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Abstract

The analysis of network data, describing relationships, interactions and dependencies between en-
tities, often begins with embedding: the process of mapping these entities into a low-dimensional
vector space in a way which preserves salient information present in the data. Spectral em-
bedding is a family of embedding algorithms in which representations are obtained using the
eigenvectors of a specially designed matrix constructed from the network. It has emerged as a
simple yet effective approach, which is both highly scalable and interpretable.

In this thesis, we provide a statistical lens into spectral embedding, shining light on how
various network structures manifest themselves as geometric patterns in the vector space, and
how certain algorithmic choices influence the information which is extracted from the network.
We present new methodology which exploits these insights and provide statistical theory, as
well as simulated and real data studies to support them.

Chapter 2 introduces some statistical models for network data and reviews existing estima-
tion theory for spectral embedding; Chapter 3 studies spectral embedding using the random
walk Laplacian matrix, developing estimation theory which illuminates a key inferential differ-
ence between it and other popular matrix constructions; Chapter 4 elucidates the geometric
structure which emerges in the spectral embeddings of multipartite networks and develops
bespoke statistical methodology which exploits it for dimension reduction; and Chapter 5
presents an algorithmic framework for spectral embedding of dynamic networks which produces
representations that evolve in continuous time and reflect the changing structural roles of the
nodes in the network.
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Chapter 1

Introduction

In the ever-expanding landscape of modern data science, the study of network data describing

relationships, interactions, and dependencies between entities has emerged as a pivotal field,

with applications spanning a diverse set of domains.

Information about personal relationships, message exchanges, and physical and virtual

interactions are collected on mass scales online, and making sense of these relationships is

vital for a diverse range of societal applications, from understanding the spread of disease and

misinformation to detecting organised crime such as human trafficking and corruption. In the

biological sciences, the study of protein-protein interactions, gene regulatory networks, and

metabolic pathways provides a rich web of relationships that govern the fundamental processes

of life. Understanding these connections is essential for advancements in personalised medicine,

drug discovery, and disease modelling. Computer networks produce a deluge of relational data

describing packet transfers and user authentication, the analysis of which is imperative for

protecting against intrusions and cyber-attacks.

Network data can be broadly categorised as being either static or dynamic. In a static

network, the relationship between a pair of entities, known as nodes, can be described using a

single number such as a one or a zero, indicating the presence, or not, of a connection. In this

thesis, we will also use the word graph to describe a static network. In a dynamic network, one

instead observes a process between each pair of nodes which takes place over time, such as a

point process or a time series.

Exploratory analysis of network data often begins with embedding: the process of mapping

the nodes into a low-dimensional vector space in a way which preserves salient information

present in the data. These representations provide a holistic view of the underlying relationships,

allowing for visual exploration of patterns and latent structures, such as communities, which may

be masked by the complexity of the raw data. Embedding is also used as a precursor to many

forms of inference, such as clustering, regression, classification and neighbour recommendation,

which require Euclidean data as inputs.

Spectral embedding is a family of embedding algorithms for static networks in which

1



CHAPTER 1. INTRODUCTION

representations are obtained using the eigenvectors of a specially designed matrix constructed

from the network. It has emerged as a simple yet effective approach, which is both highly scalable

and interpretable. The geometric patterns which emerge in spectral embeddings fundamentally

depend on two things: the underlying structures present in the network, and the construction of

the matrix used for the embedding. Different matrix constructions extract different information

from the network, and studying the precise nature of this interplay is an active area of research.

The first goal of this thesis is to build upon this research by elucidating the fundamental

inferential differences between some popular matrix constructions. In particular, we focus on

the random walk Laplacian matrix and explore some of the methodological implications of

our insights. The second goal of this thesis is to demonstrate how special geometric structure

emerges in the spectral embeddings of a class of networks known as multipartite networks,

and to develop an algorithmic extension to spectral embedding which exploits it for further

dimension reduction.

One limitation of the standard spectral embedding algorithm is that, in order to analyse a

dynamic network, one must first summarise it as a static network, for example via counting

or averaging. This makes it unsuitable for distilling information about the temporal aspects

of the data. The final goal of this thesis is to develop a framework for spectral embedding of

dynamic networks, which produces representations that evolve in continuous time and reflect

the changing structural roles of the nodes in the network, allowing inference in the temporal

domain.

1.1 Overview of thesis

We now give a brief chapter-by-chapter overview of this thesis.

In Chapter 2, we review some existing statistical estimation theory for spectral embedding

using the eigenvectors of the adjacency and symmetric normalised Laplacian matrices, which

lays the foundation for the statistical estimation theory we develop in Chapters 3 and 4. This

theory is based on the generalised random dot product graph, a generic model for low-rank

random graphs with independent edges, and provides a model-based interpretation of some the

geometric structures often observed in these embeddings, such as clusters, rays, and simplexes.

In Chapter 3, we develop statistical estimation theory for spectral embedding using the

eigenvectors of the random walk Laplacian matrix which illuminates the fundamental inferential

differences between it and the embeddings discussed in this previous chapter. We then explore

the methodological implications of our theory for clustering. To illustrate our theory, we present

an exploratory analysis of a network describing the enmity relationships between the characters

of J.K. Rowling’s renowned Harry Potter series. This chapter is based on joint work with Patrick

Rubin-Delanchy, and benefitted from conversations with Sean Dewar and Kevin Hughes. An

earlier version of this work was posted on ArXiv in May 2021 [1].

2



1.2. NOTATION

In Chapter 4, we elucidate the geometric structure which emerges in the spectral embeddings

of multipartite networks and develop bespoke statistical methodology which exploits it for

dimension reduction. We develop statistical estimation theory for our new algorithm and

demonstrate its effectiveness via an exploratory analysis of a large multipartite network derived

from data repositories supporting biomedical research, linking groups of entities such as drugs,

diseases, targets, pathways, variant locations and haplotypes. This chapter is adapted from

joint work with Ian Gallagher, Joshua Cape and Patrick Rubin-Delanchy, an earlier version of

which was posted on ArXiv in February 2022 [2]. The data analysed in this chapter was kindly

provided by Nansu Zong.

In Chapter 5, we consider dynamic networks in which data is in the form of a collection of

instantaneous interaction events which occur between nodes in continuous time. We develop a

new family of spectral embedding algorithms, which we name “Intensity Profile Projection”,

which produce low-dimensional trajectories for the nodes in the network: vectors which evolve in

continuous time, encoding their changing structural roles in the network. We demonstrate that

the learned embeddings possess two key properties known as temporal coherence and structure

preservation, which allow them to be meaningfully compared to different points in time. We

support our algorithm with statistical estimation theory and demonstrate it via an exploratory

analysis of a dataset describing face-to-face interactions between pupils at a primary school

in Lyon. This chapter is adapted from joint work with Ian Gallagher, Emma Ceccherini, Nick

Whiteley and Patrick Rubin-Delanchy, which has been accepted for publication at NeurIPS

2023. This work was posted on ArXiv in June 2023 [3].

All authors acknowledged and I have made substantive contributions to the development of

the ideas presented in Chapters 3, 4 and 5. All of the proofs in this thesis, and the simulated

and real data analysis in Chapters 3 and 4 are my sole contribution. The simulated and real

data analyses in Chapter 5 were supported by Ian Gallagher and Emma Ceccherini.

1.2 Notation

We pause here to define some notation and conventions which we will use throughout this thesis.

The symbols := and ≡ are used to assign definitions and denote formal equivalence, for two

scalars a, b, we write a ∨ b := max{a, b} and for any positive integer n, we use the shorthand

[n] := {1, . . . , n}. We use bold letters to denote matrices and regular letters to denote vectors

and scalars. We write mij and Mi to denote the ijth entry and ith row (viewed as a column

vector) of a matrix M, respectively. We use the notation diag(x1, . . . , xd) to denote the diagonal

matrix with entires x1, . . . , xd. For any vector x, we use ∥x∥p to denote its ℓp-norm and when

p =∞, ∥x∥∞ := maxi |xi|. For any matrix M, ∥M∥p denotes its corresponding matrix norm

and ∥M∥2,∞ := maxi ∥Mi∥2 denotes its ℓ2,∞ norm [4]. Additionally, we write σi(M) to denote

its ith largest singular value.
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CHAPTER 1. INTRODUCTION

We use the phrase “for sufficiently large n” to mean “there exists n0 ∈ N such that for all

n ≥ n0” and we say an event En, which depends on n, occurs with overwhelming probability

if for any constant c > 0, there exists a constant C > 0, which may depend on c, such that

P(En) ≥ 1−Cn−c. We use ≲ to denote the inequality ≤ which hides a multiplicative universal

constant and, when qualified with the prior probabilistic statement, the constant c. Additionally,

we write a ≍ b if a ≲ b and a ≳ b. For any two quantities an, bn, depending on n, we write

an ≪ bn to mean that an/bn → 0 as n→∞.
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Chapter 2

Background

This chapter is devoted to reviewing some statistical estimation theory for spectral embedding,

which provides a model-based explanation for many of the geometric patterns observed in the

embeddings of real-world networks. The insights presented here are the result of a large body

of literature that stems from seminal work on spectral embedding under the stochastic block

model [5, 6] and the random dot product graph model [7, 8].

The geometry of a spectral embedding of a graph fundamentally depends on two things: the

matrix construction employed in the spectral decomposition and the graph itself. In this chapter,

we will consider two matrix constructions: the adjacency matrix, and the symmetric, normalised

Laplacian matrix. We treat the random walk Laplacian matrix separately in Chapter 3.

To motivate our discussion, we consider a graph whose nodes are the characters of the

Harry Potter novels by J.K. Rowling [9], and with edges between characters who are enemies

in the story. This is a publicly available data set [10] that has previously been studied in [11].

Figure 2.1 shows graph embeddings obtained using the first two eigenvectors of the adjacency,

and symmetric Laplacian matrices, respectively.

On inspection of the embeddings, one observes that, approximately speaking, the “good”

and “evil” characters in the story are concentrated around two distinct rays, and the magnitude

of a node’s position broadly reflects the character’s importance in the story. For example,

Harry Potter and Lord Voldemort, the protagonist and antagonist of the books, respectively,

are positioned at the ends of their respective rays. This section will provide a model-based

explanation for the observed patterns in these embeddings.

Many random graph models have been proposed [8, 12–14], and here we restrict our attention

to those in which edges occur randomly, and independently of one another, and for which

the matrix containing these edge probabilities, which we denote P, has low rank. A major

advantage of these assumptions is simplicity: edge independence permits the use of classical

concentration inequalities and the low-rank assumption allows convenient decompositions and

the direct application of tools from matrix perturbation theory. In practice, these assumptions

are unlikely to hold exactly, however, in their full generality, they often provide a reasonable

5
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Figure 2.1: The adjacency spectral embedding (left) and symmetric Laplacian spectral embedding
(right) of a graph of enmities between characters in the Harry Potter book series. Colour indicates
the “house” to which the character belongs in the Hogwarts School, and some points are labelled
with the character to which they correspond.

approximation to the truth.

2.1 The generalised random dot product graph model

A useful parametrisation of the independent-edge, low-rank random graph model is as a latent

position model [12]. Let r denote the rank of P and let (p, q) denote its signature (that is, its

number of positive and negative eigenvalues, respectively). Define the indefinite inner product

with signature (p, q), ⟨·, ·⟩p,q by

(2.1) ⟨x, y⟩p,q :=
p∑

i=1

xiyi −
p+q∑

i=p+1

xiyi ≡ x⊤Ip,qy,

for x, y ∈ Rp+q, where Ip,q is the diagonal matrix of p ones followed by q minus-ones. It is always

possible to choose vectors X1, . . . , Xn ∈ Rr such that pij = ⟨Xi, Xj⟩p,q. This parametrisation

is known in the literature as the generalised random dot product graph model [15], and we

highlight that any low-rank, independent-edge random graph can be parametrised in this way.

We give a formal definition below:

Definition 2.1 (Generalised random dot product graph model [15]). A graph is said to

follow a generalised random dot product graph model with signature (p, q) and latent posi-

tions X1, . . . , Xn ∈ Rr, if {aij}i<j are independent Bernoulli random variables with success

probabilities

pij = ⟨Xi, Xj⟩p,q ∈ [0, 1], 1 ≤ i < j ≤ n.

6



2.2. ADJACENCY SPECTRAL EMBEDDING

It should be noted that this parametrisation is not unique. There are two distinct sources

of non-identifiability in the latent positions of a generalized random dot product graph. First,

one can increase the dimension of the latent positions, for example by padding them with

zeroes, without changing P. We preclude such parametrisations by requiring that r = rank(P),

or equivalently that the latent position span Rr. Second, let O(p, q) = {Q : Q⊤Ip,qQ = Ip,q}
denote the indefinite orthogonal group of signature (p, q), i.e. the group of transformations

which leave the indefinite inner product invariant. Then, replacing {Xi}ni=1 with {QXi}ni=1 for

any matrix Q ∈ O(p, q) does not change P. If P has distinct eigenvalues, the model can be

made identifiable [16], however, we prefer to consider {QXi : Q ∈ O(p, q)}ni=1 as an equivalence

class of latent positions, and the theory we present reflects this.

The following lemma, which is a generalisation of Lemma 1 of Rubin-Delanchy et al. [15]

and gives some control on the extent to which this non-identifiability can distort the latent

positions. A proof is given in Section A.1.

Lemma 2.1. Let P ∈ [0, 1]n×n be a rank-r probability matrix with signature (p, q) and reduced

condition number κ = σ1(P)/σr(P). Let {Xi}ni=1, {X ′
i}ni=1 be two sets of r-dimensional latent

positions such that pij = ⟨Xi, Xj⟩p,q = ⟨X ′
i, X

′
j⟩p,q. Then the indefinite orthogonal matrix

Q ∈ O(p, q) such that Xi = QX ′
i for all i ∈ [n] satisfies ∥Q∥2, ∥Q−1∥2 ≤ κ.

2.2 Adjacency spectral embedding

In this section, we define adjacency spectral embedding and present estimation theory which

makes formal the sense in which it performs statistical inference on the generalised random dot

product graph model.

Definition 2.2 (Adjacency spectral embedding). Suppose A has the eigendecomposition

A =
∑n

i=1 λ̂iûiû
⊤
i with |λ̂1| ≥ · · · ≥ |λ̂n|. The adjacency spectral embedding of the graph into

Rr, denoted X̂1, . . . , X̂n ∈ Rr, is given by the rows of the matrix

X̂ =


X̂⊤

1
...

X̂⊤
n

 :=
(
|λ̂1|1/2û1 · · · |λ̂r|1/2ûr

)

obtained by stacking the scaled eigenvectors |λ̂1|1/2û1, . . . , |λ̂r|1/2ûr in columns.

We will review estimation theory developed in Rubin-Delanchy et al. [15] and Xie [17] which

makes formal the following statement:

Under a generalised random dot product graph model, the adjacency spectral

embedding, X̂1, . . . , X̂n, is a uniformly consistent estimate of the latent positions

X1, . . . , Xn, with asymptotically Gaussian error.

7
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The precise nature of the mathematical statements which can be made depends on whether

the latent positions are treated as fixed, or random quantities. Under the fixed setup, the

latent positions are treated as deterministic quantities, and under the random setup, the latent

positions are treated as realisations of independent and identically distributed random variables.

While the distinction is philosophical from a practical standpoint, the mathematical tools

required for their analysis are very different.

The casual reader who is content with the informal statement above may skip to Section 2.3.

For the technical reader, the following subsections are dedicated to reviewing the results by

Rubin-Delanchy et al. [15] and Xie [17] which formalise it.

2.2.1 Estimation theory with random latent positions

In this subsection, we review the estimation theory developed in Rubin-Delanchy et al. [15] for

adjacency spectral embedding under the generalised random dot product graph model with

random latent positions.

In this setup, a sequence of graphs {A(n)}n∈N is considered, where for each n ∈ N, a set of n

r-dimensional independent and identically-distributed random vectors X
(n)
1 , . . . , X

(n)
n are drawn

from a probability distribution, conditional upon which, the graph A(n) follows a generalised

random dot product graph model with signature (p, q) and latent positions X
(n)
1 , . . . , X

(n)
n .

We denote the expected node degrees by t
(n)
i =

∑n
j=1⟨Xi, Xj⟩p,q for i ∈ [n]. Their distribution

is either assumed to be fixed or, in order to permit asymptotic regimes in which node degrees grow

less than linearly in n, it is allowed to shrink. To achieve this, a sequence {ρn}n∈N is introduced

which is either fixed or shrinks towards zero, and for each i ∈ [n], we set X
(n)
i = ρ

1/2
n ξ

(n)
i , where

ξ
(n)
1 , . . . , ξ

(n)
n are i.i.d. draws from a distribution F .

It is necessary to make two common-sense assumptions on the support of F , which we

denote by X : first, that inner products between any points in X give valid probabilities, i.e. for

any x, y ∈ X , ⟨x, y⟩p,q ∈ [0, 1]; and second, that X spans Rr, which ensures that r is not larger

than necessary.

Additionally, it is assumed that nρn, which scales with the expected node degrees, grows

at least polylogarithmically in n, which is stated precisely in the theorem statements. This

assumption could likely be relaxed to logarithmic degree growth using cutting-edge proof

techniques which have emerged since these theorems first appeared (e.g. those employed in Xie

[17]).

The first result is a consistency result, which states that subject to an indefinite orthogonal

transformation, the maximum error between a node’s position in the adjacency spectral

embedding and its latent positions vanishes for large graphs.

Theorem 2.1 (Uniform consistency [15]). Suppose that {A(n)}n∈N is a sequence of graphs

generated as described in Section 2.2.1 and the sparsity factor satisfies nρn ≫ log4c n where c > 0

is a universal constant. Then, there exists a sequence of indefinite orthogonal transformations

8



2.2. ADJACENCY SPECTRAL EMBEDDING

{Q(n) ∈ O(p, q)}n∈N such that, for sufficiently large n, the adjacency spectral embedding

X̂
(n)
1 , . . . , X̂

(n)
n , satisfies

max
i∈{1,...,n}

∥∥∥Q(n)X̂
(n)
i −X

(n)
i

∥∥∥
2
≲

logc n

n1/2

with overwhelming probability.

The second result is a central limit theorem. It states that for a fixed, finite subset of nodes,

indexed without loss of generality as 1, . . . ,m, their error distributions, scaled by n1/2, are

asymptotically Gaussian.

Theorem 2.2 (Asymptotic normality [15]). Assume the setting of Theorem 2.1. Conditional

on ξ
(n)
i = xi, for i = 1, . . . ,m, n ≥ m, the random vectors n1/2(Q(n)X̂

(n)
i −X

(n)
i ) converge in

distribution to independent mean-zero normal random vectors with covariance matrices Σ(xi)

respectively, where

Σ(x) = Ip,q∆
−1Γρ(x)∆

−1Ip,q,

with

Γρ(x) =

E
{
⟨x, ξ⟩p,q (1− ⟨x, ξ⟩p,q)ξξ⊤

}
if ρn ≡ 1,

E
{
⟨x, ξ⟩p,q ξξ⊤

}
if ρn → 0,

where µ = E(ξ), ∆ = E
(
ξξ⊤

)
, and where expectations are taken with respect to ξ ∼ F .

2.2.2 Estimation theory with fixed latent positions

In this subsection, we review the estimation theory developed in Xie [17] for adjacency spectral

embedding under the generalised random dot product graph model with fixed latent positions.

The statements we give here are corollaries of Corollary 4.1 and Theorem 4.4 of Xie [17], where

the reader can find more general statements of these results.

In this setup, a graph A is considered, which follows a generalised random dot product

graph model with signature (p, q) and latent positions X1, . . . , Xn which are assumed to be

deterministic r-dimensional vectors. Define ∆ := n−1
∑n

i=1XiX
⊤
i , denote its eigenvalues by

λ1 ≥ · · · ≥ λr, and define the condition number κ := λ1/λr. It is assumed that indefinite inner

products between the latent positions give valid probabilities, i.e. ⟨Xi, Xj⟩p,q ∈ [0, 1] for all

i, j ∈ [n], and that they span Rr.

We additionally assume that the latent positions are relatively homogeneous. We assume

that their sizes are of the same order, by which we mean there exists some ρ ≤ 1 such that

∥Xi∥2 ≍ ρ for all i ∈ [n], and that ∆ is well conditioned, by which we mean κ ≍ 1. The results

in Xie [17] are stated with weaker assumptions, though at the expense of more complicated

theorems.

The first result is an analogue of Theorem 2.1.

9
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Theorem 2.3. Suppose that A is a graph generated as described in Section 2.2.2 and the

sparsity factor satisfies nρn ≳ log n. Then, there exists an indefinite orthogonal transformation

Q ∈ O(p, q) such that, for sufficiently large n, the adjacency spectral embedding X̂1, . . . , X̂n,

satisfies

max
i∈{1,...,n}

∥∥∥QX̂i −Xi

∥∥∥
2
≲

(
log n

n

)1/2

with overwhelming probability.

The second theorem is an analogue of Theorem 2.2.

Theorem 2.4 (Asymptotic normality). Assume the setting of Theorem 2.3. For each fixed

index i ∈ [n], and for any sufficiently large n,

sup
ω∈Ω

∣∣∣P{n1/2Σ(Xi)
−1/2

(
QX̂i −Xi

)
∈ ω

}
− P(z ∈ ω)

∣∣∣ ≲ log (nρ)
∥∥Σ(Xi)

−1/2
∥∥
2

(nρ)1/2
.

where Ω is the collection of all convex measurable sets in Rr, and

Σ(x) = Ip,q∆
−1Γρ(x)∆

−1Ip,q,

with

Γρ(x) = n−1
n∑

i=1

⟨x,Xi⟩p,q (1− ρ ⟨x,Xi⟩p,q)XiX
⊤
i .

2.3 Symmetric Laplacian spectral embedding

In this section, we define symmetric Laplacian spectral embedding and present analogous

estimation theory to Section 2.2, which makes formal the sense in which it performs statistical

inference on the generalised random dot product graph.

We begin by defining the symmetric Laplacian matrix Lsym. Let di =
∑n

j=1 aij denote the

degree of node i for i ∈ [n] and define the diagonal degree matrix D := diag(d1, . . . , dn). Then

the symmetric (normalised) Laplacian matrix Lsym is defined as

Lsym := D−1/2AD−1/2

where D−1/2 := diag(1/
√
d1, . . . , 1/

√
dn). Clearly, in order for this to be defined we must assume

that the graph has no isolated nodes, i.e. no nodes of degree zero.

We now give a definition of symmetric Laplacian spectral embedding.

Definition 2.3 (Symmetric Laplacian spectral embedding). Suppose Lsym has the eigende-

composition Lsym =
∑n

i=1 λ̂iûiû
⊤
i with |λ̂1| ≥ · · · ≥ |λ̂n|. The symmetric Laplacian spectral

embedding of the graph into Rr, denoted X̂1, . . . , X̂n ∈ Rr, is given by the rows of the matrix

X̂ =


X̂⊤

1
...

X̂⊤
n

 :=
(
|λ̂1|1/2û1 · · · |λ̂r|1/2ûr

)
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obtained by stacking the scaled eigenvectors |λ̂1|1/2û1, . . . , |λ̂r|1/2ûr in columns.

We will review estimation theory developed in Rubin-Delanchy et al. [15] which makes

formal the following statement:

Under a generalised random dot product graph model, the symmetric Laplacian

spectral embedding, X̂1, . . . , X̂n, is a uniformly consistent estimate of the scaled

latent positions X1√
t1
, . . . , Xn√

tn
, with asymptotically Gaussian error.

The symmetric Laplacian spectral embedding does not directly estimate the latent positions,

but rather versions of them which have been scaled down by the square root of their expected

degrees. Except for some special cases [18], estimation theory for the symmetric Laplacian

matrix is only available under the random latent positions setup.

As in the previous section, the casual reader who is content with the informal statement

above may skip to Section 2.4. For the technical reader, the following subsection is dedicated to

reviewing the results by Rubin-Delanchy et al. [15] which formalise it.

2.3.1 Estimation theory with random latent positions

In this subsection, we review the estimation theory developed in Rubin-Delanchy et al. [15]

and Tang and Priebe [19] for symmetric Laplacian spectral embedding under the generalised

random dot product graph model with random latent positions.

We consider the asymptotic setup described Section 2.2.1 with the additional assumption

that ⟨x, µ⟩p,q is bounded away from zero for all x ∈ X , where X is the support of F and

µ := Eξ∼F (ξ) is its mean. This additional assumption is necessary to ensure that all the

expected node degree grow with nρn, which is a requirement for many components of the proofs.

For example, this includes the concentration inequality of Theorem 2 of Lu and Peng [20] (see

also Theorem 1.1 of Oliveira [21]). The following lemma shows that this additional condition is

sufficient to ensure that all the expected degrees of the graph grow with nρn.

Lemma 2.2. Suppose that {A(n)}n∈N is a sequence of graphs generated as described in Sec-

tion 2.2.1, with the additional assumption that ⟨x, µ⟩p,q, where µ := Eξ∼F (ξ), is bounded away

from zero for all x ∈ X . Then, for sufficiently large n, with overwhelming probability

t
(n)
i ≍ nρn, i = 1, . . . , n.

A proof of Lemma 2.2 is given in Section A.2 of the appendix. To see why this additional

assumption is necessary, consider the following setup for which the additional assumption is

not satisfied.

Proposition 2.1. Suppose that ρn = 1 and F is the uniform distribution on X := [0, 1], then

for all n ≥ 1, with probability greater than 1− 1/e, mini∈[n] t
(n)
i ≤ 1.

11
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Proposition 2.1 is proved by observing that mini∈[n] t
(n)
i > 1 implies that X

(n)
1 , . . . , X

(n)
n >

n−1, and since X
(n)
1 , . . . , X

(n)
n are independent,

P
(
min
i∈[n]

t
(n)
i > 1

)
≤ P

(
n⋂

i=1

{
X

(n)
i >

1

n

})
=

n∏
i=1

P
(
X

(n)
i >

1

n

)
=

(
n− 1

n

)n

<
1

e
.

Notably, this assumption is missing from both Theorem 1 and 2 of Rubin-Delanchy et al.

[15] and Theorems 3.1 and 3.2 of Tang and Priebe [19], however their proofs remain valid if it

is made, and so we state Theorems 1 and 2 of Rubin-Delanchy et al. [15] below as such.

The first result is a consistency result, which states that subject to an indefinite orthogonal

transformation, the maximum error between a node’s position in the symmetric Laplacian

spectral embedding and its scaled latent positions vanishes for large graphs.

Theorem 2.5 (Uniform consistency). Suppose that {A(n)}n∈N is a sequence of graphs generated

as described in Section 2.2.1, with the additional assumption that ⟨x, µ⟩p,q, where µ := Eξ∼F (ξ),

is bounded away from zero for all x ∈ X , and the sparsity factor satisfies nρn ≫ log4c n

where c > 0 is a universal constant. Then, there exists a sequence of indefinite orthogonal

transformations {Q(n) ∈ O(p, q)}n∈N such that, for sufficiently large n, the symmetric Laplacian

spectral embedding X̂
(n)
1 , . . . , X̂

(n)
n satisfies

max
i∈{1,...,n}

∥∥∥∥∥∥Q(n)X̂
(n)
i − X

(n)
i√
t
(n)
i

∥∥∥∥∥∥
2

≲
logc n

nρ
1/2
n

with overwhelming probability.

The second result is a central limit theorem. It states that for a fixed, finite subset of nodes,

indexed without loss of generality as 1, . . . ,m, their error distributions, scaled by nρ
1/2
n , are

asymptotically Gaussian.

