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Abstract 

Soil moisture is an important aspect of the Earths hydrological system. Accurate 

monitoring of soil moisture is essential for advancing our knowledge of its influence 

on Earth system processes. Cosmic-Ray Neutron Sensing (CRNS) offers an opportunity 

to fill the knowledge gap between point-scale sensors and large-scale sensors (i.e., 

satellite remote sensing) by capturing field scale, root-zone soil moisture. However, 

increasing global deployment of CRNS in regional networks has led to disparate 

processing methods across the sensors, hindering the use of these sensors in broad 

scale global studies. 

This thesis explores the opportunities presented in utilising CRNS stations from across 

the globe as a harmonized global network of sensors. Firstly, an open-source python 

processing tool was developed to facilitate a much-needed harmonization of CRNS 

data from 163 stations from across multiple networks. Using this tool, we demonstrate 

the problems that can come from a non-harmonized set of sensors in global studies.  

Utilizing this harmonized dataset, we conducted a comparative study against a 

satellite-derived soil moisture product (ESA-CCI) and a reanalysis product (ERA5-Land). 

Our analysis reveals residual biases between these products and CRNS values, which 

notably increases at the extremes of wet and dry conditions, whilst correlation 

differences increase under moderate conditions. Lastly, machine learning models were 

used to evaluate the role of soil moisture spatial representation in predictions of land 

surface fluxes of water (evapotranspiration) and photosynthesis (gross primary 

productivity). Our findings indicate that in-situ soil moisture data is particularly 

important for accurate predictions of evapotranspiration in water stressed regions., 

when compared to indirect estimates from empirical models or satellite remote 

sensing. Unlike evapotranspiration, we observe that the contribution of deeper soil 

moisture, in the form of soil moisture memory, plays a more significant role in 

predicting photosynthesis, pointing to the importance of identifying distinct 

mechanisms driving water and carbon fluxes at the land-atmosphere interface. Overall, 
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this thesis demonstrates the value of CRNS being treated as a harmonized and global 

network, reveals the importance of soil moisture spatial representation in modelling of 

land-atmosphere processes, and highlights where future soil moisture sensor 

deployment can be most beneficial.  
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1 Introduction 

 

 
 
 
 
 
 
 

oil moisture is an important component of the Earth system having a direct 

impact on numerous environmental processes. It directly influences the 

partitioning of water at the land surface, thereby affecting hydrological 

processes. Similarly, by impacting the partitioning of solar energy from the sun, it 

influences atmospheric processes. These interactions themselves create feedback 

loops that not only affect soil moisture itself but also have broader implications on the 

climate (Seneviratne 2010, Qiao et al., 2023). Recent research suggests that as climate 

change progresses, the influence of soil moisture on Earth system processes, such as 

through its direct coupling to evapotranspiration, is likely to intensify (Hsu and 

Dirmeyer 2023). Soil moisture also serves as the primary water source for plants, 

indicating that changes in soil moisture quantity or dynamics will directly affect both 

ecosystem function, as well as agricultural productivity. Given its important role, global 

efforts to measure and monitor soil moisture continue to grow (Romano 2014), leading 

to a growing source of soil moisture datasets across the globe. This growing source of 

data opens new avenues for a large sample hydrology approach, aiming to enhance 

our global understanding of soil moisture's numerous roles in global environments. 

Large global datasets provide opportunities to better understand the world through 

detailed analysis (Luo et al., 2022), validation of satellite derived soil moisture products 

(Crow et al., 2012), and the application of cutting-edge machine learning techniques 

for predictive tasks (O and Orth 2022). However, before beginning any kind of study 

S 
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with soil moisture it’s important to first decide on the most suitable source of soil 

moisture data for the desired task. Numerous methods for measuring soil moisture 

now exist, each representing soil moisture in distinct spatial and temporal domains, 

and the number of available methods continues to expand. A more comprehensive 

discussion on various soil moisture measurement methods and their unique 

characteristics is presented in Chapter 2. Central to this thesis is the Cosmic-Ray 

Neutron Sensor (CRNS), an increasingly popular sensor that provides field scale, root-

zone soil moisture values at hourly intervals (Desilets et al., 2010, Zreda et al., 2012). 

The spatial domain of these sensors, positioned between point-scale sensors and 

broader satellite remote sensing, offers new ways of understanding soil moistures role 

in environmental processes. In particular, it offers avenues to explore the role of spatial 

scaling, that is the volume of soil being represented in data, has on earth system 

processes. By now, these sensors have been in operation for over a decade in some 

cases, and their networks are expanding globally (Hawdon et al., 2017; Cooper et al., 

2021; Bogena et al., 2022). Given the growing global spread and this unique spatial 

scale, the CRNS leads to exciting opportunities for studies into the role of soil moisture 

in earth system processes globally. 

However, despite the opportunities presented by the growing number of CRNS 

stations across the globe, no studies have yet utilized a large sample hydrology 

approach using this globally spanning dataset. One of the key barriers to such research 

is the regionalisation of different CRNS networks, which can lead to inconsistencies in 

data processing steps across regions. As networks of these sensors have grown, so too 

has our understanding of the sensor technology itself. With this growing 

understanding, improved methods to process the raw CRNS data into soil moisture 

estimates have been developed. However, up to date methods have not been applied 

uniformly across all the networks, and in some cases, there are differences in opinion 

on the best practice for processing itself. These inconsistencies make it challenging to 

treat the increasing number of sensors as a unified network. Two main issues 



- 3 -   

contribute to this. Firstly, data structure such as the naming conventions differ between 

networks, adding a layer of complexity to combining datasets. Second, and more 

critically, is the different outputs expected when using different methods for 

converting raw data into soil moisture estimates. As a result, these variations could 

influence the outcomes of subsequent research, limiting the reach and applicability of 

the findings. Until these issues are resolved, the full potential of a global CRNS dataset 

remains largely untapped. 

With this in mind, there are clear opportunities to facilitate large sample hydrology 

type studies that will provide an understanding of the role of soil moisture in Earth 

system processes across the globe, covering different distinct hydroclimates. The open 

data policies from some of the networks ensure most raw CRNS data is publicly 

available. While variations in processed datasets exist, there is potential for 

standardizing sensor data processing to obtain a global dataset. The first step towards 

this is to devise a method to process raw CRNS data quickly and accurately into soil 

moisture estimates, leveraging the latest sensor understanding.  

With a harmonized dataset, the door opens to explore the role of soil moisture in 

global Earth system processes. While some studies have used CRNS to validate satellite 

remote sensing soil moisture products (Montzka et al., 2017), none have utilized all 

available sensors globally in a singular study. A harmonized dataset can facilitate such 

comprehensive studies, enabling analysis on where large-scale gridded products agree 

with in situ sensors and where discrepancies remain. Additionally, growing interest in 

machine learning for Earth system science research, which requires large sets of quality 

data, positions a global and harmonized CRNS dataset as a valuable resource. As noted 

earlier, the intensity of coupling between soil moisture and evapotranspiration is 

expected to change with the changing climate. Projects are already underway 

leveraging machine learning and global environmental variable datasets to predict 

land-atmosphere exchanges like evapotranspiration (Tramontana et al., 2019). The 

quality of input data significantly influences these models, necessitating a deeper look 
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into soil moisture's role in shaping their outcomes. This could help identify scenarios 

where different measurement techniques offer different advantages, which could itself 

influence decisions on where to expand sensor networks in the future. Overall, a 

globally spanning CRNS dataset could provide the foundation for such studies.  

In summary, soil moisture is a fundamental variable in Earth system sciences, and the 

extensive CRNS networks across the globe provide a significant opportunity to 

advance our understanding of its role. The opportunities that a global dataset can 

provide are currently limited by the regionalisation of CRNS networks. Given this, the 

overall goal of this thesis is to: 

Investigate the opportunities of a harmonized and globally spanning dataset of 

CRNS-derived soil moisture to increase our understanding of the role of soil 

moisture in Earth system sciences applications. 

To achieve this goal several steps are required which are outlined below. 

Chapter 2 serves as a literature review, giving an overview on the current state of 

knowledge regarding soil moisture and its influence on the Earth system. It explores 

the methods employed to measure soil moisture, emphasizing the impact of 

measurement techniques on data, particularly focusing on spatial scaling. The chapter 

also introduces large sample hydrology, showcasing successful projects that have 

produced datasets facilitating such studies. Furthermore, it explores the area of large 

sample hydrology in the context of soil moisture specifically, discussing the potential 

unique benefits CRNS can offer with this in mind. 

To investigate the stated goal of understanding the potential of a harmonized and 

global CRNS dataset for large sample hydrology studies several steps are required. The 

following paragraphs will outline the scope of each chapter as well as a brief 

description of the methods employed to achieve each chapters aim.  
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Firstly, there is the task of harmonizing CRNS networks worldwide which is explored in 

Chapter 3. The goal of this chapter is to explore the impacts of unharmonized data, 

and to present a new python tool (Cosmic-Ray Sensor Python tool – crspy) that was 

developed to facilitate easy harmonization of numerous sites as well as the collection 

of metadata about each site that can add further value to future large sample 

hydrology studies. Primarily, crspy will be presented, which is an open-source python 

package for processing raw CRNS data. The chapter will outline the current methods 

employed by the various regional CRNS networks and demonstrate the potential 

issues of directly comparing sites that may be processed differently. This is achieved 

by processing individual CRNS sites with each of the different processing 

methodologies currently used by regional networks (utilising crspy) and comparing the 

outputted soil moisture datasets. It is hypothesised that differences in methodology 

will ultimately lead to differences in soil moisture time series values demonstrating the 

potential benefits of harmonizing processing methods of global sites. 

With access to a harmonized and global CRNS dataset, Chapter 4 explores the 

uncertainties between this newly harmonized global CRNS soil moisture dataset and 

commonly used gridded satellite and reanalysis soil moisture products. Validation 

studies for gridded products often use a variety of soil moisture sensors which each 

may have systemic differences. This leads to a primary focus on either correlation when 

comparing in-situ to gridded products (Gruber et al., 2020), or on rescaling techniques 

to account for systemic differences between the in-situ (and gridded) sensors. Utilizing 

a global CRNS dataset offers a unique avenue to explore the overall uncertainty 

between in-situ and gridded products, as well as the impact of rescaling techniques. 

This exploration will be carried out by directly comparing a satellite soil moisture 

product (ESA-CCI) and a reanalysis soil moisture product (ERA5-Land) to CRNS soil 

moisture data. The uncertainty characteristics between the datasets will be analysed 

by decomposing the mean square error (MSE) into its constituent parts: bias, 

correlation, and deviation. A subsequent analysis will explore how the source of 
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uncertainty shifts in space and time. It's hypothesized that the characteristics of 

uncertainty will vary, particularly with the overall moisture conditions, in both spatial 

and temporal dimensions. Additionally, the chapter will explore the potential impact 

common bias correction methods might have. Comparisons between in situ soil 

moisture data and satellite soil moisture data often deploy bias correction approaches 

to tackle systemic differences between sensors. Given our global CRNS network is 

already harmonized, this chapter presents an opportunity to investigate the impact of 

bias correction methods between the in-situ data and the gridded soil moisture 

products, without the need to rescale the in-situ data itself. 

Finally, Chapter 5 explores the impact of soil moisture spatial representation on 

predictions of atmospheric fluxes of energy and carbon when used in a machine 

learning model. Soil moisture dynamics vary based on the volume of soil measured by 

a specific sensor. The growing accessibility to large datasets has driven the use of 

machine learning models for predicting key environmental variables. Data is crucial for 

training a machine learning model, and the dataset choice significantly influences 

model performance. This chapter examines the influence of spatial scales of soil 

moisture on predictions of carbon and energy fluxes, by altering the source of soil 

moisture representation in the feature set of an established machine learning model 

(FLUXCOM). Comparisons will be made between soil moisture datasets ranging from 

point scale TDR to satellite products, to discern the impact soil moisture representation 

has on predictions. The hypothesis is that the comparative spatial scale of CRNS and 

eddy covariance towers will enhance the accuracy of predicted values. With the 

availability of global and harmonized CRNS data, the chapter will also investigate if 

this improvement is consistent across various hydroclimates. It is further hypothesized 

that the impact of spatial scaling will be more pronounced at arid and water-limited 

sites. 

After these research chapters there will be three appendixes that will briefly describe 

research for which I was a part of, but not the lead author. Appendix A describes 
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research into the applicability of using CRNS stations across the globe to act as an 

early warning system for adverse space weather events, such as Ground Level 

Enhancements. These events pose a particular hazard to aviation through its impact 

on aviation systems, and increased radiation dose for passengers and crew. For this 

research, crspy is used to update CRNS stations in the USA to account for the most 

current understanding. Appendix B describes research that utilises the newly 

harmonized CRNS network to validate several popular soil moisture reanalysis 

products.  Whilst Appendix C describes research aiming to integrate CRNS stations 

into smart irrigation systems for precision agriculture. For this study, an updated 

version of crspy was developed to allow real time processing of raw CRNS data, as well 

as being interoperable with a wider software environment.  

Overall, it is expected that this thesis will generate several key outcomes to address 

the gaps and challenges outlined above. Firstly, the creation of a software tool to 

facilitate the processing of CRNS, thus allowing the creation of a harmonized and 

globally spanning dataset of soil moisture values. This first step will provide a 

foundational resource for which to explore other topics discussed above related to soil 

moisture’s role in earth system sciences, in particular through the ability to harmonize 

the currently regional datasets into a global one. Secondly, by comparing this dataset 

with satellite and reanalysis products, this work will offer insights into their 

discrepancies, robustness, and uncertainties compared to in situ sensors across 

different hydroclimates. Thirdly, through the application of machine learning 

techniques, this research will investigate how spatial representation of soil moisture 

influences the accuracy of predicting land-atmosphere fluxes in diverse hydroclimatic 

conditions. These outcomes collectively promise to advance our understanding of soil 

moisture's role in earth system processes, as well as provide tools and methodologies 

to facilitate future large-sample hydrology studies with CRNS data. Overall, it’s 

expected that this thesis will emphasise the value of treating all CRNS across the globe 

as a single, harmonized network
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2 Literature Review 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Soil moisture and Earth System Processes 

oil moisture is generally defined as the water contained in the unsaturated soil 

zone, also known as the vadose zone (Seneviratne et al., 2010). It is a key 

component in various fields such as hydrology (Vereekcken et al., 2008), 

agriculture (Hardie, 2020), ecology (Padilla and Pugnaire, 2007), and land-atmosphere 

interactions (Seneviratne et al., 2010). In recognition of its significance the scientific 

community is committed to increasing our understanding of soil moistures’ impact on 

the Earth system and developing accurate and robust methods to measure and 

monitor it. There remain challenges, however, due to the various ways that soil 

moisture can be defined and measured. The first step in quantifying soil moisture is to 

define the volume of soil of interest, whether it be at a single point in the ground, 

across an entire catchment, or a whole country. Each of these scales will have an 

influence on different processes in earth system science. Heterogeneities in the soil 

structure mean that choosing a relevant spatial scale will have a direct impact on the 

soil moisture estimate (Crow and Wood, 2002). Therefore, measurement techniques 

for soil moisture across multiple spatial and temporal scales continue to be an active 

area of research, driven by the significant environmental impacts linked with soil 

moisture. 

S 
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Soil moisture is an important component of the Earth System, owing to its significant 

influence on environmental processes. Whilst soil moisture constitutes only 

approximately 0.05% of global fresh water (Robinson et al., 2009), it is known to have 

a direct impact on plant growth in both nature (Winkler et al., 2016) and agriculture 

(Franz et al., 2016), as well as having an influence on weather dynamics and hydrology 

(Koster et al., 2004, Fischer et al., 2007). Several detailed reviews are available that 

describe soil moistures critical influence in the earth system. Seneviratne et al. (2010) 

outline the varied ways soil moisture influences land atmosphere interactions, for 

example demonstrating the feedback that occurs leading to soil moistures influence 

on and by precipitation patterns, potentially leading to either floods or droughts. 

McColl et al., (2017) described the significant impact that surface soil moisture (~8mm 

depth) has on precipitation and subsequently ground water recharge across various 

hydroclimates. The broad influence of soil moisture on different parts of the earth 

system opens up numerous avenues of active research within the scientific community. 

To further illustrate this, the following subsections will explore the literature of some 

key areas where soil moisture exerts a strong influence. 

A good place to start is in the field of hydrology, which is the scientific study of how 

water moves through the earth system. Despite constituting only a small proportion 

of total freshwater at any one time, soil moisture plays a large role in driving total water 

dynamics. For simplicity, let us consider the beginning point of the hydrological cycle 

as when moisture returns to the earth from the atmosphere as rainfall. Some of this 

moisture will return to water bodies either directly or through overland flow, or it will 

be intercepted by plant canopies, but a considerable amount of this moisture 

permeates into the soil column. Soil moisture’s downward trajectory though the soil 

column is known as infiltration (Vereecken et al., 2022). Soil moisture can therefore 

impact rainfall-runoff processes, which is the connection between precipitation and 

streamflow, due to its impact on the rate of infiltration (Liu et al., 2019). After a 

precipitation event, if the soil is dry, it has capacity to absorb the incoming moisture. 
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If the precipitation intensity is high, the top layer of soil will quickly reach saturation, 

whilst the time it takes for moisture to infiltrate deeper into the soil is dependent on 

the soil structure itself (Basset et al., 2023). Hence both antecedent moisture conditions 

and the physical structure of the soil can lead to excess runoff, ponding of water on 

the surface, or, in extreme cases, flooding. This describes how soil moisture can 

influence hydrology when water is in excess, however a lack of water can have impacts 

too. Droughts broadly refer to sustained periods of below normal water availability, 

which in the context of the environment begins as meteorological droughts (i.e., low 

precipitation), leading to soil moisture drought (i.e., low soil moisture), and eventually 

leading to hydrological droughts (i.e., low streamflow) (Van Loon 2015). It is important 

to note that the interaction between soil moisture and atmospheric moisture is not 

unidirectional; as soil moisture also exerts an influence on atmospheric processes 

themselves. This knowledge leads to continued efforts in the earth system science 

community to better understand the ways in which land-atmosphere feedback can 

influence ecosystem dynamics. 

Given this, understanding the interplay between soil moisture and atmospheric 

processes is another active area of research, namely in understanding land-

atmosphere interactions. These interactions encompass the cyclical feedback between 

atmospheric conditions—such as precipitation—and land processes, including soil 

moisture (Seneviratne et al 2010). At the centre of this interplay is the process of 

evapotranspiration, which describes how the sun’s energy converts liquid water into 

vapour at the Earth’s surface, and in doing so returning moisture to the atmosphere 

and partitioning the total energy received from the sun. This energy is generally 

divided into ground heat (energy absorbed into the ground), sensible heat (energy 

transferred from the ground to the air) and latent heat (the energy used in converting 

water from liquid to vapour). It is here that we can identify the crucial role of soil 

moisture in this process, with more soil moisture available, more energy is used in its 

conversion to vapour, directly reducing atmospheric temperatures at the catchment. 
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Equally a lack of water availability through soil moisture can drive up sensible heat, 

which in turn increases temperatures. This leads to higher evapotranspiration rates, 

potentially exacerbating reduced water levels, increasing atmospheric aridity, and 

generating additional heat (Vicente-Serrano et al., 2019, Zhou et al., 2019). As a direct 

results of this, soil moisture dynamics greatly impact droughts and heatwaves (Miralles 

et al., 2018). For example, it can influence drought propagation downwind via the effect 

on evapotranspiration and, subsequently, precipitation (Schumacher et al., 2022). 

