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ABSTRACT

This thesis uses kernel mean embeddings to develop novel nonparametric methods for estimating
hidden Markov models (HMMs) and state-space models (SSMs).

Our first result formalizes and generalizes a remark made in Song et al. [2014] to show
that given an estimated embedding of a probability distribution in a reproducing kernel Hilbert
space (RKHS), a quantity referred to as an estimated kernel mean embedding, the density of the
embedded distribution can be estimated consistently at no additional cost. This is a substantial
result towards the understanding of RKHS embeddings, and opens up the opportunity for end-to-
end modelling using kernel mean embeddings. We show that the result can be used to estimate
conditional densities using conditional mean embeddings, and demonstrate that empirically this
outperforms existing kernel-based methods for conditional density estimation.

Our second contribution is the proposal of a nonparametric method for estimating hidden
Markov models. The method we propose estimates the RKHS embeddings of the distributions
that characterize the HMM, using spectral theory and the decomposition of several operators. In
this setting we also propose a novel model-based kernel Bayes’ rule which allows for inference in
the HMM without estimating the underlying densities. We show empirically that our method
outperforms a related method with an order of magnitude less data.

Our final contribution is in the proposal of a nonparametric method for estimating state-space
models under minimal assumptions. The estimation of a nonparametric state-space model poses
significant difficulty without strong assumptions on the underlying process, and there are few
existing nonparametric methods in this setting. To the best of our knowledge our assumptions
are the most general, and we show empirically that our proof of concept method captures the
underlying dynamics of several synthetic models.
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of ĝ(y|x) over a sequence of y and x. The second row contains the estimated Markov

transition densities f̂ (x2|x1) over x2 for x1 equal to -2, -1, 0, 1, and 2, and a heatmap

of f̂ (x2|x1) over a sequence of x2 and x1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 The true state-space model for Model 18. The first row contains the observation

densities g(y|x) over y for x equal to -1, -0.25, 0, 0.25, and 1, and a heatmap of g(y|x)

over a sequence of y and x. The second row contains the Markov transition densities

f (x2|x1) over x2 for x1 equal to -2, -1, 0, 1, and 2, and a heatmap of f (x2|x1) over a

sequence of x2 and x1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xvi



C
H

A
P

T
E

R

1
INTRODUCTION

Kernel methods have seen widespread adoption in the statistics and machine learning literature

since their inception, and have enabled the development of many non-linear algorithms for

learning complex patterns [Schölkopf and Smola, 2001]. Kernels have enabled the development

of non-linear methods for dimensionality reduction [Schölkopf et al., 1997], regression [Vovk,

2013], and classification [Cristianini and Shawe-Taylor, 2000], to name a few. In this classical

setting, data points are mapped to a high-dimensional (and often infinite-dimensional) space in

which intricate patterns within the data become evident and can be addressed using a linear

method. Over the last 20 years this idea has been generalized: rather than embed data points

into a reproducing kernel Hilbert space, we can embed probability distributions [Berlinet and

Thomas-Agnan, 2011, Smola et al., 2007].

The embedding of probability distributions in reproducing kernel Hilbert spaces, often called

kernel mean embeddings, provides a flexible framework for conducting nonparametric inference.

Kernel mean embeddings can be estimated with a set of samples and manipulated via equivalents

of the sum, product, and Bayes’ rule to obtain embeddings of other distributions of interest

without parametric assumptions [Song et al., 2009, Muandet et al., 2017]. The framework has

seen applications in several areas, such as probabilistic modelling [Fukumizu et al., 2013],

statistical inference [Gretton et al., 2006], and causal inference [Lopez-Paz et al., 2015]. Kernel

mean embeddings allow us to compute expectations of functions which belong to the RKHS,

however in general recovering information from embedded probability distributions is a non-

trivial task, and precisely what information can be recovered from an embedding has remained

an open question.

Hidden Markov models and state-space models are popular statistical models used for mod-

elling time series. Since their inception [Baum and Petrie, 1966] they have seen extensive use

in fields such as speech recognition [Rabiner, 1989], finance [Taylor, 1982], and bioinformatics

1



CHAPTER 1. INTRODUCTION

[Stanke et al., 2003]. Both HMMs and SSMs have the same underlying structure that consists of

an unobservable latent process that is a Markov chain, and an observable process that depends

on the latent process. The HMM assumes that the latent process takes values in a finite set,

whilst the SSM relaxes this assumption such that the latent process takes continuous values.

HMMs allow for elegant identifiability results even in the nonparametric setting [Gassiat et al.,

2016], and their simplicity allows for analytic inference procedures [Rabiner, 1989]. On the other

hand, the generalization to a continuous latent space poses significant difficulties: state-space

models are not identifiable without strong parametric assumptions, and in many cases one must

use computational methods such as particle filters in order to conduct inference [Doucet et al.,

2001, Chopin et al., 2020].

This thesis presents several novel contributions.

1. We answer an open question in the kernel mean embedding literature regarding what infor-

mation can be recovered from embeddings: we produce a density estimator that is uniformly

consistent in probability which can be obtained at no additional computational cost, under

reasonable assumptions on the kernel mean embedding. We apply the estimator to condi-

tional mean embeddings to obtain a conditional density estimate, and show empirically

that this estimator outperforms existing kernel-based approaches to conditional density

estimation. The recovery of densities from estimated embeddings paves the way for a new

generation of kernel-based algorithms, enabling downstream tasks and the possibility for

end-to-end statistical modelling using kernel mean embeddings.

2. We propose a novel nonparametric method for estimating hidden Markov models using

kernel mean embeddings and spectral theory, motivated by recent identifiability results for

nonparametric HMMs. We use our density estimator to perform inference in the filtering

task, and develop a novel alternative kernel Bayes’ rule that allows for inference in the

HMM without estimation of the densities. We also derive an estimator of the HMM order

that is almost surely consistent. Our experiments show that our method outperforms a

related method with an order of magnitude less data, and our order estimator is capable of

correctly estimating the HMM order when the related method cannot. Performing inference

using the alternative kernel Bayes’ rule produces a significant improvement in performance,

and we are not aware of any other nonparametric methods for HMMs that completely avoid

estimating the underlying HMM densities.

3. We develop a novel nonparametric method for estimating a state-space model using kernel

mean embeddings under minimal assumptions on the data-generating process. We prove

that without additional assumptions the model is non-identifiable, and we use this to our

advantage as the non-identifiability of the model allows us to sample latent states from

a distribution of our choice. We derive a decomposition of a kernel mean embedding in

terms of RKHS operators and use the decomposition to motivate an optimization problem.

2



1.1. NOTATION AND ASSUMPTIONS

There are very few existing methods in this setting, and to the best of our knowledge

our assumptions on the data-generating process are the most general. We show in our

experiments that this proof of concept approach to estimating nonparametric SSMs can

effectively capture the dynamics of the underlying system.

1.1 Notation and assumptions

Throughout the thesis we use the following notation. Let Y and X denote the observation space

and latent space respectively, then we define reproducing kernel Hilbert spaces HY and HX

on Y and X with associated kernel functions k : Y ×Y → R and l : X ×X → R. We frequently

reference the canonical feature maps induced by the kernel functions, which satisfy φY (y)= k(y, ·)
and ϕX (x) = l(x, ·) for y ∈ Y and x ∈ X . The canonical feature maps satisfy the reproducing

property, and in particular

k(y, y′)= 〈
φY (y),φY (y′)

〉
HY

, and l(x, x′)= 〈
ϕX (x),ϕX (x′)

〉
HX

,

for y, y′ ∈Y and x, x′ ∈X .

To ensure the existence of the RKHS embeddings, we require the following assumption.

Assumption 1.1. The kernel functions on Y and X are measurable and bounded, and their

associated reproducing kernel Hilbert spaces are separable.

These assumptions on the kernel function are not restrictive: many popular kernel functions

such as the Gaussian, Laplace, and Matérn kernels are bounded and measurable, and separability

of their associated RKHSs follows when the underlying space is a separable Borel space or an

analytic subset of a Polish space, such as Rd, for d ≥ 1 [Owhadi and Scovel, 2017].

1.2 Background

This section provides all of the background needed in the following chapters.

1.2.1 Hidden Markov and state-space models

Hidden Markov models and state-space models are statistical models used to model time series.

The models consist of two processes: an observable process and an unobservable hidden/latent

process (we use the phrases hidden and latent interchangeably). The hidden process is a Markov

chain and the observed process is conditionally independent of all past values of the hidden

process and all past and future values of the observable process, given the hidden process at the

current time. An HMM differs from an SSM in that the hidden process of an HMM only take

values from a finite set and thus one can think of a hidden Markov model as a special case of a

state-space model. They are both characterized by the initial distribution of the hidden process,

3



CHAPTER 1. INTRODUCTION

the transition distribution of the hidden process, and the distribution of the observable process

given the hidden process. We refer to these quantities as the parameters of the model, and in

statistical modelling we aim to estimate these parameters from a sequence of observations. A

directed acyclic graph depicting HMMs and SSMs is given in Figure 1.1.

Hidden Markov models and state-space models are well-studied in the statistics literature,

however a majority of the literature focuses on parametric modelling. Such models are specified by

making distributional assumptions on the model, characterized by a finite-dimensional parameter

which must be estimated via maximum likelihood estimation (MLE). This is often done using the

Expectation-Maximization algorithm, which can suffer from slow convergence and convergence

to sub-optimal local extrema. For HMMs, the MLE is consistent and asymptotically normal when

the observation distribution, that is the distribution of the observable process given a hidden

state, has finite support [Baum and Petrie, 1966], and these results have been extended to SSMs.

See Douc et al. [2004] and references therein for details.

Nonparametric latent variable models have been become increasingly popular in applied

sciences and have been applied to problems such as climate modelling [Lambert et al., 2003],

genomics [Yau et al., 2011], animal movement [Langrock et al., 2015, 2018], speech recognition

[Couvreur and Couvreur, 2000], facial expression recognition [Shang and Chan, 2009], and

biology [Volant et al., 2014]. Their popularity stems from the fact that parametric modelling can

often lead to poor performance. Specifying a parametric family of distributions that encompasses

a wide-class of models whilst resulting in a computationally tractable model can be very difficult.

When the underlying distributions are multi-modal, skewed, or heavy-tailed then specifying a

parametric model becomes particularly difficult, and a poor choice of model assumptions may

lead to poor performance in inference tasks. However, parametric models have their advantages:

given domain expertise and reasonable assumptions one may produce a parametric model that

adequately models data and captures meaningful details regarding the underlying system.

In many cases the hidden process is of primary interest. Hence, common inference tasks for

the HMM involve inferring the hidden states given observations of the observable process. When

the hidden process only takes finite values, such inference tasks can be performed analytically

for an estimated model via the forward-backward algorithm. When the hidden process can take

continuous values, inference procedures are only tractable under strong assumptions such as

linearity and Gaussianity of the observation distribution and Markov transition, as finite sums

become integrals in the continuous regime. When modelling a non-linear dynamical system one

often uses approximate methods such as sequential Monte Carlo.

See Cappé et al. [2009] and Chopin et al. [2020] for a comprehensive introduction to hidden

Markov models and state-space models.
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1.2. BACKGROUND

X1 X2 X3

Y1 Y2 Y3

Hidden process

Observation process

Figure 1.1: A directed acyclic graph describing hidden Markov models and state-space models,
with observations (Y1,Y2,Y3) and hidden states (X1, X2, X3).

1.2.1.1 Hidden Markov models

A hidden Markov model consists of a pair of discrete-time stochastic processes (X t)t≥1 and

(Yt)t≥1, referred to as the hidden process and observable process respectively. Let K and d be

positive integers, and let X denote the set of hidden states {1, . . . ,K}, and Y ⊂Rd the observation

space. The hidden process (X t)t≥1 is a Markov chain on X with K ×K transition matrix Q, and

initial distribution π ∈ ∆K , where ∆K is the space of probability measures on X identified to

the (K −1)-dimensional simplex. The observable process (Yt)t≥1 takes values in the observation

space Y , and we assume that for any t > 1 the observation Yt is conditionally independent of all

other observations (Yi)i≥1,i ̸=t and previous hidden states (X i)t−1
i=1 given X t. Together, the pair of

processes (X t,Yt)t≥1 is a hidden Markov model.

We assume that the distribution of Yt conditional on X t = k, for any k ∈ X , has density fk

with respect to the Lebesgue measure on Y . We refer to fk as an observation density and denote

by F = { f1, . . . , fK } the set of observation densities with respect to the Lebesgue measure on Y .

If the initial distribution is the stationary distribution, then the hidden Markov model

is uniquely defined by the stationary distribution π, the transition matrix Q, and the set of

observation densities F. For this reason, we state that the HMM is parametrized by (F,Q,π).

Figure 1.2 depicts a hidden-Markov model with three observed states as a three-view mixture

model with hidden variable X2. This interpretation provides intuition underlying Chapter 3:

Y1, Y2, and Y3 are conditionally independent given X2, and expectations over Y1|X2 and Y3|X2

can be expressed in terms of expectations over Y2|X2 and the model parameters Q and π (see

Lemma 3.1 and Proposition 8 of Anandkumar et al. [2012]).

X2

Y1 Y2 Y3

Figure 1.2: A multi-view representation of a hidden Markov model with three states.
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CHAPTER 1. INTRODUCTION

1.2.1.2 State-space models

A state-space model consists of two processes: a latent process (X t)t≥1, and an observable process

(Yt)t≥1 defined over discrete time. The latent process is Markovian, unobserved, and takes values

in X , and the observable process is observed and comprises of random variables that take values

in Y which are conditionally independent given the latent process at time t. The conditional

distribution of Yt given (X1, . . . , X t,Y1, . . . ,Yt−1,Yt+1, . . . ) depends only on X t.

The structure and conditional dependencies of the state-space model can be visualized via

the directed acyclic graph depicted in Figure 1.1. The model is determined by the conditional

distributions of Yt|X t and X t+1|X t, and the invariant distribution of (X t)t≥1. Typically X and Y

are taken to be multidimensional Euclidean spaces, however other spaces can also be used.

Let M1+ (Z ) denote the space of probability measures on a topological space Z . We define

M : X → M1+ (X ) to be the Markov transition and O : X → M1+ (Y ) the observation distribution

such that Yt|X t ∼O(X t,d yt) and X t+1|X t ∼ M(X t,dxt+1). We assume that there exist probability

density functions g and f such that O(xt,d y) = g(y|xt)dy and M(xt,dx) = f (x|xt)dx for xt ∈ X ,

and that the initial distribution of the Markov chain is the invariant distribution π ∈ M1+ (X ). The

collection (O, M,π) defines the state-space model, and we refer to this collection as the state-space

representation.

A state-space model can also be defined by describing how the observed and latent space

variables are related to sequences of noise, as seen below.

Example 1.1 (Linear Gaussian). In a linear Gaussian state-space model the processes X t and Yt

are linear functions of random variables X t−1 and X t respectively, with independent Gaussian

noise. That is,

X t = AX t−1 +Ut,

Yt = BX t +Vt,

where A and B are dx×dx and dy×dx matrices, and Ut and Vt are vectors of i.i.d. Gaussian noise.

1.2.1.3 Inference

Several inference problems arise when working with sequential models such as hidden Markov

models and state-space models. Many revolve around inferring the posterior of the hidden state X i

given a sequence of observations y1: j, and the nature of the problem depends on the relationship

between i and j:

• if i = j+1, we have the prediction problem wherein we must infer the next hidden state.

• if i = j, we have the filtering problem wherein we must infer the current hidden state.

• if i < j, we have the smoothing problem wherein we must infer the previous hidden states.

Typically, given a sequence y1: j we infer all hidden states for i < j.

6
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Additionally, beyond the hidden states, one might also be interested in predicting the next

observation Yt+1 given a sequence of observations y1:t, which can provide valuable insights into

the evolution of the observable process.

1.2.2 Reproducing kernel Hilbert spaces

Definition 1.1 (Reproducing kernel Hilbert space [Aronszajn, 1950]). Let X be a topological

space, and let H be a Hilbert space of functions mapping from X to R, equipped with inner

product 〈·, ·〉H . We call H a reproducing kernel Hilbert space if there exists a symmetric and

positive-definite function k : X ×X →R which satisfies the following properties

• k(x, ·) ∈H , ∀x ∈X ,

• 〈 f ,k(x, ·)〉H = f (x), ∀x ∈X , ∀ f ∈H .

The function k described above is called a reproducing kernel, and the kernel k is uniquely

defined by the RKHS. Conversely, for any symmetric and positive-definite kernel function there

exists a unique RKHS for which it is the reproducing kernel [Aronszajn, 1950]. The second

property is referred to as the reproducing property, and it follows that
〈
k(x, ·),k(x′, ·)〉H = k(x, x′)

for x, x′ ∈X . The notation k(x, ·) is used to denote the kernel function with one argument fixed at

x ∈X , and one free, and is often referred to as the canonical feature map φ(x) := k(x, ·) ∈H .

Throughout this thesis we primarily use the Gaussian kernel function, however the proposed

methods can be applied with a wide-variety of kernel functions. Several popular kernel functions

are defined below.

Definition 1.2 (Gaussian, Laplace, and Matérn kernel functions). Let x, x′ ∈Rd for d ≥ 1 and let

∥ ·∥2 denote the L2 norm. The Gaussian kernel function is defined as

(1.1) k(x, x′)= exp

(
−∥x− x′∥2

2

2γ2

)
,

where γ> 0 is a kernel hyperparameter which determines the width of the kernel.

The Laplace kernel function is defined by

(1.2) k(x, x′)= exp
(
−∥x− x′∥2

γ

)
,

where γ> 0 is a kernel hyperparameter which determines the width of the kernel.

The Matérn kernel function is defined by

(1.3) k(x, x′)= 21−ν

Γ(ν)

(p
2ν∥x− x′∥2

ρ

)ν
Kν

(p
2ν∥x− x′∥2

ρ

)
,

where ν> 0 determines the smoothness, ρ > 0 determines the scale, Γ is the Gamma function, and

Kν is a modified Bessel function of the second kind and order ν.
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See Williams and Rasmussen [2006] for an in-depth coverage of kernel functions and their

usage, and Sriperumbudur et al. [2011] for a discussion of the richness and properties of their

reproducing kernel Hilbert spaces.

1.2.2.1 Kernel mean embeddings

We consider random variables X and Y over topological spaces X and Y respectively, and

reproducing kernel Hilbert spaces HX and HY over X and Y , with associated kernel functions

l : X ×X →R and k : Y ×Y →R, and canonical feature mappings ϕX and φY respectively.

Definition 1.3 (Kernel mean embedding [Smola et al., 2007, Berlinet and Thomas-Agnan, 2011]).
Let X be a topological space, and let M1+ (X ) denote the space of probability measures on X . The

embedding of P ∈ M1+ (X ) in the reproducing kernel Hilbert space HX on X is defined by the

mapping

(1.4) µP : M1
+ (X )→HX , P 7→

∫
l(x, ·)dP(x),

where l is the kernel function associated with HX , and the integral is a Bochner integral (we refer

the reader to Diestel and Uhl [1977], Dinculeanu [2000] for the definition of the Bochner integral).

The following lemma provides a condition for the existence of the embedding.

Lemma 1.1 (Smola et al. [2007]). If EX∼P[
√

l(X , X )] < ∞, then µP ∈ HX and expectations of

functions belonging to HX can be computed as EX∼P[ f (X )]= 〈
f ,µP

〉
HX

for any f ∈HX .

The kernel mean embedding defines a mapping from the probability space to a reproducing

kernel Hilbert space, and kernel functions which ensure that the mapping is injective are termed

characteristic. Characteristic kernel functions ensure that probability distributions are mapped

to unique elements in the RKHS, and hence the embedding captures all of the information of the

embedded distribution.

In practice we do not have direct access to the distribution P, and we need to rely on an alter-

native method to compute the embedding. A simple approach is to approximate the expectation

in Equation (1.4) with the sample mean. Suppose we observe n i.i.d. samples x1, . . . , xn from a

distribution P on X , then we can approximate its kernel mean embedding using the empirical

measure Pn := 1
nδxi :

µ̂Pn =
∫

l(x, ·)dPn(x)= 1
n

n∑
i=1

l(xi, ·).

This is one of a number of ways to obtain the approximate embedding of a distribution. Other

approaches may involve the use of an alternative estimator such as a shrinkage estimator

[Muandet et al., 2016], the kernel sum, product or Bayes’ rule as described below, or they can be

obtained as the solution to a vector-valued kernel regression problem [Grünewälder et al., 2012].
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Just as the mean element is used to define the embedding of a marginal distribution over X ,

we may use a covariance element to define the embedding of the joint distribution of (X ,Y ), where

X and Y are random variables on topological spaces X and Y respectively. This embedding is

often referred to as the cross-covariance operator and it can be considered a mapping between

RKHSs.

Definition 1.4 (Cross-covariance operator). Let (X ,Y ) be a random variable taking values on

X ×Y , and define reproducing kernel Hilbert spaces HX and HY on X and Y respectively.

Let l and k be the measurable kernels associated with HX and HY . Then the cross-covariance

operator CY X : HX →HY is defined as

CY X := EY X [k(Y , ·)⊗ l(X , ·)] ∈HY ⊗HX ,

where ⊗ denotes the tensor product. The operator is defined as the expectation of an element in the

tensor product space HY ⊗HX , and thus defines an element in HY ⊗HX and an operator from

HX to HY . Suppose PY X is the joint distribution of (Y , X ), then the cross-covariance operator is

the kernel mean embedding of the joint distribution: CY X =µPY X ∈HY ⊗HX .

The following lemma provides a condition for the existence of the cross-covariance operator.

Lemma 1.2 (Baker [1973]). If EX [l(X , X )]<∞ and EY [k(Y ,Y )]<∞, then CY X ∈HY ⊗HX .

The covariance operator can be estimated empirically given pairs of samples. For a set of

samples (yi, xi)n
i=1 from the joint distribution of (Y , X ), we may estimate the cross-covariance

operator as ĈY X := 1
n

∑n
i=1(k(yi, ·)⊗ l(xi, ·)).

1.2.2.2 Conditional mean embedding

It is also possible to embed conditional distributions into reproducing kernel Hilbert spaces.

Definition 1.5 (Conditional mean embedding). Let Y and X be topological spaces. The condi-

tional mean embedding of the conditional distribution P(Y |X = x), x ∈X , is defined as

(1.5) µY |X=x =
∫
Y

k(y, ·)dP(y|x)= E[k(Y , ·)|X = x] ∈HY .

The conditional mean embedding is a representer of expectation in the RKHS: for any

f ∈HY , E[ f (Y )|X = x]= 〈
f ,µY |X=x

〉
HY

. The following assumption is often used in the literature

[Fukumizu et al., 2003, Song et al., 2009, Klebanov et al., 2020]

Assumption 1.2. For all functions g ∈HY we have E[g(Y )|X = ·] ∈HX .

Under Assumption 1.2 there exists an operator UY |X mapping from HX to HY which

satisfies µY |X=x =UY |X l(x, ·) for x ∈X . Additionally, the operator satisfies

(1.6) µY |X=x =
(
C

†
X X C ∗

Y X

)∗
l(x, ·), x ∈X ,

9
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where A∗ denotes the adjoint and A† the Moore-Penrose pseudoinverse of an operator A, and

the operator is also bounded [Klebanov et al., 2020]. One can think of UY |X :=
(
C

†
X X C ∗

Y X

)∗
as the kernel mean embedding of the distribution P(Y |X ). The operator UY |X is referred to

as the conditional mean operator, and µY |X=x is referred to as a conditional mean embedding.

Equation (1.6) shows that the operator traces out a path of conditional mean embeddings in the

RKHS HY .

The conditional mean embedding can be approximated using Tikhonov regularization and

a set of i.i.d. samples (yi, xi)n
i=1 from the joint distribution of (Y , X ). Let ĈX X and ĈY X denote

empirical cross-covariance operators, then the empirical conditional mean embedding is

µ̂Y |X=x = ĈY X

(
ĈX X +λIH ⊗2

X

)−1
l(x, ·),

where λ> 0 is a regularization parameter and IH ⊗2
X

denotes the identity operator in the tensor

product RKHS HX ⊗HX . The empirical conditional mean embedding can be expressed as the

weighted sum µ̂Y |x =∑n
i=1 wn,ik(yi, ·), for wn = (K +nλIn)−1lx, where lx = [l(x1, x), . . . , l(xn, x)] and

K is a kernel matrix with (i, j)-th entry [K]i, j = l(xi, x j) for i, j ∈ {1, . . . ,n} [Song et al., 2009].

Hence, approximating the conditional mean embedding from a set of paired samples amounts

to computing the inverse of a kernel matrix and a matrix-vector multiplication. This empirical

estimator has been widely studied and is known to be consistent under certain assumptions

[Grünewälder et al., 2012, Fukumizu, 2015, Park and Muandet, 2020, Li et al., 2022].

1.2.2.3 Kernel sum, product, and Bayes’ rule

Embeddings can be obtained via operations such as the kernel sum, product, and Bayes’ rule,

and these operations provide a way to manipulate various embeddings to obtain other quantities

of interest, as one would do in a purely probabilistic setting.

The following rules require that we commute the expectation and the conditional mean

operator. This can be done using Proposition 1.1 when the conditional mean operator is bounded,

the element being mapped is Bochner integrable, and the reproducing kernel Hilbert spaces

are separable. The latter two conditions are satisfied under Assumption 1.1, and the operator is

bounded under Assumption 1.2 [Klebanov et al., 2020].

Kernel sum rule. The sum rule allows us to compute the marginal distribution of a variable

X given the joint distribution over variables X and Y , by marginalizing out Y .

Using the law of total expectation, we have µX = EX [ϕX (X )]= EYEX |Y [ϕX (X )|Y ]. If UX |Y is a

bounded conditional mean operator, φY (Y ) is Bochner integrable such that EY [∥φY (Y )∥HY
]<∞,

and the reproducing kernel Hilbert spaces HX and HY are separable, then it follows from

Proposition 1.1 that

µX = EY [UX |YφY (Y )]=UX |YEY [φY (Y )]=UX |YµY .

10
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Kernel product rule. To construct the kernel product rule, we consider the tensor product

feature map ϕX (X )⊗φY (Y ). We can factorize the embedding µXY = EXY [ϕX (X )⊗φY (Y )] in two

ways using the law of total expectation, assuming that the expectation and conditional mean

operators commute

EYEX |Y [ϕX (X )⊗φY (Y )|Y ]=UX |YEY [φY (Y )⊗φY (Y )],

EXEY |X [φY (Y )⊗ϕX (X )|X ]=UY |XEX [ϕX (X )⊗ϕX (X )].

Let µ⊗Y := EY [φY (Y )⊗φY (Y )], and µ⊗X := EX [ϕX (X )⊗ϕX (X )]. Then we can rewrite the above

as

µXY =UX |Yµ⊗Y =UY |Xµ⊗X .

Kernel Bayes’ rule. The kernel Bayes’ rule (KBR) is a nonparametric method which allows

for Bayesian inference in the absence of a parametric model or likelihood. In KBR we embed the

prior and likelihood in an RKHS via the kernel mean embedding and cross-covariance operator

respectively, and use the sum and product rules to manipulate the embeddings in the RKHS.

The presentation of KBR shown here is that given in Muandet et al. [2017], which provides

a concise summary of the original work [Fukumizu et al., 2013]. Our aim is to compute the

embedding of the posterior of Y |X given a prior distribution Π(Y ). We obtain the embedding

of the posterior distribution as µY |X=x = UΠ
Y |XϕX (x), where we use a superscript Π to denote

dependence on the prior Π(Y ). More precisely, we have

µY |X=x =UΠ
Y |XϕX (x)=

((
C Π

X X
)† (

C Π
Y X

)∗)∗
ϕX (x),

where the cross-covariance operators depend on the prior, and are given by

C Π
Y X = (UX |Y C Π

Y Y )T , C Π
X X =U(X X )|YµΠY .

These results follow from the product and sum rule respectively, where we have replaced the

input feature map ϕX (X ) with the tensor product feature map ϕX (X )⊗ϕX (X ). The embeddings

µΠY and C Π
Y Y are simply the embedded prior distribution corresponding to the feature maps φY (Y )

and φY (Y )⊗φY (Y ).

1.2.2.4 Properties of the Bochner integral

The kernel mean embedding of a probability distribution is defined in terms of the Bochner

integral, which is an extension of the Lebesgue integral that allows for elements in a complete

normed vector space. Several useful properties hold for the Bochner integral, and we describe

one here that will be used throughout this thesis. The following is a non-trivial property that we

use to commute expectations and operators.

11
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Proposition 1.1 (Da Prato and Zabczyk [2014, Proposition 1.6]). Let H1, H2 be two separable

Hilbert spaces, T : H1 → H2 be a bounded linear operator and Z be a random variable taking

values in H1 such that E[∥Z∥H1]<∞. Then E[T(Z)]= T(E[Z]).

The following lemma formalizes a result used in Chapter 3, which follows from Proposition 1.1.

Lemma 1.3. Let Y1,Y2 be random variables on Y and let X2 be a random variable on X such

that Y1 and Y2 are conditionally independent given X2. Let k denote a bounded kernel function on

Y with an associated separable RKHS HY and canonical feature map φY : Y →HY . Then

EY1Y2|X2[φY (Y1)⊗φY (Y2)|X2]= EY1|X2[φY (Y1)|X2]⊗EY2|X2[φY (Y2)|X2].

Proof. It follows from the law of total expectation that

EY1Y2|X2[φY (Y1)⊗φY (Y2)|X2]= EY1|X2

[
EY2|X2[φY (Y1)⊗φY (Y2)|X2]

]
.

Let y1 ∈ Y and define the rank-one linear operator Ty1 : HY → H ⊗2
Y

as Ty1(z) = φY (y1)⊗ z for

z ∈HY .

The kernel function on Y is bounded, and therefore for all y1 ∈Y the operator Ty1 is bounded

as for all z ∈HY ,

∥Ty1(z)∥H ⊗2
Y

= ∥φY (y1)⊗ z∥H ⊗2
Y

= ∥φY (y1)∥HY
∥z∥HY

=
√

k(y1, y1)∥z∥HY
.

Define the HY -valued random variable Z :=φY (Y2), then it follows from the separability of HY

and Proposition 1.1 that

EY2|X2[φY (Y1)⊗φY (Y2)|X2]= EZ|X2[TY1(Z)|X2]= TY1(EZ|X2[Z|X2])=φY (Y1)⊗EY2|X2[φY (Y2)|X2].

Repeating the steps outlined above, one can see that

EY1|X2

[
φY (Y1)⊗EY2|X2[φY (Y2)|X2]

]= EY1|X2

[
φY (Y1)|X2

]⊗EY2|X2[φY (Y2)|X2].

Combining the above, we have the following

EY1Y2|X2[φY (Y1)⊗φY (Y2)|X2]= EY1|X2

[
EY2|X2[φY (Y1)⊗φY (Y2)|X2]

]
= EY1|X2

[
φY (Y1)⊗EY2|X2[φY (Y2)|X2]

]
= EY1|X2

[
φY (Y1)|X2

]⊗EY2|X2[φY (Y2)|X2],

which concludes the proof. ■
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1.2.2.5 Tensor product spaces

Throughout this thesis we often work with tensor products of kernel functions, and tensor

products of Hilbert spaces. We discuss two ways in which these spaces can be constructed.

We can define a tensor product Hilbert space by defining its inner product in terms of the

inner products defined on the component Hilbert spaces, extending the inner product by linearity,

and defining the tensor product Hilbert space to be the completion with respect to the inner

product. Alternatively, we can use the additional structure of reproducing kernel Hilbert spaces

to simplify the construction. Given two reproducing kernel Hilbert spaces we can define a new

kernel function to be the tensor product of the kernels of the component spaces, and by definition

this new kernel function has an associated RKHS: the tensor product RKHS. As we primarily

work with RKHSs, this latter approach suffices.

Tensor products of Hilbert spaces. Let H1 and H2 denote two Hilbert spaces over X and

Y , with inner products 〈·, ·〉1 and 〈·, ·〉2 respectively. We define the tensor product of H1 and H2,

denoted by H1 ⊗H2, to be the completion of the following inner product which is defined on the

elementary tensors of H1 ⊗H2 and extended to the entire space by linearity:

〈x1 ⊗ y1, x2 ⊗ y2〉H1⊗H2
= 〈x1, x2〉H1

〈y1, y2〉H2
,

for x1, x2 ∈ H1, y1, y2 ∈ H2.

Tensor products of kernels. Let H1 and H2 denote two reproducing kernel Hilbert spaces

over X and Y , with kernels and inner products k1, 〈·, ·〉1 and k2, 〈·, ·〉2 respectively. We can define

a new kernel function k := k1 ⊗k2 such that

k(x1, y1, x2, y2)= k1(x1, x2)k2(y1, y2),

and this kernel function is associated with the tensor product RKHS H1 ⊗H2.

Multi-linear operators. Let H1, . . . ,HM be a collection of M reproducing kernel Hilbert

spaces, then we define the tensor product RKHS generated by the collection to be H1 ⊗·· ·⊗HM ,

and use the shorthand ⊗M
m=1Hm to denote the space. For fm ∈Hm, m ∈ {1, . . . , M}, ⊗M

m=1 fm is an

element in the tensor product RKHS ⊗M
m=1Hm, and ⊗M

m=1 fm is also the multi-linear operator

defined as (
⊗M

i=1 fm

)
(g1, . . . , gM)=

M∏
m=1

〈 fm, gm〉Hm
,

for gm ∈Hm, m ∈ {1, . . . , M}. Furthermore, the tensor product defines a family of rank-one linear

operators ×n : Hm →⊗M
m=1,m ̸=nHm, for n ∈ {1, . . . , M}, as(

⊗M
m=1 fm

)
×n gn = 〈 fn, gn〉Hn

⊗M
m=1,m ̸=n fm.

13



CHAPTER 1. INTRODUCTION

The notation ×n emphasizes which RKHS the operator acts upon, and provides clarity when

working with more than two RKHSs. When the operator ×n is not used, the tensor product is

defined such that the right-most component is being acted upon. For example, ( f1 ⊗ f2)(g2) =
f1 〈 f2, g2〉H2

, and ( f1 ⊗ f2 ⊗ f3)(g3)= ( f1 ⊗ f2)〈 f3, g3〉H3
.
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2
DENSITY RECOVERY FROM KERNEL MEAN EMBEDDINGS

2.1 Introduction

Kernel mean embeddings have enabled a framework for performing nonparametric statistical

inference using probabilistic intuition, where learning algorithms embed probability distributions

into reproducing kernel Hilbert spaces and produce consistent estimators of complex distributions

as embeddings. These estimators can often be computed with access to a finite set of observations.

For characteristic kernel functions, the kernel mean embedding is injective, meaning all of the

information of the embedded distribution is captured by its embedding. An open question has

long been what information can be recovered from an estimated kernel mean embedding. It is

clear that we can estimate expectations of functions in the RKHS with an estimated kernel mean

embedding [Smola et al., 2007], however it is not obvious what exact properties of the embedded

distribution we can recover. In this chapter we generalize and prove a remark made in Song et al.

