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Abstract

The cerebellum is important for behavioural control. It is not necessary for the genera-

tion of behaviour, but it is critical for its fluency and coordination. Its computations are often

explained in terms of an estimation process, which allows to predict, and therefore refine, be-

havioural dynamics. At its simplest, this estimation process allows to integrate sensory and

motor information, in order to refine actions (based on incoming sensory information), and pre-

dict sensations (based on actions). However, it is still unclear (i) how cerebellar state estimation

bidirectionally interacts with brain-wide neuronal dynamics, and (ii) how this estimation process

may be adapted to different behavioural contexts.

Here we addressed these two questions using computational and experimental techniques. The

computational work investigated cerebellar computations, and how they contribute to whole-

brain dynamics - here approximated by a simple set of differential equations. In essence, we

sustain that behavioural coordination is a fundamental cerebellar function, explaining its per-

vasive role in behavioural control, and described a general model of cerebellar state estimation

that enables to coordinate different behavioural variables or domains.

The experimental work investigated how the cerebellar cortex represents sensorimotor infor-

mation, and how these representations change as a function of the state of the network, which

could reflect different behavioural contexts. In particular, we recorded both population activ-

ity in the lateral cerebellar cortex and whisking behaviour in mice. To change the state of the

network, we manipulated the level of inhibition, by reducing the activity of a population of

inhibitory neurons, the Golgi cells. Our results suggests that Golgi cell inhibition may be an

important mechanism through which sensorimotor representations in the cerebellum are tuned,

which in turn has an impact on downstream behavioural control.

In summary, we combined computational and experimental techniques to gain insights into

how neuronal dynamics in the cerebellum may be linked to and inform theories of cerebellar

computations and functioning, and how these dynamics may contribute to behavioural control.
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Chapter 1: General Introduction

1.1 Introduction

The nervous system is the part of an animal’s body that controls behaviour, namely, the reper-

toire of actions with which an animal interfaces with its environment. Behaviour is the product

of external conditions, stimuli and constraints, as well as somatic drivers and needs, such as

homeostatic ones. The interaction between these different internal and external factors is of-

ten complex and difficult to predict; nevertheless, the nervous system is constantly producing

functional behaviour, capable of accommodating and reconciling different somatic and external

states.

Over evolutionary time, the nervous system has become more complex and compartmen-

talised, with the appearance of specialised structures processing information related to different

aspects of the environment. This evolutionary trajectory can be seen as reflecting the increased

richness of both the world animals live in and their behaviour. For example, animals have be-

come receptive to different properties of their surrounding, such as light, sound and chemicals,

and have developed different ways to interface with it, such as by means of limbs, vibrissae,

and vocalisation. Importantly, this richness also concerns the interactions between the different

external and somatic variables involved in behaviour: for example, locomotion relies on the inte-

gration of different types of information, including proprioceptive, visual, vestibular and auditory

information, which are not independent to one another. Consequently, the nervous system must

have also evolved a way to both efficiently and accurately account for these interactions.

The cerebellum, a prominent structure of the nervous system, may play a particularly relevant

1



1.1. INTRODUCTION CHAPTER 1

role in this account. Historically, the cerebellum has mostly been linked to basic motor control,

but its more general function has been very difficult to define. This uncertainty stems from the

heterogeneous involvement of the cerebellum in a variety of behavioural aspects, which might

have made it difficult to pinpoint its overall role in behaviour. One possibility, that could explain

this heterogeneity, is that the cerebellum has evolved to bind together and coordinate the different

variables involved in behaviour, such as the body position, visual cues and position with respect

to gravity in the case of locomotion.

This thesis aims to elucidate the cerebellar contribution to general behaviour, by means of

both theoretical and experimental work. The theoretical work, in particular, addresses how

neuronal representations about behaviourally relevant variables within the cerebellum may be

used by it to promote or enforce behavioural coordination by interacting with extra-cerebellar

regions. The experimental work, on the other hand, addresses how cerebellar neuronal dynamics

represent or encode behaviour, by focusing on representations of whisking activity in mice.

2



CHAPTER 1 1.2. THE CEREBELLUM

1.2 The cerebellum

The cerebellum is an evolutionary old brain region, appearing in all vertebrates with a structure

well preserved across species [24, 13]. It constitutes the ceiling of the brainstem, with which it

comprises the rhombencephalon (hindbrain), the most primitive of the three subdivisions of the

central nervous system; the other being the mesencephalon (midbrain) and prosencephalon (fore-

brain). Through the brainstem, the cerebellum connects to many other brain regions, including

cortical and subcortical areas [208, 209, 111, 34, 113, 227]. Although often multi-synaptic in

nature, this pervasive connectivity underpins the remarkable involvement of the cerebellum in

a wide range of behavioural functions, encompassing simple reflexes as well as more complex

functions, such as emotional processing, language, and social interactions [129, 206, 11]. Accord-

ingly, whilst the majority work on the cerebellum implicates its role in motor control, there is

growing evidence for its role in a wide range of behavioural functions; a role that matches the

degree of evolution and complexity of cognitive abilities underlying behaviour (please see [95] for

an example in birds).

The architecture of the cerebellum stands in stark contrast to its functional heterogeneity. In

fact, its neuronal organisation is relatively simple and stereotypical, comprising a small pool of

cell types and presenting little variation throughout its regions; although there is also a growing

amount of evidence highlighting regional genetic, cellular and structural specificities [32]. This

uniform architecture hints at a single, fundamental computation performed by the cerebellum,

which might be adapted from place to place depending particular input received and information

manipulated [4]. Accordingly, the appreciation of this archetypal neuronal organisation can

provide important insights onto cerebellar computation. In what follows, I will therefore give a

description of its general structure.

1.2.1 Cerebellar architecture

The cerebellum consists of two main parts: the cortex and the nuclei (please see Figure 1.1).

The cortex is characterised by a clear organisation in three layers [178], namely, the input or

granular layer, the molecular layer, and the Purkinje cell layer. There are also three nuclei

3



1.2. THE CEREBELLUM CHAPTER 1

in each cerebellar hemisphere: from lateral to medial, these are the dentate, interpositus, and

fastigal nucleus. The internal organisation of each nucleus, once considered homogeneous, has

only recently started to be elucidated [128]. In contrast, the organisation of the the cerebellar

cortex, at least in its basic elements, has been known for a long time [58, 98], and will be the

focus of this section.

Within the cerebellar cortex, the granular layer constitutes the first stage of information

processing, where extra-cerebellar input conveyed by mossy fibres arrive. The mossy fibre path-

way, originating mainly from brainstem nuclei and the spinal cord [205], is the most conspicuous

cerebellar input pathway, carrying information from most brain regions [171, 23, 231]. In the

granular layer, each mossy fibre ramifies to generate several excitatory (glutamatergic) contacts

with the two neuronal populations located in this layer, the granule cells and the Golgi cells.

granule cells are small, tightly packed excitatory neurons, constituting, by number, more than

half the neurons in the entire nervous system. On the other hand, their inhibitory counterpart,

Golgi cells, are big and sparsely distributed interneurons.

Contact between mossy fibres and these two neuronal populations occur within specialised

structures called glomeruli, consisting of a glial sheath that encases pre- and post-synaptic struc-

tures, and forms an isolated microenvironment where neurotransmitters can more easily diffuse

[53, 166, 196]. Importantly each glomerulus is centered around a single, extensive mossy fi-

bre presynaptic structure, but contains dendrites from tens of granule cells, as well as Golgi

cell dendrites and axonal terminals [123, 46]. Because of this divergent mossy fibre-granule cell

synaptic organisation, together with the fact that granule cells greatly outnumber mossy fibres,

this stage of information processing is deemed to favour an expansion of extra-cerebellar neuronal

representations in the granule cell population [140].

Neural representations in granule cells depend on the dynamic excitation-inhibition balance

set within glomeruli. Because granule cells are not recurrently connected, excitation in this

layer is feedforward, arising mainly from incoming mossy fibres. In contrast, Golgi cells can

produce both feedforward and feedback inhibition, depending on whether their activity is driven

by mossy fibre or granule cell excitation, which target the basal and apical portion of the Golgi

cell dendritic arborisation, respectively. Overall, inhibition in the granular layer can be quite

complex and composite, despite originating from a single neuronal population. In fact, Golgi cells

4



CHAPTER 1 1.2. THE CEREBELLUM

Figure 1.1: Cerebellar circuitry. Information enters the cerebellum via mossy fibres and
climbing fibres; the former originate primarily from brainstem nuclei and spinal cord, while the
latter originate from the inferior olive. Mossy fibres make synaptic contacts with excitatory
granule cells and inhibitory Golgi cells within glomeruli in the granular layer, as well as with
cerebellar nuclei cells through collaterals. In the glomeruli, the excitation-inhibition balance set
by mossy fibres and Golgi cells drives granule cell activity, which travels through parallel fibres
to reach the molecular layer. In here, parallel fibres excite both molecular layer interneurons,
comprising basket cells and stellate cells, and Purkinje cell dendritic trees. Patterns of excitation
and inhibition set by parallel fibres and molecular layer interneurons respectively drive simple
spikes in Purkinje cells, whose axons exit the cortex to enter cerebellar nuclei where they form
inhibitory synapses. At the same time, climbing fibres ramify within the dendritic tree of single
Purkinje cells to evoke complex spikes, which drive plasticity in local synapses and interact with
simple spike generation. Finally, axons exiting the cerebellar nuclei transmitted information back
to extra-cerebellar structures, origin of both mossy fibres and climbing fibres, as well as to the
cerebellar cortex through collaterals.

5



1.2. THE CEREBELLUM CHAPTER 1

are reciprocally coupled through chemical and electrical synapses, which enables coordination,

in terms of both synchronisation and desynchronisation, of inhibition across the granular layer

[55, 225, 235]. Moreover, at the synaptic level, GABA released from Golgi cells operates on

different types of receptors, each with its characteristic ligand affinity and spatial distribution

[53, 41, 43]. As a result, Golgi cell inhibition can operate at different temporal and spatial scales

within glomeruli, and appears capable of finely controlling and sharpening representations in the

granular layer [174].

From the granular layer, information is relayed by granule cells to neurons whose dendrites

are located in the molecular layer. The axons of granule cells, upon ascending into the molecular

layer, bifurcate into fibres which run in parallel to each other along the transverse axis for as long

as a few millimetres [98, 165]. Along their course, parallel fibres make synaptic contacts with

Golgi cell, Purkinje cell and molecular layer interneuron dendrites. Molecular layer interneuron is

a label indicating two broad classes of small interneurons, whose soma and dendrites reside in the

molecular layer: the basket cells and the stellate cells [132]. These neuronal populations form an

intricate network of interconnected cells, which ultimately control Purkinje cell activity. Basket

cells and stellate cells differ in both their physiology and morphology, like the part of Purkinje

cells they target, with stellate cell inhibiting the dendritic arbor, and basket cells preferentially

inhibiting the soma. This in turn has important consequences on how they modulate Purkinje cell

activity [20], namely, by controlling how incoming information is either integrated or transmitted.

As for Purkinje cells, these are the sole output neuron of the cerebellar cortex, where feedfor-

ward molecular layer interneuron inhibition and parallel fibre excitation converge. These neurons

are intrinsically active, firing small and short action potentials, the simple spikes, at a rate of

around 30 Hz in vitro [99]; by firing at a constant rate, which is modulated by molecular layer

interneuron and parallel fibre input, Purkinje cells can represent information with both increases

and reductions in activity. The Purkinje cell soma is located in the Purkinje cell layer, the third

and last stage of information processing within the cerebellar cortex, whereas their dendrites de-

velop in the molecular layer, branching in a stereotypical fan-like shape [178, 98]. These complex

dendritic arborisations look thin in the parasagittal plane but are wide in the transversal plane,

lying in parallel one next to each others, and orthogonally to the direction of parallel fibres:

as such, each parallel fibre can make one or two contacts with each Purkinje cell dendrite, but
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connects with hundreds of them [115]. This particular synaptic organisation, in contrast to the

divergent connectivity found in the granular layer, seems to favour integration of information at

the level of single Purkinje cells or subgroups of them.

Purkinje cells are also the target of climbing fibres, which constitute the second main stream

of information entering the cerebellum. Climbing fibre are axonal projections originating from

the inferior olive [49], a bilateral medullary structure whose function is tightly associated with

the cerebellum [153, 2, 117]. In fact, cerebellar and extra-cerebellar input converge within the

inferior olive, and comparison between the two is thought to give rise to prediction errors that are

transmitted by climbing fibres directly to Purkinje cells. These signals are critical for associative

learning in the cerebellum, triggering important plastic changes in the synapses located in the

Purkinje cell dendritic trees. Specifically, each Purkinje cell is innervated by a single climbing

fibre; however, because a climbing fibres can form up to 100 strong synapses on each Purkinje

cell [119], each of these connection is powerful, generating characteristic excitatory events known

as complex spikes. These action potentials, compared to the brief, small in amplitude simple

spikes arising from parallel fibre input, are long-lasting, high in amplitude, and have a complex,

non-stereotypical shape [173]; moreover, they occur at a much lower rate of 1 Hz [207]. Impor-

tantly, complex spikes interact with simple spikes to produce depression in synaptic connections,

therefore changing the connectivity structure within the molecular layer.

From the Purkinje cell layer, axonal projections exit the cerebellar cortex and enter the cere-

bellar nuclei, where they form inhibitory synapses with local neurons [119]. Notably, cerebellar

nuclei also receive extra-cerebellar input via mossy fibre collaterals [204]; therefore, cerebel-

lar nuclei networks are in the position to compare incoming extra-cerebellar information with

information processed by the cerebellar cortex [19]. Eventually, cerebellar nuclei neuronal repre-

sentations of behaviourally relevant states are sent to extra-cerebellar regions [119] – closing the

loop – where they drive, modulate or correct neuronal dynamics therein.

Finally, it is important to remark that the above canonical description of the cerebellar

microcircuit is incomplete and it does not consider several key aspects. In particular, cerebellar

information processing is often described as feedforward; however, many connections, together

with additional cell types that are often overlooked, contribute to feedback, recurrent loops within

the cerebellum itself. In particular, within the granular layer exist two neuronal populations that

7
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are important in shaping neuronal dynamics in the granular layer. Lugaro cells, located just

beneath the Purkinje cell layer, have dendrites that span both the transversal and sagittal plane,

receive inhibitory input from tens of Purkinje cells, and inhibit both molecular layer interneurons

and Golgi cells; hence implementing long-range feedback loops within the cerebellar cortex [139,

52]. On the other hand, unipolar brush cells are excitatory neurons positioned at the bottom

of the granular layer that receive and amplify excitatory mossy fibre input [164, 195]. Notably,

mossy fibres can either have extra-cerebellar origin or come from cerebellar nuclei, carrying

feedback input to the cerebellar cortex [110]. Finally, feedback loops within the cerebellum are

also implemented via long-range inhibitory connections from cerebellar nuclei to the granular

layer, targeting Golgi cells [3], and by Purkinje cell collaterals targeting both cortical interneurons

[237] and granule cells [93].

1.2.2 Cerebellar physiology

The stereotypical cerebellar architecture described above has been an attractive working ground

when trying to bridge the gap between structure and functions of neuronal networks. In fact,

a wealth of studies have addressed how the cerebellar network encodes behaviourally relevant

variables, how changes in its structure are reflected in changes in neuronal representations, and

how its neuronal code contributes to functional behaviour, namely, behaviour where sensory,

motor, and cognitive components of it are seamlessly integrated and coordinated.

One exemplary model classically used to investigate cerebellar functions is the oculomotor

system. This system is responsible for eye movements and reflexes, including smooth-pursuit,

gaze holding, nystagmus, and the vestibulo-ocular reflex, all of which are impaired by cerebellar

lesions [203]. For example, smooth tracking of moving targets is impaired after damage to a

small cerebellar lobe called the flocculus. In this area, Purkinje cell simple spike rates encode

the motion of visual stimuli on the retina [159, 212] as well as eye kinematics [181], with a

preference for one direction along either the horizontal or vertical axis. In turn, these neuronal

representations, important for fine control of eye movements [145], are carefully adjusted by

inferior olive-evoked complex spikes, which trigger synaptic changes at the parallel fibre-Purkinje

cell synapse to modulate the tuning and strength of simple spikes [242].
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Plasticity at the parallel fibre-Purkinje cell synapse has been used as a paradigm for learning

in the brain and has been extensively studied. The most famous plasticity mechanism at this

site is long-term depression (LTD) [118]. LTD consists in the protracted strength reduction

of the parallel fibre-Purkinje cell connection, triggered by the repeated co-occurrence of simple

spikes and complex spikes [116]. LTD underlies many forms of associative learning, such as

that occurring during eyelid conditioning, where a conditioned stimulus such as airpuff becomes

associated with an unconditioned stimulus to produce a conditioned blinking response [155].

Because LTD relies on complex spikes, these events have often been considered a teaching or

error signal for the parallel fibre-Purkinje cell synapse, possibly instantiating a form of supervised

learning [190]. This view invests the inferior olive, the origin of climbing fibres evoking complex

spikes, with the key role of instructor for learning in the cerebellum. However, this framework

is mostly applicable to simple behavioural paradigms where there is a clear error signal, like in

conditioning and adaptation paradigms [189, 170]. In more complex scenarios, instead, climbing

fibres have been found to transmit a wide range of stimuli, including reward-like and predictive

input [101, 136], with a graded code [83] that is modulated by numerous mechanisms, involving

pre- and post-synaptic activity, inhibition and other network signals [26, 154, 28, 133, 243].

This heterogeneity in climbing fibre signalling thus indicates that LTD is not limited to error

correction, but contributes to more general associative learning involving the olivo-cerebellar

system.

In parallel, many mechanisms other than classical LTD also exist that support learning

throughout the cerebellum [97, 85]. For example, in contrast to LTD, LTP (long term potentia-

tion) at the parallel fibre-Purkinje cell synapse leads to increased connectivity strength, and is not

associative, requiring only sustained presynaptic activity [198, 144]. On the other hand, other

sites of synaptic plasticity involve molecular layer interneurons, neurons in the granular layer

and cerebellar nuclei neurons [97, 85, 39]. Moreover, properties of synaptic plasticity mechanism

differ across cerebellar regions, adapted to the specific characteristics of the behaviour encoded

[215]. Overall, the ubiquity and diversity of learning mechanisms in the cerebellum highlights

the ability of this structure to learn associations between behaviourally relevant variables in a

variety of contexts.

As a consequence, investigation of cerebellar functions is now more and more often conducted
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using more complex behavioural paradigms, also thanks to advances in recording techniques,

such as multichannel and optical recording [136, 92]. These studies have highlighted how the

cerebellum, at every stage of information processing, accurately represents all kinds of variables

involved in behaviour, including autonomic states, task-contingencies (e.g., reward signals) and

general motor activation [89, 228, 136, 191, 94, 140]. This means that neuronal representations

in the cerebellum recapitulate with fidelity those found in other brain regions, such as the motor

cortex, and do so in a learning-dependent manner [229]. These precise cerebellar representations

of task parameters are then used to fine tune a range of behavioural dynamics across task

contingencies, such as timed motor initiation [25], kinematics of reaching movements [224], and

even accumulation of evidence for decision making [50]. Altogether, these findings may suggests

that the cerebellum is capable of holding and refining internal models supporting all aspects of

behaviour.

The ability of the cerebellum to integrate multiple sensory, motor and cognitive domains

may be at the core of its contribution to functional behaviour. At its simplest, this integration

involves sensory and motor information, of which the whisker system in mice offers a paradigmatic

example [223]. Neuronal activity in the cerebellum, and in particular in the lateral portion of its

cortex [37, 38], has been described to encode whisking dynamics, and its output is known to play a

key role in the control of whisker behaviour [149, 184, 21, 191]. However, many questions remain

open, such as how whisking-related information processing in the cerebellum may be adapted

to different behavioural contexts; these contexts may require to focus on particular behavioural

interactions instead of others, such as when exploring a place, when rapidly moving, or when

interacting with conspecifics. Investigating how cerebellar control of whisking activity may be

sensitive to the behavioural context is therefore crucial to understand its role in behaviour.

1.2.3 Theories of cerebellar computations

Information processing within the cerebellum is often associated with a unique, fundamental

computation, which is adapted from place to place to the specific properties and requirements of

the behaviours encoded and supported. Accordingly, it is increasingly recognised that cellular,

molecular and network specificities across cerebellar regions may underlie a compartmentalisation
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of information processing [33]. For example, a coarse cerebellar subdivision can be found across

the longitudinal (medio-lateral) axis, with the lateral, paravermal and vermal cerebellar cortex

connecting respectively to the dentate, interpositus and fastigial nuclei [124]. This macroscopic

connectivity pattern is thought to reflect the level of cognitive complexity of the behaviours each

region is involved in, with the lateral cerebellum and dentate nucleus associated with higher

level processes. A more fine-grained subdivision is instead based on the cerebellar organisation

in modules, each defined by specific connectivity patterns involving circumscribed regions of the

inferior olive, sagittally oriented subpopulations of Purkinje cells, and subregions within each

cerebellar nuclei [5]. Further functional compartmentalisation of the cerebellar-olivary system

have also been put forward, for example by calling upon the existence of parasagittal microzones

and micromodules [5], or based on molecular patterning (e.g., zebrin stripes [18]). To date,

however, the exact mapping between the variously defined cerebellar structure and functions is

still an open question.