Heatwaves are defined as periods of prolonged atmospheric temperatures that are 

above normal conditions (Stefanon et al., 2012). The link between heatwaves and 

droughts makes this an active area of study to better understand how a changing 

climate will impact future terrestrial conditions, and soil moisture’s role in both 

warrants further investigation. Interestingly, some research contradicts the assumption 

that reducing moisture will lead to less available water to evaporate. Known as the 

'drought-paradox', studies across Europe have found that evapotranspiration can 

actually increase during drought periods (Teuling et al., 2013). This is likely due to the 

influence plants exert on evapotranspiration through stomatal control demonstrating 

further the need to better understand the influence of soil moisture in the natural 

world. While the amount of available water in the soil heavily influences 

evapotranspiration, it is additionally impacted by the vapour pressure deficit (VPD), 

which refers to the difference in the amount of moisture in the air (water vapour) and 

the amount it could hold if it was fully saturated at a given temperature. Worryingly, 

compounding drought events, where both higher VPD and low soil moisture increase 

the severity of a drought, are expected to increase in the future (Zhou et al., 2019). 

Both droughts and heatwaves have negative implications for society, leading to excess 

deaths in the human population (Ellis et al., 1980), and through the impact it can have 

on local ecology. As an example, prolonged drought (between 1997 – 2010), along 

with over abstraction, in the Murray-Darling Basin in Australia led to a collapse in fish 

populations in the rivers of the basin, and a subsequent shift in habitat dynamics.  

Although water levels have since recovered, fish assemblages have not, leading to a 
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shift in the overall ecosystem characteristics (Wedderburn et al., 2014). Additionally, 

sustained droughts can lead to widespread tree mortality in forests (Adams et al., 

2017), which themselves provide a feedback effect on soil moisture dynamics through 

their control on transpiration. This highlights the need to not only understand the 

impact of soil moisture on the atmosphere, but also its direct impact on terrestrial 

ecosystems. 

Living things need water to survive, and for terrestrial plants this primarily comes from 

moisture in the soil. Transpiration, the process of water moving through a plant and 

evaporating from its leaves, is driven by soil moisture. Plants sustain themselves 

through photosynthesis, where sunlight helps convert carbon dioxide into glucose and 

oxygen, with oxygen being a by-product released into the atmosphere. Through their 

stomata, small openings on the leaves, plants regulate photosynthesis and water 

uptake. These openings allow air into the leaves for photosynthesis and can close to 

prevent excessive water loss during water stress. However, the regulation of water and 

gas exchange can lead to trade-offs. In water-stressed conditions, plants may reduce 

water loss, but this also limits their ability to photosynthesise by reducing the 

availability of carbon dioxide. Respiration in plants roots, and from microorganisms 

that break down organic matter in the soil, lead to carbon egressing from the soil too 

(Kuzayakov and Gavrichkova 2010). The total flux of carbon between the land and 

atmosphere is referred to as net ecosystem exchange (NEE) of carbon which consists 

of two main components, gross primary productivity (GPP), which is the amount of 

carbon fixed by plants during photosynthesis, and total ecosystem respiration (TER) 

which is the carbon released back into the atmosphere as carbon dioxide through 

processes such as plant or microbial respiration. Through their stomatal control, plants 

directly influence overall evapotranspiration (and hence soil moisture) and carbon 

cycling. In return, soil moisture impacts the plants' ability to photosynthesise. The 

complexities of this feedback loop mean ongoing research is necessary to better 

understand it, especially in a changing climate. For instance, research has identified 
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strong feedback between GPP rates and atmospheric conditions such as precipitation. 

This feedback additionally tends to be stronger in semi-arid and monsoonal regions 

(Green et al., 2017). Further studies are identifying that soil moisture dominates carbon 

uptake variability across the globe (Green et al., 2019, Humphrey et al., 2021). While 

both VPD and soil moisture influence terrestrial production, it has been shown that 

soil moisture has the larger influence when water stress occurs (Liu et al., 2020). GPP 

can occasionally increase with decreasing soil moisture, up until a threshold, whereas 

increasing VPD has a consistently negative impact on GPP rates (Fu et al., 2022). The 

occasional disconnection between soil moisture and GPP rates is due to plant adaption 

strategies that, for example, allow efficient use of water during periods of low moisture. 

Interestingly, a strong correlation has been demonstrated in data comparing soil 

moisture values and changes in plant biomass (estimated by using the leaf area index, 

LAI) with a temporal lag of around three months, demonstrating the long-term 

influence of soil moisture on ecosystem functioning (Li and Sawada, 2022). Evidently a 

complete understanding of these processes and their drivers is crucial. While individual 

plant mechanisms are well understood (Leegood, 2002), and how they may impact soil 

moisture and the climate at scale has been an active area of research for some time 

(Budyko, 1961, Gentine et al., 2012) the complexities involved means continued 

research is necessary. Plants evidently have a strong influence on, and are influenced 

by, soil moisture in the natural world. This complex relationship is not only important 

to global ecosystem dynamics, but also has significant implications for human 

activities, particularly in agriculture.  

Agriculture is a sector critically dependent on accurate soil moisture estimates and 

broad understanding of soil moisture dynamics. Given its reliance on water, most of 

which is human controlled, the effects of soil moisture variations can be huge. Soil 

moisture deficits directly lead to reduced crop yields (Vough and Martin 1971, Martin 

et al., 1992) and in extreme cases can lead to total crop failure (Mandelsohn 2007). The 

societal implications of these effects are serious, considering that agriculture is the 
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main source of our food. Consequently, research has been conducted for decades on 

predicting yields in relation to water (Hanks 1974). To avoid the unreliability of 

precipitation, irrigation is used to control the amount of water crops receive, ideally 

reducing water stress and optimising yields. However, given this, a 2017 census of U.S. 

producers found that over 75% of irrigation scheduling practices where still based on 

rule-of-thumb procedures such as crop calendars or visual observations (Zhang et al., 

2021). Optimising irrigation can enhance water use efficiency and reduce wastage. The 

timing of irrigation depends on understanding how to support plant needs without 

excessive water use. Efforts to optimise irrigation include estimating crop water stress 

from weather data (Nakabuye et al., 2023), using remotely sensed indices with models 

to control irrigation scheduling (Zhang et al., 2023), or combining in-situ sensors in 

smart Internet of Things systems (Kamienski et al., 2018). Irrigation not only provides 

crops with moisture to use, but also provides cooling benefits at the land surface, 

reducing heat stress in plants, again leading to improved yields (Li et al., 2020). 

Irrigation can come at a cost however, as fresh water is a finite resource and so 

excessive irrigation can lead to water stress in the total ecosystem. For example, a large 

regional study using in-situ measurements across northern China has demonstrated a 

steady decline in topsoil moisture content (0-50cm) between 1983 and 2012, along 

with reduced river discharges, which is attributed to intensified agriculture over this 

period (Liu et al., 2015). In order to prevent future occurrences of these long-term 

impacts, methods are continually developed to better manage our finite water 

resources. One such method is precision agriculture, which is the collection of methods 

combining sensors, information systems, and machinery, that can lead to low input, 

highly efficient and sustainable agriculture, ensuring food security along with 

environmental sustainability (Zhang et al., 2002, Gebbers and Adamchuk 2010). Before 

integrating information systems and machinery together however, we must begin with 

one of the most basic, and arguably more difficult tasks, measuring soil moisture in a 

accurate manner. 
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The above text underscores the various ways in which soil moisture influences the 

Earth's systems. Each of these areas needs continued research, particularly considering 

the uncertain effects of climate change on our current understanding. A critical step in 

understanding how soil moisture dynamics might change - and how these changes 

might impact the topics discussed above - is the ability to measure soil moisture 

accurately. This task presents challenges due to both the inherent difficulties of 

accurate measurement and the complexities of determining the appropriate temporal 

or spatial resolution of interest. The subsequent subsections will explore what soil 

moisture is, the various methods currently employed to measure it, and the influence 

of temporal and spatial resolution on our choice of measurement technique. 

2.2 How do we measure soil moisture? 

Soil moisture values, which represents the proportion of water within a given volume 

of soil, are typically measured in two common units: gravimetric and volumetric soil 

moisture. Gravimetric soil moisture (usually given in grams per grams) refers to mass 

of water in a total mass soil column, whereas volumetric soil moisture (usually given in 

m3 m-3 or cm3 cm-3) refers to volume of water in a given volume of soil (Robinson et 

al., 2008). In theory, the only direct way to measure soil moisture is by removing soil 

samples from the field and using the oven drying method. In this method a core of soil 

of a known volume is extracted from the ground, the sample is weighed and then 

placed into an oven at 105 oC, usually for 24 hours, and the sample is weighed again 

(Romano 2014). The resulting weight loss is presumed to be the weight of water that 

has evaporated. Whilst an accurate process of measurement, this method is not 

without its limitations. The method is manual and laborious, taking a lot of time and 

effort, whilst it provides only a single soil moisture value at a particular point in time, 

and destroys the sample that is being investigated. Given these limitations the 

scientific community have developed numerous other methods of soil moisture 

measurement that tend to use properties related to water, to infer soil moisture values 

at a particular place. These include Reflectometers (Top et al., 1980), Ground 
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Penetrating Radar (Knight et al., 2001), Global Positioning Systems (Larson et al., 2008), 

Cosmic-ray Neutron Sensors (Zreda et al., 2008), or satellite remote sensing (Entekabi 

et al., 2010). Whilst an extensive review is beyond the scope of this work, several more 

comprehensive reviews in soil moisture sensing and measurement are available 

(Robinson et al., 2008, Romano 2014). The focus here will be the most relevant 

methods for soil moisture estimates to this thesis. 

2.2.1 Point-scale soil moisture (dielectric resistance or reflectometers sensors) 

Point scale soil moisture sensors that use dielectric resistance to infer soil moisture 

sensors are a widely accepted method for soil moisture measurement. Their 

functioning revolves around the unique molecular structure of water, where the 

opposing charges of hydrogen and oxygen lead to a permanent dipole moment, which 

contrasts with most other natural materials (Robinson et al., 2008). This property results 

in a high dielectric constant when water is present in a volume of soil, thereby affecting 

the propagation time of an electromagnetic pulse (Evett and Parkin, 2005). By 

leveraging this phenomenon, changes in propagation time can serve as a measure of 

soil water content. There are several different types of dielectric resistance-based soil 

moisture sensors, such as Time Domain Transmission sensors (Will and Rolfes 2014) or 

Frequency Domain Reflectometers (Skierucha and Wilczek, 2010). For the purpose of 

this discussion, however, focus will be directed towards one sensor in particular, the 

Time Domain Reflectometer (TDR). TDR sensors measure changes in the dielectric 

constant of soil and can infer soil moisture changes in time (Topp et al., 1980, Robinson 

et al., 1999). The measuring support volume is approximately a sphere with 10cm in 

diameter around the TDR sensor (Western and Blöschl 1999). The representativeness 

of this spatial scale, when compared to say a whole field, is an area of ongoing research 

and debate (Miralles et al., 2010). Heterogeneities in the soil structure and landscape 

topography can lead to different soil moisture responses to environmental conditions 

(Patzold et al., 2008). This leads to one of the key advantages of TDR sensors, in that 
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they can be installed at various horizontal and vertical positions, allowing an 

understanding of soil moisture dynamics at various depths as well as at horizontal 

scales. Addressing the fact that individual sensors track changes in a small soil volume, 

multiple sensors can be installed within a catchment and combined, both vertically and 

horizontally, to provide an area average of soil moisture (Western and Blöschl, 1999). 

This desire to track soil moisture dynamics at larger spatial resolutions to than point 

scale measurements, such as with TDR, has led to the development of alternative 

techniques of soil moisture monitoring. 

2.2.2 Cosmic ray neutron sensing (CRNS) 

Among these methods, CRNS stands out as an in-situ sensor that can provide field 

scale (~250m radius around the sensor) and root zone depth soil moisture readings at 

hourly intervals. CRNS will be a focus in this thesis and a detailed description of how 

these sensors work is provided in Chapter 3, here a broad overview is given to provide 

context next to the other described sensors. CRNS primarily work due to some unique 

properties that dictate the presence of fast neutrons in the environment. Fast neutrons, 

which originate from space borne cosmic rays, are neutrons within a particular energy 

spectrum that are always present in the atmosphere (Kohli et al., 2015). Fast neutrons 

are thermalized (i.e., slowed down) by the presence of hydrogen atoms in the 

environment more so than any other atom (Zreda et al., 2012). This means that a higher 

presence of hydrogen atoms in the environment, such as those found in water, will 

lead to a reduction in the number of fast neutrons in the vicinity. When fast neutrons 

interact with the sensing tube filled with specific gas (either He3 or BF3) of a CRNS, a 

small electrical signal is recorded. Counting rates are usually integrated over a one-

hour period, with most changes in counting rates attributed to changes in soil moisture 

content, after the application of appropriate corrections. There are additional 

correction steps required to account for additional influences on the neutron signal 

that originates from changes in atmospheric pressure (Zreda et al., 2012), incoming 
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neutron intensity (Desilets et al., 2010, Hawdon et al., 2014), atmospheric water vapour 

(Rosolem et al., 2013), biomass (Heidbüchel et al., 2016, Tian et al., 2016), and soil 

organic carbon and lattice water in the soil (Franz et al., 2012, Hawdon et al., 2014). 

Each sensor also needs to be calibrated to the location it is placed in which is done 

through a campaign of oven dried samples within the sensor footprint (Zreda et al., 

2012, Schrön et al., 2017). Initially this calibration campaign was conducted one time, 

calibrating the sensor to a single day. More recent work has established the benefit of 

taking calibration campaigns across multiple days, ideally across different seasons, 

which has led to improvements in overall data quality (Iwema et al., 2015). After 

calibration one of the key advantages of CRNS is that they are non-invasive and can 

provide an average of soil moisture over a relatively larger area than traditional point 

sensors, covering up to the root-zone depth. Theoretically once the site has been set 

up and appropriately calibrated, they can continue to run with minimal ongoing 

maintenance. With power being supplied by solar panels, and data being transmitted 

via iridium satellite meaning data is automatically collected (Desilets et al., 2010). 

Additionally, as our understanding of the neutron signal grows, we can re-process any 

collected data to account for the most current understanding. This presents us with an 

opportunity to monitor area average field scale soil moisture dynamics across the 

globe with a collection of sensors that can be harmonized in their methodology. This 

monitoring will be increasingly important, as we push for sub-kilometer global land 

surface models. Having good quality data at this spatial scale enables us to test current 

iterations of high spatial resolution land surface models, as well as test for 

improvement in the future.  Although fundamentally this still relies on funding, efforts, 

and land, to establish and set up in situ monitoring sites across the globe. Given these 

challenges, the benefit of obtaining truly global soil moisture estimates becomes clear, 

leading to a large community of scientists seeking ways to monitor soil moisture 

dynamics using satellite remote sensing technology. 
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2.2.3 Satellite remote sensing 

This brings us to satellite remote sensing, which refers to sensors installed on satellites 

orbiting the Earth. These sensors track changes in electromagnetic radiation to infer 

changes in surface soil moisture (Layman et al., 2001). Satellite remote sensing can be 

mainly sub-divided into two main categories: passive and active remote sensing. Both 

measure microwave energy using instrumentation on satellites orbiting the Earth, 

which is highly influenced by changes in soil moisture, with a penetration depth of 2-

5cm. This means that satellite remote sensing is said to track changes in surface soil 

moisture (Beck et al., 2020). Passive remote sensing measures changes of thermal 

microwave radiation emissions from the soil, which are strongly dependent on soil 

moisture content (Njoku et al., 1977). This detected radiation is often referred to as the 

“brightness temperature” which is a measurement that combines the physical 

temperature of the object and its emissivity, which describes how well the object emits 

radiation. A key benefit of passive sensing is that the changes in the signal’s brightness 

due to changes in soil moisture content are much higher than the sensitivity of 

microwave radiometers. The higher signal-to-noise ratio means that the radiometer 

can pick up changes in soil moisture with accuracies of around 1-2% (Njoku and 

Entekhabi, 1999). However, it's also important to note that brightness temperature 

measurements are influenced by the temperature of the soil itself, as well as by other 

factors like the composition of the soil and the presence of vegetation. Therefore, 

interpreting brightness temperature data to get soil moisture information can be 

complex, requiring sophisticated algorithms and potentially other types of data for 

calibration or validation. In contrast, active remote sensing involves sensors emitting 

their own energy, such as microwaves, and measuring the backscatter from the Earth’s 

surface. While they can provide a finer spatial resolution than passive remote sensing, 

they are more susceptible to influences from factors like vegetation canopy structure, 

surface roughness, and incidence angle, which is the angle of incoming radiation, 

leading to a need for more sophisticated algorithms to correct for this (Wagner et al., 
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2007, Peng et al., 2017). There are many examples of active and passive sensors 

onboard satellites that have been used to record soil moisture across the globe such 

as Sentinel (Berger et al., 2012), SMOS (Kerr et al., 2010), SMAP (Entekabi et al., 2010), 

ASCAT (Bartalis et al., 2007), AMSR-E (Njoku et al., 2003), to name a few. This means 

satellite remote sensing offer a chance to monitor global soil moisture at regular 

intervals (usually measurements every 1-3 days), with horizontal spatial scales ranging 

from ~101 − 103 km2 (Gruber et al., 2020). Ultimately active and passive sensors each 

have their own positive and negative characteristics demonstrating the importance of 

continued development of both methods. Considering the growing number of 

satellites products available, each spanning different periods, attempts to merge 

multiple satellite products into a single product have been attempted, such as the ESA-

CCI merged satellite soil moisture product (Gruber et al., 2019). Since then, evidence 

has shown through direct comparisons to in-situ soil moisture networks, that these 

merged products can outperform individual satellite sensors (Beck et al., 2020). One 

suggested reason behind this is that the weighted algorithm they use to merge the 

products considers individual data quality, allowing the merged product to compile 

the best of each sensor into a single dataset. More recently constellations of miniature 

CubeSats, which have a volume of exactly one litre, have been increasingly put into 

Earth orbit (Villela et al., 2019). They are increasingly used to monitor soil moisture at 

a global scale (Norton et al., 2016), and may offer an opportunity for quicker return 

times due to the higher number of satellites that can orbit the Earth. Satellite remote 

sensing can give truly global coverage of soil moisture, although the low sensing depth 

and coarse spatial resolution means the data available may not be suitable to all 

requirements.  

2.2.4 Land Surface Modeling  

Soil moisture modelling broadly refers to methods to predict soil moisture without the 

need for direct measurements. Land surface models are numerical models that 
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parameterize the relationships between earth system processes and attempt to make 

accurate predictions on states at points in time and space (Martens et al., 2020). 

Originating from climate modelling, land surface models have grown in complexity as 

our access to both data and understanding has advanced (Fisher and Coven, 2020). 

There are numerous parameterizations of soil moisture within land surface models, 

with design choices ultimately having an impact on the overall results (Koster et al., 

2009). Typically, models are divided into grid areas, each grid being assigned 

properties corresponding to the estimated soil type or texture. Factors like 

precipitation and evaporation, which could also be modelled data, regulate the soil's 

input and output in the grid. The level of saturation, in conjunction with the soil 

properties, defines the drainage volume and percolation into the soil. Additionally, 

models will make a choice on the number of layers of soil that are to be calculated 

although it should be noted that the complexity can be much greater than what is 

described above. For example, coupled models will attempt to model additional 

feedback between soil moisture and climate (Dirmeyer 2011), or soil moisture and 

plant growth (Schymanski et al., 2008). Reanalysis products are another type of model 

which often combine both land surface models and observations of state variables 

(e.g., through satellite remote sensing) to ensure that the predictions remain as close 

to the real-world values as possible (Naz et al., 2020). Ultimately, the structure of the 

model will have a great influence on the predicted outputs. Direct observations of soil 

moisture, whether in situ or remotely sensed, can also play a large role in model 

improvements (Koster et al., 2009). Observations are used to test the outputs or 

models or can be used in data assimilation of reanalysis products to ensure models 

are consistent with what we know from observations themselves (Williams et al., 2009). 