Theorem 2.6 (Asymptotic normality). Assume the setting of Theorem 2.5. Conditional on

ξ
(n)
i = xi, for i = 1, . . . ,m, n ≥ m, the random vectors

nρ1/2n

Q(n)X̂
(n)
i − X

(n)
i√
t
(n)
i


converge in distribution to independent mean-zero normal random vectors with covariance

matrices Σ(xi) respectively,

Σ(x) =
Ip,q∆̃

−1Γρ(x)∆̃
−1Ip,q

⟨x, µ⟩p,q
with

Γρ(x) =


E
{
⟨x, ξ⟩p,q (1− ⟨x, ξ⟩p,q)

(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

2⟨x,µ⟩p,q

)(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

2⟨x,µ⟩p,q

)⊤}
if ρn ≡ 1,

E
{
⟨x, ξ⟩p,q

(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

2⟨x,µ⟩p,q

)(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

2⟨x,µ⟩p,q

)⊤}
if ρn → 0,
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EMBEDDING

where µ = E(ξ), ∆̃ = E
(

ξξ⊤

⟨ξ,µ⟩p,q

)
, and where expectations are taken with respect to ξ ∼ F .

2.4 Random graph models and the latent geometry of spectral

embedding

In this section, we introduce some random graph models which are special cases of low-rank,

independent-edge random graphs, and show how they are parameterised as the latent positions

of a generalised random dot product graph model. The estimation theory in Section 2.2 suggests

that the geometric patterns observed in the adjacency spectral embedding of a graph generated

from one of these models will approximately resemble the geometry of the model’s underlying

latent positions. The estimation theory in Section 2.3 suggests that the geometric patterns

observed in the symmetric Laplacian spectral embedding of a graph generated from one of these

models will approximately resemble the geometry of the model’s underlying latent positions,

scaled down by the square root of the node’s expected degree. We point out that this scaling is

a one-to-one mapping which preserves many global geometric properties. For example, it maps

points to points, rays to rays and simplexes to simplexes, albeit distorting inter-point distances.

2.4.1 Foundational random graph models

We begin with two simple models which laid the foundations for combinatorial graph theory.

Neither of these models are sufficiently flexible to model networks encountered in the real-world

today, however, their analysis has led to extraordinary insights into the fundamental properties

of random graphs, and they serve as building blocks for more realistic model to come.

Erdös–Rényi model. The origins of random graph theory can be traced back to a hugely

influential series of eight papers, co-authored by the great mathematicians Paul Erdös and

Alfred Rényi between 1959 and 1968 [22–29], which examined the properties of independent-edge

random graphs whose edges occur with some common probability

pij = ρ, 1 ≤ i, j ≤ n.

When parameterised as a generalised random dot product graph, the latent positions are

one-dimensional and all lie at a single point: Xi =
√
ρ for all i ∈ [n]. Figure 2.2a illustrates this

position.

Despite the simplicity of this model, its emergent structure is rich, surprising and abundant

in phase transitions. A phase transition which will recur in this thesis is on the connectivity of

the graph: they prove that the graph is connected asymptotically almost surely if nρ≫ log n,

and is disconnected asymptotically almost surely if nρ ≪ log n. They additionally prove a

myriad results on phase transitions in the sizes of the connected components in the latter
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0
√
ρ

(a) Erdos-Renyi model.

0 1

(b) Chung-Lu model.

(c) Two-community stochastic block model. (d) Two-community degree-corrected stochastic
block model.

(e) Three-community mixed-membership
stochastic block model.

(f) Three-community degree-corrected
mixed-membership stochastic block model.

Figure 2.2: Illustrations of the latent positions of the six random graph models described in
Section 2.4, parametrised as generalised random dot product graphs.
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regime, on the emergence of subgraphs, on planarity and chromatic number, and on perfect

matchings.

These results by Erdös and Rényi have left a lasting legacy, and have challenged the natural

intuitions of many about the properties of complex interconnected systems: randomness can

induce structure rather than chaos, and simple local rules can lead to complex global behaviours.

Chung-Lu model. The emergence of the internet at the turn of the millennium saw a

resurgence of interest in random graph theory. However, while the random graphs studied by

Erdös and Rényi had approximately Poisson-distributed degree sequences, the degree sequences

of networks emerging from the World Wide Web were vastly more heterogeneous.

The Chung-Lu model [30] is a parsimonious extension of Erdös–Rényi model which permits

the generation of graphs with arbitrary expected degree sequences. Given an expected degree

sequence t1, . . . , tn satisfying maxi t
2
i ≤

∑n
k=1 tk, edge probabilities are given by

pij =
titj∑n
k=1 tk

, 1 ≤ i, j ≤ n.

The underlying probability matrix has rank one and its associated latent positions lie on the unit

interval. Specifically Xi = ti/(
∑

j tj)
1/2 for all i ∈ [n]. Figure 2.2b shows the set of admissible

positions.

A series of papers by Fan Chung, Linyuan Lu and others shine light on phase transitions in

the global characteristics of these graphs, such as the sizes of connected components [31–34],

the average distances between nodes [35] and their spectra [36].

2.4.2 Community-structured random graph models

The following random graph models build on the simple random graph models introduced in

the previous subsection by modelling community structure.

Stochastic block model. Arguably the simplest model for a community-structured network

is the stochastic block model [37]: each node is assigned a community z1, . . . , zn ∈ [K] and the

probability of an edge between two nodes depends only on their community membership. If we

let B ∈ [0, 1]K×K be the matrix whose kℓth entry contains the probability of an edge between

two nodes in communities k and ℓ, respectively, then the edge probabilities can be written as

pij = bzizj , 1 ≤ i, j ≤ n.

In this way, nodes in the same community are stochastically equivalent and the associated latent

positions lie in one of K places, each corresponding to a community. Specifically, if B has rank r

and signature (p, q), and v1, . . . , vK are r-dimensional positions such that bkℓ = ⟨vk, vℓ⟩p,q, then
Xi = vzi for all i ∈ [n]. Figure 2.2c shows an example of the latent positions of a two-community

15



CHAPTER 2. BACKGROUND

stochastic block model. The Erdös–Rényi model is an example of a stochastic block model with

one community.

The stochastic block model has been established in the network science community as a

canonical model for community detection in networks, and the literature on inference, selection

and its fundamental limits is vast (see Abbe [14] and the references therein). While it is not

necessarily a realistic model, it can be insightful and it admits many possible refinements that

improve its fit to real data.

Degree-corrected stochastic block model. A common criticism of the stochastic block

model is that it forces nodes in the same community to have the same expected degree,

which makes it too inflexible to model many real-world networks. A proposed solution is the

degree-corrected stochastic block model [38], which introduces node-specific scalar parameters

w1, . . . , wn ∈ W ⊂ R+ and models edge probabilities as

pij = wiwjBzi,zj , 1 ≤ i, j ≤ n.

These parameters allow a node’s degree to be independent of its community membership. In

practice, it is typically a node’s community membership which is of inferential interest, and the

weights are viewed as nuisance parameters. Note that w1, . . . , wn and B are only identified up

to scale: mapping wi 7→ cwi for each i ∈ [n] and B 7→ c−1B, for some c > 0 does not change

the edge probabilities.

The latent positions associated with this model lie in the union of one-dimensional subspaces.

The angle of a position encodes its community and the magnitude encodes its weight. Specifically,

Xi = wivzi for all i ∈ [n], where v1, . . . , vK are r-dimensional vectors such that bkℓ = ⟨vk, vℓ⟩p,q.
An example of the set of admissible latent positions of a degree-corrected stochastic block model

is given in Figure 2.2d. The Chung-Lu model is an example of a degree-corrected stochastic

block model with one community. Visual inspection of the adjacency and symmetric Laplacian

spectral embeddings of the Harry Potter enmity graph introduced at the start of the chapter

suggests that the degree-corrected stochastic block model is a good fit for this graph.

Mixed-membership stochastic block model. Another criticism of the stochastic block

model is that each node is only allowed to belong to one community, and thus only plays one

latent role in the network. In many real-world networks, nodes often play multiple latent roles.

The mixed-membership stochastic block model [39] replaces the hard community memberships

z1, . . . , zn with soft community memberships τ1, . . . , τn: probability-like vectors which indicate

the proportion of the time a node acts according to the preferences of each community. The

edge probabilities are then given by

pij = τ⊤i Bτj , 1 ≤ i, j ≤ n.
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To ensure the community memberships are identifiable, the model is constrained so that

each community, k, must have at least one “pure” member: that is a node whose community

membership vector has a one in the position k and zero elsewhere.

The latent positions associated with this model lie on a simplex, the corners of which

represent “pure” nodes, and the interior of which represent nodes with mixed memberships.

Let v1, . . . , vK be r-dimensional vectors such that bkℓ = ⟨vk, vℓ⟩p,q, then the latent positions are

Xi =
∑K

k=1 τikvk for all 1 ∈ [n]. Figure 2.2e illustrates an admissible set of latent positions of a

mixed-membership stochastic block model.

Degree-corrected mixed-membership stochastic block model. The degree-corrected

mixed-membership stochastic block model [40] combines the previous two extensions to the

stochastic-block model. Each node has a soft community membership and a weight, and edge

probabilities are given by

pij = wiwjτ
⊤
i Bτj , 1 ≤ i, j ≤ n.

As with the mixed-membership stochastic block model, the model must be constrained so that

each community has at least one “pure” member, and we must additionally impose that B has

full rank. However, this is not enough to ensure the identifiability of the community membership

vectors. For any α ∈ R+, mapping

B 7→ diag(α)−1Bdiag(α)−1, wi 7→ ∥τi ◦ α∥1wi, τi 7→
τi ◦ α
∥τi ◦ α∥1

for i = 1 . . . , n, where ◦ denotes the Hadamard product (the entry-wise product), does not

change the edge probabilities. For this reason, one must take care when interpreting the soft

community memberships in this model.

The latent positions associated with this model lie on a simplicial cone. The angle of a

position encodes its community mixture and the magnitude encodes its weight. Specifically,

Xi = wi
∑K

k=1 τikvk for all 1 ∈ [n], where v1, . . . , vK are r-dimensional vectors such that

bkℓ = ⟨vk, vℓ⟩p,q. An illustration of the set of admissible latent positions of a degree-corrected

mixed-membership stochastic block model is given in Figure 2.2f.
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Chapter 3

Spectral embedding with the random

walk Laplacian

While a wealth of literature has emerged on the statistical properties of graph embeddings

obtained from the adjacency and symmetric Laplacian matrices [6, 8, 14, 15, 19, 40–47], the

statistical properties of graph embeddings obtained from the random walk Laplacian matrix are

relatively understudied. Despite this, heuristic arguments have made this matrix an incredibly

popular choice [48–51]: for example, the Normalised Cuts algorithm [48] which performs graph

clustering by applying the k-means algorithm to the principal eigenvectors of the random walk

Laplacian matrix has over 19,000 citations according to Google Scholar. In this chapter, we fill

this gap and provide a principled statistical interpretation of these embeddings.

To motivate our discussion, we draw the reader’s attention back to the real-world graph

introduced in Chapter 2, in which nodes represent the characters of the Harry Potter novels by

J.K. Rowling, and which has edges between characters who are enemies in the story. Recall that

Figure 2.1 shows graph embeddings obtained using the first two eigenvectors of the adjacency

and symmetric Laplacian matrices and that the theory reviewed in the previous chapter suggests

the following statistical interpretation of these embeddings: magnitude should be interpreted

as encoding the number of connections made by a node, and angle should be interpreted as

encoding the kinds of connections made by a node.

The left panel of Figure 3.1 shows the graph embedding obtained using the first two

eigenvectors of the random walk Laplacian matrix, and the geometric structure present is

visibly different: the points lie on a hyperplane and broadly clustered around two distinct points.

While these two clusters appear to reflect the two social groups in the story, the intuition that

magnitude encodes degree does not appear to hold.

The purpose of this chapter is to provide a statistically principled interpretation of this

geometric phenomenon, which, to our knowledge, is unknown to the statistics community. The

crux of our argument is that, under a generalised random dot product graph model, embeddings

obtained from the eigenvectors of the random walk Laplacian should not be treated as direct
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Figure 3.1: The random walk Laplacian spectral embedding of a graph of enmities between
characters in the Harry Potter book series. Colour indicates the “house” to which the character
belongs in the Hogwarts School. Both panels show the embedding, and the right panel addi-
tionally shows the hyperplane on which the embedding lies (dashed line), and the rays which
the points of the embedding represent (solid lines).

estimates of latent positions, but rather as estimates of the one-dimensional subspaces passing

through each point, which we will herein refer to as “rays”. The right panel of Figure 3.1 shows

the hyperplane on which the embedding of the Harry Potter enmity graph lies as a dashed line

and the rays which the points of the embedding represent as solid lines.

In other words, each point should be viewed as encoding the equivalence class of points

which share its direction, irrespective of magnitude. For this reason, unlike the embeddings

studied in Chapter 2, the embeddings obtained from the random walk Laplacian do not encode

degree.

A pertinent implication of our theory is that under the degree-corrected stochastic block

model, graph embeddings obtained using the eigenvectors of the random walk Laplacian matrix

will concentrate around distinct points on a hyperplane, and community memberships can be

consistently estimated using a standard clustering algorithm such as k-means. Additionally,

there are stochastic block models for which spectral clustering using the random walk Laplacian

is inconsistent.

We provide a uniform consistency result — a high probability bound on the maximum error

between a node’s embedded position, and the projection of its latent position onto a specified

hyperplane — and a central limit theorem, which states that the errors are asymptotically

Gaussian, and quantifies the asymptotic covariance matrices.

We find that the errors are not necessarily spherical, and for sparse graphs, the scale of the

error is inversely proportional to the node’s expected degree. Therefore, under a degree-corrected
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stochastic block model, this suggests that using the k-means algorithm, or Gaussian mixture

modelling, will be sub-optimal for clustering and that instead, one should fit a weighted-data

Gaussian mixture model, which assigns more weight to higher degree nodes, whose positions are

more accurately estimated. Through simulation, we provide empirical evidence for this claim

an demonstrate that the Bayesian Information Criterion for this fitted model can accurately

estimate the number of communities in settings where the same criterion for a fitted standard

Gaussian mixture model cannot.

3.1 Random walk Laplacian spectral embedding

In this section, we define the random walk Laplacian matrix and define the spectral embedding

obtained from it.

Given a simple, undirected, graph with (symmetric) adjacency matrix A ∈ {0, 1}n×n, with

a one in position i, j if there is an edge between nodes i and j and a zero otherwise, the random

walk Laplacian matrix, Lrw, is defined as

Lrw := D−1A,

where D := diag(d1, . . . , dn) is the diagonal degree matrix where di =
∑

j Aij . The reader may

be more familiar with the definition I− Lrw [51]: both definitions share the same eigenvectors,

however in our embedding, we use the eigenvectors with the largest-in-magnitude eigenvalues.

These are not necessarily the same when Lrw has large negative eigenvalues, and this will be

important when embedding graphs with heterophilic connectivity structure (see [5] and [15] for

additional discussion).

We now give a formal definition of the random walk Laplacian spectral embedding.

Definition 3.1 (Random walk Laplacian spectral embedding). Let u1, . . . , ur ∈ Rn be right

eigenvectors corresponding to the r eigenvalues of Lrw with the largest magnitude. The random

walk Laplacian spectral embedding of the graph A into Rr, denoted X̂1, . . . , X̂n ∈ Rr, is given

by the rows of the matrix

X̂ =


X̂⊤

1
...

X̂⊤
n

 := (u1 · · · ur)

obtained by stacking the eigenvectors u1, . . . , ur in columns.

Firstly, it should be noted that the eigenvectors are not unique, and, since Lrw is not a

symmetric matrix, the usual choice of an orthonormal system is not available. In general, this

means that the embeddings are only defined up to invertible linear transformations, and our

theoretical results will reflect this. Rather than enforce any particular choice, we prefer to

state our theoretical results “up to an invertible linear transformation”. We highlight that
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a) X1, . . . , Xn b) X̃1, . . . , X̃n c) QX̂1, . . . ,QX̂n d) X̂1, . . . , X̂n

e) X̂1, . . . , X̂n (without first coordinate)

1

Figure 3.2: Theory pipeline. a) Latent positions in R2, corresponding to a degree-corrected
stochastic block model with three communities; b) Degree-corrected latent positions, which lie
on a one-dimensional hyperplane. Latent positions corresponding to the same community have
the same degree-corrected latent position; c-d) r-dimensional random walk spectral embedding
which, in c), is aligned to match the true degree-corrected latent positions; e) r− 1-dimensional
random walk spectral embedding (Definition 3.1), for input to subsequent clustering step.

when the graph is connected, it is easily verified that its first eigenvector is proportional to the

all-ones vector and the embeddings lie on a hyperplane with constant first coordinate. While

this coordinate contains no information, we retain it in our definition as it is useful for our

theory. In practice, it is common to omit it.

3.2 Estimation theory

In this section, we make precise the sense in which, under a generalised random dot product

graph model, spectral embedding using the eigenvectors of the random walk Laplacian performs

statistical inference on the rays which pass through the latent positions.

3.2.1 Projective representations of rays

In geometry, a standard way to represent these rays is by projecting them onto points on a

hyperplane which doesn’t pass through the origin. In three dimensions, one might imagine rays

of light emanating from the origin, shining onto an infinitely large sheet of paper. Technically, we

should include points at infinity to represent rays parallel to the hyperplane, although we choose

it in such a way that this isn’t required. We choose the hyperplane H := {x : n ⟨x, µ⟩p,q = 1},
where µ := n−1

∑n
i=1Xi, and let X̃1, . . . , X̃n denote the projection of the latent positions

X1, . . . , Xn onto it. By construction, we can write the projected latent positions as

(3.1) X̃i =
Xi

ti
, 1 ≤ i ≤ n,
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where ti =
∑n

j=1 ⟨Xi, Xj⟩p,q denotes the expected degree of node i. Figure 3.2a shows an

illustration of some latent positions in R2 (shown as coloured dots) lying on one of three rays

(shown as orange lines). Figure 3.2b displays their associated projected latent positions (shown

as coloured squares) and the one-dimensional hyperplane on which they lie (shown as a black

line).

3.2.2 Asymptotics under the generalised random dot product graph model

In this section, we formalise the following statement:

Under a generalised random dot product graph model, the random walk Laplacian

spectral embedding, X̂1, . . . , X̂n, is a uniformly consistent estimate of X̃1, . . . , X̃n,

the projection of the latent positions X1, . . . , Xn onto the hyperplane H, with
asymptotically Gaussian error.

For our theory, we consider the random latent position setup detailed in Section 2.2.1, with

the additional assumption, described in Section 2.3.1, that X , the support of F , is bounded

away from the origin.

Our first results state that X̂
(n)
1 , . . . , X̂

(n)
n , subject to a linear transformation, converge

uniformly to X̃
(n)
1 , . . . , X̃

(n)
n , in the sense that the maximum error over the whole node set

vanishes as n gets large.

Theorem 3.1 (Uniform consistency). Suppose that {A(n)}n∈N is a sequence of graphs generated

as described in Section 2.2.1, with the additional assumption that ⟨x, µ⟩p,q, where µ := Eξ∼F (ξ),

is bounded away from zero for all x ∈ X . Then there exists a universal constant c > 0 and

and a sequence of invertible linear transformations {Q(n)}n∈N such that, providing the sparsity

factor satisfies nρn ≫ log4c n, then for sufficiently large n,

max
i∈{1,...,n}

∥∥∥Q(n)X̂
(n)
i − X̃

(n)
i

∥∥∥
2
≲

logc n

n3/2ρn

with overwhelming probability.

We note that ∥X̃i∥2 ≍ 1/(nρ
1/2
n ) for all i ∈ [n] and since nρn ≫ log4c n, the bound is not

vacuous. Our second result is a central limit theorem. It states that for a fixed, finite subset of

nodes, indexed without loss of generality as 1, . . . ,m, their error distributions, scaled by n3/2ρn,

are asymptotically Gaussian.

Theorem 3.2 (Central limit theorem). Assume the setting of Theorem 3.1. Conditional on

ξ
(n)
i = xi, for i = 1, . . . ,m, n ≥ m, the random vectors n3/2ρn(Q

(n)X̂
(n)
i − X̃

(n)
i ) converge in

distribution to independent mean-zero normal random vectors with covariance matrices Σ(xi)

respectively, where

Σ(x) =
Ip,q∆̃

−1Γρ(x)∆̃
−1Ip,q

⟨x, µ⟩2p,q
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a) b) c) d)

Figure 3.3: Spectral clustering under a degree-corrected stochastic block model using random
walk spectral embedding. a) Spectral embedding of a graph on n = 6000 nodes, simulated
from the degree-corrected stochastic block model described in (3.3), coloured according to
community membership. b,c) Theoretical means and 95% level sets of the error distributions,
for weights wi = 0.25, 0.5, 0.75, 1, for b) dense (ρn = 1) and c) sparse (ρn → 0) regimes (after
re-alignment and neglecting the first coordinate, see main text for details). d) 95% level sets
of the weighted-data Gaussian mixture model estimated using the expectation-maximisation
algorithm described in Section B.1 of the appendix.

with

Γρ(x) =


E
{
⟨x, ξ⟩p,q (1− ⟨x, ξ⟩p,q)

(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

⟨x,µ⟩p,q

)(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

⟨x,µ⟩p,q

)⊤}
if ρn ≡ 1,

E
{
⟨x, ξ⟩p,q

(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

⟨x,µ⟩p,q

)(
ξ

⟨ξ,µ⟩p,q
− ∆̃Ip,qx

⟨x,µ⟩p,q

)⊤}
if ρn → 0,

where µ = E(ξ), ∆̃ = E
(

ξξ⊤

⟨ξ,µ⟩p,q

)
, and where expectations are taken with respect to ξ ∼ F .

To be clear, Theorem 3.2 is a central limit theorem for a set of r-dimensional vectors which,

with probability one, live together on a r − 1-dimensional hyperplane. Accordingly, the derived

covariance matrices have rank r − 1.

The details of the proofs of Theorems 3.1 and 3.2 are given in Section B.2 of the appendix.

3.2.3 Testing for equality of projected latent positions

In this subsection, we give an overview of how the asymptotic covariance in Theorem 3.2 may

be estimated from the random walk Laplacian spectral embedding, X̂1, . . . , X̂n and the node

degrees d1, . . . , dn, and how this may be used to test for the equality of the projected latent

positions of two nodes. This approaches follows that of Du and Tang [52] and we refer the

reader to that paper for further details.

Suppose ρn = 1 and let

∆̂ :=

n∑
i=1

diX̂iX̂
⊤
i ,

ζ̂ik := X̂k − ∆̂Ip̂,q̂X̂i,

24



3.2. ESTIMATION THEORY

Γ̂(X̂i) := n−1
n∑

k=1

didk⟨X̂i, X̂k⟩p,q
(
1− didk⟨X̂i, X̂k⟩p,q

)
ζ̂ikζ̂

⊤
ik,

and consider the plug-in estimator

Σ̂(X̂i) :=
n2

d2i
Ip,q∆̂

−1Γ̂(X̂i)∆̂
−1Ip,q

where X̂i is plugged-in for X̃i ≡ Xi/ti and di is plugged-in for ti and n⟨Xi, µ⟩. Define the test

statistic

T (X̂i, X̂j) = n3
(
X̂i − X̂j

)⊤ (
Σ̂(X̂i) + Σ̂(X̂j)

)−1 (
X̂i − X̂j

)
.

Then, under the null hypothesis H0 : X̃i = X̃j , and for n→∞,

(3.2) T (X̂i, X̂j)
d→ χ2

r

where
d→ denotes convergence in distribution. The proof of (3.2) follows by identical arguments

to the proof of Theorem 4.1 in Du and Tang [52].

Therefore, the null hypothesis H0 may be rejected in favour of the alternative hypothesis

H1 : X̃i ≠ X̃j at the significance level α if T (X̂i, X̂j) > zr,1−α, where zr,1−α denotes the

(1− α)-quantile of the χ2
r distribution.

3.2.4 Identifiability

We now briefly pause to discuss the role of the invertible linear transformation Q(n) which

appears in our theorems, which stems from two distinct sources: the non-identifiability of the

eigenvectors, and the non-identifiability of the model. One might ask whether by imposing

additional constraints, this could be replaced by an orthogonal transformation.

One can employ a relationship between the eigenvectors of the symmetric Laplacian and

random walk Laplacian matrices to obtain a canonical set of eigenvectors in Definition 3.1,

which are defined up to orthogonal, rather than invertible linear transformations. It is easy

to verify that if (λ, u) is an eigenvalue, right-eigenvector pair of Lrw, then (λ,D1/2u) is an

eigenvalue, eigenvector pair of Lsym. Then, we let v1, . . . , vn denote orthonormal eigenvectors of

Lsym, and let ui = |λi|1/2D1/2vi, 1 ≤ i ≤ n be canonically defined eigenvectors of Lrw. Defined

this way, the embedding is identifiable up to coordinate-wise sign flipping and orthogonal

transformation in the eigenspaces of repeated eigenvalues. This is the construction we use in

our proofs, however in order to keep our work aligned with the literature, we prefer to allow

any construction and maintain the invertible linear transformation.

Even using this construction, we are left with an indefinite orthogonal transformation which

stems from the non-identifiability of latent positions of a generalised random dot product graph.

Under a canonical construction of the distribution F , it has been shown that this converges

to an orthogonal transformation [16], however this convergence is not fast enough that the

transformation can be replaced in the central limit theorem.
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3.2.5 Asymptotics under the degree-corrected stochastic block model

A pertinent implication of our estimation theory is that spectral clustering using the eigenvectors

of the random walk Laplacian performs statistical inference under the degree-corrected stochastic

block model. We remind the reader of its definition.

Definition 3.2. A graph is said to follow a degree-corrected stochastic block model with

community memberships z1, . . . , zn ∈ [K] and weights w1, . . . , wn ∈ R+ if there exists a matrix

B ∈ [0, 1] such that its edges {aij}i<j are independent Bernoulli random variables with success

probabilities

pij = wiwjbzizj , 1 ≤ i < j ≤ n.

In particular, our central limit theorem (Theorem 3.2) implies that under a degree-corrected

stochastic block model, each node’s embedded position is distributed around a point which

depends only on its community, and the scale of its asymptotic covariance additionally depends

on its weight parameter. To make this relationship between a node’s weight parameter and

asymptotic covariance explicit, we state the central limit theorem for a degree-corrected

stochastic block model as a special case.

We consider the following asymptotic regime: Suppose that for each n ∈ N, the community

memberships z
(n)
1 , . . . , z

(n)
n are drawn at random with probabilities π1, . . . , πK , conditional

upon which, for each i ∈ [n], w
(n)
i is drawn from a distribution H

z
(n)
i

, where H1, . . . ,HK are

probability distributions on R+. We let B(n) = ρnB be the inter-community probability matrix,

where B ∈ [0, 1]K×K is a fixed matrix. We let r and (p, q) be respectively the rank and signature

of B, and assume that the supports of H1, . . . ,HK , which we denote W1, . . . ,WK satisfy

vwbk,ℓ ∈ [0, 1] for all v ∈ Wk, w ∈ Wℓ and k, ℓ ∈ [K]. In addition, we define v1, . . . , vK ∈ Rr to

be vectors satisfying bk,ℓ = ⟨vk, vℓ⟩p,q for all k, ℓ ∈ [K] and set ṽ
(n)
k = vk/ρ

1/2
n
∑n

i=1w
(n)
i b

k,z
(n)
i

.