Beyond regional specificities, the cerebellar architecture has been an inspiration for many

models and theories. In particular, its organisation in well-defined cortical layers and nuclei has

suggested a decomposition of information processing into different canonical stages; although

feedback loops within the cerebellum hints that these stages are highly interconnected and pos-

sibly not completely separated. In brief, these stages include an expansion of extra-cerebellar

representation in the granular layer, the associative encoding of variables in the Purkinje cell

population, and some sort of comparison between or integration of extra-cerebellar and cere-

bellar cortical representations in the cerebellar nuclei. Notably, this decomposition is already

present in classical, Marr-Albus models [153, 2], whereby the cerebellum operates as a percep-

tron or classifier. In these models, the role of the cerebellum is to learn the association between

mossy fibre input and specific motor responses; this is achieved by first expanding mossy fibre

input patterns in the granular layer to increase their discriminability, and then learning to asso-

ciate each input pattern with an appropriate Purkinje cell response, via changes in the synaptic

structure instructed by inferior olive teaching signals.

Following the work from Marr and Albus, adaptive filter models advanced the original idea of

a static pattern classifier by conceiving the cerebellar cortex as a filter, capable of transforming

time-varying mossy fibre input into a sequence of Purkinje cell output [81]. Similar to the Marr-
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Albus model, in adaptive filters Purkinje cell activity evolves to minimise its correlation with

teaching signals conveyed by climbing fibres. The biological implementation of the adaptive filter

and analogous reservoir computing models again relies on two sequential processes, taking place

in the granular layer and Purkinje cells, respectively [241, 47, 193]. These are (i) an analysis

step, expanding the original time-varying input in a sufficiently complete set of outlasting signals

or basis functions; and (ii) a synthesis step, where the newly created signals are recombined into

the output time-series. Thus, in analogy to an augmented representational space in classical

pattern separation, adaptive filters presume a temporal expansion of mossy fibre activity in the

granular layer.

In contrast to the perceptron and adaptive filter models, other theories have instead focused on

the cerebellar computation from the perspective of the entire network of brain regions subserving

motor control (Fig 1.2, top), of which the cerebellum is one component. In many of these theories

[122, 158, 239, 54, 67, 12], the cerebellum plays the role of an internal or forward model, namely,

a model that is used to predict the sensory feedbacks – both from the body and the external world

– generated by one’s action. Briefly, in motor control there is a body whose actions are directed

by motor commands, and these commands are issued by an inverse model, which attempts

to minimise an arbitrary cost function, or alternatively maximise a reward function. Then,

within this closed loop made of desired states, motor commands and sensory feedbacks, forward

models play a key role for online refinement of actions, by enabling the adjustment of motor

commands previous to and during execution of movements, anticipating and short-circuiting

sensory feedback. Notably, there is a large body of empirical results that is congruent with the

idea that the cerebellum implements forward models [147, 168, 10, 201, 31, 217]. Moreover, this

idea can be extended to other, more cognitively-involved functions [186, 121, 143], which makes

it a theory for the ubiquitous cerebellar involvement in behaviour.

The hypothesis of the cerebellum as a forward model is closely related to, and can be incor-

porated within, a more general theory of neuronal computations, which views neuronal dynamics

tout court as an inference process (Fig 1.2, bottom). This theory has its roots in Helmholtz’s def-

inition of perception as inference [102], and has been extensively developed within the theoretical

framework of the Free Energy Principle (FEP) [71]. The FEP, and its corollary theory, active

inference [78, 44], asserts that both perception and action are the product of an inference process,
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which is based on an underlying internal or generative model of how sensory input or observa-

tions are generated. Crucially, in this framework, the need for a distinction between different

types of internal models encoded in the various brain regions (e.g., forward or inverse) dissolves

[72], as well as the qualitative distinction between sensory predictions and motor commands [1]:

here, the biophysical structure of the whole brain encodes a deep or hierarchical, modular gen-

erative model, and motor commands reduce to predictions about proprioceptive sensations that

are easily realised at the level of motor reflex arcs. Consequently, the FEP shifts the question

from whether the cerebellum implements forward models for the sake of state predictions, to

which type of generative model does it encode, and how does its model integrate within the

overall whole-brain hierarchical model [74]. Notably, this perspective may help to understand

the observed ubiquitous cerebellar involvement in a range of behaviours aspects, including the

more cognitive ones.
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Figure 1.2: Models for motor control. Top: diagram of motor control based on separate
models. Here, the body changes its states x based on the current state and motor command u
(the mapping is shown as an arrow from x, u to ẋ). The command u is generated by an inverse
model, designed to minimise a cost function c by selecting an appropriate u based on current
estimated state x̂; the choice of c is arbitrary and context-dependent. Estimation of x is based on
sensory input s and predictions ˙̂x; these predictions, generated by a forward model, implement a
closed loop that enables compensation of sensory delays. Cerebellar functions are often associated
with the implementation of a forward model, which predicts changes in states ˙̂x based on the
current estimate x̂ and efference copy u from the inverse model. Bottom: motor control based on
hierarchical generative models. The entire brain instantiates a hierarchical model of how hidden
causes x change over time and how they produce s (or states at the lower level). State estimation
rests on neuronal message passing involving estimates x̂ and prediction errors ε, scoring the
difference between real and predicted sensory states (s − ŝ). Notably, estimation also depends
on prior beliefs v, which here substitute the cost function c. These beliefs are characteristic of
the particular system in question (e.g., a fish), and bias state estimation towards states that are
most expected (e.g., being in the water). Realisation of expected states ultimately occurs at
the level of spinal arc reflexes, implementing a simple, hardwired inverse model of how muscle
contraction leads to minimisation of proprioceptive ε. In this framework, the cerebellum is part
of the overall hierarchical model, and the question then becomes how does it fit within the latter.
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1.3 Aims and overview of the thesis

The work presented in this thesis aims at elucidate the cerebellar contribution to behaviour by

means of both theoretical and experimental work.

The theoretical part of the work investigates how cerebellar computations contribute to whole-

brain dynamics. This contribution is based on the link between cerebellar internal models and

extra-cerebellar dynamics; however, the exact nature of this link is still unclear. Here, we address

this issue, and propose the idea that the key function of the cerebellum is to support behavioural

coordination by controlling extra-cerebellar neuronal dynamics, underlying discrete behavioural

domains, via its own estimates about those dynamics. Specifically, we propose that the cerebellar

internal model learns and continuously infers interactions between behaviourally relevant states,

where these interactions express how dynamics of distinct but connected behavioural variables

should jointly unfold over time. The ensuing cerebellar estimates can then be used to constrain

extra-cerebellar dynamics, so to realise coordination expected by the cerebellar model. In other

words, learned expectations held by the cerebellar internal model about behavioural coordina-

tion drives general coordination of extra-cerebellar neuronal dynamics underlying behavioural

production.

The experimental part of the work investigates instead how whisking behaviour is encoded

within the lateral cerebellar cortex, and how this encoding affects behaviour. Whisking is a

key aspect of the rodent behavioural repertoire, supporting many different motor and cognitive

domains [134, 51, 238, 7, 210, 232]. Whisking activity is well represented in the lateral cerebellar

cortex [37, 38], and the cerebellum in turns plays a central role in the control of whisking

behaviour [184, 191]. However, it is not known whether and how neuronal representations in the

cerebellar cortex change based on the state of the network – which may be reflecting different

behavioural states – and how these changes may affect behaviour itself. The state of the cerebellar

cortical network is affected by several factors, including the level of inhibition, which is under

the control of different mechanisms such as neuromodulation [174]. Thus, we investigate how

neuronal representations of whisking, and whisking behaviour itself, may change under different

levels of inhibition in the cerebellar cortex.

In more detail, we recorded both (i) population activity throughout the cortex, with Neu-
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ropixels I probes, and (ii) unilateral whisker position, with a high-speed camera, in head-fixed

mice. Importantly, recording was carried out both in the intact network and during manipula-

tion (reduction) of the Golgi cell activity, a primary source of inhibition in the cerebellar cortex.

This setup allowed us to study how whisking-related information is represented by the cerebellar

cortical network, and how these representations change when perturbing the state of the network.

The rest of the thesis is organised as follows: we first describe the results of the theoretical

work, which comprise a description of a cerebellar internal model capable to infer how behavioural

domains couple together; these results also include simulations of behavioural coupling in the

context of whisking-respiration coordination in rodents. Next, we continue by presenting the ex-

perimental work: we first describe the whisking representations in the intact cerebellar cortical

network; then, we describe how these representations change when manipulating Golgi cell inhi-

bition, and in particular when reducing it. Briefly, neurons in the lateral cerebellum appear to

accurately represent whisking behaviour, and in particular upcoming whisking, both at a single

cell and population level. On the other hand, manipulation of the network’s state, while not

affecting the quality of neuronal representations, impacts both neuronal and whisking activity.

In particular, reducing Golgi cell activity appears to decrease temporal variability of neuronal

activity locked to whisking behaviour, while making whisking activity more variable over time.
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Chapter 2: Cerebellar state esti-

mation supports behavioural coor-

dination

This chapter is based on the paper ‘Cerebellar state estimation enables resilient coupling across

behavioural domains’ [175], for which I conceived the idea, wrote the manuscript in its entirety,

made the figures and wrote their captions. In particular, the exposition follows the same structure

of the paper, and the figures and results are the same.

2.1 Introduction

2.1.1 Cerebellar state estimation supports efficient coordination of be-

havioural domains

Behaviour is the result of complex interactions between multiple internal states and external

conditions. The cerebellum is involved in all behavioural aspects, from the most simple, like

reflex execution [61], to more complex and cognitively demanding ones: these include for example

emotional control [213, 210], social interactions [129], language [6] and mental representations

[156, 199]. However, the exact cerebellar contribution to all these behavioural aspects remains

unclear.

Many cerebellar theories assume that its network implements internal probabilistic models
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for the estimation of hidden states, and that these estimates are used to correct or finesse

computations in other brain regions involved in behaviour [180, 158, 239]. These theories are

built upon many empirical findings, showing that neuronal dynamics in the cerebellum reflect

a state estimation process [147, 168, 10, 201, 220, 217]. Nevertheless, it remains unknown the

precise nature of the link between cerebellar internal models and neuronal dynamics in other

brain regions.

Some key cerebellar features are particularly important when looking to understand its func-

tion. First, the cerebellum has a relatively simple network architecture, possibly indicating

it performs a specific universal or fundamental computation [4]. Second, its inter- and intra-

regional connectivity seem to favour sensorimotor and multimodal integration [208, 209, 111, 34,

113, 227]. Third, the cerebellum is well known to express associations between behaviourally

relevant states through plastic changes in its connectivity structure [42]. Taken together, these

features speak to a high-level, general role of the cerebellum in providing extra-cerebellar regions

with precise estimates of how various states interact during behaviour. That is, because func-

tional behaviour requires dynamic coordination of external and somatic states, here we sustain

the idea that the chief cerebellar function is to contribute to behaviour by learning and executing

interactions or context sensitivity among hidden states.

In more detail, here we pursue the idea that the cerebellar-dependent contextualisation of

states’ dynamics on one another is based on generative or internal models encoding expectations

about state interactions. These expectations are acquired through learning, and shape cerebellar

estimates that are then used to constrain and modulate neuronal dynamics in extra-cerebellar

structures. This description of cerebellar function is in line with prominent theories of the cere-

bellum as a Smith predictor, a forward model, a model predictive control or as an implementation

of predictive coding [54, 179, 222, 201, 67, 137, 185, 74] – all of which involve a state prediction

and estimation process. In this work, we will use a formalism that generalises these theories, the

free energy principle (FEP), which I will introduce below.
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2.1.2 The free energy principle

At its core, the FEP is a theory of self-organisation [187], an ubiquitous process that at its

simplest describes the spontaneous emergence of ordered patterns in a system from interactions

among its components. This definition can be extended to describe biological systems, as systems

embedded in an environment that are able to maintain a functional coupling with – and therefore

a separation from – it. As such the FEP has been used to describe biological self-organisation at

various temporal and spatial scales, including morphogenesis [70, 176], neuronal dynamics [130,

177, 114], cognitive functions [76, 62, 77, 160] and social organisation [163, 68].

In essence, the FEP is a variational principle used to describe the dynamics of internal states

of a system, where these dynamics are predicated to minimise a quantity called variational free

energy (F ). F is an upper bound on the surprisal (negative log probability) of sensory exchanges

of the system with its environment; intuitively, higher surprisal is associated with sensory input

or observations that are uncharacteristic of the system in question. The time average of surprisal

is entropy, corresponding to the level of dispersion of sensory input towards an undefined, death-

like state. Therefore, by minimising F , a system is able to bound entropy production; namely,

it self-organises to counteract the intrinsic tendency to decay.

The key aspect of the FEP is that it uses an information theoretic quantity, F , which is based

on a probabilistic model of how observations are generated, to describe the physical process

underlying biological self-organisation. In details, it offers a dual perspective on a system, by

linking the physical dynamics of that system with its dynamics in a encoding space: in particular,

in a space of probabilities, where each point corresponds to a conditional probability distribution

encoded by the system’s states, over external states generating observations. Consequently, a

self-organising system, capable of maintain itself over time, is necessarily a good probabilistic

model of its environment, and is able to predict its sensory exchange with it. Applying the FEP

to the brain and behaviour, the nervous system can be understood as a probabilistic model of

how hidden states, both somatic and environmental, generate sensory states or observations, and

the action-perception cycle in which an system engages can be described in terms of Bayesian

inference: this is known as active inference [71].
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2.1.3 FEP and the cerebellum

The use of the FEP to explain brain functioning requires us to identify the generative model

whose structure and ensuing inference process can be mapped onto the neuronal architecture

and dynamics. The cerebellar model is an integral part of the overarching hierarchical model

that is the nervous system, and here we place it at a high level in this hierarchy. This choice is

motivated by the fact that the cerebellum receives and reciprocates input from most brain regions,

and that cerebellar lesions do not abolish the production of behaviour per se, but instead have

an impact on its fluency, precision and coordination. All this speaks to a role of the cerebellum

in contextualising concurrent, lower-level inference processes throughout the brain responsible

for behavioural production.

In more detail, this means that the cerebellum infers the context of behaviourally relevant

hidden states, rather that hidden states per se. Cerebellar state estimation infers the behavioural

context, including states’ interactions, from ascending information from extra-cerebellar brain

regions, and returns control parameters that contextualise (i.e., coordinate) inference in those

regions. Crucially, this contextualisation relies on linear or weakly nonlinear cerebellar models,

in contrast to extra-cerebellar inference processes, which are based on arbitrarily complex, highly

nonlinear models, giving rise to cyclic patterns and nested sequences [130, 131, 73].

2.1.4 Aim and overview

This work aims at developing a theoretical understanding of a fundamental cerebellar func-

tion, namely, its ability to finesse and coordinate behaviour. To this end, we model cerebellar

computations as a linear state estimation process that is capable of approximating nonlinear

extra-cerebellar dynamics. The key aspect of this model is that it contains expectations about

states’ interactions, which in turn bias cerebellar state estimation towards coordination. These

estimates are then used to coordinate discrete behavioural domains, by constraining (i.e., con-

textualising) neuronal dynamics in one brain region based on concurrent dynamics in other brain

regions, and vice versa.

We develop this idea by first presenting a general cerebellar model supporting state estima-

tion of hidden states and their interactions. We then trace a mapping between components of
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the model and elements of the cerebellar circuit, to illustrate how this mapping may account

for various aspects on the network dynamics. Finally, we present the results of simulations,

showcasing cerebellar-based coordination in the context of whisking-respiration synchronisation

in rodents, as well as limb and tail coordination during locomotion, for which the cerebellum has

been shown to play a role [151, 191]. Importantly, this simple behavioural setting evinces the

fundamental cerebellar contribution to coordinated behaviour, which can be generalised to all

sorts of behavioural paradigms.
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2.2 Materials and methods

2.2.1 Neuronal dynamics as inference

Bayesian inference is concerned with seeking the posterior distribution over unknown states ϑ,

given observations y and a model m that defines the joint probability distribution between ϑ and

y:

m = p(ϑ, y). (2.1)

The posterior distribution can be written as:

p(ϑ|y,m) =
p(y|ϑ,m)p(ϑ|m)

p(y|m)
. (2.2)

Equation 2.2 is often intractable because the marginal likelihood at the denominator, p(y|m),

also known as model evidence, involves an expensive integration over all possible values of ϑ.

Alternatively, one can use variational Bayes, a procedure that seeks to optimise an arbitrarily

defined probability density over environmental states, known as variational or recognition density,

q(ϑ), to best approximates the true posterior p(ϑ|y). The FEP suggests that the brain performs

approximate Bayesian inference. In particular, variational Bayes is based on the minimisation of

the Kullback-Liebler (KL) divergence between q(ϑ) and p(ϑ|y), which can be expressed in terms

of variational free energy (F ) [22], using Bayes law in Equation 2.2, and dropping reference to

m hereafter for clarity:

Dkl(q(ϑ)|p(ϑ|y)) =
∫

q(ϑ) log
q(ϑ)

p(ϑ|y)
dϑ

= F + log p(y)

(2.3)

where

F (q(ϑ), y) =

∫
q(ϑ) log

q(ϑ)

p(ϑ, y)
dϑ. (2.4)

Notice that F and q(ϑ) depend on the generative model m, as p(ϑ, y) does. From Equation 2.3,

changing q(ϑ) to minimise F automatically reduces Dkl, because log p(y) does not depend on

q(ϑ). Thus, approximate Bayesian inference rests on F minimisation, which makes q(ϑ) approach

p(ϑ|y). Moreover, F minimisation also maximises model evidence, because F is an upper bound

22



CHAPTER 2 2.2. MATERIALS AND METHODS

of the negative log marginal likelihood:

− log p(y) ≤ F. (2.5)

The brain is thought to parameterise the sufficient statistics of q(ϑ). The question is then what

form does q(ϑ) take. A common approach is to use the Laplace approximation, under which

q(ϑ) takes the form of a Gaussian distribution, which is fully defined by its mean or expectation

µ and variance ξ, q(ϑ;µ, ξ) [69]. One consequence of adopting this approximation is that beliefs

about hidden or latent states are unimodal, and that the curvature of the distribution around

its mode (i.e., the variance) is an analytic function of the mode or expectation. This leaves only

one parameter, µ, to be encoded by the brain in order to minimise F , and leads to a description

of neuronal dynamics in terms of predictive coding or Bayesian filtering [69, 75]. In this case, F

can be defined as[22]:

F (µϑ, y) = − log p(µϑ, y) (2.6)

2.2.2 State space models

The exact form of F is specified by the model m. In this work, we use a state space model with

first-order generalised motion (bold face refers to vectors) [69]:

y = g(x) + Z Z ∼ Normal(0,Σz)

dx

dt
= x′ = f(x,v) +W W ∼ Normal(0,Σw)

v = V V ∼ Normal(0,Σv).

(2.7)

In this model, observations y are generated by two hidden or latent states, v and x: v plays the

role of a control or input variable, entering the equation of motion for x, whereas x is the state

of the system. This model is stochastic, including the noise terms Z and W , which affect the

mapping g from x to y and equations of motion for x, respectively. In this hierarchical model,

V is a noise term with high variance, which makes the prior over v noninformative. Under this
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model, F can then written as the sum of different components (omitting some terms for clarity):

F (µ,y) = − log p(µ,y) = − log p(µx,µv,y)

= − log p(y|µx)− log p(µx|µv)− log p(µv)

(2.8)

where, using Equation 2.7, each component correspond to:

log p(y|µx) = −1

2
(y − g(µx))

TΣ−1
z (y − g(µx))−

1

2
log|Σz|

log p(x|v) = −1

2
(µ′

x − f(µx,µv))
TΣ−1

w (µ′
x − f(µx,µv))−

1

2
log|Σw|

log p(v) = −1

2
µT

v Σ
−1
v µx − 1

2
log|Σv|.

(2.9)

This in turn allows us to write F as:

F (µϑ,y) =
1

2
εTy Πzεy −

1

2
log|Πz|+

1

2
εTxΠwεx − 1

2
log|Πw|+

1

2
εTv Πvεv −

1

2
log|Πv| (2.10)

where we have substituted the covariance matrix with the precision matrix (Π = Σ−1) and used

the prediction error terms, ε:

εy = y − g(µx)

εx = µ′
x − f(µx,µv)

εv = µv

(2.11)

where

g(µx) = θgµx

f(µx,µv) = −µx + θfµv.

