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ABSTRACT

This thesis introduces Poisson Approximate Likelihood (PAL) methods to address the challenge
of scaling-up epidemiological inference to complex and heterogeneous models,. In contrast to
the popular ODE approach to compartmental modelling, in which a large population limit is
used to motivate a deterministic model, PALs are derived from approximate filtering equations
for finite-population, stochastic compartmental models, and the large population limit drives
consistency of maximum PAL estimators. The theoretical results contained within appear to
be the first likelihood-based parameter estimation consistency results which apply to a broad
class of partially observed stochastic compartmental models and address the large population
limit. PALs are simple to implement, involving only elementary arithmetic operations and no
tuning parameters, and fast to evaluate, requiring no simulation from the model and having
computational cost independent of population size. Through examples we demonstrate how PALs
can be used to: facilitate fast exact Bayesian inference within a Delayed Acceptance Particle
Markov Chain Monte Carlo scheme; fit an age-structured model of influenza, taking advantage of
automatic differentiation in Stan; compare over-dispersion mechanisms in a model of rotavirus by
embedding PALs within sequential Monte Carlo; and evaluate the role of unit-specific parameters
in a meta-population model of measles.
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1
INTRODUCTION

Introduction

This thesis is based on the paper ‘Consistent and fast inference in compartmental models of

epidemics using Poisson Approximate Likelihoods’ (Whitehouse et al., 2023), which was written

with Professor Nick Whiteley and Dr Lorenzo Rimella. This work was produced over the course

of my PhD, funded by the EPSRC as part of the Compass centre for doctoral training at the

University of Bristol. After a round of major, and then minor, revisions it was accepted to be

published in the Journal of the Royal Statistical Society series B (Statistical Methodology).

Aims and Contributions

The quantification and characterisation of infectious disease dynamics are essential for informing

official decision makers in their response to emerging epidemics; they are also crucial in under-

standing previous outbreaks in order to better prepare for the future. The most popular paradigm

for modelling the spread of a disease through a population is that of compartmental models.

The likelihood for such models is inaccessible in all but the simplest cases, therefore, in order to

perform inference one needs to make approximations. Over the past few decades, computational

advances have led to the development of many sophisticated and expensive simulation algorithms

for inference in stochastic compartmental models. The aims and contributions of this thesis are

to propose a class of computationally cheap and simple alternatives to these methods which are

justified by rigorous consistency theory and demonstrated to be practically useful when applied

to real world data. Section 2.6 provides a detailed breakdown of these contributions.
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CHAPTER 1. INTRODUCTION

Structure

This thesis is organised as follows. Chapter 2 introduces the concept of compartmental modelling

and reviews the literature on related inference algorithms. Chapter 3 introduces the Poisson

approximate likelihood (PAL) and supporting derivations. Chapter 4 presents an argument

outline for the consistency result which supports the PAL methodology. Chapter 5 proposes an

extension of the PAL methodology to tackle over-dispersed models. Chapter 6 demonstrates the

practical implementation of PAL methods through examples. Chapter 7 concludes the thesis with

a discussion on the limitations of the methodology and avenues for future research. Appendix A

presents the full proof for consistency. Appendix B contains supporting material for chapter 6.
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2
BACKGROUND

In this chapter we introduce compartmental models, discuss existing methods for inference, and

introduce the ideas behind the PAL methodology.

2.1 Compartmental Models

Compartmental modelling is one of the most widespread methods for quantifying the dynamics

of infectious diseases in populations, rooted in the works of McKendrick and Kermack in the

1920’s (Kermack and McKendrick, 1927; McKendrick, 1925), Bartlett (1949, 1966) and Kendall

(1956), see (Isham, 2005) for an overview. In this modelling paradigm individuals in a population

transition between a collection of discrete compartments, usually representing disease states,

where the rates of transition may depend on the current state of the population as a whole as

well as possibly unknown parameters. This provides an interpretable, mechanistic framework in

which to infer epidemic characteristics such as reproduction numbers, forecast disease dynamics

and explore the possible impacts of public health interventions. Compartmental models are also

popular in ecology and biochemistry, for example, (Fearnhead et al., 2014; Komorowski et al.,

2009), but that is beyond the scope of the present work.

The earliest formulated compartmental models of epidemics consist of a small number of

compartments, just three in the standard Susceptible-Infected-Recovered (SIR) model. Modern

compartmental models often feature many more compartments, each corresponding to some

combination of disease state and other covariates. By increasing the number of compartments,

the modeller can specify a more precise representation of complex diseases and populations,

such as multi-strain dynamics (Worden and Porco, 2017), subpopulations associated with, e.g.,

households or age-groups (Andrade and Duggan, 2020), and spatial information (Xia et al., 2004).

3



CHAPTER 2. BACKGROUND

Modelling such features is considered a key challenge by epidemiologists (Ball et al., 2015; Funk

et al., 2015; Riley et al., 2015; Wikramaratna et al., 2015).

However, the computational cost of fitting compartmental models to data, in general, grows

with the number of compartments and also, in the cases of some methods, with the population size.

Exact likelihood-based inference is intractable in general and approximate inference typically

either involves deleterious model simplifications or involves highly sophisticated algorithms

which incur a substantial computational cost. Thus scaling-up inference to complex models is an

important and open challenge – this is the motivation for the present work.

Compartmental models come in various forms, some stochastic, some deterministic; some in

continuous time, some in discrete time; some modelling finite populations, some motivated by

large population asymptotics. Deterministic, ODE-based compartmental models are very popular

in practice and often motivated by the fact they can be obtained from finite-population stochastic

models in the large population limit. As a very simple example, consider the continuous-time,

stochastic version of the SEIR model, with fixed population size n and numbers of susceptible,

exposed, infective and removed individuals denoted X (n)
t := [S(n)

t E(n)
t I(n)

t R(n)
t ]⊤. Each susceptible

individual becomes exposed at instantaneous rate βn−1I(n)
t , each exposed individual becomes

infective at rate ρ, each infective individual is “removed” at rate γ, and (X (n)
t )t≥0 is a jump-Markov

process. General results concerning the convergence of jump-Markov processes to the solutions of

ODE’s (Kurtz, 1970, 1971) can be applied to show that, if n−1X (n)
0 → x0 in probability, then for

any T > 0 and δ> 0,

lim
n→∞P

(
sup

0≤t≤T
∥n−1X (n)

t − xt∥ > δ
)
= 0, (2.1)

where (xt)t≥0 , xt ≡ [st e t i t r t]⊤, solves:

dst

dt
=−βst i t,

de t

dt
=βst i t −ρe t,

di t

dt
= ρe t −γi t,

dr t

dt
= γi t. (2.2)

It follows from S(n)
0 +E(n)

0 +I(n)
0 +R(n)

0 = n together with n−1X (n)
0 → x0 and (2.2), that st+e t+i t+r t =

1 for all t ≥ 0. In order to use this ODE to model a population of size n, xt is scaled back up

by a factor of n, x(n)
t ≡ [s(n)

t e(n)
t i(n)

t r(n)
t ]⊤ := n[st e t i t r t]⊤, which satisfies the form of SEIR ODE

usually encountered in practice:

ds(n)
t

dt
=−βs(n)

t
i(n)

t

n
,

de(n)
t

dt
=βs(n)

t
i(n)

t

n
−ρe(n)

t ,
di(n)

t

dt
= ρe(n)

t −γi(n)
t ,

dr(n)
t

dt
= γi(n)

t . (2.3)

To relate (X (n)
t )t≥0 or (x(n)

t )t≥0 to data, for example, error-prone measurements of the number

of newly infective individuals in given time periods, one usually postulates a probabilistic

observation model, and evaluation of the likelihood function for the parameters (β,ρ,γ) then

involves marginalising out (X (n)
t )t≥0 in the case of the finite population stochastic model, which is

intractable, or numerical approximation to (x(n)
t )t≥0 in the case of the ODE.

Note here that the only way that x(n)
t depends on n is through the scaling factor x(n)

t = nxt.

This, along with the lack of stochasticity, illustrates the simplicity but inflexibility of the ODE

4



2.2. INFERENCE ALGORITHMS FOR STOCHASTIC COMPARTMENTAL MODELS

approach to compartmental modelling. Indeed it has been recognised that ODE models cannot

capture important epidemiological phenomena such as fade-out, extinction, lack of synchrony,

or deviations from stable behaviour (Roberts et al., 2015, Sec. 8) and, somewhat more obviously,

may under-represent uncertainty (King et al., 2015).

To summarise the above, consider the following conceptual workflow:

ODE 1. specify a finite population, stochastic, continuous-time compartmental model (X (n)
t )t≥0;

ODE 2. scale X (n)
t by n−1 and take the large population limit n →∞ to obtain (xt)t≥0;

ODE 3. re-scale (xt)t≥0 by n to obtain (x(n)
t )t≥0, on the appropriate scale for a population of size

n;

ODE 4. numerically approximate (x(n)
t )t≥0 and combine with an observation model to evaluate

the likelihood function.

Of course in practice, someone can use the ODE model (2.3) without knowing anything about

steps ODE 1.-3. We write out these steps in order to emphasise how the ODE approach differs to

the PAL methods proposed in the present work, where crucially the limit n →∞ is taken later in

the conceptual workflow:

PAL 1. specify a finite population, stochastic, discrete-time compartmental model;

PAL 2. combine this model with an observation model to obtain discrete-time filtering equations;

PAL 3. recursively approximate the filtering equations using Poisson distributions, thus defin-

ing the PAL;

PAL 4. take the large population limit, n →∞, to establish the consistency of the parameter

estimator obtained by maximising the PAL.

The Latent Compartmental Model we work with is introduced in section 3.1. It allows the

probabilities of individuals transitioning between compartments to depend on the state of the

population as a whole in a quite general way, as well as allowing for immigration and emigration,

constant or random and dynamic population size. Due to the general form of this compartmental

model, we can treat classical disease states, such as SEIR, as well as discrete covariates or

subpopulations such as spatial locations or age-groups, in a single framework.

In the next section we explore the connections of the present work to the literature. We

survey the state of the art methods for inference in stochastic epidemic models and discuss the

use of Poisson process approximations for inference.

2.2 Inference Algorithms for Stochastic Compartmental Models

Compartmental models concern case data, be it prevalence data - the number of individuals

infected at a given time, or incidence data - the number of newly infected individuals over a given

period. When applied to real data they are often combined with an observation model to capture

an imperfect reporting mechanism, for example, due to asymptomatic cases or testing errors.

This observation model results in a latent variable model.
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SEIR example

As a simple running example of a Latent Compartmental Model we will consider the discrete-time

susceptible-exposed-infective-removed (SEIR) model:

St+1 = St −Bt+1, E t+1 = E t +Bt+1 −Ct+1, I t+1 = I t +Ct+1 −Dt+1, Rt+1 = Rt +Dt+1.

With conditionally independent, binomially distributed random variables:

Bt+1 ∼Bin(St,1− e−hβ It
nt ), Ct+1 ∼Bin(E t,1− e−hρ), Dt+1 ∼Bin(I t,1− e−hγ), (2.4)

where h > 0 is a time-step size. The observation at time t, say yt, is a binomial under-reporting

of the current number of infective individuals yt ∼ Bin(I t, q) for some reporting rate q ∈ [0,1].

Denote the parameter θ = [β ρ γ q]. If one identifies xt := [St E t I t Rt] for t ≥ 0, then the pair

(xt)t≥0 and (yt)t≥1 defines a hidden Markov model with transition kernel implied by equation

(2.4), emission distribution yt ∼Bin(I t, q), and some initial distribution, say x0 ∼ p0.

Evaluating the likelihood function for such a latent compartmental models requires the

integrating out of all configurations of the population amongst the compartments, in the context

of the simple SEIR example, suppressing dependence on θ:

p(y1:t)=
∑
x0:t

p(x0:t, y1:t)=
∑
x0:t

p0(x0)
t∏

s=1
p(xs|xs−1)p(ys|xs). (2.5)

The cost of this marginalisation explodes as the number of compartments and the population

size grows far beyond those of the SEIR model. Computational advances over the past 25 years

have allowed for the implementation of sophisticated and expensive algorithms, these advances

have prompted the development of a variety of simulation-based inference methods. We now

present some existing methods for approximating intractable marginal likelihoods and discuss

their applications to stochastic compartmental models.

Sequential Monte Carlo

For a thorough introduction to this family of algorithms, see Chopin et al. (2020). For pedagogical

purposes, we will consider sequential Monte Carlo methods in the context of hidden Markov

Models, in particular the SEIR example - though these methods are applicable to a much broader

range of scenarios. The general idea of Monte Carlo methods is to represent and approximate dis-

tributions with a discrete set of points, termed a sample of ‘particles’. The objective of the particle

filter family of sequential Monte Carlo algorithms is to produce finite sample approximations

to sequences of filtering distributions, for example p(St,E t, I t,Rt|y1:t) for t ≥ 1 in the case of the

SEIR model. One may also take as output an approximation to the marginal likelihood (2.5); a

simple bootstrap filter targeting (2.5) is given by algorithm 1.
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Algorithm 1 Bootstrap particle filter for the simple SEIR model
input: Number of particles npart, parameter θ = [β ρ γ q].
initialise: S(i)

0 ← S0, E(i)
0 ← E0, I(i)

0 ← I0, R(i)
0 ← R0 for i = 1, . . . ,npart

1: for t ≥ 1:
2: for i = 1, . . . ,npart:

3: B(i)
t ∼Bin

(
S(i)

t−1,1− e−hβ
I(i)
t−1
nt

)
, C(i)

t ∼Bin
(
E(i)

t−1,1− e−hρ
)
, D(i)

t ∼Bin
(
I(i)

t−1,1− e−hγ
)

4: Set S(i)
t = S(i)

t−1−B(i)
t , E(i)

t = E(i)
t−1+B(i)

t −C(i)
t , I(i)

t = I(i)
t−1+C(i)

t −D(i)
t , R(i)

t = R(i)
t−1+D(i)

t
5: logw(i)

t ← logBin(yt|I(i)
t , q)

6: end for
7: log p̂(yt|y1:t−1,θ)← log

(
1

npart

∑npart
i=1 w(i)

t

)
8: w̄(i)

t ← w(i)
t /

∑npart
j=1 w( j)

t

9: resample
{
S(i)

t ,E(i)
t , I(i)

t ,R(i)
t

}npart

i=1
according to the weights

{
w̄(i)

t

}npart

i=1
10: end for

The output of this algorithm is the approximation:

log p(y1:t|θ)≈
t∑

s=1
log p̂(ys|y1:s−1,θ).

For this simple model one can easily propose new particles from the transition kernel. In

more complicated models using the model transition to propose new particles can lead to poor

performance, such as particle collapse and high variance in the likelihood estimate, in some cases

it may not even be possible. In this case one must choose an importance proposal. Consider a

general hidden Markov model, (xt)t≥0 and (yt)t≥1 , with transition kernel f (xt|xt−1) and emission

g(yt|xt). We would like to approximate:

p(y1:t|θ)=
∫

p(y1:t, x0:t|θ)dx0:t =
∫

p0(x0|θ)
t∏

s=1
p(xs|xs−1,θ)p(ys|xs,θ)dx0:t. (2.6)

A generic simple bootstrap particle filter which yields an approximation to (2.6) is presented

in algorithm 2.

Algorithm 2 Bootstrap particle filter
input: proposal distribution π(·|·), number of particles npart, parameter θ.
initialise: x(i)

0 ← x0 for i = 1, . . . ,npart
1: for t ≥ 1:
2: for i = 1, . . . ,npart:
3: x(i)

t ∼π(·|x(i)
0:t−1, y1:t,θ)

4: logw(i)
t ← log g(yt|x(i)

t ,θ)+ log f (x(i)
t |x(i)

t−1,θ)− logπ(x(i)
t |x(i)

0:t−1, y1:t,θ)
5: end for
6: log p̂(yt|y1:t−1,θ)← log

(
1

npart

∑npart
i=1 w(i)

t

)
7: w̄(i)

t ← w(i)
t /

∑npart
j=1 w( j)

t

8: resample
{

x(i)
t

}npart

i=1
according to the weights

{
w̄(i)

t

}npart

i=1
9: end for
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Again, we make the approximation:

log p(y1:t|θ)≈
t∑

s=1
log p̂(ys|y1:s−1,θ). (2.7)

It is well known that the efficiency of approximation (2.7) is heavily dependent on the choice

of proposal π. For example, if π results in proposals such that g(yt|x(i)
t ,θ)= 0 for all i, then the

algorithm will fail due to particle collapse. The so-called ‘optimal proposal’ which minimises

the variance of the importance weights is given by π(x(i)
t |x(i)

0:t−1, y1:t,θ)= p(x(i)
t |x(i)

t−1, yt,θ) (Doucet

et al., 2000), although this is often inaccessible aside from very convenient cases. Indeed, within

epidemiology, methods for choosing π is an active field of research (Ju et al., 2021; Park and

Ionides, 2020; Rimella et al., 2022). Furthermore, as the dimension of the latent process (xt)t≥0

grows, SMC algorithms suffer from the curse of dimensionality - in particular the bootstrap

algorithm requires that npart scales exponentially with the dimension of (xt)t≥0 (Snyder et al.,

2008). This is a particular issue within epidemiology as it prohibits SMC from scaling up to

perform inference on models with a large number of compartments. Work exists on tackling this

specific issue (Ionides et al., 2022; Park and Ionides, 2020), but do not achieve the same level of

scalability as PAL methods, as demonstrated in the example of section 6.4.

Given access to the output of algorithm 2 one can perform likelihood based inference by

embedding it within, e.g., particle Markov chain Monte Carlo (Andrieu et al., 2010; Fasiolo et al.,

2016) for a Bayesian approach, or an iterated filtering scheme (Ionides et al., 2011) for frequentist

inference.

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) methods encompass a family of algorithms designed

to perform inference on Bayesian models for which the likelihood is inaccessible, but for which

simulation is straight-forward. This poses ABC methods as an attractive candidate to fit easily

simulated mechanistic models such as compartmental models. The general idea is to replace

likelihood evaluation with a direct comparison between observed data and data simulated from

the model, using some distance metric d(·, ·). The simplest instance of such an algorithm is given

by the ABC rejection scheme (Rubin, 1984). Let π(θ) be a prior over the parameters of the SEIR

model, algorithm 3 presents an ABC rejection scheme for this example.

Algorithm 3 ABC rejection sampler.
1: input data y1:t, distance metric d(·, ·), threshold ε.
2: for n ≥ 1:
3: θ∗ ∼π(·)
4: simulate y∗1:t from the SEIR model with parameter θ∗

5: If d(y∗1:t, y1:t)< ε accept θ∗, otherwise reject
6: end for

8



2.2. INFERENCE ALGORITHMS FOR STOCHASTIC COMPARTMENTAL MODELS

Algorithm 3 results in a sample from the distribution π(θ|d(y∗1:t, y1:t)< ε) (Rubin, 1984).

In practice it is advised to replace the direct comparison between observation and simulation

with a comparison between summary statistics, that is in line 5 we replace d(y∗1:t, y1:t) with

d(S(y∗1:t),S(y1:t)) for some summary statistic function S. One intuitive and simple choice of

comparison is the sum-of-squared differences between observed and simulated case counts, i.e.:

d(S(y∗1:t),S(y1:t))=
t∑

s=1
(y∗s − ys)2

An alternative, suggested by (McKinley et al., 2009), is based on a chi-squared goodness-of-fit

criterion which scales the contribution of each time point by the observed data to reflect that the

variation changes as the epidemic progresses.

When the prior distribution is very different from the posterior, algorithm 3 has a high

rejection rate. To tackle this one can embed ABC within an MCMC sampler to explore the space

more efficiently, See algorithm 4.

Algorithm 4 ABC Markov Chain Monte Carlo
1: input data y1:t, distance metric d(·, ·) and summary statistic function S, threshold ε, proposal

distribution q(·|·), initial θ0.
2: for n ≥ 1:
3: θ∗ ∼ q(·|θn−1)
4: Simulate y∗1:t from the SEIR model with parameter θ∗

5: If d
(
S(y∗1:t),S(y1:t)

)< ε:
6: With probability min

{
1, π(θ∗)q(θn−1|θ∗)

π(θn−1)q(θ∗|θn−1)

}
set θn = θ∗

7: Else set θn = θn−1

Algorithm 4 produces a Markov chain with stationary distribution π
(
θ|d (

S(y∗1:t),S(y1:t)
)< ε)

(Marjoram et al., 2003). The efficiency of ABC algorithms rely crucially on appropriate choices of

distance metric and summary statistics which can be a barrier for practitioners, though there is

an extensive literature advising on this issue (Fearnhead and Prangle, 2012; Prangle et al., 2014;

Saulnier et al., 2017).

Data Augmentation Markov Chain Monte Carlo

We now describe the broad framework of data augmentation Markov chain Monte Carlo (DAM-

CMC), we take a general approach since the flavour of epidemiological model it is employed to fit

often deviates somewhat from that of the SEIR model we have considered thus far. Consider a

simple Bayesian model with:

1. prior θ ∼π(·),

2. likelihood y∼ p(·|θ),

9
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and suppose that the likelihood p is intractable so that the posterior π(θ|y) ∝ p(y|θ)π(θ) is

inaccessible. DAMCMC consists of: augmenting the parameter space with some variable, say

φ∼πaug(·|θ), such that one can access p(y|θ,φ); designing an MCMC scheme to target the joint

posterior for (θ,φ); discarding samples for φ and considering only samples from the marginal

posterior for θ. A simple Metropolis Hastings algorithm targeting the posterior for (θ,φ) is

given by algorithm 5, one obtains an approximate sample from the marginal posterior for θ by

discarding samples for φ.

In the context of epidemiological models the case related observation data y is augmented

with, for example, φ representing: infection event times (Walker et al., 2017); epidemic final

severity (Demiris and O’Neill, 2005); a latent compartmental process (Morsomme and Xu, 2022)

i.e. in the context of the SEIR model φ= ([St E t I t Rt])t≥0.

Algorithm 5 Data Augmentation Markov Chain Monte Carlo
input: θ0,φ0

1: for n ≥ 1:
2: θ∗ ∼π(·)
3: φ∗ ∼πaug(·|θ∗)
4: with probability min

{
1, p(y|θ∗,φ∗)

p(y|θn−1,φn−1)

}
set θn = θ∗ and φn =φ∗, else set θn = θn−1 and φn =

φn−1.
5: end for

Data Augmentation methods are limited by computational overheads in their application

to epidemiology. In our context data are naturally temporal; DA methods which sample subject

histories require extensive book-keeping as the number of epidemiological events grow large

and suffer in large population settings (Fintzi et al., 2017). Indeed, these methods can degrade

substantially as the number of individuals grows over a few thousand (Fintzi et al., 2017), this is

magnitudes smaller than the population sizes of the examples we consider in sections 6.3 and 6.4.

Simulation vs PAL Methods

In principle, if one can simulate from the model, say using Gillespie’s algorithm (Gillespie, 1976),

then one may perform inference using one of these algorithms. This has led to these methods

being described as ‘plug-and-play’ and ‘simulation based’. Clearly, this means that this family

of algorithms are more versatile than the PAL methods we introduce, and are not restricted to

the latent compartmental model we introduce in section 3.1.2. Indeed, their application remit

extends far beyond epidemiology - from finance (Jasra and Del Moral, 2011; Jasra et al., 2011), to

ecology (Beaumont, 2010; Fasiolo et al., 2016) , to population genetics (Beaumont et al., 2002).

This flexibility, however comes at a cost both in terms of computational complexity and

difficulty of implementation. In practice, simulation based methods require fine tuning and

careful adaptation to suit a specific target application. The need to choose algorithmic parameters

places a burden on the practitioner on top of the computational costs involved. In contrast, the
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vanilla PAL algorithm introduced in chapter 3 requires no tuning and relies solely on simple linear

algebraic expressions, the computational benefits of the PAL in comparison to SMC methods are

explored in section 6.1.

In chapter 5 we introduce methodology which extends the remit of PALs to models which in-

clude over-dispersion (Bretó and Ionides, 2011). This involves the introduction of latent variables

which we integrate out by embedding PALs within sequential Monte Carlo scheme, introducing

an element of simulation to the algorithm. We demonstrate, however, that the dimension of the

integral being estimated is far smaller than that of the pure SMC alternative. Further to this, we

recommend a choice of proposal which ensures efficient performance in terms of effective sample

size and log-likelihood estimate variance.

Linear Noise Approximation

A functional central limit theorem associated with (2.1) due to Kurtz (1971) gives rise to an SDE

known as the Linear Noise Approximation (LNA), see e.g., (Fearnhead et al., 2014; Komorowski

et al., 2009) for practical details in a range of contexts. The LNA SDE has a multivariate Gaussian

transition density which if combined with a suitable Gaussian observation model allows disease

states to be marginalised out in closed form. The approximate likelihood function which thus

arises may be used for inference directly, or as a surrogate for the exact likelihood function if a

suitable correction can be applied, e.g. using Delayed Acceptance MCMC (Golightly et al., 2015).

The LNA may be described with a similar workflow to the ODE workflow in section 2.1 but

with (xt)t≥0 and (xt)(n)
t≥0 replaced by the solutions of SDE’s arising from the associated function

CLT, and numerical approximations to (xt)(n)
t≥0 replaced by marginalising out. . The LNA involves

computing covariance matrices associated with the set of compartments, and hence the computa-

tional cost of applying the LNA can scale with the third power of the number of compartments in

general. In section 6.1 we make comparisons between the LNA and the proposed PAL methods,

including time comparisons and a qualitative model comparison.

Other varieties of SDE-based approximations to finite-population stochastic compartmental

models have been proposed (Allen, 2017), but their transition probabilities are usually not

available in closed form and generally costly simulation-based methods are relied upon to fit

these models to data (Cauchemez and Ferguson, 2008; Roberts and Stramer, 2001).

2.3 Poisson process approximations

Recursive approximation of filtering distributions using Poisson processes underlies the so-called

Probability Hypothesis Density (PHD) filter of Mahler (2003), subsequently re-derived and

generalised by Caron et al. (2011); Singh et al. (2009). These approximate methods pertain to

models used for tracking targets in discrete-time moving on on a continuous space, as opposed to

‘tracking’ individuals moving through discrete disease states.
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An notable connection here is that a specific, but epidemiologically uninteresting, case of one

model we consider in section 3.2.1 coincides with a discrete-state version of the model considered

in these works and the corresponding special case of our algorithm 6 would coincide with a

discrete-state version of the PHD filter. The incidence data model we define in sections 3.1.3.2

and 3.1.3.3 is however notably different to the model of Mahler (2003); Singh et al. (2009); Caron

et al. (2011), and particularly important for epidemiological data.

Whilst these methods were derived primarily for filtering purposes, parameter estimation

using the PHD filter in spatial multi-target models was suggested by Singh et al. (2011) but

without any rigorous justification. Parameter estimation is further explored by Mahler et al.

(2011), however the focus lies with estimating clutter observation intensities and detection

profiles, rather than parameters of the transition kernel. Such insights are vital in epidemiological

applications since they allow one to make important inferences about transition rates and

facilitate estimation of important epidemiological parameters, such as the reproduction number.

Indeed, across the broad and substantial literature on the Probability Hypothesis Density there

do not appear to be any theoretical results concerning parameter estimation consistency using

the PHD filter. Extending our consistency results to the non-discrete setting of the PHD filter

may be of considerable interest to the engineering community, but is beyond the scope of this

thesis.

Approximate filtering for a limited class of epidemic models using multinomial rather

than Poisson approximations was proposed by Whiteley and Rimella (2021), but without any

consistency theory. In contrast, this thesis considers a far broader class of models and introduces

rigorous justification for the methodology with a novel consistency result.

2.4 Parameter estimation consistency results for compartmental
models

As surveyed above, in recent years much research on inference in compartmental models has fo-

cused on computational issues. The literature on consistency of parameter estimators is generally

older and much more focused on specific instances of compartmental models for which inferential

calculations can be made in closed form.

In the case of a fully-observed, continuous-time Susceptible-Infective-Removed (SIR) model,

i.e. for which all infection and removal times are observed, maximum likelihood estimators of

the infection and removal rate parameters are available in closed form and are consistent with

asymptotically normal estimation error, established in the regime where the population size

tends to infinity using martingale limit theorems, see (Becker, 1993), (Andersson and Britton,

2012, Ch. 9), and references therein. It is very unrealistic to assume that all infection and

removal times are observed. For some restrictive cases of specific partial observations from the

SIR model, such as when only the initial and final state of the population are observed, maximum
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likelihood estimators are available and are consistent (Andersson and Britton, 2012, Ch. 10)

However, perhaps owing to the specificity of the mathematics involved, the range of applications

of martingale methods seems limited (Becker, 1993).

Many stochastic compartmental models of epidemics are transient, in the sense that with

probability one the entire population eventually ends up in one compartment and stays there,

such as the R compartment in SIR and SEIR. For this reason, it seems that the asymptotic regime

of a finite, fixed population size and increasingly long time horizon is not a fruitful regime in which

to study consistency of parameter estimators for many epidemic models. One exceptional non-

transient case, at least in the infinite population setting, is the Susceptible-Infective-Susceptible

model, see (Gourieroux and Jasiak, 2021) for a likelihood-based analysis in the regime where

the time horizon tends to infinity. In this work, the authors establish consistency of transition

rate estimators, but these are associated with a convenient observation model which does not

consider imperfect observations.

It should further be noted that consistent point estimators of specific parameters within

specific models, such as the Malthusian (the initial exponential growth rate in the number of

infected individuals) parameter in an SEIR model (Lindenstrand and Svensson, 2013), or R0 in

an SIR model are available (Britton, 2010), but their derivations seem to be also very tied to the

specifics of these models.

There appears to be a lack of consistency results for likelihood-based estimators for more gen-

eral classes of compartmental models with a, theoretically, unbounded number of compartments.

2.5 Data-driven model selection for compartmental models

In the vast literature of compartmental models applications to real data, the choice of model

specifics, such as deterministic vs stochastic, are almost always determined in a subjective manner,

based on domain expert knowledge and computational convenience (Sun et al., 2015). Since,

in most cases, the true likelihood of stochastic compartmental models is inaccessible, research

has mainly focused on ABC approaches to model selection, usually based on approximating the

Bayes factor (Toni et al., 2009). There are few instances of purely likelihood-based ‘frequentist’

model selection exercises. One example based on an Akaike information criterion (AIC) selection

procedure, which performs a trade-off between model fit and complexity, is given by Stocks

et al. (2020). Another, which assesses fit purely in terms of likelihood value is given by Ionides

et al. (2022). In sections 6.3 and 6.4 we repeat the analyses of Stocks et al. (2020) and Ionides

et al. (2022), respectively, within the PAL framework; in both cases, we report an overwhelming

improvement in AIC and computational efficiency.
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2.6 Motivating PAL methods

In this chapter, we have surveyed and discussed a variety of existing methods for inference in

stochastic epidemic models. It is apparent that there are shortfalls in the currently available

methods and gaps in the theoretical literature. In this thesis we will tackle these issues – in

particular, we will address:

• Computationally efficient and scalable methodology: In chapter 3 we derive the PAL

recursions, demonstrating their dependence on simple linear algebraic expressions. The

computational advantages are explored in chapter 6. This addresses the lack of fast and

efficient algorithms available for inference across the large range of models we consider, as

discussed in section 2.2.

• Consistency theory: in chapter 4 we present the outline of the proof for the consistency

of maximum PAL estimators. This addresses the lack of consistency results for parameter

estimation pertaining to a generalised class of compartmental models of epidemics.

• Practical utility: chapter 6 extensively demonstrates the application of PAL methodology

to real data, with strong results in terms of computation time and model goodness-of-

fit. Furthermore, In sections 6.3 and 6.4 we demonstrate how one can embed models of

increasing complexity within our highly flexible latent compartmental model class. Thus, we

address the lack of computationally convenient likelihood based model selection procedures

for compartmental models.
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DERIVING POISSON APPROXIMATE LIKELIHOODS

This chapter is organised as follows. Section 3.1 introduces the notation and models used through-

out this thesis. In section 3.2 we propose and derive the PAL along with the supporting lemmas

and proofs.

3.1 Models

3.1.1 Notation

The set of natural numbers, including 0, is denoted N0. The set of non-negative real numbers

is denoted R≥0. For an integer m ≥ 1, [m] := {1, . . . ,m}. Matrices and vectors are denoted by bold

upper-case and bold lower-case letters, respectively, e.g., A and b, with non-bold upper-case and

lower case used for their respective elements A(i, j), b(i).

All vectors are column vectors unless stated otherwise. We use 1m to denote the vector of m

1’s and 0m to denote the vector of m 0’s. The indicator function is denoted I[·]. The element-wise

product of matrices and vectors are denoted A⊙B and a⊙b respectively, the element-wise division

of matrices and vectors are denoted A⊘B and a⊘b respectively, the outer product of vectors is

denoted a⊗b. The logarithm logA, factorial A!, and exponential exp(A) are taken element-wise.

For x ∈ Nm
0 we define η(x) = [x(1)/1⊤

mx · · · x(m)/1⊤
mx]⊤ if 1⊤

mx > 0, i.e. η(x) normalises x to yield

a probability vector; and η(x) = 0m if 1⊤
mx = 0. For x ∈ Nm

0 and λ ∈ Rm
≥0 we write x ∼ Pois(λ)

to denote that the elements of x are independent and element x(i) is Poisson distributed with

parameter λ(i). We shall say that such a random vector x has a “vector-Poisson distribution”. For

a probability vector π we write Mult(n,π) for the associated multinomial distribution. Similarly,

for a random matrix X ∈Nm×l
0 and a matrix Λ ∈Rm×l

≥0 , we write X∼Pois(Λ) when the elements of

X are independent with X (i, j) being Poisson distributed with parameter Λ(i, j). We call λ (resp. Λ)
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the intensity vector (resp. matrix). For a length-m vector b with non-negative elements, we call

supp(b) := {i ∈ [m] : b(i) > 0} the support of b. By convention, we take a sum over an empty set to

be equal to 0, i.e. a sum of 0 terms. We write ei for the vector of zeros except for a 1 in the ith

entry.

3.1.2 Latent Compartmental Model

The model we consider is defined by: m, the number of compartments; n the expected initial

population size; P0,n an initial distribution on Nm
0 such that Ex0∼P0,n [1⊤

mx0]= n, e.g., Pois(λ0) for

some λ0 ∈ Rm
≥0 such that 1⊤

mλ0 = n, or Mult(n,π0) for some length-m probability vector π0; a

sequence, {αt}t≥1 with αt ∈Rm
≥0 for all t ≥ 1, of immigration intensity vectors; a sequence, {δt}t≥0

with δt ∈ [0,1]m for all t ≥ 0; and for each t ≥ 0 a mapping from length-m probability vectors to

size-m×m row-stochastic matrices, η 7→Kt,η.

The population at time t ∈N0 is a set of a random number nt of random variables {ξ(1)
t , . . . ,ξ(nt)

t },

each valued in [m]. The counts of individuals in each of the m compartments at time t are collected

in xt = [x(1)
t · · ·x(m)

t ]⊤, where x(i)
t =∑nt

j=1 I[ξ
( j)
t = i]. The population is initialised as a draw x0 ∼P0,n.

The members of the population are exchangeable, labelled by, e.g., a uniformly random assign-

ment of indices {ξ(1)
0 , . . . ,ξ(n0)

0 } subject to x( j)
0 := ∑n0

i=1 I[ξ
(i)
0 = j]. For t ≥ 1, given {ξ(1)

t−1, . . . ,ξ(nt−1)
t−1 },

we obtain nt and {ξ(1)
t , . . . ,ξ(nt)

t } as follows. For i = 1, . . .nt−1, with probability 1−δ(ξ(i)
t−1)

t the indi-

vidual ξ(i)
t−1 emigrates from [m] to a state 0 ∉ [m] from which it does not return. The counts of

remaining individuals are collected in the vector x̄t−1, where x̄( j)
t−1 :=∑nt−1

i=1 I[ξ
(i)
t−1 = j]I[φ(i)

t = 1] and

φ(i)
t ∼Bernoulli(δ

(ξ(i)
t−1)

t ).

For each i such that I[φ(i)
t = 1] = 1, i.e. a remaining individual, ξ(i)

t is then drawn from the

ξ(i)
t−1’th row of Kt,η(x̄t−1) and the resulting counts of individuals in the compartments [m] are

denoted x̃t where x̃( j)
t := ∑nt−1

i=1 I[φ
(i)
t = 1]I[ξ(i)

t = j], if x̄t−1 = 0m then x̃t = 0m. Let Zt be the m×m

matrix with elements Z(i, j)
t :=∑nt−1

k=1 I[ξ
(k)
t−1 = i,ξ(k)

t = j], which counts the individuals transitioning

from compartment i at t−1 to compartment j at time t. New individuals then immigrate into

the compartments [m] according to a vector-Poisson distribution x̂t ∼Pois(αt) and the resulting

combined counts of individuals are xt := x̃t+x̂t with nt := 1⊤
m(x̃t+x̂t). The population {ξ(1)

t , . . . ,ξ(nt)
t }

is then obtained by uniformly random assignment of indices subject to x( j)
t :=∑nt

i=1 I[ξ
(i)
t = j]. Note

that under this model, the processes (xt)t≥0 and (Zt)t≥1 are Markov chains, although we shall not

need explicit expressions for their transition probabilities.

If the matrix Kt,η were to have no dependence on η, then the Latent Compartmental Model

is a discrete-state version of the dynamic spatial Poisson-process model underlying the PHD filter

(Caron et al., 2011; Mahler, 2003; Singh et al., 2009). However, for epidemiological modelling it is

critical that Kt,η does depend on η; for example in the case of SEIR as we shall now state, it is

this dependence which models the mechanism of infection amongst the population.
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SEIR example

As a very simple example of the Latent Compartmental Model consider the SEIR model:

St+1 = St −Bt, E t+1 = E t +Bt −Ct, I t+1 = I t +Ct −Dt, Rt+1 = Rt +Dt.