Corollary 3.1. Suppose {A(n)}n∈N is a sequence of graphs following degree-corrected stochastic

block models, generated as described in Section 3.2.5. There exists a sequence of linear transfor-

mations {Q(n)}n∈N such that, providing the sparsity factor satisfies nρn ≫ log4c n, where c > 0

is the same universal constant as in Theorem 3.1, conditional on z
(n)
i = zi and w

(n)
i = wi, for

i = 1, . . . ,m, n ≥ m, the random vectors n3/2ρn(Q
(n)X̂

(n)
i − ṽ

(n)
zi ) converge in distribution to

independent mean-zero normal random vectors with covariance matrices Σ(zi, wi), respectively,

where

Σ(k,w) =

∑K
ℓ=1 πℓIp,q∆̃

−1Γℓ(k,w)∆̃
−1Ip,q

wω2
zi

,

with

Γℓ(k,w) =

E (θℓBkℓ(1− wθℓBkℓ))
(

vℓ
ωℓ
− ∆̃Ip,qvk

ωk

)(
vℓ
ωℓ
− ∆̃Ip,qvk

ωk

)⊤
if ρn ≡ 1,

E (θℓBkℓ)
(

vℓ
ωℓ
− ∆̃Ip,qvk

ωk

)(
vℓ
ωℓ
− ∆̃Ip,qvk

ωk

)⊤
if ρn → 0,
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where ωℓ =
∑K

m=1 πmE(θm)Bℓm, ∆̃ =
∑K

m=1
πmE(θm)vmv⊤m

ωm
and expectations are taken with

respect to θℓ ∼ Hℓ for ℓ ∈ [K].

We highlight that when node degrees grow sublinearly in n, i.e. ρn → 0, the scale of the

covariance matrix is inversely proportional to the weight parameter, and its shape depends only

on the community. This is an observation we will exploit in Section 3.3.

Figure 3.3a shows the second and third dimensions of the spectral embedding X̂1, . . . , X̂n

of a graph generated from a degree-corrected stochastic block model with n = 6000 nodes and

parameters

(3.3) B =

0.3 0.2 0.2

0.2 0.3 0.2

0.2 0.2 0.3

 , w1, . . . , wn
i.i.d.∼ Uniform(0.1, 1), π = (0.5, 0.3, 0.2),

coloured according to community membership. To obtain Figures 3.3b,c, we first compute Q−1

to align the projected latent positions ṽ1, . . . , ṽ3 with X̂1, . . . , X̂n. After this transformation,

the induced theoretical error distributions have no error in the first coordinate, so we do not

display it, showing only what happens in the second and third coordinates. The second and

third coordinates of the aligned projected community latent positions Q−1ṽ1, . . . ,Q
−1ṽ3 are

shown as crosses. Figure 3.3b shows four ellipses for each community describing the 95% level

sets of the aligned, theoretical error distributions for weights wi = 0.25, 0.5, 0.75, 1, assuming

the sparsity regime ρn ≡ 1. Figure 3.3c shows the same assuming the sparsity regime ρn → 0.

3.3 Implications for clustering

In this section, we focus on the methodological implications of the estimation theory in Sec-

tion 3.2. The uniform consistency result of Theorem 3.1 ensures that, under the degree-corrected

stochastic block model, asymptotically perfect clustering can be achieved by applying any

reasonable clustering algorithm to the eigenvectors of the random walk Laplacian. Traditionally,

in the spectral clustering literature, the recommendation has been to use the k-means algorithm

[51]. However, recently, central limit theorems for adjacency and symmetric Laplacian spectral

embedding under the standard stochastic block model have recently motivated fitting a Gaussian

mixture model [15, 19, 47], the actual asymptotic distribution of the embeddings, which has

been shown to empirically improve clustering performance [19].

In this section, we explain how our theory suggests fitting a weighted-data Gaussian mixture

model to the eigenvectors of the random walk Laplacian to cluster nodes under the degree-

corrected stochastic block model.
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3.3.1 Fitting a weighted-data Gaussian mixture model

Under a degree-corrected stochastic block model, and in an asymptotic regime in which node

degrees grow sub-linearly (i.e. ρn → 0), our central limit theorem (Corollary 3.1) shows that

the error distribution of a node’s position is asymptotically Gaussian with mean depending

only on its community, and covariance whose shape depends only on its community, and whose

scale is inversely proportional to its weight wi. This suggests the data will approximately fit a

weighted-data Gaussian mixture model with likelihood

(3.4) L
(
{X̂i}ni=1, {wi}ni=1; Θ

)
=

n∏
i=1

K∑
k=1

πkN
(
X̂i;µk,Σk/wi

)
for some Θ := {πk, µk,Σk}Kk=1, where {πk}Kk=1 are positive mixing proportions summing to one,

{µk}Kk=1 are r-dimensional means, {Σk}Kk=1 are r × r covariance matrices, and N (x;µ,Σ) is

the likelihood of a multivariate Gaussian distribution with mean µ and covariance Σ.

It is straightforward to notice that N (x;µ,Σ/w) ∝ N (x;µ,Σ)w, and the expectation-

maximisation (EM) algorithm which optimises (3.4) with respect to Θ turns out to coincide

with the EM algorithm to fit a standard Gaussian mixture model, with the exception that

influence of each data point is reweighted according to the weights w1, . . . , wn. It is for this

reason that the model with likelihood (3.4) is referred to as the weighted-data Gaussian mixture

model. We provide an expectation-maximisation algorithm to optimise (3.4), which is stated in

the appendix, and refer the reader to Section III of Gebru et al. [53] for a derivation.

The expectation-maximisation algorithm which fits (3.4) assumes that the weights w1, . . . , wn

are known, whereas in practice we do not have access to them, and they must be estimated

from the data. Since the weight wi is proportional to the expected degree ti, we propose to use

the observed degree di =
∑n

j=1Aij as a proxy for wi.

We apply a weighted-data Gaussian mixture model to the embedding of a graph sim-

ulated from the degree-corrected stochastic block model described in (3.3). For weights

wi = 0.25, 0.5, 0.75, 1, Figure 3.3d shows the 95% level sets of the fitted model, which are

closely aligned with the theoretical error distribution shown in Figure 3.3c.

3.3.2 Comparison with Gaussian mixture modelling and k-means

To illustrate the advantage of exploiting our asymptotic theory, and fitting a weighted data

Gaussian mixture model to the embeddings obtained from Definition 3.1, we simulate sequences

of degree-corrected stochastic block model graphs with n = 3000, 3500, . . . , 7000 nodes, and

parameters given in (3.3). For each graph, we embed its random walk Laplacian matrix into

R3 (Definition 3.1) and discard the first, constant coordinate. We cluster the embedded nodes

by fitting either a weighted-data Gaussian mixture model using the EM algorithm described

in Section B.1 of the appendix with weight estimates d1, . . . , dn, fitting standard Gaussian
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Figure 3.4: Comparison of different clustering algorithms applied to the random walk Laplacian
spectral embedding of graphs simulated from a degree-corrected stochastic block model with
parameters given in (3.3). The left panel (a) shows the clustering accuracy of k-means, Gaussian
mixture modelling (GMM) and weighted-data Gaussian mixture modelling (WD-GMM) for
100 graphs of each size n = 3000, 3500, . . . , 7000. For each algorithm the solid line shows the
mean clustering error and the ribbon shows plus and minus two standard errors. The right
panel (b) shows the number of times the BIC criterion of a fitted GMM and a fitted WD-GMM
over-estimated, correctly estimated and under-estimated the number of communities in the
model for 100 graphs each of size n = 2000, 2250, . . . , 3500.

mixture model and applying the k-means algorithm, to obtain community estimates ẑ1, . . . , ẑn

and measure the clustering error

error := min
σ∈SK

K∑
i=1

I (σ(ẑi)− zi)

where Sk is the permutation group on {1, . . . ,K}. We simulate 100 such sequences, and for each

clustering algorithm and graph size n, we compute the mean clustering error and its standard

error. For each clustering algorithm and graph size n, we compute the mean clustering error

and plus and minus two standard errors, which are plotted in Figure 3.4a. We use our own

implementation of weighted-data and standard Gaussian mixture modelling, and the base-R

implementation of k-means [54]. We see that fitting a weighted-data Gaussian mixture model

yields a noticeable improvement over fitting a standard Gaussian mixture model, and the

k-means algorithm.

3.3.3 Selecting the number of communities using the BIC criterion

In addition to improved clustering performance, a material advantage of fitting the true

asymptotic distribution of the embedding is that we can employ standard model selection
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tools for mixture models to select the number of communities. In particular, we focus on the

Bayesian Information Criterion (BIC). We simulate sequences of degree-corrected stochastic

block model graphs with n = 2000, 2250, . . . , 3500 nodes, and parameters given in (3.3), and

for each graph, we embed its random walk Laplacian matrix into R3 (Definition 3.1), and to

the second and third coordinates, we fit a weighted-data Gaussian mixture model using the

EM algorithm described in Section B.1 of the appendix with weight estimates d1, . . . , dn, for

K = 1, 2, . . . , 5 components. We calculate the BIC criterion of each fitted model and select the

number of components which maximises the BIC criterion as an estimate of the number of

communities in the underlying degree-corrected stochastic block model. We apply the same

approach using a standard Gaussian mixture model. We simulate 100 such sequences, and for

each method and graph size n, Figure 3.4b shows the number of graphs for which the true

number of communities were over-estimated, under-estimated or corrected estimated, using

both a weighted-data and standard Gaussian mixture model.

We see that the BIC criterion for the weighted-data Gaussian mixture model is able to

select the correct number of communities in settings where the BIC criterion for the standard

Gaussian mixture model cannot.

3.4 Illustration with a fictional character network

In many real-world applications, the degree of a node in a network is a parameter of secondary

interest. In social networks, we may wish to model a person’s friendship preferences independently

of their popularity. In cyber-security, and many other domains, the graph represents a snapshot

of a dynamic network describing, for example, packet transfers or other network transactions

[55]. The time that a node is present on the network may have a significant bearing on its degree,

yet have little to do with its role (e.g. a new laptop connecting to the network). Moreover,

the placement of routers and other collection points will result in higher visibility of some

nodes’ connections compared to others. In this case, node degrees are heavily influenced by the

observation process and may not represent an intrinsic property of the nodes themselves.

Stories, real or fictional, often provide network examples to illustrate graph methods, common

examples being Zachary’s Karate Club [56] and the “Les Miserables” character network [57].

Conversely, graph theory is often used in literature studies [58] to understand character networks

and, in this field, degree is often seen as an artefact of the narrative point-of-view: the story

spends more time with the protagonist and antagonist, and so we observe more of their

connections. As an example, we return to the graph describing the enmity relationships between

the characters in the Harry Potter novels of J.K. Rowling [9].

The remainder of this section contains spoilers for the story. Those wishing to read the

books should refrain from reading it. Figure ???3.5 shows the second coordinate of the random

walk spectral embedding of the graph, coloured, where applicable, according to the characters’
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51. Arthur Weasley

50. Dobby

49. Ron Weasley

48. Harry Potter

47. Neville Longbottom

46. Hermione Granger

45. Albus Dumbledore

44. Bartemius "Barty" Crouch Sr.

43. Fleur Delacour

42. Molly Weasley

41. Minerva McGonagall

40. Lily Potter

39. Alastor "Mad−Eye" Moody

38. Nymphadora Tonks

37. Rubeus Hagrid

36. Bill Weasley

35. Charlie Weasley

34. Mary Riddle

33. Cedric Diggory

32. Frank Longbottom

31. Igor Karkaroff

30. Cho Chang

29. Remus Lupin

28. Ginny Weasley

27. James Potter

26. Fred Weasley

25. George Weasley

24. Sirius Black

23. Severus Snape

22. Regulus Arcturus Black

21. Tom Riddle Sr.

20. Narcissa Malfoy

19. Quirinus Quirrell

18. Argus Filch

17. Peter Pettigrew

16. Lord Voldemort

15. Bellatrix Lestrange

14. Bartemius "Barty" Crouch Jr.

13. Lucius Malfoy

12. Dudley Dursley

11. Petunia Dursley

10. Dolores Janes Umbridge

9. Lavender Brown

8. Rita Skeeter

7. Vernon Dursley

6. Vincent Crabbe

5. Gregory Goyle

4. Aragog

3. Fluffy

2. Draco Malfoy

1. Cornelius Fudge
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Figure 3.5: The second coordinate of the random walk Laplacian spectral embedding of the
Harry Potter enmity network, coloured, where applicable, according to the character’s house at
the Hogwarts school.
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house memberships at the Hogwarts school. The embedding shows a clear separation of the

characters into two distinct clusters, broadly reflecting their alignment with the protagonist

and antagonist.

However, there are some interesting outliers. Regulus Black, Severus Snape and Sirius Black

mix in evil circles throughout the story but their benevolence is revealed in the later books. All

three characters are positioned in between the two clusters, reflecting their mixed membership

to the two sides.

A surprise is the positioning of Lavender Brown, a “good” character in the story who is

positioned alongside the “evil” characters. She has only one enemy, Hermione Granger, and thus

only one edge in the graph. Our statistical theory would therefore suggest that her embedding

has high variance, which might explain her unexpected position.
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Chapter 4

Spectral embedding of multipartite

graphs

In this chapter, we develop bespoke statistical methodology for spectral embedding in the case

when the graph under study is multipartite.

There are at least two reasons why a dedicated treatment is warranted. First, this special

case is ubiquitous across science and technology, encompassing, for example, data linking

users and items (bipartite graphs), which support modern recommendation systems, data

from various security applications, providing interconnections between groups such as users,

computers and processes in cyber-security [59]; or images, phone numbers, locations and names

in human-trafficking prevention [60], and large data repositories supporting biomedical research,

linking groups such as drugs, diseases, targets, pathways, variant locations and haplotypes

[61], a 6-partite example analysed in this paper (Figure 4.4 shows a schematic of this dataset).

Second, as we will show, multipartite structure provides an opportunity for dimension reduction.

Under the generalised random dot product graph model, we will show that the spectral

embedding of a multipartite network has a special geometric structure, in which the node

representations lie in the vicinity of group-specific subspaces, whose dimension may be signifi-

cantly lower than the population rank of the graph. This motivates a subsequent step to the

standard spectral embedding algorithm of estimating these subspaces and projecting onto them,

to obtain vector representations of the nodes of each group in these lower, intrinsic dimensions.

Throughout this chapter, we focus on adjacency spectral embedding, however, the ideas

presented here extend to symmetric Laplacian spectral embedding and a regularised variant

thereof.

4.1 Spectral embedding of bipartite graphs

A graph is said to be bipartite if its vertex set can be partitioned into two disjoint subsets as

V = V1 ∪ V2 such that aij = 0 for all i and j in the same group. We write nk = |Vk|, denote a
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X̂1, . . . , X̂n

0

Ŷ1, . . . , Yn1

Ŷn1+1, . . . , Ŷn

0

0

Figure 4.1: The latent geometry of a bipartite graph. The left panel shows the two-dimensional
spectral embedding, X̂1, . . . , X̂n, of a bipartite graph generated from the random graph model
(4.1) where zi ∈ {1, 2}, coloured by group. The right panel shows the corresponding one-
dimensional biadjacency spectral embedding, Ŷ1, . . . , Ŷn of the graph.

node’s group membership by zi ∈ {1, 2} and assume without loss of generality that the nodes

are indexed such that z1 ≤ · · · ≤ zn. Then, the graph adjacency matrix has the form

A =

(
0 A
A⊤ 0

)
,

where A ∈ {0, 1}n1×n2 is known as the graph biadjacency matrix. While an embedding of A

can be obtained using Definition 2.2, it is more common to approximately factorize A using a

truncated singular value decomposition, known as biadjacency spectral embedding, as defined

in the following.

Definition 4.1 (Biadjacency spectral embedding). Suppose A has the singular value decom-

position A =
∑n

i=1 ŝiûiv̂
⊤
i with ŝ1 ≥ · · · ≥ ŝn. The biadjacency spectral embedding of A into

Rd, denoted Ŷ1, . . . , Ŷn, is given by the rows of the matrices

Ŷ(1) =


Ŷ ⊤
1
...

Ŷ ⊤
n1

 :=
(
s
1/2
1 u1 · · · s1/2d ud

)
, Ŷ(2) =


Ŷ ⊤
n1+1
...

Ŷ ⊤
n

 :=
(
s
1/2
1 v1 · · · s1/2d vd

)
,

obtained by stacking the scaled left singular vectors s
1/2
1 u1, . . . , s

1/2
d ud, and scaled right singular

vectors s
1/2
1 v1, . . . , s

1/2
d vd, respectively, in columns.

The matrix A is known in the literature as the symmetric dilation of A, and the use of

the following geometric relationship between the eigenvalues and vectors of A and the singular

values and vectors of A is widespread in the literature on matrix perturbation theory and dates

back to the discovery of the singular value decomposition itself:
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Proposition 4.1 (Stewart and Sun [62]). Suppose s is a singular value of A and u, v are

corresponding left and right singular vectors, then ±s are eigenvalues of A and

1√
2

(
u

±v

)

are corresponding eigenvectors.

The proof of this statement is a simple computation. This result implies the following

geometric relationship between {X̂i}ni=1 and {Ŷi}ni=1:

Lemma 4.1. Let {X̂i}ni=1 be the adjacency spectral embedding of A into R2d (Definition 2.2)

and let {Ŷi}ni=1 be the biadjacency spectral embedding of A into Rd (Definition 4.1). Then, for

compatibly chosen spectral decompositions,

Ŷi =
1√
2

(
X̂i

X̂i

)
for i ∈ V1; Ŷi =

1√
2

(
X̂i

−X̂i

)
for i ∈ V2.

Figure 4.1 illustrates Lemma 4.1 with a toy example.

4.2 The latent geometry of multipartite networks

A graph is said to be multipartite if its node set can be partitioned into K disjoint group

V = V1 ∪ · · · ∪ VK such that aij = 0 if i and j are in the same group. As before, we write

nk = |Vk|, we denote a node’s group membership by zi ∈ [K] and assume without loss of

generality that the nodes are indexed such that z1 ≤ · · · ≤ zn. For the rest of the chapter, we

assume A is multipartite and that the node partitioning is known. In addition, unless otherwise

stated, i, j ∈ [n] and k, ℓ ∈ [K].

4.2.1 A tripartite example

To motivate our discussion of multipartite random graphs, we consider a simple tripartite

inhomogeneous random graph, in which each node, i, is assigned a scalar-valued weight,

wi ∈ (0, 1], and edge probabilities are given by

(4.1) pij =

wiwj if zi ̸= zj ,

0 if zi = zj .

This model is a multipartite generalisation of the Chung-Lu model [30, 34, 35]. The matrix

P has rank three and is equivalently described by a generalised random dot product graph

with signature (1, 2), and latent positions Xi = wiαzi(1, cos θzi , sin θzi)
⊤ with distinct angles

θ1, θ2, θ3 ∈ [0, 2π) and compatibly defined α1, α2, α3 ∈ R.
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Figure 4.2: The latent geometry of a tripartite graph. The left panel shows three-dimensional
latent positions X1, . . . , Xn corresponding to the tripartite random graph described in (4.1),
coloured by group. The cone represents all the totally isotropic subspaces in R3 with signature
(1, 2). The right panel shows the spectral embedding of a simulated realization of such a graph.

The latent positions lie on three one-dimensional subspaces, corresponding to the three

groups. These subspaces are necessarily totally isotropic with respect to the indefinite inner

product ⟨·, ·⟩p,q, meaning that the indefinite inner product of any two points on a subspace is

zero.

The left panel of Figure 4.2 shows a configuration of these three-dimensional latent positions

with 300 nodes in each group and weights drawn uniformly on the interval [0.1, 1]. The cone

represents all totally isotropic subspaces in R3 with signature (1, 2). The right panel shows the

adjacency spectral embedding of a simulated realization of the graph.

4.2.2 Subspace geometry of multipartite graphs

The subspace geometry observed in the previous example is a special case of a more general

phenomenon.

Lemma 4.2. The latent positions {Xi}i∈Vk
corresponding to nodes in group k lie on a subspace

which is totally isotropic with respect to the indefinite inner product ⟨·, ·⟩p,q which has dimension

no greater than min{p, q}.

Lemma 4.2 follows as a corollary of Witt’s theorem of quadratic forms [63], and an elementary

proof is given in Section C.1 of the appendix. We denote the dimension of the totally isotropic

subspace supporting {Xi}i∈Vk
by rk, and we refer to r as the ambient dimension and r1, . . . , rK

as the intrinsic dimensions of the graph.
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4.3 Spectral embedding of multipartite graphs

A combination of Lemma 4.2 and Theorem 2.3 says that the adjacency spectral embedding of a

low-rank multipartite random graph lies “close” to the union of K lower-dimensional subspaces.

This motivates a subsequent step to the standard spectral embedding algorithm of estimating

these subspaces and projecting onto them, to obtain vector representations of the nodes of

each group in their intrinsic, rather than ambient, dimension. We propose to estimate these

subspaces using group-specific, uncentered principal component analysis.

Definition 4.2 (Multipartite adjacency spectral embedding). Given positive integers r1, . . . , rK ≤
r, let X̂1, . . . , X̂n be the adjacency spectral embedding of A into Rr (see Definition 2.2). Then

the multipartite adjacency spectral embedding of node i ∈ Vk into Rrk is

Ŷi = Ξ̂⊤
k X̂i,

where the columns of Ξ̂k are the rk eigenvectors of Σ̂k := n−1
k

∑
i∈Vk

X̂iX̂
⊤
i with the largest

eigenvalues.

As indicated by the notation, Definition 4.2 contains biadjacency spectral embedding

(Definition 4.1) as a special case when r1 = r2 =: d and r = 2d, which can be proved using

Lemma 4.1.

In modern applications where node degrees are highly heterogeneous, the normalisation

step in the following remark is often considered before the spectral decomposition [64–66].

Remark 4.1 (Optional Laplacian regularisation). Let di =
∑n

j=1 aij denote the degree of node

i, set a regularisation parameter τ ≥ 0 and define the matrix Dτ = diag(d1 + τ, . . . , dn + τ).

Define the regularised Laplacian matrix Lτ = D
−1/2
τ AD

−1/2
τ , and replace the adjacency spectral

embedding in Definition 4.2 with the embedding obtained from the eigenvectors of the Lτ (i.e.

replacing A with Lτ in Definitions 2.2).

When τ = 0, Lτ corresponds which the standard symmetric, normalised Laplacian matrix

Lsym introduced in Section 2.2. For a properly chosen τ , Lτ has been shown to improve the

statistical performance of the spectral embedding for sparse graphs when compared to A or

Lsym [66–68]. When the Laplacian normalisation step is applied, the estimand in Theorem 2.3

becomes {E(di) + τ}−1/2Xi, a rescaling of Xi, and therefore the subspace geometry explored in

the preceding section still applies. For simplicity of analysis, we do not consider this step in the

theory of this paper, however, we do in the real data example of Section 5.4.

4.3.1 Estimation theory

To facilitate the statistical analysis of point clouds obtained by multipartite spectral embedding,

we put down a random graph model parametrised to make the true, intrinsic-dimensional

representations of the nodes explicit.
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Definition 4.3 (Multipartite bilinear random graph model). Let Λk,ℓ be fixed, rk× rℓ matrices

satisfying Λk,ℓ = Λ⊤
ℓ,k for all k ̸= ℓ and Λk,ℓ = 0 for all k = ℓ. Let {Yi}i∈Vk

be vectors in

Rrk satisfying Y ⊤
i Λzi,zjYj ∈ [0, 1]. The graph A follows a multipartite bilinear random graph

model with link matrices {Λk,ℓ}k<ℓ if {aij}i<j are independent Bernoulli random variables with

success probabilities

pij = Y ⊤
i Λzi,zjYj , 1 ≤ i < j ≤ n.

While the generalised random dot product graph model requires that edge probabilities be

modelled by a common function of the latent positions (i.e. the indefinite inner product), the

multipartite inner product graph model allows edges between nodes in different pairs of groups

to be modelled using different functions. This additional flexibility is what allows nodes to be

parametrised in their intrinsic dimension.

Identifiability. There are two distinct sources of non-identifiability in the latent positions

and link matrices of a multipartite bilinear random graph model. First, as with the generalised

random dot product graph, one can increase the dimension of the latent positions, for example

by padding them with zeros without changing the distribution of A. We preclude this by

requiring that the matrices Λk := (Λk1 · · · ΛkK) and Σk := n−1
k

∑
i∈Vk

YiY
⊤
i have full rank.

Second, replacing {Yi}i∈Vk
with {GkYi}i∈Vk

and {Λkℓ}Kk,ℓ=1 with {(G⊤
k )

−1ΛkℓG
−1
ℓ }Kk,ℓ=1, where

{Gk}Kk=1 are invertible, linear transformations, does not change the distribution of A. Therefore

the latent positions are only identified up to group-wise invertible transformations, a fact

reflected in the consistency result to come.

A uniform consistency result. The following theorem asserts that, provided the latent

positions {Yi}ni=1 are of the same order of magnitude and the expected degrees of the graph

grow at least logarithmically in n, and the model is well-conditioned, then the multipartite

adjacency spectral embedding of A, {Ŷi}ni=1, with ambient embedding dimension r := rank(Λ)

and intrinsic embedding dimensions equal to the dimension of the corresponding latent positions,

provides a uniformly consistent estimate of the latent positions {Yi}ni=1. By “well-conditioned”,

we mean that the matrices Σk,Λk and Λ have (reduced) condition numbers

κ(Σk) =
σ1(Σk)

σrk(Σk)
, κ(Λk) =

σ1(Λk)

σrk(Λk)
, κ(Λ) =

σ1(Λ)

σr(Λ)
,

respectively, which are of constant order for all k ∈ [K]. Here, we assume that the ambient and

intrinsic dimensions are fixed and known.

Theorem 4.1. Suppose A follows a multipartite bilinear random graph model with link matrices

{Λk,ℓ}Kk,ℓ=1 and latent positions {Yi}ni=1 satisfying ∥Yi∥2 ≍ ρ
1/2
n for some ρn ≲ 1. Then, providing

κ(Σk) ≍ κ(Λk) ≍ κ(Λ) ≍ 1, n1 ≍ · · · ≍ nK and nρn ≳ log n, there exist invertible matrices
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{Gk}Kk=1 such that, for sufficiently large n,

max
i∈[n]

∥∥∥Ŷi −GziYi

∥∥∥
2
≲

√
log n

n

with overwhelming probability.

4.3.2 Sketch proof of Theorem 4.1.

In this subsection, we present a high-level overview of the main ideas for the proof of Theorem 4.1.

The detailed proof is given in Section C.2 of the appendix. We start by constructing linear maps

{Hk ∈ Rr×rk}Kk=1 satisfying Λkℓ = H⊤
k Ip,qHℓ so that Y ⊤

i Λzi,zjYj = ⟨Xi, Xj⟩p,q for all i, j ∈ [n].

Then A follows a generalised random dot product graph with latent positions {Xi}ni=1 and

signature (p, q), and verifying the conditions of Theorem 2.3 and applying it, combined with

Lemma 2.1, we have that with overwhelming probability, there exists an indefinite orthogonal

matrix Q−1 ∈ O(p, q) such that, for sufficiently large n,

(4.2) max
i∈[n]

∥∥∥X̂i −QXi

∥∥∥
2
≲

√
log n

n1/2
.

with overwhelming probability. We then show that Σ̂k concentrates around QΣkQ
⊤ in spectral

norm, where Σk = n−1
k

∑
i∈Vk

XiX
⊤
i , in the sense that, for sufficiently large n,

(4.3)
∥∥∥Σ̂k −QΣkQ

⊤
∥∥∥
2
≲

√
ρn log n

n1/2

with overwhelming probability.

