure.

5.2.4 Solving Hypotheses

As mentioned in the introduction to this chapter, the proof rules for applying lemmas
induce a unification problemmodulo equational theory when lemmas are conditional.
That is, we must find a substitution instance of a set of equations that follow from
the given equational theory. This is because, even after matching the lemma with the
target equation, theremay be uninstantiated variables that cannot take on an arbitrary
value as they are constrained according to the lemma’s hypotheses.
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Γ2 ⊢ H2 ⇒ a
.
= c Γ1 ⊢ H1 ⇒ C[cθ]

.
= b

(Subst)
Γ1 ⊢ θ : (Γ2 \ Σ)Θ
⊨ H1 ⇒ H2θΓ1 ⊢ H1 ⇒ C[aθ]

.
= b

The proof rule above shows the general substitution principle for conditional
equations. The side-condition ⊨ H1 ⇒ H2θ constrains the substitution θ to be a
solution to the lemma’s hypotheses H2 under the hypotheses H1, i.e. any valuation
that satisfies H1 must also satisfy each of the hypotheses in H2θ, so that the lemma
is applicable in this context. As we need only show that the lemma’s hypotheses are
valid when assuming the hypotheses of the conclusion, this latter set, in conjunction
with the program’s rewrite system, constitute the equational theory with respect to
which we must perform unification.

It is not hard to see that unification modulo equational theory is, in general, un-
decidable due to the expressive power of arbitrary equational theories. For confluent
and terminating rewrite systems, however, there does exist a complete semi-decision
procedure based on narrowing [116]. Narrowing generalises a reduction relation so
that sub-expressions are unified with the left-hand side of rewrite rules instead of be-
ing matched against them. For example, the expression append xs (append ys xs)

is in normal form, but we may narrow it to the expression [z, z] by first unifying xs
with the pattern z :: zs and then subsequently unifying ys and zs with []. Thus, nar-
rowing is able to simulate the reduction of instances of a given expression rather than
the expression itself, such as the instance {xs 7→ [z], ys 7→ []} in the previous ex-
ample. When combined with syntactic unification, narrowing is sufficient for solving
unification problems modulo equational theory.

Although we can use hypothesis completion to extract a confluent and terminat-
ing instance of hypothetical reduction from the current proof obligation’s hypotheses,
it must also be the case that our unification algorithm terminates with the resulting
rewrite system. Without a guarantee of termination, proof searchmay get stuck when
applying a lemma, preventing the application of more productive lemmas. The source
of non-termination in the narrowing procedure is the possibly endless introduction
of existential variables. Recall that we use “existential” to refer to the variables that
the unification procedure may instantiate, which is initially those variables appearing
in the lemma’s hypotheses. In contrast, “universal” variables are those of the current
proof obligation, which cannot be instantiated as part of the unification process. Sup-
pose, for example, the expression append xs [] appears in the lemma’s hypotheses.
It can be unified with the rewrite rule append (y :: ys) zs →P y :: append ys zs,
under the substitution {xs 7→ y :: ys, zs 7→ []}, and then subsequently reduced to
the expression y :: append ys []. In doing so, new existential variables are introduced
which capture the free variables of the rewrite rule that were not instantiated; namely,
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the variables y and ys. Moreover, the reduct has a sub-expression that is a variant of
the original and, for which, the same narrowing step can be simulated ad infinitum.

To ensure termination, therefore, we forgo completeness by restricting the possi-
ble narrowing steps. Our restriction comes from the observation that unifying sub-
expressions with a hypothesis of the current proof obligation only instantiates exis-
tential variables with expressions built from the universal variables to which the hy-
pothesis applies. Therefore, when narrowing against a hypothesis, the number of ex-
istential variables in the unification problem decreases as the universal variables can-
not be instantiated as part of the unification process. From this observation, we find
our terminating restriction where a sub-expression may match against any rewrite
rule (i.e. either a hypothesis or an instance of incremental matching) but may only
be unified with a hypothesis whereby the number of existential variables is reduced.
Recall that, as the hypotheses have to be oriented normal reduction steps decreases
the size of the expressions with respect to the ordering used by the completion pro-
cedure. In this section, we define a hypothetical narrowing procedure that exactly
captures this process.

Definition 5.12. The hypothetical narrowing relation Γ, H ⊢ a ?
⇝θ b is defined by the

inference rules in Figure 5.7. In addition to the assumed hypotheses, this procedure is
parameterised by a type environment that dictates the variables that can be instanti-
ated, i.e. the existential variables, and an accumulated substitution for these variables.
We assume that Γ ∩ Σ = ∅, i.e. no program variables are treated as existential.

(Reduce) H ⊢ a⇝ b
Γ, H ⊢ a ?

⇝∅ b

(Unify) aθ = b ∈ H
dom(θ) ⊆ dom(Γ) ∩ FV(a)

Γ, H ⊢ C[a] ?
⇝θ Cθ[b]

Figure 5.7: The hypothetical narrowing relation.

Definition 5.13. The many-step hypothetical narrowing relation Γ, H ⊢ a ?
⇝∗

θ b is
defined in Figure 5.8 and is analogous to the reflexive-transitive closure of the hypo-
thetical narrowing relation but where the substitution is accumulated.

The correctness of hypothetical narrowing is given by the following lemma, show-
ing that it produces an instance of the initial expression that reduces to the latter under
the given hypotheses. For the sake of simplicity, we do not enforce that the substitu-
tion is well-typed as part of the narrowing judgement. This oversight is mitigated by
an additional side-condition of the (Subst) and (Subst)⊥ rules that checks the substi-
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Γ, H ⊢ a ?
⇝∗

∅ a

Γ, H ⊢ a ?
⇝θ b Γ, H ⊢ b ?

⇝∗
θ′ c

Γ, H ⊢ a ?
⇝∗

θ∪θ′ c

where dom(θ) ∩ dom(θ′) = ∅

Figure 5.8: The many-step hypothetical narrowing relation.

tution is well-typed, although in practice we verify that the accumulated substitutions
are well-typed during narrowing.

Lemma 5.15. Suppose Γ1 ⊢ H wf is a well-formed set of hypotheses and Γ2 is a type
environment that is disjoint from Γ1, i.e. dom(Γ1)∩dom(Γ2) = ∅. If Γ2, H ⊢ a

?
⇝∗

θ b

is an instance of hypothetical narrowing, then dom(θ) ⊆ Γ2 and H ⊢ aθ ⇝∗ b is an
instance of hypothetical reduction.

As previouslymentioned, narrowing cannot be guaranteed to terminate evenwhen
the underlying rewrite system is terminating. This divergence arises from the intro-
duction of instantiation of variables with large terms as part of narrowing steps. In
our case, however, proper narrowing steps are restricted to only apply to hypotheses,
which only contain universal variables that cannot be instantiated. Therefore, nar-
rowing either decreases the number of existential variables or results in smaller ex-
pressions. Therefore, as there are only finitely many existential variables appearing in
the hypotheses being solved, hypothetical narrowing terminates under well-oriented
hypotheses.

Lemma 5.16. Let > be a reduction order that is compatible with the program’s re-
duction relation. Suppose Γ1 ⊢ H wf are well-oriented hypotheses, i.e. a > b for all
equations a = b ∈ H , and Γ2 is a type environment that is disjoint from Γ1. Then, for
any hypothetical narrowing Γ2, H ⊢ a

?
⇝θ b, either dom(θ) is non-empty or a > b.

Theorem 5.17. Suppose Γ1 ⊢ H wf are well-oriented hypotheses, Γ2 is a type en-
vironment that is disjoint from Γ1, and a is an applicative expression. Then there
is no infinite sequence of expressions (ai)i∈N and substitutions (θi)i∈N such that
Γ2, H ⊢ ai

?
⇝θi ai+1 for all i ∈ N.

Corollary 5.18. Suppose Γ1 ⊢ H wf are well-oriented hypotheses, Γ2 is a type en-
vironment that is disjoint from Γ1, and a is an applicative expression. Then there are
finitely many substitutions θ and expressions b such that Γ2, H ⊢ a

?
⇝∗

θ b.

As there can be no infinite derivations of hypothetical narrowing, we can enumer-
ate instances of an expression modulo hypothetical reduction. Therefore, an equation
can be solved by narrowing each side until syntactically unifiable expressions are
reached. This process can easily be extended to a set of hypotheses by solving each
equation and, when possible, combining solutions.
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Theorem 5.19. Suppose Γ2, H ⊢ a
?
⇝∗

θ a
′ and Γ2, H ⊢ bθ

?
⇝∗

θ′ b′ are two instances
of hypothetical narrowing such that a′θ′θ′′ = b′θ′′ for some substitution θ′′ where
dom(θ′′) ⊆ dom(Γ2). Then the composite substitution θsol = θθ′θ′′ is a solution to
the equation a = b under the hypothesesH , i.e. the clauseH ⇒ aθsol = bθsol is valid.

Now let us examine an example of the hypothetical narrowing process. Consider
the equation not (leq x y)

.
= p that we would like to solve with hypothetical nar-

rowing under the well-oriented hypotheses leq a a = True and leq a b = False.
One possible solution is derived from the hypothetical narrowing steps:

not (leq x y)
?
⇝{x 7→a, y 7→a} not True

?
⇝∅ False

and the unifier {p 7→ False}, which gives rise to the solution {x 7→ a, y 7→ a, p 7→
False}. Alternatively, unification with the second hypothesis results in the solution
{x 7→ a, y 7→ b, p 7→ True}. As a result of our restriction, completeness is sacrificed
for the sake of termination by only unifying sub-expressions with hypotheses. For
example, the solution {x 7→ Z, y 7→ Z, p 7→ False}would not be discovered, despite
being valid, as it only arises through unification with the reduction leq Z Z→P True

rather than with a hypothesis.

Narrowing Strategies

Since its conception, narrowing has received much attention with many refinements
being developed. We will briefly comment on why we don’t specialise the above pro-
cedure to one of the common strategy. The first such strategy, “basic narrowing”, only
permits the application of narrowing steps to sub-expressions that were not intro-
duced as a result of unification, exploiting the confluence of the rewrite system [120].
In our case, basic narrowing doesn’t result in any improvement as narrowing steps
cannot introduce existential variables that could be narrowed further. There are also
many strategies that are specialised to strictly orthogonal rewrite systems [101, 121].
Although the program’s reduction relation is strictly orthogonal, the same cannot be
said for its combination with hypotheses. Hence, these strategies are not applicable.

Another approach to solving unification problems with a confluent and termi-
nating rewrite system is “one-sided paramodulation” or “lazy narrowing” [122, 123].
One-sided paramodulation interleaves the syntactic unification procedure with nar-
rowing using an outermost restructuring rule to implicitly match an expression with
a hypothesis:

f s1 · · · sn = t⇒
s1 = l1 ∧ · · · ∧ sn = ln ∧ r = t

where f l1 · · · ln = r is a hypothesis. One-sided paramodulation can often be more
efficient than narrowing as its derivations avoid over specialising solution, typically
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subsuming many narrowing derivations. In our case, however, it is harder to reason
about the termination properties of one-sided paramodulation as the restructuring
rule introduces new expressions that are not necessarily smaller than original under
the completion ordering.

5.3 Extended Proof System

In the previous section, we discussed the various mechanical aspects of working
with hypotheses. Namely, we introduced a saturation-based procedure to normalise
clauses and a technique for solving hypotheses using narrowing. These two proce-
dures play a central role in the implementation of the extension of the proof system to
support conditional equations, but they are not sufficient for showing that hypotheses
are unsatisfiable — a crucial route to discharging goals in a conditional setting.

When the hypothesis completion ends in a contradictory configuration, the hy-
potheses are known to be unsatisfiable, but this does not cover all such cases. Con-
sider, for example, the hypothesis x == x = False that is clearly unsatisfiable
despite being easily organised into a confluent and terminating rewrite system. It can
only be shown to be unsatisfiable by inductively considering the value of x, such as
through a cyclic proof of the following form:

Z == Z = False⇒ ⊥

(1)
y == y = False⇒ ⊥

S y == S y = False⇒ ⊥
1: x == x = False⇒ ⊥

In the left-hand branch, the hypothesis completion procedure will demonstrate
that the hypotheses are unsatisfiable as Z == Z →∗

P True ̸= False. On the other
hand, the hypothesis S y == S y = False can be simplified but is still not visibly
unsatisfiable. In order to complete this branch, the proof must create a cycle using
the root node as a lemma with the instance {x 7→ y}. However, CycleQ’s original
cycle formation rule does not apply here as the lemma has no positive equation with
which the goal could be rewritten. It is clear that an additional rule for forming cycles
is necessary to complete such proofs.

In this section, we introduce a cyclic proof system for conditional equational rea-
soning with two distinct modes of operation: the normal mode as in our original proof
system and a “refutation mode” where the formulas in question have no positive lit-
erals. As an example of the necessity of the refutation mode consider the function
in Figure 5.9 and the equation silly x = Z, which we will try to prove within the
normal mode.

In order to make a reduction step and expose the behaviour of this program, it is
necessary to perform case analysis on x == x. The case when x == x is True can
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silly : Nat → Nat
silly x =

case x == x of
False -> x
True -> Z

Figure 5.9: A trivial, yet conditional, function.

be trivially discharged, so consider the remaining proof obligation:

1: x == x = False⇒ x = Z

To proceed with the proof, we perform case analysis on x and, after simplification,
we are left with the following clause: x′ == x′ = False ⇒ S x′ = Z. By using the
consequent of clause (1) with the instance {x 7→ S x′}, we could rewrite this clause
to reflexivity and discharge the proof obligation. The lemma’s hypotheses are indeed
satisfied by this instance, but there is no progressing trace as the only relevant variable
has increased. The lemma that would actually enable us to complete this proof would
be of the form x == x = False⇒ S x = Z, which is a seemingly arbitrary variant.

The intuition to be derived from the above example is that, when trying to com-
plete a proof with unsatisfiable hypotheses, equational consequents provide no rele-
vant information — they are not known to be satisfied by any instances. Rewriting
a proof obligation towards reflexivity is, therefore, misguided as it relies on the syn-
tactic form of irrelevant equations. Instead, once in refutation mode, we avoid such
meaningless transformations and the correct use of the clause is enforced. For exam-
ple, if the aforementioned lemma was in refutation mode, then we could complete the
preceding proof without having to artificially syntheses a lemma that aligns with the
syntactic form of the proof obligation.

Refutation mode is characterised by clauses without positive literals, represented
with⊥ as their consequent. This alternative mode restricts the space of proofs as lem-
mas in refutation mode can only be used to discharge goals directly via an additional
proof rule for cycle formation.

5.3.1 Cyclic Pre-proofs

Recall that a cyclic pre-proof is a tuple (V, E, λ, ρ)whereV is a finite set of nodes and
E : V ⇀ V ∗ determines the underlying structure of the proof graph. The latter two
components λ and ρ previously assigned nodes equations and inference rules from
Figure 4.5 respectively. In the extension, however, they equip nodes with a clause and
an inference rule from the extended set in Figure 5.10 respectively. Other than the
rules for reflexivity, congruence, and function extensionality, which are largely the
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same as in the original system with no special interaction with the hypotheses, the
interpretation of proof rules is as follows:

• (Refute) This rule is applied non-deterministically to move a clause into refu-
tation mode. As it is not always appropriate, it is not prioritised over any other
rule. However, when the consequent is visibly unsatisfiable this rule is applied
eagerly.

One could imagine a system that randomly tests the hypotheses and only per-
mits the application of this rule if no satisfying instances are found. This ap-
proach would reduce the number of times it is inaccurately applied. Neverthe-
less, the results in Section 5.4 show that an implementationwithout such checks
can still be sufficiently performant.