With conditionally independent, binomially distributed random variables:

Bt ∼Bin(St,1− e−hβ It
nt ), Ct ∼Bin(E t,1− e−hρ), Dt ∼Bin(I t,1− e−hγ),

where h > 0 is a time-step size. With no immigration or emigration, this model is cast as an

instance of the model from section 3.1.2 by taking m = 4, identifying xt ≡ [St E t I t Rt]⊤ and:

Kt,η =


e−hβη(3)

1− e−hβη(3)
0 0

0 e−hρ 1− e−hρ 0

0 0 e−hγ 1− e−hγ

0 0 0 1

 . (3.1)

3.1.3 Observation Models

3.1.3.1 Prevalence data

Epidemiological prevalence data pertain to the overall levels of susceptibility, exposure and

infectivity in the population. In the context of the Latent Compartmental Model, such data are

related to the counts of individuals in each compartment at given points in time, i.e., (xt)t≥1. The

observation at time t ≥ 1 is an m-length vector yt distributed as follows. With a vector qt ∈ [0,1]m,

for each j ∈ [m] each individual in compartment j is independently detected with probability q( j)
t ,

and the counts of detected individuals are collected in a vector ȳt, i.e.,

ȳ(i)
t ∼Bin(x(i)

t , q(i)
t ), i ∈ [m]. (3.2)

With Gt a row-stochastic matrix of size m×m, each individual detected in compartment j is

independently reported in compartment k with probability G( j,k)
t . The counts of these reported

individuals are collected in an m-length vector ỹt. The off-diagonal elements of the matrix Gt can

be interpreted as the probabilities of mis-reporting between compartments. Then the observation

yt is given by:

yt = ỹt + ŷt,

where independently ŷt ∼Pois(κt) for κt ∈Rm
≥0, which can be interpreted as additive error counts.

In epidemiological data usually only individuals associated with some subset of compartments

are detected, and only at certain times. If individuals in say compartment i are not observed at

time t, then for inference we will set y(i)
t = 0 and q(i)

t = 0.

More detailed interpretation of this observation model, in terms of e.g. epidemiological

testing of the population, probability of false positives, etc., will be specific to the context in which

the Latent Compartmental Model is applied. We provide discussion of this point illustrated by

example in section 4.4.
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3.1.3.2 Incidence data

Epidemiological measurements often involve data related to the number of newly infective or

recovered individuals over given time periods – known as incidence data. In order to model such

data, generalised to allow for transitions from any compartment to any compartment, we consider

an observation at time t ≥ 1 which is an m×m matrix Yt. The elements of Yt are conditionally

independent given Zt, and with a matrix Qt ∈ [0,1]m×m,

Y (i, j)
t ∼Bin(Z(i, j)

t ,Q(i, j)
t ), (i, j) ∈ [m]× [m].

Similarly to the case of prevalence data, if Y (i, j)
t are missing, then for inference we set Y (i, j)

t = 0

and Q(i, j)
t = 0. One could extend this model to incorporate mis-reporting and/or additive error

counts in a similar manner to in section 3.1.3.1, but for simplicity of presentation we do not do so.

In the context of the SEIR model, for example, the variable Y (2,3)
t models the number of

individuals which are newly infective at time t, i.e. the count of the number of individuals which

have transitioned E → I from time t−1 to t, subject to random under-reporting parameterised by

Q(i, j)
t .

3.1.3.3 Aggregated incidence data

In some situations it is desirable to model observations as in section 3.1.3.2, but with transitions

of individuals between compartments occurring on a finer time-scale than observations. For

example, consider the SEIR model and suppose each discrete time step corresponds to one week.

Then the model in (3.1) assigns zero probability to a transition S → I in one week: in order to

transition between S → I, an individual must transit S → E and then E → I, but at least two

discrete time steps are needed for that to occur with positive probability. Similarly, transitions

E → R in one week happen with zero probability. To model incidence data as in section 3.1.3.2

but allowing for these sort of multi-step transitions between observation times, we introduce

a sequence of increasing integer observation times (τr)r≥1 ⊂ N0 where τ0 := 0. We then define

Ȳr :=∑τr
t=τr−1+1 Yt, where (Yt)t≥1 are distributed as per section 3.1.3.2. This model coincides with

the model from that section in the case that τk = k, we present these two models separately

in order to help present a step-by-step explanation in section 3.2 of the corresponding filtering

recursions.

In the context of the SEIR model, Ȳ (2,3)
r models the total number of individuals which have

become infective between times τr−1 and τr, subject to random under-reporting. If τr −τr−1 ≥ 2,

this allows for two-step transitions of the form S → E → I or E → I → R to occur with positive

probability between observations times.
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3.2 Filtering recursions and Poisson Approximate Likelihoods

Our next objective is to state and explain the filtering recursions which are used to compute

PALs. In section 3.2.1 we give the filtering recursion and PAL for the Latent Compartmental

Model combined with the prevalence data model from section 3.1.3.1, we refer to this combination

as case (I). In section 3.2.2 we give filtering recursions for a simplified case of the Latent

Compartmental Model in which n0 = n a.s. for n ∈ N, δt = 1m, and αt = 0m for all t, i.e. no

emigration or immigration, combined with the incidence data model from sections 3.1.3.2 and

3.1.3.3. We refer to this as case (II). We discuss the filtering recursions in case (II) with δt = 1m

and αt = 0m only for ease of exposition. By expanding on the derivations we give in the following

sections, the reader could obtain without great difficulty the filtering recursions for case (II) in

the full generality of the Latent Compartmental Model and in section 6.4 we consider an example

involving immigration, emigration and incidence data as an illustration.

Below we state a collection of lemmas which formalise the derivations of the steps in filtering

recursions.

3.2.1 Case (I)

In this case, the observations (yt)t≥1 follow the model from section 3.1.3.1. The pair of processes

(xt)t≥0 and (yt)t≥1 constitutes a hidden Markov model: (xt)t≥0 is a Markov chain, and (yt)t≥1

are conditionally independent given (xt)t≥0 with the conditional distribution of yt given (xt)t≥0

depending only on xt. Therefore the filtering distributions p(xt|y1:t), obey a two-step recursion,

with steps canonically referred to as “prediction” and “update”:

p(xt−1|y1:t−1)
prediction−→ p(xt|y1:t−1)

update−→ p(xt|y1:t),

where, for t ≥ 1,

p(xt|y1:t−1)= ∑
xt−1∈Nm

0

p(xt|xt−1)p(xt−1|y1:t−1), (3.3)

p(xt|y1:t)= p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1)

, (3.4)

p(yt|y1:t−1)= ∑
xt∈Nm

0

p(yt|xt)p(xt|y1:t−1),

and here and below, by convention, conditioning on y1:0 is understood to mean no conditioning,

p(·|y1:0) := p(·). The marginal likelihood of the observations y1, . . . ,yt can be written:

p(y1:t)=
t∏

s=1
p(ys|y1:s−1). (3.5)

The general idea of the PAL is to obtain vector-Poisson distribution approximation to each of the

terms p(y1) and p(yt|y1:t−1), t ≥ 1, computed via vector-Poisson approximations to each of the

filtering distributions p(xt|y1:t−1) and p(xt|y1:t).
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Approximating the prediction step

For time step t = 0 we take a vector-Poisson approximation Pois(λ0) to the initial distribution P0,n

by setting λ0 := Ex0∼P0,n [x0] and λ̄0 :=λ0. For t ≥ 1, suppose we have obtained λ̄t−1 and so defined

a vector-Poisson approximation Pois(λ̄t−1) to p(xt−1|y1:t−1). In order to derive a vector-Poisson

approximation to p(xt|y1:t−1), we need to consider the operation (3.3) in more detail, in accordance

with the definition of the Latent Compartmental Model. We shall not need an explicit formula

for the transition probabilities p(xt|xt−1), but rather work with the intermediate quantities

x̄t−1, x̃t, x̂t introduced in section 3.1.2.

For x̄ ∈Rm and a length-m probability vector η, let Mt(x̄,η, ·) be the probability mass function

of (1⊤
mZ)⊤ where the ith row of Z ∈Nm×m

0 has distribution Mult(x̄(i),K(i,·)
t,η ). Then we have:

p(x̃t|y1:t−1)= ∑
x̄t−1∈Nm

0

p(x̄t−1|y1:t−1)p(x̃t|x̄t−1)

= ∑
x̄t−1∈Nm

0

p(x̄t−1|y1:t−1)Mt(x̄t−1,η(x̄t−1), x̃t), (3.6)

where x̄t−1 is related to xt−1 by x̄(i)
t−1 ∼ Bin(x(i)

t−1,δ(i)
t ). The summation in (3.6) is too expensive

to compute in general. To define an approximation which circumvents this issue, in (3.6) we

replace p(xt−1|y1:t−1) by its approximation Pois(λ̄t−1), and replace η(x̄t−1) by η(E[x̄t−1]) where

this expectation is under x̄t−1 ∼Pois(λ̄t−1 ⊙δt). Lemma 1 explains the rationale for making the

vector-Poisson approximation

p(x̃t|y1:t−1)≈Pois
(
(λ̄t−1 ⊙δt)⊤Kt,η(λ̄t−1⊙δt)

)
.

Lemma 1. Suppose that x∼Pois(λ) for λ ∈Rm
≥0 and x̄(i) ∼Bin(x(i),δ(i)) for δ ∈ [0,1]m. Then

x̄∼Pois(λ⊙δ). Furthermore, if µ(·) is the probability mass function associated with Pois(λ⊙δ)

and Eµ [·] is the expected value under µ, then
∑

x̄∈Nm
0
µ(x̄)Mt(x̄,η(Eµ [x̄]), ·) is the probability mass

function associated with Pois
(
(λ⊙δ)⊤Kt,η(λ⊙δ)

)
.

Proof of Lemma 1 For the first result, consider the probability mass function of x:

p(x)=
m∏

j=1

e−λ
( j)

(λ( j))(x( j))

x( j)!
,

and for 0≤ x̄( j) ≤ x( j) j = 1, . . .m,

p(x̄ | x)=
m∏

j=1

x( j)!
x̄( j)!(x( j) − x̄( j))!

(δ( j))x̄( j)
(1−δ( j))x( j)−x̄( j)

,

So that

p(x, x̄)=
m∏

j=1

e−λ
( j)

(λ( j))x( j)
(δ( j))x̄( j)

(1−δ( j))x( j)−x̄( j)

x̄( j)!(x( j) − x̄( j))!
,
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and

p(x̄)= ∑
x(i)≥x̄(i);i∈[m]

m∏
j=1

e−λ
( j)

(λ( j))x( j)
(δ( j))x̄( j)

(1−δ( j))x( j)−x̄( j)

x̄( j)!(x( j) − x̄( j))!

=
(

m∏
j=1

e−λ
( j)

(δ( j)λ( j))x̄( j)

x̄( j)!

) ∑
x(i)≥x̄(i);i∈[m]

m∏
j=1

(λ( j))(x( j)−x̄( j))(1−δ( j))(x( j)−x̄( j))

(x( j) − x̄( j))!

=
(

m∏
j=1

e−λ
( j)

(δ( j)λ( j))x̄( j)

x̄( j)!

)
eλ

( j)(1−δ( j))

=
m∏

j=1

e−λ
( j)δ( j)

(δ( j)λ( j))x̄( j)

x̄( j)!
,

which is the probability mass function associated with Pois(λ⊙δ).

Now consider x′ ∼ Mt(x̄,η(λ⊙δ), ·) where x̄ ∼ µ, so that
∑

x̄∈Nm
0
µ(x̄)Mt(x̄,η(λ⊙δ), ·) is the

marginal probability mass function of x′. By the definition of Mt, x′ = (1⊤
mZ), where the rows of

Z are conditionally independent given x̄, and the ith row of Z is distributed Mult(x̄(i),K(i,·)
t,η(λ⊙δ)).

Now we can write the moment generating function (m.g.f.) of x′ as:

Mx′(b)= E[
exp

(
1⊤

mZ⊤b
)]

= E
[

exp

(
m∑

i, j=1
Z(i, j)b( j)

)]

= E
[

m∏
j=1

exp

(
m∑

i=1
Z(i, j)b( j)

)]

= E
{

m∏
i=1

E

[
exp

(
m∑

j=1
Z(i, j)b( j)

)∣∣∣∣x̄
]}

.

Now we notice that E
[
exp

(∑m
i=1 Z(i, j)b(i))∣∣∣∣x̄]

is the m.g.f. of Mult(x̄(i),K(i,·)
t,η(λ⊙δ)) so that

Mx′(b)= E
 m∏

i=1

[
m∑

j=1
K (i, j)

t,η(λ⊙δ)e
b(i)

]x̄( j)
= ∑

x̄(1),...,x̄(m)∈Nm
0

m∏
i=1

[
m∑

j=1
K (i, j)

t,η(λ⊙δ)e
b( j)

]x̄(i)

e−λ
(i)δ(i)

(λ(i)δ(i))x̄(i)

x̄(i)!

=
(

m∏
i=1

e−λ
(i)δ(i)

) ∑
x̄(1),...,x̄(m)∈Nm

0

m∏
i=1

1
x̄(i)!

[
m∑

j=1
λ(i)δ(i)K (i, j)

t,η(λ⊙δ)e
b( j)

]x̄(i)

=
m∏

i=1
exp

(
−λ(i)δ(i) +

m∑
j=1

λ(i)δ(i)K (i, j)
t,η(λ⊙δ)e

b( j)

)

= exp

{
m∑

i=1

(
−λ(i)δi)

m∑
j=1

K (i, j)
t,η(λ⊙δ) +

m∑
j=1

λ(i)δ(i)K (i, j)
t,η(λ⊙δ)e

b(i)

)}

=
m∏

j=1
exp

{(
(λ⊙δ)⊤K(·, j)

t,η(λ⊙δ)

)(
eb( j) −1

)}
.
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We recognise this is the moment generating function of a Pois
(
(λ⊙δ)⊤Kt,η(λ⊙δ)

)
random vector.

■

As per the definition of the Latent Compartmental Model, xt is obtained by summing x̃t with

x̂t where x̂t ∼Pois(αt). Since the sum of independent Poisson random variables is also Poisson

with intensity given by the sum of the intensities, we then take the approximation

p(xt|y1:t−1)≈Pois(λt), with λt := (λ̄t−1 ⊙δt)⊤Kt,η(λ̄t−1⊙δt) +αt.

Approximating the update step

In order to obtain a vector-Poisson approximation to p(xt|y1:t) we substitute Pois(λt) in place of

p(xt|y1:t−1) in (3.4), which can be viewed as an application of Bayes’ rule, and we shall define λ̄t

to be the mean vector of the resulting distribution. Lemma 2 can be applied to calculate λ̄t in

accordance with this recipe, leading us to:

p(xt|y1:t)≈Pois(λ̄t), λ̄t := [1m −qt + ({y⊤
t ⊘ [(qt ⊙λt)⊤Gt +κ⊤

t ]}[(1m ⊗qt)⊙G⊤
t ])⊤]⊙λt,

Lemma 2 also tells us how to obtain a vector-Poisson approximation to p(yt|y1:t−1).

Lemma 2. Suppose that x ∼ Pois(λ) for given λ ∈ Rm
≥0 and let ȳ be a vector with conditionally

independent elements distributed ȳ(i) ∼Bin(x(i), q(i)) for given q ∈ [0,1]m. For G a row-stochastic

m× m matrix and M an m× m matrix with rows distributed M(i,·) ∼ Mult( ȳ(i),G(i,·)), let ỹ :=∑m
i=1 M(i,·) and y := ỹ+ ŷ where ŷ∼Pois(κ) for a given κ ∈Rm

≥0. Then:

E
[
x|y]= [1m −q+ ({y⊤⊘ [(q⊙λ)⊤G+κ⊤]}[(1m ⊗q)⊙G⊤])⊤]⊙λ. (3.7)

and y∼Pois([(λ⊙q)⊤G]⊤+κ), i.e.,

log p(y)=−[(λt ⊙q)⊤G+κ⊤]1m +y⊤ log([(λ⊙q)⊤G]⊤+κ)−1⊤
m log(y!),

with the convention 0log0 := 0.

Proof of Lemma 2 We have ȳ ∼ Pois(λ⊙q) by the same reasoning as lemma 1. By definition

ŷ= 1⊤
mM, hence the moment generating function of ŷ is:

Mŷ(b)= E[
exp

(
1⊤

mM⊤b
)]

= E
{

m∏
i=1

E

[
exp

(
m∑

j=1
M(i, j)b( j)

)∣∣∣∣ȳ
]}

= E
 m∏

i=1

[
m∑

j=1
G(i, j)eb(i)

] ȳ( j)
= ∑

x̄(1),...,x̄(m)∈Nm
0

m∏
i=1

[
m∑

j=1
G(i, j)eb( j)

]x̄(i)

e−λ
(i)q(i)

(λ(i)q(i))x̄(i)

x̄(i)!

=
m∏

j=1
exp

{(
(λ⊙q)⊤G(·, j)

)(
eb( j) −1

)}
.

22



3.2. FILTERING RECURSIONS AND POISSON APPROXIMATE LIKELIHOODS

Which we recognise as the moment generating function of the Pois((λ⊙q)⊤G), the first result of

the lemma then follows from applying element-wise the fact that the intensity of the sum of two

independent Poisson random variables is the sum of the intensities.

We start the proof of (3.7) by considering the decomposition of x into the sum of random

variables ȳ and x̆ where x̆= x− ȳ. Then, ȳ and x̆ are independent Poisson with intensity vectors

q⊙λ and (1m −q)⊙λ respectively, see Kingman (1992)[Sec. 1.2]. Since x̆ is independent of y, we

have that:

E
[
x | y]= [

1m −q
]⊙λ+E[

ȳ | y]
. (3.8)

So, we need to characterise the distribution of ȳ given y. Construct the random variable Ξ ∈
N

(m+1)×m
0 such that for i, j ∈ [m],Ξ(i, j) = M(i, j) and row m+1 ofΞ are the counts ŷ∼Pois(κ). By this

construction,
∑m

j=1Ξ
(i, j) = ȳ(i) for i = 1, . . . ,m and

∑m+1
i=1 Ξ

(i, j) = y( j) for j = 1, . . . ,m. Furthermore,

the elements of Ξ are independently Poisson, see Kingman (1992)[Sec. 1.2], with intensity matrix

Λ ∈R(m+1)×m defined as follows:

Λ(i, j) =λ(i)q(i)G(i, j) fori = 1, . . .m, j = 1, . . .m

Λ(m+1, j) = κ( j) for j = 1, . . .m.

If, for some j,k ∈ [m],
∑m+1

i=1 Λ
(i, j) = 0, then we must have that Λ(i, j) = 0 for all i = 1, . . . ,m+1 so

that Ξ(i, j) = 0 a.s.. Otherwise we have that for i = 1, . . . ,m+1 and j ∈ [m], Ξ(i, j) conditioned on∑m+1
k=1 Ξ

(k, j) = y( j) is distributed

Bin

(
y( j),

Λ(i, j)∑m+1
k=1 Λ

(k, j)

)
.

Hence, given y, ȳ(i) has a Poisson-Binomial distribution with mean:

E
[

ȳ(i) | y
]
= E

[
m∑

j=1
Ξ(i, j) | y

]
=

m∑
j=1

y( j) λ(i)q(i)G(i, j)∑m+1
k=1 λ

(k)q(k)G(k, j) +κ( j)
, (3.9)

for i = 1, . . . ,m, where we set the jth term of the outer sum on the r.h.s to 0 if
∑m+1

k=1 λ
(k)q(k)G(k, j) +κ( j) =

0 since that achieves

E
[
Ξ(i, j) | y

]
= 0.

Writing (3.9) in vector form and substituting into (3.8) completes the proof.

■

Computing the PAL

Gathering together the approximations discussed above we arrive at the following algorithm.
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Algorithm 6 Filtering for case (I)

initialise: λ̄0 ←λ0
1: for t ≥ 1:
2: λt ← [(λ̄t−1 ⊙δt)⊤Kt,η(λ̄t−1⊙δt)]

⊤+αt

3: λ̄t ← [1m −qt + ({y⊤
t ⊘ [(qt ⊙λt)⊤Gt +κ⊤

t ]}[(1m ⊗qt)⊙G⊤
t ])⊤]⊙λt

4: µt ← [(λt ⊙qt)⊤Gt]⊤+κt
5: ℓ(yt|y1:t−1)←−µ⊤

t 1m +y⊤
t log(µt)−1⊤

m log(yt!)
6: end for

If, at line 3 of algorithm 6, we encounter 0/0 in performing the element-wise division operation we

set the vector element in question to 0, which is in accordance with p(xt|y1:t)≈Pois(λ̄t). At line 5

of algorithm 6 we apply the convention 0log0 := 0, in accordance with p(yt|y1:t−1)≈Pois(µt).

Mimicking (3.5), the log PAL associated with algorithm 6 is:

log p(y1:t)≈
t∑

s=1
ℓ(ys|y1:s−1), (3.10)

It is important to note that the term 1⊤
m log(yt!) in ℓ(yt|y1:t−1) calculated in algorithm 6 has

no dependence on the ingredients of the model, i.e., Kt,η, κt, etc. and so in practice if one is

computing the PAL in order to maximise it with respect to parameters of the model, or evaluate

PAL ratios for different parameter values, the term 1⊤
m log(yt!) never needs to be computed.

3.2.2 Case (II)

In this case we consider the Latent Compartmental Model with n0 = n with probability 1, δt = 1m

and αt = 0m for all t, i.e. no emigration or immigration, and with the observations (Ȳr)r≥1

following the model from section 3.1.3.3. For ease of exposition we start with the special case

that (τr)r≥1 =N, in which case (Ȳr)r≥1 ≡ (Yt)t≥1 and the model from section 3.1.3.3 reduces to that

from section 3.1.3.2.

To derive the filtering recursions we follow a similar programme to case (I), starting from

the fact that the pair of processes (Zt)t≥1 and (Yt)t≥1 constitutes a hidden Markov model, and

approximating the following prediction and update operations:

p(Zt−1|Y1:t−1)
prediction−→ p(Zt|Y1:t−1)

update−→ p(Zt|Y1:t).

Approximating the prediction step when (τr)r≥1 =N

For Z ∈Nm×m
0 and a length-m probability vector η, let M̄t(Z,η, ·) be the probability mass function

of a random m×m matrix, say Z̃, such that 1⊤
mZ = (Z̃1m)⊤ with probability 1 and such that

given the row sums Z̃1m = x, the rows of Z̃ are conditionally independent with the conditional

distribution of the ith row being Mult(x(i),K(i,·)
t,η ). By construction M̄t(Zt−1,η(1⊤

mZt−1),Zt) is equal
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to p(Zt|Zt−1) for case (II), hence

p(Zt|Y1:t−1)= ∑
Zt−1∈Nm×m

0

p(Zt−1|Y1:t−1)p(Zt|Zt−1)

= ∑
Zt−1∈Nm×m

0

p(Zt−1|Y1:t−1)Mt(Zt−1,η(1⊤
mZt−1),Zt). (3.11)

Assuming we have already computed Λ̄t−1 such that p(Zt−1|Y1:t−1) ≈ Pois(Λ̄t−1), we substitute

this approximation in to (3.11) and replace η(1⊤
mZt−1) by η(E[1⊤

mZt−1]) where this expectation is

under Zt−1 ∼Pois(Λ̄t−1). Lemma 3 explains the rationale for then making the approximation:

p(Zt|Y1:t−1)≈Pois(Λt), Λt := (λ̄t−1 ⊗1m)⊙Kt,η(λ̄t−1), λ̄
⊤
t−1 := 1⊤

mΛ̄t−1.

Lemma 3. If for a given m×m matrixΛ, µ̄ is the probability mass function associated with Pois(Λ)

and Eµ̄[1⊤
mZ] is the expected value of 1⊤

mZ where Z∼ µ̄, then
∑

Z∈Nm×m
0

µ̄(Z)M̄t(Z,η(Eµ̄[1⊤
mZ]), ·) is the

probability mass function associated with Pois((λ⊗1m)⊙Kt,η(λ)), where λ⊤ := 1⊤
mΛ.

Proof of Lemma 3 Note η(Eµ̄[1⊤
mZ])=η(1⊤

mΛ)=η(λ⊤). Let Z̃∼ M̄t(Z,η(λ), ·), then the moment

generating function for Z̃ is:

E
[
exp(1⊤

m(Z̃⊙B)1m)
]= E[

m∏
i=1

exp

(
m∑

j=1
Z̃(i, j)b(i, j)

)]

= E
[
E

[
m∏

i=1
exp

(
m∑

j=1
Z̃(i, j)b(i, j)

)∣∣∣Z]]

= E
[

m∏
i=1

E

[
exp

(
m∑

j=1
Z̃(i, j)b(i, j)

)∣∣∣x(i)

]]

= E
 m∏

i=1

(
m∑

j=1
K (i, j)

t,η(λ)e
b(i, j)

)x(i)
=

(
m∏

i=1
e−λ

(i)

) ∑
(x(1),...,x(m))∈N0

(
m∑

j=1
K (i, j)

t,η(λ)e
b(i, j)

λ(i)

)x(i)

1
x(i)!

=
m∏

i=1
exp{−λ(i)

m∑
j=1

K (i, j)
t,η(λ)(1− eb(i, j)

)}

=
m∏

i, j=1
exp{−λ(i)K (i, j)

t,η(λ)(1− eb(i, j)
)},

which we recognise as the moment generating function of a Pois((λ⊗1m)⊙Kt,η(λ)) random matrix.

■

Approximating the update step when (τr)r≥1 =N

We now apply Bayes’ rule to Pois(Λt) and shall define Λ̄t to be the mean vector of the resulting

distribution. Lemma 4 shows how to do this, leading to:

p(Zt|Y1:t)≈Pois(Λ̄t), Λ̄t :=Yt +Λt ⊙ (1m ⊗1m −Qt),
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Lemma 4. Suppose that Z∼Pois(Λ) for some Λ ∈Rm×m
≥0 , and that for some Q ∈Rm×m

≥0 , given Z, Y
is a matrix with conditionally independent entries distributed: y(i, j) ∼Bin(Z(i, j), q(i, j)), then the

conditional distribution of Z given Y is that of Y+Z∗ where:

Z∗ ∼Pois(Λ⊙ (1m ⊗1m −Q)) ,

i.e.,

E[Z|Y]=Y+Λ⊙ (1m ⊗1m −Q),

and Y∼Pois(Λ⊙Q), i.e,

log p(Y)= 1⊤
m(Λ⊙Q)1m +1⊤

m[Y⊙ log(Λ⊙Q)]1m −1⊤
m log(Y!)1m,

with the convention 0log0 := 0.

Proof of Lemma 4 We have:

p(Z)=
m∏

i, j=1

e−Λ
(i, j)

(Λ(i, j))Z(i, j)

Z(i, j)!
,

furthermore:

p(Y|Z)=
m∏

i, j=1

Z(i, j)!
Y (i, j)!(Z(i, j) −Y (i, j))!

Q(i, j)Y
(i, j)

(1−Q(i, j))Z(i, j)−Y (i, j)
.

So that:

p(Z,Y)=
m∏

i, j=1

Q(i, j)Y
(i, j)

(1−Q(i, j))Z(i, j)−Y (i, j)
e−Λ

(i, j)
(Λ(i, j))Z(i, j)

Y (i, j)!(Z(i, j) −Y (i, j))!
,

and

p(Y)= ∑
{Z(i, j):Z(i, j)≥Y (i, j)}

m∏
i, j=1

Q(i, j)Y
(i, j)

(1−Q(i, j))Z(i, j)−Y (i, j)
e−Λ

(i, j)
(Λ(i, j))Z(i, j)

Y (i, j)!(Z(i, j) −Y (i, j))!

=
m∏

i, j=1

e−Λ
(i, j)

(Q(i, j)Λ(i, j))Y (i, j)

Y (i, j)!

∑
Z(i, j)−Y (i, j)≥0

(Λ(i, j)(1−Q(i, j)))Z(i, j)−Y (i, j)

(Z(i, j) −Y (i, j))!

=
m∏

i, j=1

e−Λ
(i, j)

(Q(i, j)Λ(i, j))Y (i, j)

Y (i, j)!
eΛ

(i, j)(1−Q(i, j))

=
m∏

i, j=1

e−Λ
(i, j)Q(i, j)

(Q(i, j)Λ(i, j))Y (i, j)

Y (i, j)!
.

Dividing p(Z,Y) by p(Y) gives:

p(Z |Y)=
m∏

i, j=1

e−Λ
(i, j)(1−Q(i, j))

(Z(i, j) −Y (i, j))!
(Λ(i, j)(1−Q(i, j)))Z(i, j)−Y (i, j)

.

Giving the desired probability mass function of Y+Z∗. ■
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Computing the PAL when (τr)r≥1 =N

Combining the above prediction and update approximations we arrive at algorithm 7.

Algorithm 7 Filtering for case (II) when (τr)r≥1 =N
initialise: λ̄0 ←λ0

1: for t ≥ 1:
2: Λt ← (λ̄t ⊗1m)⊙Kt,η(λ̄t)
3: Λ̄t ←Yt + (1m ⊗1m −Qt)⊙Λt
4: L (Yt|Y1:t−1)←−1⊤

m(Λt ⊙Qt)1m +1⊤
m[Yt ⊙ log(Λt ⊙Qt)]1m −1⊤

m log(Yt!)1m
5: λ̄t ← (1⊤

mΛ̄t)⊤

6: end for

In algorithm 7 we adopt the same convention 0log0 := 0 as in algorithm 6. The log PAL associated

with algorithm 7 is:

log p(Y1:t)≈
t∑

s=1
L (Ys|Y1:s−1).

We now consider general (τr)r≥1. The filtering recursion is:

p(Zτr−1 |Ȳ1:r−1)
prediction−→ p(Zτr−1+1|Ȳ1:r−1)

prediction−→ . . .
prediction−→ p(Zτr |Ȳ1:r−1)

update−→ p(Zτr |Ȳ1:r).
(3.12)

Approximating the prediction and update steps for general (τr)r≥1

Assuming that we are given Λτr−1 such that p(Zτr−1 |Ȳ1:r−1) ≈ Pois(Λτr−1), each of the prediction

steps in (3.12) is approximated by applying lemma 3, leading to lines 2-6 of algorithm 8. To

approximate the update step, applying lemma 5 leads to lines 7-10 of algorithm 8.

Lemma 5. For λ0 ∈Rm
≥0 and τ ∈N, define:

Λt := (λt−1 ⊗1m)⊙Kt,η(λt−1), λt := (1⊤
mΛt)⊤, t = 1, . . . ,τ,

and let (Zt)τt=1 be independent with Zt ∼ Pois(Λt). Suppose that given Zt, Yt is a matrix with

conditionally independent entries distributed Y (i, j)
t ∼Bin(Z(i, j)

t ,Q(i, j)), and let Ȳ :=∑τ
s=1 Ys. Then:

E
[
Zτ|Ȳ

]= (1m ⊗1m −Qτ)⊙Λt + Ȳ⊙Λτ⊙Qτ⊘
(
τ∑

t=1
Λt ⊙Qt

)
,

and Ȳ∼Pois(
∑τ

t=1Λt ⊙Qt), i.e.,

log p(Ȳ)= 1⊤
mM1m +1⊤

m(Ȳ⊙ logM)1m −1⊤
m log(Ȳ!)1m,

where M :=∑τ
t=1Λt ⊙Qt and by convention 0log0 := 0.
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Proof of Lemma 5 By lemma 4 we have that for each t = 1, . . . ,τ, Yt ∼Pois(Λt ⊙Qt) and:

E [Zτ |Yτ]= (1m ⊗1m −Qτ)⊙Λτ+Yτ.

Since Ȳ (i, j) is the sum of independent Poisson random variables Y (i, j)
t , we have Y∼Pois(

∑τ
t=1Λt⊙

Qt) and given Ȳ (i, j), Y (i, j)
τ is distributed Bin(Ȳ (i, j),Λ(i, j)

τ Q(i, j)
t /

∑τ
t=1Λ

(i, j)
t Q(i, j)

t ). Hence by the tower

law:

E [Zτ |Y]= E [E [Zτ |Yτ] |Y]

= (1m ⊗1m −Qt)⊙Λτ+E [Yτ |Y]

= (1m ⊗1m −Qt)⊙Λτ+ Ȳ⊙Λτ⊙Qτ⊘
(
τ∑

t=1
Λt ⊙Qt

)
,

in the case that all elements of
∑τ

t=1Λt ⊙Qt are strictly positive. Otherwise we have E[Z(i, j)
τ |

Y]= (1−Q(i, j)
t )Λ(i, j)

τ for any (i, j) such that
[∑τ

t=1Λt ⊙Qt
](i, j) = 0, since the latter equality implies

[Λτ⊙Qτ](i, j) = 0, which in turn implies Y (i, j)
τ = 0 almost surely.

■

Computing the PAL for general (τr)r≥1

Algorithm 8 Filtering for case (II) with general (τr)r≥1

initialise: λ̄0 ←λ0.
1: for r ≥ 1:
2: for t = τr−1 +1, . . . ,τr −1:
3: Λt ← (λ̄t−1 ⊗1m)⊙Kt,η(λ̄t−1)
4: λ̄t ← (1⊤

mΛt)⊤

5: end for
6: Λτr ← (λτr−1 ⊗1m)⊙Kτr ,η(λτr−1)
7: Mr ←∑τr

t=τr−1+1Λt ⊙Qt

8: Λ̄τr ← (1m ⊗1m −Qτr )⊙Λτr + Ȳr ⊙Λτr ⊙Qτr ⊘Mr
9: L (Ȳr|Ȳ1:r−1)←−1⊤

mMr1m +1⊤
m(Ȳr ⊙ logMr)1m −1⊤

m log(Ȳr!)1m
10: λ̄τr ← (1⊤

mΛ̄τr )
⊤

11: end for

In algorithm 8 we adopt the same conventions concerning 0/0 and 0log0 := 0 as in algorithm 6.

The log PAL associated with algorithm 8 is:

log p(Ȳ1:r)≈
r∑

s=1
L (Ȳs|Ȳ1:s−1), (3.13)

where, as per line of 9 of algorithm 8, each term L (Ȳr|Ȳ1:r−1) is the log probability mass function

of Pois(Mr) evaluated at Ȳr.
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CONSISTENCY THEORY

Whilst the results in section 3.2 explain how the steps in algorithms 6-8 and the associated PALs

are motivated by recursive vector-Poisson approximations, so far nothing we have stated quanti-

fies the quality of these approximations, nor the PALs. In this chapter we present consistency

results for parameter estimators defined by maximising PALs, it is organised as follows. Section

4.1 introduces further notation and definitions necessary for our consistency proofs. Section

4.2 states our assumptions. Section 4.3 outlines the consistency result; the full argument and

associated proofs are arduous and repetitive, hence they are presented in appendix A. Section 4.4

presents a simulated example to empirically illustrate the theoretical results.

4.1 Notation and definitions for the consistency results

We now introduce explicit notation for dependence of various quantities on a parameter vector

θ; we allow P0,n,Kt,η,qt,Qt,Gt,δt to depend on θ, and reflect this throughout section 4.3 with

notation Pθ0,n,Kt,η(θ),qt(θ),Qt(θ),Gt(θ),δt(θ). We allow κt and αt to depend on θ, as well as the

expected initial population size n, with notation κt,n(θ) and αt,n(θ). We also need to make explicit

the dependence on n and θ of the quantities computed in algorithms 6 and 8; we write these as:

λt,n(θ), λ̄t,n(θ),µt,n(θ); and Λt,n(θ), Λ̄t,n(θ), Mr,n(θ).

In either case (I) or (II), one can think of the expected initial population size n as a global

model index. We write (Ωn,Fn,Pθn) for a probability space underlying each of these cases with

expected initial population size n; in the context of case (I), Pθn is the joint distribution of

(xt)t≥0 and (yt)t≥1 (as formulated in section 3.1) whilst in the context of case (II), Pθn is the joint

distribution of (Zt)t≥1 and (Ȳr)r≥1. In either case the overall probability space we shall work with

is (Ω,F ,Pθ) := (
∏

n≥1Ωn,
⊗

n≥1 Fn,
⊗

n≥1P
θ
n). From henceforth we denote by θ∗ ∈Θ an arbitrarily
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chosen but then fixed data-generating parameter (DGP). Almost sure convergence under Pθ
∗

is

denoted θ∗
−→
a.s.

.

We now fix a time horizon T ≥ 1 where for case (I), T is any positive integer, whilst for case

(II), we assume T = τR for some R ≥ 1. Since this time horizon is fixed, it will not appear explicitly

in some of the notation for our consistency results. However, in order to state and prove various

results, we need to make the dependence on θ and n of the PALs computed using algorithms 6

and 8 explicit. To do so we define

ℓn(θ) :=
T∑

t=1
ℓ(yt|y1:t−1), Ln(θ) :=

R∑
r=1

L (Ȳr|Ȳ1:r−1),

where it is to be understood that each of the terms ℓ(yt|y1:t−1) and L (Ȳr|Ȳ1:r−1) are computed

using respectively algorithms 6 and 8 with parameter value θ and expected initial population

size n, and where the distribution of the random variables y1:T and Ȳ1:R is specified by the DGP

θ∗ and the expected initial population size n. The fact that ℓn(θ) and Ln(θ) are functions of

respectively y1:T and Ȳ1:R is not shown in the notation.

4.2 Assumptions

Assumption 1. The parameter space Θ⊂Rd is compact.

Assumption 2. For all probability vectors η, t ≥ 1, and n ≥ 1, Kt,η(θ),qt(θ),Qt(θ), Gt(θ), δt(θ),

κt,n(θ) and αt,n(θ) are continuous functions of θ, and the supports of these vectors and the supports

of each matrix row do not depend on θ or n. For all θ ∈Θ and t ≥ 1, supp(δt(θ))= [m], i.e. δt(θ) has

no entries equal to 0. Furthermore, there exist continuous functions of θ mapping Θ→Rm
≥0, κt,∞(θ)

and αt,∞(θ), such that supp(κt,∞(θ))= supp(κt,n(θ)) and supp(αt,∞(θ))= supp(αt,n(θ)) for all n,

and for each θ ∈Θ there exist a1 > 0, a2 > 0, γ1 > 0, and γ2 > 0 such that:

∥n−1κt,n(θ)−κt,∞(θ)∥∞ < a1n−( 1
4+γ1),

∥n−1αt,n(θ)−αt,∞(θ)∥∞ < a2n−( 1
4+γ2).