[2014]: that densities can be recovered from embeddings at no cost (with zero computation). Our

result applies to all consistent estimated embeddings, such as those obtained via the kernel sum,

product, and Bayes’ rule, and conditional mean embeddings. In the case that the empirical kernel

mean embedding is used, we recover the standard kernel density estimator. We show that one can

use this result to consistently estimate conditional densities using conditional mean embeddings.

2.1.1 Literature review

To perform inference using estimated kernel mean embeddings, we must extract information

regarding the embedded distribution from the embedding. Let µ̂P denote an estimated embedding

of the distribution P in an RKHS H , then we can estimate expectations of functions in the

RKHS: Ê[ f (X )]= 〈
f , µ̂P

〉
H where X ∼P. Kernel functions are well-known to produce a rich class
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CHAPTER 2. DENSITY RECOVERY FROM KERNEL MEAN EMBEDDINGS

of functions, for example the RKHS associated with the Gaussian kernel on Rd is dense in the

space of continuous functions on Rd over compacts [Sriperumbudur et al., 2011]. However, the

Gaussian RKHS does not contain the identity function and thus we cannot estimate the mean

of P from its embedding. Moreover, Minh [2010] show that arbitrary polynomials do not belong

to the Gaussian RKHS, a result that was extended to a larger class of RKHSs in Dette and

Zhigljavsky [2021], and thus we cannot recover the moments of P. Nor can we recover quantiles

or tail probabilities from the embedding, as the functions belonging to the RKHS associated with

a continuous kernel function are also continuous [Paulsen and Raghupathi, 2016]. Hence, whilst

the RKHS specifies a rich class of functions, recovering information from embeddings remains a

complicated task.

Several alternative approaches have been proposed to recover information from estimated

kernel mean embeddings. These include distributional pre-image learning [Kwok and Tsang,

2004, Smola et al., 2007, Song, 2008], kernel herding [Welling, 2009, Chen et al., 2010], and the

estimation of Radon-Nikodym derivatives [Schuster et al., 2020]. We discuss these approaches

below.

To recover information from the estimated embedding, several authors consider the distribu-

tional pre-image problem where they aim to find a probability distribution in the input space

that is mapped to a kernel mean embedding similar to the estimated embedding. [Song et al.,

2008] specifies a parametric family of distributions and their RKHS embeddings, and minimizes

the RKHS norm between the estimated embedding and the embedding of the parametric distri-

butions. This approach may perform poorly when the parametric assumption is not accurate, and

the optimization problem is not convex for each parameter. Additionally, when a distributional

pre-image is learned, it’s not clear to what degree the learned pre-image estimates the underlying

distribution.

Rather than estimate the underlying embedded distribution, one can draw samples from the

embedded distribution. Kernel herding [Chen et al., 2010] generalizes the herding algorithm

[Welling, 2009] to continuous spaces, and produces pseudo-samples deterministically. Expecta-

tions of functions in the RKHS can be computed using the samples, and it is shown that the error

in expectation estimation decreases at rate O(T−1) for T ≥ 1 samples. The asymptotic moments

of the samples are shown to match the empirical moments of the data.

Schuster et al. [2020] propose a method to estimate densities from kernel mean embeddings

by specifying a reference measure and estimating a Radon-Nikodym derivative via an inverse

problem. This approach assumes that the embedded distribution is absolutely continuous with

respect to the reference measure, that the Radon-Nikodym derivative belongs to the RKHS, and

that the probability distribution is defined on a compact. The author’s demonstrate that their

density estimator produces state-of-the-art results, and has favourable performance compared to

modern machine learning methods such as deep neural networks when estimating conditional

densities.
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Kanagawa and Fukumizu [2014] proposed a method to recover the density using a nonpara-

metric estimator, by showing that expectations can be computed for functions in a Besov space,

a space larger than the RKHS. Unfortunately there was a mistake in their proof of Theorem 1,

and the results do not hold. The authors later showed that expectations can be computed for

functions in a power of the RKHS, which is an interpolation space between the RKHS and L2

[Kanagawa et al., 2016], although this does not allow for a nonparametric density estimator.

The density estimator that is proposed in this chapter was briefly mentioned in a remark in

Song et al. [2014]. Let HY denote an RKHS on Y associated with a normalized Gaussian kernel

function, and let µY |X=x be the kernel mean embedding of the distribution of Y |X = x in HY .

The authors note that the conditional density can be estimated via p̂(y|x) = ÊY |X=x[k(Y , y)] =〈
k(y, ·),µY |X=x

〉
HY

. They note that the density can be estimated from the estimated embedding.

However, there is little justification for the remark, and it seems to have not been recognized

by the broader literature. For example, the review paper by Muandet et al. [2017] provides an

in-depth discussion of recovering information from kernel mean embeddings; yet, it does not

mention that densities can be recovered. We formalize the remark, showing that the density

estimator is applicable to all estimated embeddings which are consistent in probability, and that

the only requirement on the kernel function used is that it can be written as a smoothing kernel.

2.2 Density estimation

Let P ∈ M1+
(
Rd)

, where we recall that M1+
(
Rd)

denotes the space of probability measures on Rd,

and let kγ : Rd ×Rd → [0,∞) denote a reproducing kernel function on Rd with hyperparameter

γ> 0. Let Hγ denote the RKHS associated with reproducing kernel kγ, then the kernel mean

embedding of P in Hγ is given by

µ
γ

P
=

∫
Rd

kγ(x, ·)P(dx).

Under Assumption 1.1 on kγ, the embedding is well defined for all γ> 0.

Throughout the following, all random variables are defined on (Ω,F ,P), and we say that a

sequence of random variables Xn = oP(1) if for all ϵ > 0, limsupn→∞P(|Xn| ≥ ϵ) = 0. Denote by

µ̂
γ

P,n an estimate of µγ
P

defined by

(2.1) µ̂
γ

P,n =
n∑

i=1
Wγ,n,ikγ(Xγ,n,i, ·),

for {Wγ,n,i}n
i=1 a collection of R-valued random variables, and {Xγ,n,i}n

i=1 a collection of Rd-valued

random variables. We assume that µ̂γ
P,n is a consistent estimator of µγ

P
in probability, that is

∥µ̂γ
P,n −µ

γ

P
∥Hγ

= oP(1).

Estimated kernel mean embedding are weighted sums of kernel functions, corresponding

to the general formulation presented in Equation (2.1). Detailed examples of kernel mean
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embeddings and their empirical counterparts are given in Section 1.2. For example, let x1, . . . , xn

be i.i.d. samples from P ∈ M1+
(
Rd)

. Then the empirical kernel mean embedding of P is µ̂γ
P,n :=

n−1 ∑n
i=1 kγ(xi, ·), where Wγ,n,i = n−1 for i = 1, . . . ,n.

We also assume that P(dx)= p(x)dx for some p :Rd → [0,∞), and we consider the following

estimator of p:

(2.2) qn =
n∑

i=1
Wγn,n,i k̄γn (Xγn,n,i, ·),

where (γn)n≥1 is a sequence in (0,∞), and a bar is used to denote that the kernel function is

normalized as follows

k̄γ(x, x′)= kγ(x, x′)∫
Rd kγ(x, z)dz

, ∀γ> 0.

If kγ is a Gaussian kernel function, then k̄γ(x, x′) = (2πγ2)−d/2kγ(x, x′) for all γ > 0. The

reproducing kernel Hilbert spaces associated with kγ and k̄γ are isometrically isomorphic. The

spaces consist of the same functions, and the inner products on the spaces are related by a scaling

factor of (2πγ2)d/2 due to the normalization term.

Our results hold for several widely-used kernels. We only require that the kernel function can

be expressed in terms of a smoothing kernel, and that the degree of smoothing is controlled via

the kernel hyperparameter.

Assumption 2.1. There exists a continuous and bounded function K :Rd → [0,∞) such that

kγ(x, x′)= K
(

x− x′

γ

)
,

for all x, x′ ∈X . The function K is called a smoothing kernel.

This assumption holds for the Laplace, Gaussian, and Matérn kernel functions, and through-

out the following we assume that the kernel associated with the kernel mean embedding and its

estimate satisfies Assumption 2.1.

The following theorem provides a guarantee on the density estimator qn under standard

assumptions on the kernel mean embedding. We use C0(Rd) to denote the space of continuous

functions on Rd that vanish at infinity.

Theorem 2.1. Assume that p ∈ C0
(
Rd)

, that
∫
Rd K(x)dx <∞, and that (γn)n≥1 is such that

lim
n→∞γn = 0,

1
γd

n

∥∥∥µ̂γn
P,n −µ

γn
P

∥∥∥2

Hγn
= oP(1).

Then ∥qn − p∥∞ = oP(1).

Remark 2.1. If ∥µ̂γ
P,n −µ

γ

P
∥2
Hγ

= oP(1) for all γ> 0 small enough and if γn → 0 sufficiently slowly,

then the condition γ−d
n ∥µ̂γn

P,n −µ
γn
P
∥2
Hγn

= oP(1) is satisfied.
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Theorem 2.1 states that given a consistent kernel mean embedding estimator, one may

consistently estimate the embedding’s underlying density. Our result is applicable to all estimated

kernel mean embeddings that are consistently estimated in probability. We provide two examples

below, and develop an application to conditional mean embeddings in the following section.

Example 2.1 (Independent and identically distributed data). Let x1, . . . , xn denote n i.i.d. samples

from P ∈ M1+ (X ), then µ̂
γ

P,n := n−1 ∑n
i=1 kγ(xi, ·). It follows from the boundedness of the kernel

function and the law of large numbers in Banach spaces [Hoffmann-Jørgensen and Pisier, 1976]

that for all γ> 0, ∥µ̂γ
P,n −µ

γ

P
∥2
Hγ

= oP(1). Hence there exists a sequence (γn)n≥1 with limn→∞γn = 0

such that γ−d
n ∥µ̂γn

P,n −µ
γn
P
∥2
Hγn

= oP(1). Therefore ∥qn − p∥∞ = oP(1) by Theorem 2.1.

Example 2.2 (Time series data). Let y1, . . . , yn denote n observations from a hidden Markov

model satisfying Assumptions 3.2 to 3.4 (sufficient conditions for identifiability), and let P denote

the distribution of an observation. Then µ̂
γ

P,n := n−1 ∑n
i=1 kγ(yi, ·), and it follows from the first

concentration inequality given in Lemma 3.11 that for all γ> 0, ∥µ̂γ
P,n−µ

γ

P
∥2
Hγ

= oP(1). Hence there

exists a sequence (γn)n≥1 with limn→∞γn = 0 such that γ−d
n ∥µ̂γn

P,n −µ
γn
P
∥2
Hγn

= oP(1). It therefore

follows from Theorem 2.1 that ∥qn − p∥∞ = oP(1).

The proof of Theorem 2.1 requires the following lemma that is proved in Section 2.7. The

lemma states that when a function is smoothed by a convolution, the smoothed function uniformly

converges to the original function as the degree of smoothing tends towards zero.

Lemma 2.1. Let ν ∈ M1+
(
Rd)

, (σn)n≥1 be a sequence in (0,∞) such that limn→∞σn = 0, f ∈ C0(Rd),

and

fn(x)=
∫
Rd

f (x+σn y)ν(d y), ∀x ∈Rd, ∀n ≥ 1.

Then limn→∞ ∥ fn − f ∥∞ = 0.

Proof of Theorem 2.1. Let K̄ :Rd → [0,∞) be defined by

K̄(x)= K(x)∫
Rd K(x′)dx′

, x ∈Rd,

and note that for all γ> 0 we have

(2.3) k̄γ(x, x′)= γ−dK̄
(

x− x′

γ

)
, x, x′ ∈Rd.

Then, for all n ≥ 1,

(2.4)
∥qn − p∥∞ ≤ sup

x′∈Rd

∣∣∣∣∣ n∑
i=1

Wγn,n,i k̄γn (Xγn,n,i, x′)−EP
[
k̄γn (X , x′)

]∣∣∣∣∣
+ sup

x′∈Rd

∣∣EP [
k̄γn (X , x′)

]− p(x′)
∣∣ .
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Note that for all x′ ∈Rd,

(2.5)

∣∣EP[k̄γn (X , x′)]− p(x′)
∣∣= ∣∣∣∣∫

Rd
k̄γn (x, x′)p(x)dx− p(x′)

∣∣∣∣
=

∣∣∣∣γ−d
n

∫
Rd

K̄
(

x− x′

γn

)
p(x)dx− p(x′)

∣∣∣∣
=

∣∣∣∣∫
Rd

p(x′+γnz)K̄(z)dz− p(x′)
∣∣∣∣ .

Under the assumption that limn→∞γn = 0, p ∈ C0(Rd), and K̄(z)dz ∈ M1+
(
Rd)

, it follows from

Lemma 2.1 that

lim
n→∞ sup

x′∈Rd

∣∣EP [
K̄γn

(
X , x′

)]− p(x′)
∣∣= 0.

On the other hand, it follows from Equation (2.3) that

k̄γn (x, x′)= γ−d
n CK kγn (x, x′) x, x′ ∈Rd,

where we have used the shorthand CK = 1/
∫
Rd K(x)dx, and thus for all n ≥ 1 we have

(2.6)

sup
x′∈Rd

∣∣∣∣∣ n∑
i=1

Wγn,n,i k̄γn
(
Xγn,n,i, x′

)−EP [
k̄γn

(
X , x′

)]∣∣∣∣∣
= γ−d

n CK sup
x′∈Rd

∣∣∣∣∣ n∑
i=1

Wγn,n,ikγn
(
Xγn,n,i, x′

)−EP [
kγn

(
X , x′

)]∣∣∣∣∣
= γ−d

n CK sup
x′∈Rd

∣∣∣∣〈µ̂γn
P,n −µ

γn
P

,kγn (x′, ·)
〉

Hγn

∣∣∣∣
≤ γ−d

n CK

∥∥∥µ̂γn
P,n −µ

γn
P

∥∥∥
Hγn

∥∥kγn
∥∥∞ ,

where ∥kγn∥∞ <∞ as per Assumption 2.1.

Using Equations (2.4) to (2.6) and under the assumptions of the lemma it follows that

limsup
n→∞

P (∥qn − p∥∞ ≥ ϵ)≤ limsup
n→∞

P

(
γ−d

n

∥∥∥µ̂γn
P,n −µ

γn
P

∥∥∥
Hγn

≥ ϵ

2CK∥kγn∥∞

)
= 0, ∀ϵ> 0,

and the proof is complete. ■

Remark 2.2 (Connection to kernel density estimation). Suppose that we observe n i.i.d. samples

x1, . . . , xn from a distribution P on Rd, and estimate the embedding of P via the sample mean. Then

µ̂
γn
P,n = 1

n
∑n

i=1 kγn (xi, ·), and the density estimator qn is

qn(x)= 1
n

n∑
i=1

k̄γn (xi, x)= 1
nγd

n

n∑
i=1

K̄
(

xi − x
γn

)
,

where K̄(x) := K(x)/
∫
Rd K(x′)dx′, x ∈Rd. This is exactly the kernel density estimator of the distribu-

tion P given n i.i.d. samples and smoothing kernel K̄.
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2.2.1 Practical considerations

Our main theorem shows that the density estimator qn converges uniformly to the density p in

probability. However, without additional assumptions on the random variables {Wγ,n,i}n
i=1 (such

as non-negativity) qn is not necessarily a density. This is a standard problem in nonparametric

density estimation that is easily fixed by taking the positive part of the estimator [Tsybakov,

2008]. For practical applications, ensuring that the estimator is a density is often desirable.

We can define a probability density function that has the same consistency properties, under

additional assumptions.

Proposition 2.1. Let q+
n(x) := max(qn(x),0), for x ∈ Rd. If ∥qn − p∥∞ = oP(1), then we have

∥q+
n − p∥∞ = oP(1). Assume that the distribution P has compact support D ⊂ Rd, and define the

following probability density function

(2.7) pn(x) := q+
n(x)1D(x)∫

D q+
n(x′)dx′

, x ∈Rd,

where 1D(x) takes value 1 when x ∈ D and 0 otherwise. If ∥qn−p∥∞ = oP(1), then ∥pn−p∥∞ = oP(1).

Proof. We first prove the claim that ∥qn − p∥∞ = oP(1) implies ∥q+
n − p∥∞ = oP(1). Suppose that

qn(x)≥ 0 for some x ∈Rd, then q+
n(x)= qn(x) and therefore |q+

n(x)− p(x)| = |qn(x)− p(x)|. On the

other hand, if qn(x) < 0 then it follows that |q+
n(x)− p(x)| < |qn(x)− p(x)|. Combining the two

inequalities, we have |q+
n(x)− p(x)| ≤ |qn(x)− p(x)|, ∀x ∈Rd. It follows that ∥q+

n − p∥∞ ≤ ∥qn − p∥∞
and therefore ∥qn − p∥∞ = oP(1) implies ∥q+

n − p∥∞ = oP(1).

We now prove the second claim. It was shown above that ∥q+
n − p∥∞ = oP(1), and therefore for

ϵ> 0 there exists an Nϵ ∈N such that for all n ≥ Nϵ, supx∈Rd |q+
n(x)−p(x)| < ϵ with high probability.

Let λ denote the Lebesgue measure on Rd, then ∀n ≥ Nϵ

(2.8)

∣∣∣∣∫
D

q+
n(x)dx−1

∣∣∣∣= ∣∣∣∣∫
D

q+
n(x)dx−

∫
D

p(x)dx
∣∣∣∣

≤
∫

D

∣∣q+
n(x)− p(x)

∣∣dx

≤
∫

D
sup
x∈Rd

∣∣q+
n(x)− p(x)

∣∣dx

≤λ(D)ϵ.

Hence
∫

D q+
n(x)dx converges in probability to 1, and it follows from ∥q+

n − p∥∞ = oP(1) that

∥pn − p∥∞ = oP(1). ■

2.2.2 Hyperparameter selection

Our theorem guarantees that there exists a sequence of hyperparameters such that the density

estimator uniformly converges to the truth in probability.
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In practice, we only have access to a fixed set of samples, and we require a way to tune the

hyperparameter. As highlighted in Remark 2.2, our density estimator is closely related to kernel

density estimation, and hyperparameter selection is a well-studied task in this setting. To tune

the hyperparameter in a data-driven fashion, we follow Silverman [1986] and minimize the

integrated squared error using leave-one-out cross-validation. Several review papers consider

this a favourable approach [Park and Marron, 1990, Cao et al., 1994, Jones et al., 1996].

The integrated squared error is defined as ISE(γ̃n) = ∫
[qn(x)− p(x)]2 dx. We estimate the

ISE using the data, and ignore the term independent of qn(x) as it is independent of the hyper-

parameter, using the following score function M(γn)= ∫
qn(x)2dx−2

∫
q−i

n (x)p(x)dx, where q−i
n

denotes the density estimator obtained when using all observations except the i-th. We can easily

compute the score function via

(2.9) M(γn)=
n∑

i=1

n∑
j=1

wn,iwn, j k̄
p

2γn (xi, x j)−2
n∑

i=1

∑
j ̸=i

wn,iw−i
n, j k̄

γn (xi, x j),

where w−i
n are the n−1 weights obtained from an embedding learned without the i-th observation.

To tune the hyperparameter we minimize the score function with respect to γn. To evaluate the

score we must recompute the embedding n times, and so there may be considerable computational

cost. If the cost of obtaining the embedding is O(nα), and we evaluate M over a grid of m

hyperparameters then the additional cost of this method is O(m(n(n−1)α+n2)). For α> 2 and n

large enough, the additional cost is approximately O(mn1+α).

2.3 Application to conditional mean embeddings

Conditional mean embedding is used to embed conditional distributions into reproducing kernel

Hilbert spaces given samples from a joint distribution. Conditional mean embedding is well

studied and is known to produce estimated embeddings which are consistent in probability,

under appropriate assumptions. Song et al. [2009] showed that under Assumption 1.2, the

estimated conditional mean embedding is consistent in probability. Grünewälder et al. [2012]

later demonstrated that the conditional mean embedding can be estimated by minimizing an

objective function over a vector-valued RKHS, however the analysis only holds when the RKHS

the embedding belongs to has finite dimension. Recently, Li et al. [2022] derived consistency

results when the embedding space is infinite dimensional, and they consider a misspecified

scenario in which the conditional mean operator does not belong to the same space as the

estimator.

We consider random variables X and Y taking values in X and Y =Rd, d ≥ 1 respectively.

Let HX be an RKHS on X , and let Hγ be an RKHS on Y with reproducing kernel function

kγ : Rd ×Rd → R which has hyperparameter γ > 0 and satisfies Assumption 2.1. Conditional

mean embedding is discussed in greater detail in Section 1.2. We denote the conditional mean

embedding of the distribution of Y |X = x, x ∈ X , in Hγ by µ
γ

Y |X=x. Suppose we observe n i.i.d.
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samples (xi, yi)n
i=1 from the joint distribution of (X ,Y ), then the empirical estimator of the

conditional mean embedding in Hγ is

(2.10) µ̂
γ

Y |X=x =
n∑

i=1
wn,i(x)kγ(yi, ·)

where wn(x) = (KX +nλIn)−1lx, for λ> 0 a regularization parameter, KX an n×n matrix with

(i, j)-th value [KX ]i, j = l(xi, x j), and lx = [l(x1, x), . . . , l(xn, x)]. Throughout the following we use PX

to denote the marginal distribution of the random variable X .

The consistency results of Li et al. [2022] are given for the conditional mean operator, and

the following corollary shows that this implies consistency of the conditional mean embedding.

Consistency of the conditional mean operator is given under the sufficient conditions Assump-

tion 1.1, and assumptions (EVD), (EMB), and (SRC). (EVD) is an assumption on the eigenvalue

decay of the cross-covariance operator CX X (that the decay is at least polynomial with degree

p ∈ (0,1]), (EMB) is an assumption on the RKHS on X , and (SRC) assumes that the conditional

mean operator belongs to a space which captures the misspecified and well specified scenario. We

refer the reader to Li et al. [2022] for the details of these assumptions.

Of the sufficient conditions for consistency of the empirical conditional mean embeddings,

Assumption 1.1, (EVD), (EMB), and (SRC), only Assumption 1.1 depends upon the kernel function

on Y . For popular kernel functions such as the Gaussian and Laplace kernels, Assumption 1.1 is

satisfied for all γ> 0 trivially.

Corollary 2.1 (Consistency of estimated conditional mean embeddings). Assume Assumption 1.1

holds for all γ> 0, (EVD), (EMB), and (SRC). Then there exists a set A ⊆X such that PX (A)= 1

and

sup
x∈A

∥∥∥µ̂γY |X=x −µ
γ

Y |X=x

∥∥∥2

HY

= oP(1), ∀γ> 0.

The proof of Corollary 2.1 is given in Section 2.7.2.

The empirical conditional mean embedding in Equation (2.10) is of the same form as Equa-

tion (2.1), and thus we have the following density estimator of the conditional density function

p(y|x) associated with the conditional distribution of Y |X :

qn(y|x)=
n∑

i=1
wn,i(x)k̄γn (yi, y), x ∈X , y ∈Y .

The following lemma provides a consistency result for the conditional density estimator, which

follows from Theorem 2.1 and the consistency of the empirical conditional mean embedding.

Lemma 2.2. Assume that Assumptions 1.1 and 2.1 hold for all γ > 0, and additionally as-

sume (EVD), (EMB), and (SRC). Assume that p(·|x) ∈ C0(Rd) for PX -almost all x ∈ X and that∫
Rd K(y)d y <∞. Then there exists a sequence (γn)n≥1 with limn→∞γn = 0 and a set A ⊆X with

PX (A)= 1 such that

sup
x∈A

∥∥qγn
n (·|x)− p(·|x)

∥∥∞ = oP(1).
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Proof. Let µγY |X=x be the Hγ-valued conditional mean embedding of Y |X = x for x ∈ X , and

let µ̂γY |X=x denote its empirical estimate, for γ > 0. Assumption 1.1, (EVD), (EMB), and (SRC)

hold for all γ> 0, and therefore it follows from Corollary 2.1 that for all γ> 0, there exists a set

Aγ ⊆ X with PX (Aγ) = 1 such that supx∈Aγ
∥µ̂γY |X=x −µ

γ

Y |X=x∥Hγ
= oP(1). Let A⋆ := ∩k∈NA1/k

then PX (A⋆) = 1 and there exists a sequence (γn)n≥1 decreasing towards zero sufficiently

slowly, such that supx∈A⋆ γ−d
n ∥µ̂γn

Y |X=x −µ
γn
Y |X=x∥Hγn

= oP(1). It then follows from Theorem 2.1

that supx∈A⋆ ∥qγn
n (·|x)− p(·|x)∥∞ = oP(1). ■

2.3.1 Hyperparameter selection

The integrated squared error is defined as ISE(γn)= ∫
[qn(y | x)− p(y | x)]2 d yp(x)dx. As discussed

in Section 2.2.2, we focus on minimizing the terms which depend on γn: we minimize the score

function M(γn)= ∫
qn(y | x)2d yp(x)dx−2

∫
qn(y | x)p(y, x)d ydx. This function can be estimated

consistently by M̂(γn)= n−1 ∑n
i=1

∫
(q−i

n (y | xi))2d y−2n−1 ∑n
i=1 q−i

n (yi | xi) [Fan and Yim, 2004]. The

estimated score can be computed as

(2.11) M̂(γn)= 1
n

n∑
i=1

{ ∑
j ̸=i

∑
k ̸=i

w−i
n, j(xi)w−i

n,k(xi)k̄
p

2γn (yj, yk)−2
∑
j ̸=i

w−i
n, j(xi)k̄γn (yi, yj)

}
,

where w−i
n are the n−1 weights obtained from an embedding learned without the i-th observation.

To tune the hyperparameter we minimize the estimated score function with respect to γn. To

evaluate the function we must recompute the embedding n times using n−1 observations, and

the cost of computing the empirical conditional mean embedding is O((n−1)3). If we evaluate M

over a grid of m bandwidths then the additional cost of this method is O(m(n(n−1)3 +n2)), and

thus the additional cost is approximately O(mn4).

This is also the approach used to tune the hyperparameters for the Nadaraya-Watson condi-

tional density estimator [Fan and Yim, 2004], however alternative approaches have been proposed

with considerably lower computational cost, such as the cross-validated likelihood method of

Holmes et al. [2007].

2.3.2 Comparison to existing methods

2.3.2.1 Conditional density operators

Schuster et al. [2020] propose a method of recovering a density from a conditional mean em-

bedding using an alternative density estimator, and they refer to this as a conditional density

operator (CDO). Their density estimator requires the construction of a reference measure ρ,

typically taken to be a uniform distribution over the range of the observed data, defined such

that the true distribution P is absolutely continuous with respect to ρ. They assume that the

Radon-Nikodym derivative (i.e. the density) dP
dρ belongs to an RKHS, and that P has compact

support. Suppose we observe i.i.d. samples (xi, yi)n
i=1 from a joint distribution (X ,Y ), and aim

to estimate the conditional density p(y|x) associated with the conditional distribution of Y |X .
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Let l be a kernel function on X and k a kernel function on Y , then the CDO density estimator

can be computed by drawing m i.i.d. samples, z1, . . . , zm, from the reference measure ρ on Y and

computing

p̂CDO
n (y|x)=

m∑
j=1

w̃ j(x)k(zi, ·), w̃(x)= m−2(Kρ+α′Im)−2KρY wn(x),

where wn(x) = (KX + nλIn)−1lx, KρY , Kρ, KX are kernel matrices with
[
KρY

]
i, j = k(zi, yj),[

Kρ

]
i, j = k(zi, z j), and [KX ]i, j = l(xi, x j), and lx = [l(x1, x), . . . , l(xn, x)]. In comparison, our estima-

tor is qn(y|x)=∑n
j=1 wn,i(x)k̄γ(yi, y). Our estimators are very closely related: they both estimate

the density associated with an estimated conditional mean embedding. Both estimators are

weighted sums of kernel functions on Y , and the weights used by the CDO density estimator

are a function of the weights used by our density estimator. Computing the weights of the CDO

estimator requires an additional m×m matrix inversion, which adds both computational cost

and numerical instability. The additional computations required are primarily functions of the

samples from the reference measure, and thus it is unlikely that they will improve the quality of

the estimator. In their experiments Schuster et al. [2020] take m = ⌊n⌋.

2.3.2.2 Kernel conditional density estimation

Kernel density estimation [Rosenblatt, 1969, Parzen, 1962] is a nonparametric method to estimate

the probability density function of a continuous random variable, given access to i.i.d. samples. A

kernel density estimator is a normalized sum of smoothing kernels: let (xi)n
i=1 be i.i.d. samples

taking values in Rd from a distribution with density function p, then

p̂(x)= 1
nγd

n∑
i=1

K
(

x− xi

γ

)
, x ∈Rd.

They produce a consistent estimator under the assumption that γ→ 0 and nγd →∞ as n →∞
[Devroye and Lugosi, 2001]. The consistency is often subject to an assumption on the smoothness

of the density p, for example Nadaraya [1965] and Giné and Guillou [2002] assume that p is

uniformly continuous.

Conditional densities can also be estimated nonparametrically using kernel conditional

density estimation (KCDE) which has been studied and extended in several works [Rosenblatt,

1969, Fan et al., 1996, Hyndman et al., 1996, Fan and Yim, 2004]. The density estimator uses

smoothing kernels which interpolate over both domains. For example, let (xi, yi)n
i=1 be i.i.d.

samples from a joint distribution on Rdx ×Rdy , then the conditional density associated with the

conditional distribution Y |X is estimated as

(2.12) p̂(y|x)=
∑n

i=1 Kγx,dx (x, xi)Kγy,dy(y, yi)∑n
i=1 Kγx,dx (x, xi)

, x ∈Rdx , y ∈Rdy

where Kα,d(z, z′) := α−dK((z− z′)/α) for α > 0 and z, z′ ∈ Rd. In the case that dx = dy = 1 the

KCDE estimator is consistent when γx,γy → 0 and nγxγy →∞ as n →∞ under the assumption
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that the conditional density of Y |X = x and the marginal density of X have continuous second

derivatives and are square integrable and E(Y |X = ·) has continuous second derivative [Hyndman

et al., 1996]. The hyperparameters can be tuned by minimizing a cross-validated estimator of

the integrated squared error, although this can be computationally expensive [Fan and Yim,

2004]. Alternative methods have been proposed such as the cross-validated likelihood proposed

in Holmes et al. [2007].

The KCDE estimator given in Equation (2.12) is motivated by Bayes’ rule: p(y|x)= p(x, y)/p(x).

The denominator is a kernel density estimator of the marginal density p(x), and the numerator is

a kernel density estimator of the joint density p(x, y). The KCDE requires that densities on both

domains are estimated, whereas our density estimator using kernel mean embeddings avoids

estimating the marginal p(x). This is particularly beneficial when p(x) is hard to model with a

kernel density estimator. For example, if X is distributed according to a Beta distribution with

shape parameters α,β< 1 then the density is unbounded at 0 and 1. This violates the minimal

assumption of boundedness required for consistency of the kernel density estimator [Jiang, 2017].

It is also possible that the consistency holds, but estimating the density remains challenging.

For example, in the case that p(x) is a mixture of densities with different variances, choosing an

optimal kernel hyperparameter may be particularly difficult and KCDE may not perform well.

2.4 Experiments

We showcase the effectiveness of our estimator in various settings, demonstrating its ability to re-

cover multi-modal densities in multiple dimensions, and its ability to learn complex patterns that

would be difficult to model parametrically. Whilst our estimator is applicable to all embeddings,

in this section we demonstrate its use in recovering densities from conditional mean embeddings.

Throughout this section we refer to our method as KMDE (kernel mean density estimation).

We evaluate the performance of estimators using the maximum absolute difference (MAD)

and the mean squared error (MSE). In our experiments we evaluate the estimated density and

true density functions over a sequence of points uniformly spaced over the range of the observed

data, and compute the MAD and MSE. These metrics are of particular interest as the mean

squared error approximates the integrated squared error minimized by our hyperparameter

selection procedure (Section 2.2.2), and the maximum absolute difference approximates the

supremum norm of the difference between the estimated density and true density functions

which is used in our consistency result (Theorem 2.1).

2.4.1 Simulated data

We simulate data from several models, which we describe below.

Model 1 (Gaussian triangle). We first specify three points in R3 which are the vertices of a triangle.

We uniformly sample a point along an edge of the triangle, and then draw a sample from a 3D
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Gaussian distribution centred at the point with covariance matrix σ2I3. This sampling procedure

corresponds to sampling from a distribution where a Gaussian sphere is placed at every point

along the edges of the triangle.

A set of 1500 samples can be seen in Figure 2.1, and this example is particularly interesting

as the conditional density of Y , Z|X = x is structurally different for different values of x, ranging

from near-uniform to bimodal to unimodal.

Model 2 (Beta). Let Beta(α,β) denote a Beta distribution with shape parameters α,β> 0. For

i ∈ {1, . . . ,n},

X i
i.i.d.∼ Beta(α,β), Yi|X i = x ∼ N(x,0.12).

Model 3 (Bimodal). Samples are generated as follows. For i ∈ {1, . . . ,n}, X i
i.i.d.∼ U[0,1] where

U[a,b] denotes a uniform distribution between a and b. Then

Yi|X i = x ∼
N(−2.5,12), with probability x

N(2.5,12), with probability 1− x
,

where N(µ,σ2) denotes a Gaussian distribution with mean µ and variance σ2.

For Model 3, the conditional distribution Y |X = x is unimodal when x is either 0 or 1 with

means 2.5 and -2.5 respectively, and the conditional distribution is bimodal for x ∈ (0,1).

Model 4 (Dirichlet mixture). For d ≥ 1 and for i ∈ {1, . . . ,n}, X i
i.i.d.∼ Dir([0.1, . . . ,0.1]), where Dir(α)

denotes a Dirichlet distribution over a d-dimensional simplex parametrized by the d-dimensional

vector α of positive reals. Let x ∈Rd, then

Yi|X i = x ∼


N(1,0.12) with probability x1

N(2,0.12) with probability x2
...

N(d,0.12) with probability xd

where x j denotes the j-th element of x ∈Rd.

Model 3 with α,β < 1 and Model 4 are particularly interesting as the densities associated

with X are unbounded and consistency results for kernel density estimators do not typically hold

in this setting.

Model 5 (Linear). Let dx be a positive integer. For i ∈ {1, . . . ,n}, X i
i.i.d.∼ N(µ,Σ) where µ is a

dx-dimensional zero vector and Σ=σ2Idx where Idx is a dx-dimensional identity matrix. Then

Yi|X i = x ∼ N
(

1
dx

1T
dx

x,0.12
)
,

where 1dx denotes the dx-dimensional one vector.
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Model 6 (Linear, Toeplitz). Let d be a positive integer. For i ∈ {1, . . . ,n}, X i
i.i.d.∼ N(µ,Σ) where µ

is a d-dimensional zero vector and Σ is a symmetric Toeplitz matrix with the first column the

d-dimensional vector of equidistant points between 0.1 and 1 inclusive. When d = 1, Σ= 1. Then

Yi|X i = x ∼ N
(

1
d

1T
d x,0.52

)
,

where 1d denotes the d-dimensional one vector.