Recall that Ξ̂k ∈ Rnk×rk is the orthonormal matrix of eigenvectors of Σ̂k corresponding to

its rk largest eigenvalues, and let Ξk ∈ Rnk×rk be the orthonormal matrix of eigenvectors of Σk

corresponding to its rk non-zero eigenvalues. We have that the smallest non-zero eigenvalue of

QΣkQ
⊤, δk, satisfies δk ≍ ρn, and we then apply the Davis-Kahan theorem, combined with

(4.3) to obtain the following eigenvector bound: there exists an orthogonal Wk ∈ O(rk) such

that, for sufficiently large n,

(4.4)
∥∥∥Ξ̂k −ΞkWk

∥∥∥
2
≤ 23/2δ−1

k

∥∥∥Σ̂k −QΣkQ
⊤
∥∥∥
2
≲

√
log n

nρn

with overwhelming probability. For each k ∈ [K], we set Gk := W⊤
k Ξ

⊤
k Q(HkH

⊤
k )

−1Hk and

derive that

Ŷi −GziYi = Ξ̂⊤
zi

(
X̂i −QXi

)
+
(
Ξ̂zi −WziΞzi

)⊤
QXi,

and then we employ the triangle inequality together with (4.2), (4.4) and the facts that ∥Q∥2 ≲ 1

and ∥Xi∥2 ≍ ρ
1/2
n to obtain that for sufficiently large n,

max
i∈[n]

∥∥∥Ŷi −GziYi

∥∥∥
2
≤ max

i∈[n]

∥∥∥X̂i −QXi

∥∥∥
2
+ max

k∈[K]

∥∥∥Ξ̂k −WkΞk

∥∥∥
2
∥Q∥2max

i∈[n]
∥Xi∥2

≲

√
log n

n
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with overwhelming probability, which establishes the result.

4.3.3 Selecting the embedding dimension

The theory to follow in this paper assumes that the embedding dimensions, both ambient and

intrinsic, are known, and correspond to the population ranks of the adjacency matrix and the

ambient latent positions corresponding to each group. This represents an “unrealistic ideal” in

two respects. First, in practice, these dimensions need to be selected by the practitioner using

the data. Second, the finite rank assumption on P might not be expected to hold exactly. As a

result, we prefer to view practical dimension selection as a bias-variance trade-off rather than

an estimation problem. Indeed, even if we knew the ambient and intrinsic dimensions, in finite

samples they might not be the best to choose. We refer the reader to [69–71] for pragmatic

discussions around this topic. Several rank selection methods are available in the literature

[69, 72, 73]. We use the elbow method of Zhu and Ghodsi [72] in our real data example but

leave the choice open in general. Note that Lemma 4.2 provides the maximal value of the

intrinsic dimensions given the ambient dimension. We have found that reasonable rank selection

procedures rarely break this inequality in practice (e.g. see Figure 4.5).

4.4 Spectral clustering

A common use of spectral embedding is to uncover community structure in a network. This is

achieved via a subsequent clustering procedure such as the k-means algorithm. Algorithm 1

below describes a spectral clustering algorithm for multipartite networks. It takes as input the

embedding dimensions and number of communities which in practice must be estimated from

the data.

Algorithm 1 Multipartite spectral clustering

Input: adjacency matrix A, node partition V = V1 ∪ · · · ∪ VK , embedding dimensions
r1, . . . , rK , r, number of communities in each group κ1, . . . , κK .

1: Compute {Ŷi}i∈Vk
∈ Rrk , k ∈ [K], the multipartite spectral embedding of A with ambient

dimension r, and intrinsic dimensions r1, . . . , rK .
2: (optional) For each i ∈ [n], set Ŷi = Ŷi/∥Ŷi∥.
3: For each k ∈ [K], apply k-means to {Yi}i∈Vk

with κk clusters.

Output: community partition Ĉ1 ∪ · · · ∪ Ĉκ = V .

The stochastic block model [37] and degree-corrected stochastic block model [38] are models

for community structured networks and are ubiquitous in the community detection literature.

We formally define these models in the specific setting of multipartite graphs.
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Figure 4.3: For a graph simulated from a multipartite stochastic block model with inter-
community probability matrix of the form (4.5), the top panel shows the biadjacency spectral
embeddings (Definition 4.1) of the subgraphs corresponding to every pair of groups. For each
pair of groups, two of the four relevant communities cannot be distinguished. The bottom panel
shows the multipartite spectral embedding (Definition 4.2) of the full tripartite graph, revealing
all six communities.

Definition 4.4 (Multipartite degree-corrected stochastic block model). Suppose the node set

V = V1 ∪ · · · ∪ VK of a multipartite graph A is further sub-partitioned into S disjoint blocks

V = C1 ∪ · · · ∪ Cκ. Let B ∈ [0, 1]κ×κ be a matrix satisfying buv = 0 if Cu, Cv ⊆ Vk for some

k ∈ [K], and let w1, . . . , wn ∈ [0, 1] be a set of weights. The graph A follows a multipartite

degree-corrected stochastic block model if {aij}i<j are independent Bernoulli random variables

with success probabilities

pij = wiwjbuv, i ∈ Cu, j ∈ Cv.

If w1, . . . , wn = 1, then the model is referred to as the multipartite stochastic block model.

In the following, we let mk denote the number of communities in group k.

All multipartite degree-corrected stochastic block models can be parametrised as a multipar-

tite inner product graph model. When B has full rank, one such parametrisation is to set Λk,ℓ

to the mk ×mℓ submatrix of B corresponding to communities in groups k and ℓ, and to set Yi

to be the indicator vector with wi in the position corresponding to its community. In addition,

in this case, the intrinsic dimensions are equal to the number of sub-communities in each group,

and therefore intrinsic dimension estimates may also serve as estimates of these quantities.
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A corollary of the uniform consistency result of Theorem 4.1 is that, supposing the graph

follows a multipartite stochastic block model (and step 2 of Algorithm 1 is not implemented)

or a multipartite degree-corrected stochastic block model (and step 2 of Algorithm 1 is

implemented), then asymptotically almost surely, Algorithm 1 will perfectly estimate the

community memberships, assuming the conditions of the theorem hold and that the number of

communities in each group is known. This may be proved using analogous arguments to those

employed in Lyzinski et al. [42].

4.4.1 Obscured communities

The following is an example of a multipartite stochastic block model for which multipartite

spectral clustering reveals the full community structure of a graph, but spectral clustering using

any individual bipartite subgraph fails to reveal a community. This example was inspired by a

similar example in Jones and Rubin-Delanchy [74] in the context of multiple graph embedding.

Consider a tripartite stochastic block model, with two sub-communities in each group, where

the matrix B has full rank and the form

(4.5) B =



0 0 a a c d

0 0 b b c d

a b 0 0 e e

a b 0 0 f f

c c e f 0 0

d d e f 0 0


for some a, b, c, d, e, f ∈ [0, 1]. If, for example, we consider only the bipartite subgraph corre-

sponding to groups 1 and 2, the two communities of group 2 are indistinguishable, and in

fact, every other bipartite subgraph also obscures a community. No single biadjacency spectral

embedding can therefore uncover all of the latent communities. However, they are all revealed

through multipartite spectral embedding. This is illustrated by simulation in Figure 4.3.

4.5 Application to a large biomedical knowledge graph

Here we apply Algorithm 1 to a multipartite network representing associations between biomed-

ical entities belonging to six groups: drugs, diseases, targets, pathways, variant locations and

haplotypes1. Figure 4.4 shows a schematic of the topology of the data. The associations were

inferred from several biological databases: Drugbank [75], Kyoto Encyclopedia of Genes and

Genomes (KEGG) [76], PharmGKB [77] and the Human Disease network [78]. A superset of

the dataset we use was introduced and detailed in Zong et al. [61].

1Code to reproduce the analysis in this section is available at github.com/alexandermodell/
multipartite clustering.
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Figure 4.4: Schematic of the biomedical multipartite network analysed in Section 5.4. The
number of nodes in each group and the number of edges between groups (zero if unspecified)
are indicated.

We apply Algorithm 1 to the graph, implementing Laplacian regularisation as described in

Remark 4.1 with τ equal the average degree of the graph as recommended in Qin and Rohe [66].

We use the elbow method of Zhu and Ghodsi [72] for ambient and intrinsic dimension selection,

implement the optional spherical projection step, and select the number of communities in

each group equal to the intrinsic dimension estimates under the assumption of a full-rank

degree-corrected stochastic block model. In addition, we do not include nodes of degree less

than five in the clustering steps, as there is not enough signal in their positions for them to be

accurately clustered.

The left panel of Figure 4.5 shows the first 1000 singular values of the regularized Laplacian

and the dimension (r̂ = 214) selected by the elbow method of Zhu and Ghodsi [72]. The

remaining panels show the singular values of the ambient embedding of each node group. The

black lines show the intrinsic dimension selected by the elbow method and the dashed line

shows min{p̂, q̂}, which is always larger, as predicted by Lemma 4.2.

The intrinsic dimension selected also acts as an estimate of the number of communities in

the group. In the Drug and Pathway groups, each item has associated labels, obtained from the

DrugBank [75] and KEGG [76] databases, which we use as held-out information to interpret

and evaluate the clustering obtained.
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Figure 4.5: Dimension selection for the biomedical multipartite network. The left panel shows
the scree plot of the regularized Laplacian matrix and the right panels the scree plots of the
ambient embeddings corresponding to each group. The dimension selected — and thus the
number of clusters — is shown as a solid line and min{p̂, q̂} = 99 is shown as a dashed line.

Table 4.1: Example clusters of pathways.

Cluster 9

Fatty acid degradation (Li, Me)
Peroxisome (Ce, Tr)
PPAR signaling pathway (En, Or)
Fat digestion and absorption (Di, Or)
Fatty acid metabolism (Me, Ov)
Primary bile acid biosynthesis (Li, Me)
alpha-Linolenic acid metabolism (Li, Me)
Biosynthesis of unsaturated fatty acids (Li, Me)
· · ·+ 3 more

(Me) 8/80, (Li) 5/15, (Or) 2/69

Cluster 11

Morphine addiction (Hu, Su)
Amphetamine addiction (Hu, Su)
Circadian entrainment (En, Or)
Amyotrophic lateral sclerosis (Hu, Ne)
Nicotine addiction (Hu, Su)
Renin secretion (En, Or)
Cocaine addiction (Hu, Su)
· · ·+ 5 more

(Hu) 6/71, (Or) 5/69, (Su) 4/5,
(En) 2/17, (Se) 2/4

Cluster 39

Alzheimer’s disease (Hu, Ne)
Parkinson’s disease (Hu, Ne)
Oxidative phosphorylation (Em, Me)
Non-alcoholic fatty liver disease (Em, Hu)
Huntington’s disease (Hu, Ne)

(Hu) 4/71, (Ne) 3/5

Cluster 61

Prostate cancer (Ca, Hu)
Central carbon metabolism in cancer
(Ca, Hu)
Acute myeloid leukemia (Ca, Hu)
Chronic myeloid leukemia (Ca, Hu)
Melanoma (Ca, Hu)
Non-small cell lung cancer (Ca, Hu)
Glioma (Ca, Hu)
· · ·+ 4 more

(Ca) 10/22, (Hu) 10/71

“(Xx) a/b” means “label (Xx) appears a times in the cluster and b times in total”.

Labels: (Ca) Cancers, (Ce) Cellular processes, (Di) Digestive system, (Em) Energy metabolism, (En)
Endocrine systems, (Hu) Human diseases, (Li) Lipid metabolism, (Me) Metabolism, (Ne) Neurodegenerative

diseases, (Or) Organismal systems, (Ov) Overview, (Su) Substance dependence, (Tr) Transport and
catabolism.
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Table 4.2: Example clusters of drugs.

Cluster 3

Pyridoxal Phosphate (Di, Mi, Su, Vb)
Citric Acid (Ac, Ch)
Alglucosidase alfa (Ez)
L-Proline (Di, Mi, Nea, Su)
L-Aspartic Acid (Di, Mi, Nea, Su)
Pyruvic acid (Di, Mi, Su)
Tetrahydrofolic acid (Di, Mi, Su)
· · ·+ 22 more

(Di) 12/44, (Mn) 12/41, (Su) 12/44,
(Aa) 4/6, (Nea) 4/12, (Vb) 3/10

Cluster 36

Diazepam (Ad, Am, Ane, Ax, Cv,
Ga, Hy, Mu)
Midazolam (Ad, Ane, Ax, Ga, Hy)
Baclofen (Mu, Nm)
Clobazam (Bz, Cv)
Propofol (An, Hy)
Lorazepam (Bz, Hy)
· · ·+ 46 more

(Hy) 23/37, (Bz) 16/17, (Ga) 14/18,
(Ax) 12/17, (Ad) 6/25, (Cv) 4/31

Cluster 45

Caffeine (Ap, Ce, P1, Ph)
Theophylline (Br, Mu, P1, Ph, Va)
Adenosine monophosphate (Di, Mi, Su)
Aminophylline (Br, Ca, Mu, P1, Ph)
Oxtriphylline (Br)
Flavoxate (Pa)
Papaverine
· · ·+ 25 more

(Va) 9/35, (Br) 7/22, (Ph) 7/8,
(Pl) 5/15, (Mu) 3/19, (P1) 3/3

Cluster 61

Methadone (An, Na, Tu)
Morphine (An, Na)
Heroin (An, Na)
Oxycodone (Ad, An, Na)
Fentanyl (Ad, An, Ana, Na)
Ketamine (Ag, Ane, Ex)
Alfentanil (Ag, An, Na)
· · ·+ 28 more

(Ag) 20/41, (Na) 17/18, (Naa) 5/8,
(Ad) 5/25, (An) 5/31, (Tu) 5/8

“(Xx) a/b” means “label (Xx) appears a times in the cluster and b times in total”.

Labels: (Aa) Amino acids, (Ad) Adjuvants, (Ana) Analgesics, (Ane) Anesthetics, (Ap) Appetite depressants,
(Ax) Anti-anxiety agents, (Br) Bronchodilator agents, (Bz) Benzodiazepines, (Ca) Cardiotonic agents, (Ce)
Central-nervous-system stimulants, (Cv) Anticonvulsants, (Di) Dietary supplements, (Ex) Excitatory amino
acid antagonists, (Ez) Enzyme replacement agents, (Ga) GABA modulators, (Hy) Hypnotics and sedatives,
(Mi) Micronutrients, (Mu) Muscle relaxants, (Na) Narcotics, (Naa) Narcotic antagonists, (Nea) Non-essential
amino acids, (Nm) Neuromuscular agents, (P1) Purinergic P1 receptor antagonists, (Ph) Phosphodiesterase
inhibitors, (Su) Supplements, (Tu) Antitussive agents, (Va) Vasodilator agents, (Vb) Vitamin-B complex.
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The correspondence between the communities recovered and their labels is strong. Tables

1 and 2 show example clusters in the Drug and Pathway groups. The items with the highest

degree are shown, with their labels in brackets. Below, we show the number of occurrences of

each label within the cluster and in total, for the most commonly occurring labels in the cluster

(if they appear more than once).

In the Drug group, Cluster 3 contains primarily nutrition-related substances, Cluster 36

contains primarily hypnotics and sedatives including all but one of the benzodiazepines, Cluster

45 primarily vasodilators including all but one of the Phosphodiesterase inhibitors and Cluster 61

includes all but one of the narcotics. In the Pathway group, Cluster 9 corresponds to pathways

related to metabolism, Cluster 11 to addiction, and Cluster 39 to neuro-degenerative diseases

and Cluster 61 to cancer.

Discussion

This chapter elucidates the geometry of low-rank multipartite networks and uses this to motivate

a secondary dimension reduction step after spectral embedding. Network communities can then

be recovered through k-means clustering, and the estimated intrinsic dimension can serve as an

estimate of the number of communities.

Two important assumptions in our statistical model are that the edges are conditionally

independent and that the adjacency matrix has some low, ‘true’, rank. These assumptions,

standard in statistical graph theory, are the subject of active academic discourse [79–81]. The

theory, and the practical scope of our method, is likely to extend to mild edge dependence [82]

and fast enough eigenvalue decay [83, 84].
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Chapter 5

Spectral embedding of dynamic

networks

In this chapter, we divert our attention from static networks to dynamic networks — specifically,

to those characterised by a collection of instantaneous interaction events which occur between

pairs of nodes in continuous time.

Making sense of patterns of connections occurring over time is a common theme of modern

data analysis and is often approached in one of two ways. On the one hand, we may see

dynamic network data as a graph, in which connections between the same entities over time are

somehow treated as one, e.g. through weighting. This view evokes methodological ideas such

as community detection [14, 85], topological data analysis [86], or manifold learning [87, 88].

On the other, we may see the data as a set of point processes [89], each modelling the event

times of connections between two entities. This view evokes temporal notions such as trend,

changepoints and periodicity. There are many opportunities for innovation combining ideas

from these different modelling cultures.

We present a spectral embedding framework for continuous-time dynamic network data

which learns continually evolving representations of nodes, in which ideas from both the

graph and temporal domains can be combined. Our framework, which we call Intensity Profile

Projection, consists of three stages: estimating the intensity functions underlying the interactions

between pairs of nodes, e.g. via kernel smoothing; learning a projection which minimises a notion

of intensity reconstruction error; and inductively constructing evolving node representations

via the learned projection.

Our algorithm has material advantages over existing approaches, broadly relating to statis-

tical precision and interpretability, which open new possibilities for inference. For instance, in

Section 5.3, we present a synthetic example involving continuously evolving network topology,

which is shown to be hard to infer, not to say impossible, by other methods.

By “precision”, above, we mean a uniform error bound: controlling the largest error of any

representation over the entire time domain and node-set. By “interpretability”, we are referring

47



CHAPTER 5. SPECTRAL EMBEDDING OF DYNAMIC NETWORKS

to a property of our method which to our knowledge is unique among continuous-time methods:

two nodes at two points in time exhibiting statistically indistinguishable behaviour are mapped

to the same position, up to noise. Properties known in the literature as temporal coherence

(or longitudinal stability) and structure preservation (or cross-sectional stability) [90, 91] are

established as special cases in which the same node is considered at two distinct points in time,

or two distinct nodes are considered at the same point in time. These results assume a generic

inhomogeneous Poisson dynamic network model.

Our estimation theory elucidates the role of smoothing as a bias-variance trade-off and

shows how we can reduce smoothing as the signal-to-noise ratio increases on account of the

algorithm ‘borrowing strength’ across the network.

Related work. Our proposed framework combines ideas from point process modelling [92]

and spectral embedding [15, 47]. The theoretical analysis draws on recent developments in

entrywise eigenvector estimation for random matrices [74, 82, 93, 94]. For a specific choice of

intensity estimator (the histogram), our method can be viewed as a weighted graph analogue of

Unfolded Spectral Embedding [74, 91], but those papers consider different data (multilayer or

discrete time networks) and models.

We perform a comprehensive method comparison in Section 5.3. To our knowledge, the

only unsupervised representation learning methods for dynamic network data (as defined in the

next section) are [95–97], which are based on latent position models and have much weaker

theoretical guarantees. There are a number of discrete-time dynamic network representation

learning algorithms, which broadly fall under latent position models [98–100], spectral methods

[74, 91, 101–103] and word-embedding-based methods [104, 105]. Given how limited the options

are for handling continuous time, in our method comparison we also include some discrete-time

methods which could reasonably be used as alternatives.

5.1 Intensity Profile Projection

Data. We consider dynamic network data, denoted G, representing instantaneous undirected

interactions between nodes over time, which we define formally as G = (V, E) on a time

domain T = (0, T ], containing a node set V = [n] and a set of triples E = {(ie, je, te)}e≥1,

each corresponding to an undirected interaction event, where ie < je ∈ V, te ∈ T . We let

Eij := {t : (i, j, t) ∈ E} denote the interaction events between nodes i and j.

Model. We assume the interaction events Eij are driven by an independent inhomogeneous

Poisson process with intensity λij(t). Informally:

λij(t)dt = P {interaction between nodes i and j in (t, t+ dt]} .

We represent these intensities in a symmetric time-varying matrix Λ(·) : T → Rn×n
+ .
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Procedure. Intensity Profile Projection can be summarised as follows.

1. Intensity estimation. Construct intensity estimates λ̂ij(·) of λij(·) from Eij for all i < j.

2. Subspace learning. Compute the top d eigenvectors Ûd = (û1, . . . , ûd) of

(5.1) Σ̂ :=
1

T

∫ T

0
Λ̂2(t)dt,

where Λ̂(t) has symmetric entries λ̂ij(t), and rows denoted Λ̂i(t) called intensity profiles.

3. Projection. For a query node i at time t, project the intensity profile Λ̂i(t) onto the

subspace spanned by û1, . . . , ûd, to obtain X̂i(t) = Û⊤
d Λ̂i(t).

While we develop more principled statistical justifications for the procedure in future sections,

it is inspired by a simple reconstruction argument. For an arbitrary d-dimensional subspace

spanned by the orthonormal columns of a matrix Vd ∈ Rn×d, let

r̂i(t;Vd) :=
∥∥∥VdV

⊤
d Λ̂i(t)− Λ̂i(t)

∥∥∥
2

denote the reconstruction error of node i at time t, and define the integrated residual sum of

squares as

R̂2(Vd) :=

∫ T

0

n∑
i=1

r̂2i (t;Vd) dt.

Lemma 5.1. Among all d-dimensional subspaces of Rn, the column span of Ûd minimises the

integrated residual sum of squares criterion R̂2.

Lemma 5.1 may be viewed as a dynamic analogue to the classical Eckart-Young theorem on

low-rank matrix approximation [106]. A proof is given in Section D.4 of the appendix.

5.1.1 Intensity estimation

The choice of intensity estimator is left fully open, but our theory makes two important

recommendations. First, there are computational gains to be made using sparse estimators for

subspace learning. Second, the procedure borrows strength across the network and can give

precise representations even when the individual intensity estimates are noisy (e.g. inconsistent).

In our experiments, we focus on standard non-parametric estimators such as the histogram or

kernel smoothers and choose kernels with finite support to induce sparse estimates.

5.1.2 Subspace learning

The subspace learning step of our procedure involves the computation of an integral, and

computing the eigendecomposition of the resulting dense matrix Σ̂, both of which may be

infeasible for large networks. If a sparse intensity estimator is employed in step 1 of the procedure
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Algorithm 2 Approximate Intensity Profile Projection

Input: Continuous time dynamic graph G, dimension d.

1: Construct intensity estimates λ̂ij(·) of λij(·) from Eij for all i < j.
2: Compute the top d left singular vectors û1, . . . , ûd of[

Λ̂(t1) Λ̂(t2) · · · Λ̂(tB)
]

where t1 < · · · < tB are equally spaced points on (0, T ].
3: Define the trajectory of node i as

X̂i(t) := Û⊤
d Λ̂i(t)

where Ûd := (û1, . . . , ûd).

Output: Node trajectories X̂1(t), . . . , X̂n(t).

and we approximate the integral (5.1) using a numerical quadrature scheme, then step 2 can be

rephrased as a single sparse, truncated singular value decomposition, which can be computed

quickly for very large networks using an efficient solver [107, 108].

Consider the numerical approximation

(5.2) Σ̂ ≈ 1

B

B∑
b=1

Λ̂2(tb)

where t1 < · · · < tB are equally spaced points on (0, T ]. The top d eigenvectors of the right-

hand-side of (5.2) are then equal1 to the top d left singular vectors of the matrix[
Λ̂(t1) Λ̂(t2) · · · Λ̂(tB)

]
,

the row concatenation of Λ̂(t1), . . . , Λ̂(tB). This procedure is presented in Algorithm 2.

5.1.3 Projection

The inductive nature of Intensity Profile Projection allows us to obtain representations X̂i(t)

on demand, for example, the full trajectory for a particular node, or the representations of the

entire graph at a point in time. It is possible to obtain representations for intensity profiles

outside the training sample, corresponding to new nodes or times outside the training domain,

allowing online inference. In practice, one will need to retrain occasionally, i.e. return to step 2,

although we leave the discussion of this computational and statistical trade-off for future work

(see, for example, [109] in the context of static networks).

1Up to signs, rotations in the eigenspaces in the case of repeated eigenvalues, and assuming a gap between
the dth and (d+ 1)th eigenvalues.
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5.2 Estimation theory

In this section, we develop estimation theory showing the sense in which X̂i(t) is a “good”

estimator of Xi(t) := U⊤
d Λi(t) where Ud = (u1, . . . , ud) ∈ Rn×d is the matrix containing the

top-d orthonormal eigenvectors of

Σ :=
1

T

∫ T

0
Λ2(t)dt.

In this section, we assume, without loss of generality, that T = (0, 1]. We now introduce

some quantities which appear in our main theorem. Firstly, we assume that each λij(·) is

Lipschitz with constant L, and is upper bounded by λmax. Secondly, we define the (reduced)

condition number and the eigengap,

κ :=
σ1
σd

, and δ := σd − σd+1,

respectively, where σ2
1 ≥ · · · ≥ σ2

n are eigenvalues of Σ. Thirdle, we introduce the coherence

parameter

µ :=

√
n

d
∥Ud∥2,∞ ,

which is small when, informally, information about a single entry of Σ is “spread out” across

the matrix [110]. Finally, we define the population residuals

ri(t) :=
∥∥∥UdU

⊤
d Λi(t)− Λi(t)

∥∥∥
2
.

Rather than attempt to develop a theoretical framework encompassing all intensity estima-

tors, we choose arguably the most rudimentary, the histogram, and we expect more powerful

estimators will only improve matters. This choice of estimator is also attractive because it

allows us to pinpoint the crucial practical considerations at play.

We now state the assumptions we require for our theorem. Our first assumption is that the

intensities are bounded.

Assumption 1 (Bounded intensities). The intensities are upper bounded by a constant which

doesn’t depend on the other quantities in the problem; i.e. λmax ≲ 1.

Our second assumption is on the population integrated residuals. It ensures that the intensity

profiles Λ1(t), . . . ,Λn(t) do not deviate “too much” from a common low-dimensional subspace.

Assumption 2 (Small population residuals). The population residuals satisfy

r1(t), . . . , rn(t) ≲

√
d

n
µδ log5/2 n

for all t ∈ [0, 1].
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Our third assumption is a technical condition on the eigengap which, broadly speaking,

ensures that there is “enough signal”.

Assumption 3 (Enough signal). The eigengap satisfies δ log(δ/
√
nλmax) ≳ κnλmax.

Our final assumption is on the bin size, and ensures that the bins are not chosen “too

small”.

Assumption 4 (Large enough bins). The number of bins satisfies M ≲ nλmax/ log
3 n.

These assumptions are weaker than those typically required in the literature (e.g. on

stochastic block models and random dot product graphs [8, 14]). To emphasise this point,

consider the following stronger alternative assumptions which imply Assumptions 1, 2 and 3:

Assumption 1a. The intensities λij(t) are of comparable order, i.e. λij(t) ≍ ρ for some ρ ≲ 1

and all i, j ∈ [n], t ∈ (0, 1]

Assumption 2a. The matrix Σ has rank d ≍ 1; is incoherent, i.e. µ ≍ 1; and its non-zero

eigenvectors are of comparable order, i.e. σ1 ≍ σd > σd+1 = 0.

It is immediate that Assumption 1a implies Assumption 1 and under Assumption 2a, the

population residuals are all exactly zero, κ ≍ 1 and δ ≍ nρ, which implies Assumptions 2 and 3.