Assumption 3. For all θ ∈ Θ, there exists a constant c > 0 such that for all t ≥ 1, all vectors

f 1, f 2 ∈Rm, and all probability vectors η,η′:

|f ⊤
1 Kt,η(θ)f 2 − f ⊤

1 Kt,η′(θ)f 2| ≤ c∥f 1∥∞∥f 2∥∞∥η−η′∥∞.

Furthermore, if supp(η)⊆ supp(η′) then supp(Ki,·
t,η(θ))⊆ supp(Ki,·

t,η′(θ)) for all i ∈ [m].

Assumption 4. Let θ ∈ Θ, n ∈ N, and x0 ∼ Pθ0,n. There exists λ0,∞(θ) which is a continuous

mapping Θ→Rm
≥0 such that the support of λ0,∞(θ), which is not the empty set, does not depend on

θ, and there exists γ0 > 0 such that for any f ∈Rm there exists a c0 > 0 such that:

E
[∣∣n−1 f ⊤x0 − f ⊤λ0,∞(θ)

∣∣4] 1
4 < c0n−( 1

4+γ0).
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Furthermore, there exists some c > 0 and γ> 0 such that:

∥n−1λ0,n(θ)−λ0,∞(θ)∥∞ < cn−( 1
4+γ),

and supp(λ0,n(θ))= supp(λ0,∞(θ)) for all θ ∈Θ and n ∈N.

The compactness of Θ in assumption 1 and the continuity in θ of various quantities in

assumption 2 are fairly standard assumptions in proofs of consistency of maximum likelihood

estimators. The conditions on the supports of various vectors in assumptions 2-4 are used to rule

out the possibility that different parameter values may induce mutually singular distributions

over observations, this helps us ensure well-defined contrast functions in our consistency proofs.

Assumption 4 asserts that the scaled initial population configuration, n−1x0, obeys a law of large

numbers.

4.3 Main consistency theorem and outline of the proof

In order to state and explain our main consistency result, theorem 1, we now summarise some

intermediate results concerning the asymptotic behaviour of the models and quantities calculated

using algorithms 6 and 8. Precise statements and proofs of these intermediate results are in

appendix A.

Laws of large numbers. The first step is to establish laws of large numbers for the Latent

Compartmental Model, and hence for the observations, these results are stated and proved in

section A.1. In case (I) we show that for certain deterministic vectors νt(θ∗), t ≥ 1,

1
n

xt
θ∗
−→
a.s.

νt(θ∗),
1
n

yt
θ∗
−→
a.s.

[(νt(θ∗)⊙qt(θ∗))⊤Gt(θ∗)]⊤+κt,∞(θ∗), (4.1)

and in case (II), for certain deterministic matrices Nt(θ∗), t ≥ 1,

1
n

Zt
θ∗
−→
a.s.

Nt(θ∗),
1
n

Ȳr
θ∗
−→
a.s.

τr∑
t=τr−1+1

Nt(θ∗)⊙Qt(θ∗). (4.2)

The vectors νt(θ∗) and matrices Nt(θ∗) satisfy recursive (in time) formulae and the convergence

of 1
n xt and 1

n Zt as n →∞ is a discrete time analogue of the convergence of the continuous time,

stochastic model to the solution of the ODE in (2.1), i.e. a discrete-time counterpart of the results

of (Kurtz, 1970).

Filtering intensity limits and asymptotic filtering accuracy. Making use of the laws of

large numbers for the observations, the next step is to establish convergence to deterministic

limits of intensity vectors and matrices computed using respectively algorithms 6 and 8 and

which thus define the PALs (3.10) and (3.13). This is the subject of section A.2. In case (I) we find
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deterministic vectors λt,∞(θ∗,θ) and µt,∞(θ∗,θ), t ≥ 1, θ ∈Θ, where µt,∞(θ∗,θ) is a function of

λt,∞(θ∗,θ), such that:

1
n
λt,n(θ) θ∗

−→
a.s.

λt,∞(θ∗,θ),
1
n
µt,n(θ) θ∗

−→
a.s.

µt,∞(θ∗,θ).

In case (II) we find deterministic matrices Λt,∞(θ∗,θ) and Mr,∞(θ∗,θ), t ≥ 1, r ≥ 1, θ ∈Θ, where

Mr,∞(θ∗,θ) is a function of Λt,∞(θ∗,θ) for t = τr−1 +1, . . . ,τr, such that:

1
n
Λt,n(θ) θ∗

−→
a.s.
Λt,∞(θ∗,θ),

1
n

Mr,n(θ) θ∗
−→
a.s.

Mr,∞(θ∗,θ).

A notable fact about the limiting filtering intensities λt,∞(θ∗,θ) and Λt,∞(θ∗,θ) that we uncover

(see remarks 1 and 2 in section A.2) is that:

λt,∞(θ∗,θ∗)=νt(θ∗), Λt,∞(θ∗,θ∗)=Nt(θ∗),

where νt(θ∗) and Nt(θ∗) are as in (4.1) and (4.2). In this sense, running algorithms 6 and 8

with the model specified by the DGP θ← θ∗ is asymptotically accurate as n →∞, in spite of the

recursive Poisson approximations involved in these procedures.

Contrast functions. We then construct contrast functions associated with the PALs. This is

the subject of section A.3. The contrast functions turn out to be in the form of Kullback-Liebler

divergences. In case (I),

1
n
ℓn(θ)− 1

n
ℓn(θ∗) θ∗

−→
a.s.

−
T∑

t=1
KL

(
Pois[µt,∞(θ∗,θ∗)]∥Pois[µt,∞(θ∗,θ)]

)
,

and in case (II),

1
n

Ln(θ)− 1
n

Ln(θ∗) θ∗
−→
a.s.

−
R∑

r=1
KL

(
Pois[Mr,∞(θ∗,θ∗)]∥Pois[Mr,∞(θ∗,θ)]

)
,

where in each case the convergence is established to be uniform in θ.

Convergence of the maximum PAL estimators. With:

Θ∗
(I) := {θ ∈Θ :µt,∞(θ∗,θ)=µt,∞(θ∗,θ∗) for all t = 1, . . .T},

Θ∗
(I I) := {θ ∈Θ : Mr,∞(θ∗,θ)=Mr,∞(θ∗,θ∗) for all r = 1, . . .R},

uniform convergence to the contrast functions as well as standard continuity and compactness

arguments are used to complete the proof of our main consistency result:

Theorem 1. Let assumptions 1-4 hold and let θ̂n be a maximiser of ℓn(θ) (resp. Ln(θ)). Then θ̂n

converges to Θ∗
(I) (resp. Θ∗

(I I)) as n →∞, Pθ
∗
-almost surely.

The proof is in section A.4.
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Identifiability. We now provide some further insight into the sets Θ∗
(I) and Θ∗

(I I) in order to

explain in what sense the model is identified under theorem 1. In section A.5 we show that for

any θ ∈Θ,

θ ∈Θ∗
(I) ⇐⇒ µt,∞(θ,θ)=µt,∞(θ∗,θ∗), ∀t = 1, . . . ,T,

θ ∈Θ∗
(I I) ⇐⇒ Mr,∞(θ,θ)=Mr,∞(θ∗,θ∗), ∀r = 1, . . . ,R.

The vector µt,∞(θ∗,θ∗) turns out (see remark 1) to be equal to the r.h.s. of the second Pθ
∗
-almost

sure limit in (4.1). Thus for case (I), the convergence to Θ∗
(I) in theorem 1 tells us that as n →∞,

θ̂n approaches the set of θ such that the Pθ-almost sure limit of 1
n yt is the same as the Pθ

∗
-almost

sure limit of 1
n yt, for all t = 1, . . . ,T. Similarly for case (II), Mt,∞(θ∗,θ∗) turns out (see remark 2)

to be equal to the r.h.s. of the second limit in (4.2), and the convergence to Θ∗
(I I) in theorem 1 tells

us that as n →∞, θ̂n approaches the set of θ such that the Pθ-almost sure limit of 1
n Ȳr is the

same as the Pθ
∗
-almost sure limit of 1

n Ȳr, for all r = 1, . . . ,R.

4.4 A simulated example

Consider a simple SEIR model with immigration and emigration: P0,n =Mult
(
n, [0.99 0 0.01 0]⊤

)
withαt,n = [ 4

100 n 4
100 n 4

100 n 4
100 n

]⊤, δt =
[ 98

100
98

100
98

100
98
100

]⊤, κt,n = [ 1
100 n 1

100 n 1
100 n 1

100 n
]⊤, qt =

[0.1 0.1 0.3 0.2]⊤ for all t, and

Kt,η =


e−βη

(3)
1− e−βη

(3)
0 0

0 e−ρ 1− e−ρ 0

0 0 e−γ 1− e−γ

0 0 0 1

 , Gt =


0.95 0 0.05 0

0.3 0 0.7 0

0.15 0 0.85 0

0 0 0 1


with DGP θ∗ = [β∗ ρ∗ γ∗]⊤ = [0.5 0.05 0.1]⊤.

This observation model can be interpreted as follows: with probability q(i)
t each individual

in compartment i is tested for disease. Allowing q(i)
t to vary across i could model, for example,

infective individuals being more likely to be tested. The above choice of Gt allows for false-

positives (first row) and false-negatives (third row), where those testing positive are considered

infective, and those testing negative are considered susceptible. Of course, other choices are

possible.

The top two rows of plots in figure 4.1 show n−1xt and n−1yt simulated 50 times from the

model with population sizes n ∈ {100,1000,10000,100000}. Note that in the top row, the fact that

trajectories for compartment S in n−1xt are valued above 1 in places is explained in terms of

immigration into the S compartment exceeding the combined effect of emigration from S and

individuals transitioning from S to E. With n = 100, the fact that some trajectories for the S

compartment are roughly increasing over time corresponds to the lack of an outbreak; for other

trajectories which rise and then fall, an outbreak does occur.
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Figure 4.1: Simulation SEIR example. Top two rows: asymptotic behaviour of xt/n and yt/n; 50 simulations
from the model (light lines) and theoretical deterministic n →∞ limits (bold line) for each population size
(left to right), n ∈ {100,1000,10000,100000}. Middle two rows: filtering intensities associated with the
50 simulated data sets with θ taken to be θ∗. Bottom two rows: filtering with θ set erroneously β= 0.1,
γ= 0.3, and all other parameters set as for the middle two rows.

Due to the choices of P0,n, αt,n and κt,n set out above, it is immediate that the vectors λ0,∞,

αt,∞ and κt,∞ appearing in assumptions 4 and 2 exist. The convergence of n−1xt and n−1yt as

n →∞ to deterministic limits as discussed in section 4.3 is evident in figure 4.1.

The middle two rows of figure 4.1 show the behaviour of the scaled filtering intensities

n−1λt,n(θ) and n−1µt,n(θ) obtained from algorithm 6 in the case of correctly specified parameters

θ← θ∗. It is evident that, as per the discussion of asymptotic filtering accuracy in section 4.3,

as n → ∞ these quantities converge to the same deterministic limits as do n−1xt and n−1yt,

respectively. On the other hand, as illustrated in the bottom two rows of figure 4.1, when the

model is not correctly specified, then λt,n(θ) and µt,n(θ) converge to limits which are not equal to

the limits of n−1xt and n−1yt.

Figure 4.2 illustrates the behaviour of the scaled log-PAL n−1ℓn(θ) evaluated over a find

grid of values fo θ = [β γ]⊤ (all other parameters held constant). Each purple surface in each

plot corresponds to a different data set simulated from the model, as in the second row of figure

4.1. As n grows, figure 4.1 evidences convergence of the maximum PAL estimates to the true
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4.4. A SIMULATED EXAMPLE

Figure 4.2: Simulation SEIR example. Purple surfaces within each plot are the scaled log-PAL sur-
faces associated with 50 data sets simulated from the model with the DGP. From left to right:
n = 100,1000,10000,100000. Vertical black dashed lines are the maximum PAL estimates for each surface,
the vertical red line is the DGP. The two rows show the same 3-d plots from different viewing angles.

parameter value, as per theorem 1.
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5
OVER-DISPERSION

This chapter is organised as follows. Section 5.1 introduces the concept of over-dispersion and its

importance in epidemiology. Section 5.2 proposes a methodology for fitting over-dispersed models

within the PAL framework. Section 5.3 demonstrates the methodology and empirically validates

its performance with a simple simulated example.

5.1 Introducing over-dispersion

Over-dispersion is an important modelling consideration in many epidemiological contexts and

may have substantial implications for model fit and predictive uncertainty. The models we have

considered so far are equi-dispersed in the sense of Bretó and Ionides (2011). That is, they are

based on distributions, namely binomial and Poisson, for which the variance is less than or equal

to the mean – this is an undesirable limitation, as we will show in chapter 6. For compartmental

models in general, over-dispersion can be incorporated in either the transition or observation

models, or both, see for example (Stocks et al., 2020). In the context of the models from section

3.1, a natural approach would be to replace the binomial and Poisson-distributed elements of the

latent compartmental model (section 3.1.2) and/or observation models (sections 3.1.3.1-3.1.3.3)

with over-dispersed counterparts, such as beta-binomial and negative binomial distributions. It

appears that analytically tractable PAL-style approximations cannot be derived for such models.

However, one can often construct over-dispersed distributions as compound distributions through

introduction of latent variables, e.g. placing a beta prior on q(i)
t in (3.2) and then integrating out

would result in a marginally beta-binomial observation model. Similarly, priors could be placed

on parameters which specify the matrix Kt,η, the immigration and emigration parameters αt, δt,

the spurious observation intensity κt, and so on. It is through this latent variable perspective

that we extend the use of the PAL to deal with over-dispersion.
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5.2 Dealing with over-dispersion in the PAL framework

Consider the latent compartmental model from section 3.1.2 combined with observation mecha-

nism from section 3.1.3.1 with parameter θ (the observation models from sections 3.1.3.2 and

3.1.3.3 can be handled in a very similar manner). We consider θ to be partitioned into two

components: θ = [ϑ θ̄1:T ], where ϑ consists of parameters which are either fixed or to be estimated,

and θ̄1:T ∼ f (·|ϕ) are to be integrated out, for some density f and hyperparameter ϕ. A default

approach would be for θ̄1:T to be independent under f (·|ϕ), but Markovian or other dependence

could be incorporated.

We assume that the elements of the model are parameterised such that:

αt(θ)=α(ϑ, θ̄t), δt(θ)=δ(ϑ, θ̄t), Kt,η(θ)=Kη(ϑ, θ̄t),

κt(θ)=κ(ϑ, θ̄t), qt(θ)=q(ϑ, θ̄t), Gt(θ)=G(ϑ, θ̄t),

for some given functions α, δ, etc., which implies that:

p(xt|xt−1,θ)= p(xt|xt−1,ϑ, θ̄t), p(yt|xt,θ)= p(yt|xt,ϑ, θ̄t),

and in turn that θ̄t is conditionally independent of y1:t−1 given θ̄1:t−1, ϑ and ϕ.

Let us derive the marginal likelihood for the parameters [ϑ ϕ] with θ̄1:T integrated out.

Momentarily regarding [ϑϕ] as fixed and suppressing it from notation, consider the recursive

relationship:

p(y1:t, θ̄1:t)= p(yt, θ̄t|y1:t−1, θ̄1:t−1)p(y1:t−1, θ̄1:t−1)

= p(yt|θ̄t,y1:t−1, θ̄1:t−1)p(θ̄t|y1:t−1, θ̄1:t−1)p(y1:t−1, θ̄1:t−1)

= p(yt|θ̄t,y1:t−1, θ̄1:t−1) f (θ̄t|θ̄1:t−1)p(y1:t−1, θ̄1:t−1),

where the third equality holds due to the aforementioned conditional independence. Now, re-

introducing [ϑϕ] to the notation, we have:

p(y1:T |ϑ,ϕ)=
∫

p(y1:T , θ̄1:T |ϑ,ϕ)dθ̄1:T

=
∫ T∏

t=1
p(yt|y1:t−1,ϑ, θ̄1:t) f (θ̄t|θ̄1:t−1,ϕ)dθ̄1:T .

We can approximate this using the PAL:

p(y1:T |ϑ,ϕ)≈
∫ T∏

t=1
exp

{
ℓ(yt|y1:t−1,ϑ, θ̄1:t)

}
f (θ̄t|θ̄1:t−1,ϕ)dθ̄1:T , (5.1)

where ℓ is defined as per algorithm 6. The right-hand side of (5.1) can be efficiently numerically

approximated by embedding PAL computations within sequential Monte Carlo – see (Chopin

et al., 2020) for an introduction to this family of Monte Carlo algorithms. Such a scheme is given

by algorithm 10 and its subroutine algorithm 9.
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5.2. DEALING WITH OVER-DISPERSION IN THE PAL FRAMEWORK

In line 3 of algorithm 10 we take the convention π(·|θ̄(i)
1:0,λ̄(i)

t−1,y1:1) :=π(·|λ̄(i)
0 ,y1). Algorithm

10 yields a Monte Carlo approximation to the r.h.s. of (5.1), so overall we obtain:

log p(y1:t|ϑ,ϕ)≈
t∑

s=1
ℓ̂(ys|y1:s−1,ϑ,ϕ).

We stress there are two ingredients to this approximation: the Monte Carlo approximation and

the PAL approximation. Whilst the main emphasis above regarding θ̄1:t is that they are to be

integrated out, a benefit of algorithm 10 is that it also yields the approximation:

p(θ̄t|y1:t,ϑ,ϕ)≈
npart∑
i=1

w̄(i)
t δ

θ̄
(i)
t

, (5.2)

which enables inference for θ̄t on the basis of observations y1:t.

Algorithm 9 PALSMC subroutine

input: λ̄t−1 and [ϑ θ̄t]
1: αt ←αt(ϑ, θ̄t),δt ←δt(ϑ, θ̄t),Kt,η←Kt,η(ϑ, θ̄t),qt ←qt(ϑ, θ̄t),
κt ←κt(ϑ, θ̄t),Gt ←Gt(ϑ, θ̄t)

2: λt ← [(λ̄t−1 ⊙δt)⊤Kt,η(λ̄t−1⊙δt)]
⊤+αt

3: λ̄t ← [1m −qt + ({y⊤
t ⊘ [(qt ⊙λt)⊤Gt +κ⊤

t ]}[(1m ⊗qt)⊙G⊤
t ])⊤]⊙λt

4: µt ← [(λt ⊙qt)⊤Gt]⊤+κt
5: ℓ(yt|y1:t−1)←−µ⊤

t 1m +y⊤
t log(µt)−1⊤

m log(yt!)
return ℓ(yt|y1:t−1) and λ̄t

Algorithm 10 PALSMC
input: proposal distribution π(·|·), number of particles npart, parameter [ϑϕ].
initialise: λ̄(i)

0 ←λ0 for i = 1, . . . ,npart
1: for t ≥ 1:
2: for i = 1, . . . ,npart:
3: θ̄

(i)
t ∼π(·|θ̄(i)

1:t−1,λ̄(i)
t−1,y1:t)

4: Obtain ℓ(yt|y1:t−1,ϑ, θ̄(i)
1:t) and λ̄(i)

t from algorithm 9 with input λ̄(i)
t−1 and

[
ϑ, θ̄(i)

t

]
5: logw(i)

t ← ℓ(yt|y1:t−1,ϑ, θ̄(i)
1:t)+ log f (θ̄(i)

t |θ̄(i)
1:t−1,ϕ)− logπ(θ̄(i)

t |θ̄(i)
1:t−1,λ̄(i)

t−1,y1:t)
6: end for
7: ℓ̂(yt|y1:t−1,ϑ,ϕ)← log

(
1

npart

∑npart
i=1 w(i)

t

)
8: w̄(i)

t ← w(i)
t /

∑npart
j=1 w( j)

t

9: resample
{
θ̄

(i)
1:t,λ̄

(i)
t

}npart

i=1
according to the weights

{
w̄(i)

t

}npart

i=1
10: end for

In section 5.3 we explore ways in which the large population theory from chapter 4 is relevant

to the construction and behaviour of PALSMC algorithms for over-dispersed models:

• It is well known that the efficiency of sequential Monte Carlo methods can be highly

sensitive to the choice of the proposal distribution, π in algorithm 10. If we could choose
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π(θ̄t|θ̄(i)
1:t−1,λ̄(i)

t−1y1:t) to be proportional (as a function of θ̄t) to:

exp
[
ℓ(yt|y1:t−1,ϑ, θ̄(i)

1:t−1, θ̄t)
]

f (θ̄t|θ̄(i)
1:t−1,ϕ), (5.3)

then the weight w(i)
t would have no dependence on θ̄

(i)
t . Consequently the variability of

the weight would be reduced and the overall efficiency of the PALSMC algorithm likely

improved. This “optimal” choice or π is often not analytically tractable, but inspired by our

consistency theory we suggest Laplace approximation to it. We demonstrate such proposals

in simulation-based and real data examples in sections 5.3 – 6.4 and find them to be very

efficient in practice.

• Through a simulation example in section 5.3, we illustrate that even for our over-dispersed

models, where one might expect estimation consistency to be ruled out (the additional

hierarchical components lead to violation of the various continuity assumptions of chapter

4), increasing population size can in fact increase the accuracy of point estimates of θ̄t

obtained from the r.h.s. of (5.2). The explanation for this is that, whilst the model may be

over-dispersed, once θ̄1:t are integrated out, it is equi-dispersed conditional on θ̄1:t.

In the examples in chapter 6 we also expand on algorithm 10 to include sophisticated resampling

schemes and block particle filtering techniques (Rebeschini and Van Handel, 2015).

5.3 Pedagogical over-dispersed SEIR example

To demonstrate inference for an over-dispersed model using PALSMC we consider a simple SEIR

model for which the latent population xt ≡ [St E t I t Rt]⊤ evolves according to transition matrix

(3.1), with immigration and emigration parameters, αt and δt, combined with the observation

model yt ∼ Binom(I t, qt). We assume αt and δt are known. We can cast this model in the form

discussed in section 5.2 by identifying ϑ= [β ρ γ], θ̄1:T = q1:T , and choosing f (·|ϕ) to make q1:T

i.i.d. according to a truncated normal distribution qt ∼N (µq,σ2
q)≥0,≤1, with ϕ= [µq σ

2
q], µq ∈ [0,1]

and σ2
q > 0. We give the details of a PALSMC scheme for this model in algorithm 11, and include

the derivation of efficient, data-informed proposals by Laplace approximation to (5.3), inspired

by the theory from chapter 4. The specific PALSMC scheme used for this section is given by

algorithm 11.

Filtering and parameter estimation simulation study

To assess the ability of the PALSMC scheme to recover ground truth quantities, we simulated

data from the model with [β ρ γ µq σ
2
q]= [0.8 0.1 0.2 0.5 0.1], π0 = [0.99 0 0.01 0]⊤, αt = 0.05π0 and

δt = [0.95 0.95 0.95 0.95]⊤. The first two rows of figure 5.1 explore the performance of PALSMC

with increasing population size n and using the data-generating values of [ϑϕ]. This collection

of plots was created by first sampling a single draw of latent variables q1:100 ∼ f (·|ϕ), then for
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Figure 5.1: Pedagogical over-dispersed SEIR example. Top two rows: filtering distribution approximations
and ESS obtained from PALSMC with npart = 104 particles and increasing model population size n. Bottom
row: maximum PALSMC estimation of hyper-parameters ϕ= [µq σ

2
q] over increasing time horizons. Each

boxplot summarises 100 hyper-parameter estimates.

each value of n = 103,104,105, generating data y1:100 from the model conditional on q1:100, and

running the PALSMC algorithm. We see that the effective sample size (ESS) is high across all

values of population size n, indicating a good approximation to the r.h.s. of (5.1); this reflects

the careful choice of proposal distribution. As in (5.2), for each t ≥ 1, the PALSMC algorithm

yields a Monte Carlo approximation p(qt|y1:t) ≈ ∑npart
i=1 w̄(i)

t δq(i)
t

. The first row of plots in figure

5.1 demonstrates that these PALSMC filtering approximations concentrate on the true q1:t as

the population size n grows. This is in keeping with the theory of chapter 4, which tells us that

argmaxq1:t,ϑℓ(y1:t|q1:t,ϑ) converges to the data generating [q1:t ϑ] in the large population limit

n →∞.

We also explored the ability of the procedure to recover the data generating hyperparameters
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ϕ= [µq σ
2
q]; in the bottom plots of figure 5.1. Here each boxplot summarises 100 estimates, each

estimate was obtained as follows: (1) simulate q1:450 ∼ f (·|ϕ) and data y1:450 from the model with

population size n = 104, (2) construct a 2-dimensional grid of candidate values for estimation of

[µq σ
2
q], (3) run PALSMC with input y1:450 for each grid point, with npart = 104 particles and ϑ

set to the DGP, (4) at time-steps t = 50,100,150, ... report as an estimate of [µq σ
2
q] the value on

the grid for which the largest value of ℓ̂(y1:t|µq,σ2
q,ϑ) was obtained across the PALSMC runs. We

see from these boxplots that, for increasing time horizon T, the maximum PALSMC estimators

obtained across 100 simulations converge towards the data generating ϕ with little bias.

Overall, these simulation results illustrate that, even in an over-dispersed setting, a large

population can be useful in estimating θ̄1:t, whilst a large time horizon can be useful in recovering

hyperparameters ϕ.

Deriving a proposal informed by observations

Let f (·|µq,σ2
q) be the density associated with a N (µq,σ2

q)≥0,≤1 random variable. We would like to

make proposals informed by observations, to that end we seek a Laplace approximation to:

p̂(qt | y1:t, q1:t−1) :=
expℓ(yt | y1:t−1, q1:t) f (qt|µq,σ2

q)∫
expℓ(yt | y1:t−1, q1:t) f (qt|µq,σ2

q)dqt
.

Suppressing dependence on the particle, let λt be calculated as per line 3 of algorithm 11. We

have for some constant C1 and C2:

log p̂(qt|yt)= ℓ(yt | y1:t−1, q1:t)+ f (qt|µq,σ2
q)+C1

= yt log(qt)+ yt log(λ(3)
t )− qtλ

(3)
t − log yt!− 1

2

( qt −µq

σq

)2
+C2.

(5.4)

To get the mean for a Laplace approximation to (5.4) we must find it’s maximum w.r.t. qt, hence:

d log p̂(qt | yt)
dqt

= yt

qt
−λ(3)

t − qt −µq

σ2
q

= 0

⇐⇒ (qt)2 + (λ(3)
t σ2

q −µq)qt − ytσ
2
q = 0

=⇒ qt = 1
2

(
µq −λ(3)

t σ2
q +

√
(λ(3)

t σ2
q −µq)2 +4ytσ

2
q

)
=:µprop.

For the variance we find the second derivative and evaluate it at µprop:

d2 log p̂(qt | yt)
d(qt)2 =− yt

(qt)2 − 1
σ2

q

=⇒ σ2
prop =

(
yt

µ2
prop

+ 1
σ2

q

)−1

.

To be congruent with the support of qt we truncate the proposal to be:

N (µprop,σ2
prop)≥0,≤1, (5.5)
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denote its density as π(·|µprop,σ2
prop).

Algorithm 11 PAL within SMC

initialise: λ̄0,i ←λ0 for i = 1 to npart.
1: for t ≥ 1:
2: for i = 1, . . . ,npart:

3: λ(i)
t ←

(
λ̄

(i)
t−1 ⊙δt

)⊤
K

t,η
(
λ̄

(i)
t

)+αt

4: q(i)
t ∼N

(
µprop,σ2

prop

)
≥0,≤1

as per (5.5)

5: q(i)
t ← [0 0 q(i)

t 0]⊤

6: logw(i)
t ← y⊤

t logλ(i)
t ⊙q(i)

t −λ⊤
t q(i)

t − logyt!+ log f (q(i)
t |µq,σ2

q)− logπ(q(i)
t |µprop,σ2

prop)

7: λ̄
(i)
t ←

(
1m −q(i)

t

)
⊙λ(i)

t +yt
8: end for
9: ℓ(yt | y1:t−1)← 1

npart

∑npart
i=1 w(i)

t

10: w̄(i)
t ← w(i)

t /
∑npart

j=1 w( j)
t

11: resample
{
λ̄

(i)
t , q(i)

t

}npart

i=1
according to a systematic resampling scheme with weights{

w̄(i)
t

}npart

i=1
12: end for
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6
EXAMPLES

This chapter presents extensive examples of the PAL methodology being applied to real world

data, it is organised as follows. Section 6.1 demonstrates how to use PALs within delayed

acceptance particle Markov chain Monte Carlo to speed up exact Bayesian inference. Section

6.2 demonstrates how to use PALs within Stan to perform inference with Hamiltonian Monte

Carlo. Section 6.3 demonstrates how to perform a model selection procedure within the PAL

framework, with an application to rotavirus infections in Germany. Section 6.4 evaluates the

role of unit-specific parameters in a large scale meta-population model of measles. Code for all

examples is available at: https://github.com/Michael-Whitehouse/PAL. The algorithm and code

for the measles example and the boarding school example LNA comparison were written in

collaboration with Lorenzo Rimella.

6.1 Delayed Acceptance PMCMC for the boarding school
influenza outbreak

This example illustrates the use of the PAL within delayed acceptance PMCMC, specifically the

delayed acceptance Particle Marginal Metropolis Hastings (daPMMH) algorithm of Golightly

et al. (2015).

Data and model

The data set is the well-known boarding school influenza outbreak data, recorded at a British

boarding school in 1978 and reported in the British Medical Journal (Anon, 1978; Davies et al.,

1982). The data are available in the R package “pomp” (King et al., 2016). On day one there

was one infection and over the course of the 14 day epidemic a total of 512 students reported
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symptoms from a population of n = 763. The observations are prevalence data: daily counts of the

total number of symptomatic individuals. We cast this an instance of case (I), using a simple SIR

model, where the initial state of the population is fixed to [763 1 0]⊤ and we define the matrix

Kt,η as follows:

Kt,η =


e−βη

(2)
1− e−βη

(2)
0

0 e−γ 1− e−γ

0 0 1

 ,

where β and γ are to be estimated. Observations yt are modelled as binomially under-reported

counts of infected individuals, that is, given x(2)
t , yt ∼ Bin(x(2)

t , q) where q ∈ [0,1] is unknown

and to be estimated. To connect with the notation of algorithm 6 we have yt ≡ [0 yt 0]⊤ and

qt ≡ [0 q 0]⊤ for t ≥ 1.

Delayed Acceptance Particle Marginal Metropolis Hastings

In the standard PMMH algorithm (Andrieu et al., 2010), one calculates a particle filter approxi-

mation to the likelihood for each proposed parameter value, which is typically a computationally

intensive operation. The daPMMH algorithm introduces an additional ‘pre-screening’ acceptance

step based on an approximate likelihood which is assumed to be cheap to evaluate. Only if

the proposed parameter is accepted in this initial step is a particle filter approximation to the

likelihood then evaluated; thus in performing this additional step, one seeks to avoid running a

particle filter for proposals which are likely to be rejected. Details of the validity of the scheme, in

the sense that it indeed targets the true posterior distribution over the parameters, can be found

in Golightly et al. (2015). Algorithm 12 illustrates how to use a PAL within a daPMMH.

We stress that, although for the SIR model the number of compartments is small (m = 3),

and for the data set in question the population size is fairly small (n = 763), this actually presents

a stern relative speed test for PALs versus particle filters: the particle filter element of the

daPMMH and PMMH algorithms involves simulating from the latent compartmental model, and

the overall cost of the particle filter, therefore, grows with both the number of compartments and

the size of the population, as well as the number of particles. By contrast, evaluating the PAL

involves no random number generation and has a cost independent of population size. Thus, if

a relative speed gain using PALs can be demonstrated with a small population size and small

number of compartments, it is reasonable to expect an even greater relative speed gain for models

with larger numbers of compartments and larger populations.

Results

We compare the performance of three algorithms: PALMH: a Metropolis-within-Gibbs algorithm

with the PAL substituted in place of the exact likelihood, i.e., targeting an approximation to the

exact posterior distribution; PMMH: a standard Particle Marginal Metropolis-Hastings within

Gibbs; daPMMH: a delayed acceptance Particle Marginal Metropolis-Hastings within Gibbs, in
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which we use the PAL for the delayed acceptance step. We apply these three methods to both a

synthetic and a real dataset. For all three algorithms we use Gaussian random walk proposals

independently for each element of θ. The random walk variances are tuned to ensure acceptance

rates between 20% and 40%. The PMMH and daPMMH algorithms were each run with 1000

particles. All experiments were run on a single core of a 1.90 GHz i7-8650U CPU.

The parameters of the model are collected in the vector θ = [β γ q]⊤. We consider a fairly

vague prior p(θ)= p(β)p(γ)p(q), where p(β) and p(γ) are truncated Gaussian densities N (0,1)≥0

and p(q) is a truncated Gaussian density N (0.5,0.5)≥0,≤1.

Simulated data. We simulated an epidemic for 14 days with the parameter regime θ∗ =
[β∗ γ∗ q∗]⊤ = [2 0.5 0.8 ]⊤. For each of the PALMH, PMMH, and daPMMH we ran a 5×105

length chain, discarded 105 for burn in and then thinned to a sample of 2.5×105. Trace plots,

autocorrelation plots, and posterior sample histograms for each scheme are presented in section

B.1 of the appendix, the rates of decay of the ACFs with respect to lag for the daPMMH and

PMMH algorithms are similar, the rate of decay for the PALMH algorithm is faster. The Monte

Carlo approximations of the posterior marginals are closely matched across the three algorithms,

see table 6.1 for summary statistics, and are concentrated around the data generating parame-

ters. A single evaluation of the PAL took a mean time of 9.4×10−6 seconds, the particle filter

approximation to the likelihood took a mean time of 4.5×10−3 seconds, both algorithms were

implemented with Rcpp.

Real data. On the real data we ran the PALMH, PMMH, and daPMMH for 5×105 iterations

each, with run times of 12.2 minutes, 4.5 hours, and 2.8 hours respectively, exhibiting the speed

benefits of the PAL approach. Trace plots, autocorrelation plots, and approximate posterior sample

histograms for each scheme are presented in section B.1, the rate of decay of the ACF with lag is

similar for the daPMMH and PMMH algorithms, the rate of decay for the PALMH algorithm is

faster. The daPMMH and PMMH algorithms yield very similar approximate posterior marginals

as expected – see table 6.2. The posterior marginals obtained from the PALMH scheme exhibit

modes in different locations to those from PMMH/daPMMH, with the following epidemiological

interpretation. The approximate posterior marginals obtained from PALMH correspond to a fast

growing outbreak (large β), with individuals spending longer in the infected state (small γ) and a

relatively lower reporting rate (relatively small q). By contrast, the PMMH/daPMMH marginals

suggest a slower outbreak (smaller β) with less time spent in the infected compartment (larger

γ), but with a higher case reporting rate (relatively high q). Posterior predictive checks (Gelman

et al., 1995) show that, while having contrasting epidemiological interpretations (potentially due

to model mis-specification), both PALMH and PMMH/daPMMH achieve good coverage of the

data, see figure 6.1. The mean trajectories from these posterior predictive distributions reflect the

above interpretations of posterior marginals. The posterior predictive means and credible regions

were calculated from 10000 samples from the posterior predictive distributions produced by the
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Figure 6.1: Boarding school influenza example. Means and credible intervals for posterior predictive
distributions.

PALMH and daPMMH respectively; each sample from the posterior predictive distribution was

generated by: sampling a parameter θ′ from the approximate posterior; then using θ′ to simulate

an epidemic trajectory and data record from the model.

We performed inference on this data set using a Linear Noise Approximation to the likelihood

as described in section 4 of Fearnhead et al. (2014) within a Metropolis Hastings scheme, the

full results can be found in the appendix. We find that, whilst the LNA and the PAL perform

similarly in terms of parameter inference, the Latent Compartmental Model from which the PAL

is derived is more congruent with reality than the SDE model, since the latter allows non-integer

and negative counts of individuals in compartments. Furthermore, a single evaluation of the PAL

was approximately ∼ 100 times faster than a single evaluation of the LNA marginal likelihood

for this dataset.

Parameter True value PALMH PMMH daPMMH

β 2 2.10 (1.88, 2.34) 2.08 (1.85 2.35) 2.08 (1.85,2.35)

γ 0.5 0.51 (0.42, 0.63) 0.53 (0.44 0.65) 0.53 (0.43, 0.65 )

q 0.8 0.81 (0.70, 0.94) 0.82 (0.71, 0.96) 0.82 (0.71, 0.96)
Table 6.1: Boarding school model posterior means and 95% credible interval, synthetic data.

Parameter PALMH PMMH daPMMH

β 2.98 (2.60,3.30) 2.30 (2.00,2.68) 2.30 (2.00,2.68)

γ 0.406 (0.35,0.47) 0.58 (0.47,0.68) 0.58 (0.47,0.68)

q 0.69 (0.62,0.77) 0.90 (0.76,0.99) 0.90 (0.76,0.99)
Table 6.2: Boarding school model posterior means and 95% credible interval, real data.
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PALMH: prior sensitivity analysis

Section 6.1 explores Bayesian analysis on real data under vague priors, with results in table 6.2.

Whilst both the PALMH and PMMH schemes result in identical inferences on simulated data,

there are discrepancies on the real-world boarding school data - which could be attributed to a

mis-specified model. The estimated parameters under the PALMH suggest an R0 of around 7.3

(the PMMH estimates suggest an R0 of around 4) which is consistent with the entire population

being infected at some point during the epidemic - one can question whether this is a realistic

inference. Given the closed nature of this epidemic, along with the likelihood of close monitoring

of the individuals in the system, one could afford to place stronger priors on q. In this section, we

explore the inferences one can make using the PALMH scheme under more informative priors.

We consider the following scenarios:

1. N (0.5,0.5)≥0,≤1 - the vague prior used in the original analysis.

2. Beta(9,1) - an informative prior with mean 0.9 and variance 0.0082 and mode 1.

3. Beta(95,5) - a strongly informative prior with mean 0.95 and variance 0.00047 and mode 1.

4. δ0.9 - an atomic prior on 0.9 (the mean inferred q under the PMMH analysis).

5. δ0.95 - an atomic prior on 0.95.