Model 7 (Mixture). For i ∈ {1, . . . ,n}, the random variables X i are sampled as follows

X i
i.i.d.∼


N(−4,22), with probability 0.4

N(0,0.22), with probability 0.2

N(4,12), with probability 0.4

,

and Yi|X i = x ∼ N(x,12).

Model 8 (MVN). For i ∈ {1, . . . ,n}, Zi
i.i.d.∼ N(µ,Σ) where µ and Σ are defined as

µ= [0,0,0], Σ=


1 0.9 0.3

0.9 1 0.3

0.3 0.3 1

 .

Then Zi = [Zi,1, Zi,2, Zi,3], and we define X i = Zi,3 and Yi = [Zi,1, Zi,2].

The conditional distribution of Y |X for Model 8 is a 2D multivariate normal distribution.

Model 9 (Non-linear type 1). For i ∈ {1, . . . ,n}, the random variables X i are sampled from a

multivariate normal distribution with mean vector µ and covariance matrix Σ where µ is a 10-

dimensional vector of zeros and Σ is a symmetric Toeplitz matrix with first column ranging from 1

to 0.1. Then Yi|X i = x ∼ N(µx,0.52) with

µx = cos(πx1x2)+sin(2πx3x4)+
8∑

j=5
x j + x2

9 + x2
10.

Model 10 (Non-linear type 2). For i ∈ {1, . . . ,n}, the random variables X i are sampled from

a multivariate normal distribution with mean vector µ and covariance matrix Σ where µ is a

10-dimensional vector of zeros and Σ is a symmetric Toeplitz matrix with first column ranging

from 1 to 0.1. Then Yi|X i = x ∼ N(µx,0.52) with

µx =
5∑

j=1
x j + x2

6 + x2
7.

Model 11 (Cauchy). Let Cauchy(x0,γ) denote a Cauchy distribution with location parameter

x0 ∈R and scale parameter γ> 0. For i ∈ {1, . . . ,n}, X i
i.i.d.∼ Cauchy(0,γ), and Yi|X i = x ∼ N(x,12).
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Figure 2.1: A scatterplot of 1500 samples from a Gaussian triangle.

2.4.2 Illustrative example

We start with an example demonstrating conditional density estimation using data generated

from the Gaussian triangle described in Model 1. We generate 1500 observations (xi, yi, zi)1500
i=1

and estimate the 2D conditional density Y , Z|X = x for x ∈ {−1,−0.3,0.3,1}. The conditional

mean embedding can be estimated as described in Sections 1.2.2.1 and 2.3, resulting in the

Tikhonov-regularized estimate

µ̂Y Z|X=x =
1500∑
i=1

wi(x)k ([yi, zi], ·) ,

where k is a kernel defined on R2, wi(x) = (KX +1500λIn)−1lx, and lx = [l(x1, x), . . . , l(x1500, x)].

The density associated with the estimated embedding µ̂Y Z|X=x can then be estimated via

qn(y, z|x)=
1500∑
i=1

wi(x)k̄ ([yi, zi], [y, z]) , y, z ∈R.

We set the regularization parameter λ to be 0.1, and use Gaussian kernel functions for l and k.

For the former we set the kernel hyperparameter via the median heuristic, and for the latter

we tune the hyperparameter by numerically minimizing the estimated score function defined in

Equation (2.11) for each x.

Figure 2.2 shows the 2D conditional densities p(y, z|x) for x ∈ {−1,−0.3,0.3,1} alongside

their estimates produced using conditional mean embeddings and the density estimator. The

estimator is very similar to the true density across all values of x displayed. Notably, the estimator

accurately reflects the inherent characteristics of the true densities, capturing whether they are

near-uniform, unimodal, or bimodal.
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Figure 2.2: True and estimated conditional densities for the Gaussian triangle model. Each row
presents the true conditional density Y , Z|X = x for a given x (left) and its corresponding estimate
using the conditional mean embedding (right), with the contour values indicated by their colour
as explained by the legend to the right of each plot.
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2.4.3 Comparison to CDO

We compare our method to the conditional density operator approach [Schuster et al., 2020]

in estimating 1D conditional densities in the Gaussian triangle model. We draw 1500 samples

(xi, yi, zi)1500
i=1 from Model 1, and consider estimating the conditional density of Y |X = x, Z = 0, for

x ∈ {−1,−0.3,0.3,1}. For a fair comparison, we use Gaussian kernel functions for both methods

with hyperparameter chosen via the median heuristic, and for the CDO specific hyperparameters

we use the default values suggested in Schuster et al. [2020]. For each x ∈ {−1,−0.3,0.3,1} we

estimate the conditional density using both methods and compute the MAD and MSE between

the truth and the estimate. We repeat this process 100 times for different samples from Model 1.

We provide a visual comparison between our method KMDE and the existing approach CDO

in Figure 2.3. We compare the distributions of the MAD and MSE in estimating the conditional

density p(y|x, z) for z = 0 and across x ∈ {−1,−0.3,0.3,1}. The first row of the figure analyzes the

MAD whilst the second analyzes the MSE. For each value of x a separate boxplot displays the

distribution of the associated metric over the 100 repetitions, where a smaller value is better. It

is evident from Figure 2.3 that our method outperforms the existing method across all values of x

for both metrics.

Figure 2.4 shows several estimated 1-dimensional conditional densities corresponding to

Y |X = x, Z = 0 across x ∈ {−1,−0.3,0.3,1}, for our method KMDE and the alternative CDO. As

above, all hyperparameters are set to their default values.

2.4.4 Comparison to KCDE

We compare our method to kernel conditional density estimation (KCDE), also known as the

Nadaraya-Watson conditional density estimator, across a wide range of simulated datasets.

We generate 1000 observations (xi, yi)1000
i=1 from each model that we consider, and estimate the

conditional densities associated with Y |X = x. Both KMDE and KCDE place a kernel on the

domain of X and Y , and for both methods we use Gaussian kernels and we tune the kernel

hyperparameters by minimizing the estimated score function given in Equation (2.11). For our

method, we set the estimated conditional mean embedding regularization parameter to λ= 0.001.

Both methods produce estimates of the conditional density p(y|x), and we illustrate the estimated

conditional densities in Figures 2.5 to 2.7 for several values of x for Model 3 and Model 4 (with

d = 4 and d = 10) respectively.

We note that while the Gaussian smoothing kernel is a popular and classical choice of

smoothing kernel, it may not be optimal for estimating density functions that are sufficiently

smooth (see Section 1.2 of Tsybakov [2008]).

We first demonstrate that whilst our hyperparameter selection minimizes the integrated

squared error and our consistency result holds for the supremum norm of the difference between

the estimated density and the true density, our estimator performs well in terms of both the

MAD and the MSE. Figure 2.8 shows the distributions of the MAD and the MSE for our method
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Figure 2.3: Comparison of the distributions of the MAD and MSE for our method KMDE and
the existing method CDO when estimating the conditional density p(y|x, z) for z = 0 and across
x ∈ {−1,−0.3,0.3,1} for Model 1. The four columns correspond to different values of x, and the first
and second rows compare the distributions of the MAD and MSE respectively over 100 trials.

KMDE and the existing method KCDE when estimating the conditional density p(y|x) over 50

values of x uniformly sampled from the observations (xi)1000
i=1 , for data generated from Model 2

with α = β= 0.1. The figure shows that our method outperforms the existing method for both

metrics.

To compare the two approaches systematically across a range of datasets, for each simulated

dataset we compute the MAD between their estimated densities and the true densities across

a range of values of x. For the values of x we sample a set of 50 values uniformly from the

observations (xi)1000
i=1 . We then perform a two-sample t-test wherein we test the null hypothesis

that there is no difference in the MAD between the two methods. Results that are significant at

the 0.05 level are reported in Table 2.1. Our results compare the methods over a wide-range of

different datasets, with the dimension of X ranging from 1 up to 12, and the dimension of Y up

to 2. For approximately 89% (17/19) of the significant results, our method KMDE outperforms

KCDE.

The kernel conditional density estimator estimates the density associated with the random

variable X (and our method does not), and thus our method outperforms KCDE when the

density for X is hard to model with a kernel density estimator. For example, in the case that

X ∼Beta(0.1,0.1), the density is bimodal with modes at 0 and 1, and the density spikes towards
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Figure 2.4: Several estimated 1D conditional densities of Y |X = x, Z = 0 across x ∈ {−1,−0.3,0.3,1}
for Model 1 using our method KMDE and an existing method CDO. Each plot shows the true density
in black over a sequence of y for the value of x which is specified in the plot title.
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Figure 2.5: Comparison of estimated conditional densities for Model 3 using our method KMDE
and an existing method KCDE. Each plot shows the true density p(y|x) in black over a sequence of
y for the value of x which is specified in the plot title.

0.0

0.5

1.0

1.5

2.0

1 2 3 4
y

va
lu

e

x = (0.5, 0.1, 0.4, 0)

0

1

2

3

1 2 3 4
y

va
lu

e

x = (0, 0, 0.8, 0.2)

0

1

2

3

4

1 2 3 4
y

va
lu

e

x = (0, 1, 0, 0)

Method KCDE KMDE

Model 4 with d = 4

Conditional density estimation

Figure 2.6: Comparison of estimated conditional densities for Model 4 with d = 4 using our
method KMDE and an existing method KCDE. Each plot shows the true density p(y|x) in black over
a sequence of y for the value of x which is specified in the plot title.

the boundaries of the domain and decreases towards the center of the domain at 0.5. The density

in this case is unbounded and the consistency results for kernel density estimation do not hold.

Kernel density estimators will face several difficulties in estimating such a density. Firstly, kernel
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Figure 2.8: Comparison of the distributions of the MAD and MSE for our method KMDE and the
existing method KCDE when estimating the conditional density p(y|x) over 50 values of x for
Model 2 with α=β= 0.1.

density estimators are biased towards the boundary of the domain, so the density estimator

is likely to underestimate the density towards its modes. Secondly, tuning the bandwidth is

particularly difficult as one would require a small bandwidth to capture the modes of the density

and a large bandwidth to capture the smooth behaviour between the modes. Finally, a majority of

samples will take values close to 0 and 1, and very few samples will be close to 0.5, making the

behaviour between the modes particularly hard to model. For a similar reasoning, our method

outperforms the kernel conditional density estimator when X is sampled from a mixture of

distributions with different variances, as the choice of bandwidth is not straightforward. Our

claim is further supported by the fact that KCDE outperformed our method for both non-linear

models where the distribution of X is high-dimensional but simple to model with a kernel density

estimator.

Comparison over increasing dimension. Density estimation becomes significantly harder

as the dimension of the data increases — a phenomenon referred to as the curse of dimensionality.

For a fixed number of observations, as the dimension of the space increases the available data

becomes more sparse, and the convergence rate of nonparametric density estimators slows. This

problem cannot be avoided, as the optimal convergence rate of nonparametric density estimators

decreases as a function of the dimension [Stone, 1980]. Hence, we expect our estimator KMDE to

outperform KCDE as the dimension of the data increases, as KCDE estimates the density of the

random variable X whereas KMDE does not.

In the following we compare our method KMDE to KCDE when the dimension of the random

variable X increases. We simulate 1000 observations from Model 5 for dx ranging from 1 to

200, and evaluate performance in estimating the 1D condition density Y |X = x. We follow the
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dx dy Model p-value Preferred

1 1 Beta, α=β= 0.1 <0.001*** KMDE
1 1 Bimodal 0.001** KMDE
1 1 Cauchy, γ= 0.5 0.017* KMDE
1 1 Cauchy, γ= 2.5 0.007** KMDE
2 1 Dirichlet <0.001*** KMDE
3 1 Dirichlet <0.001*** KMDE
4 1 Dirichlet <0.001*** KMDE
5 1 Dirichlet <0.001*** KMDE
6 1 Dirichlet <0.001*** KMDE
7 1 Dirichlet <0.001*** KMDE
8 1 Dirichlet 0.010* KMDE
9 1 Dirichlet 0.003** KMDE

10 1 Dirichlet <0.001*** KMDE
3 1 Linear Toeplitz 0.026* KMDE
5 1 Linear Toeplitz 0.008** KMDE
1 1 Mixture 0.014* KMDE
1 2 MVN 0.002** KMDE

10 1 Nonlinear type 1 0.008** KCDE
10 1 Nonlinear type 2 <0.001*** KCDE

Table 2.1: The outcome of several hypothesis tests across different models and data dimensions in
which we test the hypothesis that the MAD in estimating conditional densities using our method
KMDE and the existing method KCDE is the same. The columns dx and dy denote the dimension of
the X variable and Y variable respectively. In the p-value column, a single asterisk (*) indicates
significance at the 0.05 level, double asterisks (**) at the 0.01 level, and triple asterisks (***) at
the 0.001 level. Only significant results are shown in this table, and the Preferred column states
which method achieved the lowest mean MAD.

same procedure described above. For each dataset, we tune the two parameters of KMDE and

KCDE by minimizing the estimated score function defined in Equation (2.11). For the optimal

hyperparameters which minimize the estimated score, we estimate the conditional density of

Y |X = x for 50 values of x uniformly sampled from the observed (xi)1000
i=1 , and we compute the

MAD between the estimated conditional density and the truth.

Figure 2.9 shows the mean MAD (averaged over the 50 values of x) for both methods as the

dimension of the random variable X increases. As the dimension increases, the error of both

methods increases, however the error for KMDE increases at a slower rate and is consistently

less than the error of KCDE for dx > 3. This significant improvement in performance stems

from the fact that KMDE does not estimate the density of the random variable X . It is also

evident that as the dimension increases the variance of the mean MAD increases for KCDE.

We perform two-sample t-tests for each value of dx, testing the null hypothesis that the MAD

of the two methods is equal, and we report the results in Table 2.2. For dx equal to 2, we find

that KCDE outperforms our method KMDE; this is not surprising as the underlying model has
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simple dynamics, and estimating the conditional mean embedding induces numerical error as the

estimator requires the inversion of a 1000×1000 matrix. The results for dx equal to 1 and 3 to 4

were not significant, and for all dx ≥ 5 our method outperforms KCDE with the results becoming

more significant as dimension increases. For all dx ≥ 6 the tests are significant at the 0.001 level.
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Mean MAD in conditional density estimation for increasing dimension

Figure 2.9: Comparison of the mean MAD between our method KMDE and the existing method
KCDE when estimating the conditional density of Y |X for increasing dimension dx in Model 5. The
mean MAD is the maximum absolute difference in estimating the density of Y |X = x, averaged
over a set of 50 values of x.

dx dy Model p-value Preferred

2 1 Linear 0.023* KCDE
5 1 Linear 0.029* KMDE

6–100 1 Linear <0.001*** KMDE

Table 2.2: The outcome of several hypothesis tests across different data dimensions in which we
test the hypothesis that the MAD in estimating conditional densities using our method KMDE
and the existing method KCDE is the same. The columns dx and dy denote the dimension of the
X variable and Y variable respectively. In the p-value column, a single asterisk (*) indicates
significance at the 0.05 level, double asterisks (**) at the 0.01 level, and triple asterisks (***) at
the 0.001 level. Only significant results are shown in this table, and the Preferred column states
which method achieved the lowest mean MAD.
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2.5 Future work

The density estimator proposed in this work and its consistency is a self-contained contribution.

Nevertheless, it presents several opportunities for further study. One promising direction in-

volves studying the rate of convergence of the density estimator and potentially developing a

theoretical result for the rate. Future research could also investigate the use of alternative kernel

functions for the density estimator, such as higher-order kernel functions, which may improve the

performance of the density estimator. Additionally, there is also potential to develop alternative

hyperparameter selection procedures. It would be preferable to select the kernel hyperparameter

in a manner motivated by the consistency result, by minimizing the supremum norm of the

difference between the density estimator and the underlying density.

Furthermore, the proposed density estimator can be used in future works using kernel mean

embeddings. The output of statistical methods using kernel mean embeddings is typically an

estimated kernel mean embedding of a distribution of interest; it would be preferable to directly

output an estimate of the distribution of interest. This is made possible by the density estimator

we propose, allowing for end-to-end statistical modelling using kernel mean embeddings.

2.6 Conclusion

Embedding a probability distribution into a reproducing kernel Hilbert space is a relatively simple

and well-studied task, and for many kernel functions this mapping is injective. The mapping from

an RKHS embedding to a probability distribution is non-trivial, and understanding precisely

what information can be recovered from such embeddings has remained an open question in the

kernel mean embedding literature. Existing methods for estimating the embedded distribution

involve non-convex optimization problems and parametric assumptions, with no guarantee on

the recovered distribution.

In this work we have shown that given an estimated embedding, the density of the embedded

distribution can be recovered at no cost, provided that the estimated embedding is consistent

in probability. Furthermore, the density estimator is uniformly consistent in probability. Kernel

mean embeddings offer a versatile framework for nonparametric statistical modelling. They

facilitate the estimation of (embedded) distributions, using probabilistic intuition via the kernel

sum, product, and Bayes’ rule. Our research extends this framework, introducing the potential

for comprehensive end-to-end modelling using kernel mean embeddings.

We showed that our estimator can be used to estimate conditional densities without paramet-

ric assumptions via the use of conditional mean embeddings. In this setting, we compared our

estimator to conditional density operators [Schuster et al., 2020] and kernel conditional density

estimators. Our experiments show that our method outperforms the existing kernel-based meth-

ods in terms of the maximum absolute difference in density estimation across a wide range of
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simulated datasets, and that the improvement in performance obtained by our method increases

as the dimension of the conditioning variable increases.

2.7 Supplementary

2.7.1 Proof of Lemma 2.1

Proof of Lemma 2.1. Let ϵ> 0 and note that, since f ∈ C0(Rd), there exists an aϵ ∈R such that

f (x)< ϵ/4 for all x ∈Rd such that ∥x∥ ≥ aϵ.

Next, let x ∈Rd be such that ∥x∥ ≥ 2aϵ, and let

An,ϵ(x)=
{

y ∈Rd | ∥x+σn y∥ ≥ aϵ
}

, ∀n ≥ 1,

and remark that if Y ∼ ν then for all n ≥ 1 we have

Pr
(
Y ∈ An,ϵ(x)

)=Pr(∥x+σnY ∥ ≥ aϵ)

≥Pr(∥x∥−σn∥Y ∥ ≥ aϵ)

≥Pr(σn∥Y ∥ ≤ aϵ)

=: pn(ϵ),

where the first inequality holds by the reverse triangle inequality. Since limn→∞σn = 0 it follows

that

(2.13) lim
n→0

pn(ϵ)= 1,

and thus

(2.14)

limsup
n→∞

sup
x∈Rd :∥x∥≥2aϵ

∣∣∣∣∫
Rd

( f (x+σn y)− f (x))ν(d y)
∣∣∣∣

≤ limsup
n→∞

sup
x∈Rd :∥x∥≥2aϵ

∫
An,ϵ(x)

| f (x+σn y)− f (x)|ν(dy)

+ limsup
n→∞

sup
x∈Rd :∥x∥≥2aϵ

∫
Ac

n,ϵ(x)
| f (x+σn y)− f (x)|ν(d y)

≤ limsup
n→∞

[ ϵ
4

pn(ϵ)+
(
∥ f ∥∞+ ϵ

4

)
(1− pn(ϵ))

]
= ϵ/4.

To proceed further let x ∈Rd be such that ∥x∥ < 2aϵ,

Ãn,ϵ(x)= {y ∈Rd | ∥x+σn y∥ ≤ 3aϵ}, ∀n ≥ 1,

and remark that if Y ∼ ν then

Pr
(
Y ∈ Ãn,ϵ(x)

)=Pr(∥x+σnY ∥ ≤ 3aϵ)≥Pr(∥x∥+σn∥Y ∥ ≤ 3aϵ)≥ pn(ϵ).
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In addition, as the function f is continuous on Rd, it is uniformly continuous on the compact set

Kϵ := {z ∈ Rd | ∥z∥ ≤ 3aϵ}. Therefore, there exists a continuous function wϵ : [0,∞) → [0,∞) such

that wϵ(0)= 0 and such that

| f (x)− f (x′)| ≤ wϵ(∥x− x′∥), ∀x, x′ ∈ Kϵ,

and thus

(2.15)

sup
x∈Rd :∥x∥<2aϵ

∣∣∣∣∫
Rd

( f (x+σn y)− f (x))ν(d y)
∣∣∣∣

≤ sup
x∈Rd :∥x∥<2aϵ

∫
Ãn,ϵ

| f (x+σn y)− f (x)|ν(d y)

+ sup
x∈Rd :∥x∥<2aϵ

∫
Ãc

n,ϵ

| f (x+σn y)− f (x)|ν(d y)

≤
∫
Rd

wϵ(σn∥y∥)ν(d y)+2∥ f ∥∞ (1− pn(ϵ)) .

Without loss of generality we can assume that wϵ is bounded (for example, by taking wϵ such that

wϵ(δ)= wϵ(δϵ) for all δ≥ δϵ := supx,x′∈Kϵ
∥x− x′∥). Therefore, using Equations (2.13) and (2.15) and

the dominated convergence theorem, it follows that

(2.16) limsup
n→∞

sup
x∈Rd :∥x∥<2aϵ

∣∣∣∣∫
Rd

( f (x+σn y)− f (x))ν(d y)
∣∣∣∣≤ 0.

Therefore, using Equations (2.14) and (2.16), we have

limsup
n→∞

sup
x∈Rd

∣∣∣∣∫
Rd

( f (x+σn y)− f (x))ν(d y)
∣∣∣∣

≤ limsup
n→∞

sup
x∈Rd :∥x∥≥2aϵ

∣∣∣∣∫
Rd

( f (x+σn y)− f (x))ν(d y)
∣∣∣∣

+ limsup
n→∞

sup
x∈Rd :∥x∥<2aϵ

∣∣∣∣∫
Rd

( f (x+σn y)− f (x))ν(d y)
∣∣∣∣

≤ ϵ

4
.

As ϵ> 0 is arbitrary, this concludes the proof. ■

2.7.2 Assumptions and proof of Corollary 2.1

The following uses results from Li et al. [2022], and so we briefly adopt their notation. We keep

the following to a high-level and refer the reader to the original paper for the details. Let HX

and HY denote RKHSs on X and Y . Li et al. [2022] consider a misspecified setting where the

conditional mean embedding operator belongs to the space of Hilbert-Schmidt operators mapping

from an interpolation space between HX and L2, to HY . Let [G ]β, β≥ 0 denote an interpolation

space between HX and L2; the spaces are such that [G ]β ,→ [G ]α for 0<α<β. Let F⋆(x) denote

the kernel mean embedding of the conditional distribution Y |X = x in HY , for some x ∈ X ,
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and let F̂λ(x) denote the empirical estimated conditional mean embedding with regularization

parameter λ > 0. In the well-specified setting, one has F⋆ ∈ G , the space of Hilbert-Schmidt

operators mapping from HX to HY .

The consistency result of Li et al. [2022] depends on their assumptions (1)-(3), (EVD), (EMB),

and (SRC). The additional assumptions required are detailed below:

(EVD) Eigenvalue decay: Let (µi)i∈I denote the non-increasing sequence eigenvalues of CX X

where I is an at most countable index set. For some constants c2 > 0 and p ∈ (0,1] and for

all i ∈ I,

µi ≤ c2 i−1/p.

(EMB) Embedding property: For α ∈ (p,1], the inclusion map Iα,∞
π : [H ]αX ,→ L∞(π) is continu-

ous, and there is a constant A > 0 such that

∥∥Iα,∞
π

(∥[H ]αX→L∞(π) ≤ A.

(SRC) Source condition: There exists 0<β≤ 2 such that

F⋆ ∈ [G ]β.

Assumptions (1)-(3) are equivalent to Assumption 1.1. (EVD) is an assumption on the eigenvalue

decay of the cross-covariance operator CX X (that the decay is at least polynomial with degree p ∈
(0,1]), (EMB) is an assumption on the interpolation spaces, and (SRC) assumes that F⋆ ∈ [G ]β for

some 0<β≤ 2. Theorem 2 of Li et al. [2022] states that under Assumption 1.1, and assumptions

(EVD), (EMB), and (SRC), ∥[F̂λ]−F⋆∥2
α = oP(1), for 0≤α≤ 1 with α<β, where ∥ ·∥α denotes the

α-norm.

The following lemma allows us to relate the RKHS norm and the norm associated with the

interpolation space. The proof mirrors Lemma 4 of Li et al. [2022] in its approach, though the

conclusion is different.

Lemma 2.3. For any F ∈ [G ]α and x ∈X , we have ∥F(x)∥2
HY

≤ ∥F∥2
α∥kα

PX
∥∞, where ∥kα

PX
∥∞ <∞

under assumption (EMB), for PX -almost all x ∈X .

Proof. As F ∈ [G ]α, there exists ai j ∈ ℓ2(I × J) such that for PX -almost all x ∈X ,

F(x)= ∑
i∈I

∑
j∈J

ai jd jµ
α/2
i [e i](x),
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where (d j) j∈J is any orthonormal basis of HY . Then

∥F(x)∥2
HY

= ∥ ∑
j∈J

(∑
i∈I

ai jµ
α/2
i [e i](x)

)
d j∥2

HY

= ∑
j∈J

(∑
i∈I

ai jµ
α/2
i [e i](x)

)2

≤ ∑
j∈J

∑
i∈I

a2
i j

∑
i∈I
µαi [e i]2(x)

≤ ∥kαPX
∥∞∥F∥2

α,

where the first inequality follows from the Cauchy-Schwarz inequality and ∥F∥2
α =∑

i∈I
∑

j∈J a2
i j.

■

Corollary 2.1 uses the above lemma to state that if the estimated conditional mean embedding

operators are consistent, then the estimated conditional mean embeddings are consistent. In the

final part of the following proof we translate the result from the notation of Li et al. [2022] to the

notation used throughout this thesis. We note that when HY is an RKHS with kernel function

kγ : Y ×Y →R, the embedding of the distribution of Y |X = x in HY is F⋆(x)= µγY |X=x, and the

estimated embedding in HY with regularization λ> 0 is F̂λ(x)= µ̂γY |X=x.

Proof of Corollary 2.1. Under assumption (SRC), F⋆ ∈ [G ]β for some 0 < β ≤ 2, and thus

F⋆ ∈ [G ]α for α < β. It follows from Lemma 2.3 that ∥F̂λ(x)−F⋆(x)∥2
HY

≤ ∥F̂λ−F⋆∥2
α∥kα

PX
∥∞

for PX -almost all x ∈ X . Assumption (EMB) is equivalent to the assumption that ∥kα
PX

∥∞ ≤ C

for some constant C > 0 and α ∈ (p,1] (see Theorem 9 of Fischer and Steinwart [2020]). Hence

∥F̂λ(x)−F⋆(x)∥2
HY

= oP(1), and equivalently ∥µ̂γY |X=x−µ
γ

Y |X=x∥2
HY

= oP(1) for PX -almost all x ∈X .

Thus there exists a set A ⊆X with PX (A)= 1 such that

sup
x∈A

∥µ̂γY |X=x −µ
γ

Y |X=x∥2
HY

= oP(1).

■

43





C
H

A
P

T
E

R

3
HIDDEN MARKOV MODELS

3.1 Introduction

In this chapter we develop a nonparametric method for learning the parameters of an HMM via

the use of kernel mean embeddings. We embed the joint distributions of (Y1,Y2) and (Y1,Y2,Y3)

into reproducing kernel Hilbert spaces, and estimate the RKHS embeddings of the observation

distributions. The embeddings can then be manipulated via simple linear algebra to obtain

estimates of the stationary distribution and transition matrix. We propose two methods to

perform inference on the hidden states in the filtering problem. The first method we propose

recovers the observation densities from their embeddings following Chapter 2, and then uses the

forward algorithm. For the second method, we propose a novel alternative kernel Bayes’ rule

to estimate the embedded filtering distributions using the embedded observation distributions,

avoiding the intermediary density estimation step of the first method. We derive an estimator of

the HMM order for our setting, which consistently estimates the HMM order almost surely. We

conclude the chapter with a comparison to existing nonparametric methods for HMMs.

The method we propose builds upon the works of Anandkumar et al. [2012] and De Castro et al.

[2017]. Anandkumar et al. [2012] developed a method for learning parametric hidden Markov

models, and more generally multi-view models, using the spectral method of Chang [1996] and a

sample of three consecutive observations. They prove that their method is consistent and provide

non-asymptotic convergence guarantees. De Castro et al. [2017] built upon Anandkumar et al.

[2012] and developed a method for estimating a nonparametric HMM by projecting observations

onto an approximation space. They prove that their method is consistent, and provide controls

on the filtering and smoothing errors in terms of the risk of the estimated HMM parameters.

Lehéricy [2019] proved that these estimators can be used to consistently estimate the order of
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the model almost surely.

Novelty. Our work is novel on several fronts. We develop a new nonparametric method for

estimating the parameters of a hidden Markov model, and we derive concentration inequalities

that highlight the method’s improvement upon the existing spectral method of De Castro et al.

[2017]. We formulate a novel alternative kernel Bayes’ rule, which allows for applications of

Bayes’ rule to kernel mean embeddings without access to samples. This allows for inference in

the filtering problem using the estimated parameters learned by our nonparametric method.

We provide a kernel-based estimator of the HMM order and prove its almost-sure consistency.

Finally, we demonstrate that our method outperforms existing nonparametric methods across a

range of simulated datasets.

3.1.1 Setting and assumptions

Throughout the chapter we use the notation defined in Sections 1.1 and 1.2.1.1. We also require

the following assumptions.

Assumption 3.1. The kernel function defined on Y is characteristic, and the associated RKHS is

separable.

Assumption 3.2. The transition matrix Q has full rank, and the hidden process Markov chain is

irreducible and aperiodic.

Assumption 3.3. The initial distribution π is the stationary distribution.

Assumption 3.4. The set of observation densities F is linearly independent.

Assumption 3.1 is used to ensure that the kernel mean embeddings are unique, and many

popular kernels such as the Gaussian, Laplace, and Matérn kernel defined on a locally compact

Hausdorff space such as Rd, d ≥ 1, are characteristic [Sriperumbudur et al., 2011]. Assump-

tions 3.2 to 3.4 are sufficient to obtain identifiability for nonparametric models upon observing a

sequence of three consecutive observations, see Gassiat et al. [2016]. Assumptions 3.2 and 3.3

also ensure that πi > 0 for i = 1, . . . ,K .

3.2 Problem formulation

A hidden Markov model is characterized by the set of observation densities, F, the transition ma-

trix of the hidden process, Q, and the stationary distribution of the hidden process, π. Statistical

estimation of hidden Markov models focuses on estimating the set of parameters (F,Q,π) given

a sequence of observations. In this chapter we develop a nonparametric procedure to estimate

the parameters (O2,Q,π), where O2 denotes the set of observation distributions embedded in an
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RKHS. We also address the estimation of the HMM order, a crucial yet often challenging aspect

of model estimation.

As discussed in Chapter 1, several inference problems arise when working with hidden Markov

models. We focus on the filtering task wherein we aim to estimate the posterior distributions of

the current hidden state X t given a sequence of observations y1:t for t ≥ 1.

3.3 Nonparametric estimation via the kernel spectral method

The method we propose to estimate the parameters of the hidden Markov model relies upon

several preliminary lemmas. To facilitate a better understanding and to guide the reader through

this section, we provide a brief outline of the section below.

An outline. Firstly, Section 3.3.1 defines the kernel mean embeddings of the distributions

of two and three consecutive observations, and Section 3.3.2 shows that these embeddings can

be decomposed in terms of the embedded observation densities, O2. Section 3.3.3 leverages

the decomposition to define a quantity termed the observable operator. This quantity is key to

defining a linear system, defined in Lemma 3.4, which allows for the estimation of O2 using a set

of observations from the HMM. Lastly, Section 3.3.4 provides an expression for the remaining

parameters Q and π in terms of O2. These expressions allow for the estimation of all HMM

parameters.

3.3.1 Embeddings

To derive a method for estimating the parameters of a hidden Markov model satisfying Assump-

tions 3.1 to 3.4 we start by embedding the distributions of two and three consecutive observations

into reproducing kernel Hilbert spaces. The use of three consecutive observations is sufficient for

identifiability of the nonparametric model following Gassiat et al. [2016].

Let HY be a reproducing kernel Hilbert space with kernel function k(y, y′)= 〈
φY (y),φY (y′)

〉
HY

,

where φY : Y →HY is the canonical feature mapping associated with the kernel function. We

embed the distribution of Y1 in HY via the kernel mean embedding

µY1 = EY1[φY (Y1)] ∈HY ,

and we embed the joint distributions of (Y1,Y2) and (Y1,Y2,Y3) into the tensor product RKHSs

HY ⊗HY , and HY ⊗HY ⊗HY via the cross-covariance operators

CY1,Y2 = EY1,Y2[φY (Y1)⊗φY (Y2)], CY1,Y2,Y3 = EY1,Y2,Y3[φY (Y1)⊗φY (Y2)⊗φY (Y3)].

These embeddings exist under Assumption 1.1, see Lemma 1.2. To simplify notation in the

following, we define µ1 =µY1 , C1,2 =CY1,Y2 , and C1,2,3 =CY1,Y2,Y3 , and we define H ⊗v
Y

=⊗v
i=1HY

for v = 2,3.
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For v ∈ {1,2,3}, we define Ov to be a row vector of K elements in HY , denoted Ov ∈ H K
Y

,

with j-th element E[φY (Yv)|X2 = j], j = 1, . . . ,K . Ov denotes the kernel mean embedding of the

observation Yv given the hidden state X2, and we note that O2 is of particular interest as it

contains the embeddings of the observation distributions. The j-th element of the row vector O2

corresponds to the embedding of (Y2|X2 = j) in HY for j = 1, . . . ,K .

The quantities O1, O2, and O3 are closely related as shown in the following lemma. This

observation follows naturally from the fact that a hidden Markov model can be considered a

multi-view model as shown in Figure 1.2, an observation which motivated previous parametric

spectral HMMs [Hsu et al., 2012, Anandkumar et al., 2012].

Lemma 3.1. We can express O1 and O3 in terms of O2, and the HMM parameters Q and π as

follows:

O1 =O2 diag(π)Q diag(Qπ)−1 , O3 =O2QT.

Proof. Consider the i-th element of O1. It follows from the law of total expectation and the

conditional independence implied by the hidden Markov model’s structure that

[O1]i = E[φY (Y1)|X2 = i]

= EX1|X2=i
[
E[φY (Y1)|X2 = i, X1]|X2 = i

]
= EX1|X2=i

[
E[φY (Y1)|X1]|X2 = i

]
=

K∑
j=1

E[φY (Y1)|X1 = j]P(X1 = j|X2 = i)

= [O2 diag(π)Q diag(πQ)−1]i,

where we have used Bayes’ rule to express

P(X1 = j|X2 = i)= P(X2 = i|X1 = j)P(X1 = j)
P(X2 = i)

= Q j,iπ j

[πQ]i

= [diag(π)Q diag(πQ)−1] j,i.