(2.12)

2.2.3 Recognition dynamics

Equation 2.10, Equation 2.11 and Equation 2.12 are used to specify gradient descent of F , with

learning rate κ, which can be used to specify the recognition dynamics, namely, the temporal

evolution of expectations about beliefs encoded by the brain:

µ̇ = µ′ − κµ
dF (µ,y)

dµ
. (2.13)
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Notably, this gradient scheme assumes that the brain encodes the dynamics of these expectations,

in addition to their instantaneous value. Because of this, belief updates, µ̇, depends on both

the F gradient (second term in the equation), and the expected motion of those beliefs, µ′.

Therefore, µ̇ and µ′ equate only when F is minimised [69].

We can now specify the recognition dynamics for the hidden states and causes in the state

space model, x, x′, v:

µ̇x = µ′
x − κx

F (µ,y)

dµx

µ̇′
x = −κx′

F (µ,y)

dµ′
x

µ̇v = −κv
F (µ,y)

dµv

(2.14)

where the middle equation in 2.14 is the change in the expected motion of beliefs. Notice that

the expected motion µ′
x only appears in the recognition dynamics of µx, as v does not have any

dynamics, and the model does not include generalised motions of order higher than one, and

thus there is no µ′′
x = dµ′

x/dt.

Finally, using the definition of F in equation 2.10, we can expand the partial derivatives in

Equation 2.14:

F (µ,y)

dµx
=

1

2

(
d(µy − θgµx)

T

dµx
2Πzεy

)
+

1

2

(
d(µx′ − (−µx + θfµv))

T

dµx
2Πwεx

)
= −θTg Πzεy +Πwεx

F (µ,y)

dµx′
=

1

2

(
d(µx′ − (−µx + θfµv))

T

dµx′
2Πwεx

)
= Πwεx

F (µ,y)

dµv
=

1

2

(
d(µx′ − (−µx + θfµv))

T

dµv
2Πwεx

)
+

1

2

(
d(µv)

T

dµv
2Πvεv

)
= −θTf Πwεx +Πvεv

(2.15)

where we used the matrix differentiation property

dxTAx

dz
= 2

dx

dz
Ax (2.16)

for symmmetric A.
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2.2.4 Action-perception cycle

In active inference, Equation 2.13, describes how a system minimises F by perceiving its envi-

ronment, namely, by changing beliefs about hidden states that best explain its observations. As

an alternative, a system can minimise F by changing those observations, making them comply

with what it expects based on its beliefs about the world. This account of action can be specified

with a gradient descent on F :

ȧ = −κa
dF (µ,y)

da
F (µ,y)

da
=

dy

da

dF (µ,y)

dy

(2.17)

where action a changes observations y so that to minimise F . Importantly, in this formulation of

active inference, a is not part of the m, and therefore does not enter the definition of F . Instead,

the brain is assumed to possess an inverse model specifying how a (e.g., muscle contraction)

modifies y (sensory input from muscle spindles). Notably, this model is hardwired at the level

of peripheral reflex arcs, and realises predictions about proprioceptive states that are the end

product of a cascade of belief propagation involving the whole brain hierarchy [72]. In this work,

however, the cerebellar model does not use action to couple back to extra-cerebellar structures,

so we do not concern ourself with a explicitely.
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2.3 Results

2.3.1 Cerebellar contribution to neuronal inference

How well the brain minimises F depends on the ability of its generative model to reflect real

environmental dynamics, while making them comply with what it expects; a process also known

as self-evidencing [106]. From this perspective, lesion models of the cerebellum suggest that its

computations benefit behaviour by improving state estimation or inference in other brain regions,

rather than performing inference processes that directly underlie perception or the production

of behaviour. This can be achieved by the cerebellum via the contextualising extra-cerebellar

inference, where the context for one brain region is given by the concomitant dynamics in another

brain region, and vice versa.

Contextualisation of discrete brain dynamics is critical for proper behaviour, simply because

fluent behaviour is coordinated, which implies that the underlying brain dynamics are as well.

Cerebellar inference may offer a key contribution to behavioural coordination, by efficiently learn-

ing and enforcing coordinated interactions between extra-cerebellar dynamics. This contribution

may be particularly relevant for the execution of habitual behaviour [185], where cognitively

effortful mental processes are replaced by automated responses.

The cerebellum may therefore integrate information from extra-cerebellar regions, which

can generate complex dynamics, based on simple models approximating those dynamics and

their interactions. The resulting cerebellar estimates could then serve to refine and optimise

those dynamics, realising the necessary coordination among discrete behavioural domains. Such

cerebellar-extra-cerebellar communication implies that the cerebellum occupies a high level in

the brain hierarchy, from where it could integrate and contextualise information, as illustrated

in Figure 2.1. We now turn to describe the nature of the cerebellar model that might underlie

behavioural coordination.

2.3.2 The cerebellum: internal model and neuronal dynamics

The cerebellum is characterised by a relatively simple architecture, repeated throughout its

regions. This suggests that the cerebellum implements a simple and general model, capable of
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Figure 2.1: Cerebellar and extra-cerebellar hierarchical model. In this work, the brain is
assumed to instantiate modular generative model (black arrows within pink boxes), reflecting the
existence of hidden states (x’s) generating separate streams of observations (y’s). Neuronal mes-
sage passing within and between (potentially hierarchical) modules drives updating of encoded
expectations based on unexplained information, namely, prediction errors. At the same time, the
cerebellum receives global information – the same prediction errors exchanged by extra-cerebellar
structures – and integrates it based on a simple generative model that incorporates interactions
between different streams of information (black line from all x’s to all y’s). Cerebellar estimates
of x, conditioned on other x’s, are then returned to extra-cerebellar brain regions to realise ex-
pected coordination among x’s.

approximating different types of behavioural dynamics. In the following, we will describe the

model and recognition dynamics presented in the methods, but here rehearsed in the context of

cerebellar inference. Here we use a stochastic state space model, where observations y, ascending

from the periphery or extra-cerebellar structures, are generated by hidden states x and causes

v. (Bold face refers to vectors.) The noise terms Z, W and V are normally distributed with

covariance Σz Σw and Σv. In our model, x correspond to behaviourally relevant states, whereas v

are control or contextual states capturing interactions among hidden states. Specifically, v enter
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the equations of motion f of x, while x are mapped through g onto y; v is instead unconstrained

(ΣV has large variance terms):

y = g(x) + Z Z ∼ Normal(0,Σz)

dx

dt
= x′ = f(x,v) +W W ∼ Normal(0,Σw)

v = V V ∼ Normal(0,Σv)

(2.18)

Because the model includes equations of motion for x, the cerebellum is able to infer states’

dynamics from y. Moreover, the mapping g from x to y and equations of motion f for x

can be linear, in accordance with experimental findings showing linear encoding of behavioural

variables [37, 38]. When considering only expected states and causes (Laplace approximation),

the mapping and equations of motion can be written as:

g(µx) = θgµx

f(µx,µv) = −µx + θfµv

(2.19)

These equations specify the implicit cerebellar generative model, whose inversion equations,

namely the equations describing the inference of µx and µv from y, can be associated with neu-

ronal dynamics. In particular, inference is about expected values that best explain observations:

µ̇x = µ′
x + κx(θ

T
g Πzεy −Πwεx) (2.20a)

µ̇′
x = −κx′Πwεx (2.20b)

µ̇v = κv(θ
T
f Πwεx −Πvεv) (2.20c)

where the κ’s and ε’s correspond to learning rates and prediction errors, respectively:

εy = y − g(µx)

εx = µ′
x − f(µx,µv)

εv = µv.

(2.21)
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All variables and parameters in Equation 2.20 and Equation 2.21 can be mapped onto element of

the cerebellar circuitry (see Fig 2.2). In particular, y and v can be associated with mossy fibre

and Purkinje cell population activity, respectively, while both hidden states µx and velocities

µx′ are represented by the granule cell population activity, meaning that granule cell encode the

trajectory of hidden states, similarly to the coefficients of a Taylor expansion. This temporal

encoding is specified in Equation (2.20a), in which µ̇x, changes in expected values of hidden

states, are a function of the expected velocity, µx′ . In the biophysical network, this relationship

is determined by the effects on current state estimation of the recent neuronal history [97, 214].

Notably, µ̇x is also dependent of prediction error terms θTg Πzεy and Πwεx.

The term θTg Πzεy corresponds to the unexplained information originating from the compar-

ison between observations y, carried by mossy fibre, and predictions g(µx), carried by Golgi

cell feedback inhibition. This comparison occurs in the glomeruli, which contain dendrites and

axonal terminals from granule cells, Golgi cells and mossy fibre, and whose connectivity with

granule cells is captured by θTg . Additionally, εy is weighted by the precision matrix θTg Πz im-

plemented by Golgi cell inhibition [174], which controls the response of the network to mossy

fibre excitatory drive based on the precision of incoming information.

On the other hand, Πwεx is associated with feedback from Purkinje cell activity, encoding µv.

This feedback can be both direct and indirect: in the first case implemented by Pjc modulation

of cerebellar cortical interneurons [237] and grc [93]; in the second case implemented through

recurrent inputs from cerebellar nuclei (cn) [110, 3], whose activity is a function of both mossy

fibre collaterals and Purkinje cell inhibition.

Next, Equation 2.20b describes changes in the encoded velocities, µ̇′
x: these changes are

driven by the prediction error term εx, incorporating predictions f that, in absence of mossy

fibre input, sparsify granule cell activity, by attracting µx toward zero. Notably, as in the case

of µ̇x, µ̇x′ depends on µv via f , and therefore relies on the same feedback mechanisms involving

Purkinje cells and cerebellar nuclei.

The last step of information processing in the cerebellar cortex involves µv (Purkinje cell

activity), whose dynamics are described by µ̇v, Equation. 2.20c. Updates are dictated by µx

and µx′ , entering εx via f , the parallel fibre connectivity matrix defined by θTf , which in our

model is the connectivity matrix encoding cerebellar expectations about interactions among x’s.
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Figure 2.2: Mapping elements of the model to cerebellar circuitry. Neuronal elements
are distinguished from elements of the model by brown boxes. Mossy fibre carry information
y from extra-cerebellar structures to both cerebellar nuclei and the cerebellar cortex, driving
prediction errors εy within them. In the cortex, εy can be associated to the excitation-inhibition
balance within glomeruli, which drives Golgi cell and granule cell activity, while being set by
Golgi cells, cerebellar nuclei and Purkinje cell feedback activity. Computationally, this feedback
consists in predictions generated by the mapping g (from Golgi cells) and equations of motion
f (from cerebellar nuclei and Purkinje cells), and aims at minimising prediction errors εy. At
the same time, Golgi cells also control the precision Πz of prediction errors. Residual εy are
carried by parallel fibres to the molecular layer, where they drive molecular layer interneuron
and Purkinje cell activity, encoding µv, based on the connectivity matrix θTf . This connectivity
matrix encodes learned expectations about hidden states’ interactions, and biases µx through
(direct and indirect) feedback connections. Hidden states µx are also encoded by cerebellar nuclei,
whose extra-cerebellar projections carry cerebellar state estimates to extra-cerebellar structures,
where they constrain inference therein. Mossy fibres mf; Purkinje cells Pjc; granule cells grc;
Golgi cells Goc; glomeruli glom; cerebellar nuclei cn; molecular layer interneurons mli.
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Finally, the cerebellum couples back to extra-cerebellar regions via cerebellar nuclei, whose

activity replicates the encoding of µx, as they are assumed to receive the same information as

the cerebellar cortex via mossy fibre collaterals.

2.3.3 Simulation of motor coordination

I now describe the results of two sets of simulations showcasing the contribution of cerebellar

state estimation to motor coordination. This coordination relies on expectations held by the

cerebellum about interactions between different behavioural dynamics. A plausible mechanism

through which these expectations may be acquired and encoded is synaptic plasticity at the level

of the parallel fibre connectivity matrix (θTg ), as shown in studies of behavioural conditioning

[40] and adaptation during eye movements [242]. Through these expectations, the cerebellum

is then able to provide extra-cerebellar structures with top-down empirical prior or constraints

promoting coordination.

In particular, the first set of simulations is concerned with the synchronisation of whisking and

respiration in mice, for which the cerebellum has been found to be important [191] (Figure 2.3).

This synchronisation is a key aspect of rodent’s behaviour, as it underwrites functions such

as exploration of the environment, as well as the coordination of many other motor domains,

such as locomotion, eye movements and head positioning [65, 138, 232, 15]. The dynamics of

these behaviours is the result of an intricate network of brain structures, encompassing among

others brainstem pattern generators and premotor cortical areas, all of which are modulated by

cerebellar outputs [9, 14, 191, 216, 90].

These simulations start from the specification of a cerebellar generative model and a gen-

erative process, the latter encoded by extra-cerebellar regions (e.g., central pattern generators)

driving dynamics of whisking and respiration. Importantly, extra-cerebellar regions also reflect an

inference process, in this case concerned with latent states (e.g. amplitude and phase) associated

with whisking and inspiration-respiration cycles. According to active inference, extra-cerebellar

inference drives motor behaviour, by generating proprioceptive predictions that are realised at

the level of motor reflex arcs [72]; however, in this work we do not explicitly simulate extra-

cerebellar inference, but approximate it with a stochastic process. Therefore, by acting on the
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Figure 2.3: Whisker-respiration coordination. The cerebellum is engaged in an inference
process that involves reciprocal message passing with extra-cerebellar structures (violet-brown
cycle). With experience, the cerebellum learns to expect how brain dynamics interact or coor-
dinate with each others, and efficiently generates estimates that incorporate these expectations.
In the context of whisking (gold line) and respiration (grey line), cerebellar estimates constraint
their dynamics to evolve in synchrony. This contextualisation can be adapted to different be-
havioural regimes, here exemplified by a regime of locomotor whisking, with low whisking and
respiration rates (orange background), and a regime of object exploration, with high whisking
and respiration rates (green background), separated by a brief period with no whisking (pink
background).

generative process, the cerebellum implicitly controls whisking and respiratory behaviour.

The generative process consists in a Kuramoto system, whose output variables w and r can
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be associated respectively with the somatic states of whisker position and expansion of the rib

cage. The Kuramoto model specifies the whisker and respiration phases:

r = sinϕr

w = α sinϕw.

(2.22)

whose rate of change is set by intrinsic angular velocities, ωw and ωr, and perturbed by inde-

pendent Gaussian noise Qw and Qr and offset ω0. On the other hand, the α, ωw and ωr terms

are state dependent, and are changed throughout the simulation time in order to stop or restart

whisking, by setting α to 0 or 1, and to increase or decrease the frequency of whisking and

respiration, by modifying ωw and ωr:

dϕw

dt
= ωw + k sin(xw − ϕw) +Qw Qw ∼ Normal(0, σw)

dϕr

dt
= ωr + k sin(xr − ϕr) +Qr Qr ∼ Normal(0, σr)

ωr = ωw + ω0.

(2.23)

The choice of using the Kuramoto system is due to the fact that it incorporates a coupling

term, which in standard formulations couples the sine of two or more oscillators. In the present

work, instead, these terms, k sin(xw − ϕw) and k sin(xr − ϕr), couple the phase of whisking and

respiration to the corresponding cerebellar hidden states, xw and xr; that is, there is no explicit

or direct coupling between the two oscillators other than that afforded by cerebellar expectations

about how xw and xr interact with each others. This coupling is therefore dependent on the

cerebellar generative model, which takes the same form of the state space model in Equation 2.18:

y = g(x) + Z Z ∼ Normal(0,Σz)

dx

dt
= x′ = f(x,v) +W W ∼ Normal(0,Σw)

v = V V ∼ Normal(0,Σv).

(2.24)
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where y, x and v are now associated with whisking and respiration somatic states:

y =

 w

r

 , x =

 xw

xr

 , v =

 vw

vr

 . (2.25)

The cerebellar generative model recapitulates inference in extra-cerebellar regions. Thus, obser-

vations y are associated with peripheral input engendered from the dynamics of somatic states

w and r returned by the generative process. In the cerebellum, y is predicted from the mapping

g involving hidden states xw and xr. These hidden states represent somatic states w and r, and

have dynamics controlled by hidden causes vw and vr, whose estimates are biased by expectations

about hidden states’ interactions, encoded in the parallel fibre connectivity matrix θf :

g(x) = θgx θg =

 1 0

0 1


f(x,v) = −x+ θfv θf =

 1 1

1 1

 .

(2.26)

In the present model, learning the connectivity matrix θf is a prerequisite for the cerebellar state

estimation to drive fluent and coordinated behaviour; this step is critical, and presumably relies

on the continuous adaptation of the parallel fibre connectivity matrix based on climbing fibre

input.

From Equation 2.24, Equation 2.25 and Equation 2.26, one can then specify the inversion

dynamics (Equation 2.20 and Equation 2.21) that are associate with (average) neuronal dynamics

in the cerebellum.

Please notice the difference between the generative process and model: both describe how

the same somatic states related to whisking and respiration evolve over time, but the way they

describe these dynamics is different. Extra-cerebellar structures implement a nonlinear (Ku-

ramoto) model to describe those dynamics, whereas the cerebellum uses a linear description, in

line with its simple architecture and linear encoding of behaviourally relevant variables [37, 109,

190]. Therefore, the cerebellum is able to synthesize extra-cerebellar dynamics and, importantly,

their interactions, with a simpler model. This approximation works because the cerebellum infers
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the context and not the content of behaviour, and may underlie the cerebellar role in finessing

behaviour and reducing its cognitive load during habitual behaviour [185].

The results of the simulation are shown in Fig 2.4, Fig 2.5 and Fig 2.6, one for each simulation

condition used (explained below). In all three cases, whisking and respiration have dynamics

which change based on the behavioural state of the in silico mouse, which is done to exemplify

cerebellar-dependent coordination in different regimes of behaviour. These states consist in

a period of locomotor whisking, during which the animal displays low rates of whisking and

respiration, an intermediate period with whisking amplitude decaying to 0, and a final period of

object exploration, during which whisking and respiration have high basal rates.

For all three figures (Fig 2.4, Fig 2.5 and Fig 2.6), the top half shows the output of the gen-

erative (extra-cerebellar) process in simulations where the cerebellum holds expectations about

whisking-respiration coordination, encoded by an all-one θf matrix (see Equation 2.25); this con-

dition is labeled ‘With cerebellar contextualisation’. The bottom half shows instead the output

of the generative process when θf is a diagonal matrix, that is, the cerebellum does not ex-

pect interactions between whisking and respiration; this condition is labeled ‘Without cerebellar

contextualisation’.

Each of the three figures is associated with a different simulation condition. In Fig 2.4,

whisking and respiration oscillatory rates have offset ω0 ̸= 0; in Fig 2.5, the two variables have

the same intrinsic velocity, but evolution of their phase is subject to independent Gaussian noise;

in Fig 2.6, there is neither offset nor noise, but an external perturbation is applied to whisker

dynamics, abruptly changing its phase.

The level of behavioural synchronisation in all figures is displayed in three ways. The left

panels show the amplitude or displacement from a reference or resting point of w and r in

the time domain. The middle panels show the time evolution of the w and r difference. The

right panels show whisking and respiration variables in their joint state space, together with the

synchronisation manifold (dotted black line).

In all cases, when the cerebellum expects synchronised dynamics between whisking and res-

piration, it is able to overcome chaotic forces, and realises behavioural coordination. This is

because cerebellar estimates, biased towards synchrony, enter the coupling terms in the gen-

erative process, k sin(xw − ϕw) and k sin(xr − ϕr), where they act as constraints for w and r
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Figure 2.4: Cerebellar contribution to whisking-respiration coordination (1) In these
simulations, whisking and respiration oscillatory rates have offset ω0 ̸= 0. Vertical dotted red
lines demark the transition from one behavioural state (i.e. fast, slow whisking/breathing and no
whisking) to another. Top half (‘With cerebellar contextualisation’): the cerebellum is endowed
with expectations about whisking-respiration coordination, and consequently it is able to realise
these expectations – despite offset ω0 – by biasing extra-cerebellar states (whisking w and res-
piration r) accordingly. This coordination is shown in the left panel, displaying the evolution of
the two variables over time; in the middle panel, displaying the evolution of their difference; and
in the right panel, displaying their evolution in the joint state-space (straight line corresponds
to synchronisation manifold). In this and other figures, behavioural modes, namely, locomotion,
object exploration and intermediate state, are color-coded using orange, green and pink for the
background (left and middle panel) or lines (right panel). Bottom half (‘Without cerebellar con-
textualisation’): now the cerebellum has no prior beliefs that whisking and respiration should
evolve jointly. As such the two variables (left) and their difference (middle) diverge over time,
while circulating far from the synchronisation line in state-space (right).

phase dynamics. On the other hand, with a näıf cerebellum (i.e., no expectations in place),

these constraints are effectively absent, because cerebellar estimates limit themselves to follow

desynchronised dynamics. The bias on cerebellar state estimation can be better appreciated by

comparing inference in the presence or absence of cn outputs, namely, when the cerebellum can

or cannot realise expected synchrony (Fig. 2.7).