For each of these we ran a 5×105 length chain, discarded 105 for burn in and then thinned

to a sample of 2.5×105, we summarise our findings in table 6.3. We find that as the prior belief

in a high reporting rate is strengthened, the resulting estimated R0 lowers. If one places strong

prior belief in a high reporting rate, see the Beta(95,5) and δ0.95 columns, then the inferred R0

falls in line with our findings using the PMMH procedure.

Parameter N (0.5,0.5)≥0,≤1 Beta(9,1) Beta(95,5) δ0.9 δ0.95

β 2.98(2.60,3.30) 2.77(2.29,3.22) 2.39(2.01,2.84) 2.46(2.08,2.92) 2.35(1.98,2.77)

ρ 0.41(0.35,0.47) 0.44(0.35,0.57) 0.58(0.49,0.68) 0.55(0.48,0.63) 0.59(0.52,0.68)

q 0.69(0.62,0.77) 0.74(0.63,0.90) 0.94(0.86,0.97) 0.90 0.95

R0 6.91 6.47 4.14 4.52 4.05
Table 6.3: Boarding school model PALMH prior sensitivity analysis. Posterior means and 95% credible
interval, real data under various prior assumptions with R0 posterior mean point estimates.

To investigate the disparity between inferences using the PALMH procedure vs the PMMH

procedure when applied to real data, exhibited in table 6.2, we repeated the analysis with a

fixed q = 0.9 (equivalent to the δ0.9 prior). The resulting posteriors for the PALMH and PMMH

procedures still exhibited some differences, but were much more similar as a result of this

stronger assumption:
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• The posterior mean and 95% credible interval for β under the PMMH procedure was 2.14

(1.91,2.40), to be compared with 2.46( 2.08,2.92) for PALMH.

• The posterior mean and 95% credible interval for γ under the PMMH procedure was 0.58

(0.53,0.64), to be compared with 0.55( 0.48,0.63) for PALMH.

• The posterior mean estimates for R0 under the PMMH and PALMH procedures were 4.52

and 3.70, respectively.

Algorithm details for section 6.1

The following algorithm describes how the PAL can be used within a delayed acceptance pmcmc

scheme.

Algorithm 12 Delayed acceptance PMMH algorithm with PAL
Initialise: i = 0, set θ0 arbitrarily.

1: Run a particle filter to produce an approximation to p(y1:t | θ0) and denote this as p̂(y1:t | θ0).
2: Run algorithm 6 to produce a PAL approximation to p(y1:t | θ0) and denote this as p̂a(y1:t | θ0).
3: for i ≥ 1 :
4: sample θ∗ ∼ q(· | θi−1).
5: stage 1

• Run algorithm 6 to produce a PAL approximation to p(y1:t | θ∗) and denote this as
p̂a(y1:t | θ∗).

• With probability:

α1(θi−1,θ∗)=min
{

1,
p̂a(y1:t | θ∗)p(θ∗)

p̂a(y1:t | θi−1)p(θi−1)
q(θi−1 | θ∗)
q(θ∗ | θi−1)

}
,

run a particle filter to produce an approximation to p(y1:t | θ∗), denote this as p̂(y1:t | θ∗)
and go to Stage 2. Otherwise, set θi = θi−1, set i = i+1 and return to 4.

6: stage 2
With probability

α2(θi−1,θ∗)=min
{

1,
p̂(y1:t|θ∗)p(θ∗)

p̂(y1:t|θi−1)p(θi−1)
p̂a(y1:t|θi−1)p(θi−1)

p̂a(y1:t|θ∗)p(θ∗)

}
,

set θi = θ∗, otherwise set θi = θi−1. Set i = i+1 and return to 4.
7: end for

Time comparisons with the Linear Noise Approximation

For comparisons with the PAL we consider LNAMH: a Metropolis-within-Gibbs algorithm with a

Linear noise approximation (LNA) to the likelihood of a stochastic differential equation model

used in the accept/reject step, see Fearnhead et al. (2014) for details. We apply the LNAMH

to the real boarding school dataset to compare and contrast to the PAL, for these comparisons
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Figure 6.2: Posterior predictive distribution for LNAMH sample. To produce this plot we sampled a
parameter from the approximate posterior and simulated from the SDE model 1000 times.

we implement the PAL in base R, whereas the LNA computations use base R interfaced with

FORTRAN for cumbersome ODE solving calculations. The LNAMH implementation introduces

an extra parameter in the variance of a Gaussian observation model, analogous to V (θ) in section

4.2 of Fearnhead et al. (2014), which we will denote as v; we consider a vague truncated Gaussian

prior of N (400,300)≥0. We ran the chain for 100k iterations, discarded the first 20k and thinned

to a sample of 25k to produce the posterior histograms.

The posterior predictive plot associated with the LNAMH sample, figure 6.2, demonstrates

good coverage of the data, yet they help illustrate some of its shortfalls in comparison to the PAL

approach: the Gaussian nature of the ingredients of the LNA permits non-integer and even allows

negative valued observations, which is clearly not parsimonious with reality; further, modelling

with a constant in time observation variance leads to underconfidence in the start and end of the

data record. In order to circumvent these issues within the LNA framework, one would have to

turn to sophisticated and expensive methods; alternatively, one could avoid each of them for free

through the use of PALs.

Figure 6.3 reports the mean time ratio between a single evaluation of the LNA likelihood and

a single evaluation of the PAL for varying ODE solver intermediate time step choices for the LNA

and analogous choice of h for the PAL. The order of magnitude of the speed gains is around 100

for the PAL, demonstrating the significant speed benefits given by the simplicity of computations

needed to compute the PAL in comparison to cumbersome ODE solution calculations. Experiments

were performed on an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz processor.
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Figure 6.3: Time comparisons for the LNA. The ratio of one evaluation of the LNA likelihood to one evalua-
tion of the PAL for varying ODE solver intermediate time steps, with the comparative PAL evaluation run
with h = 1/number of timesteps. Percentiles are based on 1000 runs.

6.2 Inference using automatic differentiation and HMC for an
age-structured model of ’flu

In this example, we demonstrate PALs for an age-structured model of a 1957 outbreak of

influenza in Wales. Computation is performed using the probabilistic programming language Stan

(Carpenter et al., 2017), taking advantage of automatic differentiation to implement Hamiltonian

Monte Carlo (HMC). This example also highlights how the general Latent Compartmental Model

can accommodate discrete or discretisable covariates associated with subpopulations: in this case

the covariates are indicators of the age-group which individuals belong to and this is reflected in

the compartment structure of the model.

Data and Model

The data consist of 19 weeks of incidence data in the form of GP symptom reports for a town

with population size 8000 across 4 age groups: 00−04, 05−14, 15−44, and 45+. The data were

analysed by Vynnycky and Edmunds (2008) and are available via the Github page associated

with (Andrade and Duggan, 2020). For each age group k = 1, . . . ,4,

Sk,t+1 = Sk,t −Bk,t, Ek,t+1 = Ek,t +Bk,t −Ck,t,

Ik,t+1 = Ik,t +Ck,t −Dk,t, Rk,t+1 = Rk,t −Dk,t,
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with conditionally independent increments: Bk,t ∼Bin(Sk,t,1− e−hβ̄k,t ), Ck,t ∼Bin(Ek,t,1− e−hρ),

Dk,t ∼Bin(Ik,t,1− e−hγ), where


β̄1,t

...

β̄4,t

=


β11 . . . β14

...
. . .

...

β14 . . . β44


︸ ︷︷ ︸

=:B


I1,t

...

I4,t

 1
n

. (6.1)

B is a symmetric matrix with element βi j representing the rate at which two individuals, one from

the susceptible compartment of the ith age group and the other from the infective compartment

of the jth age group come into effective contact.

The mean time spent in the exposed compartment 1/ρ and the mean recovery time 1/γ are

taken to be independent of age group and set to be 1.5 days, following Andrade and Duggan

(2020). We assume that the model evolves daily with h = 1/7 and that observations consist of

cumulative weekly transitions from the E to I compartments for each age group, that is we have

observation times at times τr = 7r for r = 1, . . . ,R corresponding to the end of each week. In the

setting of case (II) we denote observations Ȳk,r =
∑τr

s=τr−1+1 Yk,t where each element of each Yk,t

is equal to zero except the (2,3)th element corresponding to transitions from compartment E

to I which, conditional on Ck,t, is distributed Y (2,3)
k,t ∼ Bin(Ck,t,Q

(2,3)
k,t ), where Qk,t ∈ [0,1]4×4 has

elements equal to zero except for the (2,3)th entry which is equal to an age group dependant

under reporting parameter qk ∈ (0,1) which is to be estimated. We give details of how this model

is written as an instance of the Latent Compartmental Model and the algorithm used to calculate

the PAL in the appendix.

Hamiltonian Monte Carlo with automatic differentiation in Stan

We now consider MCMC sampling to approximate the posterior p(θ|Ȳ1:R). The probabilistic

programming language Stan (Carpenter et al., 2017) provides a framework for implementing

HMC – a type of MCMC algorithm which uses auxiliary “momentum” variables to help explore

the posterior – in which the user only needs to specify priors and provide a function which

evaluates the likelihood for the model. Stan uses Automatic Differentiation (AD) to compute

gradients and update the auxiliary HMC variables without the need for user input. Since the

PAL consists of recursive compositions of elementary linear algebra operations, it is a natural

candidate for AD.

Results

We implemented a Stan program incorporating the PAL, details of which are given in section

B.2 of the appendix. We stress that here we do not correct for the fact that the PAL is only

an approximation to the true likelihood, so Stan is targeting an approximation to the true
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intractable posterior, although in a separate example in the appendix we explore corrections

using Delayed-Acceptance MCMC methods.

The parameters to be estimated are θ = [β11 · · · β44 q1 · · · q4]⊤, the initial state for each

age group is assumed known as x1,0 = [948 0 1 0]⊤, x2,0 = [1689 0 1 0]⊤, x3,0 = [3466 0 1 0]⊤,

x4,0 = [1894 0 1 0]⊤. We used vague gamma priors βi j ∼Gamma(5,1) for i, j = 1, . . . ,4 and a vague

truncated normal prior qk ∼N (0.5,0.5)≥0,≤1 for k = 1, . . . ,4. The HMC sampler was run to produce

a chain of length 5×105 iterations, a burn-in period of size 105 was discarded and the remaining

was thinned to produce a sample of 2.5×104. We report approximate posterior distributions and

trace plots in section B.2 of the appendix, these show no signs of unsatisfactory mixing. Figure

6.5 reports the posterior predictive distributions and credible intervals, we see good coverage of

observed data.

We repeated the analysis using an ODE version of the same age-structured SEIR model, from

Andrade and Duggan (2020), with a Poisson reporting model: we use as emission distribution a

Poisson distribution with rate given by the ODE solution scaled by an under-reporting parameter.

This was implemented in the Stan framework using the code available in Andrade and Duggan

(2020), we again sampled a chain of length 5×105 iterations, discarded a burn-in period of size 105,

and thinned the remaining to produce a sample of 2.5×104. To calculate the reproduction number

R0 for stratified models such as this, one must calculate the so called next generation matrix

(Van den Driessche and Watmough, 2002) which has elements given by niβi j
nγ where ni is the

population size of the ith age group. R0 is then given by the largest modulus of the eigenvalues

of the next generation matrix (Diekmann et al., 1990). Using this definition, we can produce

approximate posterior distributions of R0 using each of the PAL and ODE procedures, which we

report in figure 6.4. The approximate posteriors concentrate around 1.42 using the PAL and 1.82

using the ODE model. This disparity in estimates can be related to the features of the posterior

predictive distributions reported in figures 6.5 and 6.6: the distribution of trajectories in figure

6.6 appears to ‘overshoot’ the data in comparison to those in figure 6.5, reflecting the higher force

of infection implied by the ODE procedure in contrast to the PAL procedure. These posterior

predictive plots also exhibit the inherent inflexibility of the ODE model: since the latent process

is deterministic, random variations in the data away from the ODE trajectory must be explained

as observation error. As is apparent in the 45+ age group, this rigidity in modelling results in

overconfidence and a poor fit compared to that of the stochastic model combined with the PAL

procedure.
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Figure 6.4: Age-structured ’flu example. Approximate posterior distributions for R0 under the PAL and
ODE procedures.

Figure 6.5: Age-structured ’flu example. Posterior predictive distributions obtained from inference under
the stochastic model using the PAL within Stan.
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Figure 6.6: Age-structured ’flu example. Posterior predictive distributions obtained from inference under
the ODE model using Stan.
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6.3 Comparison of over-dispersion mechanisms in a model of
rotavirus

In this section we explore a model selection task in which an equi-dispersed model is nested

within a larger class of models including over-dispersion, using the approach of chapter 5. The

rotavirus data and model we consider are inspired by Stocks et al. (2020), who assessed the fit of

a family of continuous time, stochastic models with varying degrees of over-dispersion using the

Akaike Information Criterion (AIC) (Akaike, 1974).

Models

The data considered consist of weekly incidence counts of rotavirus infections in Germany for 3

age groups over the 8 year period 2001-2008. We consider a discrete-time version of the model of

Stocks et al. (2020) which compartmentalises a population of n = 82,372,825 into an age stratified

SIR model {Sk,t, Ik,t,Rk,t}3k=1 comprising 3 age groups: 0−4, 5−59, and 60−99. Given the number

of susceptibles in age group k at time t after immigration, which we denote S̄k,t, and the number

of infected individuals in each age group I t = [I t,1 I t,2 I t,3]⊤, for t ≥ 1 the number of new infected

individuals in each age group k = 1,2,3 at time step t is conditionally distributed:

Bk,t ∼Binom

(
S̄k,t,1−exp

{
−β

⊤
k I t

n
χt

})
, (6.2)

with βk = [βk βk βk]⊤ where βk > 0 denotes the force of infection experienced by age group k,

and χt =
(
1+ρ cos(2πt/w+φ)

)
denotes a deterministic seasonality component with amplitude

ρ ∈ [0,1], phase φ ∈ [0,2π], and period length w > 0, which we set to correspond to 1 year. Other

details of the latent compartmental model are given in section B.3 of the appendix. We assume an

aggregated transmission model, with weekly observations coming at times τr = 4r for r = 1, . . . ,R.

For each age group observations are conditionally distributed Yk,r ∼Binom
(∑τr

t=τr−1
Bk,t, qk,r

)
.

We consider three variants of this model:

EqEq: a fully equi-dispersed model, in which qk,r = µq ∈ [0,1], and µq is assumed known as in

Stocks et al. (2020);

EqOv: an equi-dispersed latent compartmental model and an over-dispersed observation model,

the same as EqEq except that qk,r
iid∼ N (µq,σ2

q)≥0,≤1 where σ2
q > 0 is to be estimated;

OvOv: over-dispersion in both the latent and observation models, the same as EqOv except

that we augment χt in equation (6.2) to χtξrwhere for r ≥ 1, ξr
i.i.d∼ Gamma(σξ,σξ) are

multiplicative disturbances with mean 1 and σξ > 0 is to be estimated.

Inference

The parameters we estimate in each instance of the model are given by: EqEq: θ = [β1 β2 β3 φρ];

EqOv: ϑ= [β1 β2 β3 φρ] with {θ̄r}r≥1 = {qr}r≥1 and ϕ=σq; OvOv: ϑ= [β1 β2 β3 φρ] with {θ̄r}r≥1 =
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{[qr ξr]}r≥1 and ϕ = [σq σξ]. The PALSMC algorithm for this model is given section B.3 in the

appendix. For parameter estimation the approximate likelihoods of each of the models EqEq,

EqOv, OvOv, obtained from PALSMC were maximised using a finite-difference coordinate ascent

algorithm; we ran the optimisation 100 times, initialised randomly over a range of feasible values.

Plots evidencing convergence are in section B.3 of the appendix. The algorithm was implemented

using R and Rcpp on a node of the University of Bristol’s BluePebble cluster, although we did

exploit parallelisation.

We note that a PAL, e.g. the exponential of the r.h.s. of (3.10), is a valid likelihood function

associated with a product of vector-Poisson distributions whose intensity parameters are de-

fined through the corresponding filtering algorithm, e.g. algorithm 6. Similarly the output from

PALSMC, e.g. (5.2) from algorithm 10, is a Monte Carlo approximation to a valid likelihood for

a mixture of products of vector Poisson distributions. This validity justifies the use of AIC for

model comparison but with the log-PAL, or the log-output from PALSMC, substituted in place of

the usual log-likelihood.

Model AIC Ave. comp. time

EqEq 98866.65 30 sec

EqOv 15154.75 2 hr

OvOv 13778.08 3 hr

Stocks et al. (2020) 20134.38 11 hr
Table 6.4: Rotavirus example. Model assessment

and computation time.

Parameter EqEq EqOv OvOv

β1 12.15 12.74 11.48

β2 0.22 0.21 0.25

β3 0.34 0.31 0.35

φ 0.017 0.14 0.14

ρ 0.022 0.19 0.16

σ2
q n/a 0.042 0.021

σξ n/a n/a 66.89
Table 6.5: Rotavirus example.

Parameter estimates.
As a benchmark comparison, we fitted an ARMA(2,0,1) model to the log-transformed data, which

gives an AIC of 23043 (details are given in the appendix section B.3). Table 6.4 gives the AIC

values for each of our models, along with the best AIC value reported by Stocks et al. (2020), which

was for a model with over-dispersion in the transition model in the form of multiplicative gamma

distributed noise, and over-dispersion in the observation model through negative-binomial report-

ing. This model of Stocks et al. (2020) is therefore qualitatively most similar to our model OvOv.

The average computation times were calculated over 100 runs of the coordinate ascent procedure.

We find that, whilst we can fit EqEq with high computational efficiency, our two over-dispersed

models achieve a substantially better AIC score, indicating a much better fit with increasing

over-dispersion. Both EqOv and OvOv outperform Stocks et al. (2020) AIC and computation

time, although of course the latter is implementation-dependent. Figure 6.7 demonstrates the

increase in goodness of fit that an over-dispersed model provides for the rotavirus data, we see

that prediction intervals for OvOv drastically outperform those for EqEq in terms of coverage.
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Figure 6.7: Rotavirus example. Prediction intervals for age group 0−4 corresponding to 1000 realisations
of OvOv (top panel) and EqEq (bottom panel), using maximum PALSMC parameter estimates.

The estimated values of β1 and β2 we find for all three models EqEq, EqOv and OvOv (table

6.5) are quite similar to those reported by Stocks et al. (2020), but we find a slightly lower value

of β3. For EqOv and OvOv we find a similar seasonal amplitude ρ but slightly larger phase φ

than Stocks et al. (2020). The seasonal R0 ranges for each model are: EqEq (0.98,1.027) ,EqOv

(0.83,1.22), and OvOv (0.82,1.14) compared to (0.855,1.152) obtained by Stocks et al. (2020). The

better fit of EqOv and OvOv compared to Stocks et al. (2020) may thus be attributed to some

combination of quite subtle differences in estimates of parameters related to disease transmission,

together with the difference between the negative binomial observation model in Stocks et al.

(2020) and the way EqOv and OvOv treat the qk,r as latent variables.

6.4 Evaluating the role of unit-specific parameters in a
meta-population model of measles

In this section we illustrate how the PAL framework can be used to calibrate a more com-

plex, larger-scale model, and compare the fit of sub-models with different levels of unit-specific

parameters.
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Model

We consider a discrete time version of a measles model originally presented by Xia et al. (2004),

subsequently extended into a spatio-temporal framework by He et al. (2010) and recently explored

by Park and Ionides (2020) using guided intermediate resampling filter (GIRF) techniques.

The model describes the evolution of recurrent pre-vaccination measles epidemics in J = 40

cities across the UK over the 15 year period 1950−1965. The model has susceptible (S), exposed

(E), infective (I), and removed (R) compartments for each of the J = 40 cities. For each city

k = 1, . . . , J the initial state of the epidemic is given by [Sk,0 Ek,0 Ik,0 Rk,0]⊤ ∼ Mult(nk,0,πk,0),

where the probability vector πk,0 is a possibly city -specific initial distribution parameter, and nk,t

for t ≥ 0 denotes time varying population size. For each city k = 1, . . . , J the population evolves

twice per week with the following dynamic:

Sk,t+1 = Sk,t −Bk,t −F (S)
k,t + Ak,t, Ek,t+1 = Ek,t +Bk,t −Ck,t −F (E)

k,t ,

Ik,t+1 = Ik,t +Ck,t −Dk,t −F (I)
k,t, Rk,t+1 = Rk,t +Dk,t −F (R)

k,t ,

where F (·)
k,t and Ak,t model emigration (deaths) and immigration (births), respectively; and Ck,t

and Dk,t are binomially distributed (details in the appendix). The term Bk,t represents the

number of new infections in the kth city and is distributed

Bk,t ∼Bin
(
Sk,t −F (S)

k,t ,1− e−hbk,r
)
,

where:

bk,r =βk,rξk,r ·
[( Ik,τr

nk,τr

)
+ ∑

l ̸=k

vk,l

nk,τr

{( I l,τr

nl,τr

)
−

( Ik,τr

nk,τr

)}]
, (6.3)

for r ≥ 1, t = τr, . . . ,τr+1 −1. Here βk,r denotes a possibly city-specific seasonal transmission

coefficient and ξk,r
iid∼ Gamma(σξ,σξ), for σξ > 0, is mean-1 multiplicative noise which achieves

over-dispersion in the marginal distribution of Bk,t.

The summation term in (6.3) encodes the intercity interaction under a ‘gravity model’ –

see Truscott and Ferguson (2012) for background on these kind of models in epidemiology. The

strength of the interaction vk,l is computed as:

vk,l = g
s̄
n̄

nk,0nl,0

sk,l
,

where g is called the ‘gravitational’ constant parameter, n̄ is the average of the initial populations,

s̄ is the average inter-city distance and sk,l denotes the distance between cities k and l. The

interpretation of the gravity model is thus that the strength of the interaction between two cities

is directly proportional to their populations and inversely proportional to their distance.

The observations are aggregated incidence data in the form of cumulative fortnightly tran-

sitions from infective to recovered for each of the 40 cities, at times τr = 4r for r = 1, . . . ,R. Our

observation model, which allows for over-dispersion, is described in section B.4 of the appendix,
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along with the distributions of Ck,t, Dk,t, F (·)
k,t, and Ak,t, and an explanation of how we write the

model as an instance of the Latent Compartmental model with h = 3.5 days, corresponding to

bi-weekly transitions.

We consider three variants of this model all with over-dispersion in both the dynamics and

observation mechanisms, but with increasing levels of city-specific parameters:

A: the initial distribution vectors πk,0 and force of infection parameters βk,r are shared across

cities, i.e. constant in k;

B: πk,0 is city-specific and βk,r is shared across cities;

C: πk,0 and βk,r are city-specific.

Here we are inspired by an investigation conducted by Ionides et al. (2022), where sub-models

with increasing numbers of city-specific parameters were fitted to a dataset on a smaller spatial

scale, comprising 20 cities compared to the 40 we consider. Ionides et al. (2022) suggested that

approximation techniques may be needed to analyse larger data sets, our application of the PAL

framework is a step in that direction. However, we note that the 20-city dataset analysed by

Ionides et al. (2022) is not a subset of the 40-city dataset we consider here, so direct comparisons

of model fit may not be made. Never-the-less we shall compare our results to those obtained by

(Park and Ionides, 2020) for a model in which parameters are shared across cities, fitted to the

same 40-city dataset we consider.

Inference

In section B.4 of the appendix we give the details of a PALSMC algorithm in which the PAL is

embedded within a block particle filter (Ionides et al., 2022; Rebeschini and Van Handel, 2015),

to numerically approximate the log-likelihood. We used data-informed proposals and lookahead

resampling to improve efficiency. For each of the models A,B,C, the approximate log-likelihood

obtained from this PALSMC algorithm with 5000 particles was maximised with respect to

the model parameters through Sequential Least Squares Programming. The procedures were

implemented using Python and TensorFlow on a 32gb Tesla V100 GPU available on the HEC

(High-End Computing) facility from Lancaster University.

Table 6.6 details PALSMC approximate log-likelihood and AIC values for each of the models

A,B,C, along with an approximate log-likelihood reported by Park and Ionides (2020) for com-

parison. The GIRF used by Park and Ionides (2020) consists of a simulator for a continuous in

time latent process combined with a particle filter which uses guide functions for intermediate

propagation and resampling, parameters of the model are estimated via an iterated filtering

scheme. Together with Monte Carlo adjusted profile methodology (Ionides et al., 2017) they

are able to generate profile likelihood estimates for confidence interval estimation. Frequentist

uncertainty interval calculation is out of the scope of the current work and would require results

on the asymptotic distribution of the maximum PAL estimator, see chapter 7 for a discussion.
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Our model A is similar to that of Park and Ionides (2020) in the sense that both these

models have parameters shared across cities, but we find model A performs better in terms of

log-likelihood and AIC. As we move from model A to models B and C, by making more parameters

city-specific, we see an improvement in log-likelihood and AIC. We also note that the computation

time for fitting model A is orders of magnitude smaller than that of Park and Ionides (2020). The

computation time is of course implementation-dependent, but we note that we have not devised a

bespoke optimisation algorithm to maximise the PALSMC approximation, but rather applied a

standard ‘black-box’ optimiser. As prompted by an anonymous reviewer, we fitted an ARMA(2,0,1)

model to the log-transformed data for a benchmark comparison; this gave a log-likelihood of

-69168 (details are given in the appendix section B.4).

Estimates of the city-specific parameters βk,r in model C can be used to estimate city-specific

R0 values, calculated as in Ionides et al. (2022). We find that across the 40 cities these estimated

R0 values lie in the range 5.63−16.65. The fitted mean latent and infective periods for model C

were 8.49 and 9.53 respectively; these values are in line with previous inferences on the behaviour

of measles epidemics (Guerra et al., 2017), (Delamater et al., 2019). Full details of our numerical

results are in the appendix section B.4.

Model No. parameters Log-likelihood (sd) AIC Comp. time
A 11 −63579 (62) 127180 45 min
B 128 −61257 (28) 122770 10 hr
C 167 −61169 (34) 122672 24 hr

Park and Ionides (2020) 12 −70000† 140024† 30 hr∗
Table 6.6: Measles example. Mean log-likelihood values for models A, B, and C, with Monte Carlo standard
deviation (sd) over 100 runs of PALSMC with 5000 particles. ‘No. parameters’ is the number of parameters
estimated by maximising the log-likelihood for each model. †Approximate values read from figure 3 in
(Park and Ionides, 2020). ∗We note that the 30hr reported by Park and Ionides (2020) includes confidence
interval calculation via Monte Carlo adjusted profile methodology.

Figure 6.8 shows projected case numbers for the 4 fortnights following the end of the data

record, obtained using model C with parameters fixed to the estimated values, full details are in

the appendix section B.4. We see a general increase in forecast uncertainty as the time horizon

increases, this reflecting the over-dispersed nature of model C. We also see that the forecasts

generally exhibit higher certainty for cities with a larger population, as might be expected if

a larger sub-population size allows latent variables and parameters which are specific to that

sub-population to be estimated more accurately.
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Figure 6.8: Measles example. Projected case numbers for the 4 fortnights (ordered top-left, top-right,
bottom-left, bottom-right) following the end of the data record. For each town/city, the diameter of the outer-
most concentric ring represents log-population size. The shade of the outer concentric ring corresponds to
the lower 5% quantile of the simulated case numbers, the shade of the middle concentric ring to the mean,
and the inner concentric ring to the upper 95% quantile.
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7
CONCLUSIONS

Although this thesis presents PAL derivations for a fairly broad class of models, they seem tied to

the various Poisson and binomial distribution assumptions appearing in the model definitions.

The PAL approach is therefore clearly not as general as, say, inference using SMC or ABC,

which in principle require little more than the ability to simulate from the model, but which

in practice may involve various tuning parameters and incur a substantial computational cost.

There is clearly a trade-off here between the generality of the model being accommodated and

the resources needed to perform inference. It could be of interest to further broaden the class of

models for which PAL-type approximations can be derived.

Recently Ju et al. (2021) devised sophisticated SMC algorithms to fit models in which

individuals in the population each carry covariates influencing, for example, the probabilities that

they come into contact, and hence the probabilities of disease spreading from one individual to the

next. When these covariates are discrete or discretisable taking only finitely many distinct values,

for example the subdivision of the population into age groups as in the age-structured example

from section 6.3, then they can be handled in the latent compartmental modelling framework

by simply introducing extra compartments and specifying an appropriate observation model.

However, covariates taking infinitely many distinct values cannot be handled this way. Rimella

et al. (2023) have suggested methods related to PALs to construct efficient proposal distributions

for SMC in individual-based models. Further research may expand the applicability of PAL-like

approximations in this direction.

Our consistency results provide rigorous assurances about the convergence of maximum PAL

estimators, but it would be useful to obtain associated confidence intervals. A step towards this

would be a central limit theorem for maximum PAL estimators.

Is there a statistical price to pay for using a PAL versus an exact likelihood? Whilst we
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have proved that maximum PAL estimators can be consistent, we have not proved consistency of

the estimators obtained by maximising the corresponding exact likelihoods. Indeed, for general

classes of partially observed compartmental models there is a lack of such results in the literature.

If central limit theorems for maximum PAL estimators and maximum exact likelihood estimators

could be obtained, then that might help shed light on their relative statistical efficiency. This

is, however, a somewhat academic question since the intractability of exact likelihoods for

compartmental models, in general, seems to rule out the possibility of computing a maximum

exact likelihood estimator in many practical situations.

In chapter 5 we introduced a procedure for PAL-based inference in over-dispersed models

via sequential Monte Carlo. It would be of interest to develop a deterministic, and presumably

faster, counterpart to this methodology. One way to do this could be similar in flavour to the

integrated nested Laplace approximation (INLA) (Rue et al., 2009). Furthermore, whilst the large

population theory is useful in choosing proposal distributions and filtering latent variables in the

over-dispersed setting, further work is needed to assess the theoretical properties of maximum

PALSMC estimators.

66



A
P

P
E

N
D

I
X

A
CONSISTENCY THEORY: SUPPORTING RESULTS

A.1 Laws of Large Numbers

Preliminaries

In this section we present some useful results for proving the main laws of large numbers.

Lemma 6. Let λ,λn ∈ R≥0 and Xn ∼ Pois(λn) for n = 1,2, . . . . Assume that for all n, |λn
n −λ| <

cn−( 1
4+γ) for some c > 0 and γ> 0, then there exist constants b and γ̄ such that:

E

[∣∣∣∣ Xn

n
−λ

∣∣∣∣4] 1
4

≤ bn−( 1
4+γ̄),

furthermore
Xn

n
a.s.→ λ.

Proof. By recurrence relations for the central moments of Poisson random variables, see e.g

Kendall et al. (1946), we can write

E

[∣∣∣∣ Xn

n
− λn

n

∣∣∣∣4]
= n−4λn

2∑
k=0

(
3
k

)
E
[
(Xn −λn)k

]
= n−4λn

{
1+0+λn

3!
2!1!

}
= n−2

{
n−2λn +3

(
λn

n

)2}
≤ an−2, (A.1)
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for some a > 0 since the curly bracketed term in (A.1) defines a convergent sequence. Hence, by

the Minkowski inequality:

E

[∣∣∣∣ Xn

n
−λ

∣∣∣∣4] 1
4

≤ E
[∣∣∣∣ Xn

n
− λn

n

∣∣∣∣4] 1
4

+
∣∣∣∣λn

n
−λ

∣∣∣∣
≤ a

1
4 n− 1

2 + cn−( 1
4+γ)

≤ bmax
(
n− 1

2 ,n−( 1
4+γ)

)
≤ bn−( 1

4+γ̄),

where b = a
1
4 + c and γ̄=min

(
γ, 1

4
)
. Now let ε> 0, by Markov’s inequality:

P

(∣∣∣∣ Xn

n
−λ

∣∣∣∣> ε)≤ ε−4E

[∣∣∣∣ Xn

n
−λ

∣∣∣∣4]
≤ ϵ−4b4n−(1+4̄γ),

So that:
∞∑

n=1
P

(∣∣∣∣ Xn

n
−λ

∣∣∣∣> ε)≤ ϵ−4b4
∞∑

n=1
n−(1+4γ̄) <∞.

Then n−1Xn →λ almost surely by the Borel-Cantelli lemma. ■

Corollary 1. If xn ∼Pois(λn) for a sequence (λn)n≥1 ∈Rm such that there exists c > 0 and γ> 0

such that ∥n−1λn −λ∥∞ < cn−( 1
4+γ) for some λ ∈ Rm, then for any vector f ∈ Rm there exists

constants b > 0 and γ̄> 0 such that:

E

[∣∣∣∣ 1
n

x⊤
n f −λ⊤ f

∣∣∣∣4] 1
4

≤ bn−( 1
4+γ̄).

Proof. Apply lemma 6 in an element-wise fashion. ■

Lemma 7. Let F be a filtration and ∆(i) for i = 1,2, . . . be random variables which are condition-

ally independent given F , are bounded by a constant |∆(i)| ≤ M <∞ almost surely, and satisfy

E
[
∆(i) |F ]= 0. Let an be a non-negative integer valued random variable such that σ(an)⊆F and

assume there exist constants a > 0, b > 0, and γ> 0 such that for all n ∈N:

E

[∣∣∣an

n
−a

∣∣∣4] 1
4 ≤ bn−( 1

4+γ).

Then there exists a constant d > 0 such that:

E

[∣∣∣∣∣ 1
n

an∑
i=1
∆(i)

∣∣∣∣∣
4]

≤ dn−2.
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Proof. Recalling that a sum over an empty set is equal to zero by convention, we have that:

E

[(
an∑
i=1
∆(i)

)4 ∣∣∣F]
= E

[ ∑
{k1+···+kan=4;ki≥0}

(
4

k1, . . . ,kan

)
an∏
i=1

(
∆(i)

)ki
∣∣∣F]

= ∑
{k1+···+kan=4;ki≥0}

(
4

k1, . . . ,kan

)
an∏
i=1

E

[(
∆(i)

)ki
∣∣∣F]

=
an∑
i=1

E

[(
∆(i)

)4 ∣∣∣F]
+6

∑
{(i, j)∈[an]2;i ̸= j}

E

[(
∆(i)

)2 ∣∣∣F]
E

[(
∆( j)

)2 ∣∣∣F]
≤ anM4 +3an(an −1)M4

≤ ca2
n,

for some constant c > 0. The first equality holds by the multinomial theorem. The second equality

holds through conditional independence of the ∆(i). The third equality comes from the fact that

all terms of the sum where ki = 1 for some i disappear since E
[(
∆(i))1

∣∣∣F]
= 0; hence, we need

only count the terms with exclusively even ki ’s. The first term after the inequality arises since

there are an terms with a 4th power, each of which we can bound E
[(
∆( j))4

∣∣∣F]
< M4 . The term

3an(an−1) comes from counting the number of terms with exactly 2 of the ki ’s equal to 2 with the

rest equalling 0; there are
(an

2
)= an(an−1)/2 such pairs, multiplying this by

( 4
k1,...,kan

)= ( 4
2,2,0,...

)= 6

gives a total of 3an(an −1), then we bound each of the E
[(
∆(i))2

∣∣∣F]
E
[(
∆( j))2

∣∣∣F]
≤ M2M2 = M4

for all (i, j) ∈ [an]2. So we have:

E

[∣∣∣∣∣ 1
n

an∑
i=1
∆(i)

∣∣∣∣∣
4∣∣∣∣∣F

]
≤ c

(an

n

)2
n−2,

by the Lyapunov inequality:

E

[∣∣∣an

n

∣∣∣2] 1
2

≤ E
[∣∣∣an

n
−a+a

∣∣∣4] 1
4

≤ E
[∣∣∣an

n
−a

∣∣∣4] 1
4

+a

≤ bn−( 1
4+γ) +a

≤ b+a <∞.

We now apply a tower law argument to the above to see that, for constant d = c (b+a)2:

E

[∣∣∣∣∣ 1
n

an∑
i=1
∆(i)

∣∣∣∣∣
4]

≤ dn−2.

■

Lemma 8. Let x ∈Rm
≥0, f ∈Rm , c > 0, and n ∈N. Then:∣∣∣∣η(x)⊤ f − n−1x⊤ f

c

∣∣∣∣≤ ∣∣η(x)⊤ f
∣∣ c−1 ∣∣n−11⊤

mx− c
∣∣

69



APPENDIX A. CONSISTENCY THEORY: SUPPORTING RESULTS

Proof. If x= 0 then the result is trivial. Now, for x ̸= 0 we have:∣∣∣∣η(x)⊤ f − n−1x⊤ f
c

∣∣∣∣= ∣∣∣∣ x⊤

1⊤
mx

f − n−1x⊤ f
c

∣∣∣∣
≤ ∣∣x⊤ f

∣∣ ∣∣∣∣ 1
1⊤

mx
− n−1

c

∣∣∣∣
= ∣∣x⊤ f

∣∣ ∣∣∣∣ c−n−11⊤
mx

c1⊤
mx

∣∣∣∣
≤

∣∣∣∣x⊤ f
1⊤

mx

∣∣∣∣ c−1 ∣∣n−11⊤
mx− c

∣∣
= ∣∣η(x)⊤ f

∣∣ c−1 ∣∣n−11⊤
mx− c

∣∣ .

■

Case (I)

Define the sequence of vectors:

ν0(θ∗) :=λ0,∞(θ∗),

νt+1(θ∗) :=
[(
νt(θ∗)⊙δt+1(θ∗)

)⊤Kt+1,η(νt(θ∗)⊙δt+1(θ∗))

]⊤+αt+1,∞(θ∗).