Similarly, we can represent the i-th element of O3 as follows

[O3]i = E[φY (Y3)|X2 = i]

= EX3|X2=i
[
E[φY (Y3)|X2 = i, X3]|X2 = i

]
= EX3|X2=i

[
E[φY (Y3)|X3]|X2 = i

]
=

K∑
j=1

E[φY (Y3)|X3 = j]P(X3 = j|X2 = i)

= [O2QT]i.

■
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3.3.2 Decomposition

The key to our method is contained in the following lemma, which shows that the embeddings of

(Y1,Y2) and (Y1,Y2,Y3) can be decomposed into various quantities of interest.

In the following we treat C1,2,3 ∈ H ⊗3
Y

as a rank-one linear operator, and use the notation

×2 introduced in Section 1.2.2.5 to emphasize that the inner product is taken over the second

dimension, such that

C1,2,3×2 : HY →H ⊗2
Y , C1,2,3×2 : f 7→ EY1,Y2,Y3[

(
φY (Y1)⊗φY (Y3)

)〈
φY (Y2), f

〉
HY

].

That is, the cross-covariance operator can be considered an operator which maps a function

f ∈ HY to an element of the tensor product RKHS H ⊗2
Y

by taking an inner product over the

second dimension.

Lemma 3.2. The embeddings of (Y1,Y2) and (Y1,Y2,Y3) in H ⊗2
Y

and H ⊗3
Y

can be decomposed as

C1,3 =O1 diag(πQ)OT
3 , and C1,2,3 ×2 f =O1 diag

(
OT

2 f
)
diag(πQ)OT

3 ,

for any f ∈HY .

Proof. The first decomposition follows from the law of total expectation and the conditional

independence structure specified by the hidden Markov model,

C1,3 = EY1,Y3[φY (Y1)⊗φY (Y3)]

= EX2

[
EY1,Y3|X2[φY (Y1)⊗φY (Y3)|X2]

]
= EX2

[
EY1|X2[φY (Y1)|X2]⊗EY3|X2[φY (Y3)|X2]

]
=

K∑
i=1

[
EY1|X2[φY (Y1)|X2 = i]⊗EY3|X2[φY (Y3)|X2 = i]

]
[πQ]i

=O1 diag(πQ)OT
3 ,

where we have used Lemma 1.3 and the final line follows from the definition of Ov as a row vector

in the RKHS. The second equation follows similarly,

C1,2,3 ×2 f = EY1,Y2,Y3[
(
φY (Y1)⊗φY (Y3)

)〈
φY (Y2), f

〉
HY

]

= EX2

[
EY1,Y2,Y3|X2[

(
φY (Y1)⊗φY (Y3)

)〈
φY (Y2), f

〉
HY

|X2]
]

= EX2

[(
EY1|X2[φY (Y1)|X2]⊗EY3|X2[φY (Y3)|X2]

)
EY2|X2[

〈
φY (Y2), f

〉
HY

|X2]
]

=
K∑

i=1

(
EY1|X2[φY (Y1)|X2 = i]⊗EY3|X2[φY (Y3)|X2 = i]

)
EY2|X2[

〈
φY (Y2), f

〉
HY

|X2 = i][πQ]i

=O1 diag
(
OT

2 f
)
diag(πQ)OT

3 .

■

Lemma 3.2 states that the cross-covariance operators C1,2 and C1,2,3, which are easily estimated

via the sample mean given a set of samples of (Y1,Y2,Y3), can be written in terms of the embedded

observation densities O2.
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3.3.3 The observable operator

The following lemma defines a quantity termed the observable operator. The operator is observable

in the sense that it can be estimated from the HMM observations, and as an operator it can be

used to define a representation of the HMM referred to as an observable operator model [Jaeger,

2000, Hsu et al., 2012]. We do not make use of this representation here; instead we focus on the

spectral properties of the observable operator described in the following lemma.

Lemma 3.3. For v ∈ {1,2,3}, let Uv ∈ H K
Y

be a row vector such that UT
v Ov ∈ RK×K is invert-

ible. Then UT
1 C1,3U3 is invertible under Assumptions 3.2 and 3.3. The observable operator

B1,2,3 : HY →RK×K is defined by

B1,2,3( f ) :=UT
1 (C1,2,3 ×2 f )U3(UT

1 C1,3U3)−1,

and satisfies

B1,2,3( f )= (UT
1 O1)diag

(
OT

2 f
)
(UT

1 O1)−1, ∀ f ∈HY .

Proof. Under Assumptions 3.2 and 3.3, πi > 0 for i = 1, . . . ,K , and so diag(π) is invertible. As the

transition matrix Q has full rank, it follows from Lemma 3.2 that UT
1 C1,3U3 is invertible. Using

the decompositions stated in Lemma 3.2, we can show that

B1,2,3( f )=UT
1 (C1,2,3 ×2 f )U3(UT

1 C1,3U3)−1

=UT
1 O1 diag

(
OT

2 f
)
diag(πQ)OT

3U3(UT
1 O1 diag(πQ)OT

3U3)−1

=UT
1 O1 diag

(
OT

2 f
)
(UT

1 O1)−1(UT
1 O1)diag(πQ)OT

3U3(UT
1 O1 diag(πQ)OT

3U3)−1

=UT
1 O1 diag

(
OT

2 f
)(

UT
1 O1

)−1
.

In the above, the operator C1,3 is applied element-wise such that C1,3U3 ∈H K
Y

. U1 is a row vector

in H K
Y

, and we interpret UT
1 to be the equivalent column vector in H K

Y
. Thus, UT

1 C1,3U3 ∈RK×K .

Following the same reasoning we see that UT
1 (C1,2,3 ×2 f )U3 ∈RK×K . Hence, B1,2,3 is an operator

mapping from the RKHS HY to RK×K . ■

Lemma 3.3 shows that for any f ∈ HY , the matrices B1,2,3( f ) and diag
(
OT

2 f
)

are closely

related. In particular, the columns of UT
1 O1 are eigenvectors of B1,2,3( f ) with associated eigenval-

ues OT
2 f ∈RK . The eigenvectors are only defined up to a scaling, and thus we cannot directly use

this fact to estimate O2. We apply the observable operator to several inputs, and obtain O2 as the

solution to a linear system. The linear system is defined in the following lemma.

Lemma 3.4. Let Θ ∈ RK×K be an invertible matrix, and let θT
i ∈ RK be its i-th row. Then for

i = 1, . . . ,K, U2θi ∈HY , and we let λi,1, . . . ,λi,K denote the eigenvalues of B1,2,3(U2θi), in the order

specified by the matrix of right eigenvectors UT
1 O1. Let L ∈RK×K denote the matrix with (i, j)-th

entry λi, j, then

ΘUT
2 O2 = L.
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Hence, the RKHS vector O2 ∈H K
Y

is the solution to a linear system.

Proof. It follows from Lemma 3.3 that for f =U2θi ∈HY , for all i ∈ {1, . . . ,K}

(UT
1 O1)−1B1,2,3(U2θi)(UT

1 O1)= diag
(
OT

2U2θi

)
= diag

(〈
OT

2U2e1,θi

〉
, . . . ,

〈
OT

2U2eK ,θi

〉)
= diag

(
λi,1, . . . ,λi,K

)
.

Let L denote the matrix with (i, j)-th entry λi, j, then it follows that

L =


〈
OT

2U2e1,θ1
〉 · · · 〈

OT
2U2eK ,θ1

〉
...

. . .
...〈

OT
2U2e1,θK

〉 · · · 〈
OT

2U2eK ,θK
〉
=ΘUT

2 O2.

■

It follows from Lemma 3.3 that for Θ ∈ RK×K an invertible matrix, and θT
i ∈ RK its i-th

row, for any i ∈ {1, . . . ,K} the matrix B1,2,3(U2θi) has eigenvectors
(
UT

1 O1
)−1. These eigenvectors

simultaneously diagonalize the matrices B1,2,3(U2θi) for all i = 1, . . . ,K , and the corresponding

eigenvalues form the rows of the matrix L in Lemma 3.4, which defines a linear system in terms

of O2.

3.3.4 The transition matrix and stationary distribution

The following lemma provides an expression for the stationary distribution π and the transition

matrix Q in terms of the embedded observation densities O2. The lemma provides a way to

estimate the HMM parameters given an estimate of the embedded observation densities, and

allows for estimation of all of the hidden Markov model’s parameters (F,Q,π).

Theorem 3.1. Let U ∈H K
Y

be such that UTO2 ∈RK×K is invertible. Then the stationary distribu-

tion π and transition matrix Q can be expressed as follows

π= (UTO2)−1UTµ1 and Q = (UTO2 diag(π))−1UTC1,2U(OT
2U)−1,

where µ1 denotes the kernel mean embedding of the marginal distribution of Y1 in HY .

Proof. It follows from the law of total expectation that the kernel mean embedding of the

distribution of Y1 in HY can written as follows

µ1 := E[φY (Y1)]=
K∑

i=1
E[φY (Y1) | X1 = i]P(X1 = i)=O2π,

where we use the fact that E[φY (Y1) | X1]= E[φY (Y2) | X2]=O2 ∈H K . As UTO2 is an invertible

K ×K matrix, we have π= (UTO2)−1UTµ1.
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Analogously, we apply the law of total expectation and conditional independence to the

cross-covariance operator of (Y1,Y2), and Lemma 1.3 to obtain

C1,2 := E[φY (Y1)⊗φY (Y2)]

= EX1 X2

{
E[φY (Y1)⊗φY (Y2) | X1, X2]

}
= EX1 X2{E[φY (Y1) | X1]⊗E[φY (Y2) | X2]}

=
K∑

i=1

K∑
j=1

{E[φY (Y1) | X1 = i]⊗E[φY (Y2) | X2 = j]}P(X2 = j, X1 = i)

=
K∑

i=1

K∑
j=1

{E[φY (Y1) | X1 = i]⊗E[φY (Y2) | X2 = j]}Q i, jπi

=
K∑

i=1

K∑
j=1

[O2]iQ i, jπi[OT
2 ] j

=O2 diag(π)QOT
2 .

Once again as UTO2 is invertible, we may write Q = (UTO2 diag(π))−1UTC1,2U(OT
2U)−1. ■

3.3.5 The choice of U1, U2, and U3

In this section we discuss how to choose U1, U2, and U3, such that the assumptions required in

the preceding lemmas are satisfied. The following lemma shows that we can define the row vector

U ∈H K
Y

to be the left singular vectors of the operator C1,3 and upon setting U1 =U2 =U3 =U,

UT
v Ov is invertible for v = 1,2,3.

Lemma 3.5. Let U ∈ H K
Y

be a row vector containing the K leading left singular vectors of the

cross-covariance operator C1,3 ∈H ⊗2
Y

as ordered according to their corresponding singular values.

If Assumptions 3.1 to 3.4 hold, then UTOv ∈RK×K is invertible for v = 1,2,3.

Proof. We first note that under Assumptions 3.1 and 3.4, the elements of O2 are linearly

independent, and under Assumptions 3.2 and 3.3 the matrix Q is full rank, the elements of π

are positive, and πQ =π. Lemma 3.1 shows that O1 =O2 diag(π)QT diag(Qπ)−1 and O3 =O2Q. It

follows that the matrix diag(π)QT diag(Qπ)−1 has full rank. As O1 and O3 are transformations

of O2 by full rank matrices, the elements of O1 and O3 are also linearly independent, and O1, O2,

and O3 span the same K-dimensional subspace of HY .

Recall from Lemma 3.2 that C1,3 =O1 diag(π)OT
3 , which implies that C1,3 has rank K as all

elements of π are positive under Assumptions 3.2 and 3.3, and the elements of O1 and O3 are

linearly independent under Assumptions 3.1 and 3.4. As C1,3 has rank K , it has the singular

value decomposition [Mollenhauer et al., 2020]

C1,3 =
K∑

i=1
σi(ui ⊗vi),
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where {ui}K
i=1 and {vi}K

i=1 are orthonormal systems of left and right singular vectors, and {σi}K
i=1

is the set of positive singular values. Let U ∈H K
Y

and V ∈H K
Y

be row-vectors formed by the left

and right singular vectors of C1,3, and let σ denote the vector of singular values. Then

C1,3 =U diag(σ)V T =O1 diag(π)OT
3 ,

and hence U and O1 span the same K-dimensional subspace of HY . The elements of U and O1

are linearly independent, and thus UTO1 ∈RK×K is invertible.

As the elements of O1, O2, and O3 are linearly independent and span the same K-dimensional

subspace of HY , it follows that UTOv is invertible for v = 1,2,3. ■

Remark 3.1. Lemma 3.5 also holds when U ∈H K
Y

is a row vector containing the K leading left or

right singular vectors (sorted according to their corresponding singular values) of the embedding

of (Yi,Y j) in H ⊗2
Y

for any i, j ∈ 1,2,3. The proof is identical to the above.

3.3.6 Estimation of the HMM parameters

Lemma 3.4 and Theorem 3.1 describe how to estimate the HMM parameters (Ô2,Q̂, π̂) given

a sequence of observations. Suppose we observe a sequence of realizations of the observable

process, (Yt)n+2
t=1 , for n ≥ 1, then we define Y (1) = (Y1, . . . ,Yn), Y (2) = (Y2, . . . ,Yn+1), and Y (3) =

(Y3, . . . ,Yn+2). We can compute quantities such as the empirical cross-covariance operator Ĉ1,3

using (Y (1)
i ,Y (3)

i )n
i=1 as a sample from the joint distribution of (Y1,Y3). We note that the pairs and

triples of samples used throughout the following are not independent, and hence the accuracy of

estimated quantities such as Ĉ1,3 is influenced by mixing properties of the Markov chain. This is

accounted for in our concentration inequalities detailed in Lemma 3.11.

To estimate the HMM parameters, we first develop empirical versions of the quantities used

in the preceding lemmas. The reproducing kernel Hilbert space on Y may be infinite dimensional,

and in the following we repeatedly use the reproducing property to replace inner products between

feature mappings with kernel evaluations. We illustrate with a simple example how the empirical

cross-covariance operator acting on a function can be computed with finite cost.

Example 3.1. Suppose that we observe a sequence of random variables (Y1, . . . ,Yn+2). We form the

feature vectors Φ1 = [φY (Y1), . . . ,φY (Yn)] and Φ3 = [φY (Y3), . . . ,φY (Yn+2)] which are n-dimensional

row vectors in HY . The cross-covariance operator C1,3 is estimated via the sample mean, and hence

the empirical cross-covariance operator Ĉ1,3 : HY →HY is a sum of rank-one linear operators

Ĉ1,3 =∑n
i=1

1
n (φY (Yi)⊗φY (Yi+2)). For any f ∈HY we have

Ĉ1,3( f )=
n∑

i=1

1
n
φY (Yi)

〈
φY (Yi+2), f

〉
HY

=
n∑

i=1
αiφY (Yi) ∈HY ,
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where we have used the reproducing property in the second line so
〈
φY (Yi+2), f

〉
HY

= f (Yi+2),

and defined αi = 1
n f (Yi+2). Hence, we see that whilst the RKHS may be infinite dimensional,

operations on these spaces reduce to a function evaluation. In the case that f =φY (y) for y ∈Y , we

have αi = n−1k(y,Yi+2). Using the feature vector notation specified above, this can be rewritten as

Ĉ1,3( f )=Φ1Φ
T
3 f , and ΦT

3 f =α ∈Rn.

When working with empirical RKHS operators as in Example 3.1, we can simplify expressions

using the following rules which follow from the reproducing property. For A ∈H n
Y

and B ∈H m
Y

row vectors in HY , ATB ∈ Rn×m. If C ∈ Rn×m then ACBT ∈ HY ⊗HY . For example, consider

the feature vectors Φ1 = [φY (Y1), . . . ,φY (Yn)] ∈ H n
Y

and Φ3 = [φY (Y3), . . . ,φY (Yn+2)] ∈ H n
Y

, then

n−1Φ1Φ
T
3 = Ĉ1,3 ∈HY ⊗HY , whereas ΦT

1Φ3 = K1,3 ∈Rn×n for K1,3 the n×n real-valued matrix

with (i, j)-th element k(yi, yj+2). We can think of Φ1Φ
T
3 as the outer product between elements,

and ΦT
1Φ3 as the inner product between elements.

Empirical quantities. We now derive the empirical quantities required to estimate the HMM

parameters. To simplify our notation we denote by Kv,w, for v,w ∈ {1,2,3}, the matrix of kernel

evaluations over Y (v) and Y (w). When v = m we simplify the subscript such that Kv,v = Kv. For

example, the (i, j)-th element of K1,3 is [K1,3]i, j = k(Yi,Y j+2), and the (i, j)-th element of K1 is

[K1]i, j = k(Yi,Y j), where i, j ∈ {1, . . . ,n}.

We define U to be the row vector containing the top K right singular vectors of the cross-

covariance operator C1,3, and we derive its empirical estimate computing the singular value

decomposition of Ĉ1,3. To do this, we solve an auxiliary problem as follows.

Proposition 3.1 (Mollenhauer et al. [2020]). Let Ĉ1,3 : HY →HY denote the empirical RKHS

operator Ĉ1,3 = Φ1BΦT
3 with rank(Ĉ1,3) = r := min(K ,n), where Φ1 = [φY (Y1), . . . ,φY (Yn)] and

Φ3 = [φY (Y3), . . . ,φY (Yn+2)], and B ∈ Rn×n is the diagonal matrix with entries n−1. Assume that

the multiplicity of each singular value of Ĉ1,3 is 1. Then the SVD of Ĉ1,3 is given by

Ĉ1,3 =
r∑

i=1
λ1/2

i (ui ⊗vi),

where

vi := (wT
i KΦ3 wi)−1/2Φ3wi,

ui :=λ−1/2
i Ĉ1,3vi,

with the non-zero eigenvalues λ1, . . . ,λr ∈R of the matrix N−2KΦ1 KΦ3 ∈RN×N counted with their

multiplicities and corresponding eigenvectors w1, . . . ,wr ∈RN . In the above, KΦ1 is the N×N Gram

matrix with (i, j)-th element k(yi, yj), and similarly [KΦ1]i, j = k(yi+2, yj+2), for i, j ∈ {1, . . . ,n}.

Hence, let Ŵ denote the matrix which has column vectors ŵ1, . . . ŵK , which are the leading

K right singular vectors of n−2K1K3 ordered according to their singular values. Define the
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diagonal matrix D̂ = diag
(
(ŵT

1 K3ŵ1)−1/2, . . . , (ŵT
K K3ŵK )−1/2)

, then the empirical estimator of U is

Û =Φ3ŴD̂.

The empirical observable operator acting upon Ûθi is defined as

B̂ : Ûθi 7→ ÛT(Ĉ1,2,3 ×2 Ûθi)Û(ÛTĈ1,3Û)−1, B̂ : HY →RK×K .

We can rewrite the empirical observable operator B̂ in terms of kernel matrices as follows

B̂(Ûθi) := ÛT(Ĉ1,2,3 ×2 Ûθi)Û(ÛTĈ1,3Û)−1,

= (
Φ3ŴD̂

)T (Ĉ1,2,3 ×2 Ûθi)
(
Φ3ŴD̂

)[(
Φ3ŴD̂

)T N−1Φ1Φ
T
3

(
Φ3ŴD̂

)]−1
,

= D̂TŴTΦT
3 (Ĉ1,2,3 ×2 Ûθi)Φ3ŴD̂

[
n−1D̂TŴTΦT

3Φ1Φ
T
3Φ3ŴD̂

]−1
,

= D̂TŴTΦT
3Φ1 diag

(
ΦT

2Φ3ŴD̂θi

)
ΦT

3Φ3ŴD̂
[
D̂TŴTΦT

3Φ1Φ
T
3Φ3ŴD̂

]−1
,

= D̂TŴTK3,1 diag
(
K2,3ŴD̂θi

)
K3ŴD̂

[
D̂TŴTK3,1K3ŴD̂

]−1
.

We can now form estimates of the HMM parameters Ô2, Q̂, and π̂. Suppose we have an

empirical estimate of the matrix of eigenvalues L ∈ RK×K defined in Lemma 3.4, then the

estimator of O2 is Ô2 =Φ3ŴD̂ΘL̂ ∈ H K
Y

. We define intermediary estimators of the stationary

distribution and transition matrix as follows

π̃= (ÛTÔ2)−1ÛTµ̂1

= (DTŴTΦT
3Φ3ŴD̂ΘL̂)−1DTŴTΦT

3 n−1Φ11n

= n−1(DTŴTK3ŴD̂ΘL̂)−1DTŴTK3,11n

Q̃ = (ÛTÔ2 diag(π̂))−1ÛTĈ1,2Û(ÔT
2Û)−1

= (DTŴTΦT
3Φ3ŴD̂ΘL̂diag(π̂))−1DTŴTΦT

3 n−1Φ1Φ
T
2Φ3ŴD̂(L̂TΘTD̂TŴTΦT

3Φ3ŴD̂)−1

= n−1(DTŴTK3ŴD̂ΘL̂diag(π̂))−1DTŴTK3,1K2,3ŴD̂(L̂TΘTD̂TŴTK3ŴD̂)−1.

The intermediary estimators are motivated by Theorem 3.1, however when population quantities

are replaced by estimates the intermediary transition matrix Q̃ may not be well defined as a

probability matrix. Thus, to estimate the transition matrix we project Q̃ onto the convex set of

transition matrices. We define Q̂ =ΠTM(Q̃), where ΠTM denotes the projection onto the convex

set of transition matrices. We then define the estimated stationary distribution, π̂, to be the

stationary distribution corresponding to the estimated transition matrix Q̂.

Choosing Θ. The embedded observation densities are obtained as the solution to the linear

system specified in Lemma 3.4. Thus, it is important to choose Θ that ensures that the system is

well-conditioned. Anandkumar et al. [2012] suggest that in the absence of prior knowledge, one

can sample Θ from the ∆(K−1)×(K−1) simplex. Lehéricy [2018] note that improved performance

can be obtained by sampling a set of Θ’s and keeping that which maximizes

(3.1) min
i

min
j1 ̸= j2

|L i, j1 −L i, j2 |, i, j1, j2 = 1, . . . ,K
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This works well when our assumptions are satisfied and the problem is well-specified. However,

the separation of the entries of L is directly related to the linear independence of the observation

densities (see Lemmas 10, 16, and 34 of De Castro et al. [2017]). Therefore when the obser-

vation densities are close to not being linearly independent, finding a Θ which maximizes the

above objective becomes increasingly difficult. To avoid this problem, we propose to choose Θ

by maximizing the objective function Equation (3.1) via an optimization procedure. We use the

Cayley transform to parametrize the set of K ×K orthonormal matrices by a real-valued vector

β ∈RK(K−1), and maximize the objective via an unconstrained optimization method such as BFGS

[Nocedal and Wright, 1999]. There is no guarantee that this will attain a global maxima, so we

propose several initializations of β, optimize, and keep that which maximizes the objective.

Computational cost and implementation. The method requires the truncated SVD of an

n×n matrix, several inversions of a K ×K matrix, and matrix multiplication. The truncated

SVD can be computed with cost O(Kn2) using Krylov methods such as the Lanczos algorithm. A

version for implementation is given in Algorithm 1.

Algorithm 1 Kernel spectral method for HMMs
Input: An observed sequence (Y1, . . . ,Yn+2), number of hidden states K , kernel function
k : Y ×Y →R.
Output: Estimated HMM parameters Ô2, π̂,Q̂.

1: Compute kernel matrices K1,K3,K2,3,K3,1.
2: Compute the K leading eigenvectors ŵ1, . . . ŵK of 1

n2 K1K3, and compute Ŵ = [ŵ1, . . . ŵK ] and
set D̂ = diag

(
(ŵT

1 K3ŵ1)−1/2, . . . , (ŵK K3ŵK )−1/2)
. Then compute Û =Φ3ŴD̂.

3: Choose Θ. Compute B̂(Ûθi)= D̂TŴTK3,1 diag
(
K2,3ŴD̂θi

)
K3ŴD̂

[
D̂TŴTK3,1K3ŴD̂

]−1, for
i = 1, . . . ,K , where B̂(Ûθi) are K ×K matrices.

4: Compute the matrix R̂ that diagonalizes B̂(Uθ1). For i = 1, . . . ,K compute the diagonal matrix
R̂−1B̂(ÛTθi)R̂ = diag

(
λ̂i,1, . . . , λ̂i,K

)
and set [L̂]i,· = [λ̂i,1, . . . , λ̂i,K ], where [L̂]i,· denotes the i-th

row of L̂.
5: Compute the estimated embedded observation densities Ô2 =Φ3ŴD̂ΘL̂.
6: Compute the estimate of the stationary distribution and transition matrix

π̃= n−1(DTŴTK3ŴD̂ΘL̂)−1DTŴTK3,11n

Q̂ =ΠTM

(
n−1(DTŴTK3ŴD̂ΘL̂diag(π̂))−1DTŴTK3,1K2,3ŴD̂(L̂TΘTD̂TŴTK3ŴD̂)−1

)
,

where ΠTM denotes the projection onto the convex set of transition matrices. Then set π̂ to be
the stationary distribution associated with Q̂.

3.4 Inference: the filtering problem

In this section we focus on the filtering problem, and discuss how to approach the problem given

the output of the kernel spectral algorithm described in Section 3.3.
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Algorithm 1 outputs estimates of the transition matrix and stationary distribution, and

estimated embeddings of the observation densities in an RKHS. We therefore propose two

methods: one in which we estimate the observation densities from their estimated embeddings,

and another in which we work directly with the embeddings. We compare the two approaches

when applied to simulated data in Section 3.6. Both methods induce errors in different ways:

the first requires an additional density estimation procedure while the second requires that we

approximate the conditional mean embedding as it may not be well defined, by introducing a

regularized matrix inversion.

The filtering problem. Throughout the following we assume that we observe a sequence of p

realizations of the observable process, denoted y1:p for p ≥ 1 an integer. We aim to compute the

posterior distributions of X t|y1:t for 1≤ t ≤ p.

3.4.1 Density estimation and the forward algorithm

In this approach to the filtering problem, we estimate the observation densities from their RKHS

embeddings and use the forward algorithm to obtain the filtering distributions. De Castro et al.

[2017] provide uniform consistency bounds on the filtering distributions in terms of the risk of

the estimators (F̂,Q̂, π̂), and thus whilst estimating the observation densities induces additional

error, the errors do not propagate and accumulate in the filtering problem due to the forgetting

properties of the model.

Density estimation. Given the estimated embeddings of the observation densities, Ô2, we

recover the underlying densities using the estimator defined in Chapter 2. Let A := ŴD̂ΘL̂ ∈Rn×K ,

and let ai, j denote the (i, j)-th element of A for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,K}. Then we have

µ̂Y2|X2=v =∑n
i=1 ai,vk(Yi+2, ·), which is of the form Equation (2.1), and we therefore estimate the

density as

f̂ (y|x = v)=
n∑

i=1
ai,v k̄γ̃n (Yi+1, ·), v = 1, . . . ,K .

The forward algorithm. As the set of values that the hidden state can take is finite, the

filtering distributions can be computed analytically using the forward procedure of the forward-

backward algorithm [Baum et al., 1970]. The forward algorithm provides a simple method for

performing Bayesian updates whilst taking advantage of the conditional independence specified

by the HMM. Let x ∈X , and (F,Q,π) denote the HMM parameters, then the filtering distributions

are updated recursively using the equations

p(X1 = x|y1)= fx(y1)π(x)∑K
i=1 f i(y1)πi

,

p(X t = x|y1:t)=
∑K

i=1 fx(yt)Q i,x p(X t−1 = i|y1:(t−1))∑K
j,k=1 f j(yt)Qk, j p(X t−1 = k|y1:(t−1))

,
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for 1 ≤ t ≤ p. We estimate the filtering distributions using the forward algorithm wherein the

population HMM parameters (F,Q,π) are replaced by their empirical counterparts (F̂,Q̂, π̂). We

predict the hidden state at time t via X̂ t = argmaxx∈X p̂(X t = x|y1:t).

3.4.2 An alternative kernel Bayes’ rule

In this section we approach the filtering problem by working directly with the estimated embedded

observation densities. We derive a set of recursive equations similar to the forward algorithm,

using the estimated HMM (Ô2,Q̂, π̂) to estimate the posterior X t|y1:t.

Filtering in hidden Markov models using kernel mean embeddings has been studied in several

papers. Song et al. [2009] implements a version of Bayes’ rule for the filtering problem by a

heuristic approximation, and Fukumizu et al. [2013] generalize this by providing an estimator for

the posterior obtained via kernel Bayes’ rule and prove its consistency. Both of these methods infer

the filtering distributions using a set of paired observations (X t,Yt)t≥1 to model the transition and

observation distributions for state-space models. Song et al. [2010] generalize a spectral algorithm

for hidden Markov models using an observable operator representation [Hsu et al., 2012], however

they show that their error in estimating the embedding of the predictive distribution of Yt+1|y1:t

grows linearly with t, for t ≥ 1. Nishiyama et al. [2020] introduce a model-based kernel sum

rule which requires a model rather than a set of samples, and they show that the resulting

estimated embedding is consistent. The model-based kernel sum rule is used in addition to the

sample-based kernel Bayes’ rule of Fukumizu et al. [2013] to infer the filtering distributions.

Access to a set of paired samples of the observable and unobservable process is an unrealistic

assumption, and in the following we derive an alternative kernel Bayes’ rule which does not

require access to paired samples.

In a probabilistic framework, the filtering task is divided into two steps: the prediction and

the update. Suppose at time t ≥ 1 we have an estimate of the posterior distribution X t|y1:t. The

prediction step estimates the next hidden state by marginalizing over the current hidden state.

That is,

p(X t+1 | y1:t)=
∫

p(X t+1 | X t)p(X t | y1:t)dX t.

In the update step we update our beliefs given a new observation yt+1 via Bayes’ rule:

p(X t+1 | y1:(t+1))=
p(yt+1|X t+1)p(X t+1|y1:t)∫

p(yt+1|X t+1)p(X t+1|y1:t)dX t+1
.

We develop an analogue to this procedure using kernel mean embeddings, recursively updat-

ing a belief state µX t|y1:t , which is the embedding of the distribution X t|y1:t in an RKHS HX on

X = {1, . . . ,K} with kernel function l : X ×X →R and canonical feature map ϕX (x)= l(x, ·) ∈HX

for x ∈X .

The prediction step can be accomplished using the kernel sum rule [Song et al., 2009], which

gives

(3.2) µX t+1|y1:t =UX t+1|X tµX t|y1:t .
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To update our beliefs we then use kernel Bayes’ rule Fukumizu et al. [2013] to compute µX t+1|y1:(t+1) ,

where the prior p(X t+1|y1:t) has the embedding µX t+1|y1:t given by the prediction step. We compute

the embedding of the posterior as

(3.3) µX t+1|y1:(t+1) =U π
X t+1|Yt+1

φY (yt+1)= ((C π
Yt+1Yt+1

)†(C π
X t+1Yt+1

)∗)∗φY (yt+1),

where a superscript π is used to emphasize dependence on the prior. The cross-covariance

operators can be computed in terms of the prior as follows

C π
X t+1Yt+1

=µπX t+1Yt+1
=UX t+1Yt+1|X t+1µX t+1|y1:t = ((CX t+1 X t+1)†C ∗

X t+1Yt+1 X t+1
)∗µX t+1|y1:t

C π
Yt+1Yt+1

=µπYt+1Yt+1
=UYt+1Yt+1|X t+1µX t+1|y1:t = ((CX t+1 X t+1)†C ∗

Yt+1Yt+1 X t+1
)∗µX t+1|y1:t ,

which follows from the kernel sum rule, and A† denotes the Moore-Penrose inverse and A∗ the

adjoint of the operator A.

3.4.2.1 HMM cross-covariance operators

To implement the filtering procedure described by Equations (3.2) and (3.3) we must estimate

several cross-covariance operators. Cross-covariance operators are often estimated using samples,

however as the hidden process is unobservable, we cannot use the standard empirical estimator.

The following lemma shows that cross-covariance operators of the hidden and observable process

can be decomposed in terms of the HMM parameters.

In the following let Ψ ∈H K
X

denote a row vector with i-th element ϕX (i) for i = 1, . . . ,K . We

denote by KX the K ×K kernel matrix with (i, j)-th element [KX ]i, j = l(i, j).

Lemma 3.6. The cross-covariance operators of the joint distributions (X t,Yt), (X t+1, X t), and

(X t, X t) can be decomposed in terms of the HMM parameters (O2,Q,π) as follows

CX tYt =Ψdiag
(
πQ t−1)

OT
2 , CX t+1 X t =ΨQT diag

(
πQ t−1)

ΨT, CX t X t =Ψdiag
(
πQ t−1)

ΨT.

Proof. We first decompose CX tYt . It follows from the law of total expectation that

CX tYt = EX tYt [ϕX (X t)⊗φY (Yt)]= EX t [ϕX (X t)⊗EYt|X t [φY (Yt)|X t]],

and noting that X t takes values in X = {1, . . . ,K}, we expand the expectation over X t as follows

CX tYt =
K∑

i=1
[ϕX (i)⊗EYt|X t [φY (Yt)|X t = i]]P(X t = i)

=Ψdiag([P(X t = 1), . . . ,P(X t = K)])OT
2

=Ψdiag
(
πQ t−1)

OT
2 ,
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where Ψ= [ϕX (1), . . . ,ϕX (K)] is a row vector in H K
X

. The second equation follows similarly,

CX t+1 X t = EX t+1 X t [ϕX (X t+1)⊗ϕX (X t)]

=
K∑

i=1

K∑
j=1

[
ϕX (i)⊗ϕX ( j)

]
P(X t+1 = i|X t = j)P(X t = j)

=
K∑

i=1

K∑
j=1

[
ϕX (i)⊗ϕX ( j)

]
Q j,i[πQ t−1] j

=ΨQT diag
(
πQ t−1)

ΨT.

The final equation can be derived by expanding the expectation over X t as follows

CX t X t = EX t [ϕX (X t)⊗ϕX (X t)]

=
K∑

i=1

[
ϕX (i)⊗ϕX (i)

]
P(X t = i)

=
K∑

i=1

[
ϕX (i)⊗ϕX (i)

]
[πQ t−1]i

=Ψdiag
(
πQ t−1)

ΨT.

■

3.4.2.2 Filtering

The representations of the cross-covariance operators given in Lemma 3.6 allow us to estimate

the embeddings of distributions involving the hidden process, without directly observing the

hidden states. We use this to develop a filtering procedure.

Several assumptions are required for the conditional mean embedding to be well defined,

and in some settings these assumptions are rather strong. For this reason, when considering the

conditional mean embedding of the hidden process given a sequence of observations, X t|y1:t, we

replace the pseudo-inverse with a regularized inverse. That is, rather than consider µX t+1|y1:(t+1)

specified in Equation (3.3), we provide an update rule for

µ
reg
X t+1|y1:(t+1)

:= ((C π,reg
Yt+1Yt+1

+λIH ⊗2
Y

)†(C π,reg
X t+1Yt+1

)∗)∗φY (yt+1)

=C
π,reg
X t+1Yt+1

(C π,reg
Yt+1Yt+1

+λIH ⊗2
Y

)−1φY (yt+1),

where λ > 0 is a regularization parameter, IH ⊗2
Y

denotes the identity operator on the tensor

product RKHS H ⊗2
Y

, and a superscript reg is used to emphasize that the cross-covariance

operators are computed using the regularized prior. The regularized embedding µreg
X t+1|y1:(t+1)

is an

approximation of the embedding µX t+1|y1:(t+1) and is well-studied and known to be consistent under

appropriate assumptions [Grünewälder et al., 2012, Fukumizu, 2015, Li et al., 2022].