The spatiotemporal scale of models also differs ranging from tens of kilometers to only 

a few kilometers and with temporal aggregation ranging from hourly to daily (Zheng 

et al., 2023). There is a desire in the scientific community to improve the resolution of 

these models to represent processes at the sub-kilometre scale globally (Clark et al., 

2017). However, in order to do this, we will need greater understanding of the 
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processes that drive soil moisture (and other variables) at these finer spatial scales. For 

example, soil structure can have a large impact on earth system modelling outputs, 

impacting routines that represent infiltration and runoff. Currently this is an 

underrepresented aspect of global earth system models and greater understanding of 

soil properties and how they influence moisture dynamics will improve future model 

iterations (Fatichi et al., 2020). An alternative technique for predictions is that given by 

machine learning, which are methods that can infer statistical and nonlinear 

relationships between predictor variables and target variables when trained on large 

volumes of collected data (Naqa and Murphy, 2015). 

2.2.5 Machine Learning models 

Distinct from empirical or physics-based models, machine learning models discover 

direct, albeit abstract, relationships between predictor and target variables. These are 

often called “black box models”, as the inner workings are largely unknown even to 

the individuals who trained the model—a common critique of such models (Rudin 

2019). Many options of machine learning architecture are available for predictions 

tasks, ranging from decision tree-based models to artificial neural networks (Ray 2019). 

A key benefit of machine learning is that although expensive to train, once a model 

has been trained, they can be relatively inexpensive to run, especially when compared 

to large scale empirical models (Rodrigues et al., 2018). For example, in climate models 

the computationally expensive process of resolving clouds at the sub-grid level has 

been successfully replaced with a deep learning processes, increasing model accuracy 

without costs to efficiency (Rasp et al., 2018). However, while they hold significant 

potential in addressing key questions, machine learning models also have inherent 

disadvantages. In particular machine learning models are far poorer when presented 

with data not seen in the original training dataset, the so called “extrapolation 

problem” (Reichstein et al., 2019). This becomes especially problematic when exploring 

the impact of climate change, which could potentially result in unprecedented 
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environmental scenarios. Even so, there are a growing number of products to predict 

soil moisture using machine learning employing a plethora of different techniques. 

These include extending satellite data quality through data merging (Xu et al., 2018), 

downscaling satellite soil moisture data with machine learning (Srivastava et al., 2013), 

conversion of satellite raw data to soil moisture (Rodriguez-Fernandez et al., 2017), or 

directly predicting soil moisture using meteorological forcing values (Adeyemi et al., 

2018). A recent study for producing a global product of soil moisture through long-

short term memory models (LSTM) was published that used global in situ soil moisture 

data as a predictor (Oh and Orth 2020). When training their model, they used a large 

global dataset of soil moisture observations (see section 2.3.4), which came from many 

unique sensor types each representing distinct spatial scales. To account for 

differences in individual sensors, steps were required to harmonize the in-situ network 

by rescaling it to match a reference reanalysis land surface model dataset (ERA5-Land). 

The precise impact of such statistical harmonization steps, especially in such 

statistically driven models, warrants future study. This means access to a globally 

harmonized network of the same sensor types could support our understanding of this 

potential impact.  

2.2.6 Soil Moisture Scaling 

Despite its importance, soil moisture measurement remains challenging, especially 

considering the unique spatial scales represented by different measurement 

techniques. The measurement techniques described above each represent unique 

horizontal and vertical scales, ranging from point, to field, to satellite/model grid. The 

factors driving soil moisture values change depending on what scale we are 

considering, and this is shown within the context of the spatial scales different sensors 

represent in Figure 2.1. Controlling factors on soil moisture are generally dominated 

by soil structures at finer spatial scales and become more dominated by topography 

and land cover as the scales increase, eventually being mostly driven by meteorological 
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drivers, such as precipitation patterns, at the coarsest spatial scales. For example, 

research has shown differences in the mean and standard deviation of soil moisture 

dynamics can occur in soils under similar climates, with differing structures (Wang et 

al., 2015). This suggests that soil moisture dynamics can change depending on the 

scale of soil moisture being measured, reflecting the variations in soil structure within 

the spatial range. Drivers of soil moisture dynamics also change in time, depending on 

whether it’s under either wet or dry conditions (Grayson et al., 1997). Under wet 

conditions soil moisture is more susceptible to so called nonlocal controls, e.g., lateral, 

catchment scale drainage driven by topographic changes. Under dry conditions, 

vertical fluxes dominate spatial patterns of soil moisture which are more correlated 

with soil structure itself, which can be heterogeneous across the field or catchment. 

The differences in both absolute values and the controlling features of soil moisture 

across spatial scales leads to continued efforts to bridge this gap. For example, we 

often use ground-based point scale networks to validate global scale models or 

satellite remote sensing products, but the differences between the soil moisture scales 

being represented by each means methods of bias correction and upscaling (from in 

situ to a coarse grid) are often implemented to compare the two (Crow et al., 2012). 

The best practices for validating coarse-scale satellite remote sensing data against 

point scale observations are continually being refined, with future research areas, 

including understanding the impacts of rescaling efforts, identified as crucial (Gruber 

et al., 2020). Continued research is necessary that better allows us to downscale coarse 

satellite remote sensing to better represent field scale, root-zone soil moisture 

dynamics (Peng et al., 2017). Better representation and understanding of soil moistures 

impact on hydrological systems at the sub-kilometre scale is necessary in the push 

towards hyperresolution global land surface models (Wood et al., 2011). To achieve 

this, we will require access to large quantities of in situ data across various 

hydroclimates, allowing us to develop methods that merge the global coverage of 

satellite and model sensing with the field-scale dynamics of in situ sensors.  
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2.3 Large Sample Hydrology and Soil Moisture 

The previous subsection highlighted soil moisture’s key role in earth system processes 

and discussed various methods to measure and predict it. This subsection will explore 

the potential of enhancing our understanding of soil moisture and its wider influence 

on the environment, using these continually growing soil moisture datasets, with an 

emphasis on the promise held by CRNS soil moisture networks. A description will be 

given describing the concept of large sample hydrology and why it is of interest to the 

Figure 2.1 Key processes influenced by soil moisture and their dominant spa:al and temporal 
scales. Clear areas represent available data from specific sensor types outlined above. The 
dashed box highlights the spa:otemporal coverage of CRNS. The main controls of soil moist 
are shown in the boEom with darker shading represen:ng dominant spa:al scales. Adapted 
from Blöschl and Sivapalan 1995 and Crow et al., 2012. Credit: Rosolem (2020) 
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hydrology community. Next, a review of current large sample hydrology datasets will 

be given, shedding light on both their achievements and challenges. Finally, the focus 

will be directed to soil moisture networks, their current limitations, how the CRNS 

networks can provide an opportunity for future studies and describe how this thesis 

will support this goal. 

2.3.1 What is Large Sample Hydrology? 

Large Sample Hydrology is a branch of hydrology that harnesses increasingly large 

datasets to expand our understanding of hydrology across different temporal and 

spatial scales (Gupta et al., 2014). As climate change continues to reshape global water 

resources, it is crucial to understand the differences between catchment specific 

characteristics and more universal behaviours. Large sample hydrology, through its use 

of big data, provides a robust approach for such differentiation. Given this, large 

sample hydrology is an increasingly important area of research. It holds the promise 

of enhancing our hydrological understanding, enabling us to create more dependable 

models that can accurately predict hydrological processes from local to global scales. 

Large sample hydrology can be traced back to the research area of comparative 

hydrology (Gupta et al., 2014). At its core, comparative hydrology focuses on 

knowledge transfer between catchments across the globe (Falkenmark and Chapman, 

1989). The aim of comparative hydrology is to identify sites by their similarities, be it 

climatological, ecological, or physiological, and to transfer acquired knowledge 

between catchments. More pointedly it is trying to understand when we can 

reasonably transfer our understanding of well gauged and studied catchments to 

others, when we might expect differences, and ultimately what drives those 

differences. Examples of such studies include examining how catchments with 

apparent similarities react differently to hydrological events (Woo and Liu, 1994, Araújo 

and Piedra, 2009, Gaál et al., 2012, Singh et al., 2014) or exploring the effects of land 

use changes on similar catchments, offering insights into fundamental processes 
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behind events like floods or droughts (Burch et al., 1987, Rangecroft et al., 2019, Van 

Loon et al., 2019). An early goal of comparative hydrology was evaluating the 

appropriateness of transferring our knowledge and understanding from the 

predominantly temperate climates of Europe and the USA, where most early 

hydrologic studies were conducted, to other regions across the globe (Gupta et al., 

2014). In other words, the aim was to determine the extent to which hydrological 

models and concepts developed in temperate zones can be applied across more 

diverse climatic and environmental conditions across the globe. Critically, the success 

of such comparisons centres on accessing a vast and varied pool of catchments for 

analysis. 

Gupta et al., (2014) aptly sub-titled their review of large sample hydrology “a need to 

balance depth with breadth”, which succinctly describes one of the key problems in 

large sample research. Historically, hydrology research was constrained to the 

catchment scale due to limitations in data and computation, allowing for in-depth 

exploration of catchment characteristics. Comparative hydrology emerged from this 

focus, seeking to transfer knowledge from one catchment to another, identifying which 

hydrologic responses were particular to certain catchment types, and which were more 

universal. While sharing objectives with comparative hydrology, large sample 

hydrology aims to create robust and generalized principles through the examination 

of large and broad datasets covering numerous catchment types, rather than isolated, 

in-depth studies (Addor et al., 2019). The overarching goal is to develop enough of an 

understanding of hydrological processes that models can be developed spanning all 

terrestrial ecosystems at multiple spatial and temporal scales. This can help us to tackle 

the goal of accurate predictions of key environmental variables in ungauged basins, as 

it is practically impossible to have networks of in situ sensors available in every location 

globally (Sivapalan 2003). With increasing access to global data, the path is open to 

move towards finer resolution sub-kilometre global models, vital for water resource 

planning and assessing climate changes impact on ecosystem function (Wood et al., 
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2011, Bierkens, 2015). However, this advancement hinges on the scientific community's 

access to long-term records at diverse spatial and temporal scales, a crucial factor in 

understanding environmental dynamics worldwide. Given the need to deepen our 

understanding of global Earth system dynamics and the growing amount of 

environmental data, numerous initiatives have arisen to facilitate big data type studies 

in this area.  

2.3.2 Early initiatives from “Traditional” hydrological applications 

If we aim to discover generalizable findings in hydrology, it is crucial to have access to 

comprehensive and good quality datasets. Addor et al., (2020) describes currently 

available datasets in hydrology, with an emphasis on streamflow data. In their review 

they addressed potential issues within large sample hydrology datasets, which affect 

their suitability for certain applications, as well as outlining future solutions to improve 

them. One of the key identified issues is a lack of common standards, leading to 

difficulties in comparing two catchments that happen to be from different collections 

of data. The impact can come from something as simple as different variable naming 

conventions to differences in the processing or quality control steps which will impact 

the actual values being investigated. With different naming conventions a need for 

additional steps to format data, whilst unnecessary, is fairly easily addressed. Different 

processing methods however can be much more difficult to correct. Such adjustments 

would involve additional data processing, requiring time and expertise, possibly 

impacting the perceived value of the dataset if the time and effort required for 

corrections is seen as too costly. 

Take for example the growing availability of Catchment Attributes and MEterology for 

Large-sample Studies (CAMELS) datasets which began as a collection of 671 small to 

medium sized basins across the USA (Newman et al., 2015). The dataset combined 

streamflow data, along with meteorological forcing data such as temperature and 

precipitation, to facilitate large sample hydrology type studies. The meteorological 
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data for CAMELS-USA was sourced from Daymet, a gridded product that covers the 

Conterminous United States (Thornton et al., 2021). Whilst gridded products are less 

accurate than in situ measurements, they provide a good alternative when local 

ground-based sensors are unavailable. Since the release of the CAMELS-USA dataset, 

other regional datasets have been created that replicate the overall goals of the 

original. There are now CAMELS datasets covering Great Britain (Coxon et al., 2020), 

Australia (Fowler et al., 2020), Brazil (Chagas et al., 2020), Chile (Alvarez-Garreton et al., 

2018), and more recently France (Delaigue et al., 2022). However, data interoperability 

remains challenging due to regional datasets relying on different meteorological 

sources. For instance, CAMELS-GB uses CEH-GEAR for precipitation data (Keller et al., 

2015), which differs from the CAMELS-USA choice of Daymet. The choice of 

precipitation forcing data source has been shown to influence outputs in hydrological 

modelling, leading to potential sources of uncertainties between the regional datasets 

(Try et al., 2020). This means that when comparing catchments from two different 

datasets the forcing data may be influencing outcomes that are down to the 

behaviours of the specific products used rather than actual catchment dynamics. This 

can lead to an additional layer of uncertainty for researchers. 

Tackling this regionalization, the recently published Caravan (a collection of CAMELS 

datasets) dataset addresses interoperability issues of individual CAMELS datasets by 

making a so-called network of networks (Kratzert et al., 2023). The Caravan dataset 

takes previously published regional datasets and standardises them into single 

worldwide dataset. They standardised the naming conventions, data formats and the 

meteorological forcing data, with meteorological data now all being derived from the 

ERA5-Land model (Muñoz Sabater et al., 2021). The Caravan dataset consists of 6830 

catchments across the globe covering a wide range of hydroclimates making it a rich 

resource for large sample type studies. Alongside the dataset publication, the software 

used for the data processing was released and development continues open source, 

allowing researchers to see exactly the steps being taken during the data creation, as 
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well as providing the ability to easily add more sites in the future. Standardisation 

supports global studies, however the route to a standard dataset remains debateable. 

Caravan uses a single product (ERA5-Land) from which to collect ancillary data, for 

example precipitation data. Whilst this standardises the source of data, the quality of 

the data may still differ which will be attributed to the quality of the chosen model at 

points across the globe. Gridded products, such as ERA5-Land do not perform 

uniformly well across geography (You et al 2014), hydroclimates (Gomis-Cebolla et al., 

2023), or seasons (Dinku et al., 2008). This means there remains a balance between 

uniformity and accuracy that requires ongoing study and debate. For example, is it 

more important to ensure consistent datasets (i.e., a single source product), or accurate 

datasets (i.e., regionalized data that purports higher accuracy). It has been shown that 

high-quality regional datasets may be preferable in hydrological models by providing 

higher accuracy predictions, over models driven by gridded products. (Naha et al., 

2023). Attempts to benchmark the observation uncertainties in the multitude of 

available products may serve as a solution to this by providing a better understanding 

of data quality (McMillan et al., 2012). This could lead to harmonization efforts that try 

to harmonise to performance and uncertainties rather than source, although more 

research is necessary to better understand this. Even so, the Caravan dataset serves as 

a prime example of the path towards combining individual networks to expand the 

scope of global research. 

2.3.3 Large sample hydrology - beyond hydrology 

An earlier harmonisation project, preceding the CAMELS datasets, is associated with 

the eddy covariance community. Eddy covariance towers, which measure water, 

carbon, and energy fluxes at the land-atmosphere boundary, require complex post-

processing steps to convert the measurements into data of broad interest to the earth 

system science community (Baldocchi 2003, Papale et al., 2006). The absence of a 

standardised methodology will lead to inconsistencies between the sensors across the 
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globe, owing to the varied interpretation methods. For example, gross primary 

productivity quantifies the amount of carbon sequestered by plants from the 

atmosphere. It is determined by partitioning net ecosystem exchange – the total 

atmospheric carbon flux, into gross primary productivity and ecosystem respiration, a 

measure of carbon egressed into the atmosphere through respiration. Different 

methods to derive ecosystem respiration have shown different sensitivities to long 

term temperatures leading to differences in outputs >25% over a year (Reichstein et 

al., 2005). Consequently, if sensors are processed through different algorithms, then 

these differences may be accidently attributed to catchment dynamics rather than 

process differences. The AmeriFlux network, established in 1996 as a coalition of 

individual sites across the Americas, aimed to expand the impact of these sensors by 

pooling them together into a larger network (Novick et al., 2018). AmeriFlux's bottom-

up organizational approach permits the fusion of independently operated sites, 

initially selected for particular research aims, into an extensive network suitable for 

large sample studies. This method's strength lies in its adaptability, facilitating the 

merging of diverse projects with wide-ranging objectives and funding sources. 

However, this approach isn’t without drawbacks. One criticism is that it allows each site 

to establish their own operational standards, resulting in variations between the sites 

within the network. For example, whilst many sites include point scale soil moisture 

sensors such as Time-Domain Reflectometry (TDR) within the sensor footprint, the 

number and spread of these sensors varies widely, ranging from multiple profiles of 

soil moisture sensors to none. This lack of standardisation can impact the 

comparability of sites in certain types of studies, especially when sensors are missing 

entirely from otherwise valuable locations. 

Several regional networks of eddy covariance towers have been developed over the 

years, including EuroFlux (Aubinet et al. 1999), OzFlux (Beringer et al., 2016) and Asia-

Flux (Mizoguchi et al., 2009). Whilst the community of researchers operate 

collaboratively, regional networks will again have their own operational standards 
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which may be influenced by internal research requirements and funding bodies. To 

address this, FLUXNET, an international network comprising of many regional networks 

of eddy covariance towers, was established to facilitate global scale studies of carbon, 

water, and energy fluxes (Baldocchi et al., 2001). Like AmeriFlux, FLUXNET uses a 

bottom-up approach where networks or individual sites can join by sharing their data 

to the overall project, with the emphasis being on standardising the methodologies 

used in post-processing data. This ensures the production of a harmonised dataset 

that covers the globe, facilitating global scale studies. FLUXNET periodically produces 

and publishes fully processed data releases, meaning a user can be confident that all 

the data contained within it are processed to the same quality standards (Pastorello et 

al., 2020). Alongside the dataset, the open-source software used to create it, ONEFLUX, 

was released (Pastorello et al., 2020). This transparency allows users to understand data 

processing steps and offers scientists the avenue to recommend enhancements for 

subsequent versions. Combined dataset production along with detailed instructions 

on the steps towards the dataset creation will be important as datasets grow in both 

availability and complexity. 

2.3.4 Large sample hydrology and soil moisture  

In addition to large sample datasets in hydrology and ecohydrology, large datasets for 

soil moisture are essential, given its role in both terrestrial and atmospheric processes. 

The International Soil Moisture Network (ISMN) was established in 2009, serving as a 

platform for hosting in situ soil moisture datasets from across the globe (Dorigo et al., 

2011). Its design follows that of the FLUXNET project, with data provided by individual 

networks and researchers, and then compiled, processed, and published online by the 

ISMN. This centralized repository ensures that datasets from many different 

organisational teams are searchable and findable, thereby enhancing prospects for 

comprehensive studies on soil moisture and its overarching influence on earth system 

science. By 2021, the ISMN's significance is underscored by its reference in over 100 
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scientific publications and its boasting of 2842 stations worldwide (Dorigo et al., 2021). 