• (Absurd), (Reduce) When the hypothesis completion procedure produces a con-
tradictory configuration, we can discharge the proof obligation with (Absurd)
The soundness of hypothesis completion implies that such hypotheses are un-
satisfiable and the clause is vacuously true.

Otherwise, we perform hypothetical reduction with the resulting saturated hy-
potheses. As with the original CycleQ proof search algorithm, reduction is
prioritised as it exposes more of the behaviour of expressions. In this case, re-
duction also includes relevant consequences of hypotheses.

As the hypothesis completion procedure can be expensive, but must be com-
puted when deciding which of these inference rules are applicable, the imple-
mentation stores the terminal configuration as part of the clause. In Section 5.2,
we showed that the hypothesis completion procedure can build on the existing
configuration as new hypotheses are added, largely mitigating the cost of re-
peated saturation.

• (Subst), (Subst)⊥ As previously discussed the new calculus has two mecha-
nisms for forming cycles: the normal mode which uses a pre-existing lemma
to rewrite the goal producing a new obligation, i.e. the “continuation”, and the
refutation mode which discharges the goal entirely for lemmas that indicate the
hypotheses are unsatisfiable.

In either case, we must find a substitution θ for which ⊨ H1 ⇒ H2θ whereH1

and H2 are the goal’s and lemma’s hypotheses respectively, although the sub-
stitution will be partially instantiated in normal mode as a result of matching
sub-expressions. Instead of using H1 directly to solve the lemma’s hypothe-
ses, we again use the set of hypotheses produced by the hypothesis completion
procedure for which hypothetical reduction is confluent and terminating. Un-
der these conditions, the narrowing based unification algorithm discussed in
Section 5.2 computes a finite set of solutions.
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• (Case) Finally, the rule for case analysis differs from the unconditional system as
it allows for case analysis on arbitrary expressions rather than being restricted
to variables, introducing a new hypothesis corresponding to the relevant case.
Although there are many more sub-expressions than variables, we still restrict
our attention to those that are “needed” according to the definition in Section 4.4
in order to guide proof search with the aim of making a reduction step.

The ordering used during the hypothesis completion procedure is designed so
that the hypotheses resulting from case analysis are always orientable. That
is to say, reduction can indeed make use of the new hypothesis to replace any
occurrence of the subject of case analysis with the corresponding case.

(Refl)
Γ ⊢ H ⇒ a

.
= a

Γ ⊢ H ⇒ ⊥
(Refute)

Γ ⊢ H ⇒ a
.
= b

(Absurd) ⟨H, ∅⟩ ⊢∗  
Γ ⊢ H ⇒ ϕ

(∀i ≤ n) Γ ⊢ H ⇒ ai
.
= bi(Cong)

Γ ⊢ H ⇒ k a1 · · · an
.
= k b1 · · · bn

Γ ⊢ H ′ ∪R⇒ a′
.
= b′

(Reduce)
⟨H, ∅⟩ ⊢∗ ⟨H ′, R⟩
R ⊢ a⇝∗ a′

R ⊢ b⇝∗ b′Γ ⊢ H ⇒ a
.
= b

Γ ∪ {x : τ1} ⊢ H ⇒ a x
.
= b x

(FunExt) Γ ⊢ a, b : τ1 → τ2
Γ ⊢ H ⇒ a

.
= b

Γ2 ⊢ H2 ⇒ ⊥
(Subst)⊥

Γ1 ⊢ θ : (Γ2 \ Σ)Θ
⊨ H1 ⇒ H2θΓ1 ⊢ H1 ⇒ ϕ

Γ2 ⊢ H2 ⇒ a
.
= b Γ1 ⊢ H1 ⇒ C[bθ]

.
= c

(Subst) Γ1 ⊢ θ : (Γ2 \ Σ)Θ
⊨ H1 ⇒ H2θΓ1 ⊢ H1 ⇒ C[aθ]

.
= c

(∀k ∈ dom(∆(d))) Γ ∪ Γk ⊢ H ∧ a = k x1 · · · xn ⇒ ϕ
(Case)

Γ ⊢ H ⇒ ϕ

where Γ ⊢ a : d τ

and Γk = {x : ∆(d)(k)[τ/α]}

Figure 5.10: The inference rules for extended pre-proofs.
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5.3.2 Local and Global Soundness

Aswith the unconditional proof system, the soundness property of cyclic proofs is de-
composed into the local soundness of the proof rules, which applies to all pre-proofs,
and the global soundness condition constraining the shape of cycles and thus distin-
guishing a class of proper proofs.

Recall the necessary precursor relation_ on pairs (v, θ) where v ∈ V is a node
in a pre-proof and θ a valuation of the clause λ(v) that determines the dependencies
between valuations of nodes. The idea is that if a node v1 is not satisfied by a valu-
ation θ1, then there is a necessary precursor, i.e. a node v2 and a valuation θ2 of its
clause, such that (v1, θ1) _ (v2, θ2) and v2 is also not satisfied by θ2. The definition
of the necessary precursor relation is the same as in Section 4.2 with the following
exceptions to account for the new inference rules. In each case, v2 is a child of v1, i.e.
a premise, and the precursory valuations are determined by the inference rule ρ(v1).

• (Refute) As v2 is satisfied by a valuation just if its hypotheses are unsatisfied,
in which case v1 is also satisfied, we have that (v1, θ)_ (v2, θ) for any appro-
priate valuation θ.

• (Absurd) As with reflexivity, this rule does not give rise to any necessary pre-
cursors as it is always valid.

• (Subst)⊥ Let θ be the substitution instance of the lemma. As with the normal
(Subst) rule, the relevant instances of the lemma are related to the valuation of
the conclusion by θ. Therefore, (v1, θ1) _ (v2, θθ1).

• (Case) where a : d τ is the expression upon which case analysis is performed
and x1, . . . , xn are the fresh variables. We know that (aθ)↓P is of the form
k a1 · · · an for some k ∈ ∆(d). Thus, (v1, θ1) _ (v2, θ1∪{x 7→ a})whenever
v2 is the premise associated with this constructor.

Theorem 5.20 (Local Soundness). Let v1 ∈ V \ Ax be a non-axiom node within the
pre-proof (V, E, λ, ρ) such that θ1 ̸⊨ λ(v1) for some valuation θ1. Then there exists
a necessary precursor (v2, θ2) such that θ2 ̸⊨ λ(v2).

An invalid node thus gives rise to an invalid axiom or infinite sequence of in-
valid nodes. To extend local soundness to global soundness we must show that the
necessary precursor relation is well-founded for the given pre-proof, in which case
there can be no such infinite sequences. This is done by assigning a trace to all paths
within a pre-proof, see Definition 4.5, which have infinitely many progress points.
Given a stable, well-founded partial-order on applicative expressions, a≤-trace along
a path (vi)i∈N is an infinite sequence of applicative expressions (ti)i∈N subject to the
following constraints:
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• If λ(vi) = Γi ⊢ H ⇒ ai = bi, then FV(ti) ⊆ dom(Γi \ Σ), i.e. the trace term
may only depend on the free variables of the equation associated with the given
node.

• If ρ(vi) is (Case) for some i ∈ N where x : d τ is the variable upon which case
analysis is performed and vi+1 is the premise associated with the constructor
k ∈ ∆(d) using fresh variables x1, . . . , xn, then ti+1 ≤ ti[k x1 · · · xn/x]. If,
on the other hand, case analysis is applied to a non-variable expression, it must
be the case that ti+1 ≤ ti.

• If ρ(vi) is (Subst) with substitution θ and vi+1 is the lemma, then ti+1θ ≤ ti

and, if vi is the continuation, then ti+1 ≤ ti.

• If ρ(vi) is (Subst)⊥ with substitution θ and vi+1 is the lemma, then it must be
the case that ti+1θ ≤ ti.

• And, in all other cases, ti+1 ≤ ti.

Lemma 5.21. Let (V, E, λ, ρ) be a cyclic pre-proof with a path (v)i∈N and sup-
pose (t)i∈N is a ≤-trace along this path. If θi is a valuation of some node vi ∈ T

and (vi, θi) _ (vi+1, θi+1), then ti+1θi+1 ≤ tiθi and ti+1θi+1 < tiθi when i is a
progress-point.

As with the unconditional proof system, the existence of an infinitely progressing
trace for each path implies that the necessary precursor relation is well-founded. Once
again, when combined with local soundness, we can conclude that every equation in
such a cyclic pre-proof is valid if its axioms are.

Theorem 5.22 (Global Soundness). Let (V, E, λ, ρ) be a cyclic proof such that, for
every axiom v ∈ Ax, the associated equation λ(v) is valid. Then, for every other node
v ∈ V \ Ax, the associated equation λ(v) is also valid.

5.4 Evaluation

The original implementation of CycleQ was limited by two key factors: the lack of
conditional equations and the lack of theory exploration. In this chapter, we intro-
duced an extended proof system CycleQ⇒ that supports conditional equations. This
proof system is supported by a number of theoretical developments that are designed
to enable efficient proof search despite the increase in expressivity.

As with the first iteration, we have implemented the extended system, includ-
ing the hypothesis completion procedure and a narrowing-based approach to solving
hypotheses, as well as the additional refutation mode discussed in the preceding sec-
tion, as a plugin for GHC 9.2.8. The global soundness condition is again verified using
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size-change graphs that we have previously shown to enable efficient incremental
computation. The purpose of this evaluation is, therefore, two-fold: to demonstrate
the mechanisms for managing hypotheses do not impede on the performance of the
tool and that they are sufficient for solving those benchmark problems that were pre-
viously identified as requiring conditional equations, but not generalisation or the
generation of auxiliary lemmas as this is an orthogonal concern.

For the two principle contributions of this chapter, a reduction ordering is re-
quired that is compatible with the program’s reduction relation. This ordering is used
to construct a confluent and terminating rewrite system via the hypothesis completion
procedure and then used to argue that our narrowing-based procedure for solving hy-
potheses terminates. The construction of such an ordering for an arbitrary program is
difficult as not much of the structure of the program’s reduction relation can be gath-
ered just given that it is terminating, and the combination of arbitrary well-founded
ordering is rarely well-founded itself. In our prototype implementation, we orient
hypotheses according to the lexicographical path ordering where constructors have
the least precedence so that more hypotheses are orientable (see Definition 5.6) [117].
This ordering works well in practice, as the following evaluation demonstrates, but it
is not compatible with every possible program. As no instances of non-termination
were encountered, we suspect that a similar ordering can be constructed for a common
subset of programs that includes all benchmark problems. We intend to investigate
this observation in more detail as future work.
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Figure 5.11: Number of benchmark problems solved within the
given time bound.

As with the original implementation, we tested the tool against a standard bench-
mark suite of 85 induction problems concerning natural numbers, lists, and trees,
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originally used to test the IsaPlanner tool [74]. The results were obtained as an av-
erage over 10 runs with the fuel parameter set to 10 on the windows sub-system for
Linux, running on am 11th Gen Intel® Core™ i7–1185G7 @ 3.00GHz/1.80GHz pro-
cessor with 16.0GB of RAM. The number of benchmark problems solved in a given
time is shown in Figure 5.11 in addition to the results for the non-conditional imple-
mentation.

Our prototype implementation of CycleQ⇒ was able to find proofs for an ad-
ditional 24 benchmark problems; solving 69 (∼80%) in total. Furthermore, the new
features for handling conditional equation appeared to have very little impact on effi-
ciency. In particular, the new iteration of our equational reasoning tool was still able
to solve all but one of the original 44 problems solved byCycleQ in under 30ms. These
results indicate that the hypothesis completion procedure and narrowing-based solv-
ing mechanism are viable approaches to working with conditional equations when
performing proof search. The effectiveness of the hypothesis completion procedure
is further witnessed by the fact that no instance encountered more than one unori-
entable equation. Perhaps more surprisingly, the unconstrained use of (Refute) does
not appear to lead to an intractably large search space as long as it is given a lower
priority than the other rules that can be applied without loss of generality.

Recall that from the previous chapter, we compared the efficiency of CycleQwith
the inductive extension of CVC4, whose benchmark results are also presented in Fig-
ure 5.11. Although CycleQ was more efficient in many cases, it was hard to draw a
true comparison as CVC4 ultimately solved more benchmarks. With the introduction
of conditional equations, however, it is plain to see that our prototype implementa-
tion of CycleQ⇒ is significantly more efficient on simple problems and comparably
efficient on more difficult problems.

To verify that the techniques developed in this chapter are sufficient for condi-
tional reasoning, we need to identify those benchmark problems that require general-
isation or the generation of auxiliary lemmas as this is an orthogonal concern that we
have not attempted to address. Out of the remaining 18 unsolved problems that were
solved by the HipSpec system, all required the generation of auxiliary lemmas [112].
Furthermore, our proof search algorithmwas able to solve one more benchmark prob-
lem than CVC4, which only solves 68 problems without mapping inductive types to
existing theories such as the integers [110]. This tool was selected for comparison due
to the lack of sub-goal generation.

The unsolved problems either require simple properties such as the commutativ-
ity of addition to be known or depend on more complex functions such as sort and
reverse. One distinguishing feature of these functions is that they are not “treeless”,
unlike add, take, and max where the tool performs well, in that they build-up in-
termediate structures [124]. Appropriate induction hypotheses are often discovered
naturally for treeless functions merely by unfolding their definitions as there is no in-
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direct recursion. Recursive calls in these more complex functions, on the other hand,
make use of an accumulation parameter, which typically require strengthening, or
are guarded by another function, e.g. insert or append, that typically require an
additional lemma to circumnavigate. As part of future work, we intend to establish
the exact connection between the class of functions and those proofs that can be dis-
covered without auxiliary lemmas.



Chapter 6

Conclusion

Functional programs have many appealing properties when it comes to reasoning
about their correctness. They are often pure, and process immutable structures, so
there is no question with regards to memory safety. Despite these advantages there
is a limited set of tools available that can automatically and formally prove proper-
ties of such programs. In this thesis, we presented two lightweight approaches to the
verification of a small, functional programming language with algebraic datatypes
and Hindley-Milner style polymorphism. These systems are lightweight in that they
sacrifice completeness for efficiency in order to be usable in day-to-day software de-
velopment cycles, rather than being limited to safety critical applications where it
makes sense to dedicate time to more comprehensive styles of verification, e.g. de-
ductive verification in an interactive theorem prover.

The first of these verification systems is a refinement type system that can be
used to guarantee a program is a positive instance of the pattern-match safety prob-
lem; that is, it cannot give rise to a pattern-matching error at runtime. Intuitively,
the declarative system can be seen as automatically “completing” a datatype environ-
ment by adding instances of datatypes where constructors have been removed. In
practice, our constrained-type inference procedure provides an algorithmic solution
to the problem that is shown to be, in the worst case, linear in the size of the pro-
gram. This complexity result was achieved by restricting the constraints associated
with each function so that they are bounded by the size of its underlying type, un-
der the assumption that the size of these underlying types are indeed bounded. As a
result, the algorithm was able to analyse large scale packages with over a thousand
definitions in the order of seconds. Nevertheless, we found one recursive group where
our assumption breaks down, and the tool was unable to handle the large number of
induced constraints.

In order to soundly restrict constraints in this manner, it was necessary to limit
the possible refinements of datatypes to those that apply recursively, i.e. recursive
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occurrence of a datatype under a constructor is refined in the same manner; namely
intensional refinements. Consequently, some common datatypes do not have useful
refinements, such as the list datatype that can only be (non-trivially) refined to empty
lists or infinite lists, neither of which are particularly useful in practice. Although it
can be argued that this is acceptable from a fully-automated and scalable analysis, we
nevertheless intend to extend the system to better handle such cases. There appear to
be two directions for doing so: allow the user to specify non-intensional refinements
of interest (e.g. non-empty lists), or automatically extend the intensional environment
with common patterns such as a one-level unfolding, from which the non-empty list
refinement can be derived. Both cases would require a fundamental change to the
type inference system as the constraints rely on the assumption that each constructor
is associated with a single underlying datatype identifier. It is as yet unclear how
much this extension would compromise performance.