However, the setting we consider is sufficiently nice that several strong properties hold,

allowing for direct computation of the conditional mean embeddings conditioned on the hidden
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process, such as X t+1|X t and Yt|X t. These properties stem from the fact that the latent space is

finite dimensional, and thus only a finite RKHS on X is required; these properties are described

in the following lemma.

Lemma 3.7. For X = {1, . . . ,K}, let l : X ×X →R be the Kronecker-delta kernel function defined

such that for x, x′ ∈X , l(x, x′)= 1 when x = x′ and l(x, x′)= 0 otherwise. Let HX be the reproducing

kernel Hilbert space associated with l, and let Z be a topological space such that X ⊆Z . Then

under Assumptions 3.2 and 3.3

• For any bounded function g : Z →R we have E[g(X t+1)|X t = ·] ∈HX ,

• ϕX (x) belongs to the range of CX t X t for all x ∈X ,

• CX t X t is injective.

Proof. We first show that for any function g : Z → R we have E[g(X t+1)|X t = ·] ∈ HX where

E[g(X t+1)|X t = ·] is a function from X to R. Let f : X → R be defined by f = E[g(X t+1)|X t = ·],
and let f i := f (i). We construct a function h ∈HX such that h ≡ f : let h(·) :=∑K

i=1 f i l(i, ·), then

h(x)= f (x) for all x ∈X and h ∈HX by construction. Hence E[g(X t+1)|X t = ·] ∈HX .

We now show that ϕX (x) belongs to the range of CX t X t for all x ∈X . Recall from Lemma 3.6

that CX t X t =Ψdiag
(
πQ t−1)

ΨT where Ψ = [ϕX (1), . . . ,ϕX (K)]. Under Assumptions 3.2 and 3.3,

πQ t−1 =π and πi > 0 for all i ∈X . For any x ∈X we can define the function fx =Ψαx for αx ∈RK

defined such that αx,i =π−1
i , if i = x and αx,i = 0 otherwise. Clearly, fx ∈HX , and we have

CX t X t fx =Ψdiag(π)ΨT fx

=Ψdiag(π)KXαx

=
K∑

i=1
ϕX (i)πiαx,i

=ϕX (x),

where we have used the fact that ΨTΨ= KX = IK for the Kronecker-delta kernel function. Hence

for any x ∈X there exists a function fx ∈HX such that CX t X t fx =ϕX (x) and thus ϕX (x) belongs

to the range of CX t X t for all x ∈X .

Finally, we show that CX t X t : HX →HX is injective. Note that
〈
CX t X t f , f

〉
HX

= EX t [ f (X t)2],

and hence the operator is injective if for f ∈ HX , EX t [ f (X t)2] = 0 implies that f is the zero

function (injectivity of the operator is equivalent to the kernel of the operator being the zero

function). Let f ∈HX , then f is not necessarily the zero function, and under Assumptions 3.2

and 3.3, p(X t = i) > 0 for all i ∈X . Then EX t [ f (X t)2] =∑K
i=1 f (i)2 p(X t = i) = 0 is only possible if

f ≡ 0. Therefore, the cross-covariance operator CX t X t is injective. ■

The following lemma provides an expression for the prediction step seen in Equation (3.2) in

terms of the model parameters, using the proof techniques of Fukumizu et al. [2013]. We assume
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that the kernel function on X is the Kronecker-delta kernel function and derive an update rule

for the regularized embedding µreg
X t|y1:t

.

It follows from the kernel sum rule that µX t+1|y1:t =UX t+1|X tµX t|y1:t [Song et al., 2009, 2013],

and by Lemma 3.7 for all g : X → R we have E[g(X t+1)|X t = ·] ∈ HX , and thus the conditional

mean embedding as defined in Klebanov et al. [2020] (see Section 1.2.2.2) is well defined and

such that µX t+1|y1:t = (C †
X t X t

C ∗
X t+1 X t

)∗µX t|y1:t . Hence, to derive an update rule for the regularized

embedding we define

µ
reg
X t+1|y1:t

:= (C †
X t X t

C ∗
X t+1 X t

)∗µreg
X t|y1:t

.

Additionally, the conditional mean embeddings U(X t+1Yt+1)|X t+1 = (CX t+1 X t+1)†(C ∗
X t+1Yt+1 X t+1

)∗ and

U(Yt+1Yt+1)|X t+1 = ((CX t+1 X t+1)†C ∗
Yt+1Yt+1 X t+1

)∗ are well defined, and the regularized cross-covariance

operators are naturally defined as

C
π,reg
X t+1Yt+1

:= (CX t+1 X t+1)†(C ∗
X t+1Yt+1 X t+1

)∗µreg
X t+1|y1:t

,(3.4)

C
π,reg
Yt+1Yt+1

:= ((CX t+1 X t+1)†C ∗
Yt+1Yt+1 X t+1

)∗µreg
X t+1|y1:t

.(3.5)

Another advantage of placing the Kronecker-delta kernel function on X is that it allows us

to make predictions over the hidden states. Suppose at time point t ≥ 1 we have µX t|y1:t , then

µX t|y1:t (x) = E[δ(X t, x)|y1:t] = P(X t = x|y1:t), and thus given observations y1:t we can predict the

hidden state X t by estimating µ̂X t|y1:t , and setting X̂ t = argmaxx∈X µ̂X t|y1:t (x).

Lemma 3.8 (Prediction step). Suppose that µreg
X t|y1:t

=Ψαt for some αt ∈ RK , and additionally

define µreg
X t+1|y1:t

:= (C †
X t X t

C ∗
X t+1 X t

)∗µreg
X t|y1:t

. Then under Assumptions 3.2 and 3.3

(3.6) µ
reg
X t+1|y1:t

=ΨQTαt.

Proof. We define the updated regularized embedding µreg
X t+1|y1:t

∈HX to be

µ
reg
X t+1|y1:t

:= (C †
X t X t

C ∗
X t+1 X t

)∗µreg
X t|y1:t

.

By Lemma 3.7, ϕX (x) belongs to the range of CX t X t for x ∈X , and CX t X t is injective. Together,

these two conditions ensure that

µ
reg
X t+1|y1:t

= (C †
X t X t

C ∗
X t+1 X t

)∗µreg
X t|y1:t

=CX t+1 X tC
−1
X t X t

µ
reg
X t|y1:t

.

Let h := (CX t X t )
−1µ

reg
X t|y1:t

, then there exists a β ∈ RK such that h = Ψβ+ h⊥ where h⊥ is

orthogonal to spanΨ. It is straightforward to see that CX t X t h =µreg
X t|y1:t

. Expanding the left-hand

side gives

CX t X t h =CX t X t (Ψβ+h⊥)=Ψdiag
(
πQ t−1)

ΨTΨβ,

and thus Ψdiag
(
πQ t−1)

ΨTΨβ =Ψαt. Left-multiplying by ΨT and noting that ΨTΨ = IK , the

K ×K identity matrix, we obtain

β= (diag
(
πQ t−1)

)−1αt.
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Recall that µX t+1|y1:t =CX t+1 X t h, and thus

µ
reg
X t+1|y1:t

=CX t+1 X t h

=ΨQT diag
(
πQ t−1)

ΨTΨβ

=ΨQT diag
(
πQ t−1)

(diag
(
πQ t−1)

)−1αt

=ΨQTαt,

where the final line uses the fact that πQ t−1 =π under Assumption 3.3, and diag(π) is invertible

under Assumption 3.2. ■

We now show how the update step, Equation (3.3), can be computed using the model parame-

ters. We start by developing expressions for the regularized cross-covariance operators C
π,reg
X t+1Yt+1

and C
π,reg
Yt+1Yt+1

in terms of the model parameters and the embedded prior µreg
X t|y1:t

.

Lemma 3.9. Suppose that µreg
X t|y1:t

= Ψαt for some αt ∈ RK , and let C
π,reg
X t+1Yt+1

and C
π,reg
X t+1Yt+1

be

defined as in Equations (3.4) and (3.5). Then

C
π,reg
X t+1Yt+1

=
K∑

i=1
µi,t+1ϕX (i)⊗E[φY (Yt+1)|X t+1 = i]=ΨΛt+1OT

2

C
π,reg
Yt+1Yt+1

=
K∑

i=1
µi,t+1E[φY (Yt+1)|X t+1 = i]⊗E[φY (Yt+1)|X t+1 = i]=O2Λ

t+1OT
2 ,

where Λt+1 := diag
(
µt+1

)
, and under Assumptions 3.2 and 3.3 the shared parameters µt+1 ∈RK

can be expressed

µt+1 =QTαt.

Proof. The regularized cross-covariance operator is defined as

C
π,reg
X t+1Yt+1

:= (CX t+1 X t+1)†(C ∗
X t+1Yt+1 X t+1

)∗µreg
X t+1|y1:t

.

It follows from Lemma 3.7 that the cross-covariance operator CX t+1 X t+1 is injective and by defini-

tion ϕX (x) ∈HX for all x ∈X , and thus

C
π,reg
X t+1Yt+1

= (CX t+1 X t+1)†(C ∗
X t+1Yt+1 X t+1

)∗µreg
X t+1|y1:t

=CX t+1Yt+1 X t+1(CX t+1 X t+1)−1µ
reg
X t+1|y1:t

.

Let h := (CX t+1 X t+1)−1µX t+1|y1:t =Ψβ+h⊥, for some β ∈RK and h⊥ orthogonal to spanΨ. Then

CX t+1 X t+1 h =CX t+1 X t+1(Ψβ+h⊥)

=Ψdiag
(
πQ t)ΨTΨβ,

which is equal to µX t+1|y1:t = ΨQTαt by Lemma 3.8. Left-multiplying by ΨT and noting that

ΨTΨ= IK , the K ×K identity matrix, we find

β= (diag
(
πQ t))−1QTαt.
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It can be shown that µt+1 = diag
(
πQ t)β, and hence

µt+1 = diag
(
πQ t) (diag

(
πQ t))−1QTαt =QTαt,

where the final equality follows from the fact that πQ t−1 =π under Assumption 3.3, and diag(π)
is invertible under Assumption 3.2. To conclude we note that C

π,reg
X t+1Yt+1

and C
π,reg
Yt+1Yt+1

share the

same coefficients. ■

The following lemma completes the use of kernel Bayes’ rule by expressing the embedded

updated filtering distribution in terms of the model parameters, and providing an update rule for

the weights of µreg
X t+1|y1:(t+1)

.

Lemma 3.10. Let µt+1 denote the coefficients of C
π,reg
Yt+1Yt+1

and C
π,reg
X t+1Yt+1

, then under Assumptions 3.1

and 3.4, µreg
X t+1|y1:(t+1)

=Ψαt+1 where the coefficients αt+1 ∈RK are given by

(3.7) αt+1 =Λt+1OT
2 O2(Λt+1OT

2 O2 +λIK )−1(OT
2 O2)−1OT

2φY (yt+1),

where Λt+1 := diag
(
µt+1

)
.

Proof. Recall that µreg
X t+1|y1:(t+1)

=C
π,reg
X t+1Yt+1

(C π,reg
Yt+1Yt+1

+λIH ⊗2
Y

)−1φY (yt+1), and define the quantity

h := (C π,reg
Yt+1Yt+1

+λIH ⊗2
Y

)−1φY (yt+1) = O2β+h⊥, for β ∈ RK and h⊥ orthogonal to span(O2). Then

using the representation of C
π,reg
Yt+1Yt+1

from Lemma 3.9, we have

(C π,reg
Yt+1Yt+1

+λIH ⊗2
Y

)h = (C π,reg
Yt+1Yt+1

+λIH ⊗2
Y

)(O2β+h⊥)

= (O2Λ
t+1OT

2 +λIH ⊗2
Y

)(O2β+h⊥)

=O2(Λt+1OT
2 O2 +λIK )β+λh⊥,

which is equal to φY (yt+1). Hence, left-multiplying by OT
2 and noting that OT

2 O2 is invertible by

Assumptions 3.1 and 3.4, we have β= (Λt+1OT
2 O2 +λIK )−1(OT

2 O2)−1OT
2φY (yt+1), and therefore

µ
reg
X t+1|y1:(t+1)

=C
π,reg
X t+1Yt+1

h

=ΨΛt+1OT
2 O2β

=ΨΛt+1OT
2 O2(Λt+1OT

2 O2 +λIK )−1(OT
2 O2)−1OT

2φY (yt+1).

Finally we conclude that µreg
X t+1|y1:(t+1)

=Ψαt+1 where

αt+1 =Λt+1OT
2 O2(Λt+1OT

2 O2 +λIK )−1(OT
2 O2)−1OT

2φY (yt+1).

■
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3.4.2.3 Practical implementation

We now combine the above lemmas to provide a set of recursive equations allowing for inference

in the filtering problem. As one would do in a probabilistic setting, we compute the filtering dis-

tributions via prediction and update steps described by Equations (3.2) and (3.3), and implement

these steps in the RKHS via the recursive equations given in Equations (3.6) and (3.7).

We sequentially estimate the embedding of X t|y1:t for t ≥ 1. We initialize the procedure by

estimating µreg
X1|y1

=CX1Y1(CY1Y1 +λIH ⊗2
Y

)−1φY (y1), which corresponds to computing the weight

vector α1 = diag(π)OT
2 O2(diag(π)OT

2 O2 +λIK )−1OT
2φY (y1). The procedure is summarized as

α1 = diag(π)OT
2 O2(diag(π)OT

2 O2 +λIK )−1OT
2φY (y1)

µt+1 =QTαt

αt+1 =Λt+1OT
2 O2(Λt+1OT

2 O2 +λIK )−1(OT
2 O2)−1OT

2φY (yt+1).

At time point t we have µX t|y1:t =Ψαt, and recall that when the kernel on X is the Kronecker-

delta kernel we have µX t|y1:t (x)= E[δ(X t, x)|y1:t]=P(X t = x|y1:t). Hence, given observations y1:t we

can predict the hidden state X t as X̂ t = argmaxx∈X µ̂
reg
X t|y1:t

(x).

The alternative kernel Bayes’ rule described above avoids the typical O(p3) computational

complexity typically required in kernel methods — each iteration of the above filtering procedure

costs O(K3) and it is typically assumed that K ≪ p. Compared to using the forward-backward

algorithm in Section 3.4.1, this approach has the added benefit that any characteristic kernel on

Y can be used.

A practical implementation of the algorithm is described in Algorithm 2. To simplify the

presentation we define B̂ = ŴD̂ΘL̂ ∈Rn×K so that Ô2 =Φ3B̂.

Algorithm 2 Filtering via the alternative KBR
Input: Estimated HMM parameters (Ô2 =Φ3B̂,Q̂, π̂), regularization parameter λ> 0, obser-
vations y1:p.
Output: Filtering predictions (X̂ t)

p
t=1.

1: Compute N̂2 := B̂TK3B̂
2: Compute N̂(y) := B̂TΦ3(y)
3: Initialize α̂1 = diag(π̂) N̂2(diag(π̂) N̂2 +λIK )−1N̂(y1)
4: for t = 1 to p−1 do
5: Compute µ̂t+1 = Q̂Tα̂t, set Λ̂t+1 = diag

(
µ̂t+1

)
6: Update α̂t+1 = Λ̂t+1N̂2(Λ̂t+1N̂2 +λIK )−1N̂−1

2 N̂(yt+1)
7: Predict X̂ t+1 = argmaxx∈X µ̂

reg
X t+1|y1:t+1

(x)=Ψ(x)α̂t+1
8: end for

3.5 Order estimation

In this section we provide a consistent estimator of the HMM order using kernel mean embeddings.

Consistent order estimation for the nonparametric method proposed by De Castro et al. [2017]
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was studied in Lehéricy [2019], and in the following we repeat their analysis adapted to our

setting. Lehéricy [2019]’s consistency result demonstrates a trade-off between the approximation

complexity and the sample size, whereas our order estimator does not have such a trade-off. The

consistency of our estimator depends only on the transition matrix of the hidden process.

The estimator is motivated by the following simple observation. It is easily shown that (as in

the proof of Theorem 3.1)

(3.8) C1,2 =O2 diag(π)QOT
2 ,

and hence under Assumptions 3.1 to 3.4, the cross-covariance operator C1,2 has rank K .

Hence, by studying the singular values of the empirical cross-covariance operator we may

be able to infer K . The empirical cross-covariance operator Ĉ1,2 approximates the population

version C1,2, and given n samples the empirical operator will have n singular values which

decay towards zero. Equation (3.8) hints that the singular values of C1,2 are closely related to

the rank of the transition matrix Q and the linear independence of the observation densities.

When the transition matrix is close to not being full rank, several of the singular values of C1,2

shrink towards zero, making them difficult to differentiate from the noisy singular values of the

empirical operator Ĉ1,2.

We present the main consistency result below. In the following lemma we denote by | · | the

number of elements in a set and by σ1(A)≥σ2(A)≥ ·· · the singular values of the operator A.

Theorem 3.2 (Order estimator consistency). Let K̂(C)= |{i ≥ 1 |σi(Ĉ1,2)> C
√

log(n)/n}|. Under

Assumptions 3.1 to 3.4 there exists C0 = C0(Q,k) and n0 = n0(Q,k,O2) such that for all C ≥ C0

and n ≥ n0C2(1+ log(C)), P(K̂(C) ̸= K)≤ n−2, such that K̂(C)→ K almost surely.

A data-driven estimator. The consistency result states that our order estimator is consistent

almost surely for any C larger than some C0 which depends on the properties of the underlying

Markov chain. Choosing an appropriate C can be difficult in practice, and hence we propose

a data-driven estimator of the HMM order. Our estimator is motivated by the fact that if our

assumptions hold, the leading K singular values of the empirical cross-covariance operator should

be significantly larger than the remaining n−K noisy singular values which decrease towards

zero. Thus, we compute the leading K̂max ≥ 1 singular values of the empirical cross-covariance

operator Ĉ1,3 and search for an ‘elbow’ in the sequence of singular values. We use the Kneedle

algorithm [Satopaa et al., 2011] to determine the point of maximum curvature in the sequence.

This type of heuristic is widely-used in statistical techniques which analyze eigenvalues, such as

principle component analysis.

3.5.1 Proof of Theorem 3.2

To prove Theorem 3.2, we first derive a set of concentration inequalities for the cross-covariance

operators. Consider consecutive observations of the hidden Markov chain Zt := (Yt,Yt+1,Yt+2), for
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1≤ t ≤ n which satifies Assumptions 3.2 to 3.4 . We adapt the proof of Lemma 27 of De Castro

et al. [2017] and use results from Paulin [2015].

Lemma 3.11 (Concentration inequalities). There exists a constant C⋆ which depends on the

transition matrix Q such that for any n and u > 0, for Ak the bound of the kernel on Y such that

supy∈Y k(y, y)≤ Ak,

P

(
∥µ̂1 −µ1∥HY

≥ C⋆
A1/2

kp
n

(1+u)

)
≤ exp

(−u2)
P

(
∥Ĉ1,3 −C1,3∥H ⊗2

Y
≥ C⋆ Akp

n
(1+u)

)
≤ exp

(−u2)
P

(
∥Ĉ1,2,3 −C1,2,3∥H ⊗3

Y
≥ C⋆

A3/2
kp
n

(1+u)

)
≤ exp

(−u2)
.

Proof. We first define the pseudo-spectral gap of the hidden process which applies to non-

reversible Markov chains, and the mixing time [Paulin, 2015]. Let Gps denote the pseudo-spectral

gap of the hidden process (Xn)n≥1 defined as

Gps =max
k≥1

{
G

(
diag(π)−1 (QT)k diag(π)Qk

)
/k

}
,

where G(A) denotes the spectral gap of the transition matrix A defined to be

G(A)=
1−max{λ |λ ̸= 1}, if eigenvalue 1 has multiplicity 1

0, otherwise

and Tmix denotes the mixing time of the hidden process which we define to be

Tmix =
1+3log(2)− log(πmin)

Gps
.

We derive the concentration inequality for ∥Ĉ1,3 −C1,3∥H ⊗2
Y

.

Set ζ1,3(Z1, . . . , Zn) = ∥Ĉ1,3(Z1, . . . , Zn)−C1,3∥H ⊗2
Y

, where Ĉ1,3(Z1, . . . , Zn) is used to highlight

the dependence of the estimator Ĉ1,3 on the sample (Z1, . . . , Zn). To proceed via McDiarmid’s

inequality, we compute the difference upon changing the i-th coordinate,

ci := sup
zi ,z′i∈Y 3

∣∣ζ1,3(z1, . . . , zi, . . . , zn)−ζ1,3(z1, . . . , z′i, . . . , zn)
∣∣

which by the inverse triangle inequality is bounded as follows

ci ≤ sup
zi ,z′i∈Y 3

∥Ĉ1,3(z1, . . . , zi, . . . , zn)− Ĉ1,3(z1, . . . , z′i, . . . , zn)∥H ⊗2
Y

.

We then obtain

ci ≤ 1
n

sup
zi ,z′i∈Y 3

∥φY (yi)⊗φY (yi+2)−φY (y′i)⊗φY (y′i+2)∥H ⊗2
Y

.
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The kernel on HY is bounded by Ak such that supy∈Y k(y, y)≤ Ak, and thus we have for any y, y′ ∈
Y , ∥φY (y)⊗φY (y′)∥H ⊗2

Y
= ∥φY (y)∥HY

∥φY (y′)∥HY
=√

k(y, y)k(y′, y′)≤ Ak. Then ci ≤ 2n−1 Ak, and

hence ∥c∥2
2 ≤ 4A2

kn−1. McDiarmid’s inequality then yields for any u > 0 (using Equations 2.8 and

2.9 of Paulin [2015]),

P
(
∥Ĉ1,3 −C1,3∥H ⊗2

Y
≥ E

[
∥Ĉ1,3 −C1,3∥H ⊗2

Y

]
+u

)
≤ exp

(
− nu2

18Tmix A2
k

)
.

Lemma 28 of De Castro et al. [2017] can be rewritten to state that

E

[
n∑

i=1

1
n

[
(φY (Yi)⊗φY (Yi+2))−C1,3

]]2

≤ 4
nGps

E[(φY (Y1)⊗φY (Y3))−C1,3]2,

and it follows that E
[
∥Ĉ1,3 −C1,3∥H ⊗2

Y

]
≤

( 4A2
k

nGps

)1/2
. Combining the above, we have for any u > 0,

P

∥Ĉ1,3 −C1,3∥H ⊗2
Y

≥
(

4A2
k

nGps

)1/2

+u

≤ exp

(
− nu2

18Tmix A2
k

)
.

Let u′ :=
(

nu2

18Tmix A2
k

)1/2
, then u2 = 18Tmix A2

k
nu2 and Tmix = κ2/πmin for κ=

√
1+ log(8/π⋆min). Then we

have the following concentration inequality for any u′ > 0

(3.9) P

∥Ĉ1,3 −C1,3∥H ⊗2
Y

≥
(

4A2
k

nGps

)1/2

(1+
p

4.5u′κ)

≤ exp
(−(u′)2)

.

As u′ > 0 and κ> 1, the above implies that

(3.10) P

(
∥Ĉ1,3 −C1,3∥H ⊗2

Y
≥ C⋆ Akp

n
(1+u′)

)
≤ exp

(−(u′)2)
,

where C⋆ =√
4/Gps. The other inequalities follow almost identically. ■

Comparing the concentration inequalities given in Lemma 3.11 to those in Appendix E of

De Castro et al. [2017], we see that when embedding consecutive observations the existing method

possesses a trade-off between the approximation complexity and the sample size. Their term

which grows with approximation complexity is replaced by Ak in our setting, which is typically

equal to 1 for popular kernels such as the Gaussian and Laplace kernels.

The following lemma describes an inequality similar to Weyl’s inequality for compact operators

on separable Hilbert spaces.

Lemma 3.12 (Gohberg et al. [1990, Corollary 1.6]). Let H be a separable Hilbert space, and let A

and B be compact operators on H. Then for all i ≥ 1 we have

|σi(A)−σi(B)| ≤σ1(A−B).
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We now prove the consistency of the order estimator by adapting the proof of Lehéricy [2019,

Theorem 13].

Proof of Theorem 3.2. For any Hilbert-Schmidt operator A, we have ∥A∥2
HS = ∑

i≥1σi(A)2.

Hence σ1(A)≤ ∥A∥HS. Under Assumption 1.1, the cross-covariance operator C1,2 and its empirical

estimate Ĉ1,2 are well defined as Hilbert-Schmidt operators. Setting u =√
2log(n), Lemma 3.11

implies that with probability 1−n2,

σ1(C1,2 − Ĉ1,2)≤ C

√
log(n)

n
,

for C ≥ C0 := 2
p

2AkC⋆. It follows from Lemma 3.12 that with probability at least 1−n−2, for

all 1 ≤ i ≤ K , σi(Ĉ1,2) > σK (C1,2)−C
√

log(n)/n, and for all i > K , σi(Ĉ1,2) < C
√

log(n)/n. Note

that if n and C are such that 2C
√

log(n)/n < σK (C1,2), then the number of singular values

greater than C
√

log(n)/n is equal to K⋆ with probability at least 1−n−2. It can be shown that for

n ≥ n0C2(1+ log(C)), where n0 = 12/σK (C1,2)2, this condition is satisfied. ■

3.6 Experiments

In this section we apply our method to several simulated and synthetic datasets. We evaluate the

method’s performance in recovering the model parameters, hidden state estimation in the filtering

problem, and order estimation. We analyze the performance as the order of the underlying HMM

increases, and also on a synthetic HMM created using the MNIST data set [LeCun et al., 2010].

Metrics. As the labels are unobserved, the HMM parameters are only identifiable up to

permutations of the hidden state labels. Therefore, in the following we compute errors using

permutation invariant measures. Let S (X ) denote the set of permutations of the set X , and let

τ ∈S (X ) be a permutation of the hidden state labels. Then we define the permuted estimators

Q̂τ and π̂τ to be [Q̂τ]i, j = [Q̂]τ(i),τ( j) and [π̂τ]i = [π̂]τ(i) for i, j ∈ {1, . . . ,K}. We then compute the total

mean squared error (TMSE) in estimating the HMM parameters as

(3.11) TMSE((Q,π), (Q̂, π̂)) := inf
τ∈S (X )

(∥π− π̂τ∥2
2 +∥Q− Q̂τ∥2

F
)
,

where ∥ ·∥F denotes the Frobenius norm. Similarly, let X̂ t denote an estimated hidden state at

time t ≥ 1 and let X̂τ,t denote the estimated hidden state when the hidden labels are permuted

by τ, such that if X̂ t = i, then X̂τ,t = τ(i), for i ∈X . Then to compute the accuracy in predicting

hidden states in the filtering problem, we use the permutation-invariant accuracy measure

(3.12) Accuracy(X̂1:p, X1:p) := sup
τ∈S (X )

(
1
p

p∑
t=1

1X̂τ,t=X t

)
,

where 1x denotes the indicator function which is equal to 1 when x is true and 0 otherwise.

69



CHAPTER 3. HIDDEN MARKOV MODELS

3.6.1 Simulated and synthetic datasets

Let fα,β := f (x;α,β) denote the probability density function of a beta distribution on [0,1] with

shape parameters α,β> 0, and let gµ,σ2 := f (x;µ,σ2) denote the probability density function of a

Gaussian distribution with mean µ and variance σ2 for µ ∈R and σ> 0. The simulated datasets

we consider are described by the HMM (F,Q,π), where the model parameters are as follows

Model 12.

(3.13) F =
(
f2,5, f4,3

)
, Q =

(
0.4 0.6

0.8 0.2

)
, π=

(
4
7

3
7

)
Model 13.

(3.14) F =
(
f2,5, f4,2, f4,4

)
, Q =


0.8 0.1 0.1

0.2 0.7 0.1

0.07 0.13 0.8

 , π=
(

47
120

11
40

1
3

)

Model 14.

(3.15) F =
(
f0.5,0.5, f2,2

)
, Q =

(
0.1 0.9

0.7 0.3

)
, π=

(
7

16
9

16

)
Model 12 provides a simple example where the Markov chain has good mixing properties,

and the observation densities are well separated. This model was considered in De Castro et al.

[2017], where it is demonstrated that their method performs well. Model 13 provides an example

where the observation densities are not well separated, which may lead to poor performance as

the observation densities may not be linearly independent, violating Assumption 3.4. This setting

was considered in Lehéricy [2019] as an example in which the spectral method of De Castro et al.

[2017] fails to recover the order of the HMM. Model 14 provides an example where one of the

observation densities is hard to estimate as it is unbounded near the closure of the domain. In this

setting we expect our method which avoids density estimation to outperform both the existing

spectral method and the kernel method where filtering is performed via density estimation and

the forward-backward procedure.

We also generate a synthetic dataset using a hidden Markov model and the MNIST dataset.

The MNIST dataset [LeCun et al., 2010] is a collection of handwritten digits, size-normalized

and centred in a 28×28 grayscale image. The observations are the pixel intensities of the image,

making the observation space [0,255]28×28, accompanied with their label which takes values

between 0 and 9. We flatten the observations into vectors and scale each observation to have

mean zero and standard variance so that the observation space is Y = R784. In the following

we define a hidden Markov model using the MNIST data set by defining the latent space to

be a subset of possible digits, X ⊂ {0, . . . ,9}, and sampling Yt|X t = x uniformly from the set of

observations with label x ∈ X . To define the HMM we must also define the transition matrix

and stationary distribution. We consider the following models, where the transition matrices are

chosen so that the Markov chain has good mixing properties,
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Model 15. In this case K = 2 and X = {2,7}. We specify

(3.16) Q =
(
0.3 0.7

0.8 0.2

)
, π≈

(
0.53 0.47

)
Model 16. In this case K = 3 and X = {2,4,7}. We specify

(3.17) Q =


0.1 0.3 0.6

0.45 0.25 0.3

0.4 0.6 0

 , π≈
(
0.32 0.37 0.31

)

Model 17. In this case K = 4 and X = {1,2,4,7}. We specify

(3.18) Q =


0.1 0.3 0.2 0.4

0.4 0.2 0.3 0.1

0.45 0.3 0 0.25

0.15 0.3 0.35 0.2

 , π≈
(
0.27 0.27 0.22 0.24

)

This setting provides an interesting example where a parametric hidden Markov model is

hard to specify, and we show that impressive performance can be obtained in a complicated

unsupervised learning problem.

3.6.2 An example

We start with an illustrative example using simulated data generated from Model 12 to estimate

the observation densities using the kernel method proposed in Section 3.3 and the density

estimator defined in Chapter 2. We sample a sequence of 5000 observations and estimate the

HMM parameters using Algorithm 1. We use a Gaussian kernel function and use the median

heuristic to choose the kernel hyperparameter. Given the estimated embedded observation

distributions, we estimate the underlying densities with the kernel hyperparameter 0.5 times the

median heuristic. The true densities and their estimates are shown in Figure 3.1. No parameter

tuning is performed.

3.6.3 Filtering

In this section we assess the performance of our method in estimating the parameters of a hidden

Markov model and hidden state estimation for the filtering problem. We assess performance by

simulating data from Models 12 to 14, and compare our method’s performance to that of the

nonparametric spectral HMM of De Castro et al. [2017].

In the following experiments we sample a sequence of n observations from Models 12 to 14,

for n varying between 500 and 20000, and use Algorithm 1 to estimate the hidden Markov model

parameters. We use the Gaussian kernel function on Y and set the kernel hyperparameter using

the median heuristic. We then sample an additional sequence of p = 1000 observations, and
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Figure 3.1: HMM observation densities and their estimates. Observation density 1 and 2 are
in black and correspond to Beta distributions with parameters (2,5) and (4,3) respectively. The
kernel estimators overlaid in blue are estimated from the estimated embeddings output from
Algorithm 1, using 5000 observations and the Gaussian kernel function with hyperparameter
chosen via the median heuristic.

use the two filtering procedures discussed in Section 3.4 to predict the hidden states from the

estimated posterior distributions. We compute the total mean squared error in estimating the

HMM parameters Q and π using Equation (3.11), and evaluate the accuracy in predicting hidden

states in the filtering problem using Equation (3.12). We repeat this procedure 10 times and

average the results which can be seen in Figures 3.2 and 3.3, where KernelHMM is used to denote

our method, and ProjHMM is used to denote the nonparametric method proposed by De Castro

et al. [2017].

For the implementation of the existing nonparametric method, we use a trigonometric basis,

and fit models for basis dimensions M = 5, . . . ,20. For each n and M we average the TMSE and

accuracy over 10 runs, and to avoid tuning the parameter M we keep the model which produces

the best performance on the test set. Hence, our experiments correspond to the best-case scenario

for the existing nonparametric method. Whilst the kernel method only uses a maximum of 20000

observations, we fit the existing method for up to 200000 observations to demonstrate that

the existing method can achieve similar results to our method, however more observations are

required. The computational cost of the kernel method scales quadratically with n, and hence we

limit our analysis of the method to 20000 observations.

In Figure 3.2, we see that for Model 12 our parameter estimators outperform the existing

method, and for the existing method to obtain similar performance approximately 10 times more

data is required. Both methods perform poorly for data generated from Model 13, as expected,
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Figure 3.2: The total mean squared error in estimating HMM parameters Q and π for both the
proposed method, KernelHMM, and the existing nonparametric method, ProjHMM, proposed by
De Castro et al. [2017]. The error is averaged over 10 runs for a varying number of observations
(n), and the TMSE is plot on a log10 scale. The figure demonstrates the performance of our method
(KernelHMM) and the comparative method (ProjHMM) when applied to different simulated data
sets.

as the model violated the model assumptions. Both methods perform similarly for Model 14,

however our method obtains the best performance as n increases beyond 10000.

In Figure 3.3 we use KernelHMM + FB to denote the kernel algorithm followed by the forwards

procedure and KernelHMM + KBR to denote the kernel algorithm followed by the alternative

kernel Bayes’ rule procedure. We refer to the existing nonparametric method and the forwards

procedure as ProjHMM + FB. We see that the kernel method followed by the kernel Bayes’ rule

consistently produces the best accuracy, and we believe this is because it avoids density estimation.

Our parameter estimates input to the forward algorithm generally outperform the existing

method.

3.6.4 Order estimation

In this section we evaluate the performance of the order estimator proposed in Section 3.5 for

Models 12 to 14. We use a Gaussian kernel function, with a fixed hyperparameter across all exper-

iments. We generate n observations from the model, for n varying between 500 and 10000, and

estimate the order of the HMM by the following procedure, motivated by Theorem 3.2. Assuming

that K ≪ n, we define a positive integer K̂max and compute the leading K̂max singular values

of the empirical cross-covariance operator Ĉ1,2 via a truncated singular value decomposition.