As a second example – dealing with whole-body dynamics – we simulate the coordination of

limbs and tail during locomotion. Locomotion relies on coordination between many body parts,
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Figure 2.5: Cerebellar contribution to whisking-respiration coordination (2). The figure
layout is the same as for Fig 2.4, but now whisking and respiration have (same) angular velocities
that are perturbed by independent Gaussian noise. Again, the presence or absence of cerebellar
expectations about behavioural synchrony determines whether whisking and respiration stay
coupled (top) or not (bottom).

which in turn depends on an intact cerebellar cortex [151]: in mutant mice with a cerebellar

deficit, for instance, pairwise coordination of front and hind limbs on opposite sides is lost,

together with symmetric tail dynamics. Here, we model extra-cerebellar neuronal dynamics

driving the vertical movement of limbs during the stride cycle:

lfr = sinϕfr

lfl = sinϕfl

lhr = sinϕhr

lhl = sinϕhl.

(2.27)

The displacement of the front right (lfr), front left (lfl), hind right (lhr) and hind left (lhl) limbs

are mapped from their phase ϕ in the stride cycle, whose joint dynamics are described by a
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Figure 2.6: Cerebellar contribution to whisking-respiration coordination (3). Same
layeout as for Fig 2.4 and Fig 2.5, but now the perturbation is external, applied to the whisker
system at two distinct time points of the simulation (indicated by red arrows). With cerebellar
expectations in place, the two oscillators return synchronised (top); this does not happen in the
case of a näıve cerebellar model (bottom).

Kuramoto system, including cerebellar estimates x about limb position:

dϕfr

dt
= ω + k1 sin(xfr − ϕfr) +Qfr Qfr ∼ Normal(0, σfr)

dϕfl

dt
= ω + k1 sin(ϕfr − ϕfl) + k2 sin(xfl − ϕfl) +Qfl Qfl ∼ Normal(0, σfl)

dϕhr

dt
= ω + k1 sin(ϕfr − ϕhr) + k2 sin(xhr − ϕhr) +Qhr Qhr ∼ Normal(0, σhr)

dϕhl

dt
= ω + k1 sin(ϕfr − ϕhl) + k2 sin(xhl − ϕhl) +Qhl Qhl ∼ Normal(0, σhl)

(2.28)

The generative process imposes a phase shift of π, 3
2π and 1

2π to lfl, lhr and lhl compared to

the lfr, through the coupling terms k2 sin(ϕhr − ϕ). This bias maximises the time during which

at least one paw is touching the ground, and characterises locomotion in absence of cerebellar

contributions to whole-body coordination in mice; individual limb dynamics, in contrast, are

indistinguishable from those described in healthy animals [151] (Fig 2.8, right).

On the other hand, when cerebellar compensatory input, k1 sin(x − ϕ), are present, lfr and
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Figure 2.7: Cerebellar state estimation. This figure displays the time evolution of variables
in the generative model and process related to whisking (top panels) and respiration (middle
panels), as well as the difference of somatic states w and r (bottom panels). The simulation
condition is the same as in Fig. 2.4, where respiration oscillates faster than whisking (offset
ω0 ̸= 0). Left: simulations when the cerebellum expects synchronisation and can couple back to
extra-cerebellar structures to constrain dynamics therein. In this case, hidden states xw and xr

(red lines) closely match real states w (gold lines) and r (grey lines), as the latter are constrained
by the former. Also, hidden causes vw and vr (purple lines) are regular and relatively high in
amplitude, reflecting constant synchrony between w and r. Right: the cerebellum expects syn-
chrony, but cannot realise it because the output from cerebellar nuclei is turned off. In this case,
the cerebellum can only estimate whisking- and respiration-related variables without affecting
these behaviours; consequently, the more w and r desynchronise, the smaller the amplitude of
estimated hidden states and causes. This occurs because of the friction between what the cere-
bellum observes and what it expects.

lhl are phase-locked, as do lfl and lhr, and the two pairs are anti-correlated (Fig 2.8, left).

Compensatory input from the cerebellum rest on a generative model (a state space model as

in equation 2.7) that holds expectations about inter-limb coordination in the pp connectivity
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matrix θf :

g(x) = θgx θg =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



f(x,v) = −x+ θfv θf =



1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1


.

(2.29)

where

x =



xfr

xfl

xhr

xhl


, v =



vfr

vfl

vhr

vhl


. (2.30)

Finally, tail movements can be modelled as a passive consequence of limb dynamics [151]:

t = sinϕfr + sinϕfl (2.31)

Notably, in the presence of cerebellar coordination, tail excursions on the vertical axis (t) are

symmetric with respect to the dynamics of the two pairs of limbs (Fig 2.8), which may improve

balance and movement efficiency. Conversely, this symmetry is disrupted in the absence of

cerebellar input. In other words, in our model, optimal tail movement during locomotion emerges

from the cerebellar control and correction of limb dynamics.
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Figure 2.8: [Cerebellar-dependent coordination of limb and tail movements during
locomotion]Cerebellar-dependent coordination of limb and tail movements during lo-
comotion. Left (‘With cerebellar contextualisa- tion’): average vertical displacement of the
front right, front left, hind right and hind left limbs as well as of the tail during locomotion
across 14 strides. Shaded area denotes the standard deviation. In the presence of cerebellar
expectations of inter-limb coordination, the front right and front left limbs are phase locked with
the hind left and hind right limbs, respectively, and the two pairs of limbs have opposite phase.
This results in the pairwise coordination of limb vertical displacement. At the same time, tail
movements, which are modelled as a passive consequence of limb dynamics, symmetrically fol-
lows the dynamics of the two pairs of limbs. Right (‘Without cerebellar contextualisation’): in
the absence of cerebellar control of limb dynamics there is no front-hind limb coordination, as
each limb moves out of phase compared to the others, and tail movements become asymmetric.
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2.4 Discussion

In this work we presented a theoretical treatment of cerebellar computations that addresses its

pervasive involvement in behaviour. In particular, we proposed that the key function of the cere-

bellum is to contextualise behavioural domains, which leads to fluent, coordinated behaviour.

The main idea is that the cerebellum contributes to the coordination of discrete behavioural

domains by estimating how variables interact with each other. This means that the cerebel-

lar model is concerned with the inference of the time-varying context wherein the dynamics of

multiple behavioural variables unfold, and uses the context to constrain these dynamics. No-

tably, the context is set by all variables that contribute to behaviour at any given time, such as

sensory or reward cues informing action execution, motor activity informing predictions about

sensory consequences, or the dynamics of one motor system constraining the dynamics of other

modalities. The proposed cerebellar-dependent contextualisation of behavioural domains may

therefore provide a theoretical ground to empirical findings highlighting the importance of an

intact cerebellum for seamless, resilient to perturbations, coordinated behaviour [151, 152].

The present account of cerebellar functions is congruent with the fact that the cerebellum

integrates and reciprocates information from most brain regions [208, 209, 111, 34, 113, 227], and

that its modular and homogeneous architecture supports a simple neuronal code, fit to efficiently

learn and infer associations and reciprocal interactions among sensorimotor states [153, 2, 120].

Accordingly, cerebellar state estimation reflects learned relationships among these variables, and

constrains extra-cerebellar dynamics with timed state estimates that are conditioned on other

states (Fig 2.1).

The cerebellar-dependent coordination of behaviour may provide a key benefit to compu-

tations in other brain regions in terms of efficiency and cognitive load. This is because the

cerebellar architecture and neuronal organisation is relatively simple and stereotypical, which

in turn hints at a simple cerebellar generative model, underlying linear or weakly nonlinear in-

ference dynamics. As such, cerebellar state estimation, guiding inference in other brain regions

through contextual priors, may be critical to finesse and simplify extra-cerebellar computations,

especially during habitual, stereotypical behaviours [185].

In practice, our cerebellar model complies with the FEP, a theory of self-organisation used to
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explain dynamics of biological systems from first physics principles [71, 79]. Applying the FEP

to the brain means that neuronal dynamics can be read as inversion (inferential) dynamics based

on a generative model of how observations are generated by hidden (both external or somatic)

states in the environment. This in turn contrasts with other theories of the cerebellum, such as

adaptive filter models, which also rely on the minimisation of an objective function, but treat

the cerebellum as a function approximator, rather than a generative model.

The FEP offers therefore a formal connection linking cerebellar neuronal dynamics and net-

work [4] with internal probabilistic models [239, 120]. In particular, here we have characterised

cerebellar computations in terms of Bayesian filtering based on a state space model, in accor-

dance with theories of the cerebellum as a state estimator or Kalman filter [180, 158, 217]. From

this perspective, then, the cerebellum may optimise extra-cerebellar dynamics by increasing the

efficiency with which they destroy F gradients (i.e., minimise prediction errors).

To illustrate these ideas, we used a paradigmatic example of behavioural coordination, namely,

whisking-respiration phase synchrony in rodents [48], as well as limb and tail coordination dur-

ing locomotion [151]. In the present simulations, the cerebellar model infers control states en-

forcing synchrony between these two variables, by constraining extra-cerebellar regions driving

behavioural dynamics (Fig. 2.3). Notably, this coordination is dependent on the cerebellar gener-

ative model, and in particular on its (previously learned) expectations about whisking-respiration

synchrony encoded in the parallel fibre connectivity matrix.

The proposed cerebellar model (Fig 2.2) expresses average patterns of connectivity and neu-

ronal activity in the cerebellum, and is able to explain some important features of this brain

structure. First, because the underlying generative model is dynamic, neuronal activity (e.g. in

grc and Pjc) encodes state trajectories: this may explain the coexistance of past and future

information encoded in the population activity in the cerebellar cortex [182], and could afford

higher temporal precision compared to a neuronal code restricted to represent the instantaneous

value of states.

A second important feature of the model is its linearity, reflecting empirical findings of linear

encoding of many task-related variables [37, 109, 190]. However, some forms of nonlinear infer-

ence are still easily implementable in this model in a biologically plausible manner [17], which

may be used in some regions of the cerebellum to deal with temporal offsets in interactions among
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variables, such as in the case of delays in classical conditioning paradigms [221, 61].

A third point relates to recurrent and feedback loops within the cerebellar circuitry. This

aspect is often neglected by conventional theories, but is becoming more and more prominent,

as highlighted by evidence of feedback loops from Purkinje cells and cerebellar nuclei back to

granule cells, Golgi cells and other interneurons [139, 52, 110, 3, 237, 93]. Notably, this recurrent

internal connectivity is accounted for by the inversion dynamics described here (Eq. 2.20), despite

the simplicity of the model used.

On a last note, many lines of study emphasise the probabilistic nature of models encoded by

or instantiated in the brain [135, 150, 59, 87]. This is a key aspect for inference processes in the

brain, as they need to take in account uncertainty. In the cerebellum, this account may underlie

for example the Golgi cell-dependent control of the excitation-inhibition balance in the granule

cell population, reflecting the precision or relevance of incoming extra-cerebellar input [174].

This control might be carefully modulated through various mechanisms (e.g., neuromodulation),

and in the present model is encoded by the precision matrix Πz (Equation. 2.20), setting the

magnitude of state estimate updates.

Changes in the precision matrix Πz can have a strong impact on cerebellar state estimation

in our model, as they affect the magnitude of prediction errors driving inference. Accordingly,

future research should aim at test whether changes in cerebellar computations, resulting from ma-

nipulation of Golgi cell-dependent inhibition, are congruent with a change in precision-weighting

mechanisms of mossy fibre input. At the same time, it would be interesting to compare these

results with those obtained from manipulations of molecular layer interneurons: in our model,

these interneurons enable mossy fibre input to bidirectionally impact Purkinje cell activity, via

θTf ; however, molecular layer interneurons could also control the magnitude of the updates of

hidden causes, v, by setting Πw. Thus, precision-weighting of ascending input could occur at

various levels of the cerebellar cortex hierarchy.

The present model can also be extended significantly in different directions. First, here

we have used a minimal model, comprising two idealised oscillators, to showcase cerebellar-

dependent coordination of behaviour. However, more realistic simulations are possible, which

may include other relevant motor modalities like locomotion, head movement control, or licking

[138, 157, 91]. Moreover, the simulation may be expanded to other task conditions, including
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perceptual tasks [12] or decision making [86, 50, 200].

Second, a crucial improvement could involve the model itself. In particular, it would be

important to include the olivary-climbing fibre system as a second source of input to the cerebel-

lum, paralleling the mossy fibre pathway. This second pathway transmits many different types of

information, including sensory, motor and more cognitive input [80, 50, 126, 100, 112]; this again

highlights the pervasive cerebellar involvement in behavioural control. In the present model,

climbing fibre input would still reflect prediction errors, similarly to parallel fibre input, there-

fore updating estimates encoded by Purkinje cells. However, the type of information conveyed

should be particularly informative of task contingencies (e.g., related to unconditioned stimulus),

such as to drive the learning of new interactions or associations among behavioral variables (e.g.,

the conditioned stimulus and reflex) encoded in the parallel fibre connectivity matrix, θTf (see for

example [74]). In the present work, prediction errors conveyed by climbing fibre input would then

underlie learning of an association between whisking and respiration in the cerebellar cortex.

In addition to the olivary-climbing fibre system, the present model could also include a more

detailed description of cerebellar nuclei. Here cerebellar nuclei are replicating hidden states x

encoded in granule cell; this is justified by the fact that cerebellar nuclei receive the same mossy

fibre information reaching the cerebellar cortex, but this does not seem the case everywhere in

the cerebellum [218]. Alternatively, cerebellar nuclei could encode different hidden states, which

would still be related to those encoded by granule cell via Purkinje cell predictions. Moreover,

this approximation of cerebellar nuclei activity overlooks differences in information processing

between the granular layer and cerebellar nuclei. Thus, future work should aim at expanding the

cerebellar model presented here, to give a more detailed account of the role of cerebellar nuclei

in cerebellar state estimation.

Finally, our simulations show that, when we remove cerebellar contextualisation, the phase of

respiration and whisking, as well as inter-limb phase, decouples. This is to be expected, given the

way the generative processes are set up, and serves as a proof of concept for the cerebellar-based

coordination of behavioural variables; however, future work should aim to integrate cerebellar

contributions to extra-cerebellar dynamics with existing extra-cerebellar inter-areal connectivity,

which is also likely to play a role in behavioural coordination. It would be interesting, for example,

to investigate how cerebellar-dependent coordination of extra-cerebellar dynamics may be itself
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modulated based on the behavioural context: one mechanisms through which this could happen

may involve tuning of the impact of cerebellar nuclei outputs onto extra-cerebellar dynamics,

based for example on the the intrinsic dynamics of recipient neuronal structures, especially when

multi-synaptic connectivity is involved; alternatively, another mechanisms may involve the direct

modulation of the state estimation process in the cerebellar cortex by neuromodulatory systems,

which are also sensitive to the behavioural context.

In conclusion, we described a model of cerebellar state estimation supporting coordination of

different behavioural variables or domains. We sustained that coordinating behaviour is a key

function of the cerebellum, and may explain its ubiquitous involvement in behavioural control.

The key idea is that coordination is based on the cerebellar capacity to learn and infer how differ-

ent behavioural states interact with each other, and to use this inference to bias or contextualise

inference in extra-cerebellar regions accordingly. We simulated synchronisation of whisking and

respiration as well as limb and tail coordination during locomotion in rodents to illustrate how

the cerebellum may guide inference processes in extra-cerebellar regions; however, the present

work can be generalised to any behavioural context where associations between task-relevant

variables is critical for behaviour.
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Chapter 3: Cerebellar cortical rep-

resentations of whisking behaviour

in mice

3.1 Introduction

3.1.1 The whisker system as a model for sensorimotor integration

Behaviour requires the integration of diverse information to produce and reach desired outcomes.

At its simplest, this could involve the integration of sensory and motor information to guide

actions (based on incoming sensory information), and predict sensations (based on actions). This

cycle is at the core of active perception, namely, the purposeful, sensation-seeking interaction

with the world.

The cerebellum is deemed critical for active perception. For example, cerebellar activity is

preferentially linked to object exploration rather than movement per se [84], and is involved

in active sensory acquisition [12]. More generally, the cerebellum is thought to learn internal

models that combine and transform sensory and motor information in order to coordinate and

refine behaviour; this is in line with evidence about neuronal representations in the cerebellum

reflecting both sensory and motor domains [236, 111]. Hence, elucidating how the cerebellum

integrates and transforms sensory and motor information is key to understand how it contributes

to behaviour.
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One system widely used to study behaviour is the whisker system in rodents. This system

is key for the rodent behavioural repertoire, supporting object localisation and identification

[134, 51], guidance of locomotion [7, 232], development and expression of emotional skills [210]

and social behaviour [238]. Notably, the cerebellum plays a central role in controlling whisker

behaviour, including refinement of whisking trajectories [184] and coordination with other be-

havioural rhythms [191]. As such, the whisker system is an optimal model to investigate how the

cerebellum transforms sensory and motor information and ultimately contributes to behaviour.

3.1.2 Cerebellar representations of the whisker system

In the cerebellar cortex, neuronal activity encoding sensory- and motor-related representations of

the whisker system are localised in its lateral portion [184, 21], which includes Crus I, Crus II and

the simplex. In these areas, artificially evoked neuronal activity produces changes in whisking

parameters [184], while spontaneous activity can either be evoked by passive whisker deflection

[226, 36, 57, 108, 188] or precede voluntary whisking [37]. Notably, whisker representations

in these areas are multiple, scattered, and intermingled with representations of other sensory

surfaces in the perioral region [202], as well as of other sensory modalities (e.g., auditory and

visual) and motor systems (e.g., respiration) [113, 191, 103].

This so-called fractured organisation of neuronal representations is unlike that found in brain

regions forming somatotopic maps, as in the barrel cortex [240]. This fractured organisation

may be particularly functional to support cerebellar-specific integration of sensory and motor

modalities, which in turn may play a key role in behavioural coordination. Such organisation

is plastic, originating from experience-dependent changes of connectivity patterns taking place

at all levels of the cerebellar cortex [85, 42]. Notably, beyond adaptation due to long-term

structural changes, neuronal representations in the cerebellum may also be dynamically adjusted

at a faster time scale, based on the behavioural context, similar to what happens throughout

extra-cerebellar regions [60].

Neuronal correlates of whisking activity are based on a linear code, preferentially representing

the low-pass filtered whisker position, called the setpoint [37]. This code is used to build up neu-

ronal representations via sequential information processing across layers of the cerebellar cortex
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[38], and relies on synaptic transmission that can be extremely precise [188]. Overall, these lin-

ear transformations may be optimal to efficiently integrate whisker dynamics with those of other

behaviourally relevant variables, and tuning these transformations to the present behavioural

context may be of critical importance for functional behaviour. However, it is still unclear how

cerebellar cortical transformations, and therefore its representations of whisking behaviour, may

change depending on the state of the network.

3.1.3 Role of Golgi cells in cortical computations

A key component of the cerebellar cortex, determining how it integrates and transforms incoming

information, is the Golgi cell population. In classical Marr-Albus models, it is assumed that the

cerebellum classifies mossy fibre input patterns by associating each with a target Purkinje cell

output, and that Golgi cell inhibition promotes associative learning by increasing the discrim-

inability of mossy fibre input, a process known as pattern separation [153, 2]. Pattern separation

effectively consists in sparsifying network activity through normalisation and decorrelation: the

former scaling neuronal excitability to the global intensity of presynaptic input [27], hence forcing

selective encoding of one input pattern at time [153, 2, 16, 146]; the latter ubiquitously decreasing

response similarity by reducing correlations in neural activity via threshold effects [29, 30].

Closely related to Marr-Albus theories is the cerebellar adaptive filter model, which extends

the original idea of a static pattern classifier to a filter dealing with time-varying input [81,

241, 47, 193]. Here, Golgi cells contribute to the dimensionality expansion of the continuous

stream of mossy fibre input to the granular layer in the spatio-temporal domain, by enabling

the generation of a fixed set of long-lasting granule cell responses through strong granule cell-

Golgi cell and Golgi cell-Golgi cell recurrent connections. Notably, in both adaptive filter and

perceptron models, Golgi cells are generally deemed to be relatively insensitive to the structure

of incoming information, and their activity is thought either to act in a blanket-like fashion, or

to be mostly dominated by recurrent connectivity within the granular layer.

On the other hand, different studies have documented precise Golgi cell representations of

task-related variables, such as widespread sensory stimulation, general motor activity, or circum-

scribed events of whisking and locomotion [107, 94]. Moreover, the temporal structure of input
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is also reflected in the Golgi cell activity: due to electrical connections among Golgi cells [55],

coincidence or alternatively temporal offset among mossy fibre input can elicit synchronisation or

desynchronisation between local Golgi cell networks [235]. Finally, the particular connectivity of

the Golgi cell network also supports broader synchronisation, entraining slow fluctuations within

the granular layer that are intimately linked with other brain rhythms [169, 192]. Overall, these

findings show that Golgi cells are sensitive to the structure of incoming extra-cerebellar infor-

mation, meaning that their activity is tuned by the spatio-temporal properties of mossy fibre

input.