Lemma 9. Let assumptions 2-4 hold. For all t ≥ 0 there exists γt > 0 and for all f ∈ Rm there

exists ct > 0 such that:

E

[∣∣∣∣∣x⊤
t

n
f −νt(θ∗)⊤ f

∣∣∣∣∣
4] 1

4

≤ ctn−( 1
4+γt). (A.2)

Proof. Explicit dependence of some quantities on θ∗ and n is omitted throughout the proof to

avoid over-cumbersome notation where the dependence is unambiguous. We proceed to prove the

above by induction on t. At time 0 we have for some c0 > 0 and γ0 > 0:

E

[∣∣∣∣∣x⊤
0

n
f −ν⊤0 f

∣∣∣∣∣
4] 1

4

≤ c0n−( 1
4+γ0),

by assumption 4. Now for t ≥ 1 assume (A.2) holds for t−1. Recall xt = x̃t + x̂t, x̃( j)
t =∑nt−1

i=1 I{φ
(i)
t =

1}I{ξ(i)
t = j} and x̄( j)

t−1 =
∑nt−1

i=1 I[ξ
(i)
t−1 = j]I[φ(i)

t = 1]. We make the following decomposition:

x⊤
t

n
f −ν⊤t f = x⊤

t

n
f −

[
x̄t−1

n

⊤
Kt,η(x̄t−1) +α⊤

t,∞
]

f (A.3)

+
[

x̄t−1

n
−νt−1 ⊙δt

]⊤ [
Kt,η(x̄t−1) f

]
(A.4)

+ (νt−1 ⊙δt)⊤
[
Kt,η(x̄t−1) −Kt,η(νt−1⊙δt)

]
f . (A.5)
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Consider (A.3). We make the further decomposition:

x⊤
t

n
f −

[
x̄t−1

n

⊤
Kt,η(x̄t−1) +α⊤

t,n

]
f

= (x̃t + x̂t)⊤

n
f −

[
x̄t−1

n

⊤
Kt,η(x̄t−1) +α⊤

t,n

]
f

= x̃⊤
t

n
f −

[
x̄t−1

n

⊤
Kt,η(x̄t−1)

]
f +

[
x̂⊤

t

n
−α⊤

t,n

]
f

= 1
n

m∑
j=1

(
nt−1∑
i=1

I{φ(i)
t = 1}I{ξ(i)

t = j}

)
f ( j) − 1

n

m∑
j=1

(
nt−1∑
i=1

I{ξ(i)
t−1 = j}I{φ(i)

t = 1}

)
K j,·

t,η(x̄t−1) f

+
[

x̂⊤
t

n
−α⊤

t,n

]
f .

= 1
n

m∑
j=1

(
nt−1∑
i=1

I{φ(i)
t = 1}I{ξ(i)

t = j}

)
f ( j) − 1

n

nt−1∑
i=1

I{φ(i)
t = 1}Kξ(i)

t−1,·
t,η(x̄t−1) f +

[
x̂⊤

t

n
−α⊤

t,n

]
f .

= 1
n

nt−1∑
i=1

m∑
j=1

{
I{φ(i)

t = 1}I{ξ(i)
t = j}− I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1)

}
f ( j) (A.6)

+
[

x̂⊤
t

n
−α⊤

t,n

]
f .

The term
[

x̂⊤
t

n −α⊤
t,n

]
f converges to 0 in L4 by assumption 2 and lemma 6, that is there exists an

ĉt > 0 and γ̂t > 0 such that:

E

[∣∣∣∣∣
[

x̂⊤
t

n
−α⊤

t,n

]
f

∣∣∣∣∣
4] 1

4

≤ ĉtn−( 1
4+γ̂t).

Now, turning to (A.6), let Gt :=σ({ξ(i)
t }i=1,...,nt ) and Ft :=σ({φ(i)

t }i=1,...,nt ). See that:

E

[
m∑

j=1

{
I{φ(i)

t = 1}I{ξ(i)
t = j}− I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1)

}
f ( j)

∣∣∣Gt−1 ∨Ft

]

=
m∑

j=1

{
E
[
I{φ(i)

t = 1}I{ξ(i)
t = j}

∣∣∣Gt−1 ∨Ft

]
− I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1)

}
f ( j)

=
m∑

j=1

{
I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1) − I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1)

}
f ( j)

=0,

since, given ξ(i)
t−1, φ(i)

t ∼Bernoulli
(
δ

(ξ(i)
t−1)

t

)
and, conditional on φ(i)

t = 1 and Gt−1, ξ(i)
t is a draw from

the ξ(i)
t−1th row of Kt,η(x̄t−1); and if φ(i)

t = 0 then ξ(i)
t = 0. Moreover:

∣∣∣ m∑
j=1

{
I{φ(i)

t = 1}I{ξ(i)
t = j}− I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1)

}
f ( j)

∣∣∣≤ m∥f ∥∞ =: M.
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Define:

∆(i)
t :=

m∑
j=1

{
I{φ(i)

t = 1}I{ξ(i)
t = j}− I{φ(i)

t = 1}K
(ξ(i)

t−1), j
t,η(x̄t−1)

}
f ( j).

The ∆(i)
t are conditionally independent and mean zero given Gt−1 ∨Ft, and σ(nt−1)⊂Gt−1 ∨Ft.

Also note that, since nt−1
n is equal to x⊤

t−1
n 1m, we can invoke the induction hypothesis with test

vector 1m to see there exist constants ct−1 and γt−1 such that:

E

[∣∣∣nt−1

n
−1⊤

mνt−1

∣∣∣4] 1
4 ≤ ct−1n−( 1

4+γt−1)

so that we satisfy the conditions of lemma 7. Hence there exists a constant c̃t > 0:

E

[∣∣∣∣∣ 1
n

nt−1∑
i=1
∆(i)

t

∣∣∣∣∣
4] 1

4

≤ c̃tn− 1
2 .

Before analysing (A.4) and (A.5) we will prove an intermediary result. Consider the decomposition:∣∣∣∣ x̄t−1

n

⊤
f − (νt−1 ⊙δt)⊤ f

∣∣∣∣≤ ∣∣∣ x̄t−1

n

⊤
f −

(xt−1

n
⊙δt

)⊤
f
∣∣∣ (A.7)

+
∣∣∣(xt−1

n
⊙δt

)⊤
f − (νt−1 ⊙δt)⊤ f

∣∣∣. (A.8)

The term in (A.8) converges to 0 in L4 at the required rate by the induction hypothesis with test

vector δt ⊙ f . Now for (A.7) see that:

x̄t−1

n

⊤
f −

(xt−1

n
⊙δt

)⊤
f = 1

n

nt−1∑
i=1

m∑
j=1

I
{
ξ(i)

t−1 = j
}(
I
{
φ(i)

t = 1
}
−δ(ξ(i)

t−1)
t

)
f ( j)

︸ ︷︷ ︸
∆̄(i)

t

, (A.9)

and note that the ∆̄(i)
t are mean 0, bounded, and independent given Gt−1 so that by lemma 7 we

have that (A.9) converges to 0 in L4 at the required rate. Combining this with the Minkowski

inequality, we have that for some positive constants c̄t and γ̄t:

E

[∣∣∣∣ x̄t−1

n

⊤
f − (νt−1 ⊙δt)⊤ f

∣∣∣∣4
] 1

4

≤ c̄tn−( 1
4+γ̄). (A.10)

Now we look at (A.4):∣∣∣∣[ x̄t−1

n
−νt−1 ⊙δt

]⊤ [
Kt,η(x̄t−1) f

]∣∣∣∣≤ ∥∥∥∥ x̄t−1

n
−νt−1

∥∥∥∥
1

∥∥Kt,η(x̄t−1) f
∥∥∞

≤ ∥f ∥∞
m∑

i=1

∣∣∣∣∣ x̄(i)
t−1

n
−ν(i)

t−1δ
(i)
t

∣∣∣∣∣
≤ ∥f ∥∞

m∑
i=1

∣∣∣∣∣ x̄⊤
t−1

n
ei − (νt−1 ⊙δt)⊤ei

∣∣∣∣∣ .
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The first inequality here uses Holder’s inequality and the second uses the fact that the row sums

of the matrix Kt,η(x̄t−1) are equal to 1. By (A.10) with f = ei in conjunction with the Minkowski

inequality there exists c̆t > 0 and γ̆t > 0 such that:

E

[∣∣∣∣[ x̄t−1

n
−νt−1 ⊙δt

]⊤ [
Kt,η(x̄t−1) f

]∣∣∣∣4
] 1

4

≤ c̆tn−( 1
4+γ̆t).

Now looking at (A.5) we see using assumption 3 that there exists a c > 0 such that:

∣∣[νt−1 ⊙δt]⊤
[
Kt,η(x̄t−1) −Kt,η(νt−1⊙δt)

]
f
∣∣≤ c∥νt−1 ⊙δt∥∞∥f ∥∞∥η(x̄t−1)−η(νt−1 ⊙δt)∥∞

≤ c∥νt−1 ⊙δt∥∞∥f ∥∞
m∑

i=1

∣∣(η(x̄t−1)−η(νt−1 ⊙δt))⊤ei
∣∣

If 1⊤
m(νt−1 ⊙δt)= 0 then 1⊤

mx̄t−1 = 0 Pθ
∗ −a.s. by lemmas 13 and 15, which we state and prove in

section A.2, in which case the right hand side of the above is 0 and therefore satisfies all positive

bounds. Henceforth, assume 1⊤
m(νt−1 ⊙δt)> 0. Consider:∣∣∣η(x̄t−1)⊤ f −η(νt−1 ⊙δt)⊤ f

∣∣∣
=

∣∣∣η(x̄t−1)⊤ f − (νt−1 ⊙δt)⊤ f
1⊤

m(νt−1 ⊙δt)

∣∣∣
=

∣∣∣η(x̄t−1)⊤ f + n−1x̄⊤
t−1

1⊤
m(νt−1 ⊙δt)

f − n−1x̄⊤
t−1

1⊤
m(νt−1 ⊙δt)

f −η(νt−1 ⊙δt)⊤ f
∣∣∣

≤
∣∣∣η(x̄t−1)⊤ f − n−1x̄⊤

t−1

1⊤
m(νt−1 ⊙δt)

f
∣∣∣+ ∣∣∣ n−1x̄⊤

t−1

1⊤
m(νt−1 ⊙δt)

f −η(νt−1 ⊙δt)⊤ f
∣∣∣

≤ ∣∣η(x̄t−1)⊤ f
∣∣ (1⊤

m(νt−1 ⊙δt))−1
∣∣∣∣1⊤

mx̄t−1

n
−1⊤

m(νt−1 ⊙δt)
∣∣∣∣ (A.11)

+ (1⊤
m(νt−1 ⊙δt))−1

∣∣∣∣∣ x̄⊤
t−1

n
f − (νt−1 ⊙δt)⊤ f

∣∣∣∣∣
≤ m∥f ∥∞

1⊤
m(νt−1 ⊙δt)

∣∣∣∣1⊤
mx̄t−1

n
−1⊤

m(νt−1 ⊙δt)
∣∣∣∣ (A.12)

+ (1⊤
m(νt−1 ⊙δt))−1

∣∣∣∣∣ x̄⊤
t−1

n
f − (νt−1 ⊙δt)⊤ f

∣∣∣∣∣ . (A.13)

Where we use lemma 8 in line (A.11). We can again invoke (A.10) to give L4 convergence of (A.12)

and (A.13) at the required rate. We can now combine all of the above, along with the Minkowski

inequality to show that:

E

[∣∣∣∣∣x⊤
t

n
f −ν⊤t f

∣∣∣∣∣
4] 1

4

≤ ctn−( 1
4+γt),

where ct = ĉt + c̃t + c̄t + c̆t, and γt =min(γ̂t, 1
4 , γ̄t, γ̆t). ■
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Lemma 10. Let assumptions 2 - 4 hold. Then there exists a constant ρt > 0 for each f ∈Rm and

t ≥ 1, and a constant at > 0 such that:

E

[∣∣∣∣∣y⊤
t

n
f − (

[νt(θ∗)⊙qt(θ∗)]⊤Gt(θ∗)+κt,∞(θ∗)⊤
)

f

∣∣∣∣∣
4] 1

4

≤ atn−( 1
4+ρt).

Proof. Explicit dependence of some quantities on θ∗ and n is omitted throughout the proof to

avoid over-cumbersome notation where the dependence is unambiguous. First note that:

yt

n
= ỹt

n
+ ŷt

n
,

and

E

[∣∣∣∣∣ ŷ⊤
t

n
f −κ⊤

t,∞ f

∣∣∣∣∣
4] 1

4

< âtn−( 1
4+ρ̂t), (A.14)

for some ât > 0 and ρ̂t > 0 by corollary 1 and assumption 2. Write:

ỹ⊤
t

n
f − (νt ⊙qt)⊤Gt f = ỹ⊤

t

n
f −

(xt

n
⊙qt

)⊤
Gt f (A.15)

+
(xt

n
⊙qt

)⊤
Gt f − (νt ⊙qt)⊤Gt f .

We have that

E

[∣∣∣∣(xt

n
⊙qt

)⊤
Gt f − (νt ⊙qt)⊤Gt f

∣∣∣∣4] 1
4

≤ ātn−( 1
4+ρ̄t) (A.16)

for some āt > 0 and ρ̄t > 0 by lemma 9 using test function [(qt ⊗1m)⊙Gt]f .

Furthermore, we have:

ỹ⊤
t

n
f= 1

n

m∑
j=1

ỹ( j) f ( j)

= 1
n

nt∑
i=1

m∑
j=1

m∑
k=1

I{ξ(i)
t = k}I{ζ(i)

t = 1}I{ς(i)
t = j}f ( j),

where ζ(i)
t ∼Bernoulli(q(ξ(i)

t )
t ) and ς(i)

t ∼Categorical(G(ξ(i)
t ,·)) indicates the compartment in which it

is observed. Notice that for (A.15) :

ỹ⊤
t

n
f −

(xt

n
⊙qt

)⊤
Gt f

= 1
n

nt∑
i=1

m∑
j=1

m∑
k=1

[
I{ξ(i)

t = k}I{ζ(i)
t = 1}I{ς(i)

t = j}− I{ξ(i)
t = k}q(k)

t G(k, j)
t

]
f ( j)

︸ ︷︷ ︸
=:Ξ(i)

t

.

The Ξ(i)
t are mean zero and independent conditioned on Gt. Furthermore:

|Ξ(i)
t | ≤ m2∥f ∥∞,
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almost surely and σ(nt)⊆Gt where Gt is defined as in lemma 9. An application of lemma 7, yields:

E

[∣∣∣∣∣ ỹ⊤
t

n
f −

(xt

n
⊙qt

)⊤
Gt f

∣∣∣∣∣
4] 1

4

≤ ãtn( 1
4+ρ̃t), (A.17)

for some constants ãt > 0 and ρ̃t > 0. Combining (A.14), (A.16), and (A.17) with the Minkowski

inequality yields:

E

[∣∣∣∣∣y⊤
t

n
f − (

(νt ⊙qt)⊤Gt +κ⊤
t
)

f

∣∣∣∣∣
4] 1

4

≤ atn−( 1
4+ρt),

where at = ât + āt + ãt and ρt =min(ρ̂t, ρ̄t, ρ̃t).

■

Proposition 1. Let assumptions 2 - 4 hold. Then for all t ≥ 1:

y⊤
t

n
θ∗
−→
a.s.

[νt(θ∗)⊙qt(θ∗)]⊤Gt(θ∗)+κt,∞(θ∗)⊤. (A.18)

Proof. By lemma 10 there exists constants at > 0 and ρt > 0 such that:

E

[∣∣∣∣∣y⊤
t

n
f − ((νt ⊙qt)⊤Gt +κt)⊤ f

∣∣∣∣∣
4]

≤ a4
t n−(1+4ρt).

By Markov’s inequality:

Pθ
∗
[∣∣∣∣∣y⊤

t

n
f − ((νt ⊙qt)⊤Gt +κ⊤

t )f

∣∣∣∣∣> ε
]
≤ ε−4E

[∣∣∣∣∣y⊤
t

n
f − ((νt ⊙qt)⊤Gt +κ⊤

t )f

∣∣∣∣∣
4]

≤ ε−4a4
t n−(1+4ρt).

This implies that:
∞∑

n=1
Pθ

∗
[∣∣∣∣∣y⊤

t

n
f − ((νt ⊙qt)⊤Gt +κ⊤

t )f

∣∣∣∣∣> ε
]
<∞. (A.19)

We now appeal to the Borel-Cantelli lemma which tells us that (A.19) implies the event:{∣∣∣∣∣y⊤
t

n
f − ((νt ⊙qt)⊤Gt +κ⊤

t )f

∣∣∣∣∣> ε
}

,

happens for infinitely many n with probability 0, and that:

Pθ
∗
(

lim
n→∞

∣∣∣∣∣y⊤
t

n
f − ((νt ⊙qt)⊤Gt +κ⊤

t )f

∣∣∣∣∣> ε
)
= 0,

for all ε> 0. Hence we have shown that:

y⊤
t

n
f θ∗
−→
a.s.

((νt ⊙qt)⊤Gt +κ⊤
t )f .

■
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Case (II)

Define:

ν0(θ∗) :=λ0,∞(θ∗),

Nt(θ∗) := (
νt−1(θ∗)⊗1m

)⊙Kt,η(νt−1(θ∗))(θ
∗),

νt(θ∗) := (1⊤
mNt(θ∗))⊤.

Lemma 11. Let assumptions 2 - 4 hold. For all t ≥ 1 there exists a γtz > 0, and for all vectors

f 1, f 2 ∈Rm a constant bt > 0, such that:

E
[∣∣n−1 f ⊤

1 Zt f 2 − f ⊤
1 Nt(θ∗)f 2

∣∣4] 1
4 ≤ btn−( 1

4+γtz ), for all t ≥ 0.

Proof. Recall from section 3.2.2 that in case (II) there is no immigration or emigration, nt = n

and hence also xt = x̄t with probability 1 for all t ≥ 0.

Consider the decomposition:∣∣n−1 f ⊤
1 Zt f 2 − f ⊤

1 [νt−1 ⊗1m]⊙Kt,η(νt−1) f 2
∣∣

≤
∣∣∣n−1 f ⊤

1 Zt f 2 − f ⊤
1

[xt−1

n
⊗1m

]
⊙Kt,η(xt−1) f 2

∣∣∣ (A.20)

+
∣∣∣f ⊤

1

[xt−1

n
⊗1m

]
⊙Kt,η(xt−1) f 2 − f ⊤

1

[xt−1

n
⊗1m

]
⊙Kt,η(νt−1) f 2

∣∣∣ (A.21)

+
∣∣∣f ⊤

1

[xt−1

n
⊗1m

]
⊙Kt,η(νt−1) f 2 − f ⊤

1 [νt−1 ⊗1m]⊙Kt,η(νt−1) f 2

∣∣∣ . (A.22)

Notice that by assumption 2 with vectors f 1 and f 2, there exists a constant c > 0 such that the

term (A.21) satisfies: ∣∣∣f ⊤
1

[(xt−1

n
⊗1m

)
⊙ (

Kt,η(xt−1) −Kt,η(νt−1)
)]

f 2

∣∣∣
=

∣∣∣∣(f 1 ⊙
xt−1

n

)⊤ (
Kt,η(xt−1) −Kt,η(νt−1)

)
f 2

∣∣∣∣
≤c∥f 1∥∞∥f 2∥∞

∥∥η(xt−1)−η(νt−1)
∥∥∞

≤c∥f 1∥∞∥f 2∥∞
∥∥∥xt−1

n
−νt−1

∥∥∥
∞

≤c∥f 1∥∞∥f 2∥
m∑

i=1

∣∣∣∣(xt−1

n
−νt−1

)⊤
ei

∣∣∣∣ .

By the Minkowski inequality and lemma 9 there exist constants b̄t > 0 and γ̄tz > 0 such that:

E

[∣∣∣f ⊤
1

[(xt−1

n
⊗1m

)
⊙ (

Kt,η(xt−1) −Kt,η(νt−1)
)]

f 2

∣∣∣4] 1
4 ≤ b̄tn−( 1

4+γ̄tz )

Moreover, (A.22) is equal to:∣∣∣∣∣x⊤
t−1

n
[
f 1 ⊗1m

]⊙Kt,η(νt−1) f 2 −ν⊤t−1
[
f 1 ⊗1m

]⊙Kt,η(νt−1) f 2

∣∣∣∣∣ ,
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therefore we can invoke lemma 9 with test vector
[
f 1 ⊗1m

]⊙Kt,η(νt−1) f 2, this tells us there exists

constants b̂t > 0 and γ̂tz > 0 such that:

E

[∣∣∣∣∣x⊤
t−1

n
[
f 1 ⊗1m

]⊙Kt,η(νt−1) f 2 −ν⊤t−1
[
f 1 ⊗1m

]⊙Kt,η(νt−1) f 2

∣∣∣∣∣
4] 1

4

≤ b̂tn−( 1
4+γ̂tz ).

We now recall that Z( j,k)
t =∑n

i=1 I{ξ
(i)
t−1 = j,ξ(i)

t = k}, so that the term (A.20) is equal to:

1
n

n∑
i=1

[
m∑

j=1

m∑
k=1

(
I{ξ(i)

t−1 = j,ξ(i)
t = k}− I{ξ(i)

t−1 = j}K ( j,k)
t,η(xt−1)

)
f ( j)
1 f (k)

2

]
︸ ︷︷ ︸

=:∆(i)
t

.

Since, conditioned on Gt−1 := σ({ξ(i)
t−1}i=1,...,nt ), ξ

(i)
t is a draw from the ξ(i)

t−1th row of Kt,η(xt−1), we

have E
[
∆(i)

t |Gt−1

]
= 0. Furthermore, given Gt−1 the ∆(i)

t are independent and
∣∣∣∆(i)

t

∣∣∣ ≤ m2∥f ∥2∞.

An application of lemma 7 yields that for some constants b̃t > 0 and γ̃tz > 0:

E

[∣∣∣n−1 f ⊤
1 Zt f 2 − f ⊤

1

[xt−1

n
⊗1m

]
⊙Kt,η(xt−1) f 2

∣∣∣4] 1
4 ≤ b̃tn−( 1

4+γ̃tz ).

Finally, use of the Minkowski inequality yields the result:

E
[∣∣n−1 f ⊤

1 Zt f 2 − f ⊤
1 [νt−1 ⊗1m]⊙Kt,η(νt) f 2

∣∣4] 1
4 ≤ btn−( 1

4+γtz ),

where bt = b̄t + b̂t + b̃t and γtz =min(γ̄tz , γ̂tz , γ̃tz ).

■

Lemma 12. Let assumptions 2 - 4 hold. For all t ≥ 1 there exists a γ̄Y > 0, and for all vectors

f 1, f 2 ∈Rm a constant cY > 0, such that:

E
[∣∣n−1 f ⊤

1 Yt f 2 − f ⊤
1

[
Nt(θ∗)⊙Qt(θ∗)

]
f 2

∣∣4] 1
4 ≤ cY n−( 1

4+γ̄Y ).

Proof. Write

|n−1 f ⊤
1 Yt f 2 − f ⊤

1
[
(νt−1 ⊗1m)⊙Kt,νt−1 ⊙Qt

]
f 2|

≤ ∣∣n−1 f ⊤
1 Yt f 2 −n−1 f ⊤

1 Zt ⊙Qt f 2
∣∣

+ ∣∣n−1 f ⊤
1 Zt ⊙Qt f 2 − f ⊤

1
[
(νt−1 ⊗1m)⊙Kt,νt−1 ⊙Qt

]
f 2

∣∣ . (A.23)

By lemma 11 there exists aY > 0 and γY1 > 0 such that:

E
[∣∣n−1 f ⊤

1 Zt ⊙Qt f 2 − f ⊤
1

[
(νt−1 ⊗1m)⊙Kt,νt−1 ⊙Qt

]
f 2

∣∣4] 1
4 ≤ aY n−( 1

4+γY1 )

Now, we can write (A.23) as:
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n−1
n∑

i=1

m∑
j=1

m∑
k=1

[
I{ξ(i)

t−1 = j,ξ(i)
t = k}I{ζ(i) = 1}− I{ξ(i)

t−1 = j,ξ(i)
t = k}Q( j,k)

]
f ( j)
1 f (k)

2︸ ︷︷ ︸
=:Ξ(i)

t

.

Where ζ(i) given Gt−1 ∨Gt (where Gt is defined as in lemma 9) is distributed Bernoulli(Q(ξ(i)
t−1,ξ(i)

t )).

Hence, E
[
Ξ(i)

t |Gt−1 ∨Gt

]
= 0. Furthermore, given Gt−1 ∨Gt the Ξ(i)

t are independent and
∣∣∣Ξ(i)

t

∣∣∣<
m2∥f ∥2∞. An application of lemma 7 yields:

E
[∣∣n−1 f ⊤

1 Yt f 2 −n−1 f ⊤
1 Zt ⊙Qt f 2

∣∣4] 1
4 ≤ bY n−( 1

4+γY2 ),

for some by > 0 and γY2 > 0. Use of the Minkowski inequality yields the result:

E
[∣∣n−1 f ⊤

1 Yt f 2 − f ⊤
1

[
(νt−1 ⊗1m)⊙Kt,νt−1 ⊙Qt

]
f 2

∣∣4] 1
4 ≤ (aY +bY )n−( 1

4+γ̄Y ),

for γ̄Y =min(γY1 ,γY2).

■

Proposition 2. Let assumptions 2 - 4 hold. Then for all t ≥ 1:

n−1Yt
θ∗
−→
a.s.

Nt(θ∗)⊙Qt(θ∗),

and for all r ≥ 1,

n−1Ȳr
θ∗
−→
a.s.

τr∑
t=τr−1+1

Nt(θ∗)⊙Qt(θ∗). (A.24)

Proof. We have that by lemma 12 for all t there exists c > 0 and γ> 0 such that:

Pθ
∗
(
∣∣n−1 f ⊤

1 Yt f 2 − f ⊤
1

[
(νt−1 ⊗1m)⊙Kt,νt−1 ⊙Qt

]
f 2

∣∣> ε)
≤ ε−4E

[∣∣n−1 f ⊤
1 Yt f 2 −n−1 f ⊤

1 Zt ⊙Qt f 2
∣∣4]

≤ ε−4cn−(1+γ).

It follows that:

∞∑
n=1

Pθ
∗ (∣∣n−1 f ⊤

1 Yt f 2 − f ⊤
1

[
(νt−1 ⊗1m)⊙Kt,νt−1 ⊙Qt

]
f 2

∣∣> ε)<∞.

This result along with a Borel-Cantelli argument, as in proposition 1, completes the proof of the

first claim of the proposition. The second claim follows from the first since Ȳr =∑τr
t=τr−1+1 Yt. ■

A.2 Filtering intensity limits

Case (I)

Define the vectors, or t ≥ 1:
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λ̄0,∞(θ∗,θ) :=λ0,∞(θ), (A.25)

λt,∞(θ∗,θ) :=
[
(λ̄t−1,∞(θ∗,θ)⊙δt(θ))⊤Kt,η(λ̄t−1,∞(θ∗,θ)⊙δt(θ))(θ)

]⊤+αt,∞(θ),

µt,∞(θ∗,θ) :=
[(
λt,∞(θ∗,θ)⊙qt(θ)

)⊤Gt(θ)
]⊤+κt,∞(θ),

λ̄t,∞(θ∗,θ) :=
[
1m −qt(θ)

+
([
µt,∞(θ∗,θ∗)⊘µt,∞(θ∗,θ)

]⊤ ([
1m ⊗qt(θ)

]⊙Gt(θ)⊤
))⊤ ]

⊙λt,∞(θ∗,θ), (A.26)

where by convention, if we encounter 0/0 in the element-wise division operation we replace that

ratio by 0.

Our main objective in section A.2 is to show these vectors are the Pθ
∗
-a.s. limits of the

corresponding finite-n quantities evaluated at θ, computed using algorithm 6. This is the subject

of proposition 3.

Proposition 3. Let assumptions 2 - 4 hold. Then for all θ ∈Θ and t ≥ 1:

n−1µt,n(θ) θ∗
−→
a.s.

µt,∞(θ∗,θ),

n−1λt,n(θ) θ∗
−→
a.s.

λt,∞(θ∗,θ),

n−1λ̄t,n(θ) θ∗
−→
a.s.

λ̄t,∞(θ∗,θ).

The proof is postponed until later in section A.2.

Remark 1. By writing out the above definitions it can be checked that νt(θ∗)=λt,∞(θ∗,θ∗), hence

lemma 9 implies by a Borel-Cantelli argument n−1xt
θ∗
−→
a.s.

λt,∞(θ∗,θ∗); and that µt,∞(θ∗,θ∗) is

equal to the right hand side of (A.18) in proposition 1, hence n−1yt
θ∗
−→
a.s.

µt,∞(θ∗,θ∗). Therefore

proposition 3 implies that if algorithm 6 is run with the model specified by the DGP θ∗, thus

computing λt,n(θ∗) and µt,n(θ∗), that when rescaled by n−1 these vectors converge as n →∞ to the

same Pθ
∗
-almost sure limits as n−1xt and n−1yt. We provide empirical evidence for this remark in

section 4.4.

As preliminaries to the proof of proposition 3 we need to verify that certain quantities in

algorithm 6 and the vectors defined at the start of section A.2 are Pθ
∗
-a.s. well-defined and finite.

This is the purpose of lemma 13 and lemma 14. In algorithm 6, if µ(i)
t,n(θ) = 0 and y(i)

t > 0, then

line 3 would entail dividing a finite number by zero. Lemma 13 establishes that this happens

with probability zero.

Lemma 13. Let assumptions 2-4 hold. For any θ ∈Θ, n ∈N, i ∈ [m], and t ≥ 1,

Pθ
∗

n

(
µ(i)

t,n(θ)= 0
)
> 0 =⇒ y(i)

t = 0, Pθ
∗

n -a.s.
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Proof. Fix arbitrary θ ∈Θ and n ∈N. All a.s. statements in the proof are with respect to Pθ
∗

n . We

will show that for all j ∈ [m] and t ≥ 1, the following two implications hold:

Pθ
∗

n

(
λ

( j)
t,n(θ)= 0

)
> 0 =⇒ x( j)

t = 0, a.s., (A.27)

Pθ
∗

n

(
µ(i)

t,n(θ)= 0
)
> 0 =⇒ y(i)

t = 0, a.s. (A.28)

The proof is inductive in t. To initialise the induction at t = 1, let j ∈ [m] and suppose that

Pθ
∗

n (λ( j)
1,n(θ)= 0)> 0, i.e.,

Pθ
∗

n

(
m∑

k=1
λ̄(k)

0,n(θ)δ(k)
1 (θ)K (k, j)

1,η(λ̄0,n(θ)⊙δ1(θ))
(θ)+α( j)

1,n(θ)= 0

)
> 0,

then α
( j)
1,n(θ)= 0 which by assumption 2 implies α( j)

1,n(θ∗)= 0 and hence x̂( j)
1 = 0, a.s. Furthermore,

for all k ∈ [m] we must have that either:

• Pθ
∗

n

(
λ(k)

0,n(θ)= 0
)
> 0, which, since λ(k)

0,n(θ) is a deterministic quantity, implies λ(k)
0,n(θ)= 0, in

turn by assumption 4 this implies λ(k)
0,n(θ∗)= 0 so that x(k)

0 = 0 a.s. and x̄(k)
0 = 0 a.s.; or

• δ(k)
1 (θ)= 0, which by assumption 2 implies δ(k)

1 (θ∗)= 0 which means x̄(k)
0 = 0 a.s.; or

• K (k, j)
1,η(λ̄0,n(θ)⊙δ1(θ))

(θ)= 0, which by assumptions 2, 3, and 4 implies K (k, j)
1,η(x̄0)(θ

∗)= 0 a.s.

Hence we have for all k ∈ [m] either x̄(k)
0 = 0 a.s. or K (k, j)

1,η(x̄0)(θ
∗) = 0 a.s. Since, given x0, x̃( j)

1 ∼∑m
k=1 Bin

(
x(k)

0 ,K (k, j)
1,η(x̄0)(θ

∗)
)

we must have that x̃( j)
1 = 0 a.s., therefore we have that x( j)

1 = x̃( j)
1 + x̂( j)

1 =
0 a.s. We have thus proved (A.27) in the case t = 1.

Now let us prove (A.28) in the case t = 1. Suppose that for some i ∈ [m], Pθ
∗

n

(
µ(i)

1,n(θ)= 0
)
> 0,

i.e.,

Pθ
∗

n

(
m∑

j=1
λ

( j)
1,n(θ)q( j)

1 (θ)G( j,i)
1 (θ)+κ(i)

1,n(θ)= 0

)
> 0.

Then κ(i)
1,n(θ)= 0 which by assumption 2 implies κ(i)

1,n(θ∗)= 0 and hence ŷ(i)
1 = 0 a.s. Furthermore,

for all j ∈ [m] we must have that either:

• Pθ
∗

n

(
λ

( j)
1,n(θ)= 0

)
> 0, which implies x( j)

1 = 0 a.s. which implies ȳ( j)
1 = 0 a.s.; or

• q( j)
1 (θ)= 0, which by assumption 2 implies that q( j)

1 (θ∗)= 0 =⇒ ȳ( j)
1 = 0 a.s.; or

• G( j,i)
1 (θ)= 0, which by assumption 2 implies G( j,i)

1 (θ∗)= 0.

Given, ȳ1 , ỹ(i)
1 ∼ ∑m

j=1 Bin
(
ȳ( j)

1 ,G( j,i)
1 (θ∗)

)
. This means that ỹ(i)

1 = 0 a.s., and furthermore that

y(i)
1 = ỹ(i)

1 + ŷ(i)
1 = 0 a.s. This completes the proof of (A.28) in the case t = 1.

As an induction hypothesis suppose that (A.27) and (A.28) hold at t. We shall show that

Pθ
∗

n

(
λ

( j)
t+1,n(θ)= 0

)
> 0 =⇒ x( j)

t+1 = 0 a.s. Firstly we will show that, for all k ∈ [m], Pθ
∗

n

(
λ̄(k)

t,n(θ)= 0
)
>
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0 =⇒ Pθ
∗

n

(
λ(k)

t,n(θ)= 0
)
> 0 which, by the induction hypothesis, would imply x(k)

t = 0 a.s. Suppose

that for some k ∈ [m] , Pθ
∗

n

(
λ̄(k)

t,n(θ)= 0
)
> 0, i.e.,

Pθ
∗

n

(1− q(k)
t (θ))λ(k)

t,n(θ)+
m∑

j=1
y( j)

t

λ(k)
t,n(θ)q(k)

t (θ)G(k, j)
t (θ)

µ
( j)
t,n(θ)

= 0

> 0.

Firstly, λ̄(k)
t,n(θ) is almost surely well defined by the induction hypothesis, since the event µ( j)

t,n(θ)= 0

and y( j)
t > 0 has probability 0 for each j ∈ [m]. Now if the above displayed inequality holds we

must have that either:

• q(k)
t (θ)< 1, in which case we must have Pθ

∗
n

(
λ(k)

t,n(θ)= 0
)
> 0; or

• q(k)
t (θ)= 1, in which case we must have Pθ

∗
n

(
λ(k)

t,n(θ)G(k, j)
t (θ)= 0

)
> 0 for all j so that the sum

is equal to 0 with positive probability, and since Gt is row-stochastic matrix, there must

exist a j ∈ [m] such that G(k, j)
t (θ)> 0, hence Pθ

∗
n

(
λ(k)

t,n(θ)= 0
)
> 0.

We have thus shown Pθ
∗

n

(
λ̄(k)

t,n(θ)= 0
)
> 0 =⇒ Pθ

∗
n

(
λ(k)

t,n(θ)= 0
)
> 0 which by the induction hypothe-

sis implies x(k)
t = 0 a.s. so that further x̄(k)

t = 0 a.s. Now if for some j ∈ [m], Pθ
∗

n

(
λ

( j)
t+1,n(θ)= 0

)
> 0,

i.e.,

Pθ
∗

n

(
m∑

k=1
λ̄(k)

t,n(θ)δ(k)
t+1(θ)K (k, j)

t+1,η(λ̄t,n(θ)⊙δt+1(θ))
(θ)+α( j)

t+1,n(θ)= 0

)
> 0,

then α
( j)
t+1,n(θ)= 0, which by assumption 2 implies α( j)

t+1,n(θ∗)= 0, hence x̂( j)
t = 0 a.s. Furthermore,

for all k ∈ [m] we must have that either:

• Pθ
∗

n

(
λ̄(k)

t,n(θ)= 0
)
> 0, which implies x(k)

t = 0 a.s. =⇒ x̄(k)
t = 0 a.s.; or

• δ(k)
t+1(θ)= 0, which by assumption 2 implies δ(k)

t+1(θ∗)= 0 =⇒ x̄(k)
t = 0 a.s.; or

• Pθ
∗

n

(
K (k, j)

t+1,η(λ̄t,n(θ)⊙δt+1(θ))
(θ)= 0

)
> 0. We claim this implies that K (k, j)

t+1,η(x̄t)
(θ)= 0, a.s. Suppose,

for contradiction, that Pθ
∗

n

(
K (k, j)

t+1,η(λ̄t,n(θ)⊙δt+1(θ))
(θ)= 0

)
> 0 and Pθ

∗
n

(
K (k, j)

t+1,η(x̄t)
(θ)> 0

)
> 0.

Then there exist E,E′ ⊆Ωn with Pθ
∗

n (E)> 0 and Pθ
∗

n (E′)> 0 such that for all ω ∈ E and all

ω′ ∈ E′:

K (k, j)
t+1,η(λ̄t,n(θ,ω)⊙δt+1(θ))

(θ)= 0 and K (k, j)
t+1,η(x̄t(ω′))(θ)> 0,

which implies:

supp
(
K(k,·)

t+1,η(λ̄t,n(θ,ω)⊙δt+1(θ))
(θ)

)
̸⊆ supp

(
K(k,·)

t+1,η(x̄t(ω′))(θ)
)
.

By assumption 3 this implies:

supp
(
x̄t(ω′)

) ̸⊆ supp
(
λ̄t,n(θ,ω)⊙δt+1(θ)

)
,
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i.e. there exists l such that:(
λ̄t,n(θ,ω)⊙δt+1(θ)

)(l) = 0 and
(
x̄t(ω′)

)(l) > 0.

But since Pθ
∗

n (E)> 0 and Pθ
∗

n (E′)> 0 this implies that:

Pθ
∗

n (λ̄(l)
t,n(θ)= 0)> 0 and Pθ

∗
n (x̄(l)

t > 0)> 0.

This contradicts the observation in the first bullet point, hence K (k, j)
t+1,η(x̄t)

(θ)= 0 a.s. Then by

assumption 2 we have K (k, j)
t+1,η(x̄t)

(θ∗)= 0 a.s.