We then estimate K to be K̂ = |{i ≥ 1 |σi(Ĉ1,2) > C
√

log(n)/n}| for some C > 0, where σi denotes
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Figure 3.3: The filtering accuracy of the proposed method, KernelHMM, and the existing nonpara-
metric method, ProjHMM, proposed by De Castro et al. [2017]. The accuracy is computed over a
test set of p = 1000 observations and is averaged over 10 runs for a varying number of training
observations (n). The accuracy is plot on a log10 scale. The figure demonstrates the filtering
performance of our method (KernelHMM) and the comparative method (ProjHMM) when applied
to different simulated data sets.

the i-th singular value. We repeat the experiment 10 times for each n and report the accuracy

over n for several values of C in Figure 3.4. We see that for a large enough value of C, the order

estimator correctly estimates the order almost surely as n grows.

As an appropriate value of C depends on the underlying Markov chain, we also evaluate the

performance of the data-driven estimator proposed in Section 3.5. We compute the leading 100

singular values of the empirical operator and use the Kneedle algorithm to determine the point

of maximum curvature in the sequence of singular values. Our order estimate is the point of

maximum curvature. As in the previous experiment, we predict the HMM order for varying n

between 50 and 5000, and repeat the experiment 10 times. The order estimation accuracy for

this data-driven estimator can be seen in Figure 3.5. We see that for each model the accuracy

increases over n, although not monotonically. Note that for Model 13, Lehéricy [2019] report that

a similar order estimator using the existing nonparametric method of De Castro et al. [2017] has

an accuracy of 0 for n = 7500,19998,30000, and 0.1 for n = 49998. Model 13 has three states and

thus Figure 3.5 shows that our estimator does significantly better than guessing.

Using the truncated SVD, both order estimation procedures have cost O(K̂maxn2).
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Figure 3.4: The accuracy in estimating the HMM order using the order estimator suggested in
Theorem 3.2, for varying values of C and an increasing number of samples n.
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Figure 3.5: The accuracy in estimating the HMM order using the data-driven order estimator
proposed in Section 3.5, for an increasing number of samples n.
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3.6.5 MNIST HMM

In this section we apply our method to the synthetic MNIST HMM datasets defined in Models 15

to 17 for a varying number of observations. The observations are 28×28 pixel images, and hence

the observation space is high-dimensional: Y =R784. We place a Gaussian kernel function on the

observation space, and define the bandwidth to be γ := αγmed where γmed denotes the median

heuristic, and α is a parameter to be tuned. For each dataset (a combination of K ∈ {2,3,4} and n ∈
{5000,10000,20000}) we estimate the parameters of a nonparametric HMM following Algorithm 1,

for α= 1,2, . . . ,10. As the simultaneous diagonalization can be sensitive to perturbations when K

is large, we fit the model 5 times. To choose which model to keep, we use a validation dataset of

1000 observations, and consider two possible objectives to minimize over the validation set, one

which retains the unsupervised nature of the problem, and one which assumes access to labelled

data for the validation set.

In the unsupervised approach, we assume that we only have access to observations. We use

the estimated model to iteratively predict the observation at time t+1 given observations 1 to t

for t = 1, . . . ,999, and measure performance over the validation set by the mean squared error

obtained in the prediction task. We then keep the model which minimizes the MSE and evaluate

its performance in the filtering task over a test set of 1000 observations. While performance in

the prediction task and filtering tasks are correlated, an increase in performance in prediction

may not necessarily correspond to an increase in performance in filtering. In the semi-supervised

approach, we assume that the validation set has access to the hidden labels. In this case, we use

the validation set to directly evaluate the model’s performance in the filtering problem. As in the

unsupervised scenario, we evaluate performance in the filtering problem over the test set, and

present the results in Table 3.1.

Our method performs well in both the unsupervised and semi-supervised settings. In both

cases, for K = 2 and K = 3 our method has an accuracy of at least 0.9 for each value of n tested.

When K = 4 our method’s performance is not as impressive, particularly for n = 5000, although

we emphasize that in this setting a naïve estimator will achieve 0.25 accuracy whereas ours

obtains 0.434 and 0.608 in the unsupervised and semi-supervised settings respectively. Note that

when K = 4, performance decreases as n grows from n = 10000 to n = 20000 in the unsupervised

setting; as described above, this is because the model is not tuned using labelled observations

but rather via an auxiliary problem (the observation prediction problem). In the semi-supervised

setting wherein the model is tuned using labelled samples, the performance over the test set

consistently improves over n when K = 4.

We plot the expected value of Yt|X t = x for x ∈ {2,7} and x ∈ {2,4,7} in Figures 3.6 and 3.7, in

addition to several observations. This represents the ‘average’ observed image for a given hidden

state captured by the estimated kernel mean embeddings.
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Figure 3.6: The first two rows contain samples of Yt given X t = x for x = 2,7. The final row
shows the expected value of Y2|X2 = x, for x ∈ {2,7}, obtained from the estimated embedding of
the observation distribution estimated by applying Algorithm 1 to 20000 observations from the
MNIST HMM data generated from Model 15.
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Figure 3.7: The first two rows contain samples of Yt given X t = x for x = 2,4,7. The final row
shows the expected value of Y2|X2 = x, for x ∈ {2,4,7}, obtained from the estimated embedding of
the observation distribution estimated by applying Algorithm 1 to 20000 observations from the
MNIST HMM data generated from Model 16.
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Unsupervised Semi-supervised

K / n 5000 10000 20000 5000 10000 20000

2 0.942 0.967 0.960 0.945 0.969 0.961
3 0.910 0.914 0.921 0.907 0.913 0.921
4 0.434 0.656 0.477 0.608 0.752 0.786

Table 3.1: Accuracy in predicting the hidden states in the filtering problem for the MNIST data
sets. The unsupervised approach performs model selection by minimizing MSE in predicting
observations on a validation data set, whereas the semi-supervised approach performs model
selection by maximizing accuracy in predicting hidden states on a validation data set which has
labelled data.

Analysis of the estimated embeddings. Our method demonstrates impressive performance

when applied to the MNIST HMM dataset, as shown above. The output of Algorithm 1 is a

set of K kernel mean embeddings, characterized by a set of K weight vectors which assign a

weight to each observation in the training data. We analyze the estimated embeddings for the

models obtained when K = 2 and K = 3 with n = 20000, by studying the weight vectors and using

the visual nature of the MNIST HMM dataset. Our aim is to gain intuition on the information

captured by the kernel mean embeddings.

Let B̂ be the n×K matrix of estimated embedding weights, with the i-th column representing

the weight vector for the estimated embedding of Y |X = i. We can express B̂ as [b̂1, . . . , b̂K ], where

b̂i is the n-element column vector corresponding to the embedding of Y |X = i, for i ∈ {1, . . . ,K}.

We first consider the estimated embeddings obtained for K = 2 and n = 20000. Figure 3.8

presents a colour-coded histogram of b̂1 and b̂2, where the colour corresponds to a specific label

for the observed data. The figure shows that b̂1 assigns a positive weight to samples with label 7,

and a negative weight to samples with label 2, whereas b̂2 does the opposite by assigning positive

weight to samples with label 2 and negative weight to samples with label 7.

This example provides some intuition behind the density estimator proposed in Chapter 2.

Recall that the density estimator is a linear combination of kernel functions with weights given

by the estimated kernel mean embedding, and consider the density estimator with weights b̂1. If

the density estimator is evaluated at a sample with label 2, then the kernel function will take a

large value for components associated with observations with label 2, and these weights will be

positive. Hence the density estimator with weights b̂1 will take a large value when evaluated at

a sample with label 2.

Figure 3.8 highlights that the weights have a strong discriminative ability. The weights have

a bimodal distribution where the modes differentiate the samples according to their unobserved

labels, however several weights take values between the modes. To visualize which observations

the embeddings strongly and weakly discriminate, we divide the weights b̂1 and b̂2 into 9 bins.

We visualize 25 unique observations associated with weights taking values in bins 1, 5, and 9 in
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Figure 3.9. Observations associated with weights taking values in bins 1 and 9 are observations

the embedding is most certain of, and observations associated with weights belonging to bin 5

represent the observations that the embedding is uncertain of. Several observations belonging to

the fifth bins are hard to distinguish.

We now consider the estimated embeddings obtained for K = 3 and n = 20000. A preliminary

analysis of the histograms of the weight vectors b̂1, b̂2, and b̂3 shown in Figure 3.10 shows that

this setting is more nuanced than the case where K = 2. As there are more than 2 classes, the

embeddings cannot simply assign positive weights to one class and negative weights to another

class. However, it is clear that the weights have discriminative power. Figure 3.11 shows a matrix

of scatterplots for a sample of 3000 weights. The figure emphasizes that when the rows of B̂ are

treated as elements in R3, the weights are capable of differentiating between observations with

labels 2, 4, and 7. To substantiate this claim, we divide the 20000 observations into a training

set of 14000 observations and a test set of 6000 observations, and fit a k-nearest neighbour

classifier to the weights. The classifier obtains an accuracy of 0.925 over the test data, and thus

the embedding weights effectively differentiate between the three types of observations without

access to the labels. One might consider the observations associated with weights closest to

the centroids of the 3 clusters to be observations which the classifier is most certain of, and in

Figure 3.12 we show the 9 unique observations which are closest to the centroids. On the other

hand, there are several observations where the 3 nearest neighbours of the associated weights

correspond to observations with 3 different labels, and the k-nearest neighbour classifier can only

guess the label of such observations; these observations are those that the embedding weights

cannot discriminate between. We visualize 25 such unique observations in Figure 3.13.

3.7 Comparison to existing methods

The method proposed by De Castro et al. [2017] is similar to ours in that it also projects observa-

tions onto another space and extends the method proposed by Anandkumar et al. [2012]. Hence,

several of our results such as the concentration inequalities in Lemma 3.11 are directly compara-

ble to those of De Castro et al. [2017]. The aforementioned method projects observations onto an

M-dimensional space that is dense in L2, and several of their results demonstrate a trade-off

between sample size n and approximation space dimension M. For example, our concentration

inequalities depend on the RKHS via the bound of the kernel on Y (which is often 1), whereas the

concentration inequalities provided in De Castro et al. [2017] depend on an increasing function of

M. In our experiments, Section 3.6, we found that our method outperforms the existing method

with significantly less data in terms of estimating the HMM parameters and filtering accuracy.

Compared to the existing method, ours has an additional benefit in that direct estimation

of the observation densities can be avoided. The alternative kernel Bayes’ rule proposed in

Section 3.4 allows us to perform inference with the embedded observation distributions, and
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Figure 3.8: Colour-coded histograms of the embedding weights b̂1 and b̂2 obtained by applying
Algorithm 1 to 20000 observations from the MNIST HMM data generated from Model 16. Each
weight corresponds to an observation and the colours indicate the unobserved label associated
with the observation.
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25 observations in bin 1 of b̂1 25 observations in bin 1 of b̂2

25 observations in bin 5 of b̂1 25 observations in bin 5 of b̂2

25 observations in bin 9 of b̂1 25 observations in bin 9 of b̂2

Figure 3.9: 25 unique observations associated with weights in bins 1, 5, and 9 from the estimated
embedding weights b̂1 and b̂2 obtained by applying Algorithm 1 to 20000 observations from the
MNIST HMM data generated from Model 16.
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Figure 3.10: Colour-coded histograms of the embedding weights b̂1 and b̂2 obtained by applying
Algorithm 1 to 20000 observations from the MNIST HMM data generated from Model 16. Each
weight corresponds to an observation and the colours indicate the unobserved label associated
with the observation.

we found in our experiments that this produces the best results. This is not surprising: density

estimation is well-known to be a difficult task, and estimation of kernel mean embeddings is

easier than estimation of the distributions or densities themselves.

Lehéricy [2019] developed an estimator of the HMM order using the HMM parameter estima-

tors proposed by De Castro et al. [2017]. Lehéricy [2019] showed that their order estimator is

dependent upon the linear independence of the observation densities when projected onto the

approximation space. We showed in Section 3.5 that our order estimator depends on the linear

independence of the observation distribution when embedded in the RKHS. For an appropriate

choice of kernel function (such as a characteristic kernel function), the linear independence

of observation distributions is preserved upon embedding the distributions into the RKHS. In

Section 3.6 we saw that our order estimator successfully recovers the HMM order in a setting

where the existing method fails.

An observable operator representation of HMMs was used for estimating discrete HMMs by

Hsu et al. [2012] and continuous HMMs by [Song et al., 2010]. The latter work also uses kernel

mean embeddings, and use m triples of three consecutive observations to learn an observable

operator representation, which given a sequence of observations y1:t allows for the estimation of

the embedding of Yt+1|y1:t. However, their theory shows that their estimate of the embedding of

Yt+1|y1:t worsens as the number of observations y1:t increases. The uniform consistency results

of De Castro et al. [2017] show that this is not the case when parametric and nonparametric

hidden Markov models are estimated. There also exists an additional kernel method which uses

83



CHAPTER 3. HIDDEN MARKOV MODELS

−0.0015

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

−8e−04 −4e−04 0e+00 4e−04

b̂1

b̂ 2

Scatter plot of b̂1 vs. b̂2

−1e−03

−5e−04

0e+00

5e−04

−8e−04 −4e−04 0e+00 4e−04

b̂1

b̂ 3

Scatter plot of b̂1 vs. b̂3

−1e−03

−5e−04

0e+00

5e−04

−0.0015 −0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015

b̂2

b̂ 3

Scatter plot of b̂2 vs. b̂3

Label 2 4 7

Figure 3.11: A matrix of scatterplots for the embedding weights b̂1, b̂2, and b̂3 obtained by
applying Algorithm 1 to 20000 observations from the MNIST HMM data generated from Model 17.

84



3.7. COMPARISON TO EXISTING METHODS

Figure 3.12: 27 unique observations that the embedding weights clearly differentiate. The
observations’ weights are those closest to the centroids determined by a k-nearest neighbours
classifier applied to the matrix of embedding weights, obtained by applying Algorithm 1 to 20000
observations from the MNIST HMM data generated from Model 17.

Figure 3.13: 25 unique observations that the embeddings have difficulty differentiating. For each
image, the associated weights of their three nearest neighbours correspond to three distinct
labels.
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spectral decompositions to learn the parameters of a latent variable model, proposed by Song

et al. [2014]. Our method differs from theirs in terms of the technique used to obtain the spectral

decomposition: ours uses simultaneous diagonalization of several matrices, whilst the other

uses the tensor power method to compute an orthogonal tensor decomposition. The differences

between the two decompositions are discussed in Anandkumar et al. [2014] and Janzamin et al.

[2019].

3.8 Future work

Future research could establish the consistency of the proposed method. The concentration

inequalities derived in Lemma 3.11 provide the first step towards this aim, and a consistency

result may be produced by adapting the consistency results of De Castro et al. [2017]. It is

expected that consistency results can be produced for all estimated HMM parameters Ô2, Q̂, and

π̂.

The alternative kernel Bayes’ rule developed in this chapter is particularly interesting as

it allows for applications of kernel Bayes’ rule where samples are replaced by a model. The

procedure is easily generalized to the setting in which the hidden states take continuous values,

and hence future research could develop theoretical results for this model-based kernel Bayes’

rule. This could enable nonparametric Bayesian inference in models with latent processes. For

example, one could develop nonparametric inference procedures for state-space models where

the latent process is modelled with a parametric model and the observation process is modelled

nonparametrically as is done in the following chapter.

3.9 Conclusion

Hidden Markov models are popular statistical models for modelling time series, which often

employ parametric assumptions that can lead to poor performance when applied to complex prob-

lems. For this reason there has been a surge of interest in nonparametric hidden Markov models,

although it was not known until recently that such models are identifiable. The identifiability

results of Gassiat et al. [2016] led towards a consistent method for estimating a nonparametric

HMM [De Castro et al., 2017]. We have proposed a new method for estimating a nonparametric

HMM using kernel mean embeddings, which is motivated by the identifiability results of Gassiat

et al. [2016], and is shown to outperform the existing method of De Castro et al. [2017].

As the method we propose is closely related to the existing method, several of our results are

directly comparable. Comparison of the concentration inequalities for the estimated embedded

observations reveals that our method overcomes a certain trade-off present in the existing method.

The concentration inequalities derived in Section 3.5 provide the first step towards proving that

our method produces a consistent estimator and further work could prove this.
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The estimated HMM can be used to perform inference, such as in the filtering task, and

we have proposed a novel alternative kernel Bayes’ rule to perform inference without density

estimation. Our experiments show that this approach outperforms the alternative wherein we

estimate the observation densities and use the forward algorithm. We are not aware of any other

method that can perform inference in an HMM without estimating the underlying densities.

Furthermore, our experiments also show that our method outperforms the existing nonparametric

method with an order of magnitude less data. In particular, we found that our order estimator

successfully recovers the HMM order in settings where the existing method fails.

Our experiments also studied the scenario in which the observation space is very high-

dimensional; a setting where specifying a parametric model and estimating the observation

density is very difficult. Our method estimates the embedded observation distributions, which

are a weighted sum of kernels functions over the observations. In our experiments we analyzed

the information captured by the embedding by studying the embedding weights, where we found

that the weight vectors have strong discriminative power in differentiating observations based

on their labels, which were unobserved during training.

To conclude, we have proposed a new nonparametric method for estimating a hidden Markov

model. Our method is motivated by recent identifiability results, and we have shown that it

outperforms an existing related method with far less data. Our proposal of an alternative kernel

Bayes’ rule allows for inference in the HMM without estimating the observation densities, which

further improves performance.
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4
STATE-SPACE MODELS

4.1 Introduction

We develop a nonparametric method for learning the distributions which characterize a state-

space model, whilst making minimal assumptions on the underlying process. The method we

propose relies on two facts. Firstly, without making additional assumptions, the model is non-

identifiable from a sequence of observations: there exist multiple state-space models which

produce the same distribution over the observations. Secondly, the embedding of two consecutive

observations in an RKHS can be decomposed into RKHS embeddings of the observation process

and Markov transition process. The former allows us to fix an invariant distribution of our choice

and sample latent states, and the latter allows us to form an optimization problem that does

not require paired samples, which we use to learn embeddings of the observation distribution

and Markov transition distribution. Hence, whilst the model is non-identifiable without further

assumptions, we can exploit this to learn a state-space representation which adequately models

our observed data.

The method we propose can be applied to problems where it may be difficult to specify a

parametric model. This may be due to a lack of domain expertise, or the non-linear nature of

a system; specifying a parametric model capable of modelling natural phenomena can be very

difficult. There are various problems one may focus on when using state-space models, such as

the filtering, smoothing, and prediction problems. As the model is non-identifiable we focus only

on the prediction problem in which we predict Yt+1 given observations Y1:t for t ≥ 1, and we do

not perform inference on the learned latent process.

Many of the existing nonparametric latent variable models assume that the latent space

takes finitely many values (a hidden Markov model). Generalizing to the continuous state-space

poses significant difficulties, and there are few nonparametric methods in this setting. A popular
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class of models are Gaussian process state-space models [Frigola et al., 2014, Eleftheriadis et al.,

2017], which assume that the underlying system satisfies

X t+1 = f (X t)+ϵ f ,t, Yt+1 = g(X t+1)+ϵg,t,

where f and g are potentially non-linear functions, and ϵ f ,t and ϵg,t are Gaussian noise. The

functions f and g are modelled using Gaussian processes, however learning these functions

is a very difficult task due to the models non-identifiability. One often has to assume that one

function is an identity function, and variational inference is used to estimate the state-space

model. Gassiat et al. [2020] propose two nonparametric methods for state-space models, where it

is assumed that (X t)t≥1 is a stationary Markov chain and Yt = X t +ϵt where ϵt is i.i.d. noise with

unknown distribution. They prove that in this setting nonparametric models are identifiable with

respect to the distribution of the latent variables and the noise. Both of these methods assume

that the relationship between the signal and noise is additive. In comparison, we assume that

the underlying system is time-homogeneous and satisfies

X t+1 = f (X t,Ut), Yt+1 = g(X t+1,Vt),

where Ut and Vt are white noise processes, and f and g are potentially non-linear functions.

We denote by M and O the Markov transition kernel and the observation distribution, and we

aim to estimate the kernel mean embeddings of M and O. Using the estimated kernel mean

embeddings we can estimate their associated densities following Chapter 2, and we can then

conduct inference using a particle filter.

Chapter outline. Section 4.3 develops the theory required to motivate our proposed method:

Section 4.3.1 discuses the non-identifiability of the nonparametric state-space model without

additional assumptions, and Section 4.3.2 shows that the kernel mean embedding of the dis-

tribution of two consecutive observations can be decomposed in terms of various quantities of

interest. Section 4.4 uses our theory to propose a procedure to estimate the embedded state-space

representation. Section 4.5 shows how the estimated model may be used to perform inference in

the prediction problem using the density estimator proposed in Chapter 2 and a particle filter.

Section 3.6 applies the proposed method to several simulated datasets. Section 4.7 discusses

future avenues for research in this setting, and Section 4.8 concludes the chapter.

4.2 Problem formulation

A state-space model is characterized by the Markov transition of the hidden process M, the

observation distribution O, and the invariant distribution of the hidden process π. We refer to the

collection of these quantities, (O, M,π), as the state-space representation. Statistical estimation

of a state-space model revolves around estimating a state-space representation using a sequence
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of observations. In this chapter we develop a nonparametric method to estimate an embedded

state-space representation (UY |X ,UX2|X1 ,π), where UY |X and UX2|X1 denote RKHS embeddings

of O and M respectively.

One may want to perform inference using an estimated model. We propose a method of

performing inference in the prediction task wherein we aim to estimate the next observation Yt+1

given a sequence of observations y1:t for t ≥ 1.

4.3 Theory

4.3.1 Identifiability of state-space models

Throughout this chapter, we use the phrase ‘state-space representation’; by this we mean a

combination of the probability kernels and functions that define the state-space model: the initial

distribution of the latent variables π, the Markov transition kernel M, and the observation

distribution O. The state-space representation (O, M,π) fully defines the SSM.

The lemma presented below illustrates that, when provided with only a sequence of observa-

tions (Yt)t≥1, there exist several state-state representations that are indistinguishable from one

another.

Lemma 4.1 (Non-uniqueness of the state-space representation). Let (Yt)t≥1 be a sequence of

random variables on Y with state-space representation (O, M,π) with π the invariant distribution

of M. Assume that the Rosenblatt transformation of π, F−1
π , exists. Then, for any π̃ such that F−1

π̃

exists, (Yt)t≥1 also has state-space representation (Õ, M̃, π̃) for some M̃ with invariant distribution

π̃.

We further observe that when the initial distribution π is fixed, multiple state-space repre-

sentations can still exist. Consequently, the state-space representation is non-identifiable for a

given invariant distribution.

Lemma 4.2 (Non-uniqueness of the state-space representation for a given π). Let (Yt)t≥1 be a

sequence of random variables on Y with state-space representation (O, M,π) with π the invariant

distribution of M. Assume that the Rosenblatt transformation of π, F−1
π , exists. Then (Yt)t≥1 also

has state-space representation (Õ, M̃,π) for some M̃ with invariant distribution π, and Õ ̸=O and

M̃ ̸= M.

4.3.2 Decomposing RKHS embeddings

The structure of the state-space model allows us to specify a decomposition of the joint distribution

of two consecutive observations in terms of the distributions Yt|X t and X t|X t−1. We show that

the embedding of (Yt,Yt+1) may be written in terms of RKHS operators UYt|X t and UX t+1|X t . This
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decomposition does not allow us to uniquely recover the RKHS operators, however non-unique

operators which satisfy the decomposition must reconstruct the embedding of (Yt,Yt+1).

In a purely probabilistic setting, a similar decomposition can be derived by conditioning on

the latent variable via the sum rule. In the following lemma we propose a sum rule for working

with conditional mean operators.

Lemma 4.3 (Sum rule for conditional mean operators). Let X ,Y , Z be integrable random variables

on a probability space (Ω,F ,P) such that Z depends on Y , Y depends on X, and Z is conditionally

independent of X given Y . Let HX ,HY ,HZ be separable RKHSs over topological spaces X , Y ,

and Z with bounded kernels, and assume that there exist bounded conditional mean operators

UZ|Y : HY → HZ , UY |X : HX → HY , and UZ|X : HX → HZ . The conditional mean operators

satisfy

UZ|X =UZ|Y UY |X .

Proof. Let ϕX , φY , and ψZ denote the canonical feature maps associated with RKHSs HX ,

HY , and HZ respectively. In the following we use the definition of the conditional mean embed-

ding operator, that is, UZ|X := EZ|X [ψZ(Z)|X ], and the property UZ|YφY (y)= EZ|Y [ψZ(Z)|Y = y].

Starting from this definition and applying the law of total expectation we see that

UZ|X = EZ|X [ψZ(Z)|X ]

= EY |X {EZ|Y [ψZ(Z)|Y ]|X }

= EY |X [UZ|YφY (Y )|X ].

To proceed we note that φY (Y ) is Bochner integrable under the assumption that

EY (∥φY (Y )∥HY
)= EY [

√
kY (Y ,Y )]<∞,

and hence it follows from Proposition 1.1 and the separability of the reproducing kernel Hilbert

spaces that we can exchange the expectation and operator as follows

UZ|X = EY |X [UZ|YφY (Y )|X ]

=UZ|YEY |X [φY (Y )|X ]

=UZ|Y UY |X ,

and the proof is complete. ■

The following lemma describes a way to decompose the embedding of the joint distribution of

(Y1,Y2) in terms of RKHS operators which are the embeddings of the Markov transition X t+1|X t

and the observation distribution Yt|X t.

Lemma 4.4. Let HX and HY denote RKHSs over X and Y respectively which satisfy Assump-

tion 1.1. Let µY1Y2 be the kernel mean embedding of the joint distribution of (Y1,Y2) in the tensor
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product RKHS H ⊗2
Y

, and µX1 X1 the embedding of the distribution of (X1, X1) in H ⊗2
X

. Let UY1|X1 ,

UY2|X2 , and UX2|X1 be the bounded conditional mean embedding operators corresponding to the

embeddings of the distributions of (Y1|X1), (Y2|X2), and (X2|X1) respectively. We can decompose

the kernel mean embedding of two consecutive observations in terms of these operators as follows

µY1Y2 = (UY1|X1 ⊗UY2|X2UX2|X1)µX1 X1

=UY1|X1µX1 X1U
∗
X2|X1

U ∗
Y2|X2

.

Proof. Let ϕX and φY denote the canonical feature maps associated with RKHSs HX and HY

respectively. We decompose the kernel mean embedding of (Y1,Y2) by conditioning on X1 as

follows

µY1Y2 = EY1Y2[φY (Y1)⊗φY (Y2)]

= EX1{EY1Y2|X1[φY (Y1)⊗φY (Y2)|X1]}

= EX1{EY1|X1[φY (Y1)|X1]⊗EY2|X1[φY (Y2)|X1]}

= EX1{UY1|X1ϕX (X1)⊗UY2|X1ϕX (X1)}

= (UY1|X1 ⊗UY2|X1)EX1[ϕX (X1)⊗ϕX (X1)]

= (UY1|X1 ⊗UY2|X1)µX1 X1 ,

where line three uses Lemma 1.3 and line five uses Proposition 1.1. Using the structure of a

state-space model and Lemma 4.3, we can decompose the embedding of Y2|X1 as

UY2|X1 =UY2|X2UX2|X1 ,

which when combined with the previous decomposition gives

µY1Y2 = (UY1|X1 ⊗UY2|X2UX2|X1)µX1 X1 .

■

Remark: We can provide some intuition on the above decomposition by expanding the expectation

of µX1 X1 as follows: µY1Y2 = EX1 X1[UY1|X1ϕX (X1)⊗UY2|X2UX2|X1ϕX (X1)]. This is similar to the

classical sum rule in probability, it is as if we are marginalizing out X1.

4.4 Nonparametric estimation

Assume that we observe a sequence of observations (Yt)T
t=1 which we want to model with a

nonparametric state-space model under minimal assumptions. We assume that the latent process

is not observed and we exploit the fact that the model is non-identifiable. We specify a loss

function which does not require paired observations, and motivated by the non-uniqueness of

the invariant distribution (see Lemma 4.1) we sample a set of latent observations (X t)T
t=1 from a
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distribution of our choice π⋆. We then estimate the embedded Markov transition and observation

distributions by minimizing a loss function motivated by Lemma 4.4.

We require that the distribution π⋆ is such that its Rosenblatt transformation exists. It

is important to note that by specifying π⋆ we specify a class of state-space representations

corresponding to the observed data (Lemma 4.2). The method we propose assumes that there

exists a state-space representation such that the embeddings of the observation distribution

and Markov transition belong to tensor product RKHSs characterized by the kernels we specify

on X and Y . Hence, there is an interdependence between the choice of π⋆ and the kernel

functions used. The implicit assumption made in the following is that for a class of state-space

representations induced by a given π⋆, there exists a state-space representation such that the

RKHS embeddings of the Markov transition and observation distribution exist, and belong to a

certain space determined by the kernel functions specified on X and Y .

Throughout the following we use the notation specified in Section 1.2.1.2 and make Assump-

tion 1.1 to ensure that the embeddings are well defined. We also assume that π⋆ has been

specified, and that its Rosenblatt transformation exists.

4.4.1 Specifying a loss function

We first specify a loss function in terms of the RKHS operators UY |X and UX2|X1 , which correspond

to the RKHS embeddings of Yt|X t and X t+1|X t respectively. Our aim is to find operators which

adequately model the observed data whilst remaining consistent with the structure of the

state-space model. We use these requirements to motivate the following regularized loss function

(4.1)
Lπ⋆(UY |X ,UX2|X1) := ∥µY1Y2 −UY |XµX X U ∗

X2|X1
U ∗

Y |X∥2
H ⊗2

Y

+λ1∥µY −UY |XµX∥2
HY

+λ2∥µX −UX2|X1µX∥2
HX

,

where λ1 and λ2 are positive scalars, and µX and µX X denote the embeddings of π⋆ in the

reproducing kernel Hilbert spaces HX and HX ⊗HX respectively.

The first term is motivated by Lemma 4.4 and measures the degree to which the embeddings

model the observed data. In Chapter 3, motivated by recent identifiability results for nonpara-

metric HMMs, the distribution of three consecutive observations was used. In this setting we do

not have identifiability, and the invariant distribution is fixed meaning we only need to estimate

the one-step observation distribution and Markov transition. For this reason we only use the

distribution of two consecutive observations. One could use the distribution of more than two

consecutive observations, however the additional terms would add significant complexity to the

loss function; the loss landscape will become harder to optimize over and tensor algebra would be

required, inducing additional computational cost. The second and third terms can be considered

penalties on the consistency of the operators. The first consistency condition ensures that the

operator corresponding to the observation distribution reproduces the distribution over the obser-

vations upon marginalizing over the latent states, and the second enforces the time-homogeneity
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of the Markov chain. They are equivalent to the following

p(y)=
∫

p(y|x)p(x)dx, p(x)=
∫

p(x2|x1)p(x1)dx1,

and follow directly from the kernel sum rule using the same intuition

µY = EY [k(Y , ·)]= EX
[
EY |X [k(Y , ·)|X ]

]=UY |XEX [l(X , ·)]=UY |XµX .

Under the assumption that there exists a state-space representation such that the conditional

mean operators are Hilbert-Schmidt (a sufficient condition for Assumption 1.2), the operators

are minimizers of Equation (4.1). That is, let U⋆
Y |X and U⋆

X2|X1
denote the embeddings of the

observation distribution and the Markov transition, then

(4.2)
(
U⋆

Y |X ,U⋆
X2|X1

)
∈ argmin

UY |X∈HS(HX ,HY )
UX2 |X1∈HS(HX ,HX )

Lπ⋆(UY |X ,UX2|X1),

where HS(H1,H2) denotes the space of Hilbert-Schmidt operators from H1 to H2, where H1 and

H2 are Hilbert spaces.

To estimate the components of the loss function specified in Equation (4.1) we require samples

of both the observable and latent process, and so to proceed we sample latent states from π⋆.

Suppose we have observations (Yt)T
t=1, and a distribution π⋆ ∈ M1+ (X ), then we sample (X t)T

t=1

independently from π⋆. Given observations (Yt)T
t=1 and latent states (X t)T

t=1, not paired, the loss

function given in Equation (4.1) can be computed empirically as

(4.3)
L̂π⋆(UY |X ,UX2|X1) := ∥µ̂Y1Y2 −UY |X µ̂X X U ∗

X2|X1
U ∗

Y |X∥2
H ⊗2

Y

+λ1∥µ̂Y −UY |X µ̂X∥2
HY

+λ2∥µ̂X −UX2|X1 µ̂X∥2
HX

.

4.4.2 A surrogate loss function

It is difficult to directly optimize the empirical loss function given in Equation (4.3) over the

spaces of Hilbert-Schmidt operators, and thus we narrow our focus to a subspace of finite-rank

operators. Given observations (Yt)T
t=1 and latent states (X t)T

t=1, not necessarily paired, we define

finite-rank RKHS operators

(4.4) Û W
Y |X =

T∑
i, j=1

Wi j
(
φY (Yi)⊗ϕX (X j)

)
, Û W̃

X2|X1
=

T∑
i, j=1

W̃i j
(
ϕX (X i)⊗ϕX (X j)

)
,

where W and W̃ are T ×T real matrices, and a superscript W and W̃ are used to emphasize the

dependence of the estimators on W and W̃ respectively. The matrices W and W̃ can be thought of

as relating the unpaired observations, and under the assumption that the weight matrices are full

rank, the operators span their respective spaces. Our estimators are generalizations of those seen

in the literature, for example if we observe paired data (Yt, X t)T
t=1 and set W := (KX +TδIT )−1

and W̃ := (KX +TδIT )−1, where δ> 0 is a Tikhonov regularization parameter, then we recover

the estimated conditional mean embedding seen in Song et al. [2009, 2013].
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We define HT (HX ,HY ) and HT (HX ,HX ) as being spanned by finite-rank operators of the

form Equation (4.4):

(4.5)

HT (HX ,HY ) :=
{

T∑
i, j=1

wi, j(φY (Yi)⊗ϕX (X j)), wi, j ∈R
}

,

HT (HX ,HX ) :=
{

T∑
i, j=1

w̃i, j(ϕX (X i)⊗ϕX (X j)), w̃i, j ∈R
}

.

Under Assumption 1.1, HT (HX ,HY )⊂HS(HX ,HY ) and HT (HX ,HX )⊂HS(HX ,HX ), and

hence we consider the related optimization problem wherein the operators are restricted to the

spaces of finite-rank operators

(4.6)
((

Û W
Y |X

)⋆
,
(
Û W̃

X2|X1

)⋆)
∈ argmin

UY |X∈HT (HX ,HY )
UX2 |X1∈HT (HX ,HX )

L̂π⋆(UY |X ,UX2|X1).