Whilst the dataset is open and findable, ensuring standardization across sensors and 

networks poses a significant challenge. This complexity is heightened given the myriad 

of sensor types that the ISMN incorporates from different networks. As previously 

discussed in this chapter, soil moisture measurements are typically inferential. The 

intrinsic attributes of each sensor type can introduce variability in soil moisture 

estimates. Research has shown that absolute values between sensors can differ and 

may not be transferable between sites (Leib et al., 2003). As such, these values may not 

always be transferable across sites, thereby creating additional uncertainty in certain 

metrics, especially those reliant on absolute values. This means that whilst the ISMN 

provides an opportunity for large sample type studies, additional rescaling steps are 

sometimes necessary to account for the different sensor types when attempting to use 

the entire network of sensors available (e.g., O and Orth 2021). The impact of such 

rescaling on the overall outcome of studies remains uncertain and warrants further 

investigation. The ability to organise standardized networks of sensors across the 

globe is restricted by the myriad sources of funding that would be required to 

implement such projects. This does not, however, prevent large regional networks from 

being implemented that can attempt to solve the above-described issues. In the 

United States there is the North American Soil Moisture Database (NASMD, Quiring et 

al., 2016) as well as the more recent National Coordinated Soil Moisture Monitoring 

Network (NCSMMN, Cosh et al., 2021, Baker et al., 2022). The NCSMMN was itself 

borne of National Integrated Drought Information System (NDIS), who’s specific goal 

is to improve access to soil moisture information for natural resource assessment and 

hazard management. A key aspect of this goal is to coordinate strategies for data 

management, merging in-situ sensors with remote sensing or modelled soil moisture 

data, and expanding sensors into areas clearly identified as missing from the current 

network. Coordination on this scale is more likely possible with regional networks, 

however the benefits will be extended to global datasets such as with the ISMN. The 

ability to merge soil moisture data from multiple spatial scales will require 
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understanding of how such spatial scales interact. A harmonized network of soil 

moisture sensors, comprising of the same sensor types (and spatial scales) and 

spanning diverse landscapes, could serve as an additional opportunity to answer 

questions surrounding soil moistures influence on earth system processes. 

2.3.5 COSMOS networks as opportunity 

In this respect, the CRNS offers a unique opportunity to combine the growing 

collection of sensors across the globe, into a single harmonized dataset, for testing 

large sample soil hydrology questions. Regional networks of CRNS have been 

expanding across the globe since 2012. The first network to be installed was the 

Cosmic Ray Soil Moisture Observing System (COSMOS) (Zreda et al., 2012). This 

network comprised of over 50 sensors, primarily located in the USA, but with additional 

sites in Brazil, Kenya, and Europe. Designed for long-term monitoring, these sensors 

transmit data to a centralized database via iridium satellite. They're strategically 

located to represent varied hydroclimates across the USA. The data, from raw readings 

to corrected soil moisture values, is publicly accessible 

(http://cosmos.hwr.arizona.edu/, last accessed: 02/06/2023). Subsequent networks 

emerged in Germany under the Terrestrial Environmental Observatory (TERENO) 

initiative (Bogena et al., 2006, Zacharias et al., 2011) and Australia with the growing 

CosmOz network (Hawdon et al., 2014). The UK’s COSMOS-UK has installed over 50 

sensors since 2013 (Cooper et al., 2021) and has also worked closely with researchers 

in India to help establish an Indian COSMOS network (Upadhyaya et al., 2021). More 

recently the International Atomic and Energy Agency (IAEA) has begun installing a 

network of CRNS sensors in locations across the globe that have been less well 

monitored in the past, including sites in Oman, Kuwait, Ethiopia, Morocco, Bolivia, and 

Peru to name a few (https://crnslab.org/, last accessed: 02/06/2023). Besides these 

major networks, there exist standalone sites and smaller networks globally, including 

in China (Tan et al., 2020), and Nebraska (https://crnslab.org/, last accessed: 
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02/06/2023). Furthermore, a collection of European sites recently became the 

COSMOS-EUROPE network, harmonising data processing methods across 66 sites 

spanning the European continent (Bogena et al., 2022). 

One thing is clear, the CRNS is evolving into a global sensor network, offering hourly 

soil moisture readings over extended periods, with some sensors having accumulated 

over a decade's worth of data. However, there remains issues in data harmonization 

between networks that has yet to be addressed fully. As understanding of the neutron 

signal has evolved, so too has disparities between the processing methods of each 

network. Chapter 3 will explore the impact of these disparities, alongside prospective 

solutions, and tools. One key advantage of global CRNS is the potential for uniformity 

in calibration and processing, similar to that seen with eddy covariance towers. While 

the counting rate varies between sensors due to environmental or sensor-specific 

factors, with evolving research, we are uncovering ways to standardize and correct 

these variances allowing a more harmonized network of soil moisture sensors (Schrön 

et al., 2017, Iwema et al., 2021). However, efforts towards a more globally complete 

networks will require collaboration amongst all the networks currently involved, as well 

as the development of tools like ONEFLUX (Pastorello et al., 2020), which facilitate the 

processing of data in a harmonized and open way. Ultimately, a globally harmonized 

dataset paves the way for increased understanding of Earth system sciences, 

deepening our grasp of soil moisture's pivotal role in global earth system dynamics. 

2.3.6 Opportunities of harmonized soil moisture data 

A central aim of large-sample hydrology studies is to derive generalizable hydrological 

principles, aiding in model predictions in ungauged basins. Large datasets are essential 

for this goal, enabling rigorous testing across diverse catchments and hydroclimates. 

One such method to test robustness in our ability to predict environmental states is 

multiple hypothesis testing, through which revised model structures are tested to 

understand if our current presumptions are true for the wide range of hydrological 
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catchments globally (Clark et al., 2011). This approach extends to testing modular 

components of models, such as those proposed in the Framework for Understanding 

Structural Errors (FUSE) (Clark et al., 2008). These approaches help us understand errors 

arising from the model structure. A related issue is discerning whether uncertainties in 

outputs arise from model structure or observational data (McMillan et al., 2021). By 

minimizing potential sources of observational uncertainties, such as those from 

processing differences, or alternatively at least understanding the uncertainty present, 

we can increase our confidence in attributing differences of predictions and test data 

to model structure and hypothesize improvements for future versions. 

Additionally, when testing model performance, large sample datasets are often used 

as ground truth data. Model parameters are then fine-tuned by comparing how a 

model performs on some portion of the data and adjusting the parameters to reduce 

the difference between simulated and observed values. A common metric used is the 

mean squared error (MSE), which statistically describes the discrepancy between the 

actual and simulated values. It is important to understand that MSE comprises three 

distinct sources of error: bias (systemic over or under prediction), variability (the degree 

of variation), and correlation (the degree to which simulated and observed values 

change together). The interaction of these sources of error has been discovered to lead 

to the underestimation of variability when it is used as a performance metric the model 

is trying to adjust for (Gupta et al., 2009). As the errors are squared, large outliers can 

lead to greater penalization, and so the model is encouraged to underestimate 

variability. This has led to increasing interest in alternative ways to identify if a 

traditional model is working as desired through the use of hydrological signatures 

rather than through statistics such as MSE (McMillan 2011). Hydrological signatures 

are methods to define responses at catchments, for example, the response lag time 

between precipitation and streamflow discharge. These signatures offer alternative 

methods of understanding whether a model is representing the overall system 

response to changes and have been used to demonstrate functional differences 
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between catchments (McMillan et al., 2022, Mathai and Mujumdar 2023). Whilst much 

research in this area has been more focused on streamflow signatures (Gnann et al., 

2021), there are increasing efforts to expand this concept to soil moisture signatures 

(Branger and McMillan 2020, Araki et al., 2022, Araki et al., 2023). It is arguable that the 

move to a more signature-based analysis will necessitate even greater focus on sensor 

harmonization. Earlier in this review were descriptions of the different soil moisture 

sensors and how they uniquely infer soil moisture. If responses to changes differ due 

to inherent issues from the technology, comparing sensors could lead to false 

interpretations. For example, soil structure changes have been shown to impact 

measurements using the TDR sensor (Rothe et al., 1997), whilst wetting and drying 

cycles have been shown to change soil structure itself (Diel et al., 2019). This indicates 

that sensor readings may vary across catchments over time due to technological 

peculiarities. This point is less about the specific issues of TDR sensors and more a 

point that this may introduce structures into the data that are not present in other 

sensors. This includes the possibility that systemic issues from other sensors will also 

not be apparent in TDR sensor values. 

2.4 Concluding the goals of this thesis. 

Soil moisture plays a pivotal role influencing ecosystem functioning. Whilst projects 

such as the ISMN network are important and valuable to the community, there is an 

argument that differences between the sensors within the network leads to potential 

issues in large sample hydrology type studies. The CRNS represents a growing global 

resource that provides information of a key spatial and temporal scale of soil moisture, 

which has the potential to act as a harmonized network such as those already found 

through FLUXNET. Increasingly, we are realizing the need to extend soil moisture 

networks to places that are currently underrepresented and yet highly influenced by 

changes in soil moisture in the environment (Bassenbacher et al., 2023). To achieve this 

goal, however, will require tools and methods of harmonization and studies that help 

us understand the data we already have as well as where we might be missing data for 
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future network design. A harmonized network, spanning many different hydroclimates 

will help facilitate improved understanding of soil moistures influence on global earth 

system dynamics. This thesis will fill this research gap in three ways: 

1) Development of a community tool for processing and harmonising CRNS with 

the most recent understanding along with ancillary processes to collect 

metadata describing sites from available global products. Additionally, the tool 

will be used to understand the impacts of different methods of processing. 

2) This newly harmonised global CRNS dataset will serve as an opportunity for 

large sample studies. A meta-analysis of global sites, along with direct 

comparison of soil moisture values to modelled and satellite soil moisture data 

to understand residual differences between this in situ network and global 

gridded products will be presented. 

3) With the increasing application of Machine Learning in earth system science, 

the choice of input data becomes crucial. Given that soil moisture sensors vary 

in their output and scale, this research will explore the impact of different soil 

moisture representations, with an emphasis on the impact of representative 

scales, in a machine learning model predicting surface fluxes of energy and 

carbon. 
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3 Cosmic-Ray neutron Sensor PYthon tool 
(crspy 1.2.1): an open-source tool for the 
processing of cosmic-ray neutron and soil 
moisture data 
 
 
 
 
 
 
 
 
 
 
 
3.1 Context and background 

oil moisture exerts a large influence on hydrological (Van Loon et al., 2015), 

biogeochemical (Schlesinger et al., 2015), and climatic processes (Dobriyal et 

al., 2012; Koster et al., 2004); agricultural systems (Fontanet et al., 2018; Dutta 

et al., 2014); landslide modelling (Zhuo et al., 2019); and Earth system sciences (Fang 

and Lakshmi, 2014; Bonan, 2008). Its accurate measurement is important to advance 

our understanding of these areas of research. In situ point-scale soil moisture 

estimates, such as time domain reflectometry (TDR), can provide higher temporal 

resolution; however, spatial resolution is still limited, on the order of centimetres. Soil 

heterogeneity can lead to uncertainties when upscaling to the field scale (Western et 

al., 1999), which would be required for regional- or larger-scale hydrological 

modelling. Alternatively, satellite remote sensing products such as Soil Moisture Active 

Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) can provide global 

estimates of soil moisture at a coarser spatial (∼40 km resolution) and temporal (∼3 d) 

scale, and at much shallower depths (∼5 cm) (Entekhabi et al., 2010; Kerr et al., 2001). 

It is accepted that we will require a finer spatial resolution than currently achievable 

S 
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through remote sensing estimates for tasks such as increasing our understanding of 

sub-kilometre land–atmosphere interactions or for the improvements of farming 

practices (such as through the process of irrigation scheduling); thus, there is a need 

for additional processing of ancillary data for the downscaling of these products (Portal 

et al., 2020; Alemohammad et al., 2018). In addition, the recent push for hyper-

resolution global modelling means that we require measurements at a finer spatial 

resolution, on the order of sub-kilometre scales (Wood et al., 2011). Bierkens et 

al. (2015) discussed the implications of moving from a more standard 

resolution ∼50 km model to a hyper-resolution model at the sub-kilometre scale. The 

study further discussed the need to move from sub-grid paradigms, which represent 

a conceptualised form of Earth system dynamics from within the standard 50 km 

resolution model, to explicit dynamics of Earth system processes at scales <50 km. This 

requires a greater understanding of environmental functions at sub-kilometre spatial 

scales, which in turn requires accurate measurements of environment states at the 

same scales. 

Cosmic-ray neutron sensors (CRNSs) are a relatively new technology that allows 

estimates of soil moisture at the field scale (∼600 m diameter) at an hourly temporal 

resolution. Zreda et al. (2008) demonstrated that fast neutrons are mainly moderated 

by hydrogen atoms, which allows us to infer changes in water content in the soil profile. 

A tube attached to the sensor, filled with a gas such as helium or boron trifluoride, is 

able to detect fast neutrons that pass through it by inducing a voltage difference. 

Desilets et al. (2010) introduced an equation used to convert neutron counting rates 

into gravimetric soil moisture which has been further improved upon by Dong et 

al. (2014) and Hawdon et al. (2014) (Eq. 1). The original equation along with the above-

mentioned advancements provides us with estimates of volumetric soil moisture: 

𝜃!"# = $ $!
"#$%	∙	()	∙	(*	∙	(+	∙	(,

"!
	&	$-

−	𝑎' − 	𝐿𝑊 −𝑊𝑆𝑂𝑀- (./
(%

                                               (3.1)              
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where 𝜃!"# is volumetric soil moisture (cm3 cm-3); 𝑎), 𝑎*, and 𝑎' are coefficients 

obtained from neutron particle physics modelling (Zreda et al., 2008; Desilets et 

al., 2010) and are assumed to be constants; 𝐿𝑊 is the lattice (chemically bounded 

mineral) water (g g−1); 𝑊𝑆𝑂𝑀 is the water equivalent of soil organic carbon (gram of 

water per gram of soil); 𝜌+, is the bulk density of the dry soil (g cm−3); 𝜌- is the density 

of water defined as 1 g cm−3; 𝑁.$- is the measured raw, uncorrected, neutron count 

identified over the given integration time, usually set to 1 h; 	𝑓/, 	𝑓0, 	𝑓1, 

and 	𝑓! represent correction factors for air pressure, incoming neutron intensity, 

atmospheric water vapour, and above-ground biomass respectively that are applied 

to 𝑁.$- to account for additional influences on the neutron signal other than soil 

moisture; and 𝑁) is the theoretical neutron count found in absolutely dry conditions 

(i.e. the maximum number of neutrons that can be found at the site without the direct 

presence of hydrogen). This last term is unique to each site and is found through the 

calibration process, explained in detail in Sect. 2.2. 

The detection of background neutrons in the atmosphere, as a method to infer 

estimates of field-scale soil moisture, was first described in Zreda et al. (2008). In that 

study, the authors demonstrated that neutron intensity above the surface was inversely 

correlated with the amount of moisture in the soil below. This was developed further 

in Desilets et al. (2010), where the initial form of Eq. (1) was first described and 

applications of this technology continued to be explored within the Earth sciences 

community (Desilets, 2011; Franz et al., 2012; Rivera Villarreyes et al., 2011). A large-

scale network of these sensors was subsequently deployed across the USA, leading to 

the Cosmic-Ray Soil Moisture Observing System (COSMOS) (Zreda et al., 2012). 

After the establishment of the first national-scale network in the USA (Zreda et 

al., 2012), other countries such as Australia (Hawdon et al., 2014; McJannet et al., 2021), 

Germany (Zacharias et al., 2011; Bogena, 2016), and the UK (Evans et al., 2016; Cooper 
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et al., 2021) established their individual national networks, as well as additional sensors 

located in smaller networks or individual sites. Sensors from these networks have, in 

some cases, been running for up to 10 years and can provide potentially valuable 

information for the understanding of soil hydrology. As these networks have grown so 

has the literature surrounding best practices for the calibration and correction of the 

sensor signals, allowing us to have a lower uncertainty in CRNS soil moisture estimates 

(Franz et al., 2012; Rosolem et al., 2013; Hawdon et al., 2014; Baatz et al., 2015; Schrön 

et al., 2017). As a consequence of improvements to the signal correction and sensor 

calibration, a divergence in methods is noticeable between different networks. Each 

network inevitably implements its own protocol when correcting the neutron signal to 

give soil moisture estimates, leading to a less harmonised data set among networks. 

This is in part due to the difficulties that would be encountered in quickly changing 

data processing pipelines within already established databases. The benefit of such 

structures is that live data are available to stakeholders through online portals. 

Unfortunately, the interdependencies of a database mean that it does not lend itself 

to quick changes; thus, a post-processing method could alleviate some of these issues. 

This lack of a harmonised global data set can ultimately lead to limitations in the global 

assessment of this technology from multiple CRNS networks. Discrepancies in 

processing methodology can leave questions around the information obtained and 

the uncertainty propagated from the analysis and comparison of sensors in different 

networks, such as whether soil moisture signals can be attributed solely to 

environmental differences or processing differences. By not necessarily following all of 

the recommended correction steps, the estimated soil moisture products from these 

sensors or even networks can be seen as suboptimal, potentially undermining their 

true value. An example of the impact of evaluating with sub-processed cosmic ray soil 

moisture data is found in Dirmeyer et al. (2016). CRNS data from the COSMOS network 

were compared with both alternative in situ soil moisture instruments and land surface 

models. The CRNS data used in this study did not apply the atmospheric water vapour 
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correction at the time and so can be considered less accurate than they otherwise 

should be. There is a consensus to follow certain steps and guidelines which are not 

uniformly applied across all networks. Known corrections to account for changes in 

atmospheric pressure, neutron intensity, atmospheric water vapour, and aboveground 

biomass are applied differently or, on occasion, not at all on some networks, which 

could lead to different estimates of soil moisture (Zreda et al., 2012; Hawdon et 

al., 2014; Evans et al., 2016). For example, Rosolem et al. (2013) demonstrated the 

influence on the neutron signal that occurs from changes in atmospheric water vapour 

over time. When comparing processed soil moisture estimates with and without this 

additional signal correction, they demonstrated a difference of up to 0.1 cm3 cm−3 at a 

site at Park Falls, USA. Additionally, Hawdon et al. (2014) demonstrated the different 

approaches available for correcting neutron counts for incoming cosmic-ray intensity 

and showed that there is a noticeable difference in neutron counts and ultimately soil 

moisture depending on the chosen method. Schrön et al. (2017) provided an improved 

approach to CRNS calibration, demonstrating that their revised approach improves the 

accuracy of soil moisture estimates. Using UK sites as an example, Schrön et al. (2017) 

found that the root-mean-square error (RMSE) of soil moisture estimates from the 

CRNS was reduced from 5.3 % vol, using the conventional calibration approach, to 

1.4 % vol, using the revised calibration approach. Improvements in accuracy were 

identified at all of the sites that they analysed. Although this revised approach is being 

adopted in more recent studies (Cooper et al., 2021), this is not always the case (such 

as the original sites in the COSMOS network) and can mean that sites in different 

networks have been calibrated using different methods. 

In order to mitigate this ongoing issue of lack of harmonisation in the soil moisture 

estimates from the CRNS technology, we present here an open-source Python tool to 

process raw CRNS data into soil moisture estimates, using the most current methods 

identified in the literature. It is designed to allow a user to apply consistent data 

processing methods across sensors that may be located in different networks. 
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Section 2 will describe the structure of the tool along with the relevant correction and 

calibration methods. Section 2 will also describe the site metadata creation process, 

which is an additional aspect to crspy that is built to facilitate the data analysis of many 

sites. Section 3 will discuss the implications of differing processing methodologies on 

soil moisture estimates, as well as the benefits of creating detailed metadata for post-

processing analysis. 

3.2 The crspy tool 

The Cosmic-Ray neutron Sensor PYthon tool (crspy, pronounced “crispy”) is a tool 

written in Python3 that has been developed to facilitate the processing of the global 

networks of CRNS data in a uniform and harmonised way. It is available through an 

open-source repository and can be installed into a user's Python environment. The 

tool is designed to allow the easy implementation of the most up-to-date correction 

factors and calibration processes to any CRNS site globally, ultimately allowing for any 

user to access a harmonised data set. Although it is designed for multiple sites from 

varied networks, crspy is versatile enough to process a single site as well. It is being 

provided to help facilitate research in the CRNS community and is not intended to 

state whether one networks processing methods are superior to another. It is the 

authors' opinion, however, that it is important for the community to consider the 

creation of a best practice, as this will allow for the comparison of sensor data around 

the world in the future. In addition, crspy is structurally designed to accommodate new 

corrections and processing steps that may become available in the future in an easy 

manner. By being open source, crspy can also serve as a development and testing tool 

for any new understanding of the CRNS technology, as well as a teaching tool for the 

community. 