The second verification system we considered was an equational reasoning sys-
tem for algebraic datatypes based on cyclic proofs rather than the traditional approach
to proof by induction with explicit induction schemes. Equational specifications are
an appealing target for a lightweight verification system as they do not require the
user to be familiar with a complex program logic, meaning they can be more easily
integrated into the development cycle. Furthermore, they are significantly more ex-
pressive than type systems and are not limited to safety properties. Naturally this
expressivity comes with complexity which, in this case, arises from the interaction
between equational reasoning and the limitations of automated inductive reasoning.
We developed a novel cyclic proof system to mitigate this complexity — CycleQ. Our
prototype implementation demonstrates that the corresponding proof search algo-
rithm is efficient when combined with a size-change based method for checking the
global soundness condition. It was able to automatically prove many properties about
simple functions in under a millisecond.

The first iteration of our proof system, although efficient, was not able to prove
some of themore complex properties in the benchmark suite due to the lack of support
for conditional equations. This meant that we were not able to provide a fair com-
parison to any other state-of-the-art inductive theorem provers. In the final chapter
of this thesis, we introduced CycleQ ⇒ that additionally has support for conditional
equations. To maintain the promising results under this increase in expressivity, we
developed a number of specialised mechanisms for handling conditional reasoning,
including the integration of hypotheses into the program’s reduction relation in a de-
terministic manner and a terminating algorithm for finding solutions to a lemma’s
hypotheses. Our prototype implementation demonstrated that these new features
enable a large number of problems to be solved with no significant decrease in effi-
ciency, meaning that our tool surpasses CVC4 (without sub-goal generation) in both
the number of problems solved and efficiency.
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The reason we draw a comparison with CVC4 is precisely because its sub-goal
generation heuristics can be disabled. This restriction is necessary for a fair compari-
son as the heuristics necessarily inhibit the tool’s performance in exchange for being
able to solve a greater number of problems. However, it is naturally of interest to
see if our cyclic proof systems can be extended in this manner with some support of
lemma generation or heuristical strengthening while retaining its good performance
characteristics. Based on our analysis of the yet unproven benchmark problems, there
appears to be a correlation between functions that are treeless (i.e. do not built-up in-
termediate structures) and properties that can be proven without auxiliary lemmas
or strengthening. This observation is perhaps unsurprising as treeless programs have
a simple recursive structure and construct their outputs directly, meaning that more
of their behaviour is exposed by case analysis and reduction alone. If a formal con-
nection can be established, the types of generalisations and the space of auxiliary
lemmas could then be restricted in order to retain efficiency whilst supporting a more
powerful algorithm.

Preceding this future work, a clear understanding of the “discoverable” cyclic
proofs is required. In the setting of explicit induction, defining such a fragment is
straightforward by removing cut-like rules and restricting generalisation. However,
the non-local nature of cyclic proofs requires a more detailed analysis. What is more,
such a model of discoverable proof may also enable a formal justification of the re-
striction we place upon proof search. It is important to understand the boundaries of
our proof search algorithm not just for the sake of further theoretical developments
but to provide the user with a clear guide as to when the tool will work out of the box,
as is the case with our declarative type system for intensional refinement types.

To summarise, we developed two lightweight verification systems for a functional
programming language. Our focus was on efficiency and predictability rather than
precision or the ability to solve all target problems. These systems are ideal for
widespread use due to their easy-to-understand foundations, derived from the idea
of removing constructors or through equational reasoning. However, it is ultimately
necessary for verification tools to handle more complex scenarios, even if the tools
are no longer fully automated. Overall, the systems presented in this paper provide
an efficient foundation for their intended purposes, but further work is required in
order to develop them into mature tools.
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Appendix

A Proofs for Section 2.2 (Operational Semantics)

Lemma 2.1. Let P be a Σ-program. If Σ ∪ Γ ⊢ f a1 · · · an : τ is an applicative
expression and P (f) a1 · · · an ⇓∅ b is defined, then Σ ∪ Γ ⊢ b : τ .

Proof. We will show that, if Σ ∪ Γ ⊢ dθ a1 · · · an : τ and d a1 · · · an ⇓θ a, then
Σ ∪ Γ ⊢ a : τ by induction on the incremental matching relation.

• In the base case, where a a1 · · · an ⇓θ aθ a1 · · · an, we have by assumption
that Σ ∪ Γ ⊢ aθ a1 · · · an : τ as required.

• Suppose (λx. d) a1 · · · an ⇓θ b and that Σ ∪ Γ ⊢ (λx. dθ) a1 · · · an : τ . By
inversion, we have that d a2 · · · an ⇓θ∪{x 7→a1} b and Σ ∪ Γ ∪ {x : τ1} ⊢
dθ : τ2 → · · · → τn → τ where Σ ∪ Γ ⊢ ai : τi for all i ≤ n. Thus
Σ∪Γ ⊢ d(θ∪{x 7→ a1}) : τ2 → · · · → τn → τ and, by induction,Σ∪Γ ⊢ b : τ
as required.

• Finally, suppose Σ ∪ Γ ⊢ case θ(x) of {ki xi 7→ diθ | i ≤ n} a1 · · · an : τ

and case x of {ki xi 7→ di | i ≤ n} a1 · · · an ⇓θ a is due to the incremental
matching di a1 · · · an ⇓θ∪{xi 7→b} a. By inversion, we have that Σ ∪ Γ ∪

{xi : ∆(d)(ki)[σ/α]} ⊢ diθ : τ1 → · · · → τn → τ for each i ≤ n and
Σ∪Γ ⊢ θ(x) : d σ. Therefore,Σ∪Γ ⊢ di(θ∪{xi 7→ bi}) : τ1 → · · · → τn → τ .
It follow from the induction hypothesis that Σ ∪ Γ ⊢ b : τ as required.

Corollary 2.2. Let P be a Σ-program. If Σ ∪ Γ ⊢ a : τ is an applicative expression
and a→∗

P b, then Σ ∪ Γ ⊢ b : τ .

Proof. Suppose C[f a1 · · · an] →P C[a] is due to P (f) a1 · · · an ⇓∅ a. It is
straightforward to see by induction that on the context C[·] that, whenever Σ ∪ Γ ⊢
C[f a1 · · · an] : τ , there must exists a type σ such that Σ ∪ Γ ⊢ a1 · · · an : σ and
Σ ∪ Γ ∪ {x : σ} ⊢∆,Σ C[x] : τ . By applying Lemma 2.1, we have that Σ ∪ Γ ⊢ b : σ
and thus Σ ∪ Γ ⊢ C[b] : τ as required.
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It then follows by induction that this property extends to the many-step reduction
relation.

Lemma 2.3. If P (f) a1 · · · an ⇓∅ a, then P (f) a1θ · · · anθ ⇓∅ aθ for any sub-
stitution θ and P (f) a1 · · · an an+1 · · · am ⇓∅ a an+1 · · · am for any applicative
expressions an+1, . . . , am.

Proof. We will show, by structural induction on the definitional expression d, that
d a1 · · · an ⇓θ′ a implies d a1θ · · · anθ an+1 · · · am ⇓θ′θ aθ an+1 · · · am for any
substitution θ and applicative expressions an+1, . . . , am.

• In the base case of an applicative expression a, we have that a a1 · · · an ⇓θ′

aθ′ a1 · · · an. Furthermore, by definition, a a1θ · · · anθ an+1 · · · am ⇓θ′θ

aθ′θ a1θ · · · anθ an+1 · · · am. As this latter reduct is equivalent to the ex-
pression (aθ′ a1 · · · an)θ an+1 · · · am, we are done.

• Consider the definitional expression λx. d, for which (λx. d) a1 · · · an ⇓θ′ a

just if d a2 · · · an ⇓θ′∪{x 7→a1} a. From the induction hypothesis on d, we have
that d a2θ · · · anθ an+1 · · · am ⇓θ′θ∪{x 7→a1θ} aθ an+1 · · · am and, therefore,
(λx. d) a1θ · · · anθ an+1 · · · am ⇓θ′θ aθ an+1 · · · am as required.

• In the case of a case expression d = case x of {ki xi 7→ di | i ≤ n}, we have
that d a1 · · · an ⇓θ′ a just if θ′(x) = ki b1 · · · bℓ for some i ≤ m and
di a1 · · · an ⇓θ′∪{xi 7→b} a. It follows from the induction hypothesis that
di a1θ · · · anθ an+1 · · · am ⇓θ′θ∪{xi 7→bθ} aθ an+1 · · · am as the pattern
variables can be assumed to be disjoint from the free variables of θ. Because
θ′θ(x) = ki b1θ · · · bℓθ, we have that d a1θ · · · anθ an+1 · · · am ⇓θ′θ

aθ an+1 · · · am as required.

Lemma 2.5. If P (f) a1θ · · · anθ ⇓∅ a but P (f) a1 · · · an ⇓∅ is undefined, then
θ(y) is of the form k b1 · · · barity(k) for at least one variable x ∈

⋃
i≤n FV(ai).

Proof. Wewill show that if d a1θ · · · anθ ⇓θ′θ a but d a1 · · · an ⇓θ′ is undefined, then
θ(y) is of the form k b1 · · · barity(k) for at least one variable x ∈ FV(θ′)∪

⋃
i≤n FV(ai)

by induction on the definitional expression.

• In the base case, there is nothing to show as d a1 · · · an ⇓′θ is always defined.

• When (λz. d) a1θ · · · anθ ⇓θ′θ a is defined, it must also be case the case that
d a2θ · · · anθ ⇓(θ′θ)∪{z 7→a1θ} is defined by inversion. As θ does not act on
the bound variable z, the substitution (θ′θ) ∪ {z 7→ a1θ} can equivalently
be expressed as (θ′ ∪ {z 7→ a1})θ. Furthermore, it cannot be the case that
d a2 · · · an ⇓θ′∪{z 7→a1} is defined as this would contradict our assumption. By
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induction, therefore, θ(y) is of the form k b1 · · · bm for at least one variable
y ∈ FV(θ′ ∪ {z 7→ a1}) ∪

⋃
2≤i≤n FV(ai), which is exactly the set FV(θ′) ∪⋃

i≤n FV(ai) as required.

• Finally, if case z of {ki xi 7→ di | i ≤ n} a1θ · · · anθ ⇓θ′θ is defined, then
θ′(z)θ = ki b1 · · · bℓ and di a1θ · · · anθ ⇓(θ′◦θ)∪{xi 7→b} a. Note that, by
inspection, θ′(z) cannot be an expression other than a variable or a application
with a constructor in head position.

The assumption that case z of {ki xi 7→ di | i ≤ n} a1 · · · an ⇓θ′ is unde-
fined can thus be attributed to one of the following cases:

– Either θ′(z) = y and θ(y) = ki b1 · · · bℓ, in which case we are done.

– Else, θ′(z) = ki c1 · · · cℓ where ciθ = bi for all i ≤ ℓ. In which case,
di a1 · · · an ⇓θ′∪{xi 7→c} must be undefined. By induction, θ(x) is of the
form k′ d1 · · · dℓ′ for at least one variable x ∈ FV(θ′ ∪ {xi 7→ c}) ∪⋃

i≤n FV(ai). Furthermore, as θ′(z) = ki c1 · · · cℓ, the free variables of
each ci are already present in FV(θ′). Thus we may conclude θ(x) is of
the form k′ d1 · · · dℓ′ for at least one variable x ∈ FV(θ′)∪

⋃
i≤n FV(ai)

as required.

Corollary 2.6. The least binary relation such that C[f p1θ · · · pnθ] →P C[aθ]

whenever P (f) p1 · · · pn ⇓∅ a and FV(pi) ∩ FV(pj) = ∅ for all i ̸= j is exactly the
one-step reduction relation.

Proof. We will write→′
P for the binary relation defined in this corollary’s statement.

• First, we show this relation is contained within the true reduction relation de-
fined in Definition 2.21. Suppose C[f p1θ · · · pnθ] →′

P C[aθ] is due to the
incremental matching P (f) p1 · · · pn ⇓∅ a. By Lemma 2.3, we have that
P (f) p1θ · · · pnθ ⇓∅ aθ and, therefore, C[f p1θ · · · pnθ] →P C[aθ] as re-
quired.

• In the converse direction, suppose C[f a1 · · · an] →P C[a] is due to the in-
cremental matching P (f) a1 · · · an ⇓∅ a. By Lemma 2.4, there is a series of
linear patterns p1, . . . , pn and a substitution θ such that piθ = ai for all i ≤ n
and for which P (f) p1 · · · pn ⇓∅ b is defined. Furthermore, by Lemma 2.3,
P (f) p1θ · · · pnθ ⇓∅ bθ. Finally, as incremental matching is functional, bθ is
necessarily equal to a and thus C[f a1 · · · an]→′

P C[a] as required.
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Theorem 2.7. If a →P b1 and a →P b2, then there exists an applicative expression
c such that b1 →∗

P c and b2 →∗
P c.

Proof. We shall show that it is locally confluent by considering the Critical Pairs
Lemma [118]. By Corollary 2.6, we need only consider instances of incremental
matching with pattern arguments as rewrite rules.

Suppose, therefore, that P (f) p1 · · · pn ⇓∅ a and P (f) q1 · · · qm ⇓∅ b where
there exists two substitutions θp and θq such that piθp = qiθq for all i ≤ n. As-
sume, without loss of generality, that n ≤ m. Note that they can be no other forms
of overlap as patterns themselves do not contain function symbols. By Lemma 2.3,
we have that P (f) p1θp · · · pnθp qn+1θq · · · qmθq ⇓∅ aθp qn+1θq · · · qmθq and
P (f) q1θq · · · qmθq ⇓∅ bθq . However, as incremental matching is functional, it must
be the case that aθp qn+1θq · · · qmθq = bθq and thus the critical pair is, in fact,
trivial.

Corollary 2.8. Suppose P is a terminating program. Then, for any applicative ex-
pression a, the unique normal form a↓P is well defined.

Proof. By direct application of Newman’s Lemma and Theorem 2.7 [118].

Lemma 2.9. If P is an exhaustive Σ-program, then the normal form a↓P of a closed
expression Σ ⊢ a : d τ1 · · · τn is necessarily of the form k a1 · · · am for some
k ∈ dom(∆(d)).

Proof. First, we will show that, assuming any datatype sub-expression of ai or θ(x)
is of the form k a1 · · · aarity(k), d a1 · · · am ⇓θ is defined when Σ ⊢ dθ a1 · · · am :

d τ1 · · · τn by induction on d:

• When d is an applicative expression, it is already defined.

• In the case of a λx. d, we know that m ≥ 1 else it would not be the case
that Σ ⊢ (λx. d)θ a1 · · · am : d τ1 · · · τn. Therefore, we must show that
d a2 · · · am ⇓θ∪{x 7→a1} is defined. However, this obligation follow immedi-
ately by induction as no new sub-expressions have been introduced.

• In the case of case x of {ki xi 7→ di | i ≤ n}, we have that θ(x) is of the form
k b1 · · · bℓ by assumption. Furthermore, as the program is exhaustive there
must be some branch di corresponding to the constructor k. It remains to show
that diθ a1 · · · am ⇓θ∪{xi 7→b} is defined. However, as in the previous case,
no new sub-expressions have been introduced and thus we may appeal to the
induction hypothesis.