For UY |X ∈ HT (HX ,HY ) and UX2|X1 ∈ HT (HX ,HX ), the empirical loss function in Equa-

tion (4.3) is equivalent to the following empirical surrogate loss function parametrized by (W ,W̃)

(4.7)
L̂S(W ,W̃) := ∥µ̂Y1Y2 − Û W

Y |X µ̂X X

(
Û W̃

X2|X1

)∗ (
Û W

Y |X
)∗ ∥2

H ⊗2
Y

+λ1∥µ̂Y − Û W
Y |X µ̂X∥2

HY
+λ2∥µ̂X − Û W̃

X2|X1
µ̂X∥2

HX
.

Therefore, the optimization problem specified in Equation (4.6) is equivalent to the following

(4.8) (W⋆,W̃⋆)= argmin
W ,W̃∈RT×T

L̂S(W ,W̃),

The following lemma describes how the loss function can be computed using kernel evaluations

and matrix multiplication. As seen in Section 1.2.2.1, empirical kernel mean embeddings such as

µ̂Y1Y2 can be computed as µ̂Y1Y2 = (T−1)−1 ∑T−1
i=1 φY (Yi)⊗φY (Yi+1). In the following we denote by K

a matrix of kernel evaluations and a subscript is used to denote the observations that produce the

matrix. For example, KY1Y2 denotes the kernel matrix with (i, j)-th element [KY1Y2 ]i, j = k(Yi,Y j+1)

for i, j ∈ {1, . . . ,T−1}. A subscript Y denotes that all T observations are used, and when one set of

observations is used for both arguments only a single subscript is used, such as KX .

Lemma 4.5 (Empirical surrogate loss). Suppose we have data (Yt)T
t=1 and (X t)T

t=1, then let µ̂Y1Y2 ,

µ̂Y and µ̂X be empirical kernel mean embeddings, and let Û W
Y |X and Û W̃

X2|X1
denote the finite-rank

RKHS operators defined in Equation (4.4). The components of the empirical surrogate loss function

defined in Equation (4.7) are computed as

∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

= 1
(T −1)2 Tr

(
KY1 KY2

)−2
1

T −1
Tr

(
KY1Y Z̃KY Y2

)+Tr(Z̃TKY Z̃KY ),

∥µ̂Y − Û W
Y |X µ̂X∥2

HY
= 1

T2 1TKY 1−2
1

T2 1TKY WKX 1+ 1
T2 1TKX WTKY WKX 1,

∥µ̂X − Û W̃
X2|X1

µ̂X∥2
HX

= 1
T2 1TKX 1−2

1
T2 1TKX W̃KX 1+ 1

T2 1TKX W̃TKX W̃KX 1,

where Z̃ = 1
T WKX KX W̃TKX WT, and 1 denotes the one-vector.
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Let W⋆ and W̃⋆ be the minimizers of L̂S(W ,W̃), then the estimated RKHS operators are

Û W⋆

Y |X =ΦW⋆ΨT, Û W̃⋆

X2|X1
=ΨW̃⋆ΨT,

where Φ := [φY (Y1), . . . ,φY (YT )] and Ψ := [ϕX (X1), . . . ,ϕX (XT )] are row-vectors in HY and HX

respectively.

4.4.3 Optimization

Minimization of the empirical surrogate loss specified in Equation (4.7) poses a complicated

optimization problem. Indeed, in Section 4.3.1 we showed that upon fixing the invariant distribu-

tion π of the Markov chain, there are multiple possible state-state representations that produce

the same distribution over the observed data. Thus, we proceed by optimizing the loss function

numerically with respect to the matrices W and W̃ .

We minimize the loss function using a first-order gradient-based algorithm. To minimize

Equation (4.7) in such a way, we require the partial derivatives of the loss function with respect

to the parameters, which are given in the following lemma.

Lemma 4.6. Let L̂S be the loss function defined in Equation (4.7), parametrized by W and W̃.

The partial derivatives of the loss are

L̂S(W ,W̃)
∂W

= (A+ AT)W(B+BT)+λ1(C+ 2
T2 KY WKX 11TKX ),(4.9)

L̂S(W ,W̃)
∂W̃

= 1
T

KX WT ATWKX KX +λ2[D+ 2
T2 KX W̃KX 11TKX ],(4.10)

where we have defined the matrices A :=− 2
T−1 KY Y1 KY2Y +KY (Z̃ + Z̃T)KY , B := 1

T KX KX W̃TKX ,

C :=− 2
T2 KY 11TKX , and D :=− 2

T2 KX 11TKX .

To minimize the empirical surrogate loss function L̂S with respect to the parameters W

and W̃ we use coordinate descent wherein we take turns optimizing the function with respect

to each parameter. When optimizing the loss with respect to a single parameter we perform

several parameter updates using Adam [Kingma and Ba, 2014], a popular first-order gradient-

based optimization algorithm which uses adaptive moment estimates to improve convergence.

A significant advantage to using Adam is that each element of the parameter can be optimized

adaptively. We refer to the steps alternating between optimizing W and W̃ as outer steps, and

Adam steps optimizing the individual parameters as inner steps. For the Adam implementation,

we follow the original paper and perform a specified number of steps with early stopping if a

convergence criterion is met. For our convergence criterion we test whether the Frobenius norm

(the L2 norm) of the matrix of gradients is less than n times a tolerance hyperparameter.

Initialization. The landscape of the loss function used in the method is non-trivial, and

there may exist multiple local minima depending on the difficulty of the problem. To initialize

the weight matrices W and W̃ we assume that the sequences (X t)T
t=1 and (Yt)T

t=1 are paired, and
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use the empirical matrices for conditional mean operators given paired data: W := (KX +TδIT )−1

and W̃ := (KX +TδIT )−1, where δ > 0 is a Tikhonov regularization parameter. The quality of

this initialization depends heavily on the initial pairing of the two sequences, and hence the

initialization can be improved by first attempting to pair the observations. By initializing the

matrices by first attempting to pair the data and then optimizing the loss function with respect

to the matrices, we can think of the method as starting with an initial pairing and then learning

a new pairing which better models the data, whilst ensuring the model is consistent with the

structure implied by the state-space model. If the observed data takes values in R, then a naïve

initial pairing might involve sorting the observations and pairing observations and latent states

according to their sorted order.

4.4.4 An algorithm

We now briefly summarize the above which defines an algorithm to learn an embedded state-

space representation using only observations (Yt)T
t=1. We aim to estimate conditional mean

operators corresponding to the RKHS embeddings of the observation distribution Yt|X t and the

Markov transition X t+1|X t, for t ≥ 1. Motivated by the non-identifiability of the problem, we

choose an invariant distribution which we sample (X t)T
t=1 from independently. We parametrize

our estimators via T ×T matrices W and W̃, and we minimize the empirical surrogate loss via

coordinate descent with Adam updates. The minimizer of the empirical surrogate loss, (W⋆,W̃⋆),

corresponds to having learned RKHS embeddings of Yt|X t and X t+1|X t, for t ≥ 1.

Algorithm 3 Kernel state-space model
Input: An observed sequence (Yt)T

t=1, regularization parameters λ1 and λ2, regularization
parameter δ> 0, invariant distribution π⋆, kernel functions k : Y ×Y →R and l : X ×X →R,
optimization parameters nouter and ninner.
Output: Kernel mean embeddings of Yt|X t and X t|X t−1, Û W

Y |X and Û W̃
X2|X1

respectively.

1: Sample (X t)T
t=1

i.i.d.∼ π⋆.
2: Sort and pair the data (Yt)T

t=1 and (X t)T
t=1.

3: Initialize W = (KX +TδIT )−1 and W̃ = (KX +TδIT )−1.
4: for i = 1 to nouter do
5: Perform ninner Adam steps on W , using gradient function Equation (4.9).
6: Update matrix W .
7: Perform ninner Adam steps on W̃ , using gradient function Equation (4.10).
8: Update matrix W̃ .
9: end for

10: Output (W⋆,W̃⋆)= (W ,W̃).
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4.4.5 Density recovery

The conditional mean operators Û W
Y |X and Û W̃

X2|X1
can be thought of as defining a path of em-

beddings in their respective reproducing kernel Hilbert spaces: for any x ∈X we can obtain the

embedding of Yt|X t = x and X t+1|X t = x as follows

µ̂Yt|X t=x = Û W
Y |XϕX (x)=ΦWΨTϕX (x), µ̂X t+1|X t=x = Û W̃

X2|X1
ϕX (x)=ΨW̃ΨTϕX (x).

Note that ΨTϕX (x)= lx = [l(X1, x), . . . , l(XT , x)], and thus the embeddings µ̂Yt|X t=x and µ̂X t+1|X t=x

are weighted sums of kernels on Y , with respective weight vectors w(x)=Wlx and w̃(x)= W̃lx.

Following Chapter 2, the density functions can then be estimated as

ĝ(y|x)=
T∑

i=1
wi(x)k̄γY (Yi, y), f̂ (x′|x)=

T∑
i=1

w̃i(x)l̄γX (X i, x′),

for y ∈Y and x, x′ ∈X , where l̄ and k̄ denote the normalized kernel functions with hyperparame-

ters γY ,γX > 0.

4.5 Inference: prediction

As the latent states are not observable, and the model is non-identifiable, we are primarily

interested in the prediction problem. The aim of the prediction problem is to predict Yt+1 given

observations Y1:t, for t ≥ 1. To make predictions we use the estimated state-space representation

learned in Section 4.4 and a particle filter. The particle filter requires the density of the observa-

tion process and a way to sample from the Markov transition. The former can be obtained from

the estimated embedding of the observation distribution as shown in Section 4.4.5, and the latter

can be done via rejection sampling as shown below.

Rejection sampling from the Markov transition. As shown in Section 4.4.5, the density

corresponding to the Markov transition M can be recovered as f̂ (x′|x) = ∑T
i=1 w̃i(x)l̄γX (X i, x′),

for x, x′ ∈ X . This density estimate is a linear combination of probability densities, and thus

if the weights are all positive, then we can easily sample from the corresponding distribution.

However, the weights obtained from the proposed algorithm can be negative, and thus we propose

a rejection sampling scheme in the following lemma.

Lemma 4.7. Assume that ρ(x)=∑T
i=1 w̃i l̄γX (X i, x) is a probability density function for x ∈X and

w̃i ∈R for i = 1, . . . ,T, with distribution P. Then one can draw samples from P by drawing samples

from the proposal q(x) := M−1 ∑T
i=1 w̃+

i l̄γX (X i, x) for x ∈X , where w̃+
i =max(0, w̃i) and M is equal

to the sum of the positive weights, and accepting samples with probability q(x)/Mρ(x).

Proof. Our proposal distribution is the normalized mixture of probability distributions corre-

sponding to the positive weights. We require M such that ρ(x)≤ Mq(x), where ρ is our target and
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q is the proposal. Our target ρ(x) can we written as

ρ(x)=
T∑

i=1
w̃i l̄γX (X i, x)=

T1∑
i=1

w̃i l̄γX (X i, x)+
T∑

i=T1+1
w̃i l̄γX (X i, x),

where 1 ≤ T1 < T and without loss of generality we assume that the first sum is over the

non-negative weights and the second sum is over the negative weights. We write the proposal as

q(x)=
T1∑
i=1

w̃i∑T1
i=1 w̃i

l̄γX (X i, x)=W+
T1∑
i=1

w̃i l̄γX (X i, x),

where W+ := (
∑T1

i=1 w̃i)−1. The above implies that ρ(x)≤ 1
W+ q(x), and so we choose M = 1

W+ . ■

Combining the above, we use the following scheme to sample a particle from the Markov

transition. We draw a sample from the proposal distribution with associated density ρ(x). We

then accept this sample with probability q(x)/Mρ(x).

The lemma states that if the target distribution is a linear combination of probability distri-

butions, where the mixture weights may be negative, then we can simply draw samples from

the positive components and reject with a probability determined by a function evaluation. The

lemma suggests a procedure to draw samples from the estimated Markov transition. In practice,

it is possible that f̂ is not a probability density function, however we use the rejection sampling

procedure described by Lemma 4.7 as a heuristic. One could ensure that f̂ is a valid density by

following Section 2.2.1, although this could be computationally expensive.

4.6 Experiments

Our experiments evaluate the performance of our method over a set of simulated datasets. We

also investigate the state-space representations learned during the optimization procedure, in

order to provide intuition on the model-fitting procedure. Throughout the following we refer to

our method as KSSM (a kernel state-space model).

Hyperparameter tuning. Our method has several hyperparameters which can be tuned, such

as the regularization parameters λ1 and λ2, and the kernel function hyperparameters. To find

the optimal set of hyperparameters we use the following procedure.

1. Data Splitting. We divide the observed data into three distinct sets: training, validation,

and test sets. As our data is a time series we define the training set to be the first ntrain

observations, the next nvalidation to be the validation set, and the final ntest to be the test

set.

2. Hyperparameter gridsearch. For every set of hyperparameters from a predefined grid:

100



4.6. EXPERIMENTS

• Use the training data and current hyperparameters to estimate the conditional mean

operators via Algorithm 3.

• Estimate the observation densities and markov transition densities.

• Generate predictions over the training and validation datasets using a particle filter.

• Quantify the model’s performance using the mean squared error (MSE) on the valida-

tion set.

3. Optimal model selection. Select the model that achieved the lowest MSE on the valida-

tion set as the optimal model.

4. Performance evaluation. Assess the model’s predictive performance on the test dataset.

This high-level procedure offers a systematic approach to refining our model, ensuring that

we select parameters that generalize well to new, unseen data.

4.6.1 Simulated datasets

We generate data from state-space models which follow the general framework outlined below.

The latent process (X t)t≥1 and observation processes (Yt)t≥1 are defined as

X t+1 = f (X t,Ut),

Yt+1 = g(X t+1,Vt),

where Ut and Vt are white noise processes and f , g :R×R→R. The models we consider are defined

below.

Model 18 (Linear Gaussian). The latent state transition model and observation model are

f (X t,Ut)= ρX t +Ut, g(X t+1,Vt)= X t+1 +Vt,

where Ut ∼ N(0,σ2
X ) and Vt ∼ N(0,σ2

Y ) are white noise processes with σX ,σY > 0, and for station-

arity we require ρ ∈ (0,1). We set σX = 0.6, σY = 0.6, and ρ = 0.95.

The linear Gaussian state-space model is a simple model with linear dynamics, with an

additive structure between the signal and noise.

Model 19 (Bimodal). The latent state transition model and observation model are

f (X t,Ut)= 1
2

X t +25
X t

1+ X2
t
+Ut, g(X t+1,Vt)= X t+1 +Vt,

where Ut ∼ N(0,σ2
X ) and Vt ∼ N(0,σ2

Y ) are white noise processes with σX ,σY > 0. We set σX =p
10,

and σY = 1.
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This model is inspired by Kitagawa [1987], modified to ensure stationarity. The latent state

transition is highly non-linear, and the distribution over the latent states is bimodal.

Model 20 (Stochastic volatility). The latent state transition model and observation model are

f (X t,Ut)= ρX t +Ut, g(X t+1,Vt)=
(

1
2

eX t+1

)1/2
Vt,

where Ut ∼ N(0,σ2
X ) and Vt ∼ N(0,σ2

Y ) are white noise processes with σX ,σY > 0 and ρ ∈ (0,1) for

stationarity. We set σX = 1,σY = 1, and ρ = 0.95.

The stochastic volatility model is of interest as the relationship between the signal and noise

is multiplicative rather than additive. The model’s name stems from its use in quantitative

finance to model the stochastic volatility of an asset — the latent process captures the volatility’s

stochastic dynamics and the observable process models the asset’s returns.

4.6.2 Application to simulated data

We evaluate the performance of our method when applied to data generated from Models 18

to 20, and compare the predictions made using our method followed by a particle filter to the

predictions made by a particle filter using the true parametric model.

We sample 1200 observations from each model, and define the training set to be the first 800

observations, the validation set to be the next 200 observations, and the test set to be the final

200 observations. We sample latent states from a standard Gaussian distribution and as the data

takes values in R we sort the observations and pair the observations and latent states based on

their sorted order. We define a grid of hyperparameters over the surrogate loss regularization

parameters λ1 and λ2, and the stepsize of the Adam optimizer. We set nouter = 10 and ninner = 500,

δ= 0.5, and we use the median heuristic for the kernel hyperparameters. We choose the optimal

set of hyperparameters by minimizing the MSE in the prediction task over the validation data

set, and then generate predictions over all observations for the optimal model. The predictions

produced by the optimal model over the observed data can be seen in Figure 4.1. Our method,

KSSM, followed by a particle filter is denoted KSSM + PF and the predictions made via the true

model and a particle filter are denoted True model + PF. For the particle filter we use 500

particles and set the kernel hyperparameter of the density estimators to be 0.25 times the median

heuristic. Note that for the stochastic volatility model we use the log-squared transform of the

data, as is standard in many time-series applications modelling volatility. The predictions from

our model capture the overall trend of the data for all examples. Our model is not able to predict

data points towards the boundaries of the observed range, and we hypothesize that this problem

may be solved by training with more data.
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Figure 4.1: Sequential predictions for the three state-space models. The observed data (in black)
is plotted alongside predictions from our proposed method KSSM + PF, and predictions using the
true parametric model True model + PF. Our model was trained using the first 800 observations,
and tuned using the following 200. The plots emphasize the comparative performance of our
method against the benchmark of using the true model.
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4.6.2.1 Analysis of the optimization procedure

As discussed in Section 4.4, one can think of the matrices (W ,W̃) as relating pairs of observations.

Our initial pairing of the latent and observed states induces a state-space representation that is

represented by the initial estimated conditional mean operators, and through the optimization

procedure we learn new pairings and new state-space representations that better model the

observed data. In the following we investigate the optimization procedure by studying the

evolution of the MSE in prediction and the value of the surrogate loss function throughout

training. We also analyze the predictions made by the models learned throughout training.

For the optimal models found for the data simulated from Models 18 and 19, we re-initialize

the weight matrices W and W̃ and optimize the empirical surrogate loss, pausing the optimization

procedure every 100 inner steps. We recover the densities from the estimated intermediary

embeddings, and produce predictions over the observed data using a particle filter. We record the

MSE and the log objective, and continue training the model.

Figures 4.2 and 4.3 study the optimization procedure for the data generated from Models 18

and 19 respectively. The first row of plots show, from left to right: the mean squared error in

the prediction task over the training, validation, and test sets, over the total number of steps

taken in the optimization procedure; the log of the objective function, the empirical surrogate

loss defined in Equation (4.7), over the total number of steps taken in the optimization procedure;

and the log of each component of the empirical surrogate loss function over the total number of

steps. The second part of the figure contains four plots showing the predictions made from the

model after training for 0, 400, 5000, and 10000 total steps. In both Figures 4.2 and 4.3 we see

that the predictions made prior to training are not trivial — the initial state-space representation

captures some information contained within the data. After training for several hundred steps

the mean squared errors increase rapidly, and the predictions become almost constant, whilst

the log objective decreases rapidly. Further inspection shows that the second and third term of

the log objective are the primary cause for this reduction, hinting that the initial state-space

representation is not consistent with a state-space model. Beyond this point, the mean squared

errors and log objective steadily decrease until they plateau. Our analysis shows that after

initializing the matrices W and W̃, and estimating a corresponding state-space representation,

the optimization procedure learns a new pairing and representation which better models the

data and is consistent with a state-space model.

Figures 4.4 and 4.6 show the learned state-space representations for data generated from

Models 18 and 19 respectively after taking 10000 total steps in the optimization procedure.

For each plot the first row corresponds to the estimated observation densities and the second

corresponds to the estimated Markov transition densities. For each row, the first five plots

show estimated conditional densities for a specific value of the conditioning variable, and the

right-most plot is a heatmap of the conditional density over a sequence of both variables. For

example, the first row of Figure 4.4 shows estimated observation densities ĝ(y|x) over y for
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x ∈ {−1,−0.25,0,0.25,1}, and the heatmap displays the value of ĝ(y|x) over a sequences of y

and x. In both cases the learned state-space representation captures the overall dynamics

of the underlying data. Without making an assumption on the underlying data, both models

have estimated the Markov transition distribution to be similar to a random walk, and the

estimated observation densities are very different, capturing the nature of the underlying data

and demonstrating the flexibility of our method. Figures 4.5 and 4.7 show the true state-space

models for Models 18 and 19, and it’s particularly interesting to compare these models to the

learned representations seen in Figures 4.4 and 4.6. However, it is important to note that given

the model’s non-identifiability, the estimated representations are not estimates of the true model;

they are estimates of a state-space representation which induces the correct distribution over the

observed data.
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Figure 4.2: The first group of plots, the first row, shows the mean squared errors, the log objective,
and the logged components of the objective function over an increasing number of total steps in
the optimization procedure. The second group of plots show the observed data and the predictions
made after taking a certain number of total steps in the optimization procedure.
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Figure 4.3: The first group of plots, the first row, shows the mean squared errors, the log objective,
and the logged components of the objective function over an increasing number of total steps in
the optimization procedure. The second group of plots show the observed data and the predictions
made using a particle filter after taking a certain number of total steps in the optimization
procedure.
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Figure 4.4: The state-space representation learned after training the kernel state-space model
on the bimodal data sampled from Model 19. The first row contains the estimated observation
densities ĝ(y|x) over y for x equal to -1, -0.25, 0, 0.25, and 1, and a heatmap of ĝ(y|x) over a
sequence of y and x. The second row contains the estimated Markov transition densities f̂ (x2|x1)
over x2 for x1 equal to -2, -1, 0, 1, and 2, and a heatmap of f̂ (x2|x1) over a sequence of x2 and x1.
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Figure 4.5: The true state-space model for Model 19. The first row contains the observation
densities ĝ(y|x) over y for x equal to -10, -5, 0, 5, and 10, and a heatmap of g(y|x) over a sequence
of y and x. The second row contains the Markov transition densities f (x2|x1) over x2 for x1 equal
to -20, -6, 0, 6, and 2, and a heatmap of f (x2|x1) over a sequence of x2 and x1.
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Figure 4.6: The state-space representation learned after training the kernel state-space model on
the linear Gaussian data sampled from Model 18. The first row contains the estimated observation
densities ĝ(y|x) over y for x equal to -1, -0.25, 0, 0.25, and 1, and a heatmap of ĝ(y|x) over a
sequence of y and x. The second row contains the estimated Markov transition densities f̂ (x2|x1)
over x2 for x1 equal to -2, -1, 0, 1, and 2, and a heatmap of f̂ (x2|x1) over a sequence of x2 and x1.
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Figure 4.7: The true state-space model for Model 18. The first row contains the observation
densities g(y|x) over y for x equal to -1, -0.25, 0, 0.25, and 1, and a heatmap of g(y|x) over a
sequence of y and x. The second row contains the Markov transition densities f (x2|x1) over x2 for
x1 equal to -2, -1, 0, 1, and 2, and a heatmap of f (x2|x1) over a sequence of x2 and x1.

111



CHAPTER 4. STATE-SPACE MODELS

4.7 Future work

In this chapter we make very general assumptions on the Markov transition and observation

distribution of a state-space model, and develop a nonparametric method for their estimation.

Future research could focus on incorporating additional model constraints, which may allow for

identifiability of the underlying model and subsequently an estimation procedure with provable

guarantees. Model constraints can be introduced by making a parametric assumption on one of

the model’s underlying processes; two possibilities are briefly discussed in the following.

A parametric assumption on the observation distribution was made in Gassiat et al. [2020].

The authors studied identifiability of nonparametric state-space models wherein (X t)t≥1 is a

stationary Markov chain and Yt = X t + ϵt where ϵt is i.i.d. noise with unknown distribution.

They show that under assumptions on the distribution of the latent variables and the noise,

the state-space model is identifiable with respect to the distribution of the latent variables and

the noise. The identifiability of such models allows for consistent estimation of the state-space

representation, however incorporating such model constraints into our estimation procedure is

non-trivial and could be the focus of future research.

One may also consider the scenario in which a parametric form is specified for the Markov

transition, and no additional assumptions are made on the observation distribution. Our method

is easily adapted to incorporate these constraints. Latent states can be sampled from the Markov

process and the embedding of the Markov transition can be estimated via the conditional mean

embedding. Algorithm 3 can then be simplified to solely estimate the embedded observation

distribution. The additional parametric assumption simplifies the model estimation procedure,

whilst the model remains more general than existing works. Notably, widely-used models with

complex dynamics such as the stochastic volatility model are compatible with these assumptions.

An important direction for future research would be to investigate the identifiability of such

models, which may lead to a nonparametric estimation procedure with provable guarantees that

is more general than existing approaches.

4.8 Conclusion

State-space models are a generalization of hidden Markov models where the latent space can

take continuous values. This generalization presents significant difficulties in terms of model

identification and computational inference. Even in the parametric setting, stringent assumptions

are required in order to obtain analytic inference procedures, and generally one must rely upon

computational techniques such as sequential Monte Carlo. For this reason there are very few

existing nonparametric methods for state-space modelling, and in this work we have developed a

new method for estimating state-space models using kernel mean embeddings.

The method we propose allows for the estimation of the observation distribution and Markov

transition under minimal assumptions on the underlying model, using only a sample from the
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observable process. We showed that the model is non-identifiable and that there exist multiple

state-space representations that produce the same distribution over the observed data, and

that the kernel mean embedding of consecutive observations can be decomposed in terms of

embeddings of the observation distribution and Markov transition. We used this to motivate a

method to estimate the embedded model via the optimization of a regularized loss function. The

state-space representation that we learn is not indicative of the true underlying model, however

it models the data well enough that it cannot be distinguished from the true model.

Our experiments demonstrated that this proof of concept approach to modelling nonparamet-

ric state-space models works well in practice, and captures the overall dynamics of data simulated

from several state-space models. An analysis of the optimization procedure demonstrated that

whilst the procedure starts with a state-space representation, it learns a new representation

entirely: the mean squared error rapidly increases after initialization before it steadily decreases

as a new representation is learned. Future research may focus on improving the optimization

procedure, and the incorporation of weak assumptions on the underlying model.

4.9 Proofs

4.9.1 Proofs for non-identifiability

We first prove a preliminary lemma which allows us to define a Markov kernel relating the two

Markov processes in Lemmas 4.1 and 4.2.

Lemma 4.8. Consider the setup of Lemma 4.1. Let (X̃ t)t≥1 be a Markov chain on X with Markov

kernel M̃, and define the Markov kernel M̃′ such that M̃′(x̃,dx̃t+1)= M̃(g−1(x̃),dx̃t+1), for all x ∈X ,

for an invertible mapping g such that g(X ) ∼ π(dx). Let p̃ denote distributions with respect to

the state-space representation with Markov chain (X̃ t)t≥1 and p distributions with respect to the

original state-space representation. Then

p̃(dx̃t+1|y1:t)=
∫

M̃′(xt,dx̃t+1)p(dxt|y1:t), ∀t ≥ 1.

Proof. We proceed with a proof by induction. Let the Markov kernel Õ be defined as follows

Õ(x̃,d y) :=O(g(x̃),d y), ∀x̃ ∈X ,

and note that the Markov kernel M̃′ relates the two Markov chains:

M̃(x̃,dx̃t+1)= M̃′(g(x̃),dx̃t+1), ∀x̃ ∈X .
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Base case (t = 1):

p̃(dx̃2|y1)=
∫
X

M̃(x̃1,dx̃2)p̃(dx̃1|y1)

=
∫
X

M̃(x̃1,dx̃2)Õ(x̃1,d y1)π̃(dx̃1)/p(d y1)

=
∫
X

M̃′(g(x̃1),dx̃2)O(g(x̃1),d y1)π̃(dx̃1)/p(d y1)

=
∫
X

M̃′(x1,dx̃2)O(x1,d y1)π(dx1)/p(d y1)

=
∫
X

M̃′(x1,dx̃2)p(dx1|y1).

Inductive hypothesis (t = k): We assume that the statement holds for t = k, that is

p̃(dx̃k|y1:(k−1))=
∫

M̃′(xk−1,dx̃k)p(dxk−1|y1:(k−1)).

Inductive step (t = k+1):

p̃(dx̃k+1|y1:k)=
∫

M̃(x̃k,dx̃k+1)p̃(dx̃k|y1:k)

=
∫

M̃(x̃k,dx̃k+1)Õ(x̃k,d yk)p̃(dx̃k|y1:(k−1))/p̃(d yk|y1:(k−1))

=
∫

M̃(x̃k,dx̃k+1)Õ(x̃k,d yk)
∫

M̃′(xk−1,dx̃k)p(dxk−1|y1:(k−1))/p̃(d yk|y1:(k−1))

=
∫

M̃′(xk,dx̃k+1)O(xk,d yk)p(dxk|y1:(k−1))/p(d yk|y1:(k−1))

=
∫

M̃′(xk,dx̃k+1)p(dxk|y1:k).

Therefore the statement holds for t = k+1 under the assumption that it holds for t = k. By the

Principle of Induction the statement holds for all t ≥ 1. ■

Proof of Lemma 4.1. Let (X t)t≥1 be a Markov chain on X with Markov kernel M which has

invariant distribution π, and let (X̃ t)t≥1 be a Markov chain on X with a Markov kernel M̃. In the

following we use a tilde to denote quantities associated with a state-space representation (Õ, M̃, π̃),

and quantities without a tilde are associated with the original state-space representation (O, M,π).

We use the Rosenblatt transformation to relate the quantities associated with the two Markov

chains. Note that Fπ̃(X̃1)∼U (0,1)d, and it therefore follows that F−1
π Fπ̃(X̃1)∼π.

We will prove that there exists an additional state-space representation such that under both

state-space representations, the conditional distributions of the observed variables are the same,

that is p̃(d y1) = p(d y1), and p̃(d yt|y1:(t−1)) = p(d yt|y1:(t−1)) ∀t ≥ 2. We proceed with a proof by

induction.

Base case (t = 1): We define the Markov kernel Õ as follows

Õ(x̃,d y) :=O(F−1
π Fπ̃(x̃),d y), ∀x ∈X ,
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and therefore

p̃(d y1)=
∫
X

Õ(x̃,d y1)π̃(dx̃)=
∫
X

O(x,d y1)π(dx)= p(d y1).

Inductive hypothesis (t = k): We assume that p̃(yk|y1:(k−1))= p(yk|y1:(k−1)).

Inductive step (t = k+1): We need to relate the two Markov chains (X t)t≥1 and (X̃ t)t≥1. That

is, we need to express p̃(dx̃k+1|y1:k) in terms of xk. Following Lemma 4.8 with the invertible

mapping g := F−1
π Fπ̃, we see that

p̃(dx̃t+1|y1:t)=
∫

M̃′(xt,dx̃t+1)p(dxt|y1:t), ∀t ≥ 1,

for a Markov kernel M̃′ defined such that M̃′(x̃,dx̃t+1) = M̃(F−1
π̃ Fπ(x̃),dx̃t+1), for all x̃ ∈ X . To

relate M to M̃′, we let M̃′ be such that if Zx ∼ M̃′(x,dx̃t+1) then F−1
π Fπ̃(Zx)∼ M(x,dxt+1). Using

this, we can now prove that p̃(d yk+1|y1:k)= p(d yk+1|y1:k).

p̃(d yk+1|y1:k)=
∫
X

Õ(x̃k+1,d yk+1)p̃(dx̃k+1|y1:k)

=
∫
X

Õ(x̃k+1,d yk+1)
∫
X

M̃′(xk,dx̃k+1)p(dxk|y1:k)

=
∫
X

(∫
X

Õ(x̃k+1,d yk+1)M̃′(xk,dx̃k+1)
)

p(dxk|y1:k)

=
∫
X

(∫
X

O(xk+1,dyk+1)M(xk,dxk+1)
)

p(dxk|y1:k)

= p(d yk+1|y1:k).

Therefore the statement holds for t = k+1 under the assumption that it holds for t = k. By the

Principle of Induction the statement holds for all t ≥ 1. The final statement to be shown is that π̃

is the invariant distribution of M̃. For any continuous and bounded function ϕ : X →R we have∫
X 2

ϕ(x̃t+1)M̃(x̃t,dx̃t+1)π̃(dx̃t)=
∫
X 2

ϕ(x̃t+1)M̃′(xt,dx̃t+1)π(dxt),

=
∫
X 2

ϕ(xt+1)M(xt,dxt+1)π(dxt),

=
∫
X
ϕ(xt+1)π(dxt+1),

=
∫
X
ϕ(x̃t+1)π̃(dx̃t+1),

and thus π̃ is the invariant distribution of M̃. ■

Proof of Lemma 4.2. Let (X t)t≥1 be a Markov chain on X with Markov kernel M which has

invariant distribution π, and let (X̃ t)t≥1 be a Markov chain on X with a Markov kernel M̃. In

the following we use a tilde to denote quantities associated with a state-space representation

(Õ, M̃,π), and quantities without a tilde are associated with the original state-space representa-

tion (O, M,π).
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We use the Rosenblatt transformations described above to relate the quantities associated

with the two Markov chains. Note that Fπ(X̃1) ∼ U (0,1)d, and define the invertible mapping

h : X →X , h(X̃ t) := F−1
π (1−Fπ(X̃ t)).

We will prove that there exists an additional state-space representation with the same

invariant distribution as the original state-space represenation, such that under both state-space

representations the conditional distributions of the observed variables are the same. That is

p̃(d y1)= p(d y1), and p̃(d yt|y1:(t−1))= p(d yt|y1:(t−1)) ∀t ≥ 2. We proceed with a proof by induction.

Base case (t = 1): We can define the Markov kernel Õ as follows

Õ(x̃,d y) :=O(h(x̃),d y), ∀x̃ ∈X ,

and therefore

p̃(d y1)=
∫
X

Õ(x̃,d y1)π(dx̃)=
∫
X

O(h(x̃),d y)π(dx̃)=
∫
X

O(x,d y1)π(dx)= p(d y1).

Inductive hypothesis (t = k): We assume that p̃(yk|y1:(k−1))= p(yk|y1:(k−1)).

Inductive step (t = k+1): We need to relate the two Markov chains (X t)t≥1 and (X̃ t)t≥1. That

is, we need to express p̃(dx̃k+1|y1:k) in terms of xk. Following Lemma 4.8 with the invertible

mapping g := h, we see that

p̃(dx̃t+1|y1:t)=
∫

M̃′(xt,dx̃t+1)p(dxt|y1:t), ∀t ≥ 1,

for a Markov kernel M̃′ defined such that M̃′(x̃,dx̃t+1)= M̃(h−1(x̃),dx̃t+1), for all x ∈X . To relate

M to M̃′, we let M̃′ be such that if Zx ∼ M̃′(xt,dx̃t+1) then h(Zx) ∼ M(xt,dxt+1). Using this, we

can now prove that p̃(d yk+1|y1:k)= p(dyk+1|y1:k).

p̃(d yk+1|y1:k)=
∫
X

Õ(x̃k+1,d yk+1)p̃(dx̃k+1|y1:k)

=
∫
X

Õ(x̃k+1,d yk+1)
∫
X

M̃′(xk,dx̃k+1)p(dxk|y1:k)

=
∫
X

(∫
X

Õ(x̃k+1,dyk+1)M̃′(xk,dx̃k+1)
)

p(dxk|y1:k)

=
∫
X

(∫
X

O(h(x̃k+1),d yk+1)M̃′(xk,dx̃k+1)
)

p(dxk|y1:k)

=
∫
X

(∫
X

O(xk+1,d yk+1)M(xk,dxk+1)
)

p(dxk|y1:k)

= p(d yk+1|y1:k).