Assumption 4 requires that the expected number of events involving each node in each bin

is at least of the order log3 n. This is analogous to the log n degree growth required for perfect

clustering under the binary stochastic block model. Since the latter is an information-theoretic

bound [111] and the additional logarithmic powers in our work stem from the sub-exponential

tails of the Poisson distribution, we do not think this assumption can be weakened.

We now state our main theorem, which under Assumptions 1-4, provides a non-asymptotic

bound on the error between the learned representations and their population counterparts,

which holds uniformly over the whole node-set and the time domain.

Theorem 5.1. Suppose that λ̂ij(t) are histogram estimates with M equally-spaced bins and that

Assumptions 1-4 hold. Then with overwhelming probability, there exists an orthogonal matrix

W such that

(5.3) max
i∈[n]

sup
t∈(0,1]

∥∥∥WX̂i(t)−Xi(t)
∥∥∥
2
≲

n3/2Lλmax

Mδ
+ µ

√
Mλmaxd · log5/2 n.

As a corollary to Theorem 5.1, we state a simplified version of this result in which we replace

Assumptions 1, 2 and 3 with the stronger Assumptions 1a and 2a. Since the Lipschitz constant

L scales with the order of the intensities, and we define the quantity L0 satisfying L = ρL0

which is invariant to the rescaling of intensities.
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Figure 5.1: A bias-variance trade-off. We simulate a network with common intensities λij(t) =
0.7× {2 + cos(t)} for all i, j, and apply Intensity Profile Projection with a histogram intensity
estimator with 5, 20, and 200 bins. In the ‘bias’ plots, the grey lines show an estimand Xi(t),
while blue lines show its histogram approximation. The discrepancy between gray line and the
blue line corresponds to the bias of the Intensity Profile Projection estimator. In the ‘variance’
plots, the blues lines are as in the ‘bias’ plots and the orange line shows the estimate obtained
using Intensity Profile Projection into one dimension. The discrepancy between the blue line
and the orange line corresponds to the variance of the Intensity Profile Projection estimator.

Corollary 5.1. Suppose that λ̂ij(t) are histogram estimates with M equally-spaced bins and that

Assumptions 1a, 2a and 4 hold. Then with overwhelming probability, there exists an orthogonal

matrix W such that

(5.4) max
i∈[n]

sup
t∈(0,1]

∥∥∥WX̂i(t)−Xi(t)
∥∥∥
2
≲

n1/2ρL0

M
+
√
Mρ · log5/2 n.

5.2.1 A bias-variance trade-off

The first term in the bound corresponds to the bias between X̄i(t) and Xi(t), where X̄i(t) is a

histogram approximation to Xi(t) (modulo orthogonal transformation, see Section D.5.3 of the

appendix). The second term corresponds to the variance of the estimate.

Theorem 5.1 gives some theoretical guidance on how to select the number of bins in the

histogram estimator. For simplicity, we consider the setting of Corollary 5.1. Ignoring logarithmic

terms in n, the bound in (5.4) is optimised by choosing

M ≍
(
nρL2

0

)1/3
.

Figure 5.1 illustrates this bias-variance trade-off with an example. We simulate a dynamic

network with 100 nodes with common intensities λij(t) = 0.7× {2 + cos(t)}, for all i, j, on the

time domain (0, 4π].
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The top row shows the population representation Xi(t) of a single node (grey) and its

histogram approximation X̄i(t) (blue) for a variety of bin sizes. The more bins that are chosen,

the smaller the bias and the more X̄i(t) resembles Xi(t). The bottom row shows the histogram

approximation X̄i(t), and the estimate X̂i(t) (orange) obtained using Intensity Profile Projection.

The fewer bins that are chosen, the smaller the variance and the more that X̂i(t) resembles

X̄i(t).

5.2.2 Sketch proof of Theorem 5.1

In this subsection, we provide a sketch of the main proof techniques used to prove Theorem 5.1.

The proof begins by decomposition the error term into bias and variance terms:

max
i,j∈[n]

sup
t∈T

∥∥∥WX̂i(t)−Xi(t)
∥∥∥
2
= max

i,j∈[n]
sup
t∈T

∥∥∥WX̂i(t)− X̄i(t)
∥∥∥
2︸ ︷︷ ︸

variance

+ max
i,j∈[n]

sup
t∈T

∥∥W′X̄i(t)−Xi(t)
∥∥
2︸ ︷︷ ︸

bias

,

where X̄i(·) is the histogram approximation of Xi(·) with M equally spaced bins. The bias term

is then bounded using standard techniques which make use of the Lipschitz continuity of λij(·).
To bound the variance term, we define the matrices

Λ̂ =
[
Λ̂(t1) · · · Λ̂(tM )

]
, Λ̄ =

[
Λ̄(t1) · · · Λ̄(tM )

]
where t1, . . . , tM are equally spaces points on [0, 1]. Let Ŝ and S̄, respectively, denote the

diagonal matrices containing their top-d singular values and let Û, V̂ and Ū, V̄, respectively, be

the matrices whose columns contain corresponding orthonormal left and right singular vectors.

Using elementary linear algebra, one can show that

max
i,j∈[n]

sup
t∈T

∥∥∥WX̂i(t)− X̄i(t)
∥∥∥
2
=
∥∥∥V̂Ŝ− V̄S̄W

∥∥∥
2,∞

.

Following similar decompositions to those employed in Cape et al. [4], Lyzinski et al. [46], Jones

and Rubin-Delanchy [74] and Xie [94], we decompose V̂Ŝ− V̄S̄W as

V̂Ŝ− V̄S̄W = V̄(V̄⊤V̂Ŝ− S̄W)

+ (I− V̄V̄⊤)Λ̄⊤(Û− ŪW)

+ (I− V̄V̄⊤)(Λ̂− Λ̄)⊤ŪW

+ (I− V̄V̄⊤)(Λ̂− Λ̄)⊤(Û− ŪW).

The first and third terms are bounded using classical concentration-of-measure and matrix

perturbation tools and the second term is bounded using Assumption 2. However, the final

term requires a more delicate treatment.

Part of the challenge of obtaining a good bound on this term is that (Ã− Λ̃) and (Û−ŪW)

are dependent, and this dependence must be decoupled in order to apply the standard suite of
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matrix perturbation tools. For this, we employ the leave-one-out proof technique pioneered in

Bean et al. [112], Javanmard and Montanari [113], Zhong and Boumal [114] and Abbe et al.

[93]. We construct the auxiliary matrices Λ̂(1), . . . , Λ̂(n) where Λ̂(m) is the matrix obtained by

replacing the row and columns of Λ̂ corresponding the mth node with its expectation. In this

way, the mth row of (Λ̂− Λ̄) and Λ̂(m) are independent.

Letting Û(m) denote the matrix of leading left singular values of Λ̂(m), we then decompose

the Euclidean norm of (Λ̂− Λ̄)⊤·,m(Û−UW) as∥∥∥(Λ̂− Λ̄)⊤·,m(Û− ŪW)
∥∥∥
2
≤
∥∥∥(Λ̂− Λ̄)⊤·,mÛ(W − Û⊤Ū)

∥∥∥
2

+
∥∥∥(Λ̂− Λ̄)⊤·,m(ÛÛ⊤Ū− Û(m)(Û(m))⊤Ū)

∥∥∥
2

+
∥∥∥(Λ̂− Λ̄)⊤·,m(Û(m)(Û(m))⊤Ū− Ū)

∥∥∥
2
.

To bound these terms, we require good bounds on∥∥∥Û∥∥∥
2,∞

,
∥∥∥Û(m)

∥∥∥
2,∞

and
∥∥∥Û(m)W(m) −U

∥∥∥
2,∞

which we obtain directly from a result due to Abbe et al. [93], and good bounds on∥∥∥Û(m)(Û(m))⊤ − ŪŪ⊤
∥∥∥
2

and
∥∥∥Û(m)(Û(m))⊤ − ÛÛ⊤

∥∥∥
2

which are obtained by an application of Wedin’s inequality, combined with a careful entry-by-

entry analysis of ∥(Λ̂(m) − Λ̂)Û(m)∥F and ∥(Λ̂(m) − Λ̂)V̂(m)∥F. For a more detailed account of

the leave-one-out proof technique, we refer the reader to Abbe et al. [93].

5.3 Structure preservation and temporal coherence

For many practical inference tasks, it is desirable for a representation learning procedure to

possess the following two properties:

• Structure preserving. If two nodes exhibit statistically indistinguishable behaviour at

a given time, then their representations at that time are similar. That is, if Λi(t) = Λj(t),

then X̂i(t) ≈ X̂j(t);

• Temporally coherent. If a node exhibits statistically indistinguishable behaviour at

two distinct points in time, then its representations at both these times are similar. That

is, if Λi(s) = Λi(t), then X̂i(s) ≈ X̂i(t).

It has been observed in a recent survey of [90] that almost all existing dynamic network

embedding procedures possess only one of these properties, but not both.

In the following lemma, we formally define X̂i(s) ≈ X̂j(t) to mean that Xi(s) = Xj(t),

referring to equality “up to statistical noise” in the sense of Theorem 5.1.
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Figure 5.2: One-dimensional PCA visualisation of the two-dimensional node representations
obtained using a collection of methods for a network simulated from a bifurcating block model.
Colours correspond to the community memberships of the nodes.

Lemma 5.2. Intensity Profile Projection is both structure preserving and temporally coherent.

This follows from the simple observation that Xi(t) is a fixed function of Λi(t) for all i and t.

To the best of our knowledge, Intensity Profile Projection is the only existing continuous-time

procedure which satisfies these desiderata.

5.3.1 Simulated example: a bifurcating block model

To illustrate these properties, we simulate a two-community dynamic stochastic block model (i.e.

where Λ(t) is block structured) in which the intra-community intensities and inter-community

intensities are initially distinct, they then gradually merge, remain indistinguishable for some

time, and finally diverge. We refer to this model as a bifurcating block model and provide full

details of the simulation in the supplementary materials.

We apply Intensity Profile Projection to the simulated network, using both a histogram

intensity estimator, and a kernel smoother, to produce two-dimensional representations. For

visualisation, we reduce the dimension from two to one using a dynamic adaptation of principal

component analysis (see Section D.3 of the appendix), and the resulting representations are

shown in Figures 5.2a and b.

In both cases, the estimated trajectories mirror the underlying dynamics of the network:

the two communities are well separated to begin with, gradually merge, and remain relatively

constant before returning to the positions in which they started.

We now illustrate the potential pitfalls of some more naive approaches for embedding

dynamic networks. We find that most existing methodology can be viewed as some combination
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of the following two techniques:

• Alignment. Obtain a sequence of static snapshots of the network, embed each of the

network snapshots separately and subsequently align the embedding from window t+ 1

with the embedding from window t using orthogonal Procrustes alignment [115].

• Averaging. Obtain a static summary of the network by averaging it over time, and

embed this to obtain constant node representations.

Alignment preserves the structure of the network at each point in time, however can fail to

be temporally coherent. Averaging is temporally coherent but can fail to preserve the structure

of the network. To illustrate this point, we apply both approaches, using adjacency spectral

embedding into two dimensions, to a network simulated from the bifurcating block model.

Figures 5.2c and d show visualisations of the trajectories obtained from each approach.

5.3.2 Method comparison

In this section, we demonstrate how our procedure compares to some existing methods on the

simulated data described above. Due to the limited number of continuous-time methods, we

include a number of discrete-time methods (Omnibus, PisCSE and MultiNeSS) which we give

as input a discrete sequence of snapshots A(1), . . . ,A(M) of our simulated continuous-time

networks. We compare the following methods:

• IPP (kernel smoothing). Algorithm 2 applied with intensities estimated using kernel

smoothing.

• IPP (histogram) / USE [74]. Algorithm 2 applied with intensities estimated using

a histogram estimator. Equivalent to a weighted extension of the Unfolded Spectral

Embedding algorithm of [74].

• CLPM [95]. Fits a continuous latent position model log λij(t) = β − ∥Zi(t) − Zj(t)∥2
with a penalty on large velocities in the latent space.

• Omnibus [101]. Approximately factorises the matrix A with blocks A[k, l] = 1
2(A(k) +

A(l)), using a spectral decomposition.

• PisCES [102]. Minimises the objective function

M∑
k=1

∥L(k)− L⋆(k)∥2F + α

M−1∑
k=1

∥L⋆(k)− L⋆(k + 1)∥2F ,

for L⋆(1), ...,L⋆(M), where α ∈ [0, 1] and L(k) are the Laplacian normalisations of A(k).

Then, approximately factorises each L⋆(1), ...,L⋆(M) using spectral decompositions.
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• MultiNeSS [116]. Fits a latent position model Aij(k) ∼ Q{·; f(Zi(k), Zj(k)), ϕ}, where
Q(·; θ, ϕ) is a parametric distribution.

We use an embedding dimension of d = 2 for all methods, and for visualisation, we reduce

this to one using PCA. Additional details such as hyperparameter selection, where applicable,

are given in the Section D.1 of the appendix.

The CLPM and Omnibus methods produce representations which are temporally coherent,

however both fail to capture the complete merging of the communities, shown by Figures 5.2e

and f, and are therefore not structure preserving. The PisCES and MultiNeSS methods produce

representations which are structure preserving, however, both are unstable when the communities

are indistinguishable, shown by Figures 5.2g and h, and are therefore not temporally coherent.

5.4 Illustration with face-to-face interaction data

We demonstrate Intensity Profile Projection on a dataset containing the face-to-face interactions

of the pupils of a primary school in Lyon over two days in October 2009 [117]. During the

study, discreet radio-frequency identification devices were worn by 232 pupils and 10 teachers

which recorded their face-to-face interactions. When two participants were in close proximity

over an interval of 20 seconds, the timestamped interaction event was recorded. The school

contains five year groups, each divided into two classes, and each class has an assigned room

and an assigned teacher. The school day runs from 8:30am to 4:30pm, with a lunch break from

12:00pm to 2:00pm, and no data was gathered on contacts taking place outside the school or

during sports activities. For more details about the study and dataset, we refer the reader to

[117].

We apply Intensity Profile Projection to the data corresponding to each day of the study

using a kernel smoother with an Epanechnikov kernel, choosing a bandwidth of 5 minutes and

computing 30-dimensional trajectories.

To visualise the node trajectories, we first rescale them to have unit norm, which has

the effect of removing information about the “activeness” of a node from its representation

(see, for example, [66]), and apply two dimension reduction techniques. The first is principal

component analysis (PCA), which we adapt to our dynamic setting by projecting the (centered)

representations onto the direction of maximum average variance over the time domain. This

visualisation gives us a temporally coherent view of the trajectories (more details are given in

Section D.3 of the appendix). In Figure 5.3, we visualise the trajectories of each pair of classes

in each year group using PCA, and for clarity, we just plot the average trajectory for each class,

along with one standard deviation above and below.

The second is t-distributed Stochastic Neighbor Embedding (t-SNE), a popular non-linear

dimension-reduction tool which provides enough flexibility to visualise the whole set of represen-
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Figure 5.3: One-dimensional PCA visualisation of the 30-dimensional node representations for
pairs of classes in the same year group. The solid lines show the average trajectory for each
class, and the dashed line shows one standard deviation above and below.
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Figure 5.4: Two-dimensional t-SNE visualisation of the 30-dimensional node representations of
all pupils and teachers evaluated at 9:30am on Day 1, and 9:30am, 12:30pm and 3:30pm on
Day 2.

tations at each point in time. Figure 5.4 shows t-SNE visualisations of the node representations

at a collection of times throughout the study.

Figure 5.3 clearly shows the mixing of classes during the lunch hours, and from Figures 5.4,

we see that the representations are much more fragmented during the lunch hour (12:30pm,

Day 2) than they are during lessons at the other times, where they form tighter clusters

corresponding to classes.

While it is reassuring that the geometry of the trajectories reflects the known class and

timetable structures of the school, it also allows us to uncover structure in the data that was

not known from the report on the study. For example, classes 5A and 5B (olive and cyan,

respectively) merge into a single cluster at approximately 9:30am on Day 1, and classes 3A

and 3B (brown and pink, respectively) do the same at approximately 9:30am on Day 2. One

might conjecture that this corresponds to a joint lesson, which is taken by the students of both

classes in a year group.

5.5 Discussion

We have presented an algorithmic framework to learn continuous-time, low-dimensional trajec-

tories representing the evolving behaviours of nodes in a dynamic network.

A limitation of our framework is the need for bandwidth and dimension selection. These

decisions are difficult because they are trade-offs, bias versus variance in the case of bandwidth

selection (as seen here), and statistical versus computational in the case of dimension selection

(see e.g. [118]). In the presence of a specific supervised downstream task, both decisions could

be assisted by cross-validation. In unsupervised settings with reasonably-sized networks, our

method is very fast, allowing expedient exploration of different choices.
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5.5. DISCUSSION

Our method might be viewed as a dynamic analogue of adjacency spectral embedding for

static graphs [6] and, as a result, in future research it could be profitable to find dynamic

analogues of other variants of spectral embedding, e.g. applying Laplacian normalisation

[19, 51, 119] or regularisation [66, 68].

We view our framework as providing a platform on which novel inference procedures can

be developed, particularly combining graph and temporal concepts. For example, in dynamic

networks with continuously evolving community structure, it might be interesting to develop

procedures for detecting branching points (see bifurcating block model example, Section 5.3),

or measures of polarisation and cohesion in the network via the velocities of the trajectories.

More generally, we believe there is much left to understand and exploit in the time-evolving

topology and geometry of these representations.
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Appendix to Chapter 2

A.1 Proof of Lemma 2.1

We begin by defining the matrices

X =


X⊤

1
...

X⊤
n

 , X′ =


(X ′

1)
⊤

...

(X ′
n)

⊤


so that P = XIp,qX

⊤ = X′Ip,q(X
′)⊤. In addition, let P = UΛU⊤ be an eigendecomposition

of P and define X⋆ = U|Λ|1/2 so that P = X⋆Ip,qX
⊤
⋆ , and let Q⋆ ∈ O(p, q) be the indefinite

orthogonal matrix such that X = X⋆Q⋆.

Firstly observe that

X⊤X = Q⋆X
⊤
⋆ X⋆Q

⊤
⋆ = Q⋆|Λ|Q⊤

⋆

and since for any conformable matrices M1,M2, the matrix products M1M2 and M2M1 share

the same non-zero singular values, we have that

σ1

(
Q⋆|Λ|Q⊤

⋆

)
= σ1

(
X⊤X

)
= σ1

(
XX⊤

)
= σ1

(
XIp,qX

⊤
)
= σ1 (P) .

Since Q⋆|Λ|Q⊤
⋆ is positive definite, by an elementary min-max argument,

σd (P) ∥Q⋆∥22 = σd (|Λ|)σ2
1 (Q⋆) ≤ σ1

(
Q⋆|Λ|Q⊤

⋆

)
= σ1 (P) ,

and therefore

∥Q⋆∥2 ≤
√

σ1 (P)

σd (P)
=
√
κ.

Observe that Q−1
⋆ = Ip,qQ⋆Ip,q and ∥Ip,q∥2 = 1, and therefore by the triangle inequality∥∥Q−1

⋆

∥∥
2
= ∥Ip,qQ⋆Ip,q∥2 ≤ ∥Q⋆∥2 ≤

√
κ.
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Next, let Q′
⋆ be the indefinite orthogonal matrix such that X′ = X⋆Q

′
⋆. Then by a similar

argument, ∥Q′
⋆∥2, ∥(Q′

⋆)
−1∥2 ≤

√
κ. Then

X = X⋆Q⋆ = X′ (Q′
⋆

)−1
Q⋆

and therefore, since X has rank r, Q = (Q′
⋆)

−1Q⋆. By the triangle inequality,

∥Q∥2 ≤ ∥(Q′
⋆)

−1∥2∥Q⋆∥2 ≤ κ,

which concludes the proof.

A.2 Proof of Lemma 2.2

It is immediate from the assumption that ⟨x, x′⟩ ∈ [0, 1] for all x, x′ ∈ X that

ti = ρn

n∑
i=1

⟨ξi, ξj⟩p,q ≤ nρn

for all i = 1, . . . , n. To show the reverse inequality, let C1 ∈ (0, 1) be the constant such that

⟨x, µ⟩p,q ≥ C1 for all x ∈ X . Then, conditional on ξi = x, ti = ρn
∑

j ̸=i⟨x, ξj⟩ is the sum of

independent and identically distributed, bounded random variables. Therefore, by Hoeffding’s

inequality, for all λ > 0,

P (ti < Eti − λ | ξi = x) ≤ exp

(
− 2λ2

(n− 1)ρ2n

)
.

Setting λ = (c/2)(n − 1)1/2ρn log
1/2 n for any c > 0, and recalling that by assumption E(ti |

ξi = x) = (n− 1)ρn⟨x, µ⟩p,q ≥ C1(n− 1)ρn, we have that

(A.1) P
(
ti < C1(n− 1)ρn +

c

2
(n− 1)1/2ρn log

1/2 n | ξi = x
)
≤ n−c

For sufficiently large n, the first term on the right hand side of the inequality dominates and

there exists a constant C2 ∈ (0, 1), which depends on c, such that

(A.2) P (ti < C2nρn | ξi = x) ≤ n−c

Then, observing that (A.2) holds for and x ∈ X , any employing a union bound, we have that

for sufficiently large n,

P

(
n⋂

i=1

{ti ≥ C2nρn}
)

= 1− P

(
n⋃

i=1

{ti < C2nρn}
)

≥ 1−
n∑

i=1

P (ti < C2nρn)

≥ 1−
n∑

i=1

sup
x∈X

P (ti < C2nρn | ξi = x)

≥ 1− n−c′

where c′ = c− 1, which concludes the proof.
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B.1 Expectation-maximisation algorithm

Given a set of data points x1, . . . , xn and a set of associated weights w1, . . . , wn, we will optimise

the likelihood (3.4) with the following expectation-maximisation algorithm.

First, we apply k-means to obtain an initial clustering, and initialise η
(0)
ik = 1 if xi is assigned

to the kth cluster, and zero otherwise. We then initialise Θ(0) := {π(0)
k , µ

(0)
k ,Σ

(0)
k }Kk=1 using the

M-step. Then, we alternate between the following steps for r = 1, 2, . . . , until convergence:

E-step: for i ∈ {1, . . . , n}, k ∈ {1, . . . ,K},

η
(r+1)
ik ← π

(r)
k N (xi;µ

(r)
k , w−1

i Σ
(r)
k )∑K

ℓ=1 π
(r)
ℓ N (xi;µ

(r)
ℓ , w−1

i Σ
(r)
ℓ )

.

M-step: for k ∈ {1, . . . ,K},

π
(r+1)
k ←

∑
i η

(r+1)
ik

n
;

µ
(r+1)
k ←

∑n
i=1wi · η(r+1)

ik xi∑
iwi · η(r+1)

ik

;

Σ
(r+1)
k ←

∑n
i=1wi · η(r+1)

ik (xi − µ
(r+1)
k )(xi − µ

(r+1)
k )⊤∑

i η
(r+1)
ik

.

On convergence, we return the maximum a-posteriori membership for each node, ẑi =

argmaxkηik.

B.2 Proofs of Theorems 3.1 and 3.2

The proofs of Theorems 3.1 and 3.2 make use of results derived in Rubin-Delanchy et al. [15]

and Tang and Priebe [19]. Where the techniques employed here are straightforward adjustments

of those developed in those papers, we refer the reader to the relevant derivations and omit
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the details. In this proof, we use the notation an
P
≲ bn as shorthand for the statement: “for

sufficiently large n, an ≲ bn with overwhelming probability”.

Recall that the symmetric Laplacian and random walk Laplacian matrices of A are defined

as

Lsym := D−1/2AD−1/2, Lrw := D−1A

where D ∈ Rd×d is the diagonal degree matrix with entries di =
∑

j aij . Suppose that S̆ is the

diagonal matrix containing the d largest-in-magnitude eigenvalues of Lsym in descending order

and Ŭ is the matrix containing corresponding orthonormal eigenvectors as columns. Then the

symmetric Laplacian spectral embedding (Definition 2.3) is given by the rows of X̆ := ŬS̆1/2.

Recall that both Laplacians share the same eigenvalues, and if u is an eigenvector of Lsym, then

D−1/2u is a right eigenvector of Lrw. We use this spectral relationship to construct a canonical

set of eigenvectors for Lrw, namely |λ1|1/2D−1/2ŭ1, . . . , |λr|1/2D−1/2ŭr which gives a canonical

random walk Laplacian spectral embedding, which we denote by the rows of X̂⋆ := D−1/2ŬS̆1/2.

Then, we define the invertible linear transformation QX̂ satisfying X̂QX̂ = X̆.

Additionally, we let X̄ = T−1/2X where T ∈ Rn×n is the diagonal expected degree matrix

with entries ti =
∑

j pij and let X̃ := (X̃1, . . . , X̃n)
⊤ ≡ T−1X (see Section 3.2.1).

By Theorem 7 of Solanki et al. [120], X , the support of F , is a bounded set, and by Lemma 2.2,

ti
P≍ nρn for all i ∈ [n]. It therefore follows that ∥X∥2,∞ ≍ ρ

1/2
n and

∥∥X̄∥∥
2,∞ ≍ n−1/2.

A Chernoff bound gives that |ti − di|
P
≲ (nρn)

1/2 log n and a union bound gives that

(B.1) ∥T−D∥∞
P
≲ (nρn)

1/2 log n.

In addition, Lemma 3.1 of [19] states that D−1/2 −T−1/2 admits the decomposition

(B.2) D−1/2 −T−1/2 = 1
2T

−3/2(T−D) +R1

where R1 is a diagonal matrix satisfying ∥R1∥∞
P
≲ (nρn)

−3/2 log n.

Theorem 3 from [15], reproduced as Theorem 2.5 in Chapter 1 states that there exists

a universal constant c ≥ 0 and an indefinite-orthogonal matrix W ∈ O(p, q) such that the

symmetric Laplacian spectral embedding satisfies

(B.3)
∥∥∥X̆W⊤ − X̄

∥∥∥
2,∞

P
≲

logc n

nρ
1/2
n

.