Now we will show that any closed normal form Σ ⊢ a : d τ1 · · · τn is of the form
k a1 · · · am by structural induction on a:
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• If a is an application with a constructor in head position, then there is nothing
to prove.

• Instead, suppose it is of the form f a1 · · · am where, by induction, any datatype
sub-expression of ai is of the form k a1 · · · am. As we have just shown, how-
ever, P (f) a1 · · · am ⇓∅ is defined thus contradicting the assumption that it is
not in normal form and concluding our proof.

Lemma 2.10. For any well-typed program, equivalence is a congruence relation that
contains the reduction relation. That is, it is closed under reflexivity, symmetry, tran-
sitivity, congruence, and reduction.

Proof.

Reflexivity Clearly, (C[a])↓P = (C[a])↓P for any expression a.

Symmetry Suppose a ≡P b. Let C[·] be an appropriately typed context. By defi-
nition, we have that (C[a])↓P = (C[b])↓P and thus (C[b])↓P = (C[a])↓P as
required.

Transitivity Suppose a ≡P b and b ≡P c. Let C[·] be an appropriately typed
context. By definition, we have that (C[a])↓P = (C[b])↓P and (C[b])↓P =

(C[c])↓P . Therefore, (C[a])↓P = (C[c])↓P as required.

Congruence Suppose a ≡P b and C[·] is an arbitrary context Γ ∪ {x : σ} ⊢ C[x] :
τ . Now let Γ ∪ {x : τ} ⊢ C ′[·] : Bool be an appropriately typed context.
By considering the compound context C ′[C[·]], we can derive (C ′[C[a]])↓P =

(C ′[C[b]])↓P from the definition of equivalence. Therefore C[a] ≡P C[b] as
required.

Reduction Suppose a →P b and let C[·] be an appropriately typed context. By
confluence, we have that (C[a])↓P = (C[b])↓P . Therefore, a ≡P b as required.

Lemma 2.11. Let P be an exhaustive Σ-program. If Σ ⊢ a, b : d τ1 · · · τn are two
P -equivalent applicative expressions, then a→∗

P k a1 · · · am and b→∗
P k b1 · · · bm

for some k ∈ dom(∆(d)) where ai ≡P bi for all i ≤ m. Furthermore, the converse
holds by congruence.

Proof. By Lemma 2.9, there exists some constructors k, k′ ∈ dom(∆(d)) such that
a→P k a1 · · · am and b→P k′ b1 · · · bℓ. If k ̸= k′, then it is trivial to see that a and
b are distinguished by the combinatorial context that corresponds to the expression
λx. case x of {k x 7→ True; k′ x′ 7→ False; . . .}.
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Now suppose ai ̸≡P bi for some i ≤ m. That is, there exist some Boolean valued
context C[·] that can distinguish ai and bi. In which case, the combinatorial context
that corresponds to the expression λx. case x of {k x 7→ C[xi]; . . .} can distinguish
a and b. As they are assumed to be equivalent, we have a contradict and thus may
conclude ai ≡P bi for all i ≤ m as required.

B Proofs for Section 3.2 (Declarative System)

Lemma 3.1. Subtyping is a preorder, i.e. it is reflexive and transitive.

Proof. It is straightforward to see by induction on the complement of the subtyping
relation that τ ̸⊑ τ leads to a contradiction. Thus, subtyping is reflexive.

We will show that the relation R = {(τ1, τ2) | ∀σ. τ1 ̸⊑ σ ∨ σ ̸⊑ τ2} contains
the complement of the subtyping relation, i.e. the complement of R is a model, by
induction over the complement of the subtyping relation.

• (SShape) Suppose U(τ1) ̸= U(τ2). Then, for any σ, it cannot be the case that
both τ1 ⊑ σ and σ ⊑ τ2, else we would also have U(τ1) = U(σ) = U(τ2),
which is contradictory. Therefore, we have that (τ1, τ2) ∈ R as required.

• (SMis) Suppose ∆∗(d1) ̸⊆ ∆∗(d2) and, for the sake of contradiction, that
(d1 τ1, d2 τ2) /∈ R. That is, there exists some type σ such that both d1 τ1 ⊑ σ
and σ ⊑ d2 τ2 hold. By (SShape), it must be the case that σ is of the form d3 τ3.
Furthermore, by (SMis), ∆∗(d1) ⊆ ∆∗(d3) and similarly ∆∗(d3) ⊆ ∆∗(d2).
However, this would imply that ∆∗(d1) ⊆ ∆∗(d2), thus giving us a contradic-
tion as required.

• (SSim) Suppose d1 τ1 ̸⊑ d2 τ2 is witnessed by some k ∈ ∆∗(d1) and i ≤
arity(k) for which ∆∗(d1)(k)i[τ1/α] ̸⊑ ∆∗(d2)(k)i[τ2/α]. By induction, we
have that (∆∗(d1)(k)i[τ1/α], ∆

∗(d2)(k)i[τ2/α]) ∈ R. Now suppose, for the
sake of contradiction, that σ is a type such that d1 τ1 ⊑ σ and σ ⊑ d2 τ2. By
(SShape), it must be the case that σ is of the form d3 τ3 and thus, by (SMis), we
have that ∆∗(d1) ⊆ ∆∗(d3). Therefore, the subtypings ∆∗(d1)(k)i[τ1/α] ⊑
∆∗(d3)(k)i[τ3/α] and ∆∗(d3)(k)i[τ3/α] ⊑ ∆∗(d2)(k)i[τ2/α] hold. As this
would imply, by definition, that the pair (∆∗(d1)(k)i[τ1/α], ∆

∗(d2)(k)i[τ2/α])

is not an element of R, we have a contradiction as required.

• (SArrL) Suppose τ1 → σ1 ̸⊑ τ2 → σ2 is due to τ2 ̸⊑ τ1. By induction, we have
that (τ2, τ1) ∈ R. Then suppose, for the sake of contradiction, that σ is a type
such that both τ1 → σ1 ⊑ σ and σ ⊑ τ2 → σ2 hold. By (SShape), it must be the
case that σ is of the form τ3 → σ3. Therefore, by (SArrL), we have that τ2 ⊑ τ3
and τ3 ⊑ τ1. As this would imply that (τ2, τ1) ̸∈ R, we have a contradiction as
required.
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• (SArrR) Analogous to the previous case.

Therefore, subtyping is also transitive.

Lemma 3.2 (Simulation). Suppose R ⊆ Dt∗ × Dt∗ is a binary relation on inten-
sional datatypes such that, for any pair of intensional datatypes (d1 τ , d2 σ) ∈ R and
constructor k ∈ dom(∆∗(d1)), the following properties hold:

1. k ∈ dom(∆∗(d2))

2. U(d1 τ) = U(d2 σ).

3. Ty(R)(∆(d1)(k)[τ/α]i, ∆(d2)(k)[σ/α]i) for all i ≤ arity(k).

Then it follows that Ty(R) is included in the subtyping relation.

Proof. Again let us proceed by induction on the complements, showing that τ1 ̸⊑ τ2

implies (τ1, τ2) /∈ Ty(R):

• (SShape) Suppose τ ̸⊑ σ is due to U(τ) ̸= U(σ). It is straightforward to see by
induction that U(τ) = U(σ) for any (τ, σ) ∈ Ty(R). Therefore, it cannot be
the case that (τ, σ) ∈ Ty(R) as required.

• (SMis) Suppose d1 τ ̸⊑ d2 σ is due to dom(∆∗(d1)) ̸⊆ dom(∆∗(d2)). By
assumption (1), it cannot be the case (d1 τ , d2 σ) ∈ R. Furthermore, there are
no other ways to relate datatypes under Ty(R) and thus (d1 τ , d2 σ) /∈ Ty(R)

as required.

• (SSim) Suppose d1 τ ̸⊑ d2 σ is due to ∆∗(d1)(k)i[τ/α] ̸⊑ ∆∗(d2)(k)i[σ/α]

for some i ≤ arity(k). Then, it follows from the induction hypothesis that
(∆∗(d1)(k)i[τ/α], ∆

∗(d2)(k)i[σ/α]) /∈ Ty(R). The only way to relate
datatypes under Ty(R) is if they are related by R. Thus, it cannot be the case
that the (d1 τ , d2 τ) is an element of Ty(R), else we would have contradicted
assumption (3).

• (SArrL) Suppose τ → σ ̸⊑ τ ′ → σ′ is due to τ ′ ⊑ τ . By induction, we have that
(τ ′, τ) ̸∈ Ty(R). Suppose (τ → σ, τ ′ → σ′) ∈ Ty(R). Then, by inversion,
we would have that (τ ′, τ) ∈ Ty(R), giving us a contradiction. Thus, the pair
(τ → σ, τ ′ → σ′) is not an element of Ty(R) as required.

• (SArrR) Analogous to the previous case.

Theorem 3.3. Suppose (∆, Σ, P ) is a positive instance of the refinement typeabil-
ity problem witnessed by the refinement environment Σ. Then the normal form
a↓P of an applicative expression Σ ⊩ a : d τ1 · · · τn is necessarily of the form
k a1 · · · aarity(k) for some k ∈ dom(∆∗(d)).
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Proof. First, we will show, whenever Σ ⊩ dθ a1 · · · am : d τ and any datatype
expression Σ ⊩ a : d′ σ appearing as a sub-expression of ai or θ(x) is of the form
k a1 · · · aarity(k) for some k ∈ dom(∆∗(d′)), that d a1 · · · am ⇓θ is defined. Let us
proceed by induction on d:

• When d is an applicative expression, it is already defined.

• In the case of a λx. d, we know thatm ≥ 1 else it would not be the case thatΣ ⊩
(λx. d)θ a1 · · · am : d τ . Therefore, wemust show that d a2 · · · am ⇓θ∪{x 7→a1}

is defined. However, this obligation follow immediately from the induction hy-
pothesis as no new sub-expressions have been introduced.

• In the case of case x of {ki xi 7→ di | i ≤ n}, we have that θ(x) is of the form
k b1 · · · barity(k) by assumption. From the typing assumptions, we have that
Σ ⊩ θ(x) : d′ σ where dom(∆∗(d′)) ⊆ {k1, . . . , kn}. Furthermore, as k ∈
dom(∆∗(d′)) by assumption, there must be some branch di corresponding to
the constructor k. It remains to show that di a1 · · · am ⇓θ∪{xi 7→b} is defined.
However, as in the previous case, no new sub-expressions have been introduced,
and thus we may appeal to the induction hypothesis.

Now we will show that any closed normal form Σ ⊩ a : d τ is of the form
k a1 · · · am for some k ∈ dom(∆∗(d)) by structural induction on a:

• If a is an application with a constructor in head position then we’re done by
inversion of the typing judgement.

• If, on the other hand, it is of the form f a1 · · · am for some program vari-
able f where, by induction, any datatype sub-expression of ai is of the form
k a1 · · · am. As we have just shown, however, P (f) a1 · · · am ⇓∅ is defined
thus contradicting the assumption that it is not in normal form and concluding
our proof.

C Proofs for Section 3.3 (Algorithmic System)

Lemma 3.4. Suppose H ⊩ τ ⊑ σ =⇒ C is a subtyping inference and θ is an
assignment such that θ ⊨j H and θ ⊨ C . Then we have that τθ ⊑j σθ.

Proof. We proceed by induction on the subtyping inference derivation H ⊩ τ ⊑
σ =⇒ C showing that, for all j ≥ 0, if θ ⊨j H and θ ⊨ C , then τθ ⊑j σθ.

• (ISTyVar) is trivial as the stratified subtyping always holds.
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• (ISArr) In this case, C is the union of C1 and C2 that are derived from the sub-
typing inferences H ⊩ τ ′ ⊑ τ =⇒ C1 and H ⊩ σ ⊑ σ′ =⇒ C1 respectively.

By assumption θ ⊨ C1 ∪ C2 and, in particular, θ ⊨ C1 and θ ⊨ C2. Therefore,
by induction, we have that τ ′θ ⊑j τθ and σθ ⊑j σ

′θ. Hence, the subtyping
τθ → σθ ⊑j τ

′θ → σ′θ satisfies the (SArrL) and (SArrR) rules as required.

• (ISData) In this case, C consists of X(d) ⊆ Y (d) and k ∈ X(d) ? Cki where
eachCki is derived from the subtyping inferenceH ′ ⊩ injX(∆(d)(k)i)[τ/α] ⊑
injY (∆(d)(k)i)[σ/α] =⇒ Cki where H ′ = H ∪ {(injX(d) τ , injY (d) σ)}.
Suppose, therefore, that θ ⊨ X(d) ⊆ Y (d) and θ ⊨ Cki for each k ∈ θ(X)(d)

and i ≤ arity(k).

In order to derive a contradiction, suppose that j ≥ 1 is a minimal stratification
for which injX(d) τ ̸⊑j injY (d) σ is satisfied by θ. Note that the base case is
trivially absurd.

– Suppose injX(d) τ ̸⊑j injY (d) σ is derived via (SMis). However, this
would imply that θ(X)(d) ̸⊆ θ(Y )(d), contradicting our assumptions.

– Suppose, therefore, that there exists some k ∈ θ(X)(d) and i ≤ arity(k)
such that injX(∆(d)(k)i)[τ/α] ̸⊑j−1 injY (∆(d)(k)i)[σ/α] is not satis-
fied by θ. Note that θ ⊨ Cki must hold in this case. By induction, we
have that, if θ ⊨j−1 H

′ then injX(∆(d)(k)i)[τ/α] ̸⊑j−1 injY (∆(d)(k)i).
From which it follows that θ ̸⊨j−1 H

′. As we have already assumed that
θ ⊨j H and, therefore, θ ⊨j−1 H , it must be the case that injX(d) τ ̸⊑j−1

injY (d) σ. However, this contradicts our assumption that j was minimal.

Therefore, there cannot exist a stratification for which the subtyping does not
hold.

• (ISStop) is trivial as the assumption that the history is satisfied immediately
implies the subtyping is satisfied.

Lemma 3.5. Suppose H ⊩ τ ⊑ σ =⇒ C is a subtyping inference and θ is an
assignment such that θ ⊨j H for all j ≥ 0 and τθ ⊑ σθ. Then we have that θ ⊨ C .

Proof. We proceed by induction on the subtyping inference derivation H ⊩ τ ⊑
σ =⇒ C showing that, if θ ⊨j H for all j ≥ 0 and τθ ⊑ σθ, then θ ⊨ C .

• (ISTyVar) is trivial as the constraints are empty and thus always satisfied.

• (ISArr) In this case, C is the union of C1 and C2 that are derived from the sub-
typing inferences H ⊩ τ ′ ⊑ τ =⇒ C1 and H ⊩ σ ⊑ σ′ =⇒ C1 respectively.
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Suppose that τθ → σθ ⊑ τ ′θ → σ′θ. By inversion, it follows that τ ′θ ⊑ τθ

and σθ ⊑ σ′θ. Therefore, by induction, we have that θ ⊨ C1 and θ ⊨ C2. In
particular, θ ⊨ C1 ∪ C2 as required.

• (ISData) In this case, C consists of X(d) ⊆ Y (d) and k ∈ X(d) ? Cki where
eachCki is derived from the subtyping inferenceH ′ ⊩ injX(∆(d)(k)i)[τ/α] ⊑
injY (∆(d)(k)i)[σ/α] =⇒ Cki where H ′ = H ∪ {(injX(d) τ , injY (d) σ)}.

Suppose that injX(d) τ ⊑ injY (d) σ. By inversion, we have that θ ⊨
X(d) ⊆ Y (d) and, for each k ∈ θ(X)(d) and i ≤ arity(k), we have that
injX(∆(d)(k)i)[τ/α] ⊑ injY (∆(d)(k)i)[σ/α] is satisfied by θ. Therefore, by
induction, θ ⊨ Cki for each k ∈ θ(X)(d) and i ≤ arity(k). It follows that
θ ⊨ C as required.