Figure 3.1 is a visual representation of the processes within crspy that convert raw 

sensor data into corrected soil moisture estimates. Due to the varied nature of input 

data, such as when different networks label data differently, it is first necessary for a 
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user to correctly format input data following crspy's naming convention (see Table A1 

in Supplementary below). Additionally, to organise the various input and output data 

sets, a specific working directory folder structure is necessary. This allows crspy to 

automatically handle the numerous sources of data. After installing the package, a user 

can build this folder structure easily with the crspy.initial(wd) function, 

where wd is a string representing the working directory location.
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 Figure 3.1 The structure of crspy, demonstra:ng all of the modules that are used in crea:ng soil moisture es:mates. Number 1 represents the metadata 
table, which is a collec:on of site descriptors, e.g., soil texture and site eleva:on (see Sect. 2.4). Numbers 2, 3, and 4 correspond to gap filling with ERA5-
Land data, data :dying, and the computa:on of correc:on factors, respec:vely (see Sect. 2.1). Number 5 represents the calibra:on process, if this op:on is 
selected (see Sect. 2.2). Number 6 highlights the quality assessment steps undertaken (see Sect. 2.3). Finally, number 7 represents the step where soil 
moisture es:mates are calculated from the neutron coun:ng rates (refer to Eq. 1) 
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3.2.1 Data processing and correction 

To obtain soil moisture estimates, we need to apply Eq. (3.1) at each time step in the 

data. The values will be obtained from time-varying sensor data, external data 

products, static site-specific values, and static values that are not site-specific. The 

coefficients [𝑎), 𝑎*, 𝑎'] are constants with values of 0.0808, 0.372, and 0.115 

respectively, as defined in Desilets et al. (2010). These values are fitting constants that 

describe the shape of the relationship between neutron counts and soil moisture, 

obtained from neutron particle physics modelling, and are the same for all sites. These 

values are stored in the config.ini file, which stores constant values for crspy. 

Site Specific soil properties 

The site-specific soil parameters described in Eq. (1) are 𝐿𝑊, 𝑊𝑆𝑂𝑀 (obtained from 

soil organic carbon), and 𝜌+, . Due to the open data policies of many of the CRNS 

networks, these data are usually available online (see the “Data availability” section). 

These values should be defined prior to running the main crspy function and are stored 

and read from the metadata file. 

The 𝐿𝑊 parameter corresponds to the lattice water (%), which represents the hydrogen 

contained in the mineral structures of the soil (Hawdon et al., 2014). As fast neutrons 

are mitigated by hydrogen atoms, regardless of their source, this will have an overall 

impact on the neutron count rate. This value is usually obtained through the analysis 

of soil samples taken from the footprint of the site sensor (Franz et al., 2012). The 

𝑊𝑆𝑂𝑀 parameter represents the water equivalent of soil organic matter (g cm−3). Soil 

organic carbon (𝑆𝑂𝐶) is obtained through the analysis of soil samples and represents 

the total organic carbon in the soil at the site. Hawdon et al. (2014) discuss the need 

to convert this value into a water equivalent and provided a method for this (Eq. 3.2). 

This is completed on the assumption that organic matter in the soil is cellulose and 

means that proportionally the water equivalent of this can be found as follows: 
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𝑊𝑆𝑂𝑀 = 𝑆𝑂𝐶	. 0.556                   (3.2) 

The 𝜌+, parameter represents the dry-soil bulk density (g cm−3) and is a site-specific 

static value. It is obtained through the analysis of soil samples and is used in the 

conversion of gravimetric soil moisture to volumetric soil moisture values. If dry-soil 

bulk density data are unavailable for a site, crspy includes the option to obtain this 

value from the global data source SoilGridsv2 (see Sect. 2.4). In the case of missing 

data, crspy takes advantages of built-in routines to fill out the information. In that case, 

if 𝜌+, or 𝑆𝑂𝐶 (used to calculate 𝑊𝑆𝑂𝑀) are missing, crspy will use the estimates 

collected from SoilGridsv2, which are assembled in the metadata process. If LW is 

unavailable, a value of zero can be input into the metadata table by the user. Past 

studies have also demonstrated techniques to estimate 𝐿𝑊 using soil clay content, 

which could be used to provide estimates that can be input to the metadata table 

(Avery et al., 2016; McJannet et al., 2017). Notice that the other site-specific static value 

is the 𝑁) number. This number is found through the calibration process, which is 

described in greater detail in Sect. 2.2. 

Time-varying values and correction methods  

The remaining values required to obtain θvol are Nraw	and 	𝑓/,		𝑓0 ,		𝑓1, and 	𝑓!, which all 

vary with time. It is ultimately the relationship between Nraw and N0 that gives us the 

ability to estimate volumetric soil moisture once the additional corrections have been 

applied. The parameter Nraw is obtained from the sensor data and will usually be 

representative of the number of neutrons counted over a 1 h time period. This is the 

measured raw (uncorrected) neutron count; however, we know that there are 

additional impacts on this count rate that require correction which are represented by 

the f factors in Eq. (3.1). Changes in atmospheric pressure impact the neutron counting 

rate; the 	𝑓/ term corrects for this so that Nraw ⋅		𝑓/	gives the neutron count rate as if it 

were taken at the reference atmospheric pressure. Changes in incoming cosmic-ray 

intensity will directly influence neutron count rates, as this is the source of fast 
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neutrons; thus, the fi term will correct this to match a reference date in time. 

Atmospheric water vapour and above-ground biomass are additional sources of 

hydrogen, outside of the soil moisture source that we are interested in, and so 

the fh and fv terms adjust the count rate in consideration of this. These correction 

methods have been improved upon since the first implementation of this technology, 

with additional sources of uncertainty identified and equations designed to mitigate 

their impact. 

There are occasional data availability issues observed at some sites. For example, 

meteorological variables are a necessary part of converting neutron counts to soil 

moisture estimates because they are needed to account for the numerous impacts on 

the signal, such as pressure corrections and atmospheric water vapour corrections. On 

occasion, some of the sites do not measure all of the necessary variables considered 

to be essential to correct for additional sources on the neutron signal. External relative 

humidity sensors are essential in correcting for changes in atmospheric water vapour 

but are not always included in site data. When data are unavailable from in situ site 

sensors, ERA5-Land (Muñoz Sabater, 2019) data are used to replace missing sensor 

data. ERA5-Land is a data set, based upon the ERA5 reanalysis data and provided 

publicly by the European Centre for Medium-Range Weather Forecasts (ECMWF), that 

combines modelled data with real-world observations, resulting in a gridded, global 

hourly product at a 9 km resolution. Previous iterations of the ERA reanalysis data sets 

(such as ERA-Interim) have proven useful for other global networks for the task of gap 

filling missing data, such as in the FLUXNET community (Vuichard and Papale, 2015). 

We implement a similar approach to that used by the FLUXNET community in crspy 

and, consequently, to the global CRNS database, as we envision the potential of a 

merged database incorporating both flux tower and CRNS soil moisture data in the 

future. As the two measurement technologies show similar temporal and spatial 

footprints, their combined use can eventually lead to a better understanding of land–

atmosphere interactions at the field scale (e.g., Iwema et al., 2017). It is important to 
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note that although the resolution is spatially coarser when compared with CRNS sites, 

the ERA5-Land data set was chosen as a source for replacing missing sensors for three 

main reasons: (1) it covers the lifetime of all of the CRNS sites around the world, which 

ensures that all historical data can be used for gap filling if necessary; (2) the data set 

is produced at an hourly resolution, which matches the standard resolution of CRNS 

sites; (3) it is an open data source, which aligns with our desire to develop a full open-

source tool for CRNS data processing. 

The ERA5-Land data set includes key variables such as precipitation, temperature and 

dew point temperature which can be used to correct for influences on the neutron 

signal, such as the impact of atmospheric water vapour on neutron count rates. Hence, 

we can use dew point temperature when relative humidity sensors are not available at 

the site (Rosolem et al., 2013). Our choice also follows previous studies that 

demonstrated that ERA-Interim tended to perform best when compared with other 

global reanalysis products (Decker et al., 2012). ERA5, which ERA5-Land is derived 

from, has benefitted from a decade of research when compared with ERA-Interim and 

has been shown to be a great improvement (Hersbach et al., 2020). 

(i) Atmospheric pressure correction (fp) 

Changes in atmospheric pressure can have an impact on neutron counting rates 

measured by the CRNSs (Zreda et al., 2012; Hawdon et al., 2014). This is attributed to 

the fact that higher atmospheric pressure reduces neutron counting rates, as there are 

more particles in the air column that can slow fast neutrons down. In crspy this is 

corrected with the following equation: 

	𝑓/ = exp=𝛽(𝑝 − 𝑝0)B                                      (3.3) 

where	𝑓/ is the pressure correction factor (defined in Eq. 3.1), β is a coefficient to 

account for mass attenuation length at the site, p is the atmospheric pressure at the 

site (hPa), and p0 is a reference atmospheric pressure (hPa) for the site, commonly 
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taken as the mean pressure for the site's elevation. The β coefficient and the reference 

atmospheric pressure value are calculated for each location as a function of the 

latitude, elevation, and cut-off rigidity, at the site as described in Desilets (2021). 

(ii) Incoming high-energy neutron intensity (fi) 

It is important to correct for incoming neutron intensity, as this will have a direct impact 

on neutron counting rates. Changes in the incoming cosmic-ray intensity will affect the 

number of fast neutrons in the atmosphere, as increased cosmic-ray intensity will lead 

to an increased counting rate created through the cascade of reactions (Desilets et 

al., 2006). We use data from the Neutron Monitor Database (NMDB; available online), 

which comprises a collection of neutron monitoring sites from around the world. The 

NMDB provides neutron counting rates at an hourly resolution from monitoring 

stations around the world, and its data are considered the official distribution from 

each site principal investigator. The correction method currently varies across 

networks. For example, COSMOS (USA) originally corrected the data by comparing 

neutron intensity to a predefined reference date, which, in that case, was to be 1 May 

2011. The Jungfraujoch neutron monitoring station in Switzerland was used as a 

reference site. The calculation for the incoming neutron intensity correction factor is 

as follows: 

	𝑓02 =
3)
34

                                             (3.4)                                     

where 𝐼𝑚 is the incoming cosmic-ray intensity at the sensor measurement time, 𝐼0	is 

incoming neutron intensity at the decided reference date, and	𝑓02 is used here to define 

this particular incoming cosmic-ray intensity correction factor (in order to avoid 

confusion with	𝑓0 from Eq. 3.1). 

The default approach in crspy, however, is to use the approach outlined in Hawdon et 

al. (2014), where the Jungfraujoch monitoring station is used but an additional 

correction for differences in site cut-off rigidity is applied: 
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𝑅𝑐𝑐𝑜𝑟𝑟 = 	−0.075(𝑅𝑐 − 𝑅𝑐𝑗𝑢𝑛𝑔) + 1                 (3.5) 

Here, Rccorr is the correction for differences in cut-off rigidity (GV), Rc is the cut-off 

rigidity at the sensor location, and Rcjung is the cut-off rigidity at the Jungfraujoch 

monitoring station (which has a value of 4.49 GV). This is applied at each time step to 

give a final corrected value as follows: 

	𝑓0 = (	𝑓0′ − 1)𝑅𝑐𝑐𝑜𝑟𝑟 + 1                    (3.6) 

Ultimately, fi is similar to 	𝑓02 but contains an additional correction to account for the 

difference in cut-off rigidity between the CRNS site being processed and the 

Jungfraujoch neutron monitoring reference site. 

The Australian CosmOz network employs a different approach that does not always 

use the Jungfraujoch as the reference monitoring station. Instead, this network 

changes the reference station based on the station that has the closest cut-off rigidity 

(GV) to the sensor site from the Neutron Monitor Database (Hawdon et al., 2014). This 

option is also available in crspy when running the main processing 

function crspy.process_raw_data(fileloc, intentype="nearestGV") by 

invoking “intentype” with the “nearestGV” option. This involves identifying the 

NMDB site with the nearest cut-off rigidity and applying Eq. (3.4). 

(iii) Atmospheric water vapour (fh) 

Hydrogen atoms can slow down fast neutrons, leading to a reduction in the count rate 

with increasing atmospheric water vapour. This signal needs to be removed to ensure 

that neutron counting rates are attributed to soil moisture and not moisture in the air. 

This is corrected at each time step with the following equation (Rosolem et al., 2013): 

	𝑓1 = 	1 + 0.0054 × 𝜌𝑣	                             (3.7) 
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where fh is the atmospheric water vapour correction factor, and ρv is absolute humidity 

(g m−3). Some sites do not have external relative humidity sensors that can be used to 

calculate vapour pressure, which can be used to calculate absolute humidity along with 

temperature. When this is the case, ERA-5 Land data can be utilised by converting dew 

point temperature (∘C) to vapour pressure (kPa) (for further information on the steps 

to obtain absolute humidity from standard meteorological variables, please refer to 

the appendix section in Rosolem et al., 2013). 

Arguably, ERA5-Land data present a spatial mismatch with the cosmic-ray sensor 

whilst also being a non-direct measurement of environmental variables. The majority 

of CRNS sites in the USA have not been deployed with a set of standard meteorological 

measurements, and only a few are co-located with external monitoring stations. Hence, 

in this case, ERA5-Land data are critical to ensure that neutron counts are appropriately 

corrected for water vapour variations at these sites. Our preliminary analysis suggests 

that correcting neutron counts with ERA5-Land data provides superior results 

compared with not applying the correction at all due to a lack of meteorological data 

(Fig. 3.2). In this example, meteorological data at the Atmospheric Radiation 

Measurement (ARM) site in Oklahoma are available from a nearby flux tower (Biraud 

et al., 2021). Notice how the processed soil moisture time series corrected with ERA5-

Land data closely follows the soil moisture estimates produced when using the in situ 

meteorological data (Fig. 3.2a). Neglecting this correction can lead to a significant 

underestimation of soil moisture, especially during the wet seasons. Figure 3.2c helps 

to visualise these impacts by showing the difference between obtained soil moisture 
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with a correction using ERA5-Land data and that with no correction applied, both 

compared with soil moisture corrected with in situ data. 

(iv) Above-ground biomass (AGB) (fv) 

Similar to other sources of hydrogen, biomass can also affect the neutron counting 

signal. There have been numerous attempts to identify the relationship between AGB 

and neutron count rates (e.g. Rivera Villarreyes et al., 2011; Baatz et al., 2015; 

Heidbüchel et al., 2016, and Tian et al., 2016). Unlike other sources of hydrogen, AGB 

is sometimes not available from local samples at each site. In order to reduce the 

impact of AGB on the measured neutron signal, crspy currently uses a static estimated 

value for each site from the European Space Agency (ESA) Climate Change Initiative 
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Figure 3.2 The soil moisture (SM) record at the ARM-1 CRNS site in the USA. Panels (a) and (b) 
show the SM product when corrected using in situ data in black. The red line in panel (a) is the 
SM product corrected with ERA5-Land data in place of temperature and rela:ve humidity 
sensors. The blue line in panel (b) shows the SM product when not correc:ng for atmospheric 
water vapour (c). Panel (c) shows the difference between the SM corrected with in situ data 
and the alterna:ve correc:on methods.  
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(CCI) global data set and applies a correction method based on the work of Baatz et 

al. (2015), who found a linear relationship between above-ground biomass and 

neutron counting rates. 

The following equation is used: 

	𝑓! =
"

"#(%.%%'∗)*+)
                                     (3.8) 

where 	𝑓! is the above-ground biomass correction factor, and 𝑎𝑔𝑏 is the dry above-

ground biomass at the site (kg m−2). The ESA CCI database provides above-ground 

biomass estimates as a global gridded data product at a 100 m resolution (Santoro 

and Cartus, 2019). As the ESA CCI data currently used are a static value in time, they 

will not impact the soil moisture estimates, in principle, because the correction is 

applied on both the 	𝑁.$- and 	𝑁) numbers, thereby mitigating any impact. 

Nevertheless, we have included this routine in crspy in this form because we anticipate 

improvements to dynamical above-ground biomass corrections in the future, at which 

point crspy can be updated to include the latest theory that can be applied across all 

sites (Franz et al., 2018; Vather et al., 2020; Fersch et al., 2020). Further improvements 

to be able to dynamically account for biomass changes at all CRNS sites will be 

important for reliable estimation of soil moisture dynamics, especially when analysing 

sites with land use changes or cropping cycles. 

3.2.2 Sensor Calibration 

The above steps give us all of the values in Eq. (3.1) that are necessary to provide a soil 

moisture estimate, except for N0. A required step in processing, and eventually using 

the data, is to calibrate the CRNS to the specific conditions found at the site of interest. 

Without this step, the soil moisture can potentially have significant biases and may be 

deemed unusable. Alternatively, the uncalibrated measurement can only give you a 

rough idea about the dynamics of the soil wetness conditions in relative terms. The 
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calibration step typically requires multiple soil samples (typically >100) taken from 

within the sensor footprint and oven-dried to get an accurate representation of soil 

moisture at the calibration time. These samples are then weighted and averaged to 

give a field-scale soil moisture estimate of the sensor footprint (note that we use dry-

soil bulk density, 𝜌+, , sampled within the footprint to estimate volumetric water 

content in cm3 cm−3). The crspy tool uses the soil moisture averaging method obtained 

from field samples proposed by Schrön et al. (2017), which is based upon the original 

work of Köhli et al. (2015). The method provides an updated approach for weighting 

soil moisture samples taken within the footprint that considers the spatial distance of 

each sample from the sensor as well as the influences of pressure and humidity during 

the sampling period. This allows for a more accurate estimate of independent soil 

moisture within the CRNS footprint for the calibration step. Schrön et al. (2017) 

suggested improved sampling strategies which included samples closer to the sensor 

(<5 m radius from the sensor) and sample locations guided by the knowledge of local 

hydrological features. The data required for the calibration step include the date of the 

sample, an integer to represent each soil moisture profile (a core of soil taken from 

within the sensor footprint), the depth of each sample within each profile, the distance 

from the sensor, and the volumetric soil moisture of the sample. Again, these should 

be named following the template requirements of crspy (see Table A2 in Appendix A). 

Calibration data sets are openly available from some of the networks at existing sites, 

such as CosmOz and COSMOS, and can be obtained from their respective websites. 

Alternatively, if a user was setting up their own sensor, a sampling campaign would be 

required such as that described in Schrön et al. (2017). 

With regards to the number of calibration days, crspy is flexible enough to process 

both single-day or multiple-day calibration campaigns. Multiple calibration campaigns 

were shown to improve the CRNS signal (Iweema et al., 2015). For the case of multiple-

day calibration, all calibration days should be presented in a single table, ensuring that 
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the correct dates of each sample period are provided, and following the same 

formatting and naming requirements used for single-day calibration. 

Finally, when running crspy for a single site, the user is able to turn the calibration 

process on or off. This is included because calibration only needs to be done once, 

as N0 does not vary with time. When the calibration step is turned on, crspy will call 

the calibration routine and write the output to the metadata table in the column “N0”. 

If the calibration routine is turned off, crspy will skip this step and simply read 

the N0 number for the site from the metadata. Alternatively, the user can provide 

the N0 coefficient independently in the metadata table and skip the calibration step 

completely by always having it off in crspy. 