Thus, Golgi cells seem to also contribute more subtly to the encoding of behaviourally-relevant

variables. Along these lines, Golgi cell inhibition has been shown to control how granule cells

integrate and combine extra-cerebellar information, leading to the dynamic encoding of different

input combinations by partially segregated clusters of granule cells [64]. In the simple case of two

stimuli, for example, this means that one stimulus can evoke different responses across granule

cell subgroups depending on the second stimulus, and that this contextual encoding relies on

Golgi cell inhibition. As such, disruption of Golgi cell inhibition can lead to impaired behaviour

[233], possibly because the latter relies on integration of information about different behavioural

dynamics at the level of the granular layer.

In mice, whisking behaviour is tightly coupled with other physiological rhythms and motor

activities [48, 138, 157]. Altering Golgi cell inhibition, therefore, could affect whisking dynamics

by changing its coordination with other behavioural variables. Notably, Golgi cell inhibition is

finely tuned by numerous mechanisms, including neuromodulatory systems and feedback loops

within the cerebellum [52, 110, 3, 237, 167, 63, 141]. This control may change how incoming

whisking information is encoded and transformed by the cerebellar cortex [174], depending for

example on changes in the behavioural context, which requires a focus on different aspects of

behaviour. However, it remains to be tested whether, and how, changing levels of Golgi cell

inhibition may impact neuronal representations of whisker behaviour.

The effects of tuning Golgi cell activity on neuronal and behavioural activity depend on

how inhibition controls granule cell activity. Experimentally, Golgi cell inhibition has been

associated with decreased temporal precision of the granule cell response to mossy fibre input

[56]. Interestingly, this is in apparent contrast with the effects of classical feedforward inhibition,
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which narrows the temporal window for excitation, thus increasing the temporal precision of

the initial response of a network to its input [234, 82, 162]. Golgi cells are also a source of

feedforward inhibition, but because they can be activated by distinct mossy fibre pathways

than those driving granule cells, their inhibition may precede or be concomitant with the initial

period of granule cell excitation. Consequently, Golgi cells can decrease the temporal precision

of the initial granule cell response to one stream of mossy fibre input, by delaying this response

depending on information from parallel mossy fibre pathways. This control of response timing, in

turn, could be one mechanism through which information about different behavioural variables

is integrated by the cerebellar cortex [34], and may play a key role in motor initiation [35].

3.1.4 Aim and overview

The aim of this project was to study how neuronal activity in the cerebellar cortex represents

and contributes to behaviour. In particular, we focused on sensorimotor representations of the

whisker system in mice, an ideal model to investigate how the cerebellar cortical transformation

of sensorimotor information relates to behavior. Because cerebellar representations may not be

fixed, but may adapt to the behavioural context at hand, we investigated how changes in the

state of the network may affect cerebellar and consequently whisking dynamics. A key element

of this circuit is the Golgi cell population, which regulates the transformation of information in

the cerebellar cortex, and whose activity is controlled by many different mechanisms operating

at different temporal and spatial scales [174]. We therefore decreased Golgi cell activity in order

to change the state of the network and analysed how this change affects neuronal representations

in the cerebellar cortex and behaviour.

Once deemed to provide inhibition in a fixed, blanket-like fashion to the granule cell pop-

ulation, Golgi cells are now known to be also sensitive to the temporal and spatial structure

of mossy fibre input, which could enable them to control excitation in the granular layer more

subtly. Thus, one possibility is that decreasing Golgi cell inhibition may remove a key mecha-

nism for sparse coding, and lead to saturation of network activity and degradation of neuronal

representations therein. Alternatively, decreased inhibition may lead to more subtle effects, such

as an increase in the temporal precision of the initial timing of neuronal activity. In this case, ef-
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fects of our manipulation on whisking behaviour could preferentially affect the onset of whisking

activity.

In this study, we recorded both (i) population activity in the lateral cerebellum using Neu-

roPixels I probes and (ii) whisker position with a high-speed camera in head-fixed mice. Manip-

ulation of the network’s state was achieved via reduction of Golgi cell inhibition. In particular,

a subset of recordings was performed in animals that selectively expressed inhibitory DREADDs

(designer receptors exclusively activated by designer drugs) in Golgi cells; localised expression of

DREADDs was achieved via chemogenetic means (Figure 3.1). In these mice, it was possible to

reduce inhibition in the granular layer by activating DREADDs with an exogenous drug (Cloza-

pine N-oxide; CNO) applied topically on the recording site. This allowed us to test whether

lowering inhibition levels leads to a degradation of whisking-related representations or to more

subtle changes of these representations, and how this affects whisking itself.

Figure 3.1: Chemogenetic manipulation of Golgi cells. left: we injected cre-dependent adeno-
associated-virus AAV-DIO-hM4D(Gi)-mCherry for expression of inhibitory DREADDs (de-
signer receptors exclusively activated by designer drugs) in the lateral cerebellum of C57BL/6-
Slc6a5<tm1.1(cre)Ksak> (GlyT2-Cre knockin) mice. Right: during electrophysiological record-
ing, DREADDs were activated by the exogeneous drug clozapine N-oxide (CNO) to reduce the
level of Golgi cell inhibition in the network. CNO was applied topically on top of the recording
site and allowed to diffuse in the cerebellar cortex.
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3.2 Materials and Methods

All experimental procedures involving animal were performed in accordance with the United

Kingdom Home Office guidelines. All surgical procedures and recordings were performed in mice

(both males and females) aged between 3 to 6 months.

3.2.1 Surgical operations

To perform recordings under normal and perturbed network conditions, we used both wild-

type (C57BL6J) mice and genetically-modified C57BL/6-Slc6a5<tm1.1(cre)Ksak> (GlyT2-Cre

knockin) mice, which express Cre-recombinase selectively in Golgi cells in the cerebellum [127].

GlyT2 mice underwent two surgical operations: one to induce Cre-dependent expression

of DREADDs in cerebellar Golgi cells via viral injection, and one to prepare the animal for

head-fixed extracellular recording. At the beginning of both surgical sessions, anaesthesia was

induced with isoflurane (5%) and maintained (1-2%) for no longer than 2 hours. Pedal reflex

was monitored to assess the depth of anaesthesia. To induce analgesia, mice were injected

subcutaneously with carprofen (Rimadyl, 5 mg/kg), buprenorphine (Vetergesic, 0.1 mg/kg) and

lidocaine (2 mg/kg, locally). Surgery was carried out on a stereotaxic frame in aseptic conditions

to prevent infections. After the surgical operation, mice were placed in a warmed box (37°) and

allowed to recover for as much time as they needed. Signs of neurological impairment and pain

were checked during the post-surgery recovery period.

During the first surgical session, a small craniotomy (about 1 mm diameter) was performed

over Crus I (from Bregma, -6.36 cm and +2.5 cm in the anterior-posterior and medio-lateral

axis, respectively), and AAV-DIO-hM4D(Gi)-mCherry virus for the Cre-dependent expression of

DREADDs (500-1000 nl) was injected with a glass pipet at different depths (100 µm separation

starting from 600 µm), waiting 2 minutes between pipet retractions. At the end of the operation,

skin over the head was sutured.

The second surgical session took place 8 weeks after the first one to allow virus expression.

First, neck muscles were gently moved to uncover the cerebellum. Then, a head plate was

fixed with superglue on top of bregma. Subsequently, a first craniotomy (1.5 mm diameter)
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was performed on the right cerebellar hemisphere, dura was removed and a reference screw was

inserted and put in contact with the underlying brain. To secure both head place and the

reference screw, dental cement was used to cover the skull, leaving free the area on top of Crus

I on the left cerebellar hemisphere. Dental cement was also used to create the recording well. A

second craniotomy (about 2 mm diameter) was performed on top of the left Crus I, followed by

the durotomy. Finally, a first layer of agarose (1.5% in phospate buffer saline, PBS) was used to

cover the brain, a second layer of Kwik-Seal was used to protect the brain, and a third layer of

nail polish was used to fix the quickseal.

Wild-type mice underwent only the second surgical operation, needed to prepare the animal

for the recording session. Both wild-type and GlyT2 mice had their whiskers trimmed on the

left (recording) side, except for the whiskers C1, C2 and C3 (posterior whiskers on the third row

from top).

3.2.2 Recording procedure

Animals underwent two recording sessions, the first performed at least 4 hours after recovery

from the craniotomy, the second the day after. During both sessions, mice were head-fixed and

placed in the recording apparatus. The Kwik-Seal was removed, the surface of the brain cleaned

from agarose and kept moist with PBS. In case of dura regeneration, a second durotomy was

performed. The probe was fixed to a micromanipulator (Scientifica) via a custom-made 3D

printed holder. The probe was coated with (2.5 mg/ml) DiI stain for ex vivo probe tracking

before insertion at a speed of 2-5 µm/s until about 2.5/3 mm of depth from the surface. Once

reached this depth, the probe was retracted for about 100 µm and then left to settle for 10-15

min, allowing the brain to relax. The start of the video and electrophysiological recording were

synchronised by a TTL pulse originating from the video software (streampix). A baseline of 10

or 20 min was recorded prior to topical administration of CNO, which consisted in filling the

recording well made of dental cement after PBS was dried out. We used a 30 µM concentration

for CNO, following [211], who showed that an intracranial injection of 1 µM CNO is already

enough to reliably inhibit presynaptic neurotransmitter release within minutes. The recording

then continued for the subsequent 40-50 mins, for a total recording time of 1 hour. Video and
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neuronal recording were obtained at 299 and 30000 samples/sec, respectively. After recording,

the probe was extracted, rinsed with deionised water and left in freshly made 1% tergazyme

solution for at least 24 hours. The mice, instead, were either returned to their cage or culled with

schedule 1 method before brain extraction, depending on whether they had already undergone

one recording session. Before mice were returned to their cage, the surface of the brain exposed

was first rinsed with PBS, then covered with agarose, and finally protected with a layer of

quickseal that was fixed to the surrounding dental cement with nail polish.

3.2.3 Electrophysiological analysis

The open-source software spikeGLX (https://billkarsh.github.io/SpikeGLX/) was used to

record NeuroPixels data. The (.imec) output file was preprocessed using the command-line tool

CatGT (https://billkarsh.github.io/SpikeGLX/#catgt) to apply a highpass filter (cut-off

300 Hz) and global demux filters, a common average referencing that takes in account the probe

channels subgrouping during data acquisition. The spike sorting step was conducted using the

open-source software Kilosort 2 (https://github.com/MouseLand/Kilosort), which has shown

better performace for cerebellar recordings than Kilosort 3 [148]; this software groups spikes into

units, each representing the activity of a distinct putative neuron. Manual curation of sorted

units was done with the open-source Python-library Phy (https://github.com/cortex-lab/

phy) (Figure 3.2), and consisted in merging and splitting units, as well as categorising them

in ‘good’, ‘bad’ and ‘mua’ (multiunit activity) units. In all analysis, only ‘good’ units located

in the cerebellar cortex were used: in order to isolate the cortical population from cerebellar

nuclei neurons, which were occasionally recorded on the lower channels of the probe, we retained

units based on their approximate position in the cerebellum, informed by electrophysiological

landmarks (e.g., deepest complex spike recorded) and visual inspection of histological data of

the shank location in the brain.

3.2.4 Behavioural analysis

Whisking was recorded using a high speed camera (Dalsa Genie-HM640). The output (.avi) file

was transcoded (.MP4, libx265 encoder), re-sampled (299 Hz) and cropped using the ffmpeg
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Figure 3.2: Exemplar unit. Detected spikes were sorted in units by Kilosort 2 based on the
similarity of their waveform. The software phy2 was used to visualise and manually curate the
output of Kilosort 2. (A) Waveforme of a unit in different channels, that is, recording sites on the
probe. (B) Template associated with the unit. (C) Autocorrelogram. (D) Inter-spike-interval
histogram. (E) Trace view showing the occurrence of the unit spikes across channels (y axis)
and time (x axis).
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software. We used the open-source toolbox Deeplabcut (https://github.com/DeepLabCut/

DeepLabCut) to label four landmarks for each whiskers (C1, C2 and C3) (Figure 3.3) across

the entire recording; these landmarks were then used to compute various whisking properties,

following the work of [105]. Specifically, we first used the arctan function to measure the azimuth

angle between the first whisker segment (traced from the first, basal marker to the second marker)

and the horizontal line passing through the basal marker; given the fixed camera positioning,

increases in angle correspond to whisker protraction, whereas decreases correspond to whisker

retraction. Next, the phase of the whisking cycles was extracted using the Hilbert transform,

and was used to compute the slowly changing whisking amplitude and setpoint across cycles.

Finally, the whisking amplitude was low-pass filtered and used to identify periods of whisking:

this was done using a heaviside function with a threshold of 10°, which allowed whisking to be

discriminated from resting periods. If not alternatively specified, all whisking analysis focused

on the C3 (most anterior) whisker.

Figure 3.3: DLC wisker tracing. Example of DLC output frame. A high-speed camera was used
to record whisking behaviour of head-fixed mice, and the ensuing videos were analysed with the
DLC software. Previous to the analysis, the DLC deep neural network was trained to recognise
4 landmarks on each whisker, denoted by filled circles with different colors.
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3.2.5 Histology

Brains were extracted and left in 4% PFA solution for 24-48 hours at 4°. After washing out

the PFA with PBS, coronal sections (50-100 µm) were sliced using a vibrating microtome (Leica

VT1000S). Flueorescent images were acquired using a confocal microscope (Leica DM4000 B)

(Figure 3.4).

Figure 3.4: NeuroPixels trace. Fluorescent microscopy image of the DiI trace left by a NeuroPix-
els probe inserted in the lateral cerebellum. The probe was inserted for about 3 mm, crossing
Crus I and the the cerebellar nuclei.
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3.2.6 Golgi cell manipulation

Manipulation of Golgi cells was achieved via activation of inhibitory DREADDs (designer re-

ceptors exclusively activated by designer drugs, hM4Di), which causes a reduction of neuro-

transmitters released by the cells expressing these receptors. Localised expression of DREADDs

(Figure 3.5) was driven by the AAV-DIO-hM4D(Gi)-mCherry virus in a Cre-dependent manner,

and was therefore restricted to Golgi cells, because in the GlyT2 mouse line used for this ex-

periment Cre-recombinase is only expressed in Golgi cells in the cerebellar cortex [127]. Viral

injection targeted the lateral cerebellum, and in particular Crus I. DREADDs were activated by

dropping CNO on top of the site of the Neuropixels penetration into the brain, which in turn

targeted the site of virus injection (Figure 3.6); this method was used to minimise possible side

effects of the CNO, and afforded within-minute temporal precision to our manipulation.

3.2.7 Unit encoding of setpoint

We used a generalised linear model to predict spike counts (50 ms time bins) from the whisking

setpoint. The model predicts spike counts with a Poisson distribution, whose rate is given by the

linear combination of past, present and future setpoint data (time window ranging from -4 to

+4 time bins) transformed with an log-link function. The posterior distributions over the nine

β parameters (one for each time bin) were obtained with the probabilistic programming library

Pymc (v4, https://www.pymc.io/welcome.html) from a training dataset (first 6000 time bins).

From these posterior distributions, the expected (mean) rate was computed for the subsequent

6000 time bins; the expected rate was then used to draw samples from which the highest-density

interval (HDI) was calculated. In addition, we accounted for temporal correlations among β’s by

using a multivariate normal distribution as a prior, with correlations among β’s exponentially

decaying with distance.

3.2.8 Tuning curve analysis

To compute the tuning curve for each unit, we first discretised the time in bins of ∼33 msec;

second, we computed the total spike count and average whisker position (angle) for each time

bin; third, we discretised the average whisking angles in 11 bins, ranging from the minimum to
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Figure 3.5: DREADD receptors expression. Fluorescent microscopy image of a cerebellar coronal
slice from a GlyT2-Cre mouse injected with the AAV-DIO-hM4D(Gi)-mCherry. Top: brightfield
microscopy image showing the lateral cerebellum. Bottom: fluorescent microscopy image showing
selective expression of DREADDs in Golgi cells in Crus I.

the maximum angle observed in each recording; fourth, we paired the spike count at each time

bin with the corresponding whisker angle. These data were finally used to plot the firing rate,

together with their standard error, against the 11 angle bins.

We then tried to cluster tuning curves in groups that may represent different patterns of

whisking encoding, by using the k-means clustering algorithm (sklearn.cluster.KMeans package).

The estimation of the tuning curves can be noisy, due to, for example, errors during the spike

sorting process, which may lead to the contamination of the spike history assigned to one unit

by the activity of nearby neurons. This noise, in turn, could affect clustering of tuning curves
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Figure 3.6: DREADD receptors and NeuroPixels trace. Fluorescent microscopy image of a cere-
bellar slice where the DiI NeuroPixels trace crosses a region where Golgi cells express DREADDs.

into meaningful groups. Thus, to reduce the impact of this source of noise on our clustering

analysis, we fitted a spline model to each tuning curve: the model used 7 cubic b-spline functions,

and allowed us to smooth the firing rate associated to each angle bin based on the firing rate

of adjacent bins. The smoothed tuning curves were then clustered using a k-means cluster

algorithm: this algorithm is an unsupervised machine learning technique that allows to group

observations in k groups, where k is the user-provided number of groups. Here we used k=5,

because visual inspection of the tuning curves suggested that at least 4 patterns of whisking

encoding existed (Figure 3.11), and because the sum of squared distances of samples to their

cluster’s centre kept decreasing at least until k=7, after which it started to plateau (Figure 3.12).

To visualise possible tunning curve subgroups, we reduced the dimensionality of the tuning curves

(dim=7, equal to the number of b-splines) to 3 using the non-linear dimensionality reduction

63



3.2. MATERIALS AND METHODS CHAPTER 3

method T-distributed Stochastic Neighbor Embedding (t-SNE, sklearn.manifold.TSNE package).

3.2.9 PCA analysis, whisking-pc cross correlation, and pc loadings

We used principal component analysis (PCA) to describe the population activity of each recording

with its projections onto the its first three eigenvectors, which describe the first three orthog-

onal axes in neuronal space along which the activity varies the most. The projections are also

called principal components (pc’s). We used PCA as it provides a succinct description of high-

dimensional data, while preserving its original properties as much as possible, such the geometry

of population dynamics. The neuronal data used to derive the eigenvalues and eigenvectors were

the units’ firing rate obtained by averaging spike activity over trials from the whole recording

(1 hour), where each trial encompasses the time from -2 to +3 seconds around the start of the

whisking bouts. The eigenvector for each recording has length equal to the number of units

present in that recording. The values of the eigenvector are known as loads, and correspond to

the weight associated to each unit used when linearly combining the firing rate from all units;

hence, the loadings correspond to how much each unit contributes to a pc. To derive the pc for

single trial activity, we first smoothed single trial spike counts with a Gaussian window of sd=20

(we also used sd=5 but the results are equivalent; time bin width=3.3 ms).

The cross-correlation between whisking position and each pc was obtained using the ‘scipy

signal correlate’ package. All cross-correlations were normalised by the absolute maximum value

of the first pc. For analysis involving CNO manipulation, the cross-correlation peaks for pre-

and post-drop periods were computed, and the respective distributions were compared using a

two-sided Wilcoxon signed-rank test.

3.2.10 Setpoint decoding

To decode the whisking setpoint from the neuronal population activity we used a linear model.

The neuronal data were the first three pc’s, augmented in time with a lag of approximately 0,

-30, -70, -100 and -130 ms compared to the time of the setpoint data; for example, the pc’s with

lag -130 ms anticipated whisking data by 130 ms. This was done to give the model the freedom

to relate information in each pc to whisking setpoint with a different temporal separation, as it
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is known that information in the same cerebellar cortical area can encode behavioural variables

with different lags [183]. The model linearly combined the three pc’s with different lags. Thus,

the posterior distribution of the 15 β parameters (3 pc * 5 lags) were obtained using the Pymc

library and data from the first 20 minutes of the recording. The posteriors were then used to

predict whisking setpoint (expected value together with the highest density interval) during the

subsequent 20 minutes.

3.2.11 Statistical analysis for the CNO manipulation

A multilevel model was used to account for the variability in the total cerebellar cortical spike

counts detected over time across recordings; the counts were the sum of the spikes assigned to

‘good’ (putative single units) cortical units. The counts were computed for each successive 5

minutes time bin, with the 0 time bin including the time of drug application, and with all counts

scaled by the -5 minutes bin count; we also repeated the analysis by scaling all counts by the

+20 minutes bin count, which gave the same results. In the model, spike counts were described

using an inverse Gamma distribution, as it afforded a good fit of the model to the data, as well

as a good sampling from the posterior probability distributions:

spkcount∼InverseGamma(α, β)

α = exp(θα + θαcond + θαaid + θαtime)

β = exp(θβ + θβcond + θβaid + θβtime)

(3.1)

The α and β are respectively the shape and scale parameter, linked each to a linear model by a

loglink function. Both linear models involve a coefficient θ for each explanatory variable, namely,

the experimental condition, the time of the recording (dim=9) and the animal id (aid, dim=17).