• (ISStop) is trivial as the constraints are empty and thus always satisfied.

Corollary 3.6. Suppose ⊨ τ ⊑ σ ⇒ C is a subtyping inference and θ is an assign-
ment. Then τθ ⊑ σθ if, and only if, θ ⊨ C .

Proof. Suppose that ⊢ τ ⊑ σ ⇒ C is a subtyping inference and θ is an assignment
such that τθ ⊑ σθ. As the empty hypotheses are trivially satisfied at all stratification,
it follows by Lemma 3.5 that θ ⊨ C as required.

Conversely, suppose that θ ⊨ C . By Lemma 3.4, we have that τθ ⊑j σθ for
all stratifications as, again, the empty hypotheses are trivially satisfied. Therefore,
τθ ⊑ σθ as required.

Lemma 3.7. Suppose Γ ⊩ e =⇒ τ, C is an instance of type inference and θ is an
assignment such that θ ⊨ C . Then LΓθM ⊩ e : τθ.

Proof. Let us proceed by induction on the inference judgement:

• (IVar) Suppose x : ∀X.α.C ⊃ τ ∈ Γ is instantiated by [Y/X] and [τ/α],
producing the constraintsC[Y/X]. By assumption θ ⊨ C[Y/X] and, therefore,
that x : ∀α. τ [Y/X]θ ∈ LΓθM. Thus, we can derive LΓθM ⊩ x : τ [Y/X][τ/α]θ

via the (TVar) rule as required.

• (ICon) In the case of a constructor k, the constraints set C is exactly the set
{k ∈ X(d)}. Let d ∈ D be the datatype identifier for which k : ∀α. τ ∈
∆(d). As C must be satisfied by θ, we have that k ∈ θ(X)(d). Therefore,
k : ∀α. injθ(X)(τ) ∈ ∆∗(injθ(X)(d)) and we can derive, via the (TCon) rule,
LΓθM ⊩ k : injθ(X)(τ)[σ/α] for any types σ as required.
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• (IAbs) In this case, the constraint set is derived from the expression inference
Γ∪{x : τ} ⊩ e =⇒ σ, C where e is the body of the λ-expression. By induction,
we have that Γθ ∪ {x : τθ} ⊩LΣM e : σθ. Therefore, Γθ ⊢LΣM λx. e : τθ → σθ

follows by (TAbs) as required.

• (IApp) For an application expression e1 e2, the constraint set consists of three
components: C1 which is derived from the expression inferenceΓ ⊩ e =⇒ τ →
σ, C1, C2 which is derived from the expression inference Γ ⊩ e2 =⇒ τ ′, C2,
and C3 which is derived from the subtyping inference ⊩ τ ′ ⊑ τ =⇒ C3.

As θ must satisfy each of these constraint sets, we have that LΓθM ⊩ e1 : τ1θ →
τ2θ and LΓθM ⊩ e2 : τ ′1θ by induction. Furthermore, τ ′1θ ⊑ τ1θ follows from
Corollary 3.6. Therefore, LΓθM ⊩ e2 : τ1θ by (TSub) and, consequently, LΓM ⊩
e1 e2 : τ2θ as required.

• (ICase) If the expression is of the form case e of {ki xi 7→ ei | i ≤ n} where
Γ ⊩ e =⇒ injX(d) τ , C0 and, for each i ≤ m, we have that Γ ∪ Γi ⊩ ei =⇒
σi, Ci and⊩ σi ⊑ σ =⇒ C ′

i , the constraint set isC0∪{X(d) ⊆ {k1, . . . , km}}
and, for each i ≤ m, ki ∈ X(d) ? Ci ∪ C ′

i .

It follows from the induction hypotheses that LΓθ ∪ ΓiθM ⊩ ei : σiθ for each
i ∈ θ(X)(d). Furthermore, by Corollary 3.6, we have that σiθ ⊑ σθ for each
i ∈ θ(X)(d). In which case, we can derive LΓθ ∪ ΓiθM ⊩ ei : σθ via (TSub).

As θ satisfies these constraints, we have that LΓθM ⊩ e : injθ(X)(d) τθ. Finally,
as θ(X)(d) ⊆ {k1, . . . , km} and each reachable branch is appropriately typed,
we have that LΓθM ⊩ case e of {ki xi 7→ ei | i ≤ n} : σθ as required.

Lemma 3.8. Suppose Γ′ ⊩ e : τ ′ and Γ ⊩ e =⇒ τ, C is an instance of type inference
for which there exists some assignment θ such that LΓθM ⊑ Γ′. Then there exists an
assignment θ′ that (1) satisfies C , (2) agrees with θ on the refinement variables of Γ,
i.e. θ′ ≡FRV(Γ) θ, and such that (3) τθ′ ⊑ τ ′.

Proof. Let us proceed by induction on the typing Γ′ ⊩ e : τ ′:

• (TVar) In this case, we have that Γ′ ⊩ x : τ ′[σ′/α] is due to x : ∀α. τ ′ ∈ Γ′.
From the assumption LΓθM ⊑ Γ′, we have that x : ∀α.∀X.C ⊃ τ ∈ Γ such
that τθθx ⊑ τ ′ for some assignment θx such that θx ⊨ Cθ, where θ is assumed
to not apply to the bound refinement variablesX . Inference then produces the
type τ [Y/X][σ/α] and the constraints C[Y/X] where both Y and σ are fresh.

As σ and σ′ refine the same underlying type and σ is fresh, we may take θ′

to be such that σθ′ = σ′ without violating the condition (2) that θ′ ≡FRV(Γ) θ.
Likewise, let us assume that Y θ′ = Xθθx. Then it is straightforward to see that
(1) θ′ ⊨ C[Y /X] and (3) τ [Y/X][σ/α]θ′ ⊑ τ ′[σ′/α] as required.
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• (TCon) In this case, we have that Γ′ ⊩ k : injϕ(τ) [σ′/α] where k ∈ ϕ(d)

and k : ∀α. τ ∈ ∆(d). Likewise, inference for expressions produces the type
injX(τ) [σ/α] whereX is fresh and σ and σ′ refine the same underlying types.

As each the refinement variables in σ ∪ {X} is fresh, we can pick θ′ such that
θ′(X) is ϕ and σθ = σ′ without violating (2). It immediately follows that (1)
θ′ ⊨ k ∈ X(d) and (3) injθ′(X)(τ) σθ

′ ⊑ injϕ(τ) σ′ by reflexivity.

• (TSub) Suppose Γ ⊩ e =⇒ τ, C and, in this case, Γ′ ⊩ e : τ ′ is due to Γ′ ⊩ e :

τ ′′ where τ ′′ ⊑ τ ′ and LθΓM ⊑ Γ′.

By induction, there exists some assignment θ′ such that (1) θ′ ⊨ C , (2)
θ′ ≡FRV(Γ) θ, and (3) τθ′ ⊑ τ ′′. Using the same witness, we need only show
that (3) τθ′ ⊑ τ ′, which follows immediately by transitivity.

• (TAbs) In this case, Γ′ ⊩ λx. e : τ ′ → σ′ is due to Γ′ ∪ {x : τ ′} ⊩ e : σ′.
Likewise, Γ ⊩ λx. e =⇒ τ → σ, C is due to Γ ∪ {x : τ} ⊩ e =⇒ σ, C by
inversion.

As the free refinement variables of τ are fresh, we can pick θ′ such that τθ′ =
τ without violating (2). Note that, this implies L(Γ ∪ {x : τ})θ′M is a sub-
environment of Γ′ ∪ {x : τ ′} as Γθ′ = Γθ. Therefore, by induction, there
exists an assignment θ′′ such that (1) θ′′ ≡FRV(Γ)∪FRV(τ) θ

′, (2) θ′′ ⊨ C , and (3)
σθ′′ ⊑ σ′. Using the samewitness, we have that (1) θ′′ ≡FRV(Γ) θ by transitivity,
(2) θ′′ ⊨ C , and (3) τθ′′ → σθ′′ ⊑ τ ′ → σ′ as required.

• (TApp) Suppose Γ′ ⊩ e1 e2 : σ′ is due to Γ′ ⊩ e1 : τ ′ → σ′ and Γ′ ⊩ e2 : τ ′.
Likewise, by inversion, Γ ⊩ e1 =⇒ τ1 → σ, C1 and Γ ⊩ e2 =⇒ τ2, C2 and
⊩ τ2 ⊑ τ1 =⇒ C3. By induction, there exists a substitution θ1 ≡FRV(Γ) θ such
that (1a) θ1 ⊨ C1 and (3a) τ1θ1 → σθ1 ⊑ τ ′ → σ′. Likewise, there exists a
substitution θ2 ≡FRV(Γ) θ such that (1b) θ2 ⊨ C2 and (3b) τ2θ1 ⊑ τ ′.

Due to the introduction of fresh refinement variables, the inference system
guarantee that the only common variables between sibling branches are those
found in the type environment. Therefore, we can define:

θ′(Z) =


θ1(Z) if Z ∈ FRV(τ1 → σ)

θ2(Z) if Z ∈ FRV(τ2)

θ(Z) otherwise

without violating (2).

Furthermore, as τ2θ′ ⊑ τ ′ and τ ′ ⊑ τ1θ
′, we have that τ2θ′ ⊑ τ1θ

′. Therefore,
by Corollary 3.6, (1) θ′ ⊨ C3 (and θ′ ⊨ C1 ∪ C2 by (1a) and (1b)). Finally, (3)
σθ′ ⊑ σ′ follows from (3a).
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• (TCase) In this case, Γ′ ⊩ case e of {ki xi 7→ ei | i ≤ n} : σ′ is due to Γ′ ⊩

e : injϕ(d) τ ′ and Γ′ ∪ {xi : injϕ(∆∗(d)(ki)) [τ ′/α]} ⊩ ei : σ
′, for each ki ∈

ϕ(d). Furthermore, we may assume that ϕ(d) ⊆ {k1, . . . , km}. Likewise, by
inversion, we have that Γ ⊩ e =⇒ injX(d) τ , C0 and, for each ki ∈ ∆(d),
Γ ∪ {xi : injX(∆∗(d)(ki)) [τ/α]} ⊩ ei =⇒ σi, Ci and ⊩ σi ⊑ σ =⇒ C ′

i

where σ is fresh.

By induction, there exists an assignment θ0 such that (1) θ0 ⊨ C0, (2) θ0 ≡FRV(Γ)

θ and (3) injθ(X)(d) τθ0 ⊑ injϕ(d) τ ′. From which, we can derive the sub-
typings ⊢ injθ(X)(∆

∗(d)(ki)j) [τθ/α] ⊑ injϕ(∆∗(d)(ki)j) [τ ′/α] for each
ki ∈ θ(X) and j ≤ arity(k) by (SSim). Furthermore, there exists assignments
θi ≡FRV(Γ)∪{X}∪FRV(τ) θ such that (1i) θi ⊨ Ci and (3i) σiθ′i ⊑ σ for each
ki ∈ ϕ(d).

As σ is fresh, we may also construct some assignment θ′ such that (3) σθ′ = σ′

and θ′ ≡FRV(Γ) θ. We use the same argument as the previous case (i.e. the sibling
branches only share refinement variables through the context) to combine these
substitutions:

θ′′(Z) =



θ′(Z) if Z ∈ FRV(σ)

θ0(Z) if Z = X or Z ∈ FRV(C0)

θi(Z) if Z ∈ FRV(σi) ∪ FRV(Ci)

θ(Z) otherwise

without violating (1)

By definition, we have that:

– σθ′′ = σ′

– θ′′ ⊨ C0

– For each ki ∈ ϕ(d), θ′′ ⊨ Ci and θ′′ ⊨ C ′
i .

– Furthermore, in each of these cases, we have σiθ′′ ⊑ σθ′′ and thus θ′i ⊨ Ci

by Corollary 3.6.

– Finally, as θ′′(X) ⊆ ϕ(X), we have that θ′′(X) ⊆ {k1, . . . , km}.

Therefore, (1) the constraints C0,
⋃

i≤m ki ∈ X(d) ? Ci ∪ C ′
i , and the con-

straint X(d) ⊆ {k1, . . . , km} are satisfied as required.

Theorem 3.9. Let P be a program such that ⊢ P =⇒ Σ. Then, (∆, Σ, P ) is a
positive instance of the refinement typeability problem if, and only if, LΣM provides at
least one type to every program variable.
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Proof. First, we shall show that if ⊩ P =⇒ Σ and LΣM isn’t empty for any program
variable, then P is typeable under LΣM. Our proof is by induction on the program:

• In the base case, the program is empty and thus is trivially well-typed.

• Consider a program of the form P ; f = e. By inversion, we have that Σ is of
the form Σ′ ∪ {f : ρ} where ⊩ P =⇒ Σ′, Σ′ ∪ {f : τ} ⊩ e =⇒ τ ′, C1, and
⊩ τ ′ ⊑ τ =⇒ C2 where ρ is defined as ∀α.∀X.C1 ∪ C2 ⊃ τ . As LΣM is not
empty of any program variable by assumption, it clearly is the case that LΣ′M is
also non-empty. Therefore, by induction, P is typeable under LΣ′M.

As the preceding sub-program P does not depend on f , it is plain to see that P
is also typeable under LΣM by weakening. It remains to show that LΣM ⊩ e : τθ
for each θ ⊨ C1 ∪ C2. It follows from the expression inference judgement
and Lemma 3.7 that LΣ′ ∪ {f : τθ}M ⊩ e : τ ′θ (note that, as Σ′ is a closed
environment, it is unaffected by θ). Likewise from the subtyping inference, it
then follows by Corollary 3.6 that LΣ′ ∪ {f : τθ}M ⊩ e : τθ, which implies
LΣM ⊩ e : τ ′θ by weakening as required.

In the converse direction, we will show that, if P is a typeable under the refine-
ment environment Σ′ and ⊩ P =⇒ Σ, then LΣM ⊑ Σ′. Let us again proceed by
induction on P :

• In the base case, we have that Σ′ and LΣM are empty environments. Therefore,
LΣM ⊑ Σ′ is trivial.

• Consider a program of the form P ; f = e. By inversion, we have that Σ′

is of the form Σ′
1 ∪ Σ′

2 where P is Σ′
1 program and Σ′

2 contains a series of
typings for f such that Σ′ ⊩ e : σ for each f : ∀α. σ ∈ Σ′

2. Likewise, by
inversion, we have that Σ is of the form Σ1 ∪ {f : ρ} where ⊩ P =⇒ Σ1,
Σ1 ∪ {f : τ} ⊩ e =⇒ τ ′, C1, and ⊩ τ ′ ⊑ τ =⇒ C2 where ρ is defined as
∀α.∀X.C1 ∪ C2 ⊃ τ . We have that LΣ1M ⊑ Σ′

1 by induction.

It remains to show that, for each typing f : ∀α. σ ∈ Σ′
2, there exists a substitu-

tion θ such that θ ⊨ C1∪C2 and τθ ⊑ σ. As τ is fresh, we can find a substitution
θ′ such that τθ′ = σ, from which it follows that LΣ1 ∪ {f : τθ′}M ⊑ Σ′. There-
fore, by Lemma 3.8, we have some assignment θ that satisfies θ ⊨ C1 and for
which τ ′θ ⊑ σ or, equivalently, τ ′θ ⊑ τθ. It follows from Corollary 3.6 that θ
also solves C2. Thus, θ is a substitution that satisfies C1 ∪ C2 and for which
τθ ⊑ σ as required.
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D Proofs for Section 3.4 (Solving Constraints)

Theorem 3.10. For any assignment θ and atomic set of constraints, we have that
θ ⊨ C if, and only, if θ ⊨ Sat(C).