Therefore the statement holds for t = k+1 under the assumption that it holds for t = k. By the

Principle of Induction the statement holds for all t ≥ 1. The final statement to be shown is that π
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is the invariant distribution of M̃. For any continuous and bounded function ϕ : X →R we have∫
X 2

ϕ(x̃t+1)M̃(x̃t,dx̃t+1)π(dx̃t)=
∫
X 2

ϕ(x̃t+1)M̃′(xt,dx̃t+1)π(dxt),

=
∫
X 2

ϕ(xt+1)M(xt,dxt+1)π(dxt),

=
∫
X
ϕ(xt+1)π(dxt+1),

=
∫
X
ϕ(x̃t+1)π(dx̃t+1),

and thus π is the invariant distribution of M̃. ■

4.9.2 Proofs for the proposed method

The following proof describes how the empirical surrogate loss function defined in Equation (4.7)

can be computed.

Proof of Lemma 4.5. Recall that the empirical surrogate loss function is defined as

(4.11)
L̂S(W ,W̃) := ∥µ̂Y1Y2 − Û W

Y |X µ̂X X

(
Û W̃

X2|X1

)∗ (
Û W

Y |X
)∗ ∥2

H ⊗2
Y

+λ1∥µ̂Y − Û W
Y |X µ̂X∥2

HY
+λ2∥µ̂X − Û W̃

X2|X1
µ̂X∥2

HX
.

Given data (Yi)T
i=1 and (X i)T

i=1, let Y (1) := (Yi)T−1
i=1 and Y (2) := (Yi)T

i=2, then the empirical kernel

mean embeddings of µ̂Y1Y2 , µ̂Y and µ̂X are

µ̂Y1Y2 =
1

T −1

T−1∑
i=1

(
φY (Y (1)

i )⊗φY (Y (1)
i )

)
, µ̂Y = 1

T

T∑
i=1

φY (Yi), µ̂X = 1
T

T∑
i=1

ϕX (X i).

The empirical surrogate loss function is formed by replacing all terms with their empirical

estimates. Let µ̃Y1Y2 = Û W
Y |X µ̂X X (Û W̃

X2|X1
)∗(Û W

Y |X )∗, and define Φ= [φY (Y1), . . . ,φY (YT )] and Ψ=
[ϕX (X1), . . . ,ϕX (XT )] to be row vectors in HY and HX respectively. Using this notation, we have

Û W
Y |X =ΦWΨT, and Û W̃

X2|X1
=ΨW̃ΨT. We rewrite µ̃Y1Y2 as follows

µ̃Y1Y2 = Û W
Y |X µ̂X X (Û W̃

X2|X1
)∗(Û W

Y |X )∗

=ΦWΨTΨ(
1
T

IT )ΨTΨW̃TΨTΨWTΦT

=Φ
(

1
T

WKX KX W̃TKX WT
)
ΦT

=ΦZ̃ΦT,

where KX denotes the matrix of kernel evaluations over (X i)T
i=1, and Z̃ := 1

T WKX KX W̃TKX WT.

The first term of the empirical surrogate loss function, ∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y
, can be expressed

in terms of inner products as follows

∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

= 〈
µ̂Y1Y2 − µ̃Y1Y2 , µ̂Y1Y2 − µ̃Y1Y2

〉2
H ⊗2

Y

= 〈
µ̂Y1Y2 , µ̂Y1Y2

〉
H ⊗2

Y
−2

〈
µ̂Y1Y2 , µ̃Y1Y2

〉
H ⊗2

Y
+〈

µ̃Y1Y2 , µ̃Y1Y2

〉
H ⊗2

Y
.
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We now show that the term
〈
µ̃Y1Y2 , µ̃Y1Y2

〉2
H ⊗2

Y
can be expressed as a sum of kernel evaluations.

We use the following property of the tensor product Hilbert spaces: Let f ∈ H1 and g ∈ H2, then

〈 f ⊗ g, f ⊗ g〉H1⊗H2
= 〈 f , ( f ⊗ g)g〉H1

= 〈
f , f 〈g, g〉G

〉
H1

= 〈 f , f 〉H1
〈g, g〉H2

.

The term
〈
µ̃Y1Y2 , µ̃Y1Y2

〉2
H ⊗2

Y
can be expressed

〈
µ̃Y1Y2 , µ̃Y1Y2

〉2
H ⊗2

Y
=

〈
T∑

i, j=1
Z̃i, j(φY (Yi)⊗φY (Y j)),

T∑
k,l=1

Z̃k,l(φY (Yk)⊗φY (Yl))

〉
H ⊗2

Y

=
T∑

i, j,k,l=1
Z̃i, j Z̃k,l

〈
(φY (Yi)⊗φY (Y j)), (φY (Yk)⊗φY (Yl))

〉
H ⊗2

Y

=
T∑

i, j,k,l=1
Z̃i, j Z̃k,l

〈
φY (Yi), (φY (Yk)⊗φY (Yl))φY (Y j)

〉
HY

=
T∑

i, j,k,l=1
Z̃i, j Z̃k,l

〈
φY (Yi),φY (Yk)

〈
φY (Yl),φY (Y j)

〉
HY

〉
HY

=
T∑

i, j,k,l=1
Z̃i, j Z̃k,l

〈
φY (Yi),φY (Yk)

〉
HY

〈
φY (Yl),φY (Y j)

〉
HY

=
T∑

i, j,k,l=1
Z̃i, j Z̃k,lK(Yi,Yk)K(Yl ,Y j)

=Tr(Z̃TKY Z̃KY ).

Similarly, we have the following for
〈
µY1Y2 , µ̃Y1Y2

〉
and

〈
µY1Y2 ,µY1Y2

〉
〈
µ̂Y1Y2 , µ̃Y1Y2

〉=〈
T−1∑
i=1

1
T −1

(φY (Y (1)
i )⊗φY (Y (2)

i )),
T∑

j,k=1
Z̃ j,k(φY (Y j)⊗φY (Yk))

〉
H ⊗2

Y

=
T−1∑
i=1

T∑
j,k=1

1
T −1

Z̃ j,kK(Y (1)
i ,Y j)K(Yk,Y (2)

i )

= 1
T −1

Tr
(
KY1Y Z̃KY Y2

)
〈
µ̂Y1Y2 , µ̂Y1Y2

〉=〈
T−1∑
i=1

1
T −1

(φY (Y (1)
i )⊗φY (Y (2)

i )),
T−1∑
j=1

1
T −1

(φY (Y (1)
j )⊗φY (Y (2)

j ))

〉
H ⊗2

Y

=
T−1∑
i, j=1

1
(T −1)2 K(Y (1)

i ,Y (1)
j )K(Y (2)

j ,Y (2)
i )

= 1
(T −1)2 Tr

(
KY1 KY2

)
.
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We combine the above to obtain

∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

= 〈
µ̂Y1Y2 , µ̂Y1Y2

〉
H ⊗2

Y
−2

〈
µ̂Y1Y2 , µ̃Y1Y2

〉
H ⊗2

Y
+〈

µ̃Y1Y2 , µ̃Y1Y2

〉
H ⊗2

Y

= 1
(T −1)2 Tr

(
KY1 KY2 )−2

1
T −1

Tr
(
KY1Y Z̃KY Y2

)+Tr(Z̃TKY Z̃KY )

The second term of the empirical surrogate loss function, ∥µ̂Y −Û W
Y |X µ̂X∥2

HY
, can be expressed

as follows

∥µ̂Y − Û W
Y |X µ̂X∥2

HY
=

〈
µ̂Y − Û W

Y |X µ̂X , µ̂Y − Û W
Y |X µ̂X

〉
HY

= 〈
µ̂Y , µ̂Y

〉
HY

−2
〈
µ̂Y ,Û W

Y |X µ̂X

〉
HY

+
〈
Û W

Y |X µ̂X ,Û W
Y |X µ̂X

〉
HY

.

As inner products between feature mappings simplify to evaluations of kernel functions, the

individual terms can be computed as〈
µ̂Y , µ̂Y

〉
HY

= 1
T2 1TKY 1〈

µ̂Y ,Û W
Y |X µ̂X

〉
HY

=
〈
µ̂Y ,ΦWΨTµ̂X

〉
HY

= 1
T2 1TKY WKX 1〈

Û W
Y |X µ̂X ,Û W

Y |X µ̂X

〉
HY

=
〈
ΦWΨTµ̂X ,ΦWΨTµ̂X

〉
HY

= 1
T2 1TKX WTKY WKX 1.

Combining the above, the second component of the empirical surrogate loss is computed as

∥µ̂Y − Û W
Y |X µ̂X∥2

HY
= 1

T2 1TKY 1−2
1

T2 1TKY WKX 1+ 1
T2 1TKX WTKY WKX 1.

The third term of the empirical surrogate loss function, ∥µ̂X −Û W̃
X2|X1

µ̂X∥2
HX

, can be expressed

as

∥µ̂X − Û W̃
X2|X1

µ̂X∥2
HY

=
〈
µ̂X − Û W̃

X2|X1
µ̂X , µ̂X − Û W̃

X2|X1
µ̂X

〉
HY

= 〈
µ̂X , µ̂X

〉
HY

−2
〈
µ̂X ,Û W̃

X2|X1
µ̂X

〉
HY

+
〈
Û W̃

X2|X1
µ̂X ,Û W̃

X2|X1
µ̂X

〉
HY

.

Each inner product can be computed as follows〈
µ̂X , µ̂X

〉
HY

= 1
T2 1TKX 1〈

µ̂X ,Û W̃
X2|X1

µ̂X

〉
HY

=
〈
µ̂X ,Û W̃

X2|X1
µ̂X

〉
HY

=
〈
µ̂X ,ΨW̃ΨTµ̂X

〉
HY

= 1
T2 1TKX W̃KX 1〈

Û W̃
X2|X1

µ̂X ,Û W̃
X2|X1

µ̂X

〉
HY

=
〈
ΨW̃ΨTµ̂X ,ΨW̃ΨTµ̂X

〉
HY

= 1
T2 1TKX W̃TKX W̃KX 1.
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Combining the above, the third component of the empirical surrogate loss function is computed

as

∥µ̂X − Û W̃
X2|X1

µ̂X∥2
HY

= 1
T2 1TKX 1−2

1
T2 1TKX W̃KX 1+ 1

T2 1TKX W̃TKX W̃KX 1.

■

4.9.3 Partial derivatives of the empirical surrogate loss

In the following we derive the partial derivatives of the empirical surrogate loss function defined

in Lemma 4.5.

Proof of Lemma 4.6. We first compute the partial derivative of the empirical surrogate loss

function L̂S with respect to W̃ . It follows from Lemma 4.5 that the first component of the loss is

given by

∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

= 1
(T −1)2 Tr

(
KY1 KY2

)−2
1

T −1
Tr

(
KY1Y Z̃KY Y2

)+Tr(Z̃TKY Z̃KY ),

where Z̃ := 1
T WKX KX W̃TKX WT. In the following, we write µ̃Y1Y2 = f (Z̃(W ,W̃)) to emphasize the

dependence of Z̃ on W and W̃ . We proceed with an application of the chain rule.

∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2
H ⊗2

Y

∂W̃i, j
=

T∑
k,l=1

∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2
H ⊗2

Y

∂Z̃k,l

∂Z̃k,l

∂W̃i, j

=
T∑

k,l=1

∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2
H ⊗2

Y

∂Z̃


k,l

[
∂Z̃
∂W̃i, j

]
k,l

=Tr


∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2

H ⊗2
Y

∂Z̃

T
∂Z̃
∂W̃i, j

.

To simplify the equations that follow, we use Einstein notation. We can write

∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

= 1
(T −1)2 Tr

(
KY1 KY2

)−2
1

T −1
Tr

(
KY1Y Z̃KY Y2

)+Tr(Z̃TKY Z̃KY ),

= 1
(T −1)2 [KY1]i,i1[KY2]i1,i − 2

T −1
[KY1Y ] j, j1[Z̃] j1, j2[KY Y2] j2, j

+ [Z̃T]k,k1[KY ]k1,k2[Z̃]k2,k3[KY ]k3,k,

from which it follows that the partial derivative with respect to Z̃m,n, for m,n ∈ {1, . . . ,n}, is

∂∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

∂Z̃m,n
=− 2

T −1
[KY1Y ] j,m[KY Y2]n, j + [Z̃T]k,k1[KY ]k1,m[KY ]n,k

+ [KY ]n,k2[Z̃]k2,k3[KY ]k3,m,

=− 2
T −1

[KY Y2 KY1Y ]n,m + [KY (Z̃T + Z̃)KY ]n,m.
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The partial derivative with respect to Z̃ is therefore

∂∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

∂Z̃
=− 2

T −1
(KY Y2 KY1Y )T + (KY (Z̃T + Z̃)KY )T

=− 2
T −1

KY Y1 KY2Y +KY (Z̃+ Z̃T)KY .

The partial derivative of Z̃ with respect to W̃i, j can be computed as

∂Z̃
∂W̃i, j

= 1
T

WKX KX J j,iKX WT,

for i, j ∈ {1, . . . ,n}, where J j,i is the matrix with ( j, i)-th element equal to 1, and 0 otherwise.

Combining the two partial derivatives above, we have

∂∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

∂W̃i, j
=Tr


∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2

H ⊗2
Y

∂Z̃

T
∂Z̃
∂W̃i, j


=Tr

{[
− 2

T −1
KY Y1 KY2Y +KY (Z̃+ Z̃T)KY

]T 1
T

WKX KX J j,iKX WT

}
.

Note that if C := AJ i, jB, then C is equal to the outer product of the i-th column of A and the

j-th row of B. In particular, the diagonal of C is equal to the elementwise multiplication of

the i-th columns and j-th row of A and B respectively. Thus, Tr(AJ i, jB) is the sum of the i-th

column of A multiplied by the j-th row of B. Let D i, j :=Tr(AJ i, jB), then D can be expressed as

D = ATBT = (BA)T. It therefore follows that

∂∥µ̂Y1Y2 − µ̃Y1Y2∥2
H ⊗2

Y

∂W̃
= KX WT

[
− 2

T −1
KY Y1 KY2Y +KY (Z̃+ Z̃T)KY

]T 1
T

WKX KX .

The second term of the empirical surrogate loss function is independent of W̃ . The third term

∥µ̂X − Û W̃
X2|X1

µ̂X∥2
HX

does depend on W̃ and its partial derivative with respect to W̃ is computed

as follows. Recall that

∥µ̂X − Û W̃
X2|X1

µ̂X∥2
HX

= 1
T2 1TKX 1−2

1
T2 1TKX W̃KX 1+ 1

T2 1TKX W̃TKX W̃KX 1.

The partial derivative follows readily as

∂∥µ̂X − Û W̃
X2|X1

µ̂X∥2
HX

∂W̃
=− 2

T2 KX 11TKX + 2
T2 KX W̃KX 11TKX .

Combining the above, we have the following partial derivative of the empirical surrogate loss

function

L̂S(W ,W̃)
∂W̃

= 1
T

KX WT ATWKX KX +λ2[D+ 2
T2 KX W̃KX 11TKX ],
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where we have defined A :=− 2
T−1 KY Y1 KY2Y +KY (Z̃+ Z̃T)KY , and D :=− 2

T2 KX 11TKX .

The partial derivative with respect to W can be derived in a similar manner. The partial

derivative of the first term of the empirical surrogate loss is equal to

∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2
H ⊗2

Y

∂Wi, j
=Tr


∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2

H ⊗2
Y

∂Z̃

T
∂Z̃
∂Wi, j

.

The partial derivative with respect to Z̃ was computed above. The partial derivative of Z̃ with

respect to Wi, j is

∂Z̃
∂Wi, j

= 1
T

J i, jKX KX W̃TKX WT + 1
T

WKX KX W̃TKX J j,i,

and it therefore follows that the partial derivative with respect to Wi, j, i, j ∈ {1, . . . ,n} is

∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2
H ⊗2

Y

∂Wi, j
=Tr

{[
− 2

T −1
KY Y1 KY2Y +KY (Z̃+ Z̃T)KY

]T

×
[

1
T

J i, jKX KX W̃TKX WT + 1
T

WKX KX W̃TKX J j,i
]}

.

Following the same reasoning as above, the partial derivative with respect to W is

∂∥µ̂Y1Y2 − f (Z̃(W ,W̃))∥2
H ⊗2

Y

∂W
=

[
− 2

T −1
KY Y1 KY2Y +KY (Z̃+ Z̃T)KY

]
(

1
T

KX KX W̃TKX WT)T

+
[
− 2

T −1
KY Y1 KY2Y +KY (Z̃+ Z̃T)KY

]T 1
T

WKX KX W̃TKX

= (A+ AT)W(B+BT),

where A :=− 2
T−1 KY Y1 KY2Y +KY (Z̃+ Z̃T)KY , B := 1

T KX KX W̃TKX .

We also require the derivative of ∥µ̂Y − Û W
Y |X µ̂X∥2

HY
with respect to W . Recall that

∥µ̂Y − Û W
Y |X µ̂X∥2

HY
= 1

T2 1TKY 1−2
1

T2 1TKY WKX 1+ 1
T2 1TKX WTKY WKX 1.

Differentiating with respect to W we obtain

∂∥µ̂Y − Û W
Y |X µ̂X∥2

HY

∂W
=− 2

T2 KY 11TKX + 2
T2 KY WKX 11TKX .

Hence, we have the following partial derivative of the empirical surrogate loss function

∂L̂S(W ,W̃)
∂W

= (A+ AT)W(B+BT)+λ1(C+ 2
T2 KY WKX 11TKX ),(4.12)

where we have defined C :=− 2
T2 KY 11TKX , and A and B are as defined above. ■

122



BIBLIOGRAPHY

A. Anandkumar, D. Hsu, and S. M. Kakade.

A method of moments for mixture models and hidden markov models.

In Proceedings of the 25th Annual Conference on Learning Theory, volume 23 of Proceedings of

Machine Learning Research, pages 33.1–33.34, 2012.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky.

Tensor decompositions for learning latent variable models.

Journal of Machine Learning Research, 15:2773–2832, 2014.

N. Aronszajn.

Theory of reproducing kernels.

Transactions of the American Mathematical Society, 68(3):337–404, 1950.

C. R. Baker.

Joint measures and cross-covariance operators.

Transactions of the American Mathematical Society, 186:273–289, 1973.

L. E. Baum and T. Petrie.

Statistical inference for probabilistic functions of finite state markov chains.

The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss.

A maximization technique occurring in the statistical analysis of probabilistic functions of

markov chains.

The Annals of Mathematical Statistics, 41(1):164–171, 1970.

A. Berlinet and C. Thomas-Agnan.

Reproducing kernel Hilbert spaces in probability and statistics.

Springer Science & Business Media, 2011.

R. Cao, A. Cuevas, and W. G. Manteiga.

A comparative study of several smoothing methods in density estimation.

Computational Statistics & Data Analysis, 17(2):153–176, 1994.

123



BIBLIOGRAPHY

O. Cappé, E. Moulines, and T. Rydén.

Inference in hidden markov models.

In Proceedings of EUSFLAT Conference, pages 14–16, 2009.

J. T. Chang.

Full reconstruction of markov models on evolutionary trees: identifiability and consistency.

Mathematical Biosciences, 137(1):51–73, 1996.

Y. Chen, M. Welling, and A. Smola.

Super-samples from kernel herding.

In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pages

109–116, 2010.

N. Chopin, O. Papaspiliopoulos, et al.

An introduction to sequential Monte Carlo, volume 4.

Springer, 2020.

L. Couvreur and C. Couvreur.

Wavelet-based non-parametric hmm’s: theory and applications.

In 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings

(Cat. No. 00CH37100), volume 1, pages 604–607. IEEE, 2000.

N. Cristianini and J. Shawe-Taylor.

An introduction to support vector machines and other kernel-based learning methods.

Cambridge University Press, 2000.

G. Da Prato and J. Zabczyk.

Stochastic equations in infinite dimensions.

Cambridge university press, 2014.

Y. De Castro, E. Gassiat, and S. Le Corff.

Consistent estimation of the filtering and marginal smoothing distributions in nonparametric

hidden markov models.

IEEE Transactions on Information Theory, 63(8):4758–4777, 2017.

H. Dette and A. A. Zhigljavsky.

Reproducing kernel hilbert spaces, polynomials, and the classical moment problem.

SIAM/ASA Journal on Uncertainty Quantification, 9(4):1589–1614, 2021.

L. Devroye and G. Lugosi.

Combinatorial methods in density estimation.

Springer Science & Business Media, 2001.

124



BIBLIOGRAPHY

J. Diestel and J. Uhl.

Vector measures, math, 1977.

N. Dinculeanu.

Vector integration and stochastic integration in Banach spaces, volume 48.

John Wiley & Sons, 2000.

R. Douc, E. Moulines, and T. Rydén.

Asymptotic properties of the maximum likelihood estimator in autoregressive models with

markov regime.

Annals of Statistics, 32(5):2254–2304, 2004.

A. Doucet, N. De Freitas, and N. Gordon.

An introduction to sequential monte carlo methods.

Sequential Monte Carlo Methods in Practice, pages 3–14, 2001.

S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman.

Identification of gaussian process state space models.

Advances in Neural Information Processing Systems, 30, 2017.

J. Fan and T. H. Yim.

A crossvalidation method for estimating conditional densities.

Biometrika, 91(4):819–834, 2004.

J. Fan, Q. Yao, and H. Tong.

Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems.

Biometrika, 83(1):189–206, 1996.

S. Fischer and I. Steinwart.

Sobolev norm learning rates for regularized least-squares algorithms.

The Journal of Machine Learning Research, 21(1):8464–8501, 2020.

R. Frigola, Y. Chen, and C. E. Rasmussen.

Variational gaussian process state-space models.

Advances in Neural Information Processing Systems, 27, 2014.

K. Fukumizu.

Nonparametric bayesian inference with kernel mean embedding.

Modern Methodology and Applications in Spatial-Temporal Modeling, pages 1–24, 2015.

K. Fukumizu, F. Bach, and M. Jordan.

Kernel dimensionality reduction for supervised learning.

Advances in Neural Information Processing Systems, 16, 2003.

125



BIBLIOGRAPHY

K. Fukumizu, L. Song, and A. Gretton.

Kernel bayes’ rule: Bayesian inference with positive definite kernels.

The Journal of Machine Learning Research, 14(1):3753–3783, 2013.

É. Gassiat, A. Cleynen, and S. Robin.

Inference in finite state space non parametric hidden markov models and applications.

Statistics and Computing, 26:61–71, 2016.

E. Gassiat, S. Le Corff, and L. Lehéricy.

Identifiability and consistent estimation of nonparametric translation hidden markov models

with general state space.

The Journal of Machine Learning Research, 21(1):4589–4628, 2020.

E. Giné and A. Guillou.

Rates of strong uniform consistency for multivariate kernel density estimators.

In Annales de l’Institut Henri Poincare (B) Probability and Statistics, volume 38, pages 907–921.

Elsevier, 2002.

I. Gohberg, S. Goldberg, and M. A. Kaashoek.

Classes of linear operators Vol. 1, volume 63.

Birkhäuser, 1990.

A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola.

A kernel method for the two-sample-problem.

Advances in Neural Information Processing Systems, 19, 2006.

S. Grünewälder, G. Lever, L. Baldassarre, S. Patterson, A. Gretton, and M. Pontil.

Conditional mean embeddings as regressors.

In Proceedings of the 29th International Coference on International Conference on Machine

Learning, pages 1803–1810, 2012.

J. Hoffmann-Jørgensen and G. Pisier.

The law of large numbers and the central limit theorem in banach spaces.

The Annals of Probability, pages 587–599, 1976.

M. P. Holmes, A. G. Gray, and C. L. Isbell Jr.

Fast nonparametric conditional density estimation.

In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pages

175–182, 2007.

D. Hsu, S. M. Kakade, and T. Zhang.

A spectral algorithm for learning hidden markov models.

Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

126



BIBLIOGRAPHY

R. J. Hyndman, D. M. Bashtannyk, and G. K. Grunwald.

Estimating and visualizing conditional densities.

Journal of Computational and Graphical Statistics, 5(4):315–336, 1996.

H. Jaeger.

Observable operator models for discrete stochastic time series.

Neural Computation, 12(6):1371–1398, 2000.

M. Janzamin, R. Ge, J. Kossaifi, A. Anandkumar, et al.

Spectral learning on matrices and tensors.

Foundations and Trends® in Machine Learning, 12(5-6):393–536, 2019.

H. Jiang.

Uniform convergence rates for kernel density estimation.

In International Conference on Machine Learning, pages 1694–1703. PMLR, 2017.

M. C. Jones, J. S. Marron, and S. J. Sheather.

A brief survey of bandwidth selection for density estimation.

Journal of the American Statistical Association, 91(433):401–407, 1996.

M. Kanagawa and K. Fukumizu.

Recovering distributions from gaussian rkhs embeddings.

In Artificial Intelligence and Statistics, pages 457–465. PMLR, 2014.

M. Kanagawa, B. K. Sriperumbudur, and K. Fukumizu.

Convergence guarantees for kernel-based quadrature rules in misspecified settings.

Advances in Neural Information Processing Systems, 29, 2016.

D. P. Kingma and J. Ba.

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

G. Kitagawa.

Non-gaussian state—space modeling of nonstationary time series.

Journal of the American statistical association, 82(400):1032–1041, 1987.

I. Klebanov, I. Schuster, and T. J. Sullivan.

A rigorous theory of conditional mean embeddings.

SIAM Journal on Mathematics of Data Science, 2(3):583–606, 2020.

J.-Y. Kwok and I.-H. Tsang.

The pre-image problem in kernel methods.

IEEE Transactions on Neural Networks, 15(6):1517–1525, 2004.

127



BIBLIOGRAPHY

M. F. Lambert, J. P. Whiting, and A. V. Metcalfe.

A non-parametric hidden markov model for climate state identification.

Hydrology and Earth System Sciences, 7(5):652–667, 2003.

R. Langrock, T. Kneib, A. Sohn, and S. L. DeRuiter.

Nonparametric inference in hidden markov models using p-splines.

Biometrics, 71(2):520–528, 2015.

R. Langrock, T. Adam, V. Leos-Barajas, S. Mews, D. L. Miller, and Y. P. Papastamatiou.

Spline-based nonparametric inference in general state-switching models.

Statistica Neerlandica, 72(3):179–200, 2018.

Y. LeCun, C. Cortes, and C. Burges.

Mnist handwritten digit database.

ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

L. Lehéricy.

State-by-state minimax adaptive estimation for nonparametric hidden markov models.

The Journal of Machine Learning Research, 19(1):1432–1477, 2018.

L. Lehéricy.

Consistent order estimation for nonparametric hidden markov models.

Bernoulli, 25(1):464–498, 2019.

Z. Li, D. Meunier, M. Mollenhauer, and A. Gretton.

Optimal rates for regularized conditional mean embedding learning.

Advances in Neural Information Processing Systems, 35:4433–4445, 2022.

D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin.

Towards a learning theory of cause-effect inference.

In International Conference on Machine Learning, pages 1452–1461. PMLR, 2015.

H. Q. Minh.

Some properties of gaussian reproducing kernel hilbert spaces and their implications for

function approximation and learning theory.

Constructive Approximation, 32:307–338, 2010.

M. Mollenhauer, I. Schuster, S. Klus, and C. Schütte.

Singular value decomposition of operators on reproducing kernel hilbert spaces.

In Advances in Dynamics, Optimization and Computation: A volume dedicated to Michael

Dellnitz on the occasion of his 60th birthday, pages 109–131. Springer, 2020.

K. Muandet, B. Sriperumbudur, K. Fukumizu, A. Gretton, and B. Schölkopf.

128



BIBLIOGRAPHY

Kernel mean shrinkage estimators.

Journal of Machine Learning Research, 17, 2016.

K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al.

Kernel mean embedding of distributions: A review and beyond.

Foundations and Trends® in Machine Learning, 10(1-2):1–141, 2017.

É. Nadaraya.

On non-parametric estimates of density functions and regression curves.

Theory of Probability & Its Applications, 10(1):186–190, 1965.

Y. Nishiyama, M. Kanagawa, A. Gretton, and K. Fukumizu.

Model-based kernel sum rule: kernel bayesian inference with probabilistic models.

Machine Learning, 109(5):939–972, 2020.

J. Nocedal and S. J. Wright.

Numerical optimization.

Springer, 1999.

H. Owhadi and C. Scovel.

Separability of reproducing kernel spaces.

Proceedings of the American Mathematical Society, 145(5):2131–2138, 2017.

B. U. Park and J. S. Marron.

Comparison of data-driven bandwidth selectors.

Journal of the American Statistical Association, 85(409):66–72, 1990.

J. Park and K. Muandet.

A measure-theoretic approach to kernel conditional mean embeddings.

Advances in neural information processing systems, 33:21247–21259, 2020.

E. Parzen.

On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

D. Paulin.

Concentration inequalities for markov chains by marton couplings and spectral methods.

Electron. J. Probab, 20(79):1–32, 2015.

V. I. Paulsen and M. Raghupathi.

An introduction to the theory of reproducing kernel Hilbert spaces, volume 152.

Cambridge University Press, 2016.

129



BIBLIOGRAPHY

L. R. Rabiner.

A tutorial on hidden markov models and selected applications in speech recognition.

Proceedings of the IEEE, 77(2):257–286, 1989.

M. Rosenblatt.

Conditional probability density and regression estimators.

Multivariate Analysis II, 25:31, 1969.

V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan.

Finding a "kneedle" in a haystack: Detecting knee points in system behavior.

In International Conference on Distributed Computing Systems Workshops, pages 166–171.

IEEE, 2011.

B. Schölkopf and A. Smola.

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.

MIT Press, Cambridge, MA, USA, 2001.

ISBN 0262194759.

B. Schölkopf, A. Smola, and K.-R. Müller.

Kernel principal component analysis.

In International Conference on Artificial Neural Networks, pages 583–588. Springer, 1997.

I. Schuster, M. Mollenhauer, S. Klus, and K. Muandet.

Kernel conditional density operators.

In International Conference on Artificial Intelligence and Statistics, pages 993–1004. PMLR,

2020.

L. Shang and K.-P. Chan.

Nonparametric discriminant hmm and application to facial expression recognition.

In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 2090–2096. IEEE,

2009.

B. W. Silverman.

Density estimation for statistics and data analysis, volume 26.

CRC press, 1986.

A. Smola, A. Gretton, L. Song, and B. Schölkopf.

A hilbert space embedding for distributions.

In International Conference on Algorithmic Learning Theory, pages 13–31. Springer, 2007.

L. Song.

Learning via hilbert space embedding of distributions.

University of Sydney (2008), 17, 2008.

130



BIBLIOGRAPHY

L. Song, X. Zhang, A. Smola, A. Gretton, and B. Schölkopf.

Tailoring density estimation via reproducing kernel moment matching.

In Proceedings of the 25th International Conference on Machine learning, pages 992–999, 2008.

L. Song, J. Huang, A. Smola, and K. Fukumizu.

Hilbert space embeddings of conditional distributions with applications to dynamical systems.

In Proceedings of the 26th Annual International Conference on Machine Learning, pages

961–968, 2009.

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. Smola.

Hilbert space embeddings of hidden markov models.

In Proceedings of the 27th International Conference on International Conference on Machine

Learning, pages 991–998, 2010.

L. Song, K. Fukumizu, and A. Gretton.

Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric

inference in graphical models.

IEEE Signal Processing Magazine, 30(4):98–111, 2013.

L. Song, A. Anandkumar, B. Dai, and B. Xie.

Nonparametric estimation of multi-view latent variable models.

In International Conference on Machine Learning, pages 640–648. PMLR, 2014.

B. K. Sriperumbudur, K. Fukumizu, and G. R. Lanckriet.

Universality, characteristic kernels and rkhs embedding of measures.

Journal of Machine Learning Research, 12(7), 2011.

M. Stanke, S. Waack, et al.

Gene prediction with a hidden markov model and a new intron submodel.

Bioinformatics-Oxford, 19(2):215–225, 2003.

C. J. Stone.

Optimal rates of convergence for nonparametric estimators.

The Annals of Statistics, pages 1348–1360, 1980.

S. Taylor.

Financial returns modelled by the product of two stochastic processes-a study of the daily sugar

prices 1961-75.

Time Series Analysis: Theory and Practice, 1:203–226, 1982.

A. Tsybakov.

Introduction to Nonparametric Estimation.

Springer Series in Statistics. Springer New York, 2008.

131



BIBLIOGRAPHY

S. Volant, C. Bérard, M.-L. Martin-Magniette, and S. Robin.

Hidden markov models with mixtures as emission distributions.

Statistics and Computing, 24(4):493–504, 2014.

V. Vovk.

Kernel ridge regression.

In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, pages 105–116. Springer,

2013.

M. Welling.

Herding dynamical weights to learn.

In Proceedings of the 26th Annual International Conference on Machine Learning, pages

1121–1128, 2009.

C. K. Williams and C. E. Rasmussen.

Gaussian processes for machine learning, volume 2.

MIT press Cambridge, MA, 2006.

C. Yau, O. Papaspiliopoulos, G. O. Roberts, and C. Holmes.

Bayesian non-parametric hidden markov models with applications in genomics.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(1):37–57, 2011.

132


	List of Tables
	List of Figures
	Introduction
	Notation and assumptions
	Background
	Hidden Markov and state-space models
	Reproducing kernel Hilbert spaces


	Density recovery from kernel mean embeddings
	Introduction
	Literature review

	Density estimation
	Practical considerations
	Hyperparameter selection

	Application to conditional mean embeddings
	Hyperparameter selection
	Comparison to existing methods

	Experiments
	Simulated data
	Illustrative example
	Comparison to CDO
	Comparison to KCDE

	Future work
	Conclusion
	Supplementary
	Proof of Lemma 2.1
	Assumptions and proof of Corollary 2.1


	Hidden Markov Models
	Introduction
	Setting and assumptions

	Problem formulation
	Nonparametric estimation via the kernel spectral method
	Embeddings
	Decomposition
	The observable operator
	The transition matrix and stationary distribution
	The choice of U1, U2, and U3
	Estimation of the HMM parameters

	Inference: the filtering problem
	Density estimation and the forward algorithm
	An alternative kernel Bayes' rule

	Order estimation
	Proof of theorem::orderestconsistency

	Experiments
	Simulated and synthetic datasets
	An example
	Filtering
	Order estimation
	MNIST HMM

	Comparison to existing methods
	Future work
	Conclusion

	State-space models
	Introduction
	Problem formulation
	Theory
	Identifiability of state-space models
	Decomposing RKHS embeddings

	Nonparametric estimation
	Specifying a loss function
	A surrogate loss function
	Optimization
	An algorithm
	Density recovery

	Inference: prediction
	Experiments
	Simulated datasets
	Application to simulated data

	Future work
	Conclusion
	Proofs
	Proofs for non-identifiability
	Proofs for the proposed method
	Partial derivatives of the empirical surrogate loss


	Bibliography