Recall that X̂QX̂ = D−1/2X̆ and X̃ = T−1/2X̄, and define Q = WQ⊤
X̂

we use (B.2) to obtain

(B.4)

X̂Q⊤ − X̃ = D−1/2X̆W⊤ −T−1/2X̄

= (T−1/2 + 1
2T

−3/2(T−D) +R1)X̆W⊤ −T−1/2X̄

= T−1/2(X̆W⊤ − X̄) + (12T
−3/2(T−D) +R1)X̆W⊤

= T−1/2(X̆W⊤ − X̄) + 1
2T

−3/2(T−D)X̄+R2
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where R2 = R1X̄+ (12T
−3/2(T−D) +R1)(X̆W⊤ − X̄). The equations (B.1)–(B.3) give that

(B.5)

∥R2∥2,∞ ≤ ∥R1∥∞
∥∥X̄∥∥

2,∞ +
(
1
2

∥∥∥T−3/2
∥∥∥
∞
∥T−D∥∞ + ∥R1∥∞

)∥∥∥X̆W⊤ − X̄
∥∥∥
2,∞

P
≲

logc n

n2ρ
3/2
n

,

and therefore∥∥∥X̂Q⊤ − X̃
∥∥∥
2,∞
≤
∥∥∥T−1/2

∥∥∥
∞

∥∥∥X̆W⊤ − X̄
∥∥∥
2,∞

+ 1
2

∥∥∥T−3/2
∥∥∥
∞
∥T−D∥∞

∥∥X̄∥∥
2,∞ + ∥R2∥2,∞

=
P
≲

logc n

n3/2ρn
,

establishing Theorem 3.1. To establish Theorem 3.2, we first state an important decomposition

derived in [19] for the symmetric Laplacian spectral embedding. We state the decomposition

with a minor modification to accommodate both positive and negative leading eigenvalues,

where only positive leading eigenvalues are considered in [19] (see [15]). We have

(B.6) X̆W⊤ − X̄ = T−1/2(A−P)T−1/2X̄(X̄⊤X̄)−1Ip,q +
1
2T

−1(T−D)X̄+R3

where each row of R3, which we denote {r(3)i }ni=1, is such that nρ
1/2
n r

(3)
i

a.s.→ 0 for all i ∈ [n],

where
a.s.→ almost sure convergence as n→∞. Substituting (B.6) into (B.4) gives

X̂Q⊤ − X̃ = T−1/2(X̆W⊤ − X̄) + 1
2T

−3/2(T−D)X̄+R2

= T−1/2{T−1/2(A−P)T−1/2X̄(X̄⊤X̄)−1Ip,q

+ 1
2T

−1(T−D)X̄+R3}+ 1
2T

−3/2(T−D)X̄+R2

= T−1(A−P)T−1/2X̄(X̄⊤X̄)−1Ip,q +T−3/2(T−D)X̄+T−1/2R3 +R2

= T−1(A−P)T−1X(X⊤T−1X)−1Ip,q +T−2(T−D)X+R

where R = T−1/2R3 +R2, the rows of which we denote {ri}ni=1, satisfy ri
a.s.→ 0 for all i ∈ [n].

We denote by ζi, the ith row of n3/2ρn(X̂Q⊤ − X̃), and from here on, we use r to denote any

random vector such that r
a.s.→ 0, which may change from line to line. We have

ζi = Ip,q(X
⊤T−1X)−1n

3/2ρn
ti

∑
j

aij − pij
tj

Xj

+
n3/2ρn

t2i
(ti − di)Xi + r

= Ip,q(X
⊤T−1X)−1 (nρn)

3/2

ti

∑
j

aij − pij
tj

ξj

+
(nρn)

3/2

t2i

∑
j

(aij − pij)ξi + r

= Ip,q(X
⊤T−1X)−1

(
nρn
ti

)∑
j

(nρn)
1/2(aij − pij)

tj
ξj

+

(
nρn
ti

)2
∑

j

(aij − pij)

(nρn)1/2
ξi

+ r

Additionally, by an identical argument to that used to obtain Eq. (B.3) and (B.4) in [19],∑
j

(nρn)
1/2(aij − pij)

tj
ξj =

∑
j

(aij − pij)

(nρn)1/2
ξj

⟨ξj , µ⟩p,q
+ r
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and
nρn
ti

∑
j

(aij − pij)

(nρn)1/2
ξi = Ip,q(X

⊤T−1X)−1
∑
j

(aij − pij)

(nρn)1/2
∆̃Ip,qξi
⟨ξi, µ⟩p,q

+ r

where µ = Eξ∼F (ξ) and ∆̃ = Eξ∼F

(
ξξ⊤

⟨ξ,µ⟩p,q

)
. Therefore

ζi =
nρn
ti

Ip,q(X
⊤T−1X)−1

∑
j

(aij − pij)

(nρn)1/2

(
ξj

⟨ξj , µ⟩p,q
− ∆̃Ip,qξi
⟨ξi, µ⟩p,q

)
+ r,

and for each fixed index i ∈ [n], conditional on ξi = xi,

(B.7)
∑
j

(aij − pij)

(nρn)1/2

(
ξj

⟨ξj , µ⟩p,q
− ∆̃Ip,qξi
⟨ξi, µ⟩p,q

)

is n−1/2 times the sum of independent and identically-distributed, mean-zero random vectors,

ignoring the vanishing contribution of the ith vector.

Therefore, by the multivariate central limit theorem, the sum (B.7) converges in distribution

to a multivariate Gaussian random variable with mean zero and the covariance Γ(xi), where

Γρ(x) = Eξ∼F

(x⊤Ip,qξ)(1− ρnx
⊤Ip,qξ)

(
ξ

⟨ξ, µ⟩p,q
− ∆̃Ip,qx

⟨x, µ⟩p,q

)(
ξ

⟨ξ, µ⟩p,q
− ∆̃Ip,qx

⟨x, µ⟩p,q

)⊤
 .

where the expectation is taken with respect to ξ ∼ F .

In [19], it is shown that (X⊤T−1X)−1 a.s.→ ∆̃−1 and that ti/(nρn)
a.s.→ ⟨ξi, µ⟩p,q. By the

continuous mapping theorem, nρn/ti
a.s.→ ⟨ξi, µ⟩−1

p,q, and so, by an application of Slutsky’s

theorem, the vector ζi = n3/2ρn(QX̂i− X̃i) converges in distribution to a multivariate Gaussian

random variable with mean zero and the covariance Σ(xi), where

Σ(x) :=
Ip,q∆̃Γρ(x)∆̃Ip,q

⟨x, µ⟩2p,q
.

Invoking the Cramér-Wold device establishes Theorem 3.2.
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C.1 Proof of Lemma 4.2

Let V be a totally isotropic subspace with respect to the indefinite inner product ⟨x, y⟩p,q =
x⊤Ip,qy, so that ⟨x, y⟩p,q = 0 for any x, y ∈ V. Let W be an arbitrary subspace of dimension

max{p, q} which is either positive or negative definite, so that ⟨x, y⟩p,q = 0 implies x = y = 0,

for any x, y ∈ W. Then V ∩W = {0}, so dim(V +W) = dim(V) + dim(W) and

dim(V) = dim(V +W)− dim(W) ≤ p+ q −max{p, q} = min{p, q}.

Therefore, the maximal dimension of a totally isotropic subspace with respect to the indefinite

inner product ⟨·, ·⟩p,q is min{p, q}.

C.2 Proof of the main theorem

In this proof, we use the notation an
P
≲ bn as shorthand for the statement: “for sufficiently large

n, an ≲ bn with overwhelming probability”.

The first step of our proof is to define vectors X1, . . . , Xn ∈ Rr such that Y ⊤
i Λzi,zjYj =

⟨Xi, Xj⟩p,q for all i, j ∈ [n], so that A is described as a generalised random dot product graph,

and we can employ existing estimation theory in Rubin-Delanchy et al. [15].

We construct the (r1 + · · ·+ rK)× (r1 + · · ·+ rK) block-matrix Λ whose kℓth block is Λkℓ,

and recall the matrices Λk = (Λk1 · · · ΛkK), the row concatenation of Λk1, . . . ,ΛkK . Let r, (p, q)

denote the rank and signature, respectively, of Λ and let H be an r× (r1+ · · ·+rK) matrix such

that Λ = H⊤Ip,qH, which can be constructed as H = UΛ|SΛ|1/2, where Λ = UΛSΛU
⊤
Λ is the

eigendecomposition of Λ. In addition, let Hk denote the kth block of H containing the rows of

H corresponding to the kth group. Now, by construction, Λkℓ = H⊤
k Ip,qHℓ and Λk = H⊤

k Ip,qH.

Since by assumption, Λk has rank dk, so does Hk. We construct Xi = HziYi which satisfies

Y ⊤
i Λzi,zjYj = Y ⊤

i H⊤
ziIp,qHzjYj = X⊤

i Ip,qXj = ⟨Xi, Xj⟩p,q ,
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as desired.

Observe that since the transformations {Hk}Kk=1 are fixed, ∥Xi∥2 ≍ ∥Yi∥2 ≍ ρ
1/2
n and from

the assumptions κ(Λ) ≍ 1 and κ(Σk) ≍ 1 for all k ∈ [K], it is straight-forward to derive

that κ(∆) := σ1(∆)/σr(∆) ≍ 1, where ∆ := n−1
∑n

i=1XiX
⊤
i . Therefore the assumptions

of Theorem 2.3 are satisfied, and we have that there exists an indefinite orthogonal matrix

Q−1 ∈ O(p, q) such that

(C.1) max
i∈[n]

∥∥∥Q−1X̂i −Xi

∥∥∥
2

P
≲

√
log n

n
.

By Lemma 2.1 we have that ∥Q∥2 ,
∥∥Q−1

∥∥
2
≲ 1, and therefore multiplying (C.1) on the left by

Q and applying the triangle inequality we have

(C.2) max
i∈[n]

∥∥∥X̂i −QXi

∥∥∥
2

P
≲

√
log n

n
.

It therefore follows that

max
i∈[n]

∥∥∥X̂i

∥∥∥
2
≤ max

i∈[n]

∥∥∥QXi + X̂i −QXi

∥∥∥
2

≤ ∥Q∥2max
i∈[n]
∥Xi∥2 +max

i∈[n]

∥∥∥X̂i −QXi

∥∥∥
2

≲ ρ1/2n +

√
log n

n

≍ ρ1/2n .

where we used that nρn ≳ log n. Now recall the matrix Σ̂k = n−1
k

∑
i∈Vk

X̂iX̂
⊤
i and that Ξ̂k is

the matrix whose columns contain the rk orthonormal eigenvectors of Σ̂k corresponding to the

largest eigenvalues. We define its population counterpart Σk = n−1
k

∑
i∈Vk

XiX
⊤
i and define the

matrix Ξk whose columns contain the rk eigenvectors of QΣkQ
⊤ corresponding its non-zero

eigenvalues. We have that

∥∥∥Σ̂−QΣQ⊤
∥∥∥
2
=

∥∥∥∥∥∥n−1
k

∑
i∈Vk

(
X̂iX̂

⊤
i −QXiX

⊤
i Q⊤

)∥∥∥∥∥∥
2

=

∥∥∥∥∥∥n−1
k

∑
i∈Vk

{
X̂i

(
X̂i −QXi

)⊤
+
(
X̂i −QXi

)
X⊤

i Q⊤
}∥∥∥∥∥∥

2

≤
(
max
i∈Vk

∥X̂i∥2 +max
i∈Vk

∥Xi∥2∥Q∥2
)
· n−1

k

∑
i∈Vk

∥∥∥X̂i −QXi

∥∥∥
2

P
≲

√
ρn log n

n
.

The smallest non-zero eigenvalue of QΣkQ
⊤, δk satisfies δk ≍ ρn and by the Davis-Kahan sinΘ

theorem, we have that there exists an orthogonal matrix Wk ∈ O(dk) such that
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(C.3)
∥∥∥Ξ̂k −ΞkWk

∥∥∥
2
≲ δ−1

k

∥∥∥Σ̂k −QΣkQ
⊤
∥∥∥
2

P
≲

√
log n

nρn
.

We set Gk := W⊤
k Ξ

⊤
k Q(HkH

⊤
k )

−1Hk and then we have

Ŷi −GziYi = Ξ̂⊤
ziX̂i −GziH

⊤
ziXi

= Ξ̂⊤
ziX̂i −W⊤

ziΞ
⊤
ziQXi

= Ξ̂⊤
ziX̂i − Ξ̂⊤

ziQXi + Ξ̂⊤
ziQXi −W⊤

ziΞ
⊤
ziQXi

= Ξ̂⊤
zi

(
X̂i −QXi

)
+
(
Ξ̂zi −WziΞzi

)⊤
QXi

Therefore it follows from (C.2), (C.3) and the bounded spectral norm of Q, that

max
i∈[n]

∥∥∥Ŷi −GziYi

∥∥∥
2
≤ max

i∈[n]

∥∥∥X̂i −QXi

∥∥∥
2
+ max

k∈[K]

∥∥∥Ξ̂k −WkΞk

∥∥∥
2
∥Q∥2max

i∈[n]
∥Xi∥2

P
≲

√
log n

n
,

which establishes the theorem.
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Appendix to Chapter 5

D.1 Details of the simulated example and method comparison

of Sections 4.1 and 4.2

We simulate data according to the following generative process, which might be viewed as

describing as a dynamic, two-community stochastic block model. Assign to each node i a

variable zi ∈ {1, 2} denoting its community (which does not change with time). If nodes i and

j are in the same community, i.e., zi = zj , the point process Eij follows a homogeneous Poisson

process with (fixed) intensity η0. Otherwise, Eij follows an inhomogeneous Poisson process with

intensity

λij(t) =


η0 exp{η1(t− s1)} t < s1,

η0 s1 ≤ t < s2,

η0 exp{−η1(t− s2)} t ≥ s2,

where 0 < s1 < s2 < T . This model describes two communities gradually coming together until

fully merging by time s1, before splitting at time s2 and then gradually drifting apart. We

simulate from this model using the parameters T = 1, n = 100, z1, . . . , z50 = 1, z51, . . . , z100 = 2,

η0 = 100, η1 = 10, s1 = 0.3 and s2 = 0.7.

In our method comparison, we used an embedding dimension of d = 2 for all methods,

unless otherwise stated. For the discrete-time methods, we construct a series of 20 snapshots

of the continuous-time network, each a weighted static network whose edge weights are the

number of events which occur on the edge in the corresponding time window. The selection of

hyperparameters for each method is outlined below:

• Intensity Profile Projection (histogram): We used a bin size of 1
M = 1

20 .

• Intensity Profile Projection (kernel smoothing): We used a Epanechnikov kernel

with bandwidth 0.1 and applied the approximate Intensity Profile Projection algorithm
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with B = 20. Different values of bandwidth gave similar results in terms of embedding

structure; we chose this bandwidth to achieve the desired smoothness.

• CLPM [95]: The dimension is automatically computed by the algorithm as d = 2. The

hyperparameters are chosen equal to the ones used in “Simulation C” in [95] which is

a similar simulated example with two communities. We used 19 changes point which

correspond to 20 windows. The implementation was obtained from the Github repository

https://github.com/marcogenni/CLPM.

• PisCES [102]: The dimension is automatically selected by the algorithm as d = 2.

The smoothing parameter is chosen with cross-validation which results in equivalent

log-likelihood values for α from 0.00001 to 0.001. We choose α = 0.001 which is the larger

value for which the algorithm converges. The implementation was obtained from the

Github repository https://github.com/xuranw/PisCES.

• MultiNeSS [116]: The dimension is automatically selected by the algorithm as d = 2

for all windows except windows 5 to 16 for which d = 1 is selected. For these windows,

we set missing the second dimension to zeros. The implementation is obtained from the

multiness R package (available on CRAN) and hyperparameters are set to their default

values.

D.2 Additional real data analysis

We provide further experiments and details of the Intensity Profile Projection analysis of the

Lyon primary school dataset described in Section 5.4. As a comparison to the analysis in the

paper, we apply Intensity Profile Projection to the data corresponding to each day of the

study with a histogram intensity estimator, choosing a bin size of 10 minutes and computing

30-dimensional trajectories.

Figure D.3 (equivalent to Figure 5.3) visualises the trajectories of each pair of classes in

each year group using PCA where we plot the average trajectory for each class, along with

one standard deviation above and below. Since every trajectory using the histogram intensity

estimator is piece-wise constant, so are the resulting PCA averages. The pairs of trajectories

merge and split in a similar way to those obtained using the kernel smoother.

In Figures D.1 and D.2 show the first two spherical coordinates [121] of the trajectories

obtained using the histogram intensity estimator and the Epanechnikov kernel smoother,

respectively. The six plots correspond to the morning, lunchtime and afternoon across both

days.
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Figure D.1: The first two dimensions of the spherical coordinates of the coordinates X̂i(t)
using the histogram intensity estimator for times corresponding to the morning, lunchtime and
afternoon across both days. The colours indicate classes with black points representing teachers.
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Figure D.2: The first two dimensions of the spherical coordinates of the trajectories X̂i(t) using
the Epanechnikov kernel smoother for times corresponding to the morning, lunchtime and
afternoon across both days. The colours indicate classes with black points representing teachers.
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Figure D.3: One-dimensional PCA visualisation of the 30-dimensional node representations for
pairs of classes in the same year group. The solid lines show the average trajectory for each
class, and the dashed line shows one standard deviation above and below.
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Figure D.4: Two-dimensional t-SNE visualisation of the 30-dimensional node representations of
all pupils and teachers evaluated at 9:30am on Day 1, and 9:30am, 12:30pm and 3:30pm on
Day 2.
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Figure D.4 shows t-SNE visualisations of the node representations at a collection of times

throughout the study. The plots are very similar to the equivalent Figure 5.4 for the kernel

smoother with almost identical clusters of students before and after lunch, albeit placed

differently by the t-SNE algorithm.

D.3 Visualsation

In this section, we give a short overview of the two dimension reduction techniques employed

for visualisation in this paper.

For the trajectory visualisation in Figures 5.2 and 5.3, we use a principal component analysis

which we extend to the dynamic setting by computing a projection using the leading eigenvectors

of the average covariance matrix, which we apply to the (globally centered) trajectories. This has

a similar flavour to our Intensity Profile Projection algorithm, and since we reduce dimension

using a common projection, it gives a temporally coherent view of the trajectories.

The second visualisation technique we apply is t-SNE [122], using the Flt-SNE implemen-

tation [123], which we used to obtain Figure 5.4. This visualisation method is not naturally

extended to dynamic data, so we initialise the algorithm using the aforementioned dynamic

extension PCA, which results in the visualisations at different times being approximately

aligned.

D.4 Proof of Lemma 5.1

We begin by writing

argmin
V∈O(n,d)

R̂2(V) = argmin
V∈O(n,d)

∫ T

0
r̂2i (t;V) dt

= argmin
V∈O(n,d)

∫ T

0

n∑
i=1

∥∥∥VV⊤Λ̂i(t)− Λ̂i(t)
∥∥∥2
2
dt

= argmin
V∈O(n,d)

∫ T

0

n∑
i=1

∥∥∥(I−VV⊤)Λ̂i(t)
∥∥∥2
2
dt,

and since (I−VV⊤) is the projection onto the orthogonal complement of the columns space of

V, we have that ∥∥∥Λ̂i(t)
∥∥∥2
2
=
∥∥∥VV⊤Λ̂i(t)

∥∥∥2
2
+
∥∥∥(I−VV⊤)Λ̂i(t)

∥∥∥2
2
.

Therefore, minimising R̂2(V) is equivalent to maximising∫ T

0

n∑
i=1

∥∥∥VV⊤Λ̂i(t)
∥∥∥2
2
dt =

∫ T

0

n∑
i=1

∥∥∥V⊤Λ̂i(t)
∥∥∥2
2
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where the equality holds due to the invariance of the Euclidean norm under orthogonal

transformations. As a result, we have

argmin
V∈O(n,d)

R̂2(V) = argmax
V∈O(n,d)

∫ T

0

n∑
i=1

∥∥∥V⊤Λ̂i(t)
∥∥∥2
2

= argmax
V∈O(n,d)

∫ T

0

∥∥∥Λ̂(t)V
∥∥∥2
F

= argmax
V∈O(n,d)

∫ T

0
tr
{
V⊤Λ̂2(t)V

}
dt

= argmax
V∈O(n,d)

tr

{
V⊤

(∫ T

0
Λ̂2(t) dt

)
V

}
= argmax

V∈O(n,d)
tr
{
V⊤Σ̂V

}
= Û

where the final equality follows from the Courant-Fisher min-max theorem. This concludes the

proof.

D.5 Proof of Theorem 5.1

D.5.1 Prerequisites

D.5.1.1 Additional notation

In this proof, we use the notation an
P
≲ bn to mean an ≲ bn with overwhelming probability.

D.5.1.2 Symmetric dilation with change of basis “trick”

Symmetric dilation is a proof technique which allows statements about the eigenvectors of

a symmetric matrix to be easily extended to hold for the singular vectors of a (potentially

rectangular) asymmetric matrix. Let M be an n1 × n2 matrix with non-zero singular values

{σi}ri=1 and corresponding orthonormal left singular vectors {ui}ri=1 and right singular vectors

{vi}ri=1. Its symmetric dilation is the n× n matrix (with n = n1 + n2) constructed as

D(M) =

(
0 M

M⊤ 0

)
.

One can easily verify that D(M) has eigenvalues {±σi}ri=1 and eigenvectors {(u⊤i ,±v⊤i )⊤}ri=1.

We stack the first d left and right singular vectors into matrices U ∈ Rn1×d and V ∈ Rn2×d,

and stack the first 2d eigenvectors of D(M) into a matrix

Ū =
1√
2

(
U U

V −V

)
.
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We then have

∥U∥2,∞ ∨ ∥V∥2,∞ =
∥∥Ū∥∥

2,∞ , and ∥M∥2 = ∥D(M)∥2 .

While this standard construction is very useful when n1 ≍ n2, it can lead to suboptimal bounds

when n2 ≫ n1, or n1 ≫ n2, due to an issue about incoherence, which was first raised in [124].

The incoherence of a subspace U0 spanned by the orthonormal columns of a matrix U0 ∈ Rn0×d

is

µ (U0) =

√
n0

d
∥U0∥2,∞ .

To obtain a good entrywise eigenvector bound under a signal-plus-noise matrix model it is

typically necessary that µ(Ū) ≍ 1. Observe that

µ(Ū) =

√
n1 + n2

2d

∥∥Ū∥∥
2,∞ =

√
n1 + n2

2d

(
∥U∥2,∞ ∨ ∥V∥2,∞

)
=

√
n1 + n2

2n1
µ(U)+

√
n1 + n2

2n2
µ(V).

If µ(U), µ(V) ≍ 1 and n1 ≍ n2, then µ(Ū) ≍ 1 and it is typically possible to obtain good

bounds. However, when n2 ≫ n1, we have µ(Ū)≫ 1, and a good bound can typically not be

obtained. The imbalance of n1 and n2 can cause similar issues when obtaining spectral norm

bounds.

This issue can be overcome by changing to a basis which balances the contribution from

its first n1 and second n2 elements of each column. Specifically, let π1 =
√
2n1/(n1 + n2) and

π2 =
√
2n2/(n1 + n2), and consider the basis ẽ1, . . . , ẽn1+n2 , such that

ei =

π1ẽi if i ∈ {1, . . . , n1}
π2ẽi if i ∈ {n1 + 1, . . . , n1 + n2} ,

where {ei}n1+n2
i=1 are the standard basis vectors in Rn0 . Let |||·|||η denote a norm with respect to

the column basis {ẽi}n1+n2
i=1 , then one can verify that

|||D(M)|||2 = ∥M∥ , and
∣∣∣∣∣∣Ū∣∣∣∣∣∣

2,∞ = π1 ∥U∥2,∞ ∨ π2 ∥V∥2,∞ .

As a result, if µ̃(U0) =
√

n0/d|||U0|||2,∞, then

µ̃(Ū) = µ(U) ∨ µ(V),

regardless of the relative sizes of n1 and n2. We use this symmetric dilation with change-of-basis

“trick” to apply some existing theorems for symmetric matrices to our setting.

D.5.1.3 Concentration inequalities

In this section, we state a collection of lemmas which we will make use of throughout the proof.

We begin with a tail bound for a Poisson random variable.
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Lemma D.1. Let X ∼ Poisson(λ). Then

P (|X − λ| ≥ t) ≤ 2 exp

(
− t2

2(λ+ t/3)

)
.

For t ≥ λ,

P(|X − λ| ≥ t) ≤ 2e−3t/8.

The bound can be established by approximating the Poisson distribution with mean λ as

the sum of k Bernoulli random variables with mean λ/k, applying Bernstein’s inequality, and

taking k → 0.

Our next result is a concentration bound which adapts Lemma A.1 of [94] and can be

proved using a vector version of the Bernstein inequality (Corollary 4.1 in [125]).

Lemma D.2. Let Xi ∼ Poisson(λi) independently for all i = 1, . . . , n, and suppose Q ∈ Rn×d is

a deterministic matrix whose rows we denote Qi. Let λmax := maxi∈[n] λi, then with probability

1− 28n−3 ∥∥∥∥∥
n∑

i=1

(Xi − λi)Qi

∥∥∥∥∥
2

≤ 3 log2 n ∥Q∥2,∞ +
√

6λmax log n ∥Q∥F .

Next, we state a concentration bound for the spectral norm of random matrices with

independent entries which appears as Corollary 3.12 in [126]. The original statement of this

lemma is for symmetric random matrices, although we general it to arbitrary random matrices

using the symmetric dilation with change-of-basis trick described in Section D.5.1.2.

Lemma D.3 (Corollary 3.12 of [126]). Let X be an n1 × n2 matrix whose entries xij are

independent random variables which obey

E (xij) = 0, and |xij | ≤ B, i ∈ [n1], j ∈ [n2].

Then there exists a universal constant c > 0 such that for any t ≥ 0

P
{
∥X∥ ≥ 4

√
ν + t

}
≤ n exp

(
− t2

cB2

)
.

where

ν := max

π1 max
i∈[n1]

n2∑
j=1

E
(
x2ij
)
, π2 max

i∈[n2]

n1∑
j=1

E
(
x2ji
)

and πk = 2nk/(n1 + n2).

D.5.1.4 Weyl’s inequality and Wedin’s sinΘ theorem

The next two lemmas are classical results matrix perturbation theory. Weyl’s inequality shows

that the singular values of a matrix are stable with respect to small perturbations.
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Lemma D.4 (Weyl’s inequality). Let M,E be n1 × n2 real-valued matrices. Then for every

1 ≤ i ≤ (n1 ∧ n2), the ith largest singular value of M and M+E obey

|σi (M+E)− σi (M)| ≤ ∥E∥2 .

One way to measure the distance between two subspaces U and Û is via principal angles.

Let U, Û be matrices whose orthonormal columns span U and Û respectively, and let {ξi}di=1

denote the singular values of U⊤Û. Then the principal angles {θi}di=1 between U and Û are

defined by ξi = cos(θi). Let sinΘ(U, Û) := diag(sin θ1, . . . , sin θd). Another way to measure the

distance between U and Û is via the difference between the projection operators UU⊤ and

ÛÛ⊤, and in fact, these two characterisations are equivalent. Specifically,∥∥∥sinΘ(U, Û)
∥∥∥
2
≡
∥∥∥UU⊤ − ÛÛ⊤

∥∥∥
2
.

We will use this equivalence without mention throughout the proof. Wedin’s sinΘ theorem

shows that the singular vectors of a matrix are stable with respect to small perturbations.

Lemma D.5. Let M and M̂ = M + E be two n1 × n2 real-valued matrices, and denote by

U, Û (respectively V, V̂) the matrices whose columns contain d orthonormal left (respectively,

right) singular vectors, corresponding to the d largest singular values of M and M̂. Let δ =

σd(M)− σd+1(M) and suppose that ∥E∥ < (1− 1/
√
2)δ, then∥∥∥sinΘ(U, Û

)∥∥∥
2
∨
∥∥∥sinΘ(V, V̂

)∥∥∥
2
≤

2
(∥∥E⊤U

∥∥
2
∨ ∥EV∥2

)
δ

≤ 2 ∥E∥
δ

.

See [127] for a proof.

D.5.2 Implications of Assumptions 1-4

We state here some inequalities involving the parameters of our problem which follow from

Assumptions 1-4, and elementary linear algebra. We will use these facts throughout the proof

without mention. √
nλmax ≲ δ ≤ nλmax;(D.1)

δ log n ≳ κnλmax;(D.2)

κ ≲ log n.(D.3)

The inequality (D.1) holds since δ ≤ σ
1/2
1 (Σ) ≤ √n∥Σ∥1/2max ≤ nλmax, and

δ ≳
κnλmax

log(δ/
√
nλmax)

≳
nλmax

log n
≳
√
nλmax log n ≳

√
nλmax

where we invoked Assumption 4. (D.2) holds by noting that the previous bound implies

log(δ/
√
nλmax) ≲ log n and invoking Assumption 3. (D.3) follows from (D.1) since κ ≲

δ log n/nλmax ≲ log n.
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D.5.3 Setup

We begin by defining M equally spaced bins in (0, 1],

B1 :=

(
0,

1

M

]
, B2 :=

(
1

M
,
2

M

]
, . . . , BM :=

(
M − 1

M
, 1

]
,

and define the piecewise approximation of λi(t),

λ̄i(t) = M

∫
Bm

λi(t)dt, t ∈ Bm, m ∈ [M ].