Proof. We shall show that the resolution rules preserve solutions (naturally they re-
flect solutions too, since they do not remove constraints). In each case, we shall as-
sume that the derived guard holds, otherwise there is nothing to show.

• (Trans) Suppose ϕ ? S1 ⊆ S2 and ψ ? S2 ⊆ S3 and both ϕ and ψ are satisfied
by θ. Therefore, S1θ ⊆ S2θ and S2θ ⊆ S3θ. It immediately follows that S1θ ⊆
S3θ as required.

• (Sat) Suppose ϕ ? k ∈ X(d) and ψ ∪ {k ∈ X(d)} ? S1 ⊆ S2 and both ϕ and ψ
are satisfied by θ. Thus, k ∈ θ(X)(d) and, therefore, S1θ ⊆ S2θ as required.

• (Weak) Suppose ϕ ?X(d) ⊆ Y (d) and ψ ∪ {k ∈ Y (d)} ? S1 ⊆ S2 and that ϕ,
ψ, and k ∈ X(d) are satisfied by θ. It follows that θ(X)(d) ⊆ θ(Y )(d) and
k ∈ θ(X)(d), therefore, k ∈ θ(Y )(d). Thus, S1θ ⊆ S2θ as required.

Theorem 3.11. A set of atomic constraintsC is satisfiable if, and only if, Sat(C) does
not have any trivially unsatisfiable constraints.

Proof. Clearly, if Sat(C) has a trivially unsatisfiable constraint, then it is unsatisfiable.
Therefore, by Theorem 3.10, C is unsatisfiable.

Suppose this is not the case. We will show that the assignment X 7→ ϕX where
ϕX(d) := {k | k ∈ X(d) ∈ Sat(C)} is a solution to Sat(C) and, therefore, to
C . Let ϕ ? S1 ⊆ S2 be an atomic constraint in Sat(C) such that θ ⊨ ϕ. As each
inclusion k ∈ X(d) ∈ ϕ is satisfied by θ just if k ∈ X(d) ∈ Sat(C), we have that
S1 ⊆ S2 ∈ Sat(C) by (Weak). Consider the form of atomic constraints that this
constraint may take:

• If we have that k ∈ Y (d), then k ∈ θ(Y )(d) by construction as this constraint
appears unguarded in the saturated set.

• Y (d) ⊆ Z(d). In this case, any k ∈ θ(Y )(d) arises from a constraint k ∈ Y (d)

which transitively induces k ∈ Z(d). Therefore, k ∈ θ(Z)(d) by construction.

• The case of Y (d) ⊆ {k1, . . . , km} is similar.

Theorem 3.14. Under the assumption that the size of types and the size of each
function definition is bounded, the complexity of type inference is O(N) whereN is
the number of function symbols.
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Proof. To perform type inference on a program f1 = e1; . . . ; fN = eN , we must
performN -instance of inference for expressions. By induction on the structure of an
expression, If we assume a fixed bound on the number of constructors and the number
of datatypes, there are O(2I · I2) possible constraints associated with a constrained
type scheme with I refinement variables. As we have also assumed that the size of
types is fixed, the number of refinement variables it concerns is constant, and we may
conclude that each instance of inference has a constant-time complexity. Therefore,
the whole-program analysis is O(N) as required.

E Proofs for Section 4.2 (The CycleQ Proof System)

Theorem 4.1 (Local Soundness). Let v1 ∈ V \Ax be a non-axiomatic node within the
pre-proof (V, E, λ, ρ) such that θ1 ̸⊨ λ(v1) for some valuation θ1. Then, there exist a
child node v2 ∈ E(v1) with a necessary precursor θ2, i.e. where (v1, θ1) _ (v2, θ2),
for which θ2 ̸⊨ λ(v2).

Proof. Suppose v1 ∈ V \ Ax and consider the possible inference rules ρ(v1):

• (Refl) This case is absurd as reflexivity is valid.

• (Reduce) Suppose that θ1 ̸⊨ a = b, a →P a′, and b →P b′. We have that θ1 is
a necessary precursor of the sole premise v11 by definition. Furthermore, as a
result of the definition of equivalence via normalisation, θ1 ̸⊨ a′ = b′ and thus
is not satisfied by a necessary precursor as required.

• (Cong) Suppose that θ1 ̸⊨ k a1 · · · an = k b1 · · · bn. We have that θ1 is a
necessary precursor of any premise v1i. If θ1 ⊨ ai = bi for all i ≤ n, then
θ1 ̸⊨ k a1 · · · an = k b1 · · · bn would follow from congruence. Thus, there
exists some i ≤ n such that θ1 ̸⊨ ai = bi, i.e. it is not satisfied by a necessary
precursor as required.

• (FunExt) Suppose that θ1 ̸⊨ a = b where Γ ⊢ a, b : τ1 → τ2. By the function
extensionality Lemma 2.12, there exists some c such that θ1 ∪{x 7→ c} ⊭ a c =
b c. As this valuation is a necessary precursor of θ1, we are done.

• (Subst) Suppose that θ1 ̸⊨ C[aθ] = b where θ is the substitution instance of the
lemma. If θ ◦ θ1 ̸⊨ a = c, then we are done as θ ◦ θ1 is a necessary precursor for
the lemma v11. Otherwise, we have that aθθ1 ≡P cθθ1. It cannot be the case,
therefore, that C[cθ]θ1 ≡P bθ1 else we would have a contradicted. Thus, the
continuation (the right-hand premise) is not satisfied by θ. As (v1, θ)_ (v2, θ)

where v2 is the lemma, we are done.

• (Case) Finally, suppose θ1 ̸⊨ a = b and x is the subject of case analysis. By
Lemma 2.9, θ1(x) →P k c1 · · · cn for some k ∈ ∆. Let vi be the premise
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associated with the constructor k. The substitution θ1∪{x 7→ c} is a necessary
precursor for this premise. Furthermore, by Lemma 2.11, it cannot be the case
that a[k x1 · · · xn/x]θ1 ≡P b[k x1 · · · xn/x]θ1 as this would imply that
aθ1 ≡P bθ1. Thus, we have a necessary precursor that does not satisfy the
equation of its respective node.

Lemma 4.2. Let (V, E, λ, ρ) be a cyclic pre-proof with some path (v)i∈N and sup-
pose (t)i∈N is a ≤-trace along this path. If θi is a valuation of some node vi ∈ V

and (vi, θi) _ (vi+1, θi+1), then ti+1θi+1 ≤ tiθi and ti+1θi+1 < tiθi when i is a
progress-point.

Proof. Let us consider the possible justifications for vi:

• Suppose ρ(vi) is (Case) where x : d τ is the variable upon which case anal-
ysis is performed. By Lemma 2.9 and the definition of a necessary precur-
sor, θ(x) →P k c1 · · · cn for some k ∈ ∆ and vi+1 is the premise associ-
ated with this constructor. Furthermore, θi+1 = θi ∪ {x 7→ c}. By definition,
ti+1 ≤ ti[k x1 · · · xn/x] and thus ti+1θi+1 ≤ ti[k x1 · · · xn/x]θi+1 = tiθ as
required.

• Suppose ρ(vi) is (Subst) with substitution θ and vi+1 is the lemma. We have
that ti+1θ ≤ ti. The only necessary precursor to θi in this case is θ ◦ θi. Thus,
by stability, ti+1θi+1 ≤ tiθi as required.

• If ρ(vi) is (FunEx), then θi+1(y) = θi(y) for all y other than the fresh variable x.
As ti cannot depend on x, we have that tiθi+1 = tiθi. And thus ti+1θi+1 ≤ tiθi
as required.

• In all other cases, θi+1 = θi and ti+1 ≤ ti. Thus, ti+1θi+1 ≤ tiθi as required.

Furthermore, in each of the above cases, we can replace the inequality by strict
inequality in the case of a progress point.

Lemma 4.3. Let (V, E, λ, ρ) be a cyclic pre-proof and≤ a stable, well-founded par-
tial order. If, for every path (vi)i∈N, there is some index j ∈ N and a ≤-trace (ti)i∈N
along the corresponding suffix (vi+j)i∈N with infinitely many progress points. Then,
the precursor_ relation is well-founded.

Proof. Suppose (θi)i∈N is an infinite sequence of precursory valuations along a path
(vi)i∈N. By assumption, there exists a ≤-trace (ti)i∈N along this path with infinitely
many progress points. By Lemma 4.2, ti+1θi+1 ≤ tiθi for all i ∈ N. Furthermore,
as there are infinitely many progress points, there is an infinite sub-sequence (ij)j∈N
such that tij+1

θij+1
< tijθij . Thus, we contradicted the fact that ≤ is well-founded
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and shown there are no such infinite sequences, i.e. precursor relation is well-founded.

Theorem 4.4 (Global soundness). Let (V, E, λ, ρ) be a cyclic proof such that, for
every axiom v ∈ Ax, the associated equation λ(v) is valid. Then, for every other
node v ∈ V \ Ax, the associated equation λ(v) is also valid.

Proof. We will show by well-founded induction on the necessary precursor relation
that all nodes are valid. Let U be the set {(v, θ) | v ∈ V, θ ̸⊨ λ(v)} of nodes with a
valuation that doesn’t satisfy their associated equation. Suppose U is non-empty.

By Lemma 4.3, there exists a minimal element (v1, θ1) ∈ U which cannot be an
axiom by assumption. However, by Theorem 4.1, there exists node v2 ∈ T and a
valuation θ2 that is a necessary precursor, i.e. (v1, θ1) _ (v2, θ2), and θ2 ̸⊨ λ(v2).
In which case, (v1, θ1) is not a minimal element of U , and we have a contradiction.
Therefore, U must be empty, and no nodes are invalid.

Lemma4.5. The substructural order⊴ on applicative expressions, defined as follows,
is well-founded and stable.

a ⊴ b⇐⇒ ∃C[·]. C[a] = b

Proof. It is straightforward to show the substructural order is well-founded by induc-
tion on the structure of applicative expressions. Furthermore, suppose C[a] = b. It
clearly follows that Cθ[aθ] = bθ and thus aθ ⊴ bθ as required.

F Proofs for Section 4.3 (Rewriting Induction)

Lemma 4.6. For any equation Γ ⊢ C[a] = b where Γ ⊢ a : d τ is a basic expression,
there is a finite derivation tree using only instances of the (Case) rule and exactly one
instance of the (Reduce) rule per branch where the leaves are labelled by equations
from the set Expand(C[a] = b) and the root is labelled Γ ⊢ C[a] = b.

Proof. Suppose Γ ⊢ a : d τ is f p1 · · · pn for some f ∈ Σ and patterns p1, . . . , pn.
Each expanded equation arises from the most general unifier between the patterns
p1, . . . , pn and p′1 . . . , p′n where P (f) p′1 . . . , p′n ⇓∅ is defined. As these unifiers
are between patterns, they clearly only map variables to other patterns. Furthermore,
for any closed instance of a where the variables are replaced by patterns, there is at
least one incremental matching; otherwise, we would have contradicted Lemma 2.9.

It follows that we can construct a derivation tree using (Case) where the leaf
of each branch corresponds to a unifier θ. As the unifiers ensure a is an instance
of an incremental match, and incremental matching is closed under substitution by
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Lemma 2.3, we know that aθ →P a′ for some a′. Thus, each leaf can be extended
with this reduction step as required.

Lemma 4.7. If ⊢ (H, G) is a rewriting induction derivation, then there exists a cyclic
pre-proof (V, E, λ, ρ) where λ(Ax) ⊆ H and, for each goal Γ ⊢ a .

= b in the set G,
there is a node v ∈ V \ Ax such that λ(v) = Γ ⊢ a .

= b modulo orientation.

Proof.

• Suppose ⊢ (H, ∅) is derived from the (End) rule. Then consider the cyclic
pre-proof ({1, . . . , n}, ∅, β, λ, ρ) where n is the number of hypotheses, ρ is
empty, and λ(i) is the ith hypothesis. Clearly this pre-proof meets the above
requirements.

• Suppose ⊢ (H, G ∪ {Γ ⊢ a .
= a}) is derived from the (Delete) rule and, by

induction, there exists a cyclic pre-proof (V, E, λ, ρ) where λ(Ax) ⊆ H and,
for all goals g ∈ G, there is a node v ∈ T \ Ax such that λ(v) = g modulo
orientation. Then we can construct the larger pre-proof (V ∪ {v}, E′, λ′, ρ′)

with an additional leaf node v ̸∈ V such that E′(v) = ε, λ′(v) = Γ ⊢ a .
= a,

and ρ′(v) is (Refl).

• Suppose ⊢ (H, G ∪ {Γ ⊢ a
.
= b}) is derived from the (Simplify) rule with

a →∗
P a′ and, by induction, there exists a cyclic pre-proof (V, E, λ, ρ) where

λ(Ax) ⊆ H and, for all goals g ∈ G∪{Γ ⊢ a′ .= b}, there is a node v ∈ V \Ax
such that λ(v) = g modulo orientation.

In particular, there exist a node v ∈ V \ Ax such that λ(v) = Γ ⊢ a′
.
= b.

Then we can construct the larger pre-proof (V ∪ {u}, E′, β, λ′, ρ′) with an
additional node u ̸∈ V with a single child v, i.e. E′(u) = v, such that λ′(u) =
Γ ⊢ a .

= b and ρ′(u) is (Reduce).

• Suppose ⊢ (H, G ∪ {Γ ⊢ C[aθ] .= C[bθ]}) is derived from the (Hypothesis)
rule with ∆ ⊢ a = c ∈ H and, by induction, there exists a cyclic pre-proof
(V, E, λ, ρ) where λ(Ax) ⊆ H and, for all goals g ∈ G ∪ {Γ ⊢ C[cθ] .= b},
there is a node v ∈ T \ Ax such that λ(v) = g modulo orientation.

In particular, there exist a node v ∈ V \Ax such that λ(v) = Γ ⊢ C[cθ] .= b and
u ∈ Ax such that λ(u) = ∆ ⊢ a = c. Then we can construct the larger pre-
proof (V ∪{w}, E′, β, λ′, ρ′)with an additional nodew that has two children
u and v, i.e. E′(w) = uv, such that λ′(w) = Γ ⊢ C[aθ] .= b and ρ′(w) is (Subst)
using u as the lemma node and v as the continuation.

• Finally, suppose ⊢ (H, G ∪ {Γ ⊢ a = b}) is derived from the (Expand) rule
where a > b and, by induction, there exists a cyclic pre-proof (V, E, λ, ρ)
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where λ(Ax) ⊆ H ∪ {Γ ⊢ a = b} and, for all goals g ∈ Expand(Γ ⊢ a .
= b),

there is an axiom ug ∈ Ax such that λ(ug) = g modulo orientation.

In particular, there exists a node v ∈ Ax such that λ(v) = Γ ⊢ a = b and, for
each equation g ∈ Expand(Γ ⊢ a .

= b), there is some node u ∈ V such that
λ(u) = g. By Lemma 4.6, there is a finite derivation tree (V ′, E′, λ′, ρ′), such
that V ∩V ′ = {v}∪{ug | g ∈ Expand(Γ ⊢ a .

= b)}, built from only the (Case)
and (Reduce) rules with each ug ∈ Ax as an axiom and where v is still labelled
Γ ⊢ a = b. By combining these two derivation trees, we can thus construct a
cyclic pre-proof where v is not an axiom as required.

Lemma 4.8. If ≤ is a reduction order, then ≤sub is stable and well-founded.

Proof.

Reflexivity, Transitivity By definition, ≤sub is reflexive and transitive.

Antisymmetry This property follows immediately from well-foundedness

Well-foundedness See Definition 9 [46].