3.2.3 Quality assessment 

All data should be checked for quality to ensure that erroneous data are not included, 

and crspy includes some automated steps to begin this process. All networks 

implement quality assessment on neutron counts in order to remove poor-quality data 

(e.g. Zreda et al., 2012; Hawdon et al., 2014; Evans et al., 2016). In crspy, we remove 

suspicious data points by applying flags to neutron counts that fall within four 

categories, and the following rules are consistent with the application in other 

networks: 

1. counts that differ by 20 % from the previous time step are removed; 

2. counts below 30 % of N0 are removed; 

3. counts above (N0 ⋅1.075) are removed, according to Eq. (13) in Köhli et al. 

(2021); 

4. battery voltages below 10 V are removed, 

Flag 1 is applied on the raw, uncorrected neutron count, as we are interested in 

identifying sudden jumps in the counting rate in the sensor that are believed to be in 

error. Flags 2 and 3 are applied to the corrected neutron count. This is because the 	𝑁) 
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number is itself a corrected number (i.e., it is the maximum number of neutrons at the 

site under theoretical dry conditions, once additional environmental influences on the 

neuron count rate, 𝑁, have been taken into account and removed from the signal). In 

the case of flags 2 and 3 the 𝑁 and 	𝑁) number need to both be corrected in order to 

be comparable. 

Additionally, crspy will output time series diagnostic plots of all variables used for 

identifying patterns in data that point towards potential issues which may require a 

small subset of the data to be removed manually (this, of course, depends on the 

quality of the data from individual sites and, therefore, cannot be fully automated). 

3.2.4 Metadata 

Metadata are important pieces of information that allow the user to better describe 

each site characteristics beyond its soil moisture dynamics. This information can be 

extremely useful, especially when multi-site regional to global CRNS stations are to be 

analysed simultaneously. The metadata of each site are stored in a tabular format 

within the folder structure of the working directory, and a full description of the 

columns is given in the Appendix A (Table A3). This serves two main purposes. Firstly, 

it stores static site-specific variables that are used in computing estimated soil 

moisture values (e.g. 𝐿𝑊, 𝑆𝑂𝐶, and 	𝜌+,). To provide an example, 	𝜌+, is necessary to 

convert gravimetric soil moisture estimates into volumetric soil moisture estimates in 

Eq. (3.1). The 	𝜌+, value is collected during the calibration campaign at each site and 

will vary between sites. It represents an averaged value taken from the soil samples, 

and it is stored in the metadata. The user should also give each site a country code 

which represents the country it is located in and a unique site number for each CRNS 

site. The country code is used to help identify geographic locations in analysis and 

helps when the site numbering of networks may overlap. Raw time series data should 

be titled with the country code and number in the following 

format: country_SITE_sitenum.txt. Here, country is a capitalised letter code, and 
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the sitenum is a three-digit number. For example, sensor data for a site in the UK could 

be titled: UK_SITE_101.txt. The country and sitenum variables form a sitecode (e.g., 

UK_SITE_101) which is used to label the outputs of crspy for easier identification, 

especially when processing many sites. The country and sitenum are also used as 

lookup values in the metadata to extract necessary variables. 

A second purpose of the metadata is to act as a resource when analysing many sites 

together. The ability to classify catchments by physical characteristics can allow us to 

understand key similarities and differences between sites, which is an important 

direction in hydrological research (Wagener et al., 2007). To increase the value of the 

metadata, in addition to including data collected at the site, global data products have 

been integrated. These products are all public products that a user can download and 

store within the folder structure of the working directory. We realise that these global 

data sets are not a direct replacement for the invaluable information obtained at the 

site; however, in many cases, such pieces of information are not available, undermining 

any multi-site analysis. We believe that the use of the data sets described in detail 

below can provide us with key information at both the regional and global level. In 

crspy, a simple function is used to extract the information from the data products 

below when provided with the location of the CRNS (i.e., latitude and longitude): 

(i) ESA CCI Land Cover and Above-Ground Biomass data. The European Space 

Agency (ESA) Climate Change Initiative (CCI) provides numerous global data 

products that are useful in the Earth sciences community. Land Cover data and 

Above-Ground Biomass data are obtained from ESA CCI and stored in metadata 

for each site for analysis via identifying site differences and similarities. Both 

products are spatially consistent with the CRNS range (100–300 m) and are 

available globally. The usefulness of ESA CCI data sets in land surface modelling 

continues to be established (Li et al., 2017). 
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(ii) International Soil Reference and Information Centre (ISRIC). The ISRIC provides 

a global data product that gives estimates of soil properties on a 250 m 

resolution grid. This is available as SoilGridsv2 (Poggio et al., 2021), which is an 

updated (as of May 2020) iteration of the original SoilGrid product (Hengl et 

al., 2017). The properties are estimated from collections of ground 

measurements that are compiled by the World Soil Information Service (WoSIS). 

WoSIS provides standardised soil profile data to facilitate the creation of 

products such as SoilGrid (Batjes et al., 2020). 

(iii)  ERA5-Land. As discussed previously, meteorological variables from ERA5-Land 

data can be downloaded for each site. Mean annual precipitation and 

temperature data are stored along with derived Köppen–Geiger classifications. 

 

3.2.5 Running the tool. 

Once the working environment has been prepared, the data can be processed with: 

crspy.process_raw_data(fileloc, calibrate=True, intentype=None) 

Here, “fileloc” is the location of the raw sensor data, the calibration process can be 

turned on or off as a Boolean descriptor, and intentype can be left as “None” to 

enact the default process for incoming neutron intensity correction or can be changed 

to “nearestGV” to utilise the alternative method. Once applied, crspy will process the 

raw data using the provided information to give soil moisture estimates and will output 

figures and tables into the folder structure of the working directory. A description of 

the final output file and what each of the standard columns represent is given in 

Table A4. 
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3.3 Discussion 
3.3.1 Benefits of Harmonization 

As mentioned previously, one of the key purposes of crspy is the easy and harmonised 

processing of CRNS sites from around the globe, as there is currently no true 

consensus on what correction steps are implemented in different national networks. 

These technical differences can lead to changes in outputs which may result in non-

optimal conditions for regional/global analysis from multiple countries. Whereas some 

users may wish to understand changes at one particular site, inter-site comparisons 

are limited when each site could be processed in a different way. In this section, we 

highlight such impacts using an example related to the individual sensor corrections 

steps and their impact on the final soil moisture estimates. 

Table 1 outlines three identified methods that are currently employed across different 

networks. The p_int1 method is employed at the COSMOS (USA) network; it lacks the 

atmospheric water vapour correction and applies an intensity correction using only the 

Jungfraujoch neutron monitoring site directly. The p_int2_awv method closely 

resembles the CosmOz (Australia) network methodology, which applies the 

atmospheric water vapour corrections and an intensity correction that differs from 

the p_int method. In this case, the neutron monitoring station used as an incoming 

neutron intensity reference is changed to the nearest station with a similar cut-off 

rigidity to the CRNS site being corrected. The p_int3_awv_agb method is the default 

crspy method; it resembles the methods used by COSMOS-UK while also allowing for 

the above-ground biomass correction to the neutron signal. In this final case, the 

intensity correction uses Jungfraujoch as its reference site but with an additional 

correction to account for differences in cut-off rigidity between Jungfraujoch and the 

site (Eq. 3.5). 
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With all of these different correction approaches applied independently by each 

national network, we investigate both the impact on the measured neutron counts 

and, consequently, the propagated effects on the estimation of soil moisture. Figure 3 

shows two sites with distinct hydroclimatic regimes, both taken from the COSMOS-

USA network, that have been processed using the three identified methods (see 

highlighted star markers in Figs. 4 and 5). The Santa Rita Creosote site (Arizona, USA) 

is a shrubland-dominated region with a soil categorised predominantly by sandy loam. 

The site has a mean annual temperature of 19 ∘C and a mean annual precipitation of 

335 mm, the latter of which primarily falls in winter storms and monsoonal summers 

(Köppen–Geiger climate classification BSh, a hot semi-arid climate). Climate data are 

taken from ERA5-Land, and the Köppen–Geiger classification is derived from ERA5-

Land data using the method outlined in Peel et al. (2007). The Wind River site 

(Washington, USA) is an old-growth mixed conifer forest area. The site is much wetter 

than the Santa Rita Creosote site, with an annual precipitation of 2200 mm, and much 

colder, with an average annual temperature of 8 ∘C. Precipitation at Wind River tends 

to fall all year round but with slightly lower rates in the summer period (Köppen–Geiger 

classification is Csb, a Mediterranean climate, mild with dry, warm summers). Climate 

data have been extracted from ERA5-Land, and the Köppen–Geiger classification is 

derived from 10 years of ERA5-Land data using the method outlined in Peel et 

al. (2007). The raw neutron data from both sites were obtained directly from the 

Table 3.1 The three iden:fied methods of correc:on neutron signals in use 
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COSMOS network, representing the p_int case in Table 1. In addition, in order to 

compare the impact of the different correction approaches outlined in Table 1, the raw 

data from the CRNSs at both sites have been processed in crspy to give the corrected 

signals for the p_int2_awv and p_int3_awv_agb methods. 

 

It is clear to see the inverse relationship between neutron count rates and soil moisture, 

most noticeably at Santa Rita Creosote (Fig. 3.3a, c). The soil moisture here tends to be 

low, such as in June when it was below 0.05 cm3 cm−3, which is to be expected in a hot 

semi-arid environment. Sudden spikes in soil moisture can be attributed to 

precipitation events, with the summer monsoonal precipitation causing a sudden 

increase in the mean soil moisture values for the months of July, August, and 

September (and, inversely, periods corresponding to decreases neutron counting 

Figure 3.3 Example of CRNS data obtained at two dis:nct sites: Santa Rita Creosote (a, c, e) and Wind 
River (b, d, f). Daily neutron coun:ng rates (raw and corrected based on the different strategies outlined 
in Table 1) are shown in panels (a) and (b) 
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rates). It is also clear that the method chosen has an impact on soil moisture values. 

This is most notable when comparing the p_int1 method with both 

the p_int2_awv and p_int3_awv_agb methods. During the summer months, the p_int1 

method appears to estimate higher soil moisture values compared with the other two 

methods (both appearing to be much more closely aligned with each other). This is 

likely due to the fact that the p_int1 method does not account for changes in 

atmospheric water vapour. As a consequence, during the monsoonal summers when 

there is more hydrogen in the atmosphere from increased humidity, the relatively high 

water vapour in the atmosphere is incorrectly attributed to additional soil moisture. 

This is because the CRNS records wrongly attribute the decrease (attenuation) of 

neutron counts due to water vapour to an increase in soil moisture, causing an 

overestimation. For example, even early in March, there is a sudden rise in soil moisture 

from the p_int1 estimates that does not appear in the other two methods (Fig. 3.3c). 

This suggests that rather than a sudden rise in soil moisture, this was actually a rise in 

atmospheric water vapour. This demonstrates the importance of removing external 

impacts on the neutron signal, as they could be incorrectly attributed to soil moisture 

dynamics. The negative effect of neglecting such correction, for example, can be even 

more pronounced in monthly estimates of soil moisture due to the aggregated nature 

of this error (Fig. 3.3e). 

The Wind River site is a much wetter site when compared with Santa Rita, with its driest 

month matching Santa Rita Creosote's wettest month. In the case of Wind River, it is 

worth noting that there is a much larger difference between the neutron count rate of 

the p_int3_awv_agb method compared with the other methods (Fig. 3.3b). This is 

because the p_int3_awv_agb method includes an above-ground biomass correction, 

using the ESA CCI Above-Ground Biomass product to calculate a correction. Currently, 

as this correction is applied using a static aboveground biomass value (constant with 

time), the impact of the correction is not translated to differences in estimated soil 

moisture. This is due to the correction being applied to both the neutron counting rate 
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and the N0 term. With dynamic data, which represent changes in above-ground 

biomass over time, we would be able to improve our estimates of soil moisture, as the 

impact of changing above-ground biomass could be removed from the neutron signal. 

One additional noticeable feature that crspy implements is the capping of soil moisture 

to more realistic values, in this case 0.68 cm3 cm−3. The p_int1 method does not do this, 

and so there are physically impossible values of volumetric soil moisture in February 

and December, as seen in Fig. 3.3d. In crspy, maximum values for soil moisture are 

estimated by inferring the porosity of the soil: 

𝑠𝑚_𝑚𝑎𝑥 = 1 − X (./
,567089

Y                                                                                                                (3.9) 

where sm_max is the maximum volumetric soil moisture value (cm3 cm−3), ρbd is soil 

bulk density (g cm−3), and density is the density of ground material (estimated with an 

assumed density of quartz at 2.65 g cm−3). If a user did not wish to enable this cut-off 

value, the value for sm_max can be set to one in the metadata. 

At the Wind River site, the differences between p_int2_awv and p_int3_awv_agb are 

much more noticeable, especially when the soil moisture estimates are aggregated to 

monthly timescales (Fig. 3.3f). This observed difference is due to the fact that these 

methods do not apply the same correction for incoming cosmic-ray intensity (fi). Such 

differences are caused by the choice of correction rather than physical controls on soil 

water dynamics. This can lead to inaccurate comparisons across sites from different 

national/regional networks. For example, identifying useful soil moisture signals that 

can be used to categorise the hydrology of sites will be an important tool for 

understanding differences and similarities with regards to hydrology. Branger and 

McMillan (2020) demonstrated this in their paper which looked to identify useful soil 

moisture signals that can be robust, discriminatory, and representative, and research 

into developing useful diagnostic soil moisture signatures is ongoing (Araki and 

McMillan, 2020). When reducing large time series data into signatures, such 

differences can be aggregated, which could begin to affect conclusions. However, the 
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authors stress here that it is not within the scope of this work nor the intention of this 

study to identify which method is better or worse than the other; rather, we intend to 

highlight the potential negative impacts of the lack of a harmonised data set for large-

scale global assessment of CRNS technology. 

3.3.2 Usefulness of crspy metadata 

Metadata can be used to describe the network of CRNSs around the world 

geographically, climatologically, and hydrologically. To achieve this, crspy compiles 

relevant data obtained directly from the sensor, key data descriptors provided from 

each site or network, and from global data products. Wagener et al. (2021) discuss the 

need for high-quality metadata to improve our ability to understand the knowledge 

accumulation in the field of hydrology. Metadata can be valuable in separating relevant 

sites in different groups; for example, researchers may be interested in understanding 

how soil moisture behaves at sites above 2000 m elevation with certain land use types 

and given particular weather events (Chen et al., 2020), how it behaves at sites where 

mean annual precipitation is above/below a certain threshold, or they may even wish 

to group sites by different land cover or soil types. So called meta-analyses can help a 

researcher identify which sites should be included in their studies and which can be 

excluded (Evaristo and McDonnell, 2017). The metadata provided by crspy allow the 

user to quickly obtain any grouping of interest in an easy and accessible way. 

In order to demonstrate some of the features that can be easily accessed with the help 

of metadata, we show an example using the compiled COSMOS network data for the 

continental USA (CONUS). Some of these data are taken directly from the network 

website and then processed using the crspy.fill_metadata() function. This function collects 

information from global data products at a specific site location (i.e. latitude and 

longitude) as well as using meteorological data from ERA5-Land to produce annual 

meteorological summaries (e.g. mean annual temperature, mean annual precipitation, 

and Köppen–Geiger climate classification). Figure 3.4 gives an example of how the 
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metadata can be easily used to show the location of each sensor in the CONUS domain 

based upon the supplied additional information – in this case, the main land cover 

classes obtained from the CCI ESA Land Use data. An important step here is that the 

user is not required to download and process the land cover data separately and 

individually. crspy incorporates that step for the user seamlessly.  

In addition to locating the CRNS stations and identified the main land cover type, 

Fig. 3.5 shows a scatter histogram of the sites across CONUS, providing additional 

annual meteorological summaries, namely mean annual temperature and mean annual 

precipitation. The scatterplot still retains the information about the main land cover 

type obtained from the ESA CCI global database. In addition, both meteorological 

variables are shown as side histograms and were computed using ERA5-Land data. The 

initial analysis indicates that CRNSs classified as shrublands tend to be relatively 

warmer and drier. Grassland and forests tend to be wetter while showing a wider range 

of temperatures. Croplands are slightly warmer than grassland and forests but still 

show lower temperatures than those observed in shrublands. However, croplands also 

indicate a slightly wider range of wetness compared with the grassland and forest sites, 

 
 
 
 Figure 3.4 Map showing the loca:on of CRNS sites from the COSMOS network across con:nental USA 

(CONUS). The colours are representa:ve of the land cover types obtained from the ESA CCI global database, 
and the stars highlight the loca:on of the two sites processed above (i.e. Santa Rita Creosote and Wind 
River). 
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as observed from the total annual precipitation. This could be useful when deciding 

which sites should be used in a particular study, such as a study on soil moisture 

dynamics in shrublands with low overall precipitation. Alternatively, it can be used in 

big-data analytics when trying to identify the dominant mechanisms in soil moisture 

dynamics globally. 

The objective of metadata in crspy is to easily collect a wide range of information on 

site characteristics that can be used to improve our knowledge of soil moisture and, 

consequently, other hydrological and environmental processes beyond just a single 

site. This allows for knowledge accumulation across multiple sites (from local to 

regional and even global), highlighting key similarities and any emergent patterns (e.g. 

hydroclimatic and ecological). Metadata analysis has not yet been fully exploited in 

hydrological sciences (Evaristo and McDonnell, 2017), but it can also contribute to 

knowledge accumulation, which can be translated to aid in the design of improved or 

new perceptual or conceptual models (Wagener et al., 2021). An early example of that 

within the cosmic-ray neutron sensing community is clearly demonstrated by 

Shuttleworth et al. (2013) during the conceptual development of the COsmic-ray Soil 

Moisture Interaction Code (COSMIC). COSMIC was developed as a forward 

observational operator, allowing for the conversion of simulated soil moisture profile 

by land surface or hydrological models into equivalent neutron counting rates, 

facilitating data assimilation applications (Rosolem et al., 2014). By collecting and 

accumulating information from (at that time) 42 available COSMOS sites (see Table 1 

in Shuttleworth et al., 2013), the authors were able to simplify the requirement for two 

of the prescribed parameters by establishing relationship with dry-soil bulk density 

(see Fig. 6 and Eqs. 6 and 7 in Shuttleworth et al., 2013). crspy will certainly facilitate 

such efforts in the future to help both experimental and modelling scientists, with the 

potential to reach other disciplines beyond traditional hydrological and environmental 

sciences. For example, a prototype version of crspy has recently been used for space 

weather application (Hands et al., 2021). 
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3.4 Future direction 

In this paper, we have presented crspy, an open-source Python tool for the processing 

of cosmic-ray neutron sensors. Our aim in developing crspy is to provide a tool to the 

community that can provide methods to process CRNS data easily and that can be 

updated in the future to keep pace with our increasing understanding of the sensor 

signal. Due to this evolving understanding of the sensor, we expect to be updating 

crspy regularly in the future to accommodate our new understanding of the 

technology along the years. 

Figure 3.5 ScaEer histogram showing the CONUS CRNS sites and some of their climatological 
characteris:cs. The units for the histograms are the number of sites for each bin. The colours 
represent land use types iden:fied from the ESA CCI Land Use global data set. The stars 
highlight the loca:on of the two sites processed above (i.e. Santa Rita Creosote and Wind 
River). 
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Köhli et al. (2021) recently presented research that demonstrates a revised formulation 

of the key equation that converts neutron counts into soil moisture estimates (see 

Eq. 3.1). This emphasises the need to be able to update CRNS estimates to keep pace 

with the research as well as to test newer formulations across a range of sites quickly. 

In version 1.2.1 of crspy, we maintain the Desilets et al. (2010) version of Eq. (3.1) as 

the default setting but provide a document that describes how a user could update 

crspy on their home machine to implement the revised approach (see the 

Supplement). This document serves two functions: it demonstrates how to update 

crspy so that researchers may be able to test newer methods on a broad range of sites, 

but it also speaks of a more general need to agree on a standard approach for 

processing CRNS data. We believe it will be an important step in the future for the 

numerous stakeholders in CRNS measurements to agree upon a standard approach. 