We then define t1, . . . , tm ∈ (0, 1] such that λ̄ij(t) = λij(tm) for all t ∈ Bm, which exist by the

continuity of λij(t), and define the piecewise constant approximation ofXi(t) as X̄i(t) = U⊤Λ̄i(t).

Our strategy to obtain the bound in Theorem 1 is to decompose it into bias and variance terms:

max
i,j∈[n]

sup
t∈T

∥∥∥W1X̂i(t)−Xi(t)
∥∥∥
2
= max

i,j∈[n]
sup
t∈T

∥∥∥W1X̂i(t)− X̄i(t)
∥∥∥
2︸ ︷︷ ︸

variance

+ max
i,j∈[n]

sup
t∈T

∥∥W2X̄i(t)−Xi(t)
∥∥
2︸ ︷︷ ︸

bias

.

Section D.5.6 is dedicated to bounding the bias term, and the rest of this section is dedicated

to bounding the variance term. Define the unfolding matrices Λ̂ and Λ (without arguments)

and their (thin) singular value decompositions as

Λ̂ :=
(
Λ̂(t1) · · · Λ̂(tM )

)
= ÛŜV̂⊤ + Û⊥Ŝ⊥V̂

⊤
⊥,

Λ̄ := (Λ(t1) · · · Λ(tM )) = ŪS̄V̄⊤ + Ū⊥S̄⊥V̄
⊤
⊥.

Then one has that for t ∈ Bm, m ∈ [M ],

Ŷ(t) := Λ̂(tm)Û = V̂mŜ, Ȳ(t) := Λ̄(tm)Ū = V̄mŜ

where V̂m, V̄m denote the mth blocks of V̂ and V̄ respectively. Therefore it follows that,

max
i,j∈[n]

sup
t∈T

∥∥∥W1X̂i(t)− X̄i(t)
∥∥∥
2
=
∥∥∥V̂ŜW⊤

1 − V̄S̄
∥∥∥
2,∞

.

For ease of exposition, we drop the subscript 1 on W1 in this section. Our bound is based on

the following decomposition of V̂Ŝ− V̄S̄W.

Proposition D.1. We have the decomposition

V̂Ŝ− V̄S̄W = V̄(V̄⊤V̂Ŝ− S̄W)(D.4)

+ (I− V̄V̄⊤)Λ̄⊤(Û− ŪW)(D.5)

+ (I− V̄V̄⊤)(Λ̂− Λ̄)⊤ŪW(D.6)

+ (I− V̄V̄⊤)(Λ̂− Λ̄)⊤(Û− ŪW).(D.7)
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Proof of Proposition D.1. We begin by adding and subtracting terms to obtain

V̂Ŝ− V̄S̄W = V̂Ŝ− V̄V̄⊤V̂Ŝ+ V̄(V̄⊤V̂Ŝ− S̄W)︸ ︷︷ ︸
(D.4)

.

Then, noting that V̂Ŝ = Λ̂⊤Û and (I− V̄V̄⊤)Λ̄⊤Ū = 0, we have

V̂Ŝ− V̄V̄⊤V̂Ŝ = Λ̂⊤Û− V̄V̄⊤Λ̂⊤Û

= (I− V̄V̄⊤)Λ̂⊤Û

= (I− V̄V̄⊤)(Λ̂− Λ̄)⊤Û− (I− V̄V̄⊤)Λ̄⊤Û

= (I− V̄V̄⊤)(Λ̂− Λ̄)⊤Û− (I− V̄V̄⊤)Λ̄⊤(Û− ŪW)︸ ︷︷ ︸
(D.5)

.

Next, we decompose (I− V̄V̄⊤)(Λ̂− Λ̄)⊤Û by adding and subtracting terms to obtain

(I− V̄V̄⊤)(Λ̂− Λ̄)⊤Û = (I− V̄V̄⊤)(Λ̂− Λ̄)⊤ŪW︸ ︷︷ ︸
(D.6)

+(I− V̄V̄⊤)(Λ̂− Λ̄)⊤(Û−UW)︸ ︷︷ ︸
(D.7)

.

D.5.4 Technical propositions

We now outline a series of technical propositions which we require to bound terms (D.4)-(D.7)

which we prove in Section D.6.

Our first proposition is a 1-norm and spectral norm bound for Λ̂.

Proposition D.2. The bounds∥∥∥Λ̂− Λ̄
∥∥∥
1
≲
√

Mnλmax log n,
∥∥∥Λ̂− Λ̄

∥∥∥
2
≲
√
Mnλmax

hold with overwhelming probability.

The spectral norm bound is obtained using Lemma D.3, and the 1-norm bound is obtained

via an application of the classical Bernstein inequality. The next proposition provides control

on the singular values of Λ̂.

Proposition D.3. Let σi(·) denote the ith ordered singular value of a matrix. The singular

values of Λ̂ satisfy √
Mσd(Σ) ≲ σd(Λ̂) ≤ σ1(Λ̂) ≲

√
Mσ1(Σ).

The result is obtained using Weyl’s inequality. The next proposition provides control of the

spectral norm of Q⊤(Λ̂− Λ̄)R, where Q,R are conformable, deterministic unit-norm matrices.
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Proposition D.4. For conformable, deterministic unit-norm matrices Q,R, the bound

(D.8)
∥∥∥Q⊤(Λ̂− Λ̄)R

∥∥∥
2
≲ M log3/2 n

holds with overwhelming probability.

The proof of Proposition D.4 employs a classical ϵ-net argument to the spectral norm of an

appropriately constructed symmetric dilation matrix.

The next proposition states that both the matrices Ū⊤Û and V̄⊤V̂ are well approximated

by a common orthogonal matrix.

Proposition D.5. There exists an orthogonal matrix W such that∥∥∥Ū⊤Û−W
∥∥∥
2
≲

√
nλmax

δ
,

∥∥∥V̄⊤V̂ −W
∥∥∥
2
≲

√
nλmax

δ

hold with overwhelming probability.

To prove Proposition D.5, we empoy the Wedin sinΘ theorem to obtain a bound on

∥Ū⊤Û−W∥2. We then obtain a bound on ∥Ū⊤Û− V̄⊤V̂∥2, and combine these bounds to

establish the proposition.

The next technical tool we require is the ability to “swap” W, S̄ and Ŝ.

Proposition D.6. The bound ∥∥∥WŜ− S̄W
∥∥∥
2
≲ M log3/2 n

holds with overwhelming probability.

This result follows by applying the previous propositions to an appropriately constructed

decomposition.

Part of the challenge of obtaining a good bound on the term (D.7) is that (Ã − Λ̃) and

(Û − ŪW) are dependent, and this dependence must be decoupled in order to apply the

standard suite of matrix perturbation tools. For m = 1, . . . , n, let

Nm = {(i, j) : i = m or j ∈ {m+ (ℓ− 1)n, ℓ ∈ [M ]}}

and construct the auxiliary matrices Λ̂(1), . . . , Λ̂(n) defined by

Λ̂
(m)
ij =

Λ̂ij if (i, j) /∈ Nm,

Λ̄ij if (i, j) ∈ Nm.

In words, Λ̂(m) is the matrix obtained by replacing the mth row and columns of each of its

blocks with its expectation. In this way, the mth row of (Λ̂− Λ̄) and Λ̂(m) are independent.

Let Û(m) denote the matrix of leading left singular values of Λ̂(m).

We apply a result due to [93], which provides ℓ2,∞ control of ∥Û∥2,∞, ∥Û(m)∥2,∞, and

∥Û(m)W(m) −U∥2,∞.
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Proposition D.7. The bounds∥∥∥Û∥∥∥
2,∞

,
∥∥∥Û(m)

∥∥∥
2,∞

,
∥∥∥Û(m)W(m) −U

∥∥∥
2,∞

≲
µλmax

√
dn log n

δ

hold with overwhelming probability.

In addition, we require control on the spectral norm difference between the projection

matrices Û(m)(Û(m))⊤ and the projection matrices ŪŪ⊤ and ÛÛ⊤, which is provided in the

following proposition.

Proposition D.8. The bounds∥∥∥Û(m)(Û(m))⊤ − ŪŪ⊤
∥∥∥
2
≲

nλmax

δ
,(D.9) ∥∥∥Û(m)(Û(m))⊤ − ÛÛ⊤

∥∥∥
2
≲

µλ
3/2
max

√
dn log3/2 n

δ2
(D.10)

hold with overwhelming probability.

The proof of Proposition D.8 requires a delicate “leave-one-out”–style argument.

D.5.5 Bounding terms (D.4)-(D.7)

Firstly observe that

∥∥V̄∥∥
2,∞ =

∥∥∥Λ̄⊤ŪS̄−1
∥∥∥
2,∞
≤
∥∥∥Λ̄⊤

∥∥∥
∞

∥∥Ū∥∥
2,∞

∥∥S̄−1
∥∥
2
≤
√
ndλmaxµ√
Mσd(Σ)

and therefore term (D.4) can be bounded as∥∥∥V̄(V̄⊤V̂Ŝ− S̄W)
∥∥∥
2,∞
≤
∥∥V̄∥∥

2,∞

(∥∥∥V̄⊤V̂ −W
∥∥∥
2

∥∥∥Ŝ∥∥∥+ ∥∥∥WŜ− S̄W
∥∥∥
2

)
P
≲

√
ndλmaxµ√
Mσd(Σ)

(√
nλmax

δ
·
√
Mσ1(Σ) +M log3/2 n

)
≲

n
√
Mdλ

3/2
maxµκ

δ

≲ µ
√

Mλmaxd log n.

where the third inequality follows from Assumption 4 that
√
M log3/2 n ≲ nλmax, and the

definition κ :=
√
σ1(Σ)/σd(Σ), and the fourth inequality follows from Assumption 3 that

δ log n ≥ δ log(δ/
√
nλmax) ≳ κnλmax.

To bound (D.5), we first apply Wedin’s sinΘ theorem to obtain

∥∥∥Û− ŪW
∥∥∥
2
=
∥∥∥sinΘ(Û, Ū)

∥∥∥
2
≤

∥∥∥Λ̂− Λ̄
∥∥∥

σd(Λ̄)− σd+1(Λ̄)

P
≲

√
Mnλmax√

Mδ
=

√
nλmax

δ
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Then, we use Assumption 2 to obtain the bound∥∥∥(I− V̄V̄⊤)Λ̄⊤
∥∥∥
2,∞

=
∥∥∥Λ̄⊤(I− ŪŪ)

∥∥∥
2,∞

≲ max
i∈[n]

sup
t∈T

ri(t) ≲

√
d

n
µδ log5/2 n.

Putting these two bounds together, we bound (D.5) as∥∥∥(I− V̄V̄⊤)Λ̄⊤(Û− ŪW)
∥∥∥
2,∞
≤
∥∥∥(I− V̄V̄⊤)Λ̄⊤

∥∥∥
2,∞

∥∥∥Û− ŪW
∥∥∥
2

P
≲ µ

√
dλmax log

5/2 n

To bound term (D.6), we set E = Λ̂ − Λ̄ and note that each column of M−1E contains

independent Poisson random variables with means no greater that M−1λmax. We will use

Lemma D.2 to bound the rows EŪ as

[E⊤Ū]i =
n∑

j=1

ejiŪj

P
≲ M log2 n

∥∥Ū∥∥
2,∞ +

√
Mλmax log n

∥∥Ū∥∥
F

≲
(
M log2 n+

√
Mnλmax log n

)∥∥Ū∥∥
2,∞

≲
√
Mλmaxn log n

∥∥Ū∥∥
2,∞

≲ µ
√
Mλmaxd log n.

where the third inequality uses Assumption 4 and a union bound over i = 1, . . . , n. Therefore,

we have

(D.11) ∥(Λ̂− Λ̄)⊤Ū∥2,∞
P
≲
√

Mλmaxd log n.

Noting that
∥∥I− V̄V̄⊤∥∥

∞ ≤
∥∥I− V̄V̄⊤∥∥

2
≲ 1, we bound (D.6) as∥∥∥(I− V̄V̄⊤)(Λ̂− Λ̄)⊤ŪW

∥∥∥
2,∞

≲
∥∥I− V̄V̄

∥∥
∞

∥∥∥∥(Λ̂− Λ̄
)⊤

Ū

∥∥∥∥
2,∞

P
≲ µ

√
Mλmaxd log n.

Let Λ̂(1), . . . , Λ̂(n) denote the auxiliary matrices described in (D.5.4), and let Û(m) denote

the matrix of leading left singular values of Λ̂(m). We can then decompose the Euclidean norm

of (Λ̂− Λ̄)⊤·,m(Û−UW) as∥∥∥(Λ̂− Λ̄)⊤·,m(Û− ŪW)
∥∥∥
2
≤
∥∥∥(Λ̂− Λ̄)⊤·,mÛ(W − Û⊤Ū)

∥∥∥
2

(D.12)

+
∥∥∥(Λ̂− Λ̄)⊤·,m(ÛÛ⊤Ū− Û(m)(Û(m))⊤Ū)

∥∥∥
2

(D.13)

+
∥∥∥(Λ̂− Λ̄)⊤·,m(Û(m)(Û(m))⊤Ū− Ū)

∥∥∥
2
.(D.14)

The first term (D.12) is bounded as∥∥∥(Λ̂− Λ̄)⊤·,mÛ(W − Û⊤Ū)
∥∥∥
2
≤
∥∥∥Λ̂− Λ̄

∥∥∥
1

∥∥∥Û∥∥∥
2,∞

∥∥∥W − Û⊤Ū
∥∥∥
2

P
≲
√
Mnλmax log n ·

µλmax

√
dn log n

δ
·
√
nλmax

δ

=

√
Mn3/2λ2

maxµ
√
d log3/2 n

δ2

≲ µ
√
Mλmaxd log

5/2 n.

86



D.5. PROOF OF THEOREM 5.1

To bound the second term (D.13), we employ Proposition D.8 to obtain∥∥∥(Λ̂− Λ̄)⊤·,m(ÛÛ⊤Ū− Û(m)(Û(m))⊤Ū)
∥∥∥
2
≤
∥∥∥Λ̂− Λ̄

∥∥∥
2

∥∥∥ÛÛ⊤ − Û(m)(Û(m))⊤
∥∥∥
2

P
≲
√
Mnλmax ·

µλ
3/2
max

√
dn log3/2 n

δ2

=

√
Mµλ2

max

√
dn3/2 log3/2 n

δ2

≲ µ
√
Mλmaxd log

5/2 n

We now set about bounding the third term (D.14). Let Ω1ΞΩ⊤
2 denote a singular value

decomposition of (Û(m))⊤Ū, and set W(m) := Ω1Ω
⊤
2 . Let θ

(m)
i denote the principal angles

between the column spaces of Û(m) and Ū defined by ξ
(m)
i = cos(θ

(m)
i ), where ξ

(m)
i are the

singular values of (Û(m))⊤Ū. We invoke Wedin’s theorem to show that∥∥∥∥W(m) −
(
Û(m)

)⊤
Ū

∥∥∥∥
2

= ∥I−Ξ∥2 = max
i∈[d]

(1− ξ
(m)
i ) = max

i∈[d]
(1− cos θ

(m)
i )

≤ max
i∈[d]

(1− cos2 θ
(m)
i ) = max

i∈[d]
sin2 θ

(m)
i ≲

∥∥∥Λ̂(m) − Λ̄
∥∥∥2
2

(σd(Λ̄)− σd+1(Λ̂))2

P
≲

Mnλmax

Mδ2
=

nλmax

δ2
≲ 1

We define H(m) := Û(m)(Û(m))⊤ −UU⊤ and note that H(m) is independent of (Λ̂− Λ̄)m,· and

that ∥∥∥H(m)
∥∥∥
2,∞
≤
∥∥∥Û(m)W(m) − Ū

∥∥∥
2,∞

+
∥∥∥Û(m)

∥∥∥
2,∞

∥∥∥(Û(m))⊤Ū−W(m)
∥∥∥
2

≲
∥∥∥Û(m)W(m) − Ū

∥∥∥
2,∞

+
∥∥∥Û(m)

∥∥∥
2,∞

P
≲

µλmax

√
dn log n

δ

Then, using Lemma D.2 we have that

∥∥∥(Ã− Λ̃)⊤·,mH(m)
∥∥∥
2

P
≲ M log2 n

∥∥∥H(m)
∥∥∥
2,∞

+
√
λmax log n

∥∥∥H(m)
∥∥∥
F

P
≲
√

M log nλmax

∥∥∥H(m)
∥∥∥
2,∞

+
√

λmaxd log n
∥∥∥H(m)

∥∥∥
2

P
≲
√

M log nλmax ·
µλmax

√
dn log n

δ
+
√
λmaxd log n

nλmax

δ

≤
√
Mµnλ

3/2
max

√
d log3/2 n

δ

≲ µ
√
Mdλmax log

5/2 n.

Combining these bounds and taking a union bound over m ∈ [n], we have∥∥∥(Λ̂− Λ̄)⊤(Û− ŪW)
∥∥∥
2,∞

P
≲ µ

√
Mdλmax log

5/2 n,
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and the term (D.7) is bounded as∥∥∥(I− V̄V̄⊤)(Λ̂− Λ̄)⊤(Û− ŪW)
∥∥∥
2,∞
≤
∥∥I− V̄V̄

∥∥
∞

∥∥∥(Λ̂− Λ̄)⊤(Û− ŪW)
∥∥∥
2,∞

P
≲ µ

√
Mλmaxd log

5/2 n.

Combining the bounds on (D.4)-(D.7), we have

max
i,j∈[n]

sup
t∈T

∥∥∥W1X̂i(t)− X̄i(t)
∥∥∥
2
=
∥∥∥V̂ŜW⊤

1 − V̄S̄
∥∥∥
2,∞

P
≲ µ

√
Mdλmax log

5/2 n,

which completes the proof.

D.5.6 Controlling the bias term

D.5.6.1 Edge level bias

We begin by studying the edge-level bias of the histogram intensity estimator. Let ρij(t) =∫ t
0 λij(s) ds denote the cumulative intensity of edge i, j. Now we have, for t ∈ Bℓ,

λ̄ij(t) = M

∫
Bℓ

λij(s) dt

= M

{
ρij

(
ℓ

M

)
− ρij

(
ℓ− 1

M

)}
=

ρij
(

ℓ
M

)
− ρij

(
ℓ−1
M

)
ℓ
M − ℓ−1

M

= λij(t
⋆)

for some t⋆ ∈ Bℓ, which follows by an application of the mean value theorem, where ρ′(t) = λij(t).

We then apply the L-Lipschitz continuity of λij(t) to obtain

λ̄ij(t)− λij(t)| = |λij(t
⋆)− λij(t)|

≤ L · |t⋆ − t|

≤ L

M
.

D.5.6.2 A subspace perturbation bound

Define the operator A : (T → Rn)→ Rn by

Av(·) =
∫
T
Λ(t)v(t) dt

and define the operator A⋆ : Rn → (T → Rn) by

A⋆u = Λ(·)u.
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Then Σ ≡ AA⋆ since

AA⋆u = A (Λ(·)u) =
∫
T
Λ2(t)u dt = Σu.

Denote its eigenvalues σ2
1, . . . , σ

2
n, and its corresponding orthonormal eigenvectors u1, . . . , un,

and define vi(·) = Λ(·)ui/ξi for all i = 1, . . . , n. Then, Λ(·) admits the (functional) singular

value decomposition

Λ(·) =
n∑

i=1

σiuivi(·).

Define Ā and its corresponding parameters analogously. By definition,∥∥Ā − A∥∥
2
≤ sup

t∈T

∥∥Λ̄(t)−Λ(t)
∥∥
2
≤ sup

t∈T
max
i,j∈[n]

∣∣λ̄ij(t)− λij(t)
∣∣ ≤ nL

M
.

Therefore, by (a functional version of) Wedin’s sinΘ theorem

∥∥ŪW1 −U
∥∥
2
≲

∥∥Ā − A∥∥
2

σd − σd+1
≤ nL

Mδ
.

D.5.6.3 Controlling the bias term

Combining the above bounds, we have that uniformly for all i, j, t,∥∥X̄i(t)W1 −Xi(t)
∥∥
2
=
∥∥Λ̄(t)ŪW1 −Λ(t)U

∥∥
2

≤
∥∥Λ̄(t)

∥∥
2,∞

∥∥ŪW2 −U
∥∥
2
+
∥∥Λ̄(t)−Λ(t)

∥∥
2,∞ ∥U∥2

≲
n3/2λmaxL

Mδ
+

√
nL

M

≤ n3/2λmaxL

Mδ
,

where the final inequality follows from the fact that δ ≤ nλmax.

D.6 Proofs of the technical propositions

D.6.1 Proof of Proposition D.2

We have that M−1 times the lower-triangular elements of each block of Λ̂ are independent

Poisson random variables with mean given by M−1 times the lower-triangular elements of each

block of Λ̄. Define the matrices Λ̂L and Λ̂U with the upper and lower triangles, respectively, of

each block set to zero, and the diagonals of each block halved, and define Λ̄L and Λ̄U similarly,

so that M−1Λ̂L (respectively M−1Λ̂U) has independent Poisson entries with means M−1Λ̄L

(respectively M−1Λ̄U), and Λ̂− Λ̄ = (Λ̂L − Λ̄L) + (Λ̂U − Λ̄U).

We condition on the event that (Λ̂L − Λ̄L)ij ≲ M log n for all i, j, which occurs with

overwhelming probability by Lemma D.1 and a union bound. Now, we employ Lemma D.3 with

89



APPENDIX D. APPENDIX TO CHAPTER 5

B := M log n and ν := Mnλmax to obtain

P
(∥∥∥Λ̂L − Λ̄L

∥∥∥
2
≥ 4
√
Mnλmax + t

)
≤ n exp

(
− t2

c(M log n)2

)
.

Setting t = M log3/2 n, we have that∥∥∥Λ̂L − Λ̄L
∥∥∥
2

P
≲
√

Mnλmax +M log3/2 n ≲
√
Mnλmax

where the final inequality follows from Assumption 4. We obtain an analogous bound for∥∥∥Λ̂U − Λ̄U
∥∥∥
2
and combine the with the triangle inequality:

∥∥∥Λ̂− Λ̄
∥∥∥
2
≤
∥∥∥Λ̂L − Λ̄L

∥∥∥
2
+
∥∥∥Λ̂U − Λ̄U

∥∥∥
2

P
≲
√
Mnλmax.

We now establish a bound on
∥∥∥Λ̂− Λ̄

∥∥∥
1
. We condition on the event |Λ̂ij−Λ̄ij | ≲ M log n for

all i, j, which occurs with overwhelming probability due to Lemma D.1 and a union bound, and

note that we have
∑n

j=1 E(Λ̂ji − Λ̄ji)
2 ≤Mnλmax. Then, by the classical Bernstein inequality,

we have for any t > 0,

P


n∑

j=1

∣∣∣Λ̂ji − Λ̄ji

∣∣∣ ≥ t

 ≤ 2 exp

{ −t2
2 (Mnλmax + tM log n/3)

}
,

and setting t =
√
nMλmax log n, we obtain

n∑
j=1

∣∣∣Λ̂ji − Λ̄ji

∣∣∣ P
≲
√
nMλmax log n.

A union bound establishes that ∥∥∥Λ̂− Λ̄
∥∥∥
1

P
≲
√

nMλmax log n,

which establishes Proposition D.2.

D.6.2 Proof of Proposition D.3

Proposition D.3 follows from an application of Weyl’s inequality. We have

σ1(Λ̂) ≤ σ1(Λ̄)+|σ1(Λ̂)−σ1(Λ̄)| ≤ σ1(Λ̄)+
∥∥∥Λ̂− Λ̄

∥∥∥
2

P
≲
√

Mσ1(Σ)+
√
Mnλmax ≲

√
Mσ1(Σ)

since σ1(Λ̄) =
√

Mσ1(Σ) ≳
√
Mδ ≳

√
Mnλmax. Similarly, we have

σd(Λ̂) ≥ σd(Λ̄)−|σ1(Λ̂)−σ1(Λ̄)| ≥ σd(Λ̄)−
∥∥∥Λ̂− Λ̄

∥∥∥
2

P
≳
√

Mσd(Σ)−
√
Mnλmax ≳

√
Mσd(Σ),

which establishes the proposition.
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D.6.3 Proof of Proposition D.4

We begin by constructing matrices Q̄ and Ē, via a symmetric dilation trick, such that the

spectral norms of Q⊤(Λ̂− Λ̄)R and Q̄⊤ĒQ̄ coincide, and then apply a classical ϵ-net argument

to the spectral norm of Q̄⊤ĒQ̄, following the proof of Lemma D.1 in [94].

First, we set Ē := D(Λ̂− Λ̄), where D is the dilation operator (see Section D.5.1.2) and

Q̄ = (Q R), and observe that∥∥∥Q⊤
(
Λ̂− Λ̄

)
R
∥∥∥
2
=
∥∥∥Q̄⊤ĒQ̄

∥∥∥
2
= max

∥v∥2≤1

∣∣∣v⊤Q̄⊤ĒQ̄v
∣∣∣

where the second equality follows from the Courant-Fischer min-max theorem. Now, let Sd−1
ϵ

be an ϵ-net of the d− 1–dimensional unit sphere Sd−1 := {v : ∥v∥2 = 1}. By definition, for any

v ∈ Sd−1, there exists some w(v) ∈ Sd−1
ϵ such that ∥v − w(v)∥2 < ϵ and∥∥∥Q̄⊤ĒQ̄

∥∥∥
2
= max

∥v∥2≤1

∣∣∣v⊤Q̄⊤ĒQ̄v
∣∣∣

= max
∥v∥2≤1

∣∣∣∣{v⊤ − w(v) + w(v)
}⊤

Q̄⊤ĒQ̄ {v − w(v) + w(v)}
∣∣∣∣

≤
(
ϵ2 + 2ϵ

) ∥∥∥Q̄⊤ĒQ̄
∥∥∥
2
+ max

w∈Sd−1
ϵ

∣∣∣w⊤Q̄⊤ĒQ̄w
∣∣∣ .

With ϵ = 1/3, we have ∥∥∥Q̄⊤ĒQ̄
∥∥∥
2
≤ 9

2
max

w∈Sd−1
ϵ

∣∣∣w⊤Q̄⊤ĒQ̄w
∣∣∣ .

Now, Sd−1
1/3 can be selected so that its cardinality can be upper bounded by |Sd−1

1/3 | ≤ 18d (see, for

example, Pollard [128]). For a fixed w ∈ Sd−1
1/3 , we let z = Q̄w and note that since Sd−1

1/3 ⊂ Sd−1,

that ∥z∥2 ≤ 1, and

∣∣∣w⊤Q̄⊤ĒQ̄w
∣∣∣ =

∣∣∣∣∣∣
n(M+1)∑

i=1

n(M+1)∑
j=1

ēijzizj

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
n∑

i=1

nM∑
j=1

eijzizn+j

∣∣∣∣∣∣
Now, over the event that entries eij ≲ M log n, for all i, j, which occurs which overwhelming

probability by Lemma D.1, Hoeffding’s inequality and a union bound over w ∈ Sd−1
1/3 gives

P
{∥∥∥Q̄⊤ĒQ̄

∥∥∥
2
> t
}
≤

∑
w∈Sd−1

1/3

P
(∣∣∣w⊤Q̄⊤ĒQ̄w

∣∣∣ > 2t

9

)

=
∑

w∈Sd−1
1/3

P


∣∣∣∣∣∣

n∑
i=1

nM∑
j=1

eijzizn+j

∣∣∣∣∣∣ > t

9


≤ 2 · 18d exp

{
− 2t2

(9cM log n)2

}
= 2 · exp

{
d log(18)− 2t2

(9cM log n)2

}
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Setting t = M log3/2 n gives

∥∥∥Q⊤
(
Λ̂− Λ̃

)
R
∥∥∥
2
=
∥∥∥Q̄⊤ĒQ̄

∥∥∥
2

P
≲ M log3/2 n,

completing the proof.