Stability As both ≤ and ⊴ are stable, it is straightforward to show by induction on
the length of a derivation a1 ≤ a2 ⊴ a3 · · · an that a1θ ≤sub anθ for any
substitution θ.

Lemma 4.9. For any rewriting induction derivation ⊢ (H, G), the pre-proof con-
structed in Lemma 4.7 satisfies the following invariants:

• Along a path (vi)i∈N, let λ(vi) = Γi ⊢ ai = bi be the corresponding equa-
tion. The sequence of left-hand sides (ai)i∈N is monotonically decreasing with
respect to the substructural extension of the reduction order ≤.

• Within every cycle v1, . . . , vn, there is at least one i ≤ n for which ρ(vi) is an
instance of (Reduce) and where the trace expression has a progress point.

Proof. This lemma is witnessed by extending the construction of Lemma 4.7 with the
aforementioned invariants as induction hypotheses.

• For the first invariant, we will consider the instance of each rule introduced by
Lemma 4.7.

– (Refl) There are no infinite paths as this rule has no premises.
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– (Reduce) As the substructural extension of a reduction order includes the
reduction order, and we have assumed→P ⊆ ≤, this rule is also mono-
tonic.

– (Subst) During construction, the lemma used by this rule is an axiom
∆ ⊢ a = b replacing an instance of its left-hand side with its right-hand
side. As the hypotheses are necessarily oriented in rewriting induction
derivations, we have that a > b by definition.

Therefore, as > is a reduction order, the path following the continuation
has a decrease C[aθ] > C[bθ] and thus C[aθ] >sub C[bθ] by extension.
The path following the lemma has the trace expressions C[aθ] and aθ as
the respective left-hand sides, recall the trace condition for the (Subst) rule
instantiates the lemma’s trace expression with the substitution used. As
the substructural extension include the sub-expression relation, we have
C[aθ] ≤sub aθ as required.

– (Case) Suppose case analysis is applied to the variable x : d τ in the equa-
tion Γ ⊢ a = b to produce Γ ∪ ∆ ⊢ a[k x1 · · · xn] = b[k x1 · · · xn].
The path has trace expressions a[k x1 · · · xn] and a[k x1 · · · xn], recall
the trace condition for the (Case) rule instantiates the conclusions trace
expression with the substitution. Thus the trace along this path is still
monotonic.

• Now consider the cycles of a pre-proof constructed by Lemma 4.7. These arise
from instances of (Subst) where the lemmawas originally an axiom but later jus-
tified using existing nodes. As the axioms correspond to hypotheses of a rewrit-
ing induction derivation, they are introduced by the (Expand) rules, which is
translated into a case tree where each branch has a reduction step. In par-
ticular, all newly introduced cycles thus pass through a proper reduction step
before returning to pre-existing nodes in the pre-proof. As the pre-proofs that
result from Lemma 4.6 are themselves trees, and thus have no internal cycles,
the global soundness condition is maintained.

Theorem 4.10. For any rewriting induction derivation ⊢ (∅, G), there exists a cyclic
proof (V, E, λ, ρ) where, for all goals Γ ⊢ a .

= b ∈ G, there is a node v ∈ T \ Ax
such that λ(v) = Γ ⊢ a .

= b modulo orientation.

Proof. This theorem is an immediate corollary of Lemma 4.7 and Lemma 4.9.
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G Proofs for Section 4.4 (Efficient Proof Search)

Lemma 4.11. Suppose Γ ⊢ a : τ and b ∈ Need(a), then b is a proper datatype sub-
expression, i.e. b ◁ a and Γ ⊢ b : d τ , and is not an application with a constructor in
head position.

Proof. Needed sub-expressions are only derived from the final case where case anal-
ysis is performed on a variable that does not have a constructor in leading position. It
follows immediately that any needed sub-expressionmust be a proper sub-expression.
Therefore, it is sufficient to show that the accumulated substitution only maps vari-
ables to datatype sub-expressions. This invariant follows straightforwardly by induc-
tion on the definition, see Lemma 2.9 for a similar property.

Lemma 4.12. If a→∗
P k a1 · · · an, then Need(a) is empty.

Proof. It is straightforward to show that Need(a) ⊆ Need(b) whenever a →∗
P b due

to the close correspondence between needed sub-expressions and reduction. From
which, it follows by definition that Need(a) is empty.

Lemma 4.13. Let (V, E, λ, ρ) be a cyclic pre-proof with nodes v1, v2 ∈ V where
v2 ∈ E(v1). Then, whenever there is an edge (x1, ℓ, x2) ∈ Gv1, v2

, there is also a
trace x1, x2 along this path segment. Furthermore, if labelled ▷, this trace segment
has a progress point.

Proof. Let us consider the cases of ρ(v1):

• (Reduce), (Cong), (FunEx) Across these proof rules the trace condition stipulates
that t1 ⊵ t2. As the size-change graph has edges (x, =, x) for any variable x,
clearly all edges correspond to valid trace segments.

• (Case) If v2 is the premise associated with the substitution {x 7→ k x1 · · · xn},
then a valid trace is of the form t1[k x1 · · · xn/x] ⊵ t2. The size-change graph
Gv1, v2

has an edge (x, ▷, xi) ∈ G for all i ≤ n and (y, =, y) ∈ G for any
other variable. Clearly, both meet the criteria for a valid trace.

• (Subst) If v2 is the continuation, then this case is analogous to that of (Reduce).
Otherwise, a valid trace must be of the form t1 ⊴ t2θ. The size-change graph
Gv1, v2

has an edge (θ(y), =, y) ∈ G just if θ(y) is a variable for some y in the
type environment of the lemma’s equation. Clearly, θ(y) ⊴ θ(y) by reflexivity.

Corollary 4.14. Let (V, E, λ, ρ) be a cyclic pre-proofwith a path segment v1, . . . , vn
where n > 1. Then, whenever there is an edge (x1, ℓ, xn) in the composition of size-
change graphs along this path segment Gv1, v2

◦ · · · ◦Gvn−1, vn
, there is also a trace
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x1, . . . , xn consisting solely of variables along this path segment. Furthermore, if
labelled ▷, this trace segment has a progress point.

Proof. Straightforward proof by induction on the length of the path segment.

H Proofs for Section 4.5 (Implementation)

data Tm α
= Var α
| Cst Int
| App (Exp α) (Exp α)

data Exp α
= MkExp (Tm α) Int

mapE :: (α → β) → Exp α → Exp β
mapE f (MkExp t n) =

MkExp (mapT f t) n

mapT :: (α → β) → Tm α → Tm β
mapT f (Var n) = Var (f n)
mapT f (Cst n) = Cst n
mapT f (App e1 e2) =

App (mapE f e1) (mapE f e2)

mapA :: (Int → Int) → Exp α → Exp α
mapA f (MkExp t n) =

MkExp (mapA ’ f t) (f n)

mapA ’ :: (Int → Int) → Exp α → Exp α
mapA ’ f (Var x) = Var x
mapA ’ f (Cst x) = Cst x
mapA ’ f (App e1 e2) =

App (mapA f e1) (mapA f e2)

headE :: Exp α → Exp α
headE (MkExp (Var x) n) = MkExp (Var x) n
headE (MkExp (Cst x) n) = MkExp (Cst x) n
headE (MkExp (App e1 e2) n) = headE e1

argsE :: Exp α → [Exp α]
argsE (MkExp t n) = argsT t

argsT :: Tm α → [Exp α]
argsT (Var x) = []
argsT (Cst n) = []
argsT (App e1 e2) =

e2 : argsE e1

Figure 1: Definitions for mutual induction benchmarks.
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{-# ANN prop_1 defaultParams # -}
prop_1 :: Exp α → Formula
prop_1 e = mapE id e ≡ e

{-# ANN prop_2 defaultParams # -}
prop_2 :: (β → γ) → (α → β) → Exp α → Formula
prop_2 f g e =

mapE (f ◦ g) e ≡ mapE f (mapE g e)

{-# ANN prop_3 defaultParams # -}
prop_3 :: (α → β) → Exp α → Formula
prop_3 f e =

argsE (mapE f e) ≡ map (mapE f) (argsE e)

{-# ANN prop_4 defaultParams # -}
prop_4 :: (α → β) → Tm α → Formula
prop_4 f e =

argsT (mapT f e) ≡ map (mapE f) (argsT e)

{-# ANN prop_5 defaultParams # -}
prop_5 :: (α → β) → Exp α → Formula
prop_5 f e =

headE (mapE f e) ≡ mapE f (headE e)

Figure 2: Mutual induction benchmark problems.

I Proofs for Section 5.2 (Working with Hypotheses)

Lemma 5.1. Suppose Γ ⊢ H wf and Γ ⊢ a : τ . If H ⊢ a⇝ b, then Γ ⊢ b : τ .

Proof. Let us proceed by case analysis on the hypothetical reduction.

• Suppose H ⊢ C[a] ⇝ C[b] due to a hypothesis a = b ∈ H . By induction on
the context C[·], we have that Γ, x : σ ⊢ C[x] : τ for some type σ such that
Γ ⊢ a : σ. As the hypotheses are well-formed, we have that Γ ⊢ b : σ as well.
Therefore, by the substitution principle, Γ ⊢ C[b] : τ as required.

• If hypothetical reduction is merely an instance of the program’s reduction re-
lation, preservation follows from Lemma 2.2.

Lemma 5.2. If H ⊢ a⇝∗ b, then H ⇒ a = b is valid.

Proof. Suppose H ⊢ a ⇝n b for some n ∈ N. We will show that H ⇒ a = b by
induction on n ∈ N:
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• In the base case, a = b. Therefore, aθ ≡P bθ for any appropriate valuation θ
by the reflexivity of contextual equivalence.

• Otherwise, suppose H ⊢ C[a] ⇝ C[c] and H ⊢ C[c] ⇝n−1 b. Let θ be a
valuation such that θ ⊨ H . By induction, we have that H ⇒ C[c] = b is valid
and, therefore, C[c]θ ∼ bθ. Consider the cases for H ⊢ C[a]⇝ C[c]:

– Under the hypothesis a = c ∈ H , we have that aθ ≡P cθ by the defini-
tion of satisfaction for conjunction. Thus, C[a]θ ≡P bθ follows from the
transitivity and congruence of equivalence.

– For the second rule that is derived from incremental matching, we can
clearly assume that a→∗

P c. Therefore,C[a]θ ≡P cθ and againC[aθ] ≡P

bθ by the transitivity and congruence of equivalence.

Lemma 5.3. Suppose Γ ⊢ H wf and H ⊢ a ⇝∗ b. Then H ⊢ C[aθ] ⇝∗ C[bθ] for
any context C[·] and any substitution θ such that dom(θ) ∩ dom(Γ) = ∅.

Proof. We will show that this property holds of the one-step hypothetical reduction
relation, fromwhich it is plain to see that it holds for the many-step reduction relation
by induction. Let us proceed by case analysis:

• SupposeH ⊢ C[a]⇝ C[b] is due to a = b ∈ H and considerC ′[(C[a])θ]where
θ is such that dom(θ) ∩ dom(Γ) = ∅. As both FV(a) ⊆ dom(Γ) and FV(b) ⊆
dom(Γ), we have that C ′[(C[a])θ] = C ′[Cθ[a]] and likewise for b. Therefore,
H ⊢ C ′[Cθ[a]] ⇝ C ′[Cθ[b]], which is equivalent to H ⊢ C ′[(C[a])θ] ⇝

C ′[(C[b])θ] as required.

• Suppose H ⊢ C[(f p1 · · · pn)θ] ⇝ C[bθ] is due to the incremental matching
P (f) p1 · · · pn ⇓∅ b. It immediately follows thatH ⊢ C ′[(C[(f p1 · · · pn)θ])θ′]⇝
C ′[(C[bθ])θ′] is due to the incremental matching P (f) p1 · · · pn ⇓∅ b for any
context C ′[·] and substitution θ′ as required.

Lemma 5.4 (The Critical Pairs Lemma [118]). Suppose every critical pair a = b of a
hypothesis set H is joinable, i.e. there exists some applicative expression c such that
H ⊢ a ⇝∗ c and H ⊢ b ⇝∗ c. Then the applicative reduction relation H ⊢ · ⇝∗ ·
is locally confluent. That is, if H ⊢ a⇝ b1 and H ⊢ a⇝ b2, then H ⊢ b1 ⇝∗ c and
H ⊢ b2 ⇝∗ c for some applicative expression c.

Proof. We have defined critical pairs to be between hypotheses or between a hypoth-
esis and the program. This excludes critical pairs within the program itself, however,
they are necessarily joinable as its reduction relation is confluent.
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Corollary 5.5. Suppose H is a hypothesis set satisfying the pre-condition of the
Critical Pairs Lemma and such that hypothetical reduction terminates, i.e. there does
not exist an infinite chain of applicative expressions H ⊢ a1 ⇝ a2 ⇝ · · ·, then
hypothetical reduction is confluent.

Proof. Newman’s Lemma dictates that locally confluent relations are necessarily glob-
ally confluent if they are terminating [118].

Lemma 5.6. Let Γ ⊢ H wf be a set of hypotheses and suppose there is some hypoth-
esis a = b ∈ H that has a type 3 critical overlap. Then a is unstable.

Proof. Suppose C[·], a′, and θ are the context, sub-expression, and substitution ac-
cording to the definition of a type 3 critical overlap. As C[·] is non-trivial such that
C[a′] is of the form f p1 · · · pn, it can take one of two forms: either · pj · · · pn, or
f p1 · · · pi−1 C

′[·] pi+1 · · · pn. In the former case, we have that a′ is of the form
f a1 · · · an and is a function type as the context is non-trivial. By definition, ap-
plications of a function type with a program variable in head position are unstable
expression. Otherwise, C ′[a′] must be a pattern and, as a′ cannot be a variable, it
must be the case that a′ is of the form k a′1 · · · a′n for some constructor k. Therefore,
as a = a′θ, it also the case that a is of the form k a1 · · · an, which is an unstable
expression as required.

Lemma 5.7 (Soundness). Let ⟨E, R⟩ ⊢ ⟨E′, R′⟩ be an inference of the hypothesis
completion procedure. Then, the set of satisfying instances is preserved, i.e. the clause
E ∧R⇒ a = b is valid for any hypothesis a = b ∈ E′ ∪R′.

Proof. We may assume, without loss of generality, that the hypothesis in question is
not an element of E ∪R. Let us consider the cases for the entailment.

• (Delete) As E′ ⊂ E and R′ = R, this case is trivial.

• (Simplify), (Compose), (Collapse) Let a = b ∈ R ∪E be the equation such that
a′ = b′ ∈ R′ ∪ E′ where R ⊢ a ⇝∗ a′ and R ⊢ b ⇝∗ b′. By Lemma 5.2, we
have that the clauses R ⇒ a = a′ and R ⇒ b = b′ are valid. Furthermore,
E ⇒ a = b is valid. It follows by transitivity that,E∧R⇒ a′ = b′ as required.

• (Orient) Trivial.

• (Match) Let k a1 · · · an = k b1 · · · bn ∈ E and ai = bi ∈ E′ for some k ∈ K .
If θ ⊨ k a1 · · · an = k b1 · · · bn for some valuation θ, then it must be the case
that θ ⊨ ai = bi by Lemma 2.11. Thus, E ∪R ⊢ ai = bi as required.

• (Fail) Not applicable.



160 APPENDIX

Lemma 5.8 (Soundness). If ⟨E, R⟩ ⊢  is an inference of the hypothesis completion
procedure, then there is no valuation θ such that θ ⊨ E ∧R.