Hence, similarly to the argument used in the case t = 1, we must have that x̃( j)
t+1 = 0 a.s. so that

x( j)
t+1 = x̃( j)

t+1 + x̂( j)
t+1 = 0 a.s. Thus (A.27) holds with t replace by t+1.

It remains to show that (A.28) holds with t replaced by t+1. So suppose that for some i ∈ [m],

Pθ
∗

n

(
µ(i)

t+1,n(θ)= 0
)
> 0, i.e.,

Pθ
∗

n

(
m∑

j=1
λ

( j)
t+1,n(θ)q( j)

t+1(θ)G( j,i)
t+1 (θ)+κ(i)

t+1,n(θ)= 0

)
> 0,

then we must have κ(i)
t+1,n(θ)= 0 which by assumption 2 implies κ(i)

t+1,n(θ∗)= 0 hence ŷ(i)
t+1 = 0 a.s.

Furthermore, for all j ∈ [m] we must have either:

• Pθ
∗

n

(
λ

( j)
t+1,n(θ)= 0

)
> 0, which implies that x( j)

t+1 = 0 =⇒ ȳ( j)
t+1 = 0 a.s.; or

• q( j)
t+1(θ)= 0, which by assumption 2 implies q( j)

t+1(θ∗)= 0 =⇒ ȳ( j)
t+1 = 0 a.s.; or

• G( j,i)
t+1 (θ)= 0, which by assumption 2 implies G( j,i)

t+1 (θ∗)= 0.

Hence, using the same reasoning as in the t = 1 case, we have ỹ(i)
t+1 = 0 a.s. and furthermore

y(i)
t+1 = ỹ(i)

t+1+ ŷ(i)
t+1 = 0 a.s. This completes the proof of (A.28) with t replaced by t+1. The induction

is therefore complete. ■

If µ(i)
t,∞(θ∗,θ)= 0 and µ(i)

t,∞(θ∗,θ∗)> 0 then λ̄t,∞(θ∗,θ) would involve division of a finite number

by zero. Lemma 14 establishes that this situation cannot arise.

Lemma 14. Let assumptions 2 - 4 hold. For any θ,θ′ ∈Θ, i ∈ [m] and t ≥ 1,

λ̄
( j)
t,∞(θ∗,θ)= 0 =⇒ λ̄

( j)
t,∞(θ∗,θ′)= 0,

µ(i)
t,∞(θ∗,θ)= 0 =⇒ µ(i)

t,∞(θ∗,θ′)= 0.

Proof. Fix arbitrary θ,θ′ ∈Θ. By symmetry we only need to prove the implication in one direction.

We will show that the following two implications hold for all i, j ∈ [m] and t ≥ 1:

λ
( j)
t,∞(θ∗,θ)= 0 =⇒ λ

( j)
t,∞(θ∗,θ′)= 0, (A.29)

µ(i)
t,∞(θ∗,θ)= 0 =⇒ µ(i)

t,∞(θ∗,θ′)= 0. (A.30)
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For the t = 1 case, if λ( j)
1,∞(θ∗,θ)= 0, i.e.,

m∑
k=1

λ(k)
0,∞(θ∗,θ)δ(k)

1 (θ)K (k, j)
1,η(λ0,∞(θ∗,θ)⊙δ(θ))(θ)+α( j)

1,∞(θ)= 0,

then α
( j)
1,∞(θ)= 0 which by assumption 2 implies α( j)

1,∞(θ′)= 0. Furthermore, for each j ∈ [m] we

must have either:

• λ(k)
0,∞(θ∗,θ)=λ(k)

0,∞(θ)= 0, which by assumption 4 implies λ(k)
0,∞(θ′)= 0; or

• δ(k)
1 (θ)= 0, which by assumption 2 implies δ(k)

1 (θ′)= 0; or

• K (k, j)
1,η(λ0,∞(θ∗,θ)⊙δ(θ))(θ)= 0, which by assumptions 2, 3, and 4 implies

K (k, j)
1,η(λ0,∞(θ∗,θ′)⊙δ(θ′))(θ

′)= 0.

Hence we have:

λ
( j)
1,∞(θ∗,θ′)=

m∑
k=1

λ(k)
0,∞(θ∗,θ′)δ(k)

1 (θ′)K (k, j)
1,η(λ0,∞(θ∗,θ′)⊙δ1(θ′))(θ

′)+α( j)
1,∞(θ′)= 0,

so (A.29) holds with t = 1. In order to establish (A.30) with t = 1, consider

µ(i)
1,∞(θ∗,θ)=

m∑
j=1

λ
( j)
1,∞(θ∗,θ)q( j)

1 (θ)G(i, j)
1 (θ)+κ(i)

1,∞(θ)= 0,

hence κ(i)
1,∞(θ)= 0, which by assumption 2 implies κ(i)

1,∞(θ′)= 0. Furthermore, for each j ∈ [m] we

must have either:

• λ
( j)
1,∞(θ∗,θ)= 0, which by the above implies λ( j)

1,∞(θ∗,θ′)= 0; or

• q( j)
1 (θ)= 0, which by assumption 2 implies q( j)

1 (θ′)= 0; or

• G(i, j)
1 (θ)= 0, which by assumption 2 implies G(i, j)

1 (θ′)= 0.

Hence:

µ(i)
1,∞(θ∗,θ′)=

m∑
j=1

λ
( j)
1,∞(θ∗,θ′)q( j)

1 (θ′)G(i, j)
1 (θ′)+κ( j)

1,∞(θ′)= 0.

Thus we have shown that (A.30) holds with t = 1.

For the induction hypothesis, assume that (A.29) and (A.30) with hold for some t ≥ 1. Then

for each k ∈ [m] write:

λ̄(k)
t,∞(θ∗,θ)= (1− q(k)

t (θ))λ(k)
t,∞(θ∗,θ)+

m∑
j=1

µ(i)
t,∞(θ∗,θ∗)

λ(k)
t,∞(θ∗,θ)q(k)

t (θ)G(k, j)
t (θ)

µ(i)
t,∞(θ∗,θ)

= 0.

This is well defined by the induction hypothesis choosing θ′ = θ∗. Furthermore, we must have

either:

• q(k)
t (θ)< 1, in which case we must have λ(k)

t,∞(θ∗,θ)= 0 =⇒ λ(k)
t,∞(θ∗,θ′)= 0; or
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• q(k)
t (θ)= 1, in which case we must have λ(k)

t,∞(θ∗,θ)G(k, j)
t (θ)= 0 a.s. for all j so that the sum

is equal to 0. Since Gt is row-stochastic matrix, we know there must exist a j ∈ [m] such

that G(k, j)
t (θ)> 0 and so we must have λ(k)

t,∞(θ∗,θ)= 0 =⇒ λ(k)
t,∞(θ∗,θ′)= 0.

So we have λ̄(k)
t,∞(θ∗,θ) = 0 =⇒ λ(k)

t,∞(θ∗,θ′) = 0, indeed the reverse implication is also true by

definition of λ̄(k)
t,∞(θ∗,θ) so that λ̄(k)

t,∞(θ∗,θ)= 0 ⇐⇒ λ(k)
t,∞(θ∗,θ′)= 0. Now consider

λ
( j)
t+1,∞(θ∗,θ)=

m∑
k=1

λ̄(k)
t,∞(θ∗,θ)δ(k)

t+1(θ)K (k, j)
1,η(λ̄t,∞(θ∗,θ)⊙δt+1(θ))

(θ)+α( j)
t+1,∞(θ)= 0,

then α
( j)
t+1,∞(θ)=α( j)

t+1,∞(θ′)= 0 and for all k ∈ [m] we must have either:

• λ̄(k)
t,∞(θ∗,θ) = 0, which implies by the above that λ(k)

t,∞(θ∗,θ) = 0 =⇒ λ(k)
t,∞(θ∗,θ′) = 0 =⇒

λ̄(k)
t,∞(θ∗,θ′); or

• δ(k)
t+1(θ)= 0, which by assumption 2 that δ(k)

t+1(θ′)= 0; or

• K (k, j)
1,η(λ̄t,∞(θ∗,θ)⊙δt+1(θ))

(θ)= 0 which by assumptions 2, 3, and the induction hypothesis implies

K (k, j)
1,η(λ̄t,∞(θ∗,θ′)⊙δt+1(θ′))

(θ′)= 0.

Hence

λ
( j)
t+1,∞(θ∗,θ′)=

m∑
k=1

λ̄(k)
t,∞(θ∗,θ′)δ(k)

t+1(θ′)K (k, j)
1,η(λ̄t,∞(θ∗,θ′)⊙δt+1(θ′))

(θ′)+α( j)
t+1,∞(θ′)= 0.

Now, if for some i ∈ [m]:

µ(i)
t+1,∞(θ∗,θ)=

m∑
j=1

λ
( j)
t+1,∞(θ∗,θ)q( j)

t+1(θ)G( j,i)
t+1 (θ)+κ(i)

t+1,∞(θ)= 0,

then κ(i)
t+1,∞(θ)= 0, which by assumption 2 implies κ(i)

t+1,∞(θ′)= 0 and for all j ∈ [m] we have either:

• λ
( j)
t+1,∞(θ∗,θ)= 0, which by the above implies λ( j)

t+1,∞(θ∗,θ′)= 0; or

• q( j)
t+1(θ)= 0, which by assumption 2 implies q( j)

t+1(θ′)= 0; or

• G( j,i)
t+1 (θ)= 0, which by assumption 2 implies G( j,i)

t+1 (θ′)= 0.

Hence

µ(i)
t+1,∞(θ∗,θ′)=

m∑
j=1

λ
( j)
t+1,∞(θ∗,θ′)q( j)

t+1(θ′)G(i, j)
t+1 (θ′)+κ(i)

t+1,∞(θ′)= 0,

and the inductive proof is complete. ■

The following lemma will be used in the proof of lemma 5.

Lemma 15. Let assumptions 2- 4 hold. For all θ ∈Θ, n ∈N, and i ∈ [m]:

λ
( j)
t,∞(θ∗,θ)= 0 =⇒ λ

( j)
t,n(θ)= 0 a.s.,

µ(i)
t,∞(θ∗,θ)= 0 =⇒ µ(i)

t,n(θ)= 0 a.s..
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Proof. Fix arbitrary θ,∈Θ and n ∈N. All almost sure statements in the proof are made with

respect to Pθ
∗

n . We will show by induction that the following two implications hold for all t ≥ 1

and i, j ∈ [m].

λ
( j)
t,∞(θ∗,θ)= 0 =⇒ λ

( j)
t,n(θ)= 0 a.s., (A.31)

µ(i)
t,∞(θ∗,θ)= 0 =⇒ µ(i)

t,n(θ)= 0 a.s. (A.32)

For t = 1 consider:

λ
( j)
1,∞(θ∗,θ)=

m∑
k=1

λ̄(k)
0,∞(θ∗,θ)δ(k)

1 (θ)K (k, j)
1,η(λ0,∞(θ∗,θ)⊙δ1(θ))(θ)+α( j)

1,∞(θ)= 0,

then α
( j)
1,∞(θ) = 0 which by assumption 2 implies α( j)

1,n(θ) = 0, and for all j ∈ [m] we must have

either:

• λ̄(k)
0,∞(θ∗,θ)=λ(k)

0,∞(θ)= 0, which by assumption 4 implies λ(k)
0,n(θ)= 0; or

• δ(k)
1 (θ)= 0; or

• K (k, j)
1,η(λ0,∞(θ∗,θ)⊙δ(θ))(θ)= 0 which by assumptions 3 and 4 implies K (k, j)

1,η(λ0,n(θ∗,θ)⊙δ(θ))(θ)= 0.

Hence we have:

λ
( j)
1,n(θ)=

m∑
k=1

λ(k)
0,n(θ′)δ(k)

1 (θ′)K (k, j)
1,η(λ0,n(θ′)⊙δ1(θ′))(θ

′)+α( j)
1,n(θ′)= 0, a.s.

Now consider:

µ(i)
1,∞(θ∗,θ)=

m∑
j=1

λ
( j)
1,∞(θ∗,θ)q( j)

1 (θ)G(i, j)
1 (θ)+κ(i)

1,∞(θ)= 0,

then κ(i)
1,∞(θ)= 0, which by assumption 2 implies κ(i)

1,n(θ)= 0, furthermore for al j ∈ [m] we must

have either:

• λ
( j)
1,∞(θ∗,θ)= 0, which by the above implies λ( j)

1,n(θ′)= 0 Pθ
∗
a.s.; or

• q( j)
1 (θ)= 0; or

• G(i, j)
1 (θ)= 0.

Hence:

µ(i)
1,n(θ)=

m∑
j=1

λ
( j)
1,n(θ)q( j)

1 (θ)G(k, j)
1 (θ)+κ(i)

1,n(θ)= 0.

For the induction hypothesis, assume (A.31) and (A.32) hold. Then for each k ∈ [m],

λ̄(k)
t,∞(θ∗,θ)= (1− q(k)

t (θ))λ(k)
t,∞(θ∗,θ)+

m∑
j=1

µ(i)
t,∞(θ∗,θ∗)

λ(k)
t,∞(θ∗,θ)q(k)

t (θ)G(k, j)
t (θ)

µ(i)
t,∞(θ∗,θ)

= 0.

This is well defined by the induction hypothesis. Furthermore, in order for this equality with zero

to hold we must have either:
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• q(k)
t (θ)< 1, in which case we must have λ(k)

t,∞(θ∗,θ)= 0 which by the induction hypothesis

implies λ(k)
t,n(θ)= 0 a.s.; or

• q(k)
t (θ)= 1, in which case we must have λ(k)

t,∞(θ∗,θ)G(k, j)
t (θ)= 0 a.s. for all j so that the sum

is equal to 0. Since Gt is row-stochastic matrix, we know there must exist a j ∈ [m] such

that G(k, j)
t (θ) > 0 and so we must have λ(k)

t,∞(θ∗,θ) = 0 which by the induction hypothesis

implies λ(k)
t,n(θ)= 0 a.s.

So we have λ̄(k)
t,∞(θ∗,θ) = 0 =⇒ λ(k)

t,n(θ) = 0 a.s., furthermore λ(k)
t,n(θ) = 0 a.s. =⇒ λ̄(k)

t,n(θ) = 0 a.s..

Now if for some j ∈ [m]:

λ
( j)
t+1,∞(θ∗,θ)=

m∑
k=1

λ̄(k)
t,∞(θ∗,θ)δ(k)

t+1(θ)K (k, j)
1,η(λ̄t,∞(θ∗,θ)⊙δt+1(θ))

(θ)+α( j)
t+1,∞(θ)= 0,

then α
( j)
t+1,∞(θ)= 0 which by assumption 2 implies α( j)

t+1,n(θ)= 0 and for each k ∈ [m] we must have

either:

• λ̄(k)
t,∞(θ∗,θ)= 0, which we have already shown implies λ(k)

t,n(θ)= 0 a.s. =⇒ λ̄(k)
t,n(θ)= 0 a.s.;

or

• δ(k)
t+1(θ)= 0; or

• K (k, j)
1,η(λ̄t,∞(θ∗,θ)⊙δt+1(θ))

(θ)= 0, which together with assumption 3 implies K (k, j)
1,η(λ̄t,n(θ)⊙δt+1(θ))

(θ)=
0.

Hence

λ
( j)
t+1,n(θ)=

m∑
k=1

λ̄(k)
t,nθ)δ(k)

t+1(θ)K (k, j)
1,η(λ̄t,n(θ)⊙δt+1(θ))

(θ)+α( j)
t+1,n(θ)= 0 a.s.

Now, if

µ(i)
t+1,∞(θ∗,θ)=

m∑
j=1

λ
( j)
t+1,∞(θ∗,θ)q( j)

t+1(θ)G(k, j)
t+1 (θ)+κ(i)

t+1,∞(θ)= 0,

then κ(i)
t+1,∞(θ)= 0 which by assumption 4 implies κ(i)

t+1,n(θ)= 0 and for all j ∈ [m] we have either:

• λ
( j)
t+1,∞(θ∗,θ)= 0, which implies λ( j)

t+1,n(θ)= 0 a.s.; or

• q( j)
t+1(θ)= 0; or

• G(k, j)
t+1 (θ)= 0.

Hence

µ(i)
t+1,n(θ)=

m∑
j=1

λ
( j)
t+1,n(θ)q( j)

t+1(θ)G(k, j)
t+1 (θ)+κ( j)

t+1,∞(θ)= 0 a.s.,

and the inductive proof is complete.

■
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Proof of Proposition 3 Fix any θ ∈Θ. We proceed by induction to show that for all t ≥ 1,

n−1λ̄t,n(θ) θ∗
−→
a.s.

λ̄t,∞(θ∗,θ),

with the other claims of the proposition proved along the way.

Using assumption 4 we have:

n−1λ̄0,n(θ)= n−1λ0,n(θ) θ∗
−→
a.s.

λ0,∞(θ)=λ0,∞(θ∗,θ).

Now, for t ≥ 1 assume that n−1λ̄t−1,n(θ) θ∗
−→
a.s.

λ̄t−1,∞(θ∗,θ). We have:

n−1λt,n(θ)=
[
(n−1λ̄t−1,n(θ)⊙δt(θ))⊤Kt,η(λ̄t−1,n(θ)⊙δt(θ))

]⊤+n−1αt,n(θ)

θ∗
−→
a.s.

[
(λ̄t−1,∞(θ∗,θ)⊙δt(θ))⊤Kt,η(λ̄t−1,∞(θ∗,θ)⊙δt(θ))

]⊤+αt,∞(θ)

=λt,∞(θ∗,θ),

by the continuous mapping theorem (CMT) and assumptions 2 and 3. A further application of the

CMT and assumption 2 yields:

n−1µt,n (θ)=
[(

n−1λt,n(θ)⊙qt(θ)
)⊤Gt(θ)

]⊤+n−1κt,n(θ)

θ∗
−→
a.s.

[(
λt,∞(θ∗,θ)⊙qt(θ)

)⊤Gt(θ)
]⊤+κt,∞(θ)

=µt,∞
(
θ∗,θ

)
Recalling from remark 1 that n−1yt

θ∗
−→
a.s.

µt,∞ (θ∗,θ∗) and applying the CMT, we have:

n−1λ̄t,n(θ)=
[
1m −qt(θ)

+
([

n−1yt ⊘n−1µt,n(θ)
]⊤ ([

1m ⊗qt(θ))⊙Gt(θ)
]⊤)⊤ ]

⊙n−1λt,n(θ)

θ∗
−→
a.s.

[
1m −qt(θ)

+
([
µt,∞(θ∗,θ∗)⊘µt,∞(θ∗,θ)

]⊤ ([
1m ⊗qt(θ)

]⊙Gt(θ)⊤
))⊤ ]

⊙λt,∞(θ∗,θ)

= λ̄t,∞(θ∗,θ)

We note this limit is almost surely well defined since by lemma 14 for any i ∈ [m],

µ(i)
t,∞(θ∗,θ∗)= 0 ⇐⇒ µ(i)

t,∞(θ∗,θ)= 0

and by lemma 13 if µ(i)
t,n(θ)= 0 with positive probability then yt = 0, Pθ

∗
n -a.s. In both these cases

we are working under the convention 0
0 := 0. ■

Lemma 16. Let assumptions 2- 4 hold. For all θ∗ ∈Θ and t ≥ 1 the function θ 7→µt,∞(θ∗,θ) is

continuous on Θ.
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Proof. Fix an arbitrary θ∗ ∈Θ. Note that λ̄0,∞(θ∗,θ) := λ̄0,∞(θ) is continuous by assumption 4.

We will now show that for any t ≥ 1, continuity of λ̄t−1,∞(θ∗,θ) implies continuity of λt,∞(θ∗,θ),

µt,∞(θ∗,θ), and λ̄t,∞(θ∗,θ), from which the claim of the lemma follows.

Henceforth assume that λ̄t−1,∞(θ∗,θ) is continuous and recall that by definition of λt,∞(θ∗,θ),

λt,∞(θ∗,θ) :=
[
(λ̄t−1,∞(θ∗,θ)⊙δt(θ))⊤Kt,η(λ̄t−1,∞(θ∗,θ)⊙δt(θ))(θ)

]⊤+αt,∞(θ).

Continuity of δt(θ) and αt,∞(θ) in θ holds directly by assumptions 2 and 4. By assumption 3

we know that Kt,η(θ) is continuous in θ and η. Hence, to show continuity of λt,∞(θ∗,θ) we shall

show that η(λ̄t−1,∞ (θ∗,θ)⊙δt(θ)) is continuous in θ. The function η : Rm
≥0 → Rm

≥0 is continuous

everywhere except at 0m, we now show that, by virtue of our assumptions, this discontinuity is

immaterial. Consider the two following cases:

• There exists θ′ ∈Θ such that λ̄t−1,∞
(
θ∗,θ′

)⊙δt(θ′)= 0m. In this case, by assumption 2 and

lemma 14 we have that λ̄t−1,∞(θ∗,θ)⊙δt(θ)= 0m for all θ ∈Θ, from which it follows that

η(λ̄t−1,∞ (θ∗,θ)⊙δt(θ)) = 0m for all θ ∈Θ, so that the continuity of η(λ̄t−1,∞ (θ∗,θ)⊙δt(θ))
in θ on Θ holds trivially;

• For all θ ∈Θ, λ̄t−1,∞ (θ∗,θ)⊙δt(θ) ̸= 0m. In this case the continuity of η(λ̄t−1,∞ (θ∗,θ)⊙δt(θ))

in θ on Θ follows from the continuity of η on Rm
≥0 \{0m}.

Hence, θ 7→λt,∞(θ∗,θ) is continuous. Recall that:

µt,∞(θ∗,θ) :=
[(
λt,∞(θ∗,θ)⊙qt(θ)

)⊤Gt(θ)
]⊤+κt,∞(θ).

Due to the continuity of λt,∞(θ∗,θ) and assumption 2, this is a composition of continuous functions

and hence θ 7→µt,∞(θ∗,θ) is itself continuous. Now consider

λ̄t,∞(θ∗,θ) :=
[
1m −qt(θ)

+
([
µt,∞(θ∗,θ∗)⊘µt,∞(θ∗,θ)

]⊤ ([
1m ⊗qt(θ)

]⊙Gt(θ)⊤
))⊤ ]

⊙λt,∞(θ∗,θ).

Each component of this function is trivially continuous on Θ except the µt,∞(θ∗,θ∗)⊘µt,∞(θ∗,θ)

term, we will now prove its continuity. By lemma 14, for each i ∈ [m] we need only consider the

two cases:

• either µ(i)
t,∞(θ∗,θ)= 0 for all θ ∈Θ, in which case we have by convention µ(i)

t,∞(θ∗,θ∗)/µ(i)
t,∞(θ∗,θ) :=

0, which is continuous; or

• µ(i)
t,∞(θ∗,θ) ̸= 0 for all θ ∈Θ, in which case µ(i)

t,∞(θ∗,θ∗)/µ(i)
t,∞(θ∗,θ) is continuous.

Hence we have elementwise continuity of µt,∞(θ∗,θ∗)⊘µt,∞(θ∗,θ) which gives us continuity of

θ 7→ λ̄t,∞(θ∗,θ).

We have shown that continuity of θ 7→ λ̄t−1,∞(θ∗,θ) on Θ implies continuity of θ 7→λt,∞(θ∗,θ),

θ 7→µt,∞(θ∗,θ) and θ 7→ λ̄t,∞(θ∗,θ) on Θ, which completes the proof. ■
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Case (II)

Define:

λ̄0,∞(θ∗,θ) :=λ0,∞(θ), (A.33)

and for r = 1, . . . ,R and t = τr−1 +1, . . . ,τr −1,

Λt,∞(θ∗,θ) := (
λ̄τr−1,∞(θ∗,θ)⊗1m

)⊙Kt,η(λ̄t−1,∞(θ∗,θ))(θ
∗,θ),

λ̄t,∞(θ∗,θ) := (1⊤
mΛt,∞(θ∗,θ))⊤,

and

Λτr ,∞(θ∗,θ) := (
λ̄τr−1,∞(θ∗,θ)⊗1m

)⊙Kt,η(λ̄τr−1,∞(θ∗,θ))(θ),

Mr,∞(θ∗,θ) :=
τr∑

s=τr−1+1
Λs,∞(θ)⊙Qs(θ),

Λ̄τr ,∞(θ∗,θ) := [
1m ⊗1m −Qτr (θ)

]⊙Λτr (θ
∗,θ)

+ [
Mr,∞(θ∗,θ∗)⊘Mr,∞(θ∗,θ)

]⊙ [
Λτr ,∞(θ∗,θ)⊙Qτr (θ)

]
,

λ̄τr ,∞(θ∗,θ) := (1⊤
mΛ̄τr ,∞(θ∗,θ))⊤. (A.34)

where if we encounter 0/0 in the element-wise division operation we set the entry to 0 by

convention. The main result of section A.2 is proposition 4 concerning the convergence to the

above of the associated finite-n quantities computed using algorithm 8.

Proposition 4. Let assumptions 2 - 4 hold. For any θ ∈Θ and r ≥ 1 and t ≥ 1:

n−1Mr,n(θ) θ∗
−→
a.s.

Mr,∞(θ∗,θ),

n−1Λt,n(θ) θ∗
−→
a.s.

Λt,∞(θ∗,θ),

The proof is postponed until later in section A.2.

Remark 2. Similarly to properties of case (I) pointed out in remark 1, by writing out the above

definitions it can be checked that Nt(θ∗) = Λt,∞(θ∗,θ∗), thus n−1Zt
θ∗
−→
a.s.

Λt,∞(θ∗,θ∗); and that

Mr,∞(θ∗,θ∗) is equal to the right hand side of (A.24), thus n−1Ȳr
θ∗
−→
a.s.

Mr,∞(θ∗,θ∗).

Similarly to as in section A.2, in order to prove proposition 4 we need to check that certain

quantities are almost surely well defined. For the update step of algorithm 8 to be Pθ
∗
-a.s. well

defined for all θ ∈Θ we need that if M(i, j)
r,n (θ)= 0 occurs with positive probability then Ȳ (i, j)

r = 0

Pθ
∗
- a.s. This is established in the following lemma.

Lemma 17. Let assumptions 2 - 4 hold. For any θ ∈Θ, n ∈N, (i, j) ∈ [m]2 and r = 1, . . . ,R:

Pθ
∗

n

(
M(i, j)

r,n (θ)= 0
)
> 0 =⇒ Ȳ (i, j)

r = 0, Pθ
∗

n a.s.
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Proof. Fix arbitrary θ ∈Θ and n ∈N. All almost sure statements made throughout the proof

are with respect to Pθ
∗

n . We will prove by induction that for all r = 1, . . . ,R we have that for all

s ∈ {τr−1 +1, . . . ,τr} and (i, j) ∈ [m]2, the following two implications hold.

Pθ
∗

n

(
Λ

(i, j)
s,n (θ)= 0

)
> 0 =⇒ Z(i, j)

s = 0, a.s., (A.35)

Pθ
∗

n

(
M(i, j)

r,n (θ)= 0
)
> 0 =⇒ Ȳ (i, j)

r = 0 a.s. (A.36)

Consider the case r = 1. We will first show that for all s ∈ {τ0 +1, . . . ,τ1} if, for some (i, j) ∈ [m]2,

Pθ
∗

n

(
Λ

(i, j)
s,n (θ)= 0

)
> 0 then Z(i, j)

s = 0 a.s. by induction on s. Suppose that for some (i, j) ∈ [m]2,

Pθ
∗

n

(
Λ

(i, j)
1,∞(θ)= 0

)
> 0, i.e,

Pθ
∗

n

(
λ(i)

0,n(θ)K (i, j)
1,η(λ0,n(θ))(θ)= 0

)
> 0.

This implies that either:

• Pθ
∗

n

(
λ(i)

0,n(θ)= 0
)
> 0, which since λ(i)

0,n(θ) is deterministic implies that

λ(i)
0,n(θ)= 0 which by assumption 4 implies that λ(i)

0,n(θ∗)= 0 =⇒ x(i)
0 = 0 a.s.; or

• K (i, j)
1,η(λ(i)

0,n)
(θ)= 0, which implies K (i, j)

1,η(x0)(θ
∗)= 0 by assumptions 2, 3, and 4.

Together this implies imply Z(i, j)
1 = 0 a.s.. Now let s ∈ {τ0 + 1, . . . ,τ1} and assume that if, for

some (i, j) ∈ [m]2, Pθ
∗

n

(
Λ

(i, j)
s−1,n(θ)= 0

)
> 0 then Z(i, j)

s−1 = 0 a.s.. Now suppose for some (i, j) ∈ [m]2,

Pθ
∗

n

(
Λ

(i, j)
s,n (θ)= 0

)
> 0, i.e.,

Pθ
∗

n

((
1⊤

mΛ
(·,i)
s−1,n(θ)

)
K (i, j)

1,η
(
1⊤

mΛ
(·,i)
s−1,n(θ)

)(θ)= 0

)
> 0,

This implies that either:

• Pθ
∗

n

(
1⊤

mΛ
(·,i)
0,n (θ)= 0

)
> 0, which by the induction hypothesis implies 1⊤

mZ(·,i)
s−1 = 0 a.s., which

in turn implies x(i)
s−1 = 0 a.s.; or

• Pθ
∗

n

(
K (i, j)

1,η
(
1⊤

mΛ
(·,i)
s−1,n(θ)

)(θ)= 0

)
> 0 which by assumptions 2 and 3 and the induction hypothesis

implies K (i, j)
1,η(xs−1)(θ

∗)= 0 a.s.,

which together imply Z(i, j)
s = 0 a.s.. Now suppose for some (i, j) ∈ [m]2, Pθ

∗
n

(
M(i, j)

1,n (θ)= 0
)
> 0, i.e.,

Pθ
∗

n

(
τ1∑

s=τ0+1
Λ

(i, j)
s,n (θ)⊙Q(i, j)

s (θ)= 0

)
> 0,

then for all s = τ0 +1, . . . ,τ1 either:

• Pθ
∗

n

(
Λ

(i, j)
s,n (θ)= 0

)
> 0, which implies Z(i, j)

s = 0 hence Y (i, j)
s = 0 a.s.; or

• Q(i, j)
s (θ)= 0 which by assumption 2 implies Q(i, j)

s (θ∗)= 0 hence Y (i, j)
s = 0 a.s.,
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and hence Ȳ (i, j)
1 =∑τ1

s=τ0+1 Y (i, j)
s = 0 a.s., this completes the proof of (A.35) and (A.36) for r = 1.

For the induction hypothesis, suppose that (A.35) and (A.36) hold for some r ≥ 1. Notice that:

Λ̄
(i, j)
τr ,n(θ)=

[
1−Q(i, j)

τr (θ)
]
Λ

(i, j)
τr ,n(θ)+ Ȳ (i, j)

r

M(i, j)
r,n (θ)

[
Λ

(i, j)
τr ,n(θ)⊙Q(i, j)

τr (θ)
]
= 0

is almost surely well defined by the induction hypothesis since we divide positive Ȳ (i, j)
r by 0 with

probability 0. Now suppose, for some (i, j) ∈ [m], that Pθ
∗

n

(
Λ̄

(i, j)
τr ,n(θ)= 0

)
> 0, then either:

• Q(i, j)
τr (θ)< 1, which implies Pθ

∗
n

(
Λ

(i, j)
τr ,n(θ)= 0

)
> 0, so that the first term of the sum is 0 with

positive probability, which then implies Z(i, j)
τr = 0 a.s. by the induction hypothesis; or

• Q(i, j)
τr (θ) = 1, which implies Pθ

∗
n

(
Λ

(i, j)
τr ,n(θ)= 0

)
> 0, so that the second term in the sum is 0

with positive probability, which then implies Z(i, j)
τr = 0 a.s. by the induction hypothesis.

Using this and identical reasoning to that in the r = 1 case completes the induction. ■

If, for some i, j ∈ [m], M(i, j)
r,∞ (θ∗,θ) = 0 and M(i, j)

r,∞ (θ∗,θ∗) > 0, then Λ̄τr ,∞(θ∗,θ) would involve

division of a finite number by zero. The following lemma implies this situation does not arise.

Lemma 18. Let assumptions 2 - 4 hold. Then for all θ,θ′ ∈Θ, (i, j) ∈ [m]2 and r = 1, . . . ,R:

M(i, j)
r,∞ (θ∗,θ)= 0 ⇐⇒ M(i, j)

r,∞ (θ∗,θ′)= 0.

Proof. It is enough to establish the implication in one direction for arbitrary θ,θ′ ∈Θ. We will

prove by induction that for all r = 1, . . . ,R, s = τr−1 +1, . . . ,τr and i, j ∈ [m],

Λ
(i, j)
s,∞ (θ∗,θ)= 0 =⇒ Λ

(i, j)
s,∞ (θ∗,θ′)= 0,

M(i, j)
r,∞ (θ∗,θ)= 0 =⇒ M(i, j)

r,∞ (θ∗,θ′)= 0.

Consider the case r = 1. We will first show that for all s ∈ {τ0 +1, . . . ,τ1}, Λ(i, j)
s,∞ (θ∗,θ) = 0 =⇒

Λ
(i, j)
s,∞ (θ∗,θ′)= 0 by induction on s. To this end suppose that for some (i, j) ∈ [m]2:

Λ
(i, j)
1,∞(θ∗,θ)=λ(i)

0,∞(θ∗,θ)K (i, j)
1,η(λ(i)

0,∞(θ∗,θ))
(θ)= 0.

Then either:

• λ(i)
0,∞(θ∗,θ)=λ(i)

0,n(θ)= 0, which by assumption 4 implies λ0,n(θ′)=λ(i)
0,∞(θ∗,θ′)= 0; or

• K (i, j)
1,η(λ0,∞(θ∗,θ)(θ)= 0, which by assumptions 2, 3, and 4 implies K (i, j)

1,η(λ0,∞(θ∗,θ′)(θ
′)= 0.

Hence:

Λ
(i, j)
1,∞(θ∗,θ′)=λ(i)

0,∞(θ∗,θ′)K (i, j)
1,η(λ(i)

0,∞(θ∗,θ′))
(θ′)= 0.

Now assume that for s = tau0 +1, . . . ,τ1 that Λ(i, j)
s−1,∞(θ∗,θ)= 0 =⇒ Λ

(i, j)
s−1,∞(θ∗,θ′)= 0, then if:

Λ
(i, j)
s,∞ (θ∗,θ)=

(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ)

)
K (i, j)

1,η(1⊤
mΛs−1,∞(θ∗,θ))(θ)= 0,

we must have either:
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•
(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ)

)
= 0, which by the induction hypothesis implies

(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ′)

)
= 0; or

• K (i, j)

1,η
(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ)

)(θ)= 0, which by the above and assumptions 2 and 3 implies

K (i, j)

1,η
(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ′)

)(θ′)= 0.

We therefore find:

Λ
(i, j)
s,∞ (θ∗,θ′)=

(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ′)

)
K (i, j)

1,η(1⊤
mΛs−1,∞(θ∗,θ′))(θ

′)= 0.

completing the intermediary induction on s. Now consider:

M(i, j)
1,∞(θ∗,θ)=

τ1∑
s=1
Λ

(i, j)
s,∞ (θ∗,θ)⊙Q(i, j)

s (θ)= 0,

then for all s = τ0 +1, . . . ,τ1 either:

• Λ
(i, j)
s,∞ (θ∗,θ)= 0 =⇒ Λ

(i, j)
s,∞ (θ∗,θ′)= 0; or

• Q(i, j)
s (θ)= 0 =⇒ Q(i, j)

s (θ′)= 0,

and hence:

M(i, j)
1,∞(θ∗,θ′)=

τ1∑
s=1
Λ

(i, j)
s,∞ (θ∗,θ′)⊙Q(i, j)

s (θ′)= 0,

completing the r = 1 case.

Now assume that for all s ∈ {τr−1+1, . . . ,τr} that Λ(i, j)
s,∞ (θ∗,θ)= 0 =⇒ Λ

(i, j)
s,∞ (θ∗,θ′)= 0 and that

M(i, j)
r,∞ (θ∗,θ)= 0 =⇒ M(i, j)

r,∞ (θ∗,θ′)= 0. Then we have that if:

Λ̄
(i, j)
τr ,∞(θ∗,θ)=

[
1−Q(i, j)

τr (θ)
]
⊙Λ(i, j)

τr ,∞(θ∗,θ)

+ M(i, j)
r,∞ (θ∗,θ∗)

M(i, j)
r,∞ (θ∗,θ)

⊙
[
Λ

(i, j)
τr ,∞(θ∗,θ)⊙Q(i, j)

τr (θ)
]
= 0,

which is well defined by the inductive hypothesis, then either:

• Q(i, j)
τr (θ)< 1, and then Λ(i, j)

τr ,∞(θ∗,θ)= 0 =⇒ Λ
(i, j)
τr ,∞(θ∗,θ′) =⇒ Λ̄

(i, j)
τr ,∞(θ∗,θ′)= 0, hence the first

term is 0, or

• Q(i, j)
τr (θ) = 1, and then Λ(i, j)

τr (θ∗,θ) = 0 =⇒ Λ
(i, j)
τr ,∞(θ∗,θ′) =⇒ Λ̄

(i, j)
τr ,∞(θ∗,θ′) = 0, so that the

right hand term is 0.

This along with using the same reasoning used in the r = 1 case gives:

Λ
(i, j)
τr ,∞(θ∗,θ)=

(
1⊤

mΛ̄
(·,i)
τr−1,∞(θ∗,θ)

)
K (i, j)

1,η(1⊤
mΛ̄τr−1,∞(θ∗,θ))(θ)= 0,

implies

Λ
(i, j)
τr ,∞(θ∗,θ′)=

(
1⊤

mΛ̄
(·,i)
τr−1,∞(θ∗,θ′)

)
K (i, j)

1,η(1⊤
mΛ̄τr−1,∞(θ∗,θ′))(θ

′)= 0.
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Using this and further using identical inductive reasoning to the r = 1 case we see that for all

s = τr +1, . . . ,τr+1, Λ(i, j)
s,∞ (θ∗,θ) = 0 =⇒ Λ

(i, j)
s,∞ (θ∗,θ′) = 0 and further that M(i, j)

r+1,∞(θ∗,θ) = 0 =⇒
M(i, j)

r+1,∞(θ∗,θ′)= 0. This completes the inductive proof. ■

The following lemma is used in the proof of lemma 6.