D.6.4 Proof of Proposition D.5

Denote the singular value decomposition of Ū⊤Û by Ω1ΞΩ⊤
2 , where Ξ = diag(ξ1, . . . , ξd), and

let W := Ω1Ω
⊤
2 . The principal angles {θi}di=1 between the column spaces of Ū and Û are

defined by ξi = cos(θi), and by the Wedin sinΘ theorem, we have

(D.15)

∥∥∥Ū⊤Û−W
∥∥∥
2
= ∥Ξ− I∥2 = max

i∈[d]
|1− ξi| = max

i∈[d]
|1− cos θi| ≤ max

i∈[d]
|1− cos2 θi|

= max
i∈[d]

sin2 θi ≲
∥Λ̂− Λ̄∥22

(σd(Λ̄)− σd+1(Λ̄))2

P
≲

Mnλmax

Mδ2
=

nλmax

δ2
≲

√
nλmax

δ
.

We apply the Wedin sinΘ theorem again to obtain a bound which we will require later:

∥∥∥ÛÛ⊤ − ŪŪ⊤
∥∥∥
2
∨
∥∥∥V̂V̂⊤ − V̄V̄⊤

∥∥∥
2
=
∥∥∥sinΘ(Û, Ū

)∥∥∥
2
∨
∥∥∥sinΘ(V̂, V̄

)∥∥∥
2

≲
∥Λ̂− Λ̄∥2

σd(Λ̄)− σd+1(Λ̄)
P
≲

√
nλmax

δ
.

We now establish a bound on
∥∥∥Ū⊤Û− V̄⊤V̂

∥∥∥
2
. We start by showing that

∥∥∥Ū⊤Û− V̄⊤V̂
∥∥∥
2
= argmax

x:∥x∥2≤1
x⊤
(
Ū⊤Û− V̄⊤V̂

)
x

= argmax
x:∥x∥2≤1

d∑
i,j=1

xixj

(
Ū⊤Û− V̄⊤V̂

)
ij

≤ argmax
x:∥x∥2≤1

d∑
i,j=1

(1 + s̄i)xi(1 + s̄−1
j )xj

(
Ū⊤Û− V̄⊤V̂

)
ij

= argmax
x:∥x∥2≤1

d∑
i,j=1

x⊤
[(

Ū⊤Û− V̄⊤V̂
)
+ S̄

(
Ū⊤Û− V̄⊤V̂

)
Ŝ−1

]
x

=
∥∥∥(Ū⊤Û− V̄⊤V̂

)
+ S̄

(
Ū⊤Û− V̄⊤V̂

)
Ŝ−1

∥∥∥
2
,
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and then we employ the decomposition

Ū⊤Û− V̄⊤V̂ + S̄
(
Ū⊤Û− V̄⊤V̂

)
Ŝ−1

=
[
Ū⊤ÛŜ− S̄V̄⊤V̂ + S̄Ū⊤Û− V̄V̂

]
Ŝ−1

=

[
Ū⊤

(
Λ̂− Λ̄

)
V̂ + V̄⊤

(
Λ̂− Λ̄

)⊤
Û

]
Ŝ−1

= Ū⊤
(
Λ̂− Λ̄

)(
V̂ − V̄V̄⊤V̂

)
Ŝ−1 + Ū⊤

(
Λ̂− Λ̄

)
V̄V̄⊤V̂Ŝ−1

+ V̄⊤
(
Λ̂− Λ̄

)⊤ (
Û− ŪŪ⊤Û

)
Ŝ−1 + V̄⊤

(
Λ̂− Λ̄

)⊤
ŪŪ⊤ÛŜ−1.

Therefore we have∥∥∥Ū⊤Û− V̄⊤V̂
∥∥∥
2
≤
∥∥∥Λ̂− Λ̄

∥∥∥
2

(∥∥∥V̂V̂⊤ − V̄V̄
∥∥∥
2
+
∥∥∥ÛÛ⊤ − ŪŪ

∥∥∥
2

)∥∥∥Ŝ−1
∥∥∥
2∥∥∥Ū⊤

(
Λ̂− Λ̄

)
V̄
∥∥∥
2

∥∥∥Ŝ−1
∥∥∥
2
+

∥∥∥∥V̄⊤
(
Λ̂− Λ̄

)⊤
Ū

∥∥∥∥
2

∥∥∥Ŝ−1
∥∥∥
2

P
≲
√
Mnλmax ·

√
nλmax

δ
· 1

σd(Λ̄)
+

M log3/2 n

σd(Λ̄)

=
nλmax

δ2
+

√
M log3/2 n

δ

≲

√
nλmax

δ
.

Combining this with (D.15), we have∥∥∥V̄⊤V̂ −W
∥∥∥
2
≤
∥∥∥V̄⊤V̂ − Ū⊤Û

∥∥∥
2
+
∥∥∥Ū⊤Û−W

∥∥∥
2

P
≲

√
nλmax

δ
.

D.6.5 Proof of Proposition D.6

We begin by decomposing WŜ− S̄W as

WŜ− S̄W =
(
W − Ū⊤Û

)
Ŝ+ S̄

(
V⊤V̂ −W

)
+ Ū⊤ÛŜ− S̄V̄⊤V̂

=
(
W − Ū⊤Û

)
Ŝ+ S̄

(
V⊤V̂ −W

)
+ Ū⊤

(
Λ̂− Λ̄

)
V̂

=
(
W − Ū⊤Û

)
Ŝ+ S̄

(
V⊤V̂ −W

)
+ Ū⊤

(
Λ̂− Λ̄

)(
V̂V̂⊤ − V̄V̄⊤

)
V̂

+ Ū⊤
(
Λ̂− Λ̄

)
V̄V̄⊤V̂,

and therefore we have that∥∥∥WŜ− S̄W
∥∥∥
2
≤
∥∥∥W − Ū⊤Û

∥∥∥
2

∥∥∥Λ̂∥∥∥
2
+
∥∥∥W − V̄⊤V̂

∥∥∥
2

∥∥Λ̄∥∥
2

+
∥∥∥Λ̂− Λ̄

∥∥∥
2

∥∥∥V̂V̂⊤ − V̄V̄⊤
∥∥∥
2
+
∥∥∥Ū⊤

(
Λ̂− Λ̄

)
V̄
∥∥∥
2

P
≲

√
nλmaxκ

δ
+

√
Mnλmax

δ
+M log3/2 n

≲ M log3/2 n,

which completes the proof.
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D.6.6 Proof of Proposition D.7

A key tool in proving Proposition D.7 is a theorem due [93], providing entrywise eigenvector

bounds for random matrices. The original statement is given for the eigenvectors of symmetric

random matrices with row and column-wise independence. We state a generalisation for the

singular vectors of rectangular matrices with block-wise independence structure. The extension

to block-wise independence structure has been handled in [82] (see Proposition 2.1(b) of that

paper), although the exposition of the results in this paper is more complicated. For this reason,

we choose to state the result due to [93] with this generalisation, which can be seen by following

through the relevant parts of their proof.

Lemma D.6 (A slight generalisation of Theorem 2.1 of [93]). Let M0 be an n1×n2 real-valued

random matrix. Define n0 = n1 + n2 and let π1 =
√
2n1/n0 and π2 =

√
2n2/n0. Define

κ0 := σ1(EM0)/σd(EM0), δ0 = σd(EM0)− σd+1(EM0). Suppose there exists some γ > 0 and

a function φ : R+ → R+ which is continuous and non-decreasing on R+, with φ(0) = 0 and

φ(x)/x non-increasing on R+, such that the following conditions hold:

B1 (Incoherence). ∥EM0∥2,∞ ∨
∥∥EM⊤

0

∥∥
2,∞ ≤ γδ0.

B2 (Block-wise independence). Assume that for any k ∈ [n1], ℓ ∈ [n2], there exists N 1
k ⊂ [n1]

and N 2
ℓ ⊂ [n2], such that the kth row of M0 is independent of the columns {j : j /∈ N 1

k }, and
the ℓth column of M0 is independent of the rows {i : i /∈ N 2

ℓ }. Let m0 = maxk,ℓ
{
|N 1

k | ∨ |N 2
ℓ |
}

and assume m0 ≲ δ0.

B3 (Spectral norm concentration). κ0max {γ, φ(γ)} ≲ 1 and P (∥M0 − EM0∥2 > γ∆) ≤ η0

for some η0 ∈ (0, 1).

B4. [Row and column concentration] There exists some η1 ∈ (0, 1) such that for any matrices

Q ∈ Rn1×d,R ∈ Rn2×d and i ∈ [n1], j ∈ [n2],

P
{∥∥∥(M0 − EM0)·,iR

∥∥∥
2
≤ δ0b∞φ

(
bF√
n0b∞

)}
≥ 1− η1

n0
,

and

P
{∥∥∥(M0 − EM0)j,·Q

∥∥∥
2
≤ δ0b∞φ

(
bF√
n0b∞

)}
≥ 1− η1

n0

where b∞ := π1∥Q∥2,∞ ∨ π2∥R∥2,∞, and bF :=
(
π1∥Q∥2F + π2∥R∥2F

)1/2
.

Let Û0,U0 (respectively V̂0,V0) be the matrices containing the left (respectively, right)

singular vectors corresponding to the d leading singular values of M0 and EM0. Then, with
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probability at least 1− η0 − 2η1, we have

π1∥Û0∥2,∞ ∨ π2∥V̂0∥2,∞ ≲ {κ0 + φ(1)} (π1∥U0∥2,∞ ∨ π2∥V0∥2,∞)

+ γ(π1∥EM0∥2,∞ ∨ π2∥(EM0)
⊤∥2,∞)/δ0;

π1∥Û0O−U0∥2,∞ ∨ π2∥V̂0O−V0∥2,∞ ≲ [κ0 {κ0 + φ(1)} {γ + φ(γ)}+ φ(1)] (π1∥U0∥2,∞ ∨ π2∥V0∥2,∞)

+ γ(π1∥EM0∥2,∞ ∨ π2∥(EM0)
⊤∥2,∞)/δ0.

The following is an adaptation of Lemma D.2 of [94] (see also Lemma 7 of [93]) who showed

an analogous result for Bernoulli random variables.

Lemma D.7. Let Yi ∼ Poisson(λi) independently for all i = 1, . . . , n, and suppose Q is a

deterministic matrix. The Qi denote the ith row of Q, and set λmax := maxi∈[n] λi. Then for

any α > 0,

P


∥∥∥∥∥

n∑
i=1

(Yi − λi)Qi

∥∥∥∥∥ >
(2 + α)nλmax ∥Q∥2,∞

1 ∨ log
(√

n ∥Q∥2,∞ / ∥Q∥F
)
 ≤ 2de−αnλmax .

We omit the proof of Lemma D.7, which is identical to the proof of Lemma D.2 of [94] with

the Bernoulli moment generating function with the Poisson moment generating function.

With these tools to hand, we begin by obtaining a bound on ∥Û∥2,∞ using Lemma D.6,

with M0 := Λ̂. We set γ :=
√
nλmax/δ and

φ(x) :=
nλmax

δ {1 ∨ log(1/x)} .

First observe that n0 = n + nM ≍ nM and π1 ≍ M−1/2 and π2 ≍ 1, and that κ0 = κ and

δ0 =
√
Mδ. B1 holds since ∥Λ̄∥2,∞ ≤

√
nλmax ≲

√
nλmax since λmax ≲ 1 by Assumption 1.

Using Assumptions 3 and 4, we have

M ≲
nλmax

log3 n
≲

δ log(δ/
√
nλmax)

κ log3 n
≲

δ log n

κ log3 n
≲ δ,

and therefore B2 holds. B3 holds from Proposition D.2, and observing that by Assumption 3,

κ0max{γ, ϕ(γ)} ≲ 1.

To see that B4 holds, note that each row and column of M−1(Λ̂− Λ̄) contains independent

Poisson random variables with means not exceeding nλmax/M . Then for Q ∈ Rn×d, R ∈ RnM×d,
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setting α = log n/nλmax in Lemma D.7 implies that∥∥∥∥(Λ̂− Λ̄
)
i,·
R

∥∥∥∥
2,∞

= M

∥∥∥∥ 1

M

(
Λ̂− Λ̄

)
i,·
R

∥∥∥∥
2,∞

P
≲ M ·

(nλmax/M + log n) ∥R∥2,∞
1 ∨ log

(√
n0∥R∥2,∞
∥R∥F

)
≲

nλmax ∥R∥2,∞
1 ∨ log

(√
n0∥R∥2,∞
∥R∥F

)
= δ ∥R∥2,∞ φ

(
∥R∥F√

n0 ∥R∥2,∞

)

≤ δ0b∞φ

(
bF√
n0b∞

)
.

Similarly, setting α = M log n/nλmax we have∥∥∥∥(Ã− Λ̃
)⊤
·,i
Q

∥∥∥∥
2,∞

P
≲

√
Mnλmax ∥Q∥2,∞

1 ∨ log
(√

n0 ∥Q∥2,∞ / ∥Q∥F
) ≤ δ0b∞φ

(√
nb∞
bF

)
,

which establishes B4. Having established B1-B4, we are ready to apply Lemma D.6:∥∥∥Û∥∥∥
2,∞

P
≲
√
M {κ0 + φ(1)} (π1∥U∥2,∞ ∨ π2∥V∥2,∞) +

√
Mγ

(
π1
∥∥Λ̄∥∥

2,∞ ∨ π2

∥∥∥Λ̄⊤
∥∥∥
2,∞

)
/δ0

We have

(D.16)

∥∥V̄∥∥
2,∞ =

∥∥Λ̄ŪS̄−1
∥∥
2,∞ ≤

∥∥Λ̄∥∥∞ ∥∥Ū∥∥2,∞ ∥∥S̄∥∥−1

2
≲

nλmaxµ
√

d/n

σ
1/2
d (Σ)

≲
nλmaxµ

√
d/n√

Mδ
≲

√
d

nM
µ log n.

where we used Assumption 3 in the final inequality. Therefore

π1
∥∥Ū∥∥

2,∞ ∨ π2
∥∥V̄∥∥

2,∞ ≤
√

d

nM
µ log n,

and we have

κ =
σ
1/2
1 (Σ)

σ
1/2
d (Σ)

≲
nλmax

δ
= φ(1)

and so the first term satisfies

√
M {κ0 + φ(1)} (π1∥U∥2,∞ ∨ π2∥V∥2,∞) ≲

√
Mφ(1) (π1∥U∥2,∞ ∨ π2∥V∥2,∞)

≲
√
M · nλmax

δ
·
√

d

nM
µ log n

=
µλmax

√
nd log n

δ
.
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To control the second term, we first observe that

π1
∥∥Λ̄∥∥

2,∞ ≤M−1/2
∥∥∥ŪŪ⊤Λ̄

∥∥∥
2,∞

+M−1/2
∥∥(I− ŪŪ

)
Λ̄
∥∥
2,∞

≲ M−1/2
∥∥Ū∥∥

2,∞
∥∥Λ̄∥∥

2
+M−1/2max

i∈[n]
sup

t∈(0,1]
ri(t)

≲

√
d

Mn
µ ·
√
Mκδ + µ

√
dλmax log

5/2 n

≲ µδ
√
dλmax

where the final inequality follows from κ ≲ log n ≤ √n and λmax ≲ 1. Similarly we obtain

π2∥Λ̄⊤∥2,∞ ≲ µδ
√
dλmax log n using (D.16), and therefore

π1
∥∥Λ̄∥∥

2,∞ ∨ π2

∥∥∥Λ̄⊤
∥∥∥
2,∞

≲ µδ
√
dλmax log n.

We then have

√
Mγ

(
π1
∥∥Λ̄∥∥

2,∞ ∨ π2

∥∥∥Λ̄⊤
∥∥∥
2,∞

)
/δ0 ≲

√
M ·
√
nλmax

δ
· µδ

√
dλmax log n ·

1√
Mδ

≲
µ
√
ndλmax log n

δ
.

Combining these bounds, we obtain

∥∥∥Û∥∥∥
2,∞

P
≲

µ
√
ndλmax log n

δ
.

We now apply Lemma D.6 with M0 = Λ̂(m). We set γ and φ(x) as before and verify

Assumptions B1-B4 in the same way. By analogous calculations to the above, we obtain the

bound ∥∥∥Û(m)
∥∥∥
2,∞

P
≲

µ
√
ndλmax log n

δ
.

The final bound is shown in the same way, requiring the additional observation that κ {γ ∨ φ(γ)} ≲
1 which follows from Assumption 3, and we obtain

π1∥Û0O−U0∥2,∞ ∨ π2∥V̂0O−V0∥2,∞
P
≲ [κ0 {κ0 + φ(1)} {γ + φ(γ)}+ φ(1)] (π1∥U0∥2,∞ ∨ π2∥V0∥2,∞) + γ

(
π1
∥∥Λ̄∥∥

2,∞ ∨ π2

∥∥∥Λ̄⊤
∥∥∥
2,∞

)
/δ0

≲ φ(1) (π1∥U0∥2,∞ ∨ π2∥V0∥2,∞) + γ

(
π1
∥∥Λ̄∥∥

2,∞ ∨ π2

∥∥∥Λ̄⊤
∥∥∥
2,∞

)
/δ0

≲
µ
√
ndλmax log n

δ
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D.6.7 Proof of Proposition D.8

We show (D.9) using a simple application of Wedin’s inequality:

∥∥∥Û(m)(Û(m))⊤ − ŪŪ⊤
∥∥∥
2
=
∥∥∥sinΘ(Û(m), Ū

)∥∥∥
2
≲

∥∥∥Λ̂(m) − Λ̄
∥∥∥
2

σd
(
Λ̄
)
− σd+1

(
Λ̄
) ≤

∥∥∥Λ̂− Λ̄
∥∥∥
2

σd
(
Λ̄
)
− σd+1

(
Λ̄
)

P
≲

√
Mnλmax√

Mδ
=

√
nλmax

δ
.

The proof of (D.10) requires a more delicate argument. We apply Wedin’s theorem to obtain

(D.17)

∥∥∥Û(m)(Û(m))⊤ − ÛÛ⊤
∥∥∥
2
=
∥∥∥sinΘ(Û(m), Û

)∥∥∥
2
≲

∥∥∥∥(Λ̂(m) − Λ̂
)⊤

Û(m)

∥∥∥∥
2

∨
∥∥∥(Λ̂(m) − Λ̂

)
V̂(m)

∥∥∥
2

σd

(
Λ̂
)
− σd+1

(
Λ̂
) .

By Weyl’s inequality

σd

(
Λ̂
)
≥ σd

(
Λ̄
)
+
∥∥∥Λ̂− Λ̄

∥∥∥
2

P
≳ σd

(
Λ̄
)
.

and

σd+1

(
Λ̂
)
≤ σd+1

(
Λ̄
)
−
∥∥∥Λ̂− Λ̄

∥∥∥
2

P
≲ σd+1

(
Λ̄
)
.

and therefore

(D.18) σd

(
Λ̂
)
− σd+1

(
Λ̂
) P
≳ σd

(
Λ̄
)
− σd+1

(
Λ̄
)
=
√
M
(
σ
1/2
d (Σ)− σ

1/2
d+1(Σ)

)
=
√
Mδ.

We now focus our attention on obtaining a bound for ∥(Λ̂(m) − Λ̂)Û(m)∥F. Let

Nm = {m+ (ℓ− 1)n, ℓ ∈ [M ]} .

The ijth entry of Λ̂− Λ̂(m) is(
Λ̂(m) − Λ̂

)
ij
=
(
Λ̂(m) − Λ̄

)
ij
I (i = m, j ∈ Nm) ,

and so Λ̂(m) − Λ̂ is independent of Λ̂(m) and hence Λ̂(m) − Λ̂ is independent of Û(m). We can

then write ∥∥∥∥(Λ̂(m) − Λ̂
)⊤

Û(m)

∥∥∥∥2
F

=
∑
ℓ/∈Nm

(
Λ̂m,ℓ − Λ̄m,ℓ

)2 ∥∥∥Û(m)
ℓ,·

∥∥∥2
2

+

∥∥∥∥∥∥
∑
ℓ∈Nm

n∑
i=1

(
Λ̂iℓ − Λ̄iℓ

)
Û

(m)
ℓ,·

∥∥∥∥∥∥
2

2

=: ζ1 + ζ2.
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D.6. PROOFS OF THE TECHNICAL PROPOSITIONS

The (square root of the) first term is easily bounded as

ζ
1/2
1 ≤

∥∥∥Λ̂− Λ̄
∥∥∥
2,∞

∥∥∥Û(m)
∥∥∥
2,∞

≤
∥∥∥Λ̂− Λ̄

∥∥∥
2

∥∥∥Û(m)
∥∥∥
2,∞

P
≲
√

Mnλmax ·
µ
√
ndλmax log n

δ

=

√
Mdnλ

3/2
maxµ log n

δ

and to bound the second term, we employ Lemma D.2 to obtain

ζ
1/2
2

P
≲ M log2 n

∥∥∥Û(m)
∥∥∥
2,∞

+
√

Mλmax log n
∥∥∥Û(m)

∥∥∥
F

≤M log2 n
∥∥∥Û(m)

∥∥∥
2,∞

+
√

Mλmaxn log n
∥∥∥Û(m)

∥∥∥
2,∞

≲
√

Mλmaxn log n
∥∥∥Û(m)

∥∥∥
2,∞

≲
√

Mλmaxn log n · µ
√
ndλmax log n

δ

=

√
Mdnλ

3/2
maxµ log3/2 n

δ

where we used Assumption 4 in the third inequality. Therefore∥∥∥∥(Λ̂(m) − Λ̂
)⊤

Û(m)

∥∥∥∥
2

≤
∥∥∥∥(Λ̂(m) − Λ̂

)⊤
Û(m)

∥∥∥∥
F

≤ ζ
1/2
1 + ζ

1/2
2

P
≲

√
Mdnλ

3/2
maxµ log3/2 n

δ
.

Similar analysis yields an analogous bound for ∥(Λ̂(m) − Λ̂)V̂(m)∥2, and combining this, with

(D.17) and (D.18) we have

∥∥∥Û(m)(Û(m))⊤ − ÛÛ⊤
∥∥∥
2
≲

∥∥∥∥(Λ̂(m) − Λ̂
)⊤

Û(m)

∥∥∥∥
2

∨
∥∥∥(Λ̂(m) − Λ̂

)
V̂(m)

∥∥∥
2

σd

(
Λ̂
)
− σd+1

(
Λ̂
)

P
≲

√
dnλ

3/2
maxµ log3/2 n

δ2

which establishes the proposition.

99





Bibliography

[1] Alexander Modell and Patrick Rubin-Delanchy.

Spectral clustering under degree heterogeneity: a case for the random walk laplacian.

arXiv preprint arXiv:2105.00987, 2021.

[2] Alexander Modell, Ian Gallagher, Joshua Cape, and Patrick Rubin-Delanchy.

Spectral embedding and the latent geometry of multipartite networks.

arXiv preprint arXiv:2202.03945, 2022.

[3] Alexander Modell, Ian Gallagher, Emma Ceccherini, Nick Whiteley, and Patrick Rubin-

Delanchy.

Intensity Profile Projection: A framework for continuous-time representation learning for

dynamic networks.

arXiv preprint arXiv:2306.06155, 2023.

[4] Joshua Cape, Minh Tang, and Carey E Priebe.

The two-to-infinity norm and singular subspace geometry with applications to high-

dimensional statistics.

The Annals of Statistics, 47(5):2405–2439, 2019.

[5] Karl Rohe, Sourav Chatterjee, and Bin Yu.

Spectral clustering and the high-dimensional stochastic blockmodel.

The Annals of Statistics, 39(4):1878–1915, 2011.

[6] Daniel L Sussman, Minh Tang, Donniell E Fishkind, and Carey E Priebe.

A consistent adjacency spectral embedding for stochastic blockmodel graphs.

Journal of the American Statistical Association, 107(499):1119–1128, 2012.

[7] Stephen J Young and Edward R Scheinerman.

Random dot product graph models for social networks.

In International Workshop on Algorithms and Models for the Web-Graph, pages 138–149.

Springer, 2007.

[8] Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park,

Joshua T Vogelstein, Keith Levin, Vince Lyzinski, and Yichen Qin.

101



BIBLIOGRAPHY

Statistical inference on random dot product graphs: a survey.

The Journal of Machine Learning Research, 18(1):8393–8484, 2017.

[9] J.K. Rowling.

Harry Potter.

Bloomsbury Publishing, 1997–2007.

[10] Efe Karakus, Jatin Pandey, Craig Evans, and Josh Friedman.

potter-network.

https://github.com/efekarakus/potter-network, 2014.

[11] Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, and Tijl De Bie.

CSNE: Conditional signed network embedding.

In Proceedings of the 29th ACM International Conference on Information & Knowledge

Management, pages 1105–1114, 2020.

[12] Peter D Hoff, Adrian E Raftery, and Mark S Handcock.

Latent space approaches to social network analysis.

Journal of the American Statistical Association, 97(460):1090–1098, 2002.

[13] Dean Lusher, Johan Koskinen, and Garry Robins.

Exponential random graph models for social networks: Theory, methods, and applications.

Cambridge University Press, 2013.

[14] Emmanuel Abbe.

Community detection and stochastic block models: recent developments.

The Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[15] Patrick Rubin-Delanchy, Joshua Cape, Minh Tang, and Carey E Priebe.

A statistical interpretation of spectral embedding: The generalised random dot product

graph.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4):1446–1473,

2022.

[16] Joshua Agterberg, Minh Tang, and Carey E Priebe.

On two distinct sources of nonidentifiability in latent position random graph models.

arXiv preprint arXiv:2003.14250, 2020.

[17] Fangzheng Xie.

Entrywise limit theorems of eigenvectors for signal-plus-noise matrix models with weak

signals.

arXiv preprint arXiv:2106.09840, 2021.

102

https://github.com/efekarakus/potter-network


BIBLIOGRAPHY

[18] Shaofeng Deng, Shuyang Ling, and Thomas Strohmer.

Strong consistency, graph laplacians, and the stochastic block model.

The Journal of Machine Learning Research, 22(1):5210–5253, 2021.

[19] Minh Tang and Carey E Priebe.

Limit theorems for eigenvectors of the normalized laplacian for random graphs.

The Annals of Statistics, 46(5):2360–2415, 2018.

[20] Linyuan Lu and Xing Peng.

Spectra of edge-independent random graphs.

arXiv preprint arXiv:1204.6207, 2012.

[21] Roberto Imbuzeiro Oliveira.

Concentration of the adjacency matrix and of the laplacian in random graphs with

independent edges.

arXiv preprint arXiv:0911.0600, 2009.

[22] P Erdös and A Rényi.
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[117] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-François

Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno Lina, et al.

High-resolution measurements of face-to-face contact patterns in a primary school.

PloS one, 6(8):e23176, 2011.
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