The experimental conditions included the one of interest, pairing CNO with Glyt2 mice (‘gCNO’,

n=19 recordings), and two controls, one pairing CNO with wild-type mice (‘wCNO’, n=5 record-

ings), and the other pairing PBS with wild-type or Glyt2 mice (‘PBS’, n=9 recordings). The

experimental conditions where split by recording period, one for bins before 0 (pre-drop or base-

line period) and one for bins from 0 onward (post-drop period), for a total dimensionality of

3x2 (dim=6) for the θαcond and θβcond coefficient. The contrasts between pre- and post-drop
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coefficient θcond were used to assess the effect of the experimental manipulation.

The additional explanatory variables, namely, the time of the recording and the animal id,

were used to explain respectively spike count variability within each time bin due to natural

changes in network activity over recording time, and variability due to the particular conditions

of the network in each animal (e.g., affected by the surgical procedure). Thus, the addition

of these explanatory variables allowed us to test within conditions for a difference in pre- and

post-drop spike count distribution, after having accounted for variability explained by temporal

correlations and between-animal differences.

Each θ was drawn from a vector of independent normal distributions (of length equal to

dimensionality of θ), except θtime, whose prior distribution was a multivariate normal distribu-

tion with covariance decaying with time distance, therefore accounting for temporal correlations

within the data:

Σα = I ∗ exp(−distt) Σβ = I ∗ exp(−distt)

θα∼Normal(µα, σα) θβ∼Normal(µβ , σβ)

θαcond∼Normal(µα, σα) θβcond∼Normal(µβ , σβ)

θαaid∼Normal(µα, σα) θβaid∼Normal(µβ , σβ)

θαtime∼MVNormal(µα,Σα) θβtime∼Normal(µβ ,Σβ)

(3.2)

Finally, the hyperpriors:

µα = 1 µβ = 1.2

σα = 0.2 σβ = 0.2

(3.3)

were chosen to sample prior predictive samples within a similar scale of the observed popula-

tion spike counts, including extreme values; in other words, the hyperpriors were chosen to be as

uninformative as possible, while still constraining the sampling from the posterior distributions

to leave in a reasonable probability space, given the data.

For this analysis we used the α and β parametrisation of the inverse Gamma distribution,

because in our case it improved sampling from the posterior posterior distributions. However,

an alternative, more intuitive parametrisation uses mean and variance parameters of the in-

verse Gamma distribution, which are related to the α and β parameter by mean = β
α−1 and
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variance = β2

(α−2)2(α−1) . Our analysis of the posterior contrasts highlighted a change in the scale

parameter β of the inverse Gamma distribution: we therefore derived for each experimental con-

dition the posterior samples for the variance parameter, which also characterises the spread of

the distribution, and calculated their post- and pre-drop period contrast. As for the previous

contrasts, these contrasts for the variance parameter capture the difference in observed cortical

spike counts only due to the experimental manipulation. In practice, the contrasts were calcu-

lated using the posterior samples for the variance parameter associated to the pre- and post-drop

period, which in turn were derived using the same α and β posterior samples and the identity

above, except that for post-drop variance samples we used posterior samples for the θαcond and

θβcond coefficients associated with the post-drop period. This allowed us to compare samples

which were identical other than for the effect of the experimental manipulation.

3.2.12 Analysis of pre- and post-drop neuronal and whisking data

For all analyses involving the manipulation of Golgi cell activity, except for the statistical analysis

of the total cortical spike counts presented in the previous subsection, we used a subset of data

excluding recordings with no or poor (almost absent) whisking activity (25 out of 33 recording

left, please see Table 3.1). In these analyses, we compared data from pre- and post-drop period:

the former entails the entire baseline period, which in five recordings is of length 10 minutes, in

the other of length 20 minutes; the latter is of the same length of the baseline period, and starts

5 minutes after drug application.

3.2.13 Comparison of the pre- and post-drop standard deviations (std’s)

of the units’ activity absolute peaks.

For each recording, we computed the absolute peak of the trial-averaged neuronal activity

(PETH) aligned to whisking onset within a chosen subwindow. The trials, as for previous anal-

yses, ranged from -2 to 3 sec centred around whisking onset; the subwindow used to compute

the absolute peaks spanned -0.7 to 1.3 sec around whisking onset, and was chosen to focus the

subsequent analysis around the initial whisking protraction period. We used the absolute peak

of the PETH as a proxy of the timing of the neuronal response to whisking-related input. The
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peaks for one recording are shown in Figure 3.26 (violet dots). For each recording we computed

the standard deviation (std) of the peaks, for pre- and post-drop data. For each experimental

condition, the pre- and post-drop std’s were compared using a two-sided Wilcoxon signed-rank

test.

3.2.14 Comparison of the pre- and post-drop linear fits of the initial

whisking protraction phase.

We used a linear model to fit a line to the average whisking position pre- and post-drop. Whisking

data were delimited by a time window ranging from -0.06 to 0.21 sec centred around whisking

onset; the time window was chosen to focus on the period of initial whisking protraction. We

computed the difference between post-drop and pre-drop slopes to compare the effects of Golgi cell

manipulation on the whisking protraction phase. To test whether the variance of the distribution

slope contrasts in the two experimental conditions are different, we used a Levene’s test.
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Recording Animal Strain Condition Whisking # cortical units Time CNO/PBS drop (min)

1 1 GlyT2 gCNO poor 18 10

2 1 GlyT2 gCNO good 5 10

3 2 GlyT2 gCNO good 8 10

4 2 GlyT2 gCNO good 12 10

5 3 GlyT2 gCNO good 10 10

6 3 GlyT2 gCNO good 10 10

7 4 GlyT2 gCNO good 8 20

8 5 GlyT2 gCNO absent 27 20

9 6 GlyT2 gCNO good 61 20

10 7 GlyT2 gCNO good 76 20

11 7 GlyT2 gCNO good 24 20

12 8 GlyT2 gCNO absent 5 20

13 8 GlyT2 gCNO poor 30 20

14 9 GlyT2 gCNO good 58 20

15 9 GlyT2 gCNO good 23 20

16 10 GlyT2 gCNO good 46 20

17 10 GlyT2 gCNO good 49 20

18 11 GlyT2 gCNO poor 9 20

19 11 GlyT2 gCNO poor 29 20

20 12 WT wCNO (control) good 96 10

21 13 WT wCNO (control) good 28 20

22 13 WT wCNO (control) good 31 20

23 14 WT wCNO (control) good 14 20

24 14 WT wCNO (control) good 55 20

25 4 GlyT2 PBS (control) good 8 20

26 5 GlyT2 PBS (control) absent 23 20

27 6 GlyT2 PBS (control) good 31 20
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28 15 WT PBS (control) good 88 20

29 15 WT PBS (control) poor 38 20

30 16 WT PBS (control) good 61 20

31 16 WT PBS (control) good 28 20

32 17 WT PBS (control) good 52 20

33 17 WT PBS (control) good 25 20

Table 3.1: Neuronal and behavioural data. Each animal underwent two recordings (except
animal 12). Each recording was performed on either GlyT2 or WT (wild-type) mice; GlyT2
mice expressed Cre-recombinase selectively in Golgi cells in the cerebellar cortex, and therefore
only in these mice CNO could selectively decrease Golgi cell inhibition. The three experimental
conditions are called ‘gCNO’, in which CNO was used on GlyT2 mice, ‘wCNO’ in which CNO
was used on WT mice, and ‘PBS’, in which PBS was used on either GlyT2 mice (3 recordings)
or WT mice (6 recordings); the ‘wCNO’ and ‘PBS’ conditions were pooled into one ‘control’
condition, after assessing for the specific effect of our manipulation on total cerebellar cortical
spike counts using the statistical model described in subsection 3.2.11. For this statistical analysis
of spike counts (subsection 3.3.2), we used all recordings (n=33); however, we excluded recordings
with absent/poor whisking activity in all other analyses (n=25 left after exclusion), as they
required whisking data or were related to whisking analysis. In particular, the remaining 12
recordings in the ‘control’ condition were used in the analyses without Golgi cell manipulation
(subsection 3.3.1), while 25 recordings from in the ‘gCNO’ and ‘control’ condition were used in
the analyses assessing the effect of Golgi cell manipulation on neuronal and whisking dynamics
and their relationship (subsection 3.3.3). Poor whisking behaviour was defined as almost absent
and extremely small whisking activity.
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3.3 Results

3.3.1 Whisking representations in the lateral cerebellar cortex

Previous work from our lab found that the cerebellar cortex accurately represents setpoint and

angle parameters of whisking activity at a single cell level [37, 38]; here we will focus on the

same parameters to extend previous results using recording from neuronal populations in the

cerebellar cortex.

Whisking activity is represented at a single cell level

We first set out to investigate the whisking-related information content in the neuronal activity

recorded from the lateral cerebellar cortex, during normal functioning of the circuit. Figure 3.7

shows for one recording the activity of identified units (putative neurons, n=88) during whisking

epochs, defined as the time window ranging from -2 to +3 seconds centred around whisking

onset. On the left, the activity of a subset of units during a single epoch (n=24) is shown,

together with the concomitant changes in whisking position; on the right is shown the peri-event

time histogram (PETH, average activity) for the entire population recorded, along with average

whisking activity. In both cases, there is a clear alignment of neuronal and whisking activity

dynamics. Accordingly, it was possible to partially reconstruct neuronal activity from whisking

setpoint using a generalised linear model (Figure 3.8, please see method section 3.2.7). Together,

these data show that whisking activity is well represented at a single cell level.

Heterogeneous encoding of whisking activity across neurons

A more detailed characterisation of these representations is offered by the tuning curve of single

units to whisker angle (please see method section 3.2.8). Figure 3.9 shows the tuning curves of all

units in one recording, with whisker angle discretised in 11 bins. Three examples of tuning curves

are instead shown in Figure 3.10 (on the left), which were putatively assigned to different cell

types (molecular layer interneurons and Purkinje cells) or modes of activity (simple spikes and

complex spikes), based on the unit’s firing rates, auto- and cross-correlogram (on the right). In

more detail, the putative simple spike unit had an average firing rate of 70 Hz, which is within the
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Figure 3.7: Neuronal and whisker activity. Left: neural and whisker activity during a single
trial, defined as a -2 to +3 second window centred on whisking onset. Whisking dynamics
are displayed at the top; the raster plot at the bottom shows the concomitant units’ activity
(subgroup of units shown on the right). Right: average neural and whisker activity across trials.
The average changes in whisker angle, together with its standard error, are displayed at the top;
beneath is shown the peri-event time histogram of the entire population for this recording. Units
in the lateral cerebellar cortex appear to clearly encode information about whisking behaviour
both on average and at a single trial level.

elevated and variable range of 20-200 Hz observed in vivo [8, 125, 37]. The average firing rate of

the putative complex spike unit, on the other hand, matched the lower ∼1 Hz firing rate observed

experimentally for complex spikes [207]. As for the putative molecular layer interneuron, this had

an average firing rate of 15-30m Hz, which is consistent with the firing frequency of molecular

layer interneuron observed in vivo, ranging from 1-35 Hz [132]. Moreover, the molecular layer

interneuron exhibited an autocorrelogram characterised by two peaks separated by a trough of

width ∼100 ms, which indicates the tendency of the neuron to fire regularly with an inter-spike

interval around 50 ms [99]. On the other hand, the simple spikes and complex spikes exhibited

a classical cross-correlogram, showing a short refractory period for simple spikes following the

occurrence of complex spikes [88, 219], indicating that these units originated from the same

Purkinje cells. Together, these examples indicate that our recordings could capture the activity

of different cell types present in the lateral cerebellar cortex.

We next addressed the question of whether and how neurons across the cerebellar cortex

encode differently whisking dynamics. Figure 3.11 displays four tuning curves that possibly
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Figure 3.8: Single unit encoding of whisking setpoint. We used a generalised linear model with
Poisson noise to predict the spike counts of two units (top, blue line) from the whisking setpoint
(bottom). The predicted mean or expected rate of the Poisson distribution (top, orange line),
together with the 96% highest density interval (hdi, light orange area) is superimposed on top
of the observed spike counts. The expected rate tracks well changes in spike counts that are
concomitant to changes in whisking setpoint. Time bin is 50 ms.

exemplify different ways of encoding the whisker position, namely, a monotonic increase or de-

crease of neuronal activity with whisker protraction (left to right bins), as well as a more localised

change in activity around a certain whisker position. To describe this diversity at a population

level, we attempted to cluster the tuning curves in groups that may be associated to different

whisking encoding patterns. To do this, we first fitted a spline model with 7 cubic b-spline to

each tuning curve in all recordings (n=508, 13 recordings): this allowed us to better capture the

shape of the tuning curves by reducing variability due to noise (please see method section 3.2.8).

Then, we used k-means clustering with k=5 number of clusters on the smoothed tuning curves.

The results are shown in Figure 3.12: on the top left is shown the sum of squared distances of

each tuning curve from their cluster’s centre, which can be used to assess the possible number of

existing clusters in the data; here, the sum starts to plateau after 7 clusters, meaning that k=5

may be a conservative value. On the right is shown the projection of the tuning curves in the

3d space found using t-SNE, a non-linear dimensionality reduction technique; each dot (tuning
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Figure 3.9: Tuning curves from one recording. The figure shows the firing rate tuning to whisker
position of all units in one recording (n=88): each colored bar is the firing rate of one unit (to-
gether with the standard error) associated to the corresponding whisker position, here discretised
in 11 bins. The whisker position density (time spent on each position) is overlayed on top of the
tuning curves (red line). To better characterise the shape of the tuning curves and reduce noise,
we smoothed the tuning curves by fitting a spline model with 7 cubic b-splines to each tuning
curve: the orange shaded area displays the highest density interval (hdi, 68%) of the posterior
predictive sample for each tuning curve.

curve) is color-coded based on the cluster assigned to it by the k-means clustering: there seems

to be a good correspondence between the output of the k-means clustering and the clusters that

visually appeared using t-SNE, in the sense that clusters with the same color tend to be placed

next to each other. Together, these results suggest the existence of heterogeneity in neuronal
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Figure 3.10: Example of unit tuning curves. Same layout as used for Figure 3.9, without hdi’s.
Three units with their respective tuning curves (left) and auto-/cross-correlogram (right) are
shown. The three units are putatively assigned to different cell types or responses, namely,
Purkinje cells simple spikes, complex spikes and molecular layer interneuron; a different box or
background color is assigned to each. The assignment is based on their firing rates, the shape
of their auto-correlogram, and temporal relationship of their activity displayed in the cross-
correlogram.

tuning to whisking activity. Notably, there is no clear evidence of a change in sum-of-squared-

distances decaying pattern, or elbow, which can be used as an indicator of the optimal number

of clusters to be considered. Analogously, in the t-SNE space, different groups of clusters labeled

with different colors do not appear to be completely isolated. Thus, this analysis does not appear

to indicate a clear number of patterns used by cerebellar neurons to encode whisking activity;

rather, it suggests that neurons form a continuum in the space of possible tuning curves.
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Figure 3.11: Tuning curve heterogeneity. Same layout as used for Figure 3.9, without hdi’s. Four
tuning curves, highlighting the heterogeneity in whisker encoding across units: they exemplify a
monotonic decrease (top left), increase (bottom left), localised increase (top right) and decreased
(bottom right) of activity with whisker protraction (left to right angle bis).

Finally, we investigated whether these groups reflect meaningful whisking encoding patterns

across neurons, by visually inspecting the different tuning curve clusters. Figure 3.13 shows the

same tuning curves displayed in Figure 3.9 (one recording) but now color-coded by group: the

tuning curves show some consistency within groups, and can be distinguished from tuning curves

belonging to other groups, although there is also some overlap. When visually inspecting the same

examples shown in Figure 3.11 (indicated with a black background), it appears that the clustering

procedure distinguished units that increase their firing rate with whisker protraction from units

showing the reverse pattern, and possibly distinguished units based on more subtle differences

in their tuning curves. Altogether, these results suggest that cerebellar cortical neurons can
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Figure 3.12: Tuning curve clustering. We used k-means clustering on the smoothed tuning curves
(spline fit of the original tuning curves) to investigate whether there exist different groups in the
tuning curve data. Left: the sum of squared distances of each tuning curve (n=508, all units from
13 recordings) from their cluster’s centre as a function of the number of clusters used to group
the tuning curves. This metric can be used to judge the quality of clustering at the expense of
model complexity (number of clusters): here the quality of clustering increases at least up to 7,
after which it starts to plateau, which may justify the use of up to 7 clusters. Top right: all
tuning curves were projected in a 3d space using t-SNE; the colors indicate the clusters found
by the k-means algorithm, using 5 clusters: there seems to be a good correspondence between
the output of the k-means clustering and the clusters that visually appear using t-SNE. This
suggests the existence of different clusters in the tuning curve data.

display heterogeneous encoding of whisking position, which may support accurate behavioural

representations at the population level.

Neuronal populations preferentially represent upcoming whisking activity with a

distributed code

To examine neuronal representations of whisking activity at the population level, we used princi-

pal component analysis (PCA), retaining the 3 principal components (pc’s) (Figure 3.14, please

see method section 3.2.9). The analysis was restricted to whisking trials (-2 to +3 seconds from

whisking onset), during which changes in neuronal activity are more likely to be associated to

whisking behaviour. Figure 3.15 shows the results of this analysis for one recording (n=22 units),

focusing on a -0.5 to 1 subtime window around whisking onset for visualisation purposes: at the
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Figure 3.13: Tuning curve subgroups are associated to different whisking encoding patterns.
We tried to relate the tuning curve subgroups found with k-means clustering (k=5 number of
clusters) to different whisking encoding patterns. Displayed are the same tuning curves as in
Figure 3.9, but color-coded based on the output of the k-means clustering. The groups show some
internal consistency, and can be used to distinguish different tuning curve patterns, but they also
show some overlap. Comparing the tuning curves used in Figure 3.11 (highlighted by a black
background), for example, shows that the clustering procedure can distinguish units that increase
their firing rate with whisker protraction from units showing the reverse pattern; moreover, these
examples show that k-means clustering can also distinguishes between units based on more subtle
features of their tuning curve. Overall, unsupervised clustering of tuning curves suggests that
neurons in the lateral cerebellar cortex can display different profiles of whisking encoding.

top is shown the projection of the trial-averaged population activity onto the first three eigenvec-

tors (left, average pc’s), as well as the projected activity during a single trial (right, single trial

pc’s); at the bottom is shown the whisking activity during the same trial. Time is color-coded.

These plots show that the pc’s, both on average and at a single trial level, appear to have a

clear structure in neuronal space during both behavioural quiescence and activity. This struc-
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ture in turn suggests that population activity may contain accurate information about whisking

dynamics.

Figure 3.14: Extraction of the first 3 principal components. Left: we calculated the NxN corre-
lation matrix from the N unit’s average responses, aligned to whisking onset. We then used the
eigendecomposition of the correlation matrix to extract the N eigenvectors, sorted by their corre-
sponding eigenvalues. The eigenvalues report how much variance is captured by each eigenvector;
the N components of an eigenvectors are called loadings, and express the contribution of single
units to total variance captured by the eigenvector. Right: we retained the first 3 eigenvectors
to describe population activity with the first 3 principal components.

To better quantify this relationship, we computed the normalised cross-correlation between

the average angle and the first 3 average pc’s. Figure 3.16 shows the cross-correlation for each pc,

together with its absolute peak (time indicated by a vertical line), for one recording: in this case,

information related to whisking activity contained in pc1 tends to anticipate movement, whereas

information in pc2 and 3 tends to lag behind behaviour. We then repeated the analysis for all

recordings (n=12). The distribution of cross-correlation peaks for each pc is shown in Figure 3.17:
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Figure 3.15: Projected population activity. PCA was used to extract the axis along which the
population activity varies the most. Here are shown the results for one recording. The time,
spanning 1.5 second length for each trial (-0.5 to +1 seconds from whisking onset), is color-coded.
In the top left is shown the population activity averaged across trials in the PCA space, using the
first three eingenvectors; in the top right is displayed the activity during a single trial (computed
from smoothed spike counts); at the bottom is shown angle dynamics for one whisker during the
same trial. The population activity, both in the trial shown and on average, tends to live in a
confined space during quiescence (beginning and end of trials), while wondering in a seemingly
structured manner during whisking activity.

all peaks for pc1 fall after whisking onset, indicating that, across recordings, variation in the

whisking-aligned average neuronal activity expressed by the first pc tends to anticipate behaviour

(one sample t test, t=4.71, p=0.0006, mean=36 ms). On the other hand, the peaks for pc2 almost
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always fall before whisking onset, indicating that whisker-related information contained in pc2

tends to lag behind whisking activity (t=-4.44, p=0.009, mean=-194 ms). Finally peaks for pc3

have a distribution that includes 0 (t=-1.44, p=0.17, mean=-92 ms). Notably, the peaks across

recordings associated with the first pc are narrowly distributed in time; this may suggest that

the first pc, specifically, contains precise information about whisking behaviour, and in particular

behaviour occurring within ∼ 40 ms in the future.