Lemma 19. Let assumptions 2 - 4 hold. For all θ ∈Θ, n ∈N, (i, j) ∈ [m]2, and r ∈ {1, . . . ,R}:

M(i, j)
r,∞ (θ∗,θ)= 0 =⇒ M(i, j)

r,n (θ)= 0, Pθ
∗

n -a.s.

Proof. Fix arbitrary θ ∈Θ and n ∈N. We will prove that for all r = 1, . . . ,R, s = τr−1+1, . . . ,τr and

i, j ∈ [m] the following two implications hold:

Λ
(i, j)
s,∞ (θ∗,θ)= 0 =⇒ Λ

(i, j)
s,n (θ)= 0, a.s.

M(i, j)
r,∞ (θ∗,θ)= 0 =⇒ M(i, j)

r,n (θ∗,θ′)= 0, a.s.

The induction is on r and s. Consider r = 1. We will first show that for all s ∈ τ0 +1, . . . ,τ1 that

Λ
(i, j)
s,∞ (θ∗,θ)= 0 =⇒ Λ

(i, j)
s,∞ (θ∗,θ′)= 0 by induction on s. We have for t−1 case:

Λ
(i, j)
1,∞(θ∗,θ)=λ(i)

0,∞(θ∗,θ)K (i, j)
1,η(λ0,∞(θ∗,θ))(θ)= 0,

which implies that either:

• λ(i)
0,∞(θ∗,θ)=λ(i)

0,∞(θ)= 0, in which case λ(i)
0,n(θ)= 0 or

• K (i, j)
1,η(λ0,∞(θ∗,θ)(θ)= 0, in which case K (i, j)

1,η(λ0,n(θ))(θ)= 0,

so that:

Λ
(i, j)
1,n (θ∗,θ′)=λ(i)

0,n(θ))K (i, j)
1,η(λ0,n(θ))(θ)= 0.

Now assume that given Λ(i, j)
s−1,∞(θ∗,θ)= 0 =⇒ Λ

(i, j)
s−1,n(θ)= 0 a.s., then:

Λ
(i, j)
s,∞ (θ∗,θ)=

(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ)

)
K (i, j)

1,η(1⊤
mΛs−1,∞(θ∗,θ))(θ)= 0,

which in turn implies either:

•
(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ)

)
= 0m, which implies

(
1⊤

mΛ
(·,i)
s−1,n(θ)

)
= 0 a.s.; or

• K (i, j)

1,η
(
1⊤

mΛ
(·,i)
s−1,∞(θ∗,θ)

)(θ)= 0, which implies K (i, j)
1,η(1⊤

mΛs−1,n(θ))(θ)= 0 a.s..

Together we find:

Λ
(i, j)
s,n (θ)=

(
1⊤

mΛ
(·,i)
s−1,n(θ)

)
K (i, j)

1,η(1⊤
mΛs−1,n(θ))(θ)= 0,

completing the intermediary induction on s. Now consider:

M(i, j)
1,∞(θ∗,θ)=

τ1∑
s=1
Λ

(i, j)
s,∞ (θ∗,θ)⊙Q(i, j)

s (θ)= 0,

then for all s = τ0 +1, . . . ,τ1 either
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• Λ
(i, j)
s,∞ (θ∗,θ)= 0, which implies Λ(i, j)

s,n (θ)= 0; or

• Q(i, j)
s (θ)= 0,

and hence:

M(i, j)
1,n (θ∗,θ′)=

τ1∑
s=1
Λ

(i, j)
s,n (θ)⊙Q(i, j)

s (θ)= 0.

This completes the case r = 1.

Now assume that for all s = τr−1+1, . . . ,τr, Λ(i, j)
s,∞ (θ∗,θ)= 0, which implies Λ(i, j)

s,∞ (θ∗,θ′)= 0 and

that M(i, j)
r,∞ (θ∗,θ)= 0, which implies M(i, j)

r,∞ (θ∗,θ′)= 0. Then

Λ̄
(i, j)
τr ,∞(θ∗,θ)=

[
1−Q(i, j)

τr (θ)
]
⊙Λ(i, j)

τr (θ∗,θ)

+ M(i, j)
r,∞ (θ∗,θ)

M(i, j)
r,∞ (θ∗,θ)

⊙
[
Λ

(i, j)
τr ,∞(θ∗,θ)⊙Q(i, j)

τr (θ)
]
= 0,

and either:

• Q(i, j)
τr (θ) < 1, which implies Λ(i, j)

τr ,∞(θ∗,θ) = 0 =⇒ Λ
(i, j)
τr ,n(θ) =⇒ Λ̄

(i, j)
τr ,n(θ) = 0 a.s., so that the

first term is 0; or

• Q(i, j)
τr (θ) = 1 which implies Λ(i, j)

τr ,∞(θ∗,θ) = 0 =⇒ Λ
(i, j)
τr ,n(θ) =⇒ Λ̄

(i, j)
τr ,n(θ) = 0, a.s., so that the

right hand term is 0.

This along with using the same reasoning used in the r = 1 case tells us that given:

Λ
(i, j)
τr ,∞(θ∗,θ)=

(
1⊤

mΛ̄
(·,i)
τr−1,∞(θ∗,θ)

)
K (i, j)

1,η(1⊤
mΛ̄τr−1,∞(θ∗,θ))(θ)= 0,

which implies

Λ
(i, j)
τr ,n(θ)=

(
1⊤

mΛ̄
(·,i)
τr−1,n(θ)

)
K (i, j)

1,η(1⊤
mΛ̄τr−1,n(θ))(θ)= 0 a.s.

Using this and further using identical inductive reasoning to the r = 1 case we see that for all

s ∈ {τr+1, . . . ,τr+1} we have Λ(i, j)
s,∞ (θ∗,θ)= 0 =⇒ Λ

(i, j)
s,n (θ)= 0 a.s. and further that M(i, j)

r+1,∞(θ∗,θ)= 0,

which implies M(i, j)
r+1,n(θ)= 0 a.s. This completes the inductive proof. ■

Lemma 20. Let assumptions 2- 4 hold. For all θ∗ ∈Θ and r ≥ 1, the function θ 7→Mr,∞(θ∗,θ) is

continuous on Θ.

Proof. The arguments are very similar to those in the proof of 16, but making use of lemma 18,

so we omit them. ■
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Proof of Proposition 4 The proof is by induction on r. Consider r = 1. Note that n−1λ̄0,n(θ) :=
n−1λ0,n(θ) θ∗

−→
a.s.

λ0,∞(θ∗,θ) by assumption 4. Now let t = 1, . . . ,τ1−1 and assume that n−1λ̄t−1,n(θ) θ∗
−→
a.s.

λ̄t−1,∞(θ,θ∗). Then:

n−1Λt,n(θ)= n−1(λ̄t−1,n(θ)⊗1m)⊙Kt,η(λ̄t−1,n(θ))
θ∗
−→
a.s.

(
λ̄t,∞(θ,θ∗)⊗1m

)⊙Kt,η(λ̄t,∞(θ∗,θ))

=Λt,∞(θ∗,θ).

By the CMT, a further application yields:

n−1λ̄t,n(θ)= n−1(1⊤
mΛt,n(θ))⊤ θ∗

−→
a.s.

(1⊤
mΛt,∞(θ∗,θ))⊤ = λ̄t,∞(θ∗,θ).

Then by induction on t we have that:

n−1Λt,n(θ) θ∗
−→
a.s.

Λt,∞(θ∗,θ),

for all t = 1, . . . ,τ1, this means that:

n−1M1,n(θ)= n−1
τ1∑

s=1
Λt,n(θ)⊙Qs(θ)

θ∗
−→
a.s.

τ1∑
s=1
Λt,∞(θ∗,θ)⊙Qs(θ)=M1,∞(θ∗,θ).

Now for general r = 1, . . . ,R assume that λ̄τr−1,n(θ) θ∗
−→
a.s.

λ̄τr−1,∞(θ∗,θ). Using identical reasoning to

the r = 1 case, we find that for all t = τr−1 +1, . . . ,τr:

n−1Λt,n(θ) θ∗
−→
a.s.

Λt,∞(θ∗,θ),

which in turn implies by the CMT that:

n−1Mr,n(θ) θ∗
−→
a.s.

Mr,∞(θ∗,θ),

Writing out the definition of Mr,∞(θ∗,θ∗), proposition 2 gives n−1Ȳr
θ∗
−→
a.s.

Mr,∞(θ∗,θ∗). Then by

the CMT,

n−1Λ̄τr ,n(θ)= (
1m ⊗1m −Q∗

τr

)⊙n−1Λτr ,n(θ)

+ [
n−1Ȳr ⊘n−1Mr,n(θ)

]⊙ ([
n−1Λτr ,n(θ)⊙Qτr (θ)

])
θ∗
−→
a.s.

(
1m ⊗1m −Qτr (θ)

)⊙Λτr ,∞(θ∗,θ)

+ [
Mr,∞(θ∗,θ∗)⊘Mr,∞(θ∗,θ)

]⊙ [
Λτr ,∞(θ∗,θ)⊙Qτr (θ)

]
= Λ̄τr ,∞(θ∗,θ).

We note here that the left hand side of the above display is almost surely well defined since,

by lemma 17, for all n ∈ N and i, j ∈ [m] if there is positive probability that M(i, j)
r,n (θ) = 0 then
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Ȳ (i, j)
r = 0 Pθ

∗
n -a.s., in which case we invoke the convention 0

0 := 0. The right hand side of the limit

is well defined since for all i, j ∈ [m] we have M(i, j)
r,∞ (θ∗,θ∗)= 0 ⇐⇒ M(i, j)

r,∞ (θ∗,θ)= 0 by lemma 18,

in which case we again invoke the convection 0
0 := 0 . A further application of the CMT gives:

n−1λ̄τr ,n(θ)= n−1 (
1⊤

mΛ̄τr (θ)
)⊤ θ∗

−→
a.s.

(1⊤
mΛ̄τr ,∞(θ∗,θ))⊤ = λ̄τr ,∞(θ∗,θ).

This completes the proof. ■

A.3 Contrast functions

Definition 1. Let (Hn)n≥1 be a sequence of random functions Hn : θ ∈Θ 7→Hn(θ) ∈R where Θ is

a metric space. We say that (Hn)n≥1 are stochastically equicontinuous if there exists an event M of

probability 1, such that for all ε> 0 and ω ∈ M, there exists N(ω) and δ> 0 such that n > N(ω)

implies:

sup
|θ1−θ2|<δ

|Hn(ω,θ1)−Hn(ω,θ2)| < ϵ.

Lemma 21. Assume Θ is a compact metric space and let (Hn)n≥1 be a sequence of random

functions Hn : θ ∈Θ→Hn(θ) ∈R. If there exists a continuous function H such that for all θ ∈Θ
we have |Hn(θ)−H (θ)| a.s.→ 0, and (Hn)n≥1 are stochastically equicontinuous, then:

sup
θ∈Θ

|Hn(θ)−H (θ)| a.s.→ 0.

That is Hn(θ) converges to H (θ) almost surely as n →∞, uniformly in θ.

Proof. See Andrews (1992). ■

Case (I)

We have:

n−1ℓn(θ)−n−1ℓn(θ∗)=
T∑

t=1

{y⊤
t

n
log

(
µt,n(θ)⊘µt,n(θ∗)

)
−n−11⊤

m
[
µt,n(θ)−µt,n(θ∗)

]}
.

(A.37)

The following proposition details the limit of (A.37).

Proposition 5. Let assumptions 1-4 hold. Then:

n−1ℓn(θ)−n−1ℓn(θ∗) θ∗
−→
a.s.

−
T∑

t=1
KL

(
Pois

[
µt,∞(θ∗,θ∗)

]∥Pois
[
µt,∞(θ∗,θ)

])
, (A.38)

uniformly in θ.
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Proof. For n ∈N, we define a random function Cn :Θ→R, as Cn(θ) :=∑T
t=1 C t,n(θ) where:

C t,n(θ) := y⊤
t

n
log

(
µt,n(θ)⊘µt,n(θ∗)

)−n−11⊤
m

[
µt,n(θ)−µt,n(θ∗)

]
=

m∑
i=1

y(i)
t

n
log

µ(i)
t,n(θ)

µ(i)
t,n(θ∗)

−n−1
[
µ(i)

t,n(θ)−µ(i)
t,n(θ∗)

]
,

with the convention 0log0 := 0. To see that C t,n(θ) is almost surely well defined, consider the

following cases for each i ∈ [m]. If both µ(i)
t,n(θ) > 0 and µ(i)

t,n(θ∗) > 0, Pθ
∗

n -a.s., then the log of the

ratio of these terms is almost surely well defined. If µ(i)
t,n(θ) = 0 or µ(i)

t,n(θ∗) = 0 with positive

probability, then y(i)
t = 0 Pθ

∗
n -a.s. by lemma 13 and we invoke the convention 0log0 := 0.

We shall show that for t = 1, . . . ,T,

C t,n(θ) θ∗
−→
a.s.

−KL(Pois[µt,∞(θ∗,θ∗)]∥Pois[µt,∞(θ∗,θ)]), uniformly in θ.

The proof consists of showing pointwise convergence and then stochastic equicontinuity of C t,n(θ).

Uniform almost sure convergence then follows by lemma 21.

Fix t ∈ {1, . . . ,T} and note that yt
n

θ∗
−→
a.s.

µt,∞(θ∗,θ∗) by proposition 1 (see remark 1), and by

proposition 3, n−1µt,n(θ) θ∗
−→
a.s.

µt(θ
∗,θ). We claim that by the CMT:

C t,n(θ)= y⊤
t

n
log

(
µt,n(θ)⊘µt,n(θ∗)

)−n−1 [
µt,n(θ)−µt,n(θ∗)

]⊤1m

=
m∑

i=1

y(i)
t

n
log

µ(i)
t,n(θ)

µ(i)
t,n(θ∗)

−n−1
[
µ(i)

t,n(θ)−µ(i)
t,n(θ∗)

]
(A.39)

θ∗
−→
a.s.

m∑
i=1

µ(i)
t,∞(θ∗,θ∗) log

µ(i)
t,∞(θ∗,θ)

µ(i)
t,∞(θ∗,θ∗)

−
[
µ(i)

t,∞(θ∗,θ)−µ(i)
t,∞(θ∗,θ∗)

]
(A.40)

=−KL
(
Pois

[
µt,∞(θ∗,θ∗)]

)∥Pois
[
µt,∞(θ∗,θ)

])
.

To see that the limit is well defined consider the cases for each i ∈ [m], either:

• µ(i)
t,∞(θ∗,θ∗) > 0 and µ(i)

t,∞(θ∗,θ) > 0. In this case all functions in the sequence {C t,n(θ)}n≥1

and its limit are well defined; or

• µ(i)
t,∞(θ∗,θ) > 0 and µ(i)

t,∞(θ∗,θ∗) = 0, or µ(i)
t,∞(θ∗,θ) = 0 and µ(i)

t,∞(θ∗,θ∗) > 0. This case is

prohibited by lemma 14; or

• µ(i)
t,∞(θ∗,θ)=µ(i)

t,∞(θ∗,θ∗)= 0. In this case, by lemmas 13 and 15, we have that for all n ∈N
µ(i)

t,n(θ∗) = 0, µ(i)
t,n(θ) = 0, and y(i)

t = 0 Pθ
∗

n a.s., so that the ith term disappears from (A.39)

and (A.40) with probability 1 by the convention 0log0 := 0.

Hence we have shown the convergence of:

C t,n(θ) θ∗
−→
a.s.

−KL(µt,∞(θ∗,θ∗)∥µt,∞(θ∗,θ)),
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point-wise in θ ∈Θ.

Next we show that (C t,n)n≥1 are stochastically equicontinuous. Let f ∈Rm and E ⊂Ω such

that Pθ
∗
(E)= 1. Let θ1,θ2 ∈Θ, ω ∈ E, and ε> 0. Firstly we will show the stochastic equicontinuity

of n−1µt,n(θ)⊤ f for any f ∈Rm. Let ε0 > 0 and write by the triangle inequality:

∣∣n−1µt,n(θ1)⊤ f −n−1µt,n(θ2)⊤ f
∣∣≤ ∣∣n−1µt,n(θ1)⊤ f −µt,∞(θ∗,θ1)⊤ f

∣∣
+ ∣∣n−1µt,n(θ2)⊤ f −µt,∞(θ∗,θ2)⊤ f

∣∣
+ ∣∣µt,∞(θ∗,θ1)⊤ f −µt,∞(θ∗,θ2)⊤ f

∣∣ .

There exists N(ω) < ∞ such that for n > N(ω) the first two terms are bounded by ε0/3 by

proposition 3. Furthermore, since θ 7→µt,∞(θ∗,θ) is continuous by lemma 16 there exists a δ0 > 0

such that:

∥θ1 −θ2∥∞ < δ0 =⇒ ∣∣µt,∞(θ∗,θ1)⊤ f −µt,∞(θ∗,θ2)⊤ f
∣∣< ε0/3.

Hence we have shown stochastic equicontinuity of (n−1µt,n(θ)⊤ f )n≥1. Now, consider C t,n:

∣∣C t,n(θ1)−C t,n(θ2)
∣∣≤ ∣∣∣∣∣ m∑

i=1
n−1 y(i)

t log
µ(i)

t,n(θ1)

µ(i)
t,n(θ2)

∣∣∣∣∣
+ ∣∣n−1 [

µt,n(θ1)⊤−µt,n(θ2)⊤
]
1m

∣∣ . (A.41)

By what has been proven already we can choose δ1 and N1(ω) to bound (A.41) by ε/2. Let ε2 > 0,

by proposition 1 there exists N2(ω) such that for n > N2(ω):

∣∣∣∣∣ m∑
i=1

n−1 y(i)
t log

µ(i)
t,n(θ1)

µ(i)
t,n(θ2)

∣∣∣∣∣< m∑
i=1

|µ(i)
t,∞(θ∗,θ∗)+ε2|

∣∣∣∣∣log
n−1µ(i)

t,n(θ1)

n−1µ(i)
t,n(θ2)

∣∣∣∣∣ (A.42)

Furthermore, for each i ∈ [m] either:

• there is positive probability that either µ(i)
t,n(θ1)= 0 or µ(i)

t,n(θ2)= 0, then the ith term of the

sum on the l.h.s. of (A.42) disappears since y(i)
t = 0 with probability 1 by lemma 13, and we

invoke the convention 0log0 := 0; or

• µ(i)
t,n(θ1)> 0 and µ(i)

t,n(θ2)> 0 almost surely. Then by continuity of log on R>0 there exists a

δ(i)
3 > 0 such that for |n−1µ(i)

t,n(θ1)−n−1µ(i)
t,n(θ2)| < δ(i)

3 :

∣∣∣∣∣log
n−1µ(i)

t,n(θ1)

n−1µ(i)
t,n(θ2)

∣∣∣∣∣= ∣∣∣logn−1µ(i)
t,n(θ1)− logn−1µ(i)

t,n(θ2)
∣∣∣

< ε

2m|µ(i)
t,∞(θ∗,θ∗)+ε2|

.
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By stochastic equicontinuity of (n−1µ⊤
t,n f )n≥1 there exists N3(ω) and δ2 such that for

n > N3(ω) and ∥θ1 −θ2∥∞ < δ2 we have that ∥n−1µt,n(θ1)−n−1µt,n(θ2)∥∞ <mini δ
(i)
3 so that:∣∣∣∣∣ m∑

i=1
n−1 y(i)

t log
µ(i)

t,n(θ1)

µ(i)
t,n(θ2)

∣∣∣∣∣< m∑
i=1

|µ∗(i)
t,∞(θ∗,θ∗)+ε2| ε

2m|µ∗(i)
t,∞(θ∗,θ∗)+ε2|

= ε/2.

Hence choosing δ=min(δ1,δ2) and N(ω)=max(N1(ω), N2(ω), N3(ω)) we have that for

∥θ1 −θ2∥∞ < δ and n > N(ω): ∣∣C t,n(θ1)−C t,n(θ2)
∣∣< ε/2+ε/2= ε.

Hence we have established the stochastic equicontinuity of C t,n. This along with the already

proven pointwise convergence establishes uniform almost sure convergence by lemma 21 and

completes the proof. ■

Case (II)

We have:

n−1Ln(θ)−n−1Ln(θ∗)=
R∑

r=1

{
1⊤

m
[
n−1Ȳr ⊙ log

(
Mr,n(θ)⊘Mr,n(θ∗)

)]
1m

+n−11⊤
m

[
Mr,n(θ)−Mr,n(θ∗)

]
1m

}
.

Proposition 6. Let assumptions 1-4 hold. Then

n−1Ln(θ)−n−1Ln(θ∗) θ∗
−→
a.s.

−
R∑

r=1
KL

(
Pois

[
Mr,∞(θ∗,θ∗)

]∥Pois
[
Mr,∞(θ∗,θ)

])
, (A.43)

uniformly in θ.

Proof. The details are similar to lemma 5. For n ∈N define the sequence of random functions

(Dn(θ))n≥1, Dn(θ) :=∑R
r=1 Dr,n(θ), where:

Dr,n(θ) := 1⊤
m

[
n−1Ȳr ⊙ log

(
Mr,n(θ)⊘Mr,n(θ∗)

)]
1m

+n−11⊤
m

[
Mr,n(θ)−Mr,n(θ∗)

]
1m

=
m∑

i=1

m∑
j=1

Ȳ (i, j)
r log

M(i, j)
r,n (θ)

M(i, j)
r,n (θ∗)

+
[
M(i, j)

r,n (θ)−M(i, j)
r,n (θ∗)

]
With the convention 0log0 := 0. To see that this mapping is almost surely well defined, consider

the following cases for each (i, j) ∈ [m]2. If both M(i, j)
r,n (θ)> 0, or M(i, j)

r,n (θ∗)> 0 Pθ
∗

n -a.s., then the log

of each of these terms is almost surely well defined. If either M(i, j)
r,n (θ)= 0, or M(i, j)

r,n (θ∗)= 0 with

positive probability, then Ȳ (i, j)
r = 0 Pθ

∗
n -a.s. by lemma 17 and we invoke the convention 0log0 := 0.

It is enough to show that for each r ∈ {1, . . . ,R}
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Dr,n(θ) θ∗
−→
a.s.

−KL
(
Pois

[
Mr,∞(θ∗,θ∗)

]∥Pois
[
Mr,∞(θ∗,θ)

])
, uniformly in θ.

We show pointwise almost sure convergence and then stochastic equicontinuity. Fix r ∈ {1, . . . ,R}

and note that by proposition 4 n−1Mr,n(θ) θ∗
−→
a.s.

Mr,∞(θ∗,θ) for all θ ∈Θ and r = 1, . . . ,R. Further-

more by proposition 2 n−1Ȳr
θ∗
−→
a.s.

Mr,∞(θ∗,θ∗) for all r = 1, . . . ,R. We claim that by the CMT:

Dr,n(θ)=1⊤
m

[
n−1Ȳr ⊙ log

(
Mn,r(θ)⊘Mn,r(θ∗)

)]
1m

+n−11⊤
m

[
Mn,r(θ)−Mn,r(θ∗)

]
1m

=
m∑

i=1

m∑
j=1

n−1Ȳ (i, j)
r log

M(i, j)
r,n (θ)

M(i, j)
r,n (θ∗)

+n−1
[
M(i, j)

r,n (θ)−M(i, j)
r,n (θ∗)

]
(A.44)

θ∗
−→
a.s.

m∑
i=1

m∑
j=1

M(i, j)
r,∞ (θ∗,θ∗) log

M(i, j)
r,∞ (θ∗,θ)

M(i, j)
r,∞ (θ∗,θ∗)

+
[
M(i, j)

r,∞ (θ∗,θ)−M(i, j)
r,∞ (θ∗,θ∗)

]
(A.45)

=−KL(Mr,∞(θ∗,θ∗)∥Mr,∞(θ∗,θ)).

To see that this limit is indeed almost surely well defined consider the cases for each i = 1, . . . ,m

and

j ∈ [m], either:

• M(i, j)
r,∞ (θ∗,θ∗)> 0 and M(i, j)

r,∞ (θ∗,θ)> 0. In this case all functions in the sequence and its limit

are well defined. Or

• M(i, j)
r,∞ (θ∗,θ)> 0 and M(i, j)

r,∞ (θ∗,θ∗)= 0, or M(i, j)
r,∞ (θ∗,θ)= 0 and M(i, j)

r,∞ (θ∗,θ∗)> 0. This case is

prohibited by lemma 14. Or

• M(i, j)
r,∞ (θ∗,θ∗)= M(i, j)

r,∞ (θ∗,θ∗)= 0. In this case, by lemmas 13 and 15, we have

M(i, j)
r,n (θ∗)= 0 and Ȳ (i, j)

r = 0 Pθ
∗

n a.s., so that the (i, j)th term disappears from the sums in

(A.44) and (A.45) by the convention 0log0 := 0.

Hence we have shown:

Dr,n(θ) θ∗
−→
a.s.

−KL
(
Pois

(
Mr,∞(θ∗,θ∗)

)∥Pois
(
Mr,∞(θ∗,θ)

))
, pointwise in θ.

We now prove stochastic equicontinuity of (Dr,n)n≥1. Firstly we will show the stochastic equiconti-

nuity of (n−1 f ⊤
1 Mr,n(θ)f 2)n≥1 for any vectors f 1, f 2 ∈ Rm. Let f 1, f 2 ∈ Rm and E ⊆Ω such that

Pθ
∗
(E)= 1. Let θ1,θ2 ∈Θ, ω ∈ E, and ε> 0. Let ε0 > 0 and write by the triangle inequality:

∣∣n−1 f ⊤
1 Mr,n(θ1)f 2 −n−1 f ⊤

1 Mr,n(θ2)f 2
∣∣≤ ∣∣n−1 f ⊤

1 Mr,n(θ1)f 2 − f ⊤
1 Mr,∞(θ∗,θ1)f 2

∣∣
+ ∣∣n−1 f ⊤

1 Mr,n(θ2)f 2 − f ⊤
1 Mr,∞(θ∗,θ2)f 2

∣∣
+ ∣∣f ⊤

1 Mr,∞(θ∗,θ1)f 2 − f ⊤
1 Mr,∞(θ∗,θ2)f 2

∣∣ .

100



A.3. CONTRAST FUNCTIONS

There exists N(ω) such that for n > N(ω) the first two terms are bounded by ε0/3 by proposition 3.

Furthermore, since θ 7→Mr,∞(θ∗,θ) is continuous by lemma 20 there exists a δ0 such that:

∥θ1 −θ2∥∞ < δ0 =⇒ ∣∣f ⊤
1 Mr,∞(θ∗,θ1)f 2 − f ⊤

1 Mr,∞(θ∗,θ2)f 2
∣∣< ε0/3.

Hence we have shown stochastic equicontinuity of (n−1 f ⊤
1 Mr,n(θ)f 2)n≥1. Now, consider Dr,n:∣∣Dr,n(θ1)−Dr,n(θ2)

∣∣≤ ∣∣n−11⊤
m

[
Ȳr ⊙ log

(
Mr,n(θ1)⊘Mr,n(θ2)

)]
1m

∣∣
+ ∣∣n−11⊤

m
[
Mr,n(θ1)−Mr,n(θ2)

]
1m

∣∣ (A.46)

By what has already been proven, for any ε> 0 we can choose δ1 and N1(ω) to bound (A.46) by

ε/2. Let ε1 > 0, by proposition 2 there exists N2(ω) such that for n > N2(ω),∣∣∣∣∣ m∑
i, j=1

n−1Ȳ (i, j)
r log

M(i, j)
r,n (θ1)

M(i, j)
r,n (θ2)

∣∣∣∣∣< m∑
i, j=1

|M(i, j)
r,∞ (θ∗,θ∗)+ε1|

∣∣∣∣∣log
n−1M(i, j)

r,n (θ1)

n−1M(i, j)
r,n (θ2)

∣∣∣∣∣ .

Furthermore, for each (i, j) ∈ [m]2 either:

• M(i, j)
r,n (θ1) = 0 or M(i, j)

r,n (θ2) = 0 with positive probability. In this case the (i, j)th terms

disappear from the sum on the left hand side since Ȳ (i, j)
r = 0 with probability 1 by lemma

17; or

• M(i, j)
r,n (θ1) > 0 and M(i, j)

r,n (θ2) > 0 almost surely, by continuity of log on R>0 there exists a

δ
(i, j)
3 > 0 such that if |M(i, j)

r,n (θ1)−M(i, j)
r,n (θ2)| < δ(i, j)

3 then:∣∣∣∣∣log
n−1M(i, j)

r,n (θ1)

n−1M(i, j)
r,n (θ2)

∣∣∣∣∣= ∣∣∣logn−1M(i, j)
r,n (θ1)− logn−1M(i, j)

r,n (θ2)
∣∣∣

≤ ε

2m2|M(i, j)
r,∞ (θ∗,θ∗)+ε1|

.

Then by stochastic equicontinuity of (n−1Mr,n)n≥1 there exists N3(ω) and δ2 such that for n >
max(N2(ω), N3(ω)) and ∥θ1 −θ2∥∞ < δ2 we have that

∥Mr,n(θ1)−Mr,n(θ2)∥∞ <min(i, j)δ
(i, j)
3 so that:

m∑
i, j=1

n−1Ȳ (i, j)
r

∣∣∣∣∣log
n−1M(i, j)

r,n (θ1)

n−1M(i, j)
r,n (θ2)

∣∣∣∣∣< m∑
i, j=1

|M(i, j)
r,∞ (θ∗,θ∗)+ε1| ε

2m2|M(i, j)
r,∞ (θ∗,θ∗)+ε1|

= ε/2.

Choosing δ = min(δ1,δ2) and N(ω) = max(N1(ω), N2(ω), N3(ω)) we have that for ∥θ1 −θ2∥∞ < δ

and n > N(ω): ∣∣Dr,n(θ1)−Dr,n(θ2)
∣∣< ε/2+ε/2= ε.

Hence we have established the stochastic equicontinuity of (Dr,n)n≥1. This along with the already

proven pointwise convergence establishes uniform almost sure convergence by lemma 21.

■
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A.4 Convergence of Maximum PAL estimators

Proof of Theorem 1 Let C (θ∗,θ) be defined to be the r.h.s. of (A.38) and let Cn be as in the proof

of proposition 5. We have that Cn(θ̂n)≥Cn(θ) for all θ ∈Θ∗
(I). Furthermore C (θ∗,θ∗)−C (θ∗,θ)> 0

for all θ ∈Θ. We can combine these inequalities to obtain:

0≤C (θ∗,θ∗)−C (θ∗, θ̂n)

≤C (θ∗,θ∗)−Cn(θ∗)+Cn(θ∗)−Cn(θ̂n)+Cn(θ̂n)−C (θ∗, θ̂n)

≤ 2sup
θ∈Θ

∣∣C (θ∗,θ)−Cn(θ)
∣∣ θ∗
−→
a.s.

0.

(A.47)

Hence C (θ∗, θ̂n) θ∗
−→
a.s.

C (θ∗,θ∗).

Now assume for purposes of contradiction that there is some positive probability that θ̂n

does not converge to the set Θ∗
(I), i.e. assume that there is an event E ⊂Ω with Pθ

∗
(E)> 0 such

that for all ω ∈ E there exists a δ > 0 such that for infinitely many n ∈N we have θ̂n(ω) is not

in the open neighbourhood Bδ(Θ∗) = {θ ∈ Θ : ∃θ′ ∈ Θ∗ : ∥θ−θ′∥ < δ}. Since Θ is compact, the

set Bδ(Θ∗
(I))

c =Θ\ Bδ(Θ∗
(I)) is closed, bounded, and therefore compact. Furthermore, C (θ∗,θ) is

continuous in θ. By the extreme value theorem this means that there exists a θ′ ∈ Bδ(Θ∗
(I))

c such

that for all θ ∈ Bδ(Θ∗
(I))

c:

C (θ∗,θ)≤C (θ∗,θ′)

Furthermore, since θ′ ∉Θ∗
(I) there exists ε> 0 such that:

C (θ∗,θ′)<C (θ∗,θ∗)−ε.

By our assumption we have for each ω ∈ E there are infinitely many n ∈ N such that θ̂n(ω) ∈
Bδ(Θ∗

(I))
c. But this implies that for each ω ∈ E there are infinitely many n ∈N such that:

C (θ∗, θ̂n(ω))≤C (θ∗,θ′)<C (θ∗,θ∗)−ε,

=⇒ |C (θ∗,θ∗)−C (θ∗, θ̂n(ω))| > ε,

which contradicts (A.47). Hence we must have that θ̂n converges to the set Θ∗
(I) P

θ∗
-a.s. The proof

for case (II) follows the same arguments but with Cn and C (θ∗,θ) replaced by Dn as in the proof

of proposition 6 and D(θ∗,θ) defined to be the r.h.s. of (A.43). ■

A.5 Identifiability

Proposition 7. For any θ ∈Θ,

θ ∈Θ∗
(I) ⇐⇒ µt,∞(θ,θ)=µt,∞(θ∗,θ∗), ∀t = 1, . . . ,T

θ ∈Θ∗
(I I) ⇐⇒ Mr,∞(θ,θ)=Mr,∞(θ∗,θ∗), ∀r = 1, . . . ,R.
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Proof. For the first equivalence in the statement, in order to prove the implication in the forward

direction, assume that θ ∈Θ∗
(I), i.e., µt,∞(θ∗,θ)=µt,∞(θ∗,θ∗), for all t = 1, . . . ,T. Recall from the

definitions in (A.25)-(A.26) that λ0,∞(θ∗,θ) does not depend on θ∗, hence neither does λ1,∞(θ∗,θ),

and so:

µ1,∞(θ∗,θ∗)⊤ =µ1,∞(θ∗,θ)⊤

= (λ1,∞(θ∗,θ)⊙q1(θ))⊤G1(θ)+κ1,∞(θ)⊤

= (λ1,∞(θ,θ)⊙q1(θ))⊤G1(θ)+κ1,∞(θ)⊤

=µ1,∞(θ,θ)⊤.

Now, for t > 1 assume that λt−1,∞(θ,θ)=λt−1,∞(θ∗,θ) and µt−1,∞(θ,θ)=µt−1,∞(θ∗,θ). Then we

have that:

λ̄t−1,∞(θ∗,θ)=
[
1m −qt−1(θ)

+
(
µt−1,∞(θ∗,θ)⊤

{
[(1m ⊗qt−1(θ))⊙Gt−1(θ)⊤]

⊘ [
µt−1,∞(θ,θ)⊗1m

]})⊤]
⊙λt−1,∞(θ∗,θ)

= [
1m −qt−1(θ)+qt−1(θ)

]⊙λt−1,∞(θ∗,θ)

=λt−1,∞(θ∗,θ)

=λt−1,∞(θ,θ),

so that

λt,∞(θ∗,θ)⊤ = (λ̄t−1,∞(θ∗,θ)⊙δt(θ))⊤Kt,η(λ̄t−1,∞(θ∗θ)⊙δt(θ)) +αt,∞(θ)⊤

= (λt−1,∞(θ,θ)⊙δt(θ))⊤Kt,η(λt−1,∞(θ,θ)⊙δt(θ)) +αt,∞(θ)⊤

=λt,∞(θ,θ)⊤,

and

µt,∞(θ∗,θ∗)⊤ =µt,∞(θ∗,θ)⊤

= (λt,∞(θ∗,θ)⊙qt(θ))⊤Gt(θ)+κt,∞(θ)⊤

= (λt,∞(θ,θ)⊙qt(θ))⊤Gt(θ)+κt,∞(θ)⊤

=µt,∞(θ,θ)⊤.

By induction we have thus shown that µt,∞(θ∗,θ∗) = µt,∞(θ,θ) for all t = 1, . . . ,T and have

completed the proof for the forward direction of the first implication in the statement.

For the backwards direction we need to show that µt,∞(θ∗,θ∗)=µt,∞(θ,θ) =⇒ µt,∞(θ∗,θ)=
µt,∞(θ∗,θ∗), for all t = 1, . . . ,T . Similarly as for the forwards direction:
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µ1,∞(θ∗,θ)⊤ = (λ1,∞(θ∗,θ)⊙q1(θ))⊤G1(θ)+κ1(θ)⊤

= (λ1,∞(θ,θ)⊙q1(θ))⊤G1(θ)+κ1(θ)⊤

=µ1,∞(θ,θ)⊤

=µ1,∞(θ∗,θ∗)⊤.

Now, for t > 1 assume that λt−1,∞(θ,θ)=λt−1,∞(θ∗,θ) and µt−1,∞(θ,θ)=µt−1,∞(θ∗,θ). Then we

have that:

λ̄t−1,∞(θ∗,θ)=
[
1m −qt−1(θ)

+
(
µt−1,∞(θ∗,θ)⊤

{
[(1m ⊗qt−1(θ))⊙Gt−1(θ)⊤]

⊘ [
µt−1,∞(θ,θ)⊗1m

]})⊤]
⊙λt−1,∞(θ∗,θ)

= [
1m −qt−1(θ)+qt−1(θ)

]⊙λt−1,∞(θ∗,θ)

=λt−1,∞(θ∗,θ)

=λt−1,∞(θ,θ),

so that

λt,∞(θ∗,θ)⊤ = (λ̄t−1,∞(θ∗,θ)⊙δt(θ))⊤Kt,η(λ̄t−1,∞(θ∗θ)⊙δt(θ)) +αt,∞(θ)⊤

= (λt−1,∞(θ,θ)⊙δt(θ))⊤Kt,η(λ1,∞(θ,θ)⊙δt(θ)) +αt,∞(θ)⊤

=λt,∞(θ,θ)⊤,

and

µt,∞(θ∗,θ)⊤ = (λt,∞(θ∗,θ)⊙qt(θ))⊤Gt(θ)+κt,∞(θ)⊤

= (λt,∞(θ,θ)⊙qt(θ))⊤Gt(θ)+κt,∞(θ)⊤

=µt,∞(θ,θ)⊤

=µt,∞(θ∗,θ∗)⊤

This completes the proof of the first implication in the statement of the proposition.