Proof. By inversion, there must be some equation k a1 · · · an = k′ b1 · · · bm ∈ E∪R
where k ̸= k′ ∈ K. It is straightforward to see that (k a1 · · · an)θ ̸≡P (k′ b1 · · · bm)θ

for any valuation θ. Therefore, there is no valuation satisfying these hypotheses.

Lemma 5.9 (Correctness). Suppose ⟨E, R⟩ is a terminal configuration that is well-
oriented. Then R has no critical overlaps, i.e. hypothetical reduction under R is con-
fluent and terminating.

Proof. As the configuration is well-oriented, for any equation a = b ∈ R, it is the case
that a > b. Therefore, either a→P b or a is a stable, normal form such that a > b. As
this configuration is terminal, however, it must be the latter case else we could apply
the (Collapse) rule.

Consider the cases for critical overlaps:

• If there were a type 1 with a hypothesis C[a] = c ∈ R, then we would again be
able to apply the (Collapse) rule and derive a new equation C[b] = c. In which
case, the configuration would not be terminal.

• A type 2 is impossible as a is in normal form.

• Finally, by Lemma 5.6, the only type 3 critical overlaps arise when a is not stable,
which contradicts our assumptions.

Lemma 5.10. Suppose ⟨E, R⟩ ⊢ ⟨E′, R′⟩ is an inference of the hypothesis comple-
tion procedure where ⟨E, R⟩ is well-oriented. Then ⟨E′, R′⟩ is also well-oriented.

Proof. Let us proceed by case analysis on the hypothesis completion inference:

• (Orient) The side-condition of this inference rule requires that the only addi-
tional a = b ∈ R is oriented so that a > b as required.

• (Compose) Suppose a = b ∈ R and R ⊢ b ⇝+ b′ so that a = b′ ∈ R′. It is
straightforward to show by induction that b > b′. Therefore, by transitivity,
a > b′ as required.

• (Delete), (Simplify), (Collapse), (Match), (Fail) Under these inference rulesR′ ⊆
R, and thus the invariant is clearly maintained.

Lemma 5.11. >u/o is well-founded.
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Proof. By Lemma 4.8, we know that>sub is well-founded. Furthermore, as>u/o is its
length-bound lexicographical extension, so is >u/o.

Lemma 5.13. Suppose ⟨E, R⟩ is a well-oriented configuration and ⟨E, R⟩ ⊢
⟨E′, R′⟩ is an inference of the hypothesis completion. Then, ⟨E, R⟩ ≫ ⟨E′, R′⟩.

Proof. Let us proceed by case analysis on the inference rule:

• (Delete) This rule results in the elimination of an equation and thus is a strict
decrease under the multiset interpretation.

• (Orient) The multiset interpretation of configurations under this rule replaces
certain unoriented equation with oriented equation, thus resulting in a strict
decrease.

• (Simplify), (Compose), (Collapse) These rules results in an expression being re-
duced by hypothetical reduction. AsR is assumed to be well-oriented, we have
that the labelled pair in question is smaller under >u/o, regardless of orienta-
tion. Therefore, themultiset interpretation of configurations has also decreased.

• (Match) In this case, an instance of equation (k a1 · · · an, u) and (k v1 · · · bn, u)
are replaced by equation (ai, u) and (bi, u) for all i ≤ n. As we are us-
ing the substructural extension, we have that k a1 · · · an, >sub ai and
k b1 · · · bn, >sub bi. Thus, we have a decrease in this case as well.

• (Fail) Finally, this rule holds vacuously as it doesn’t result in a non-contradictory
configuration.

Corollary 5.14. There is no infinite run of the hypothesis completion starting from
a well-oriented configuration ⟨E, R⟩.

Proof. Clearly, an infinite run would require the infinite evolution of a hypothesis
as hypothesis completion creates a finitely branching evolution tree. However, this
would contradict the preceding lemmas.

Lemma 5.15. Suppose Γ1 ⊢ H wf is a well-formed set of hypotheses and Γ2 is a type
environment that is disjoint from Γ1, i.e. dom(Γ1)∩dom(Γ2) = ∅. If Γ2, H ⊢ a

?
⇝∗

θ b

is an instance of hypothetical narrowing, then dom(θ) ⊆ Γ2 and H ⊢ aθ ⇝∗ b is an
instance of hypothetical reduction.

Proof. Let us proceed by induction on the many-step hypothetical narrowing relation:

• In the base case, θ is the empty substitution and, therefore, dom(θ) ⊆ Γ2. Fur-
thermore, we clearly have that H ⊢ a⇝∗ a as required.
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• Suppose Γ2, H ⊢ a
?
⇝θ b and Γ2, H ⊢ b

?
⇝∗

θ′ c where dom(θ) ∩ dom(θ′) = ∅.
Consider the cases of the one-step hypothetical narrowing:

– (Reduce) In this case, θ is the empty substitution, and we have that H ⊢
a ⇝ b by assumption. Furthermore, by induction, dom(θ′) ⊆ Γ2 and
H ⊢ bθ′ ⇝∗ c. Therefore,H ⊢ aθ′ ⇝∗ c by stability (See Lemma 5.3) and
transitivity.

– (Unify) In this case, θ is such that aθ = b ∈ H where dom(θ) ⊆ dom(Γ2)

and H ⊢ Cθ[aθ] ⇝ Cθ[b] by assumption. Furthermore, by induction,
dom(θ′) ⊆ Γ2 and H ⊢ (Cθ[b])θ′ ⇝∗ c. Therefore, dom(θ ∪ θ′) ⊆ Γ2 as
required. Finally, we must show that H ⊢ (Cθ[aθ])θ′ ⇝ c, which again
follows by stability.

Lemma 5.16. Let > be a reduction order that is compatible with the program’s re-
duction relation. Suppose Γ1 ⊢ H wf are well-oriented hypotheses, i.e. a > b for all
equations a = b ∈ H , and Γ2 is a type environment that is disjoint from Γ1. Then, for
any hypothetical narrowing Γ2, H ⊢ a

?
⇝θ b, either dom(θ) is non-empty or a > b.

Proof. Let us proceed by case analysis on hypothetical narrowing:

• (Reduce) In this case, we clearly have that a > b as required.

• (Unify) Suppose θ is empty and thus a = b ∈ H . As H is well-oriented and >
is stable under context, we have that C[a] > C[b] as required.

Theorem 5.17. Suppose Γ1 ⊢ H wf are well-oriented hypotheses, Γ2 is a type en-
vironment that is disjoint from Γ1, and a is an applicative expression. Then there
is no infinite sequence of expressions (ai)i∈N and substitutions (θi)i∈N such that
Γ2, H ⊢ ai

?
⇝θi ai+1 for all i ∈ N.

Proof. Suppose there were such sequences (ai)i∈N and (θi)i∈N. Consider the follow-
ing two cases:

• If there exists some i ∈ N such that θj is empty for all j ≥ i, then the sub-
sequence (aj+i)i∈N is monotonically decreasing by Lemma 5.16. As > is well-
founded, we have a contradiction.

• Otherwise, there are infinitely many i ∈ N such that θi is non-empty. However,
as dom(θi) ⊆ dom(Γ2) for all i, there must be two indices n and m such that
dom(θn)∩dom(θm) ̸= ∅. Without loss of generality, assume n < m. However,
as dom(θn) ∩ FV(ai) = ∅ for all i > n and dom(θm) ⊆ FV(am) we have a
contradiction.
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For any a, therefore, there are finitely many such sequences. Hence, finitely many
substitutions θ and expressions b such that Γ2, H ⊢ a

?
⇝∗

θ b.

Corollary 5.18. Suppose Γ1 ⊢ H wf are well-oriented hypotheses, Γ2 is a type en-
vironment that is disjoint from Γ1, and a is an applicative expression. Then there are
finitely many substitutions θ and expressions b such that Γ2, H ⊢ a

?
⇝∗

θ b.

Proof. Clearly, for any a, there are only finitelymany b and θ such thatΓ2, H ⊢ a
?
⇝θb.

It then follows from Theorem 5.17 that there are finitely many narrowing sequences.
Hence, finitely many substitutions θ and expressions b such that Γ2, H ⊢ a

?
⇝∗

θ b.

Theorem 5.19. Suppose Γ2, H ⊢ a
?
⇝∗

θ a
′ and Γ2, H ⊢ bθ

?
⇝∗

θ′ b′ are two instances
of hypothetical narrowing such that a′θ′θ′′ = b′θ′′ for some substitution θ′′ where
dom(θ′′) ⊆ dom(Γ2). Then the composite substitution θsol = θθ′θ′′ is a solution to
the equation a = b under the hypothesesH , i.e. the clauseH ⇒ aθsol = bθsol is valid.

Proof. Wehave thatH ⊢ aθ ⇝∗ a′ andH ⊢ bθθ′ ⇝∗ b′ by Lemma 5.15. Furthermore,
by Lemma 5.3, H ⊢ aθsol ⇝∗ a′θ′θ′′ and H ⊢ bθsol ⇝∗ b′θ′′. By assumption, a′θ′θ′′

and b′θ′′ are the same expression c. By Lemma 5.2, we have that both H ⇒ aθsol =

c and H ⇒ bθsol = c are valid. And, therefore, H ⇒ aθsol = bθsol is valid by
transitivity.

J Proofs for Section 5.3 (Extended Proof System)

Theorem 5.20 (Local Soundness). Let v1 ∈ V \ Ax be a non-axiom node within the
pre-proof (V, E, λ, ρ) such that θ1 ̸⊨ λ(v1) for some valuation θ1. Then there exists
a necessary precursor (v2, θ2) such that θ2 ̸⊨ λ(v2).

Proof. If v1 ∈ dom(β), i.e. it is a bud, then let v2 be its companion β(v2). In this
case, λ(v1) = λ(v2) and so we have that θ1 ̸⊨ λ(v2). Furthermore, θ1 is a necessary
precursor as required.

Now suppose v1 ∈ T \ dom(β) and consider the possible inference rules ρ(v1):

• (Refl) This case is absurd as reflexivity is valid.

• (Refute) Suppose that θ1 ̸⊩ H ⇒ a
.
= b, i.e. θ1 ⊩ H and θ1 ̸⊩ a

.
= b. We

have that θ1 is a necessary precursor of the sole premise v11 by definition and
clearly θ1 ̸⊩ H ⇒ ⊥ as required.

• (Absurd) Suppose that θ1 ̸⊩ H ⇒ ϕ and ⟨H, ∅⟩ ⊢∗  . By Lemma 5.8, there are
no valuation that satisfy H . Thus, we have a contradiction.

• (Subst)⊥ Suppose that θ1 ̸⊩ H1 ⇒ ϕ, i.e. θ1 ⊩ H1 and θ1 ̸⊩ ϕ, and λ(v2) =
H2 ⇒ ⊥ is the lemma. We have thatH1 ⇒ H2θ and Γ1 ⊢ θ : (Γ2 \Σ)Θwhere
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Γ1 and Γ2 are the type environments of the conclusion and lemma respectively.
Therefore, θ ◦ θ1 ̸⊩ H2 ⇒ ⊥ as required.

• (Subst) Suppose that θ1 ̸⊩ H1 ⇒ C[a]
.
= b, i.e. θ1 ⊩ H1 and θ1 ̸⊩ ϕ, and

λ(v2) = H2 ⇒ ⊥ is the lemma. As in the previous case, we have that H1 ⇒
H2θ and Γ1 ⊢ θ : (Γ2 \Σ)Θwhere Γ1 and Γ2 are the type environments of the
conclusion and lemma respectively. Therefore, either θ ◦ θ1 ⊩ a

.
= b, in which

case we have found a necessary precursor that is not satisfied as required, or
aθθ1 ≡P cθθ1. Therefore, the continuation H1 ⇒ C[cθ]θ1 ≡P bθ1 cannot be
satisfied by the necessary precursor θ1 else we would have a contradiction.

• (Reduce) Suppose that θ1 ̸⊩ H ⇒ a
.
= b and ⟨H, ∅⟩ ⊢∗ R. By Lemma 5.7 and

Lemma 5.2, H ⇒ a
.
= a′ and H ⇒ a

.
= b′ are valid. Therefore, θ1 ̸⊩ H ⇒

a′
.
= b′ and as θ1 is a necessary precursor we are done.

• (Cong), (FunExt) Analogous to the corresponding cases in Theorem 4.1.

• (Case) Finally, suppose θ1 ̸⊨ H ⇒ ϕ and a is the subject of case analysis.
By Lemma 2.9, it must be the case that θ1(x) →P k a1 · · · an for some k ∈
∆(d). Let v2 be the premise associated with the constructor k. The substitution
θ1 ∪ {x 7→ a} is a necessary precursor for this premise. As θ1 ∪ {x 7→ a} ⊨
a
.
= k a1 · · · an, we have that θ1 ∪ {x 7→ a} ⊭ H ∧ a = k a1 · · · an ⇒ ϕ as

required.

Lemma 5.21. Let (V, E, λ, ρ) be a cyclic pre-proof with a path (v)i∈N and sup-
pose (t)i∈N is a ≤-trace along this path. If θi is a valuation of some node vi ∈ T

and (vi, θi) _ (vi+1, θi+1), then ti+1θi+1 ≤ tiθi and ti+1θi+1 < tiθi when i is a
progress-point.

Proof. Let us consider the possible justifications for vi:

• Suppose ρ(vi) is (Case) where x : d τ is the variable upon which case anal-
ysis is performed. By Lemma 2.9 and the definition of a necessary precursor,
θ(x) →P k c1 · · · cn for some k ∈ ∆(d) and vi+1 is the premise associ-
ated with this constructor. Furthermore, θi+1 = θi ∪ {x 7→ c}. By definition,
ti+1 ≤ ti[k x1 · · · xn/x] and thus ti+1θi+1 ≤ ti[k x1 · · · xn/x]θi+1 = tiθ as
required.

• Suppose ρ(vi) is (Subst) or (Subst)⊥ with substitution θ and vi+1 is the lemma.
We have that ti+1θ ≤ ti. The only necessary precursor to θi in this case is θ◦θi.
Thus, by stability, ti+1θi+1 ≤ tiθi as required.
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• If ρ(vi) is (FunEx), then θi+1(y) = θi(y) for all y other than the fresh variable x.
As ti cannot depend on x, we have that tiθi+1 = tiθi. And thus ti+1θi+1 ≤ tiθi
as required.

• In all other cases, θi+1 = θi and ti+1 ≤ ti. Thus, ti+1θi+1 ≤ tiθi as required.

Furthermore, in each of the above cases, we can replace the inequality by strict
inequality in the case of a progress point.

Theorem 5.22 (Global Soundness). Let (V, E, λ, ρ) be a cyclic proof such that, for
every axiom v ∈ Ax, the associated equation λ(v) is valid. Then, for every other node
v ∈ V \ Ax, the associated equation λ(v) is also valid.

Proof. First, we shall show that if, for every path (vi)i∈N, there is some j ∈ N and
≤-trace (ti)i∈N along the suffix (vi+j)i∈N with infinitely many progress points, then
the precursor_ relation is well-founded. This result is analogous to Lemma 4.3.

Suppose (θi)i∈N is an infinite sequence of precursory valuations along a path
(vi)i∈N. By assumption, there exists a ≤-trace (ti)i∈N along this path with infinitely
many progress points. By Lemma 5.21, ti+1θi+1 ≤ tiθi for all i ∈ N. Furthermore,
as there are infinitely many progress points, there is an infinite sub-sequence (ij)j∈N
such that tij+1

θij+1
< tijθij . Thus, we contradicted the fact that ≤ is well-founded

and shown there are no such infinite sequences, i.e. precursor relation is well-founded.
With this result and Lemma 5.20, it is then straightforward to see that every node

is valid by analogy to Theorem 4.4.
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