Figure 3.16: Neuronal activity-angle cross-correlation. Top: trial-averaged whisker angle with
standard error. Middle: projection of the trial-averaged population activity onto the first three
eigenvectors, with the standard error (computed from single trial pc’s). Bottom: normalised
cross-correlation between average angle and projections; positive times correspond to the shift
of the time of whisking with respect to the time of neuronal population dynamics. Thus, the
cross-correlation shows that neuronal activity captured by pc1 tends to correlate more with the
upcoming whisking position; on the other hand, population activity described by pc2 tends to
contain information lagging behind behaviour; as for pc3, the distribution of peaks include 0.
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Figure 3.17: Cross-correlation peaks. Each dot is the peak for one recording (total n=12) of the
cross-correlation between the first three principal components (pc) and average whisker position.
The box of the boxplots shows the quartiles (including 50% of data), whereas the whiskers show
the entire distribution. The average for pc1 is positive (one sample t test, t=4.71, p=0.0006,
mean=36 ms), indicating its tendency to precede whisking behaviour; instead, pc2 peaks show
the opposite trend, by lagging after behaviour (t=-4.44, p=0.009, mean=-194 ms), whereas the
distribution of pc3 peaks includes 0 (t=-1.44, p=0.17, mean=-92 ms). The distribution of peaks
for the first pc are concentrated around the mean; this indicates that the information contained
in the first pc is particularly time locked to whisking behaviour, and therefore may represent this
behaviour more accurately than information in other pc’s.

For this recording, the first three eigenvalues accounted for only a moderate amount of the

total variance in the population activity ( 30%), and we found similar results in all recordings

(Figure 3.18). Therefore the first three pc’s provided only a coarse description of population

activity, which suggests that neuronal dynamics were quite heterogeneous. This analysis was

performed on data restricted to the initial period of whisking activity, during which population

dynamics, described by the first 3 pc’s, well reflect whisking behaviour. Thus, the fact that a large

portion of neuronal variability was not captured by the first 3 pc’s strengthens the general idea

that the cerebellar cortex integrates information about different behaviourally relevant variables

at all times.

The whisker-related information contained in each pc can originate from few units in the pop-

ulation, whose activity may be particularly responsive to whisking; alternatively, the information

could be more distributed, whereby each unit contributes to some extent to the population en-
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Figure 3.18: Variance explained by the first 3 principal components. We computed the cumulative
variance explained by up to the third principal component. Notably, pca was computed on data
restricted to the initial period of whisking, and therefore the first 3 pc’s well reflected whisking
behaviour. However, the total variance explained by the first 3 pc’s was modest, and therefore
population activity could not be exhaustively explained in terms of variability along these three
orthogonal axes in neuronal space. This in turn suggests that neuronal dynamics in the lateral
cerebellar cortex, at all times, encodes different types of information.
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coding of behaviour. To measure how much behavioural information is distributed across units,

we used the pc loading of each unit, indicating the contribution of a unit to the corresponding

pc (please see method section 3.2.9). Figure 3.19 shows for each pc the loading of the units

from all recordings (n=517). The loading distribution for each pc is centred around 0 and is

roughly symmetric, meaning that units can contribute both positively or negatively to each pc.

The number of outliers in each distribution can then be used to quantify how much each pc is

dominated by the activity of few units. We therefore calculated the excess kurtosis of each dis-

tribution, which is a measure of the frequency of outliers observed, using as a point of reference

the frequency expected from normally distributed data. The distribution for the first pc has an

excess kurtosis of -2.76, indicating infrequent outliers; this in turn suggests that the contribution

of units across recordings to the first pc is fairly distributed. In contrast, the excess kurtosis for

the third pc is 4.97, indicating a high frequency of outliers, and therefore of units which tend

alone to contribute mostly to the third pc. The excess kurtosis for the second pc is instead -0.43,

meaning that outliers are neither frequent nor infrequent. Thus, these results suggest that for

the first pc, which reflects more accurately whisking behaviour, information is quite distribute

across units.

Finally, we focused on how well population activity represents whisking information at a

single trial level. Linearly combining the first three principal components, it was possible to

decode whisking setpoint during a single trial (Figure 3.20, please see method section 3.2.10).

In this analysis, neuronal data were augmented in time by shifting the projections by lags of

approximately 0, -30, -70, -100, -130 ms, so that population activity up to 130 ms prior to

whisking movement could be used to predict the latter. In summary, these results show that

the population activity in the lateral cerebellar cortex, even when approximated within a low-

dimensional space, accurately reflects upcoming slow whisking dynamics.

84



CHAPTER 3 3.3. RESULTS

Figure 3.19: Principal component loads. Each dot is the load of one unit on the corresponding
principal component (pc). Here we aggregated units from all recordings (n=12, total units 517).
The violinplots show the distribution of the loads for each pc. The distribution for the first pc
has an excess kurtosis of -2.76 (platykurtic distribution), therefore the frequency of outliers (dots
far from the mean) is low compared to what is expected from a gaussian distribution. This in
turn means that the contribution to the first principal component is fairly distributed across
units. For the third pc, instead, the excess kurtosis is 4.97, which indicates a high frequency of
units that alone contribute for the most part to the third pc. The excess kurtosis associated to
the second pc, instead, sits close to 0 (-0.43), meaning that the frequency of outliers is neither
high nor low.
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Figure 3.20: Setpoint decoding from neuronal population activity. Reconstruction of the whisking
setpoint using a linear combination of the first three pc’s; pc’s were augmented by repeating them
shifted with different time lags (0, -30, -70, -100, -130 ms). Here we show the setpoint (brown line)
during two trials, together with the predicted setpoints (red) and the highest density interval
(hdi, red shade). The results indicate that whisking activity can be accurately reconstructed
using present and past information contained in the population activity.
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3.3.2 Golgi cell manipulation

Testing topical drug application in the lateral cerebellar cortex

Next, we investigated how the manipulation of Golgi cell inhibition impacts whisking behaviour

and its representations in the cerebellar cortex. In particular, we reduced Golgi cell inhibition

via activation of inhibitory DREADDs; DREADDs were activated by dropping CNO on top of

the recording site, a method that aimed to afford good spatial and temporal precision to our

manipulation (please see method section 3.2.6). To our knowledge, this is the first time this

method is used manipulate activity in the cerebellar network.

To control for the dynamics of drug diffusion in the cerebellar cortex, we tested the effects

of muscimol (1.665
µg

µl
concentration in PBS) during recording in three mice. Muscimol was

dropped on top of the recording site, similar to what is done in the experiment using CNO

(please see method section 3.2.2). Muscimol is a potent GABAA receptor agonist that causes a

drastic reduction in cell activity. Figure 3.21 shows the results of this set of control experiments:

the total spike count recorded across the cerebellar cortex, normalised by the count occurring

at the time of muscimol application (0 time bin), started to decrease within minutes after drug

administration, and reached its minimum within 10-30 minutes. These results thus show the

viability of applying CNO topically onto cerebellar cortex.

Effects of reduced Golgi cell inhibition on coarse network activity

As the following step, we examined whether the CNO-dependent reduction in Golgi cell activity

had an impact on the overall cerebellar cortical population activity. We therefore compared

the dynamics of the total cortical spike count across experimental conditions, which included a

condition with the manipulation of Golgi cell activity using CNO on Glyt2 mice (‘gCNO’, n=19

recordings), and two controls, one using CNO on wild-type mice (‘wCNO’, n=5 recordings),

and the other using PBS on both wild-type and Glyt2 mice (‘PBS’, n=9 recordings). Notably,

for all mice but one (n=16) we performed two recordings, which could belong to two different

experimental conditions (e.g., using CNO or PBS on GLYT2 mice). (Please see Table 3.1 for a

description of all data used in this analysis.) At the top of figure 3.22 is displayed the temporal

evolution of the cortical spike count for each recording (n=33), with experimental conditions

87



3.3. RESULTS CHAPTER 3

Figure 3.21: Muscimol reduces cortical population spike count. We tested the dynamics of drug
diffusion in the lateral cerebellar cortex by topically applying muscimol in three wild-type mice
while recording; line color denotes animal id. The plot shows the total cortical population spike
count during 1 hour recording. The spike count is stable during baseline (first 10 minutes), then
rapidly starts to drop within minutes, to reach a minimum around 10-30 minutes after muscimol
administration, reflecting efficient diffusion of the drug. Occasional rebounds of activity were
observed. Time bin width is 1 minute.

color-coded, and count computed within time windows of width 1 minute. At the bottom,

instead, are displayed the same data scaled by the spike count occurring at -5 minutes from

PBS/CNO drop, which helps to highlight different spike count dynamics between ‘gCNO’ and

control conditions after drug application: in particular, the spike count in ‘gCNO’ recordings

tends to increase compared to baseline. In order to test for evidence of an effect of the exper-

imental manipulation, we therefore compared data pre and post CNO/PBS drop within each

experimental condition, as explained below. For this analysis we used scaled spike count data

computed with bins of width 5 minutes (Figure 3.23); this was done to average out variability

in spike counts naturally occurring in a neuronal network, and to reduce the number number of

parameters used in the analysis.
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Figure 3.22: Spike count dynamics (bin width 1 minute). At the top is shown the dynamics of
the spike counts for each recording (n=33), color-coded by experimental condition. Counts were
computed using bins of 1 minute width. At the bottom are shown the same data, but scaled by
the count at -5 minutes from CNO/PBS drop (0 time bin). Vertical red line signals the 0 time
bin.

In more detail, to explain the variance in the spike count observed across recordings that was

possibly due to the experimental manipulation, we used a multilevel model (please see method

section 3.2.11). The model described the distribution of spike counts for each time bin with an

inverse Gamma distribution, parameterised by a shape parameter α and a scale parameter β.

The model used as explanatory variables the experimental conditions, associated to pre- and

post-drop periods, to find the α and β parameters that best explained the pre- and post-drop

data. Therefore, for each parameter of the gamma distribution (α and β) and each condition

(‘gCNO’, ‘wCNO’, ‘PBS’), the model had a coefficient θ associated to the pre-drop period and
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Figure 3.23: Spike count dynamics (bin width 5 minute). The spike counts for each recording
(single dots, n=33) are computed within bins of 5 minutes, and scaled by the count in the -5
minutes bin (not shown). The 0 bin includes the time of CNO/PBS drop. The underlying
boxplots show the mean and quartiles of the distribution of spike counts for each time bin, while
the whiskers extend to include the rest of the distribution, without covering outliers (beyond 1.5
times the IQR). These data were included in the statistical analysis used to check whether the
experimental manipulation had and effect on population spike counts.

one for the post-drop period. The contrast between the two coefficients was then used to measure

the change in spike counts due to the experimental manipulation.

The results are shown in Figure 3.24. On the left is shown the distribution of all spike counts

observed, together with the model fit: the overlap between the two distributions indicates that

the model was able to capture the overall structure of the data reasonably well. On the right,

instead, are shown the contrasts between the model coefficients associated with the pre-drop and

post-drop period (pre minus post samples). These contrasts reflect the effect of the experimental

manipulation on spike count distribution for each experimental condition. For each experimental
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condition there are two contrasts, one associated to the shape parameter α and one for the scale

parameter β of the distribution describing spike counts. Comparing the contrasts and highest

density intervals (hdi, 94%) for the parameter across conditions reveals a specific effect of the

CNO manipulation, and in particular an effect on the scale parameter, β, which describes the

spread of observed spike counts.

Figure 3.24: Statistical analysis of CNO application. We used a multilevel model to explain spike
count variability: the model includes as explanatory variables the three experimantal conditions,
divided in pre and post drop (six in total), time and animal id. The left panel shows the
distributions of posterior predictive samples and observations. These results show that the
model is able to capture the distribution of observed spike counts. The right panel shows the
contrast between experimental condition parameters associated with pre- and post-drop periods;
for each condition there are two contrasts, associated to either the shape parameter α or scale
parameter β of the inverse Gamma distribution used to describe the spike counts. Comparing
the contrasts and highest density intervals (hdi, 94%) for the shape and scale parameter across
conditions reveals a specific effect of the CNO manipulation on observed spikes, and especially
on the spread of their distribution.

To gain a better intuition of the implications of these results, we used the posterior samples

of the α and β to derived samples for the variance parameter of the inverse Gamma distribution;

the variance, indeed, offers an alternative parametrisation that characterises more intuitively

the spread of spike counts pre- and post- drug application (please see supplementary section

3.2.11 for more details). Figure 3.25 shows the contrasts between post- and pre-drop variance

samples (post minus pre samples) for each experimental condition. These contrasts show that
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the variance tends to increase after drug application in the ‘gCNO’ condition, whereas it remains

stable in the two control conditions. Thus, these results suggest our manipulation of Golgi cell

inhibition made high population spike counts more likely.

Figure 3.25: Inverse Gamma variance contrasts. We compared the pre- and post-drop posterior
samples of the variance parameter of the inverse Gamma distribution, used to describe the
distribution of observed cerebellar cortical spike counts. These samples were derived from the

samples of the α and β using the identity var = β2

(α−1)2(α−2) . The contrasts show that the

application of CNO in GlyT2 tends to increase the variance of population spike counts (althoug
the highest density inverval, hdi 94%, crosses 0). In other words, elevated spike counts were more
likely after CNO administration.

Based on these results, in subsequent analyses we pooled the ‘wCNO’ and ‘PBS’ condition in

one ‘control’ condition to increase power of the analyses. In addition, because in these analysis

we also used whisking behaviour, we discarded 8 recordings with no or poor whisking behaviour,

for a total of 25 recordings left (please see Table 3.1.
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3.3.3 Contribution of Golgi cells to whisking representations

Effects of reduced Golgi cell inhibition on network dynamics

To describe in more detail how decreasing Golgi cell inhibition may affect whisking represen-

tations in the cerebellar cortex, we compared the trial-averaged PETH and average whisking

activity from pre- and post-drop data, defined respectively as baseline data and data acquired

after CNO/PBS application (please see method section 3.2.12). Figure 3.26 shows the compar-

ison for one recording (‘gCNO’ condition), with pre- and post-drop data shown respectively at

the top and bottom of the figure. In this recording, the post-drop whisking activity (brown line)

appeared to be faster on average during the initial protraction period, while neuronal responses

tended to be more aligned with each others; this alignment becomes more evident when taking

in consideration the absolute peak in activity for each unit (violet dots) and comparing the pre-

and post-drop temporal dispersion of these peaks; peaks were computed within a subwindow

focusing on the initial whisking period (-0.7 to 1.3 sec), and used as a proxy of the timing of the

neuronal response to whisking-related input to the network.

To follow up these observations, we first checked whether reduction in Golgi cell activity may

have an effect on the dispersion of neuronal activity aligned to whisking onset, using data from

all recordings (n=25) and comparing the two experimental conditions (‘gCNO’ and ‘control’). To

this end, we computed for each recording the standard deviation (std) of the distribution of peaks,

for both pre- and post-drop periods (please see method section 3.2.13). The std’s are shown in

Figure 3.27: notably, only in the ‘gCNO’ condition the pre- and post-drop distribution of the

recordings std’s are different (two-sided Wilcoxon signed-rank test, T=12, p=0.017). Moreover,

comparing the two experimental conditions, in terms of the mean and variance of the normal

distributions fit to the post-pre drop contrasts, also highlights a change in the std of the spread

of peaks of neuronal activity due to Golgi cell manipulation (Figure 3.28. In more detail, these

results suggest that decreased Golgi cell inhibition has an impact on the temporal heterogeneity

or dispersion of neuronal responses around the onset of whisking activity, and in particular

reduces it.
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Figure 3.26: Comparison of average whisking and neuronal activity pre- and post-drop. Same
analysis as for the PETH in Figure 3.7, with neuronal activity aligned to the onset of whisking
bouts. Top: PETH from one recording before CNO application in a GlyT2 mouse, and associated
mean whisking activity. Bottom: average activity after CNO application. In this recording, Golgi
cell manipulation seems to fasten the average initial whisking protraction, while increasing the
alignment of average neuronal activity. Violet dots indicate the absolute peak in activity for each
unit within a subwindow ranging from -0.7 to 1.3 seconds centred around whisking onset.

Effects of reduced Golgi cell inhibition on whisking dynamics

Then, we addressed the possible effects of Golgi cell manipulation specifically on velocity of

whisking protraction (please see method section 3.2.14). To this end, for each recording we used
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Figure 3.27: Comparison of the std’s of absolute peaks in neuronal activity pre- and post-drop.
For each recording (n=25), we computed the standard deviation (std) of the distribution of the
absolute peaks of the units’ activity aligned to whisking onset (violet dots in Figure 3.26 for one
recording). The peaks were used as proxy for the timing of a neuron’s response to its input. The
left and right plot shows the results for the ‘gCNO’ and control condition, respectively. Blue
and orange colors are used to label pre- and post-drop data, respectively. Only the pre-drop
std’s in the ‘gCNO’ condition are sistematically different than those in the post-drop condition
(two-sided Wilcoxon signed-rank test, T=12, p=0.017). These results suggest that decreased
Golgi cell inhibition reduces heterogeneity in the timing of units’ whisking-related responses on
average.

a linear model to approximate the slope of the average whisking activity during its protraction

phase (Figure 3.29, orange area); the coefficient for each linear fit was thus used as a proxy for

the velocity of average pre- and post-drop whisking protraction. The comparison between post-

and pre-drop slopes, in terms of their difference (post-drop minus pre-drop slope), is shown on

the left of Figure 3.30 for the two experimental conditions: the differences are centred around

0 in both cases, but the variance in the ‘gCNO’ condition is different from that in the ‘control’
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Figure 3.28: Difference between conditions in post-pre contrasts of std of absolute peaks in neu-
ronal activity. For each recording in the ‘gCNO and ‘control’ conditions, the post-pre contrasts
of the std was computed. The distribution of contrasts for the two conditions was then fit with
a gaussian distribution, and the difference in posterior samples for the mean (left) and variance
(right) are shown. The 94% hdi for the mean include 0, but there is a tendency for the post-pre
drop contrasts in the ‘gCNO’ condition to be more negative than those in the ‘control’ condition.
As for the variance, the hdi does not include 0, indicating stronger evidence for a difference
between the two conditions: in particular, in the ‘gCNO’ condition the contrasts can take bigger
values. Overall, these differences in contrasts suggest a change in the std of absolute peaks in
neuronal activity, with std being smaller in the ‘gCNO’ condition.

condition (Levene’s test W=8.39, p=0.008). The (0-mean) slopes obtained from each linear fit

are instead displayed on the right: in the ‘gCNO’ condition (top), there is less overlap between

pre- and post-drop slopes, compared to that in the control condition (bottom). These results

thus suggest that reduced Golgi cell activity leads to average changes in whisking protraction

dynamics that are more pronounced than what can be observed in absence on a manipulation,

in which case the dynamics remain instead relatively constant.

96



CHAPTER 3 3.3. RESULTS

Figure 3.29: Time window for linear fit of whisking protraction. The time window highlighted
by the orange area was used to delimit the period of average whisking protraction used for the
linear fit in each recording (n=25).

Effects of reduced Golgi cell inhibition on the network representations of whisking

behaviour

Finally, we addressed the question of whether and how the relationship between whisking activity

and neuronal dynamics changes after experimental manipulation. In particular, we are interested

in how population activity may differently reflect whisking-related information when reducing

Golgi cell inhibition. To this end, we compared the distribution of absolute peaks of cross-

correlation between neuronal and whisking activity before and after drug application in the

‘gCNO’ and ‘control’ condition (please see method section 3.2.9). Figure 3.31 shows the pre- and

post-drop distributions of cross-correlation absolute peaks for pc1, pc2 and pc3 (left to right) and

experimental condition (‘gCNO’ top, ‘control’ bottom). There is no strong evidence of a difference
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Figure 3.30: Comparison of whisking protraction linear fits pre- and post-drop. Left: each point
is the difference in post- minus pre-drop slope obtained from fitting a line to the average whisking
protraction (see Figure 3.29). In both the ‘gCNO’ and ‘control’ condition the slope differences
are centred around 0, but the spread around 0 is different in the two conditions (Levene’s test,
W=8.39, p=0.008). Right: comparison between the linear fits for pre- and post-drop data. In
the control condition (bottom), pre- and post-drop fits show a high level of overlap; this overlap
decreases in the ‘gCNO’ condition (top). These results suggest that decrease Golgi cell activity
leads to increased variability in average whisking protraction dynamics..

in peak cross-correlation before and after drug application (Wilcoxon test, T:31, 35, 27, 17, 14,

22; p-value:0.33, 0.49, 0.21, 0.09, 0.05, 0.20 for ‘gCNO’-pc1, -pc2, pc3 and ‘control’-pc1, -pc2,

-cp3 respectively). The same results are found when comparing the cumulative sum of absolute

cross-correlations instead of just their peak, which are shown in Figure 3.32. Altogether, these

results may suggest that, despite affecting neuronal and whisking activity, moderate decrease

of inhibition in the lateral cerebellum does not impact neuronal representations of whisking

behaviour.
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Figure 3.31: Pre- and post-drop cross-correlation peaks. Each subplot shows the distribution
of absolute peaks of the cross-correlation for pre- and post-drop data. The cross-correlation is
between pc1, pc2 and pc3 (left to right subplots) and average whisking activity. Top: data from
the ‘gCNO’ condition (n=13). Bottom: data from the ‘control’ condition (n=12). In neither
conditions there is a strong evidence of a difference in peaks before and after CNO/PBS drop
(Wilcoxon test, T:31, 35, 27, 17, 14, 22; p-value:0.33, 0.49, 0.21, 0.09, 0.05, 0.20 for ‘gCNO’-pc1,
-pc2, pc3 and ‘control’-pc1, -pc2, -cp3 respectively). This may suggest that the reduction of
Golgi cell inhibition did not affect whisking representations in the lateral cerebellar cortex.
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Figure 3.32: Pre- and post-drop cross-correlation cumulative sums. Same layout as in Figure 3.31,
but here we compare the cumulative sum of the absolute cross-correlation between pc1, pc2 and
pc3 and average whisking activity. Again, there is no strong evidence of a difference in cross-
correlation cumulative sums before and after drug application (Wilcoxon test, T:24, 42, 29, 19,
18, 20; p-value:0.14, 0.83, 0.27, 0.12, 0.10, 0.15 for ‘gCNO’-pc1, -pc2, pc3 and ‘control’-pc1, -pc2,
-cp3 respectively).
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3.3.4 Discussion

The aim of this work was to investigate how sensorimotor activity is represented in the lateral

cerebellar cortex, and how changes in the network state, in the form of decreased Golgi cell

inhibition, affect these representations as well as behaviour. To this end, we simultaneously per-

formed Neuropixels I recording of neuronal activity in the lateral cerebellar cortex and recording

of whisking activity in mice. We analysed whisking behaviour and its neuronal representations

both in an intact network and in a network where the level of Golgi cell inhibition was reduced.