This must be decided as a community, and we should look towards the positive steps 

other communities have taken in this regard, such as the flux community (Novick et 

al., 2018). 

Another aspect of development in crspy will be making it more accessible and user-

friendly. We consider that one of the key functions of crspy is to act as a tool for 

researchers, providing a way to update processing methods and apply them quickly to 

a collection of data. On top of this, we would hope that it can be used as an education 

tool, helping newer users understand how the sensor functions and what is required 

to fully correct it based on our current understanding. This could include developing 

crspy into frameworks such as Python Dash, which are powerful tools for exploring 

data. 

3.5 Summary 

Soil moisture is an important component of the hydrological cycle, and understanding 

its dynamics at relevant spatio-temporal scales is critical especially with recent 

advances of global land surface and hydrological models. The CRNS technology is able 
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to provide estimates of soil moisture at the sub-kilometre scale and at an hourly 

resolution. This is particularly relevant now as we continue to move towards hyper-

resolution global modelling efforts. Over the years, with increased adoption of the 

technology, the CRNS community has acquired a better understanding of the benefits 

and limitations of this relatively novel technique. However, due to a lack of data 

harmonisation across networks, undertaking global-scale analyses is currently very 

limited and unexploited. Here, we introduced the crspy Python package with the aim 

of facilitating user data processing easily and with the most current methods and, most 

importantly, in a harmonised fashion. crspy is an open-source tool aimed at integrating 

the latest developed methodologies for CRNSs for use in both research and teaching 

activities. It integrates high-quality global data products (such as ERA5-Land) to ensure 

that all sites can be included in the analysis. This is done in a similar way to other well-

established global environmental networks such as the AmeriFlux and FLUXNET. 

Our application examples demonstrated that processing CRNS data with different 

methodologies can ultimately lead to divergences in soil moisture estimates. This 

could potentially have a negative impact on the analysis and overall findings, especially 

when sites across multiple networks are evaluated simultaneously. By harmonising 

data processes, we envisage that CRNS data will be used more widely by the global 

modelling and experimental communities, leading to further adoption of the 

technology. The objective of crspy is to provide an open and easy-to-use data 

processing platform that can enable easy processing of CRNS data. Additionally, crspy 

data collection relies on the production of an extensive metadata archive. This archive 

can be shared and used within the community to better understand key aspects of soil 

moisture from typical sampling locations, in order to provide information on signature 

behaviour by different groupings. crspy has been developed to show the potential to 

easily and efficiently process CRNS data in a harmonised way. The aim is to promote 

the usefulness of free and open-access data and engage the CRNS and research 

communities in the continued improvement of this product in the coming years. 
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3.6 Appendixes of Chapter 3 
Appendix A: Tables to describe variables’ names and outputs. 

Appendix A consists of four tables that outline the naming conventions required for 

crspy to run; it also presents the output table and a description of each variable. When 

labelling input data, column titles should match the style used in the “Column name” 

column below. This initial step will then allow crspy to run smoothly, as it uses column 

titles to identify relevant data sources. 

Table A1 The naming conven:on for CRNS input data. Networks can occasionally have different 
naming conven:ons (e.g. temperature is referred to as t1). Changing the column :tles to the 
following format will allow crspy to func:on correctly. 

Column 
name Units Description 

TIME 

Date 
and 
time 

Date and time of the observation in UTC (format:  yyyy-mm-dd 
hh:mm:ss) 

MOD Count 

Moderated neutron count for time interval – the sensor tube is 
surrounded by a high-density polyethylene shield to remove thermal 
neutrons from the count rate 

UNMOD Count 
Unmoderated neutron count for time interval – a bare tube without 
the shield which will include thermal neutrons in the count 

PRESS1 hPa 
Pressure sensor number 1: usually the older analogue version that is 
somewhat less accurate 

PRESS2 hPa 
Pressure sensor number 2: the sensor that will be primarily used. If it 
is unavailable, PRESS1 will be used in its place. 

I_TEM ∘C Internal temperature of the sensor box 
I_RH % Relative humidity inside the sensor box 
BATT V Voltage of the battery 

E_TEM ∘C 
External temperature at the site: this would be an external reading. 
If it is unavailable, ERA5-Land data are used 

E_RH % 
External relative humidity at the site. If it is unavailable, dew point 
temperature is used to find absolute humidity 

RAIN mm 
Rainfall at the site. If local information is available, it is used; if local 
information is not available, rainfall is obtained from ERA5-Land data 
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Table A2 The naming conven:on for the calibra:on data. This format should be followed and 
will allow the calibra:on module to be u:lised. 

Column 
name Units Description 

DATE Date (format: 
dd/mm/yyyy) Date that the data were collected from the site 

PROFILE int 
Integer (int) to differentiate profiles, with a profile 
being a single core. The core could then have 
multiple “layers”. 

LOC_rad m Distance from the sensor for each sample in metres. 

DEPTH_AVG cm The depth of the soil sample for each layer, taken as 
the mid-point of the layer. 

SWV % 

The volumetric soil moisture of the sample, which 
should be given as a decimal (i.e. 0.3). If it is given 
as a numeric percent (e.g. 30 %), crspy will attempt 
to identify this and convert it to a decimal 

 

 

Table A3 The naming conven:on of the metadata table. 

Column name  Units  Description  
Required at 

start?  

COUNTRY – 
Country code for the location of the 

site, e.g. “USA” Yes 

SITENUM – 
Assigned three-digit number for the 

site, e.g. 001 Yes 
INSTALL_DATE – Date of site installation No 

LONGITUDE 
Decimal 
degrees Longitude of the site Yes 

LATITUDE 
Decimal 
degrees Latitude of the site Yes 

ELEV m Elevation of the site above sea level Yes 
TIMEZONE – Time zone of the site No 

GV GV Cut-off rigidity (GV) of the site Yes 

LW % 
Lattice water from site-specific 

calibration data Yes 

SOC % 
Soil organic carbon from site-specific 

calibration data Yes 



- 74 -   

BD g cm−3 
Dry-soil bulk density from site-specific 

calibration data Yes 

N0 – 

Theoretic maximum neutron count for 
site (dry conditions), calculated in tool 

and written No 

AGBWEIGHT kg m−2 
Live woody above-ground biomass 

estimates from ESA CCI biomass data No 

RAIN_DATA_SOURCE – 

Declaration of the source of rain data: 
currently this will be either “Local” or 

“ERA5_Land” No 

TEM_DATA_SOURCE – 

Declaration of the source of 
temperature data: currently this will 

be either “Local” or “ERA5_Land” No 

BETA_COEFF – 

Store of the calculated β coefficient 
(see pressure calculations) for each 

individual site No 

REFERENCE_PRESS hPa 
Reference pressure calculated using 

elevation No 

BD_ISRIC g cm−3 

Bulk density estimates taken from the 
International Soil Reference and 

Information Centre (SoilGrids250m; 
https://soilgrids.org/, last access: 

11 November 2021) No 

SOC_ISRIC g dm−3 
Soil organic carbon estimates from 

ISRIC No 
pH_H20_ISRIC pH pH of water estimates from ISRIC No 

CEC_ISRIC mmol(c) kg−1 
Cation exchange capacity at pH 7 from 

ISRIC No 
CFVO_ISRIC cm3 dm−3 Coarse fragments from ISRIC No 

NITROGEN_ISRIC cg kg−1 Nitrogen in soil from ISRIC No 
SAND_ISRIC g kg−1 Sand in soil from ISRIC No 
SILT_ISRIC g kg−1 Silt in soil from ISRIC No 
CLAY_ISRIC g kg−1 Clay in soil from ISRIC No 

*_ISRIC_UC Varied 
The uncertainty bounds of each of the 

ISRIC variables, in absolute terms No 

TEXTURE – 

Soil texture identified from 
sand/silt/clay percentages using the 

USDA soil texture triangle No 

WRB_ISRIC – 

World Reference Base (2006) soil class 
from ISRIC: provided as a table of 
probable classes – this is the most 

probable class. No 

LAND_COVER – 
Land cover type taken from 

Copernicus data set No 
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Table A4 crspy final output table from a given CRNS site. Note that there may be addi:onal 
columns when run as different networks may have addi:onal variables. 

Column name Units Description 

DT Date and time 
Date and time of the observation (format: yyyy-mm-dd 
hh:mm:ss) 

MOD Counts h−1 Moderated neutron count 
UNMOD Counts h−1 Unmoderated neutron count 
PRESS hPa Atmospheric pressure recorded by the sensors at the site 

TEMP ∘C 
Atmospheric temperature. If sensors are missing, ERA5-
Land data are used 

I_TEM ∘C Internal temperature of the sensor box 
I_RH % Relative humidity inside the sensor box 
E_TEM ∘C External (atmospheric) temperature 
E_RH % External (atmospheric) relative humidity 

RAIN mm 
Rainfall recorded at the site. If local data are unavailable, 
ERA5-Land data will be used in their place 

BATT V Voltage of the battery 
fbar – The pressure correction factor 
DEWPOINT_TEMP ∘C Dew point temperature – from ERA5-Land data 
SWE mm Snow water equivalent – from ERA5-Land data 
ERA5L_PRESS hPa Atmospheric pressure – from ERA5-Land data 
VP hPa Vapour pressure – calculated 

NMDB_COUNT Counts h−1 
Neutron count rate from neutron monitoring database – 
usually Jungfraujoch 

pv kg m−3 Absolute humidity – calculated 
fawv – The atmospheric water vapour correction factor 
finten – The incoming cosmic-ray intensity correction factor 
fagb – The above-ground biomass correction factor 

FLAG – 
The flag assigned to data in error (see Sect. 2.3 for 
definitions) 

MOD_CORR Counts h−1 
The corrected neutron count rate after the correction 
factors have been applied 

MOD_ERR Counts h−1 The statistical error of the neutron count rate 

SM 

Volumetric soil 
moisture 
cm3 cm−3 Estimated soil moisture 
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SM_PLUS_ERR 

Volumetric soil 
moisture 
cm3 cm−3 

Estimated soil moisture error above the estimated value 
– this is calculated by subtracting the MOD_ERR value 
(due to the inverse relationship) from the MOD_CORR 
value and calculating what the SM would then be 

SM_MINUS_ERR 

Volumetric soil 
moisture 
cm3 cm−3 

Estimated soil moisture error below the estimated value 
– this is calculated by adding the MOD_ERR value (due to 
the inverse relationship) to the MOD_CORR value and 
calculating what the SM would then be 

SM_12h 

Volumetric soil 
moisture 
cm3 cm−3 

The SM value with a 12 h rolling average applied to it. 
Minimum number of values to calculate the 12 h average 
is 6 h of data within the 12 h window 

D86avg cm 

The depth of the measurement – taken as the depth from 
which 86 % of neutrons are estimated to be sourced from 
(Schrön et al., 2017) 

D86avg_12h cm 

The D86 value with a 12 h rolling average applied to it. 
Minimum number of values to calculate the 12 h average 
is 6 h of data within the 12 h window 
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Appendix B: Examples of standard outputs of crspy 

Appendix B provides some examples of the automatically generated outputs of crspy 

along with a description of their purpose. 

 

 

Figure 3.6 Charts that take the fully corrected SM data and plot them over the en:re :me series are output 
automa:cally. Op:onal yearly plots are also possible. The colouring is used to visually see the difference 
between wet (dark blue) and dry (dark brown) periods (code is found in “graphical_func:ons.py” under 
the “colourts()” func:on). 

Figure 3.7 Diagnos:c plots that create :me series of the data columns are generated. Here, two are 
presented (:tles match variables from Table A4): I_RH is the internal rela:ve humidity, and BATT is the 
baEery voltage. These allow a user to quickly visually understand possible periods where more inves:ga:on 
is necessary. For example, the BATT variable begins to fall around 2017 which demonstrates an issue with 
the baEery (right panel). 
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Figure 3.8 A correla:on heat map is generated during quality analysis. We 
would expect correla:on between certain variables (such as lar and PRESS), 
but other correla:ons may point towards issues with the sensor that require 
inves:ga:on. 
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4 Validation of satellite and reanalysis soil 
moisture products using global Cosmic-Ray 
Neutron Sensors  
 
 
 
 
 
 
 

4.1 Introduction  

lobal soil moisture estimations from satellite remote sensing and land 

surface modelling products are increasingly popular in hydrological studies, 

as our need for globally available data grows. Soil moisture is highly 

influential on numerous parts of the ecosystem, as described in Chapter 2, making it 

essential to understand global hydrological dynamics amidst a changing climate. This 

necessitates high quality data with good spatial and temporal resolutions that covers 

as much of the globe as possible. Despite its significance, soil moisture is challenging 

to measure, and while in-situ networks continue to expand, their coverage can never 

be truly global due to the high costs of setup and maintenance, and the fine spatial 

scale most current sensors represent. In light of this, gridded soil moisture modelling 

products, such as the ERA5-Land model (Muñoz-Sebater, 2019), or satellite soil 

moisture products, such as Soil Moisture Active Passive (SMAP, Entekabi et al., 2010) 

or European Space Agency Climate Change Initiative soil moisture product (ESA-CCI, 

Dorigo et al., 2017), present an opportunity for truly global coverage of soil moisture 

values. Satellite products are particularly effective for monitoring global dynamics of 

soil moisture and have been used to tackle issues such as agricultural drought 

monitoring (Bolton et al., 2009, Martinez-Fernandez et al., 2016), landslide 

susceptibility monitoring (Ray et al., 2010, Brocca et al., 2016, Zhao et al., 2021), 

ecohydrological modelling (Duethmann et al., 2022), or to constrain the algorithms of 

other products such as those predicting evapotranspiration (Bust et al., 2021). 

G 
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Modelling products such as ERA5-Land, model ecosystem processes across the globe 

of which soil moisture is just one part and whilst they are not direct measurements it 

has been shown to compare well with in situ data or satellite data (Lal et al., 2022). Just 

as satellite products, ERA5-Land soil moisture products are used in studies to better 

understand global soil moisture dynamics (Tramblay et al., 2021, Shangguan et al., 

2022). The ability of both models and satellites to monitor soil moisture dynamics in 

ungauged locations is of enormous value to hydrologists. However, to ensure that soil 

moisture values are being accurately described by satellite and modelling efforts, 

validation studies are required. These studies compare the reported soil moisture 

values with in-situ soil moisture values necessitating high quality ground-based 

monitoring stations. 

Validation studies play a crucial role in the analysis of satellite and gridded soil 

moisture products, ensuring the values align with in-situ measurements. In validation 

studies, in-situ ground-based measurements are typically employed, being a more 

direct source of soil moisture information (Beck et al., 2021). A challenge in comparing 

different soil moisture datasets is the inherent differences in the spatial and temporal 

scales of measurements. The differences in spatial scales between sensors can be both 

in the horizontal and in the vertical domain. Satellite soil moisture’s horizontal 

resolution can differ depending on the product, often spanning several kilometers 

horizontally and usually representing surface soil moisture (2-5cm in depth) in the 

vertical domain (Beck et al., 2021). Temporally, values are usually presented as daily. 

The spatial representation of modelled products also varies, depending on the chosen 

model parameterization. For instance, the ERA5-Land model employed in this chapter, 

has a 9km horizontal resolution and provides multiple soil moisture depths at hourly 

intervals (Muñoz-Sabater et al., 2019, more detail in Section 4.2.4). Within the field of 

soil sensing hydrology, it is accepted that systemic differences between in-situ and 

gridded data will be apparent in their bias and deviation, and likely the result of 

differences in the represented soil moisture domain (Su et al., 2013). This means 
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caution should be given when directly comparing two distinct sources of soil moisture. 

However, soil moisture variations are known to be correlated; measurements taken 

closer together in both time and space tend to resemble each other more than those 

taken at greater distances (Crow et al., 2012). This means that whilst we know two 

different sensors might represent different spatial scales, the dynamics between 

different sources of soil moisture taken within the same area are likely related. 

Commonly this means that when comparing two sources of SM data, bias and standard 

deviation are considered systemic differences (to be removed), whilst correlation 

differences are considered more likely due to sensor quality. Due to this, validation 

studies will often compare in situ networks with satellite and gridded products, but 

with greater focus on testing temporal dynamics, for example, by evaluating metrics 

such as Pearson correlation (R) values. The assumption is that systemic differences are 

likely due to inherent differences in representativeness (i.e., the volume of soil 

influencing the measurement), with more focus given to validating temporal dynamics 

(Gruber et al., 2020). This has led to numerous methods to adjust datasets that 

eliminate observed systemic differences. 

Given the inherent differences between satellite, modelled, and in situ measurements, 

it is common to employ statistical techniques to account for these discrepancies. The 

accuracy of a sensor is defined as the difference between the true value and the 

measured value. Defining a truth becomes difficult as each sensor will have different 

sources of error depending on the technology being use (Webster 1998). Systemic 

differences, such as the overall mean and standard deviation, can come from 

representative differences (i.e., what volume of the soil is being measured), or from 

instrument error (i.e., sensor drift from a deteriorating sensor). Random errors on the 

other hand are more likely down to instrument error or quality. Given this 

understanding, when comparing two sensors directly effort is employed to correct for 

systemic differences between the sensors whilst the random errors based on the 

instrumentation remain (Gruber et al., 2013). With this, statistical rescaling methods 



- 82 -   

are employed to correct for such systemic differences in soil moisture sensors 

representative of differing scales. Two popular methods are z-scaling and matching 

cumulative distribution functions (CDF). Z-scaling refers to matching the temporal 

mean and standard deviation of the data to a chosen reference dataset (Dorigo et al., 

2012), whereas CDF matching involves matching the entire cumulative distribution of 

a dataset to a chosen reference dataset (Kumar et al., 2012). For example, when 

blending multiple satellite soil moisture datasets that will each have different systemic 

biases and differences, CDF matching has been used to correct each data source to 

match a common modelled soil moisture dataset to make blending smoother (Liu et 

al., 2011). Whilst more simple statistical adjustments such as z-scaling and CDF 

matching are still widely used, there is growing interest in more complex methods that 

leverage advancements in machine learning (Yuan et al., 2023). Machine learning 

methods use large amounts of data to train models that can find non-linear 

connections between two sources of data. For example, training an artificial neural 

network to downscale coarser satellite soil moisture data to match the finer resolution 

of another related data source has been successful (Srivastava et al., 2013). The ability 

of such models to find non-linear relationships between data sources shows great 

promise. However, the models may not be explainable due to the abstract way that 

predictions of the downscaled dataset are produced, and so there is continued interest 

in simpler methods such as CDF matching. Whatever method is decided upon a first 

and important step is to decide in what direction, and to what data, rescaling should 

take place. 

Due to the growing number of gridded products, both satellites derived SM and 

modelled SM, efforts to compare or validate them usually begins by rescaling each 

product to a reference. This can involve scaling satellite data to match another source 

of satellite data (Beck et al., 2020), or scaling satellite data to match that of a model 

(Dorigo et al., 2017). However, it is also important to be able to validate such products 

and compare them to ground based in situ SM data. The largest and most popular in 
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situ soil moisture network is the ISMN network previously described in Chapter 2. 

Whilst the network covers much of the globe, and undergoes quality assessment to 

remove outliers, and harmonize data format, it is not truly a harmonized database 

considering it is made up of different types of sensors with their unique error profile. 

The broad variety of sensors, each with their own sources of error and representative 

spatial and temporal scale means that care should be given when using this dataset in 

global studies. Beck et al., (2020) employed a large-scale analysis of 18 different 

satellite and model-based products using the in-situ data from the ISMN network. 