For the second implication, we will first show Mr∞(θ∗,θ)=Mr∞(θ∗,θ∗) =⇒ Mr∞(θ∗,θ∗)=
Mr∞(θ,θ), for all r = 1, . . . ,R. Recalling the definitions in (A.33)-(A.34), we have that for all

s ∈ {1, . . . ,τ1}, Λs,∞(θ∗,θ)=Λs,∞(θ,θ) and hence:

M1,∞(θ∗,θ∗)=M1,∞(θ∗,θ)=
τ1∑

s=1
Λs,∞(θ∗,θ)⊙Qs(θ) (A.48)

=
τ1∑

s=1
Λs,∞(θ,θ)⊙Qs(θ)

=M1,∞(θ,θ).
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Now let r ≥ 1 and assume that, for all s ∈ {τr−1 +1, . . . ,τr}, Λs,∞(θ∗,θ)=Λs,∞(θ,θ). Then:

Λ̄τr ,∞(θ∗,θ)= [
1m ⊗1m −Qτr (θ)

]⊙Λτr ,∞(θ∗,θ)

+ Mr,∞(θ∗,θ∗)
Mr,∞(θ∗,θ)

[
Λτr ,∞(θ∗,θ)⊙Qτr (θ)

]
=Λτr ,∞(θ∗,θ)

=Λτr ,∞(θ,θ).

This then implies that for all s ∈ {τr +1, . . . ,τr+1}, Λs,∞(θ∗,θ) = Λs,∞(θ,θ), which in turn

implies, as in (A.48) that Mr+1,∞(θ∗,θ∗)=Mr+1,∞(θ,θ). The reverse direction follows by similar

reasoning, as in mirroring the proof of the backwards direction of the first implication in the

statement of the proposition, so the details are omitted. ■
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B.1 Supplementary materials for section 6.1
In this section we present the supporting traceplots, autocorrelation plots, and histograms for

section 6.1.

Figure B.1: Boarding school influenza example. Traceplots produced by the 3 procedures we have considered
when run using synthetic data generated with parameters θ∗ = (β∗,γ∗, q∗)= (2,0.5,0.8). The plots display
the first 105 iterations after the burn in period.
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Figure B.2: Boarding school influenza example. ACF plots for each considered scheme when run using
synthetic data generated with parameters θ∗ = (β∗,γ∗, q∗)= (2,0.5,0.8).

Figure B.3: Boarding school influenza example. Traceplots produced by the three considered schemes run
using real data. The plots display the first 105 iterations after the burn in period.
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Figure B.4: Boarding school influenza example. ACF plots produced by the three schemes run using real
data.

Figure B.5: Boarding school influenza example. Posterior marginals produced by the three algorithms
when run using synthetic data generated with parameters θ∗ = [β∗ γ∗ q∗]⊤ = [2 0.5 0.8]⊤, the histograms
are based on a thinned sample of 2.5×104.
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Figure B.6: Boarding school influenza example. Posterior samples produced by 3 considered schemes run
using real data, the histograms are based on a thinned sample of 2.5×104.

Figure B.7: Boarding school influenza example. Posterior samples produced by the LNA procedure, the
histograms are based on a thinned sample of 2.5×104.
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B.2 Supplementary material for section 6.2

This section presents supporting material for the age structured ‘flu example.

To write the age structured model of section 6.2 as an instance of the Latent Compartmental

Model we take m = 16 and identify vectors xk,t := [
Sk,t Ek,t Ik,t Rk,t

]⊤, xt :=
[
x⊤

1,t . . . x⊤
4,t

]⊤
and

matrices:

Zk,t :=


Sk,t −Bk,t Bk,t 0 0

0 Ek,t −Ck,t Ck,t 0

0 0 Ik,t −Dk,t Dk,t

0 0 0 Rk,t

 , Zt :=


Z1,t . . . 0

Z2,t,
...

...
. . .

0 . . . Z4,t

 .

Kk,t,η(xt) :=


e−hβ̄k,t 1− e−hβ̄k,t 0 0

0 e−hρ 1− e−hρ 0

0 0 e−hγ 1− e−hγ

0 0 0 1

 , Kt,η :=


K1,t,η . . . 0

K2,t,η
...

...
. . .

0 . . . K4,t,η

 ,

where the β̄k,t are the elements of the vector on the l.h.s. of (6.1). Due to the block-diagonal

structure of the matrix Kt,η for this example, algorithm 8 can be simplified to avoid performing

various multiplications by zero. The resulting procedure is algorithm 13.

Parameter ODE PAL

q1 0.93 (0.78,0.99) 0.71 (0.53,0.97)

q2 0.96 (0.86,0.99) 0.52 (0.49,0.56)

q3 0.28 (26,0.30) 0.84 (0.61,0.99)

q4 0.28 (0.22,0.34) 0.25 (0.19,0.32)

β11 4.34 (1.36,8.83) 1.26 (0.44,2.44)

β12 2.91 (1.09,5.45) 0.85 (0.56,1.25)

β13 3.51 (2.54,4.59) 0.26 (0.09,0.52)

β14 1.33 (0.58,2.29) 0.17 (0.05,0.36)

β22 2.55 (0.86,5.11) 4.21 (3.98,4.37)

β23 6.89 (5.88,8.18) 0.46 (0.35,0.60)

β24 0.72 (0.36,1.12) 0.09 (0.04,0.16)

β33 18.08 (17.54,18.50) 0.35 (0.15,0.58)

β34 0.14 (0.06,0.25) 0.10 (0.01,0.33)

β44 21.34 (20.41,22.26) 1.96 (1.59,2.24)
Table B.1: Age-structured ’flu example. Posterior means and 95% credible intervals.
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Algorithm 13 Filtering for the age-structured model

Initialise: λ̄0 ←λ0.

1: λ̄0 ←
[
λ̄
⊤
1,0 · · · λ̄⊤

4,0

]⊤
2: for r ≥ 1 :
3: for t = τr−1 +1, . . . ,τr −1:
4: for k = 1, . . . ,4 :
5: Λk,t ← (λ̄k,t−1 ⊗1m)⊙Kk,t,η(λ̄t−1)
6: λ̄k,t ← (1⊤

mΛ̄k,t)⊤

7: end for
8: λ̄t ←

[
λ̄
⊤
1,t · · · λ̄⊤

4,t

]⊤
9: end for

10: for k = 1, . . . ,4:
11: Λk,τr ← (λ̄k,τr−1 ⊗1m)⊙Kk,τr ,η(λ̄t−1)
12: Mk,r ←

∑τr
t=τr−1

Λk,t ⊙Qk,t

13: Λ̄k,τr ←
(
1m ⊗1m −Qk,τr

)⊙ Λ̄k,τr + Ȳk,r ⊙Λk,τr ⊙Qk,τr ⊘Mk,r
14: λ̄k,τr ← (1⊤

mΛ̄k,τr )
⊤

15: end for
16: λ̄τr ←

[
λ̄
⊤
1,τr

· · · λ̄⊤
4,τr

]⊤
17: L (Ȳ1:4,r|Ȳ1:4,1:r−1)←∑4

k=1−1⊤
mMk,r1m +1⊤

m(Ȳk,r ⊙Mk,r)1m −1⊤
m log(Ȳk,r!)1m

18: end for
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Figure B.8: Age-structured example. HMC posterior trace plots for the parameters of the stochastic model
produced using Stan. The plots show the first 55 iterations after the burn in period.
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Figure B.9: Age-structured example. HMC posterior trace plots for the parameters of the ODE model
produced using Stan. The plots show the first 55 iterations after the burn in period.
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Figure B.10: Age-structured example. HMC posterior histograms for the parameters of the stochastic
model produced using Stan.
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Figure B.11: Age-structured example. HMC posterior histograms for the parameters of the ODE model
produced using Stan.
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B.3 Supplementary material for section 6.3

This section presents supplementary materials for the rotavirus example, section 6.3.

Model

The evolution of the full age stratified rotavirus model at time t is given by:

S1,t+1 = S1,t−1 + A1,t +E1,t −B1,t −F (S)
1,t ,

I1,t+1 = I1,t +B1,t −C1,t −F (I)
1,t ,

R1,t+1 = R1,t +C1,t −E1,t −F (R)
1,t ,

S2,t+1 = S2,t +F (S)
1,t +E2,t −B2,t −F (S)

2,t ,

I2,t+1 = I2,t +F (I)
1,t +B2,t −C2,t −F (I)

2,t ,

R2,t+1 = R2,t +F (R)
1,t +C2,t −E2,t −F (R)

2,t ,

S3,+1t = S3,t +F (S)
2,t +E3,t −B3,t −D(S)

t ,

I3,t+1 = I3,t +F (I)
2,t +B3,t −C3,t −D(I)

t ,

R3,t+1 = R3,t +F (R)
2,t +C3,t −E3,t −D(R)

t ,

where at time t: A1,t ∼Pois(αt), for some αt ∈R represents new births, which is chosen according to

historical birth record data; B·,t represents new infectives; C·,t represents recovering individuals;

D·
t ∼ Binom(·t−1,1−δ) represents emigrating (dying) individuals; E·,t represents individuals

experiencing waning immunity; and F·,t represents ageing individuals.
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
B1,t

F (S)
1,t

S1,t −B1,t −F (S)
1,t

∼Mult

S1,t,


p1,t

1− e(−hd1)

e(−hd1) − pk,t





C1,t

F (I)
1,t

I1,t −C1,t −F (I)
1,t

∼Mult

I1,t,


1− e−hγ

1− e−hd1

e−hγ+ e−hd1 −1





E1,t

F (R)
1,t

R1,t −E1,t −F (R)
1,t

∼Mult

R1,t,


1− e−hω

1− e−hd1

e−hω+ e−hd1 −1





B2,t

F (S)
2,t

S2,t −B2,t −F (S)
2,t

∼Mult

S2,t,


p2,t

1− e(−hd2)

e(−hd2) − p2,t





C2,t

F (I)
2,t

I2,t −C2,t −F (I)
2,t

∼Mult

I2,t,


1− e−hγ

1− e−hd2

e−hγ+ e−hd2 −1





E2,t

F (R)
2,t

R2,t −E2,t −F (R)
2,t

∼Mult

R2,t,


1− e−hω

1− e−hd2

e−hω+ e−hd2 −1




[
B3,t

S3,t −D(S)
t −B3,t

]
∼Mult

(
S3,t −D(S)

t ,

[
p3,t

1− p3,t

])
[

C3,t

I3,t −D(I)
t −C2,t

]
∼Mult

(
I3,t −D(I)

t ,

[
1− e−hγ

e−hγ

])
[

E3,t

R3,t −D(R)
t −E2,t

]
∼Mult

(
R3,t −D(R)

t ,

[
1− e−hω

e−hω

])

To align notation with the model descriptions in section 3.1 collect observations at time r in

the matrix Ȳr ∈N9×9 which has elements equal to zero except Ȳ (3k−2,3k−1)
r =Yr,k for age groups

k = 1,2,3, similarly collect reporting rates in Qr ∈N9×9 which has elements equal to zero except

Q(3k−2,3k−1)
r = qr,k for k = 1,2,3. Define xt = [S1,t I1,t R1,t S2,t I2,t R2,t S3,t I3,t R3,t]. Identify the

matrix:
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K(1,·)
t,η =

[
e−hd1 − p1,t p1,t 0 1− e−hd1 0 0 0 0 0

]
,

K(2,·)
t,η =

[
0 e−hγ+ e−hd1 −1 1− e−hγ 0 1− e−hd1 0 0 0 0

]
,

K(3,·)
t,η =

[
1− e−hω 0 0 e−hω+ e−hd1 −1 0 1− e−hd1 0 0 0

]
,

K(4,·)
t,η =

[
0 0 0 e−hd2 − p2,t p2,t 0 1− e−hd2 0 0

]
,

K(5,·)
t,η =

[
0 0 0 0 e−hγ+ e−hd2 −1 1− e−hγ 0 1− e−hd2 0

]
,

K(6,·)
t,η =

[
0 0 0 1− e−hω 0 e−hω+ e−hd1 −1 0 0 1− e−hd1

]
,

K(7,·)
t,η = [

0 0 0 0 0 0 1− p3,t p3,t 0
]
,

K(8,·)
t,η =

[
0 0 0 0 0 0 0 e−hγ 1− e−hγ

]
,

K(9,·)
t,η =

[
0 0 0 0 0 0 1− e−hω 0 e−hω

]
.

Where for models EqEq and EqOv we have pk,t = 1−exp
{
−β⊤

k
I t
n χt

}
for k = 1,2,3 , and for model

OvOv we have pk,t = 1−exp
{
−β⊤

k
I t
n χtξr

}
for k = 1,2,3, in which case we will write Kt,η =Kt,η,ξ .

For models EqOv and OvOv we have for k = 1,2,3:

Q(3k−2,3k−1)
r ∼N (µq,σ2

q)≥0,≤1

corresponding to the reporting rate of new infective individuals for each age group. Denote this

prior density of Qr as f (· |µq,σ2
q).

Inference

We assume that the values of α,d1,d2,δ,γ,ω and µq are known, we set them to the same values

as assumed in Stocks et al. (2020), these are available on the GitHub page. All other parameters

are to be estimated.

Laplace approximation proposals for the rotavirus example

Consider algorithm 14. We factorise the proposal of particles at time r, [ξ(i)
r ,Q(i)

r ], into sampling

ξ(i)
r from its prior, then given this we seek a Laplace/PAL approximation to the distribution:

p̂(Qr | Ȳ1:r,Q1:r−1,ξ1:r) :=
expL (Ȳr | Ȳ1:r−1,Q1:r,ξ1:r) f (Qr |µq,σ2

q)∫
expL (Ȳr | Ȳ1:r−1,Q1:r,ξ1:r) f (Qr |µq,σ2

q)dQr
.

Suppressing dependence on the particle, let Lr =∑τr
t=τr−1+1Λt with Λt calculated as per line 5 of
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R1I1S1

S2 I2 R2

R3S3 I3

ω
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Figure B.12: Schema for the latent compartmental model of rotavirus transmission.

algorithm 14, we have for some constants C1,C2:

log p̂(Qr | Ȳ1:r,Q1:r−1,ξ1:r)=L (Ȳr | Ȳ1:r−1,Q1:r,ξ1:r)+ log f (Qr |µq,σ2
q)+C1

=
3∑

j=1

{
Ȳ (3 j−2,3 j−1)

r log(Q(3 j−2,3 j−1)
r L(3 j−2,3 j−1)

r )

−L(3 j−2,3 j−1)
r Q(3 j−2,3 j−1)

r − Ȳ (3 j−2,3 j−1)
r !

− 1
2

(
Q(3 j−2,3 j−1)

r −µq

σq

)2 }
+C2

To get the mean of a Laplace approximation to the above we must find it’s maximum w.r.t. Qr,

hence for j = 1,2,3:

d log p̂(Qr | yr)

dQ(3 j−2,3 j−1)
r

= Ȳ (3 j−2,3 j−1)
r

Q(3 j−2,3 j−1)
r

−L(3 j−2,3 j−1)
r − Q(3 j−2,3 j−1)

r −µq

σ2
q

= 0

⇐⇒ (Q(3 j−2,3 j−1)
r )2 + (L(3 j−2,3 j−1)

r σ2
q −µq)Q(3 j−2,3 j−1)

r − Ȳ (3 j−2,3 j−1)
r σ2

q = 0

=⇒ Q(3 j−2,3 j−1)
r = 1

2

(
µq −L(3 j−2,3 j−1)

r σ2
q +

√
(L(3 j−2,3 j−1)

r σ2
q −µq)2 +4Ȳ (3 j−2,3 j−1)

r σ2
q

)
=:µ( j)

r .

For the variance we find the second derivative and evaluate it at µ( j)
r :
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d2 log p̂(qr | yr)

d(Q(3 j−2,3 j−1)
r )2

=− Ȳ (3 j−2,3 j−1)
r

(Q(3 j−2,3 j−1)
r )2

− 1
σ2

q

=⇒
(
σ

( j)
r

)2 =

 Ȳ (3 j−2,3 j−1)
r(
µ

( j)
r

)2 + 1
σ2

q


−1

.

Hence, having proposed ξr from its prior, we propose Qr by setting all elements to be zero except:

Q(3 j−2,3 j−1)
r ∼N

(
µ

( j)
r , (σ( j)

r )2
)
≥0,≤1

for j = 1,2,3. (B.1)

Let π(· | Ȳ1:r,Q1:r−1,ξ1:r) be the proposal density associated with (B.1). The resulting approximate

Algorithm 14 PAL within SMC for model of Rotavirus

initialise: λ̄(i)
0 ←λ0 for i = 1 to npart.

1: for r ≥ 1:
2: for i = 1 to npart

3: ξ(i)
r ∼Gamma(σξ,σξ)

4: for t = τr−1 +1, . . . ,τr −1:
5: Λ(i)

t ← ((λ̄(i)
t−1 ⊙δt)⊗1m)⊙K

t,η
(
λ̄

(i)
t−1⊙δt

)
,ξ(i)

r
+αt

6: λ̄
(i)
t ← (1⊤

mΛ
(i)
t )⊤

7: end for
8: Λ(i)

τr ← ((λ(i)
τr−1 ⊙δτr )⊗1m)⊙K

τr ,η(λ(i)
τr−1⊙δτr ),ξ(i)

r
+ατr

9: Q(i)
r ∼π(· | Ȳ1:r,Q(i)

1:r−1,ξ(i)
1:r) calculated according to (B.1).

10: M(i)
r ←∑τr

t=τr−1+1Λ
(i)
t ⊙Q(i)

r

11: L (Ȳr | Ȳ1:r−1,Q(i)
1:r,ξ(i)

1:r)← 1⊤
mMr1m +1⊤

m(Ȳr ⊙ logMr)1m −1⊤
m log(Ȳr!)1m

12: logw(i)
r ←L (Ȳr | Ȳ1:r−1,Q(i)

1:r,ξ(i)
1:r)+ f (Q(i)

r |µq,σq)−π(Q(i)
r | Ȳ1:r,Q(i)

1:r−1,ξ(i)
1:r)

13: Λ̄
(i)
τr

← (1m ⊗1m −Q(i)
r )⊙Λ(i)

τr + Ȳr ⊙Λ(i)
τr ⊙Q(i)

r ⊘M(i)
r

14: λ̄
(i)
τr

← (1⊤
mΛ̄

(i)
τr )⊤

15: end for
16: L̂ (Ȳr|Ȳ1:r−1)← log

(
n−1

part
∑npart

j=1 w( j)
r

)
17: w̄(i)

r ← w(i)
r /

∑
j w( j)

r for i = 1 to npart

18: resample
{
λ̄

(i)
τr

}npart

i=1
according to a systematic resampling scheme with weights {w(i)

r }npart
i=1

19: end for

likelihood estimate for algorithm 14 is:

p(Ȳ1:R)≈
R∑

r=1
L̂ (Ȳr|Ȳ1:r−1).

Convergence plots for coordinate ascent algorithm

For each of EqEq EqOv, and OvOv, we performed a finite differencing coordinate ascent optimisa-

tion. That is, for each parameter: fix all others to their current value and approximate the sign of
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Figure B.13: Plots showing 100 runs of the optimisation procedure the EqEq rotavirus model applied to
real data.

the gradient with finite differencing and take a step in positive gradient direction - cycle through

parameters until convergence. Figures B.13, B.14, and B.15 demonstrate the convergence of this

procedure for each model EqEq, EqOv, and OvOv respectively.
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Figure B.14: Plots showing 100 runs of the optimisation procedure the EqOv rotavirus model applied to
real data.
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Figure B.15: Plots showing 100 runs of the optimisation procedure the OvOv rotavirus model applied to
real data.
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B.4 Supplementary material for section 6.4

This section presents supplementary material for the measles example of section 6.4

Model

As in Xia et al. (2004) and Park and Ionides (2020), we assume that βk,r follows the school year:

βk,r =
(1+2(1− p)a)β̄k, during school term,

(1−2pa)β̄k, during school holidays,

where p = 0.759 is the proportion of the year taken up by school terms, β̄k > 0 is the mean

transition rate for city k, and a is the relative effect of holidays on transmission. Finally, the new

infected and new removed are:

Ck,t ∼Bin(Ek,t −F (E)
k,t ,1− e−hρ), Dk,t ∼Bin(Ik,t −F (I)

k,t,1− e−hγ),

with h/ρ mean time spent in the exposed compartment and h/γ mean recovery time. Given the

vectors δk,t =
[
δ(S)

k,t δ
(E)
k,t δ

(I)
k,t δ

(R)
k,t

]⊤ ∈R4
≥0 and αk,t =

[
α(1)

k,t 0 0 0
]⊤ ∈R4

≥0, we have:

F (·)
k,t ∼Bin

(
·k,t,1−δ(·)

k,t

)
, Ak,t ∼Pois

(
α(1)

k,t

)
,

modelling the new births (immigration) into the susceptible population and the deaths (emigra-

tion) across compartments. Since there is no reinfection mechanism in the model (a realistic

assumption for measles modelling), it is important to have new individuals enter the population

to model the recurrent epidemic peaks present in the data. As already mentioned, for the model

to capture recurrent peaks, it must accommodate recruitment into the susceptible compartments.

Birthrate data for each city of the model is used to do this — as in Xia et al. (2004) — it is assumed

that newborns enter the susceptible class after a delay of 4 years, corresponding to the age an

individual enters the high-risk school-age demographic. There is a further ‘cohort’ effect aspect

to the model: it is assumed that at the start of the school year, a fraction c ∈ (0,1) of the lagged

births enter the susceptible compartment, the remaining 1− c proportion enter at a constant rate

throughout the year. This informs the assumed rate parameters αk,t = [α(1)
k,t 0 0 0 ]⊤ and, similarly,

death rate records inform choice of δk,t. The values used for αk,t and δk,t are reported in the data

available on the GitHub page.

The observations are aggregated incidence data in the form of cumulative fortnightly transi-

tions from infective to recovered for each of the 40 cities subject to binomial under-reporting, at

times τr = 4r for r = 1, . . . ,R. Observations are modelled as transitions from infective to recovered

compartments because, on discovery, cases are treated with bed rest and hence removed from the

population Park and Ionides (2020). Denoting observations as Ȳk,r =
∑τr

t=τr−1+1 Yk,t where each

Yk,t ∈N4×4 has each element equal to zero except for the (3,4)th element which, conditional on
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Dk,t, is distributed:

Y (3,4)
k,t ∼Bin

(
Dk,t,Q

(3,4)
k,r

)
, for t = τr−1, . . .τr, r ≥ 1, k = 1, . . . , J,

where Qk,r ∈ [0,1]4×4 consists of all zeros apart from the (3,4)th entry, which is the report-

ing rate of transitions from infective to recovered. We assume that this rate follows Q(3,4)
k,r ∼

N (µq,k,σ2
q)≥0,≤1 for k = 1, . . . ,K , denote this density with f (· | ·) for the purposes of algorithm 15.

The mean under-reporting rate parameters, µq,k ∈ [0,1],k = 1, . . . , J, are assumed known for each

city and are set to the same values as Park and Ionides (2020), which are available in the data on

the GitHub page, σ2
q > 0 is to be estimated.

Inference

To employ the algorithms described in the methodology section we need to specify the transition

matrix Kr,η,ξ, which in the case of this model is of size 4J×4J. To be more succinct, we can write

out a matrix Kr,η̃ξ,k for each city k = 1, . . . ,40. We define our matrices Kr,η̃,ξ,k:

Kr,η,ξ,k =


e−hgk(βk,r ,η,ξ) 1− e−hgk(βk,r ,η,ξ) 0 0

0 e−hρ 1− e−hρ 0

0 0 e−hγ 1− e−hγ

0 0 0 1

 ,

where

gk(β,η,ξ)=βξ ·
[
η(k) + ∑

l ̸=k

vkl

nk

{
η(l) −η(k)

}]
,

One can identify matrices:

Zk,t :=


Sk,t −F (S)

k,t −Bk,t Bk,t 0 0

0 Ek,t −F (E)
k,t −Ck,t Ck,t 0

0 0 Ik,t −F (I)
k,t −Dk,t Dk,t

0 0 0 Rk,t −F (R)
k,t

 ,

and let Zt be block-diagonal with blocks Zk,t, k = 1, . . . , J. One can take advantage of the block-

diagonal structure of Kt,η to implement an efficient block particle filter, see Rebeschini and

Van Handel (2015) and Ning and Ionides (2021), with lookahead resampling scheme (Lin et al.,

2013).

Proposals for algorithm 15

The details for the derivation of the proposals used in algorithm 15 lines 10 and 28 are similar

to those of section B.3, so they are omitted. Suppressing dependence on the particle, let Lr,k =∑τr
t=τr−1+1Λt,k with Λt,k calculated as per line 6 (resp. 24) of algorithm 14 and define:
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µ̂r,k =
1
2

(
µq,k −L(3,4)

r,k σ2
q +

√
(L(3,4)

r,k σ2
q −µq,k)2 +4Ȳ (3,4)

r σ2
q

)
,

(
σ̂r,k

)2 =
(

Ȳ (3,4)
r(
µ̂r,k

)2 + 1
σ2

q

)−1

.

Then in line 10 (resp. 28) we make the proposals:

Q(3,4)
k,r ∼N

(
µ̂r,k, σ̂2

r,k

)
≥0,≤1

. (B.2)

Inference

In each model instance, A,B, and C, described in 6.4, we can define ϑ, θ̄1:T , and ϕ:

• A: ϑ= [
π0 β̄ ρ γ g a c

]
,
{
θ̄r

}
r≥0 =

{[
ξ1,r . . . ξ40,r Q(3,4)

1,r . . . Q(3,4)
40,r

]}
r≥0

, and ϕ= [σ2
q,σξ].

• B: ϑ= [
π1,0 . . . π40,0 β̄ ρ γ g a c

]
,
{
θ̄r

}
r≥0 =

{[
ξ1,r, . . . ,ξ40,r,Q(3,4)

1,r , . . . ,Q(3,4)
40,r

]}
r≥0

, and ϕ=
[σ2

q,σξ].

• C: ϑ= [
π1,0 . . . π40,0 β̄1 . . . β̄40 ρ γ g a c

]
,
{
θ̄r

}
r≥0 =

{[
ξ1,r, . . . ,ξ40,r,Q(3,4)

1,r , . . . ,Q(3,4)
40,r

]}
r≥0

, and

ϕ= [σ2
q,σξ].

Each block, labelled k = 1, . . . , J, corresponds to a specific city. This block structure allows

one to perform proposals and weighting locally to each block, avoiding explicit high-dimensional

filtering. At time r, the lookahead scheme consists of: performing a ‘regular’ particle propagation

and reweighting step (the usual SMC iteration), then we propagate again each particle and

run a PAL iteration for time r+1, with ‘dummy’ particles (used purely for weighting purposes,

denoted with tildes in algorithm 15), we then weight the original particles proportionally to the

joint likelihood of the regular and dummy particles at times r and r+1 - taking care to apply

the appropriate correction in the likelihood calculation, dummy particles are then discarded. In

practise, this scheme greatly reduced Monte Carlo error. See algorithm 15 for our implementation.

The resulting approximate log-likelihood estimate associated with algorithm 15 is:

log p(Ȳ1:J,1:R)≈
R∑

r=1

J∑
k=1

L̂ (Ȳr,k|Ȳ1:r−1,k).

The optimisation scheme that was used is described in figure B.16. We report the inferences for

model C in table B.2.

Measles projection details.

The sample, size 300, of projected case numbers used to produce figure 6.8 in the main article

were generated by the following workflow:
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Algorithm 15 PAL within a lookahead block particle filter

initialise: λ̄(i)
0,k ← nk,0πk,0 set logζ(i)

0,k ← 0 and set logW (i)
0,k ← 0 for i = 1 to npart and k = 1, . . . ,K .

1: for r ≥ 1:
2: for k = 1, . . . , J:
3: for i = 1, . . . ,npart

4: ξ(i)
k,r ∼Gamma(σξ,σξ)

5: for t = τr−1 +1, . . . ,τr −1:
6: Λ(i)

t,k ← ((λ̄(i)
t−1,k ⊙δt,k)⊗1m)⊙K

r,η
(
λ̄

(i)
τr−1 ,1:J

)
,ξ(i)

k,r ,k

7: λ̄
(i)
t,k ← (1⊤

mΛ
(i)
t,k)⊤+αt,k

8: end for
9: Λ(i)

τr ,k ← ((λ(i)
τr−1,k ⊙δτr ,k)⊗1m)⊙K

r,η
(
λ̄

(i)
τr−1 ,1:J

)
,ξ(i)

r,k ,k

10: Q(i)
k,r ∼π

(
· |

{
Λ(i)

t,k

}τr

t=τr−1+1
,Ȳr,k,ϕ

)
as per (B.2)

11: M(i)
r,k ←∑τr

t=τr−1+1Λ
(i)
t,k ⊙Q(i)

k,r

12: L (Ȳr,k|Ȳ1:r−1,k)←−1⊤
mM(i)

r,k1m +1⊤
m

(
Ȳr,k ⊙ logM(i)

r,k

)
1m −1⊤

m
(
logȲr,k!

)
1m

13: logw(i)
r,k ←L (Ȳr,k|Ȳ1:r−1,k)+ log

(
f (Q(i)

k,r |Q(i)
k,1:r−1)

)
− log

(
π

(
Q(i)

k,r |
{
Λ(i)

t,k

}τr

t=τr−1+1
,Ȳr,k,ϕ

))
14: W̄ (i)

r−1,k ←W (i)
r−1,k/

∑
j W ( j)

r−1,k for i = 1 to npart

15: logW (i)
r,k ← logW̄ (i)

r−1,k + logw(i)
r,k

16: Λ̄
(i)
τr ,k ← (1m ⊗1m −Q(i)

k,r)⊙Λτr ,k + Ȳr,k ⊙Λ(i)
τr ,k ⊙Q(i)

k,r ⊘M(i)
r,k

17: λ̄
(i)
τr ,k ← (1⊤

mΛ̄
(i)
τr ,k)⊤+ατr ,k

18: end for
19: end for
20: for k = 1, . . . , J:
21: for i = 1, . . . ,npart

22: ξ̃(i)
k,r+1 ∼Gamma(σξ,σξ)

23: for t = τr +1, . . . ,τr+1 −1:
24: Λ(i)

t,k ← ((λ̄(i)
t−1,k ⊙δt,k)⊗1m)⊙K

r+1,η
(
λ̄

(i)
τr ,1:J

)
,ξ̃(i)

r+1,k ,k

25: λ̄
(i)
t,k ← (1⊤

mΛ
(i)
t,k)⊤+αt,k

26: end for
27: Λ(i)

τr+1,k ← ((λ(i)
τr+1−1,k ⊙δτr+1,k)⊗1m)⊙K

r+1,η
(
λ̄

(i)
τr−1 ,1:J

)
,ξ̃(i)

r+1,k ,k

28: Q̃(i)
k,r+1 ∼π

(
· |

{
Λ(i)

t,k

}τr+1

t=τr+1
,Ȳr+1,k,ϕ

)
as per (B.2)

29: M(i)
r+1,k ←∑τr+1

t=τr+1Λ
(i)
t,k ⊙ Q̃(i)

r+1,k

30: L (Ȳr+1,k|Ȳ1:r,k)←−1⊤
mM(i)

r+1,k1m +1⊤
m

(
Ȳr+1,k ⊙ logM(i)

r+1,k

)
1m −1⊤

m
(
logȲr+1,k!

)
1m

31: logw(i)
r+1,k ←L (Ȳr+1,k|Ȳ1:r,k)+ log

(
f (Q(i)

k,r+1 |Q(i)
k,1:r)

)
− log

(
π

(
Q(i)

k,r+1 |
{
Λ(i)

t,k

}τr+1

t=τr+1
,Ȳr+1,k,ϕ

))
32: logζ(i)

r,k ← logW (i)
r,k + logw(i)

r+1,k
33: end for
34: L̂ (Ȳr,k|Ȳ1:r−1,k)← log

(∑
j W ( j)

r,k

)
35: ζ̄(i)

r,k ← ζ(i)
r,k/

∑
j ζ

( j)
r,k for i = 1 to npart

36: resample
{
λ̄

(i)
τr ,k,W (i)

r,k,ζ(i)
r,k

}npart

i=1
with weights {ζ̄(i)

r,k}npart
i=1

37: logW (i)
r,k ← logW (i)

r,k − logζ(i)
r,k

38: end for
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1. Presampling ξ(i)
k,r ∼ Gamma(σξ,σξ) with σξ set to our point estimate, for k = 1, ...,40, r =

1, ...,4, and i = 1, . . . ,300.

2. Running our PALSMC scheme on the original dataset with 300 particles and parameters

set to our point estimates, taking as output a sample of final time-point population state

intensity vectors λ̄(i)
T,k.

3. For i = 1, . . . ,300 and k = 1, . . . ,40, propagate the intensity vectors through the transition

kernel using the iteration for t = 1, . . . ,16 (corresponding to 8 weeks):

Λ(i)
t,k = ((λ̄(i)

t−1,k ⊙δt,k)⊗1m)⊙K
r,η

(
λ̄

(i)
τr−1 ,1:J

)
,ξ(i)

r,k,k

λ̄
(i)
t,k = (1⊤

mΛ
(i)
t,k)⊤+αt,k

Where αt,k and δt,k are chosen according to the assumption that birth rates and death

rates remain constant.

4. Simulate I(i)
k,t ∼ Pois(λ̄(i)

t,k) for t corresponding to weeks 2,4,6, and 8 for each sample i =
1, . . . ,300.

Figure B.16: Approximate log-likelihood values for the measles data under scenarios A, B, and C. For
each scenario, the optimal combination of parameters was obtained through Sequential Least Squares
Programming (SLSQP) with target function given by algorithm 15 with 5000 particles and lookahead
resampling, this scheme was initialised randomly at 100 points over feasible values, the best attained
values are presented. After the optimisation, algorithm 15 with 5000 particles and lookahead resampling
is run 100 times on the optimised parameters to build the boxplots and estimate the variance of the
approximate log-likelihood.
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City n0,k
1000 π(1)

0,k π(2)
0,k π(3)

0,k π(4)
0,k R0 1/ρ 1/γ

BIRKENHEAD 143 0.07594 0.00007 0.00013 0.92387 8.47 8.49 9.53
BIRMINGHAM 1118 0.04575 0.00005 0.00013 0.95408 5.63 8.49 9.53
BLACKPOOL 150 0.07210 0.00005 0.00259 0.92525 12.93 8.49 9.53
BOLTON 169 0.09337 0.00007 0.00120 0.90537 9.44 8.49 9.53
BOURNEMOUTH 140 0.12166 0.00006 0.00005 0.87822 10.62 8.49 9.53
BRADFORD 294 0.08243 0.00004 0.00044 0.91708 10.22 8.49 9.53
BRIGHTON 158 0.07625 0.00008 0.00035 0.92332 14.66 8.49 9.53
BRISTOL 443 0.07355 0.00009 0.00206 0.92430 8.63 8.49 9.53
CARDIFF 245 0.09190 0.00005 0.00058 0.90747 7.81 8.49 9.53
COVENTRY 257 0.11602 0.00004 0.00018 0.88376 8.16 8.49 9.53
DERBY 143 0.11061 0.00006 0.00008 0.88925 10.46 8.49 9.53
GATESHEAD 115 0.08601 0.00007 0.00006 0.91386 8.28 8.49 9.53
HUDDERSFIELD 130 0.09003 0.00007 0.00022 0.90968 10.78 8.49 9.53
HULL 302 0.06856 0.00009 0.00083 0.93051 9.28 8.49 9.53
IPSWICH 104 0.08528 0.00009 0.00000 0.91463 9.03 8.49 9.53
LEEDS 510 0.09935 0.00006 0.00168 0.89891 5.92 8.49 9.53
LEICESTER 288 0.07103 0.00005 0.00133 0.92759 9.00 8.49 9.53
LIVERPOOL 802 0.05754 0.00004 0.00025 0.94217 5.63 8.49 9.53
LONDON 3389 0.04575 0.00006 0.00021 0.95399 5.63 8.49 9.53
MANCHESTER 704 0.05658 0.00003 0.00145 0.94193 7.29 8.49 9.53
MIDDLESBOROUGH 146 0.06662 0.00007 0.00067 0.93264 11.32 8.49 9.53
NEWCASTLE 295 0.07129 0.00005 0.00024 0.92843 9.19 8.49 9.53
NORWICH 120 0.10958 0.00005 0.00000 0.89037 12.78 8.49 9.53
NOTTINGHAM 307 0.05794 0.00004 0.00068 0.94133 11.54 8.49 9.53
OLDHAM 119 0.09814 0.00007 0.00092 0.90087 11.57 8.49 9.53
PLYMOUTH 209 0.08388 0.00006 0.00077 0.91529 13.37 8.49 9.53
PORTSMOUTH 240 0.07339 0.00007 0.00295 0.92359 9.39 8.49 9.53
PRESTON 120 0.06501 0.00007 0.00242 0.93251 7.52 8.49 9.53
READING 116 0.07686 0.00005 0.00137 0.92172 12.93 8.49 9.53
SALFORD 178 0.08982 0.00007 0.00109 0.90903 8.82 8.49 9.53
SHEFFIELD 515 0.07818 0.00006 0.00308 0.91869 8.10 8.49 9.53
SOUTHAMPTON 181 0.11018 0.00006 0.00391 0.88585 11.14 8.49 9.53
SOUTHEND 152 0.11816 0.00008 0.00043 0.88132 16.65 8.49 9.53
ST.HELENS 112 0.09871 0.00008 0.00256 0.89864 9.89 8.49 9.53
STOCKPORT 142 0.09721 0.00004 0.00231 0.90044 9.03 8.49 9.53
STOKE 276 0.07614 0.00006 0.00071 0.92310 8.62 8.49 9.53
SUNDERLAND 178 0.06698 0.00006 0.00088 0.93208 14.90 8.49 9.53
SWANSEA 162 0.08195 0.00006 0.00052 0.91748 12.59 8.49 9.53
WALSALL 115 0.08378 0.00009 0.00080 0.91533 13.75 8.49 9.53
WOLVERHAMPTON 162 0.06376 0.00006 0.00021 0.93597 8.57 8.49 9.53

Table B.2: Measles example. Inferred quantities for model C.
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