This experimental setting allowed us to study how inhibition may affect the overall state of the

network, how this network encodes behaviourally relevant variables, and how changes of these

representations may affect downstream behaviour.

Cerebellar cortical neurons heterogeneously encode whisking behaviour

The data obtained from recording in the intact network showed that the cortical population in

the lateral cerebellum accurately represent whisking behaviour. At a single cell level, we observed

that neuronal spike counts could be well explained by dynamics of the whisking setpoint, even

when using a simple linear model with Poisson noise. Moreover, we observed that units could

exhibit different tuning profiles to whisking position, including monotonic increase, decrease,

localised increase or decrease of the firing rate. Using an unsupervised clustering method to

group tuning curves from all recordings also suggested that the profile of single unit tuning to

whisking position is heterogeneous, and form a continuum in the t-SNE space. Previous studies

have found that Purkinje cells use a linear code to represent whisking activity, and that this

code may arise from the combination of more specific tuning curves of upstream neurons [37,

38]; thus, future analysis of the present data should investigate whether different cell types are

particularly associated with specific tuning curve profiles. Overall, these results are in line with

previous findings, highlighting how single cell activity at all levels of the cerebellar cortex precisely

encodes whisking dynamics [184, 37, 38, 21, 140]. Given the critical role of the cerebellum in

coordination of behaviour, one possibility is that the observed neuronal code, used to accurately

represent whisking activity, may be optimised to efficiently integrate information about whisker

behaviour with information related to other sensory and motor domains.
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Population activity preferentially encodes upcoming whisking behaviour

The whisking tuning found at a single cell level was reflected at a population level. We used PCA

analysis to describe population activity with three independent variables, the principal compo-

nents (pc’s), subject to the constraint of retaining as much variance as possible. The first three

pc’s captured only a moderate amount of the total variance in the population activity, despite

the fact that this analysis was restricted to periods centred around whisking onset. This may

be explained in light of the fact that neuronal activity in the cerebellar cortex integrates and

reflects at all times many other behaviourally relevant variables [209, 34, 113, 227]. Nevertheless,

neuronal dynamics projected in this 3d pc space still had a structure that well matched whisking

dynamics. In fact, it was possible to decode single trial whisking setpoint from concomitant pop-

ulation activity, while cross-correlation analysis showed a good match between average whisking

position and single pc’s. Notably, the cross-correlation peaks for red pc1 were on average posi-

tive with mean 36ms, meaning that population dynamics captured by pc1 tended to anticipate

whisking behaviour; on the other hand, peaks associated to pc2 lagged behind behavioural dy-

namics on average. Moreover, the distribution of peaks for the pc1 – but to the other pc’s –

was particularly narrow, which indicated that information contained in pc1 was precisely tuned

to upcoming whisking activity. Thus, these results hint at a role of the cerebellum in control-

ling future behaviour, by possibly integrating information from multiple behaviourally relevant

variables.

The cerebellar cortex uses a distributed code to represent whisking dynamics

We then investigated how much information contained in each pc is distributed across units in

the neuronal population; the contribution of each unit to the pc is reflected in the pc loadings.

Plotting the loadings of all units recorded for each pc showed that information, especially in

the first pc, was well distributed across units. These results indicate that information about

whisking activity is broadly distributed in the recorded neuronal populations, with most units

contributing to some extent to its encoding.
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Decreasing Golgi cell inhibition does not saturate population activity

Finally, we examined how changing the state of the cerebellar cortical network may affect neu-

ronal representations, behaviour, and their relationship. In particular, we changed the state

of the network by decreasing the level of Golgi cell inhibition: this was achieved by activating

inhibitory DREADDs (hM4Di), selectively expressed by Golgi cells, via application of CNO di-

rectly on top of the recording site, which afforded a within-minute temporal precision to our

manipulation. These receptors inhibit neuronal activity via moderate hyperpolarisation of the

cell membrane, and by reducing presynaptic release of neurotransmitters [197].

Topical application of CNO onto the cerebellar cortex was followed by an increased spread

of the population spike count distribution, with the average count remaining stable, but with

higher counts becoming more likely across recordings. Hence, our manipulation of Golgi cell

inhibition did not lead to an overall saturation of network dynamics, namely, a drastic and

indiscriminate increase in excitation, but variably affected the course population activity. One

reason explaining the absence of strong saturation of network activity may be the fact that the

coarse level of granule cell excitability is mostly under the control of tonic inhibition, which

arises in part from non-vesicular sources of GABA [194, 230, 142]. On the other hand, variable

changes in population activity may be due to several reasons, including heterogeneity in the

subpopulations of neurons recorded in each session: for example, neurons could have differed in

terms of cell type, with some types more or less sensitive to increased granule cell activity; or

in terms of the particular connectivity structure of the network in which they were embedded,

including the Golgi cell network; or again in terms of their positioning relative to Golgi cells

affected by our local manipulation. Altogether, these results suggest that dynamic Golgi cell

inhibition may not be necessary for maintaining network excitation at the level required for

the network to perform its computations, as postulated by sparse coding theories; instead our

manipulation of Golgi cell inhibition may have had more subtle effects on cerebellar cortical

neuronal dynamics.
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Decreasing Golgi cell inhibition increases the temporal heterogeneity of neuronal

dynamics during whisking activity

Accordingly, when focusing on the temporal aspect of neuronal activity, we noticed that decreased

Golgi cell inhibition was associated with an increased alignment or synchronisation of the average

neuronal activity peaks during whisking onset. Golgi cell inhibition has indeed been shown to

control spike timing of granule cells through various mechanisms, including changes in gain,

determining the slope of the granule cell input-output curve, and spike threshold, controlling spike

initiation [96, 161]. Golgi cells are the source of feedforward inhibition, whose general downstream

consequence in other brain regions has been linked to an increase in temporal precision on

neuronal dynamics, as normally inhibition trails behind excitation and sharpens the window of

input integration [234, 82, 162]; however, Golgi cell inhibition, in the specific, can precede or

be concomitant with mossy fibre excitation, in which case it can actually reduce the temporal

precision of early granule cell responses [56]. Our results are in line with these findings, as

decreasing Golgi cell inhibition leads to an increased temporal alignment of the overall network

activity during whisking initiation. This control by Golgi cells of the timing of network activity,

in turn, could support the specific cerebellar role in integrating information across different

behavioural domains. In fact, the temporal heterogeneity of granule cell responses to mossy fibre

input is deemed important for how the cerebellar network integrates and distinguishes parallel

sensory and motor pathways [34], which is consistent with the idea that the cerebellum works as

a hub for sensorimotor integration, and more in general behavioural coordination [175].

Decreasing Golgi cell inhibition decreases the stability of whisking behaviour

As for the behavioural effects of our manipulation, we found that it lead to increased variability in

the dynamics of whisking onset. In detail, we found that the velocity or slope of average whisking

protraction during whisking initiation could change more over recording time, both increasing or

decreasing, when Golgi cell inhibition was reduced. In contrast, with intact inhibition, whisking

protraction remained mostly unchanged. This result highlights the importance of an intact

cerebellum for precise whisking control, which, notably, is subject to the coordination with other

motor and sensory systems [48, 138, 157, 191]. Thus, increased variability in motor initiation
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may be linked with the possible contribution of Golgi cell inhibition to the representations of

multiple streams of information – bound together at the level of the cerebellar cortex – that

might improve the accuracy with which each single behaviour involved is performed.

Decreasing Golgi cell inhibition does not change the population representations of

whisking behaviour

Finally, we assessed whether reduction of inhibition in the lateral cerebellar cortex changed

how population activity reflected whisking behaviour. We did not find strong evidence of a

change in cross-correlation between neuronal and whisking activity, which indicates that neuronal

representations of whisking behaviour were not deteriorated after Golgi cell manipulation. In

other words, it is possible that our manipulation could have caused changes in neuronal dynamics

in the cerebellar cortex, which in turn may have affected whisking behaviour, without however

changing the quality of the encoding of whisking information by the network per se.

Limitations and future research

These results, however, are subject to some limitations that may affect their validity or inter-

pretation. In particular, it is important to notice that Golgi cells have different properties that

may circumvent or decrease the the efficacy of our chemogenetic manipulation [43]. For example,

Golgi cells display pacemaker activity and activity rebound following hyperpolarisation, which

may interact with the moderate hyperpolarisation caused by DREADDs activation. Golgi cells

are also electrically coupled with each other, and this type of neuronal communication was not

affected by presynaptic silencing. Finally, Golgi cells have extensive axonal arborisations, which

means that the neuronal population recorded may still have received inhibition from Golgi cells

located outside the site of DREADDs expression. A second limitation concerns instead the direct

recording of granule cells. Our manipulation should have in the first instance altered the activity

of this neuronal class; however, recording from these neurons is particularly difficult with Neu-

ropixels I probes, due to their small size [104, 172]. Thus, our analyses addressed changes in the

overall cerebellar network dynamics, but could not focus on the immediate target of Golgi cell in-

hibition. Overall, these caveats intimate prudence when assessing the effects of our manipulation

on Golgi cell inhibition. Thus, future work should aim at replicating the present findings, while
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also assessing more directly how activation of inhibitory DREADDs interact with the peculiar

Golgi cell properties.

Our work suggests that altering Golgi cell inhibition changes the response of the network

to its input, hence changing how the downstream behaviour is controlled. Golgi cell inhibition

itself is under the control of many mechanisms, including feedback loops within the cerebellum

[3] and its cortex [52, 237, 167], as well as neuromodulatory systems [63, 141, 66]. Thus, the

Golgi cell population is in a key position to flexibly control cerebellar computations, based on

the dynamic behavioural context, which may require to focus on different aspects of behaviour

each time. Hence, in order to fully understand the pervasive involvement of the cerebellum in

behavioural control, it will be critical to elucidate how different mechanisms contribute to fine

tune the Golgi cell network in a context-dependent manner.

Conclusions

In conclusion, the data presented in this chapter show that the cerebellar cortex can accurately

encode whisking behaviour, and that these representations play a role in whisking dynamics.

In particular, when decreasing the level of Golgi cell inhibition, which in a natural situation

may correspond to a careful adjustment of the state of the network [174], we did not observe a

saturation of neuronal activity, nor degradation of whisking representations per se. Instead, our

manipulation increased the temporal alignment of neuronal dynamics during whisking, while,

at the same time, increasing the variability in the dynamics of whisking initiation. Although

at a first glance contradictory, these results could be reconciled by the idea that Golgi cell

inhibition contributes to the temporal heterogeneity in granule cell activity, and therefore to

how the granular layer encodes and integrates information about different sensory, motor and

cognitive domains carried by mossy fibres; in turn, this integration may support behavioural

coordination, which increases the precision of execution of each single behavioural domain, by

constraining or regulating one domain based on the dynamics of the others. Thus, it would be

particularly interesting in future experiments to track, in addition to whisking, other interrelated

motor systems and sensory pathways, in order to investigate how Golgi cell inhibition supports

their joint dynamics.
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3.4 Covid statement

The experimental work presented in this thesis was seriously affected by the covid pandemic,

which delayed the acquisition of data presented in this chapter. In particular, the Bristol Animal

Unit experienced a significant staff shortage, which brought to extreme low numbers the mouse

colony I am working with; this, together with difficulties in recovering the colony, imposed a

prolonged period during which we could not perform experiments.
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The overarching aim of this thesis was to investigate how the cerebellum contributes to behaviour.

We addressed how the cerebellum encodes behaviourally relevant variables, and how it uses these

representations to produce functional behaviour, namely, behaviour where its components (i.e.,

sensory, motor, and cognitive ones) are seamlessly integrated and coordinated.

This work included both computational modelling of the cerebellum and experiments. The

computational work described a general model of the cerebellum, illustrating how its compu-

tations may serve whole-brain neuronal dynamics underlying behavioural production. The ex-

perimental work, instead, involved simultaneous recording of whisking and cerebellar cortical

activity in mice, coupled with chemogenetic manipulation of the cerebellar network state. This

experimental setup allowed us to gain insights on how the cerebellum encodes whisking activity,

and how this encoding, together with downstream behaviour, may be susceptible to changes in

the network’s state.

4.1 Computational modelling of the cerebellum

The cerebellum is involved in most aspects of behaviour, spanning sensory, motor, and cognitive

domains [213, 6, 210, 199, 129, 61, 156]. Cerebellar computations have often been described in

terms of a state estimation process, based on an internal model whose structure is learned through

experience [180, 158, 239]. This view is supported by empirical research, showing that cerebellar

activity encodes estimates of behaviourally relevant variables used to fine tune behaviour[147,

168, 10, 201, 220, 217]. However, it is still debated how cerebellar computations are integrated

within whole-brain dynamics, especially when considering its involvement in so many different
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behavioural contexts.

Theoretical treatments of the cerebellum have used various approaches to describe its func-

tions, for example by modelling it as a Smith predictor, a forward model, a model predictive

control, as an implementation of predictive coding [54, 179, 222, 201, 67, 137, 185, 74]. Notably,

all these models include a state prediction and estimation process, which are commonly asso-

ciated with the cerebellar functions. In this work, we used a formalism that generalises these

approaches, the free energy principle (FEP).

The FEP is a theoretical framework primarily concerned with the description of how internal

(e.g., neuronal) states of biological systems change over time, and has been successfully used

to explain neuronal dynamics, cognition and behaviour [130, 76, 62, 77, 160, 177, 114]. Under

the FEP, neuronal dynamics reflect an inference process, where the objects of inference are

hidden environmental states, namely, external and somatic states such as conditioned stimuli

and limb or whisking position. Notably, neuronal inference is based on a generative model of

how environmental states produce available sensory input, the form of which is defined by the

biophysical structure of the network itself.

Thus, the key question we addressed was: what is the form of the cerebellar generative

model, and of the ensuing estimation process, that best explains the cerebellar role in behavioural

control? In this work we argued that, at its simplest, the key cerebellar function is to coordinate

different behavioural domains, and that this translates into a generative model that is able

to learn and infer interactions between those domains. Thus, in this picture, cerebellar state

estimation is focused on how behavioural variables interact with each other; these estimates, in

turn, are used by the cerebellum to constrain extra-cerebellar dynamics, so that they conform

with expectations about behavioural coordination. In other words, the cerebellar model is placed

on top of the extra-cerebellar model, and serves the function of contextualising inference therein.

Technically, the cerebellum infers the context of behaviour, and uses this context as an empirical

prior, known in machine learning as inductive bias, to guide and adjust neuronal inference in

other brain regions underlying behavioural production.

The proposed cerebellar model aims to be as simple and general as possible. For this reason

we used a state space model with linear mapping and equations of motion, in accordance with

empirical studies showing linear encoding of behavioural variables in the cerebellum [109, 190] –
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although it would also be possible to include non-linearities in a biologically plausible manner [17].

Nevertheless, the model is able to capture many important aspects of the cerebellar circuitry that

are often neglected. In particular, the cerebellum is usually described as a feedforward network;

however, feedback loops within it play an increasingly recognised role in the generation of its

dynamics, which is accounted for in the present model.

Finally, we presented numerical simulations that use as an exemplary case whisking-respiration

coordination in rodents, for which the cerebellum is known to play a crucial role [191]. The results

show that the cerebellum is capable of establishing and maintaining behavioural coordination in

face of different perturbations, such as internal noise and external stimuli. Importantly, these

findings can be generalised to any behavioural context, because in all cases functional behaviour

relies on learned associations and coordination between task-relevant variables.

In conclusion, the cerebellar model described in this thesis offers a perspective on its com-

putations that may guide interpretations of empirical results on how the cerebellum encodes or

estimates behaviourally relevant variables, what role cerebellar components play in this estima-

tion process, and how cerebellar outputs control or guide extra-cerebellar dynamics.

4.2 Cerebellar representations of whisking behaviour

The experimental part of this thesis investigated how the lateral cerebellar cortex, including

Crus I, II and the simplex, represents whisking behaviour in mice, and how both neuronal and

behavioural activity are affected by changing the state of the network. In particular, we used

Neuropixels I and high-speed camera recordings of neuronal and behavioural activity in mice

in two conditions: with and without altered levels of Golgi cell inhibition. Temporally precise

manipulation of Golgi cell inhibition was achieved using inhibitory DREADDs, activated via

topical application of CNO.

Data obtained from the intact network are in line with past results, showing accurate repre-

sentations of whisking dynamics in the lateral cerebellar cortex. In particular, it has been found

that Purkinje cells linearly encode whisking position [37], and that this tuning arises from the

combination of more localised tuning curves in upstream neurons [38]. Accordingly, our results

show the presence of both monotonically increasing and decreasing tuning curves, as well as
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tuning curves with more localised changes in firing rates across whisker positions. Moreover,

neuronal activity could be well predicted based on information about whisking setpoint, showing

accurate representations of whisking activity in the lateral cerebellar cortex.

Not surprisingly, the analysis of population activity also showed accurate representations

of whisking activity. These representations preferentially preceded behaviour by a few tens of

milliseconds, which highlights the role of the cerebellum in fine tuning upcoming behaviour.

Moreover, we found that information about whisking activity tended to be widely spread across

the neuronal populations recorded; this distributed code may naturally arise from the charac-

teristic neuronal connectivity patterns found in the granular layer and molecular layer layer,

favouring an expansion and distribution of information across neurons.

When we perturbed the state of the network, by decreasing Golgi cell inhibition, we found

no clear change in how the cerebellar cortex represents whisking activity. This may be due to

the fact that our manipulation was moderate, and did not disrupt information processing in this

network. Nevertheless, we found that our manipulation had an effect on the level of neuronal

activity alignment, with peaks of average activity less scattered with reduced Golgi cell inhibition.

Accordingly, Golgi cell inhibition has been linked to increased temporal dispersion of neuronal

activity, especially during the first stage of the response to mossy fibre input [56]; notably, this was

linked to the role of Golgi cells in integrating different streams of information at the level of the

granular layer. Thus, one possibility is that our manipulation might have hampered integration

of information related to different behavioural variables in the cerebellar cortex, which in turn

may have decreased temporal variability of the network response to whisking-related input alone.

At a behavioural level, we found a concomitant increase in variability of average whisking

responses across recording time, and in particular of the velocity of whisking initiation. This

result resonates with other findings, showing how cerebellar activity plays an important role in

motor initiation [21, 224, 45], and may support the idea that the cerebellum fine tunes behaviour

by coordinating its different components. In other words, if our manipulation of Golgi cell inhi-

bition had an effect on how the network integrates information in the granular layer, downstream

behavioural changes may be due to the reduced capacity of the cerebellum to refine whisking

activity based on other behavioural variables, which are normally coordinated with whisking.

This interpretation of our experimental results may also be linked to our computational model
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of the cerebellum. In particular, in this model Golgi cell inhibition controls the precision of mossy

fibre input, namely, the weight carried by these input in updating cerebellar state estimates.

Notably, the precision is encoded in the correlation matrix, describing how noise co-varies across

different streams of information. Practically, this means that these streams of information are

not considered independent by the cerebellar model, but carry information about one another.

Thus, our manipulation of Golgi cell inhibition, when read within the framework of cerebellar

state estimation, may lead to the decreased ability of the network to integrate information across

behaviorally relevant variables (in our case whisking and unobserved ones such as respiration and

limb movements), which in turn may affect how well the cerebellum can fine tune behaviour.
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