They note that whilst the network is considered harmonized, it is still made up of many 

different sensors, each with their own potential uncertainties. In validation the focus 

was given on comparing temporal correlation of gridded product and in situ data 

through the Pearson correlation coefficient, ignoring the potential impact from 

systemic differences. Additionally, Gruber et al., (2020) outline a set of best practices 

for validating satellite soil moisture retrievals, in which the recommendation is to 

rescale in situ soil moisture data in pre-processing to remove the influence of systemic 

differences between the reference datasets. However, whilst rescaling appears as an 

essential part of comparing products representative of different domains, this does 

not prevent absolute values for satellite soil moisture estimates (Chen et al., 2014, 

Bassiouni et al., 2020), or modelled soil moisture estimates (Zhang et al., 2021) being 

used directly in studies aimed at understanding soil moisture dynamics across the 

globe. Given this it remains important to continue to understand the total uncertainty 

we might find in gridded products when compared to in situ networks. Researchers 

could find benefit in using a truly harmonized network of soil moisture sensors, 

meaning we can treat the soil moisture data as a harmonized dataset, without the 

influence of rescaling methods. 

CRNS have been growing in number across the globe and present a unique 

opportunity for studies using a network of harmonized soil moisture sensors that span 

the globe. In Chapter 2 a description was given of how these networks have been 
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gradually expanding across the globe, in both regional networks and as individual 

sensors. The continued expansion has led to opportunities to assess soil moisture 

through large sample hydrology type studies. In Chapter 3 an open-source python 

tool was developed, and it was demonstrated that currently regional networks are not 

uniformly processed, leading to uncertainties in the impacts from correction methods. 

Through crspy, we can process all sites quickly and easily in a harmonized way and 

treat these individual networks as a single, harmonized, and global one. A major 

advantage of the newly established global CRNS dataset is its elimination of a key 

limitation present in the ISMN network - the incorporation of multiple, varied types of 

sensors within the dataset with unique sources of error and represented domain. 

Another advantage is the spatial representation of CRNS as it represents a horizontal 

spatial scale between traditional point measurements such as TDR and satellite remote 

sensing (or modelled) products (Chapter 2, Figure 2.1). Earlier research, such as those 

conducted by Montszka et al. (2017) and Duygu and Akyürek (2019), validated satellite 

soil moisture products using CRNS. These studies underscored the merits of field-scale 

soil moisture sensors over point-scale ones in such validation research. However as 

outlined in Chapter 3, the processing of some sites in the USA would not have been 

implementing all the corrections, missing atmospheric humidity adjustment, and 

therefore causing a bias between the seasons. Recent advancements in the 

dissemination of CRNS data, as well as the development of crspy (Power et al. 2021; 

also described in Chapter 3), has led to an opportunity to undertake analysis with a 

more globally complete dataset, that fully corrects the CRNS in a harmonized way, 

using our most up to date understanding of the sensor signal. 

The focus of the chapter is to understand the benefits in evaluating gridded products 

against a newly harmonized global database of CRNS soil moisture data.. A collection 

of 163 global CRNS sites are combined into a single harmonized group of sites, 

ensuring that processing methodologies are the same across the sites. This newly 

established globally spanning network of sensors will be used to better understand 
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the inherent uncertainties that can remain in satellite and gridded products. First this 

global network will be described to ascertain its global coverage and the types of sites 

present, and a description of the methods is given (Section 4.2). Next, the Global CRNS 

sites are compared to two gridded datasets one representing satellite data and one 

representing modelled soil moisture data (Section 4.3). The absolute values will be 

compared to our reference CRNS dataset with the source of uncertainty further divided 

into bias, deviation, and correlation. Additional analysis will explore the temporal shifts 

in the sources of uncertainty between sensors and gridded products. Finally, a 

commonly applied bias correction technique will be tested by rescaling the datasets 

and comparing these to the harmonized reference CRNS data to understand the 

impacts this has. It is hypothesized that sources of uncertainty will differ between the 

sites, in particular dependent on the overall moisture characteristics of the site. 

Given the vital role soil moisture plays in our understanding of global hydrological 

dynamics, particularly in the context of climate change, this research can offer valuable 

insights. By harnessing a newly harmonized global database of CRNS soil moisture 

data, our work has the potential to enhance our understanding of uncertainties in 

gridded soil moisture products and facilitate improved soil moisture monitoring on a 

global scale. This study assesses uncertainties in gridded soil moisture datasets, 

employing a comprehensive, harmonized global CRNS dataset produced with our 

newly developed open-source python tool, crspy. This tool offers a streamlined, 

uniform method of processing CRNS data, mitigating inconsistencies found in regional 

networks of CRNS. Furthermore, our approach marks the first time such an expansive 

and harmonized global CRNS dataset has been used to evaluate the accuracy of 

gridded satellite and modelled products together. These innovations can offer new 

opportunities for improving our understanding of global soil moisture dynamics and 

the remaining errors that are in global gridded products. 
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4.2 Data and Methods 
4.2.1 Global CRNS Network Description  

The newly harmonized global network of CRNS, displayed in Figure 4.1, comprises of 

163 sites. It includes 41 sites from COSMOS (USA, Brazil, Kenya) (Zreda et al., 2012), 12 

sites from CosmOz (Australia) (Hawdon et al., 2014), 58 sites from COSMOS-UK 

(Stanley et al., 2023), and 53 sites from COSMOS-EUROPE (Bogena et al., 2022). The 

sites from COSMOS and CosmOz were reprocessed using the crspy tool to harmonize 

their processing methodologies with those used at COSMOS-UK and COSMOS-

EUROPE. Soil moisture values were temporally adjusted to a daily time scale and only 

sites with over one year of data were included in the analysis. The sites were 

categorized based on their annual average soil moisture values into 'dry', 'moderate', 

and 'wet'. First an average annual soil moisture value is created for each site. The ‘dry’ 

category includes sites in the lowest 25th percentile of average annual soil moisture, 

the 'wet' category includes sites in the highest 25th percentile, and the 'moderate' 

category includes all other sites (i.e., in between 25th and 75th percentiles). This 

categorization was designed to help understand how temporal shifts in uncertainty 

impact sites with different average wetness conditions (see section 4.3.2). 

Figure 4.1 a global map showing all 163 sites used in this study. The colour of each dot is representa:ve 
of whether it is a wet, moderate, or dry site, defined by the overall soil moisture average at the site. 



- 87 -   

It should be noted, whilst we refer to this as a global CRNS network, it does not include 

all currently available sites. This study combines four of the largest regional networks 

into a preliminary global CRNS network. It's important to note that there are more sites 

globally, but we have limited our study to those with full calibration and correction 

data available. For instance, the International Atomic and Energy Agency (IAEA) is 

currently expanding a network of sensors in previously unmonitored locations such as 

Oman or Senegal (https://crnslab.org/network-maps/networks/iaea/, last accessed 

29/07/2023). Future research should aim to incorporate more CRNS sensors into the 

network, transforming it into a truly global dataset. 

4.2.2 Metadata collection and site descriptions 

The metadata collected using crspy (Power et al., 2021; also refer to Chapter 3) 

provides insights into the characteristics of the CRNS sites beyond just their 

geographical location, instead including attributes related to the climate, land cover 

and soil type of the site. The climatological and physical features of the global CRNS 

sites assembled for this study are shown in Figure 4.2. Figure 4.2a presents a scatter 

histogram, as introduced in Chapter 3, but now applied to the expanded dataset of 

the global CRNS network. Notably, a larger prevalence of grassland sites within the 

global network is evident compared to the US-only sites, alongside an increased 

number of sites featuring temperate climates with average temperatures around 10°C. 

The dataset reveals a broad array of climatological conditions across the sites, 

spanning from hot and dry to wet and cold. In Figure 4.2b, soil texture data derived 

from SoilGrids v2 are plotted on the United States Department of Agriculture (USDA) 

soil texture triangle for each site, with the colour of each point corresponding to the 

site's aridity index (calculated as Precipitation divided by Potential Evapotranspiration). 



- 88 -   

The global CRNS network demonstrates its coverage of diverse soil types and 

climatological conditions, thereby enabling large-scale hydrological studies. 

 

4.2.3 Data Availability 

Figure 4.3 illustrates the expansion of data availability within the newly established 

global CRNS network. The figure shows days when data was available between 2010 

and 2020. The data is colour coded on each day of the year, with the colour 

representing the quantity of sites that were operational and generating data on those 

each day. As the networks have expanded and more sites were brought online, we can 

observe a consistent increase in data availability over the years. However, interestingly 

we do see a pattern emerge during the winter months with a reduction in data 

availability. This can be attributed to the impact snowfall has on CRNS measurements, 

leading to data being removed in quality control when snow is on the ground (Bogena 
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Figure 4.2 a) ScaEer histogram of global CRNS sites illustra:ng mean annual temperature against 
mean annual precipita:on, with colour indica:ng land use type (data sourced from ESA). b) USDA soil 
texture triangle overlaid with the soil texture of each site (data obtained from SoilGrids v2, as 
described in the previous chapter), where colour denotes the Aridity Index of each site. 
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et al., 2021). Importantly, the increasing volume of datasets, along with their expansive 

coverage of diverse hydroclimatic conditions, presents the potential to undertake 

large-scale hydrological studies, enhancing our understanding of global soil moisture 

dynamics. 

4.2.4 Satellite and Model data – collection and methods 

The European Space Agency's Climate Change Initiative (ESA-CCI) soil moisture 

product combines multiple active and passive satellite remote sensing products and 

merges them into a single harmonized dataset that spans numerous decades (Dorigo 

et al., 2017). Over the years, various versions of ESA-CCI SM have been developed, with 

version 7 used in this study. To summarize, the project collects numerous satellite soil 

moisture products, standardizes them to a common daily temporal resolution, and 

creates three distinct merged products: active, passive, and combined. First, active 

sensors are merged into a single product, and passive sensors are separately merged 

Figure 4.3: Daily data availability from the global CRNS database, 2010-2020. The colour scale denotes 
the number of opera:onal sites contribu:ng data on each day. 
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into a single product. The active satellites are each temporally re-binned into daily time 

steps and rescaled using CDF matching (see 4.2.6) to match the ASCAT satellite soil 

moisture data. The same is done to passive satellites however they are rescaled to the 

AMSR-E satellite. The quality of each satellites data is identified by identifying the 

random error associated with the outputs, achieved using triple collocation analysis 

(TCA) (Gruber et al., 2016). TCA helps identify the proportion of random error 

associated with a reading by combining three sources of data with unique error 

characteristics and comparing them (McColl et al., 2014). With this, weightings are 

given to each satellite data source and the data is merged into separate products for 

active and passive satellites (Dorigo et al., 2017). Next, a combined product merging 

the active and passive products is created. The active and passive products are each 

rescaled to Global Land Data Assimilation System (GLDASv2.1) through CDF matching. 

Error characterization through TCA is once again undertaken and a weighting is given 

when merging the two products into the Combined product. The result is a combined 

product leveraging advantages of each type of sensor, such as the increased reliability 

of active sensors over areas with dense vegetation (Chen et al., 2018). The merging 

process has been outlined in several papers in detail, reflecting the advancements in 

the merging algorithm over time (Dorigo et al., 2017, Gruber et al., 2019, 

Preimesberger et al., 2021). It is important to note, however, that due to the rescaling 

to GLDAS data for the combined product (used in this study), it should not be 

considered a direct observation, despite this ESA CCI SM still recommends the 

combined product for model validation studies. This leads to a need for continued 

understanding of the total uncertainty profile. For the purposes of our research, we 

will directly compare this combined dataset with the CRNS dataset and the ERA5-Land 

soil moisture data. 

The ERA5-Land model is a reanalysis product developed by the European Center for 

Medium Range Weather Forecasts (ECMWF) (Muñoz-Sabater et al., 2021). As the name 

suggests, it is aimed at better representing the terrestrial land-based processes when 
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compared to the original ERA5 model (Hersbach et al., 2020). The numerical model is 

forced with downscaled meteorological outputs of the ERA5 model, giving an 

improvement in horizontal spatial resolution from 35km (ERA5) to 9km (ERA5-Land). 

Whereas ERA5 is an online or coupled model, meaning that feedback between 

atmosphere and land processes can occur, ERA5-Land is an offline model. This means 

that the outputs from ERA5-Land drive the land processes without feedback impacting 

atmospheric processes. ERA5-Land introduced a revised soil hydrology scheme, with 

improved formulation to account for hydraulic conductivity. After this update, 

evaluations against in situ observations has demonstrated that the ERA5-Land model 

performs better when compared to the original ERA5 model, with soil moisture 

representation in particular showing improvements vs ERA5 (Muñoz-Sabater et al., 

2021). In terms of structure the soil moisture representation within the model is divided 

into four layers; 0-7cm, 7-28cm, 28-100cm, and 100-289cm. This provides users of the 

product multiple depths to choose from. 

Due to the differences in representation between sources of soil moisture some steps 

are required to account for such differences. When comparing modelled soil moisture 

values with the other data sets, the depth of measurement is considered. Comparisons 

of satellite soil moisture and CRNS are made directly, without rescaling. CRNS 

measurements are influenced by deeper soil moisture values, with the depth of 

measurement changing due to the conditions at the site, as described in Chapter 3 

when discussing calibration of the sensors. As we can calculate the sensor depth of 

CRNS at any given time, we used the weighting methodology described by Schrön et 

al. (2017), and implemented in crspy, to weight the ERA5-Land layers appropriately to 

match the measurement depth of the CRNS along with the proportional influence of 

each layer to the overall value. For completeness a comparison will be undertaken to 

compare the source of uncertainty between ERA5-Land soil moisture values and ESA-

CCI soil moisture values. In this case the top layer of ERA5-Land will be compared to 

the ESA-CCI soil moisture data. 
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4.2.5 Comparing the datasets. 

The mean squared difference (MSD) is a commonly used criterion for defining the 

difference between two datasets that represent the same attribute. MSD calculates the 

square of the difference between two datapoints at a given time, then averages these 

squared values across the entire dataset. By computing the square root of MSD, we 

obtain a difference criterion in the original units of the data set, yielding the root mean 

square difference (RMSD). MSD consists of three additive sources of uncertainty: bias, 

deviation, and correlation (Gupta et al. 2009). The additive nature of this uncertainty 

indicates that a single MSD value can incorporate numerous combinations of these 

relative sources of uncertainty. Gupta et al., (2009) outlined a method to decompose 

MSD into each of these sources of uncertainty, enabling clear identification of the 

origins of differences between two data sets (i.e., bias, deviation, or correlation) 

MSD can be decomposed using the following equation: 

𝑀𝑆𝐷 = 2	 ∙ 	 𝜎𝑒 	 ∙ 	 𝜎𝑜 	 ∙ (1 − 𝑟	) + 	 (𝜎𝑒 − 𝜎𝑜)2 + (𝜇𝑒 − 𝜇𝑜)
2            (4.1) 

where 𝑒 and 𝑜, represent the estimated and observed datasets respectively, 𝜎 

represents standard deviation, 𝑟 is the linear correlation coefficient, and 𝜇 denotes the 

means of the datasets. The relative contributions of each of these components to the 

overall MSD can be computed using the following equation:  

𝑓- =	
.)

∑*+,
- .*

                    (4.2) 

with 

𝐹* = 2	 ∙ 	𝜎5 	 ∙ 	𝜎" 	 ∙ (1 − 𝑟	)	                 (4.3) 
𝐹' = (𝜎5 − 𝜎")'                  (4.4) 
𝐹= = (𝜇5 − 𝜇")'	                                (4.5) 
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Using the above equations, we can identify the main source of uncertainty between 

each of the datasets analysed in this study. 

4.2.6 Soil moisture rescaling (Bias Correction)  

In this study, we will test a common rescaling technique, that adjusts systemic 

differences between datasets, by implementing empirical cumulative distribution 

function (CDF) matching to harmonize the satellite dataset with the modelled dataset. 

We will then use our reference CRNS dataset to compare the outputted results. CDF 

matching is a statistical procedure to harmonize two distinct datasets (Gudmundsson 

et al., 2012). First, the empirical CDFs (ECDF) of each dataset are calculated. Given a 

dataset [𝑥*, 𝑥', … , 𝑥6] the ECDF is given in ordered pairs with: 

𝑥(0): sorted values of the data               (4.6) 

𝑦(0) = 0
6
                  (4.7) 

where 𝑛 is the number of data points. Next, the ECDF of one dataset (the source) is 

adjusted to match the second dataset (the target). This is completed using the numpy 

interpolation package in python. This process effectively transforms the statistical 

distribution of the source dataset (in this case satellite soil moisture data) to align with 

the distribution of the target dataset (here using ERA5-Land SM). The result is a source 

dataset that reflects the statistical properties of the target dataset. 

4.3 Results 
4.3.1 SM estimates and relative uncertainties  

A comparative analysis of each soil moisture dataset is shown in Figure 4.4. The figure 

comprises of sub-figures that group sites based on the average soil moisture values, 

which are inferred from the reference CRNS data. The sites range from driest to 

wettest, in increments of 0.02 cm3-cm3. When a group includes multiple sites, the 

results are averaged. Figure 4.4a shows the total Root Mean Squared Difference 
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(RMSD) of each bin for each of the three comparisons being made: CRNS and Satellite 

soil moisture (blue), CRNS and ERA5-Land data (yellow), and Satellite soil moisture and 

ERA5-Land soil moisture data (green). The RMSD between our reference CRNS dataset, 

and the modelled and satellite datasets, appears noticeably higher at the extremes (i.e., 

RMSD increases at the wetter sites, and the drier sites). Interestingly, we find that the 

ERA5-Land data and Satellite soil moisture data have an almost uniform RMSD across 

all sites. Figure 4.4b shows the decomposed RMSD, illustrating the proportional 

contribution from bias, standard deviation, and correlation, for CRNS soil moisture vs 

Satellite soil moisture. There is a noticeable shift in uncertainty characteristics across 

the ordered sites. Bias dominates at sites with average soil moisture less than 0.2 cm3-

cm3 and greater than 0.4 cm3-cm3, whilst deviation and correlation are more influential 

at sites between these values. Figure 4.4c shows the comparison of CRNS soil moisture 

and ERA5-Land soil moisture, where we see slightly different results. Though we see 

similar uncertainty source as with Satellite soil moisture, such as bias dominating at 

the drier and wetter sites, the proportion of uncertainty from standard deviation 

differences appears considerably reduced, possibly due to the more comparable 

representative depths, given that CRNS measures deeper than the surface soil 

moisture represented by satellites. Interestingly, Figure 4.4d shows that the source of 

uncertainty between the satellite soil moisture and the ERA5-Land soil moisture are 

much more consistent across all the tested sites, only showing a general pattern of 

greater bias domination as sites get wetter. This demonstrates that whilst there is 

greater agreement between satellite and modelled SM data, as well as a more similar 

uncertainty contribution, there is a remaining residual bias between the in situ CRNS 

data and both gridded SM datasets. This is particularly prevalent at either dryer or 

wetter sites. The results in Figure 4.4 clearly show source of uncertainty shifts 

depending on the average moisture conditions of a site, we will now look to 

understand how these sources of uncertainty might shift in time.  
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Figure 4.4: Root Mean Squared Difference (RMSD) and uncertainty decomposi:on 
across soil moisture datasets. (a) Compara:ve RMSD across CRNS vs Satellite Soil 
Moisture (SM) (blue), CRNS vs ERA5-Land SM (yellow), and Satellite SM vs ERA5-Land 
SM (green). (b-d) Propor:onal distribu:on of uncertainty, aEributed to bias, standard 
devia:on, and correla:on, between CRNS vs Satellite SM (b), CRNS vs ERA5-Land SM 
(c), and Satellite SM vs ERA5-Land SM (d)      

a) 

c) CRNS vs ERA5-Land SM

a)

b) CRNS vs ESA-CCI SM

d) ESA-CCI SM vs ERA5-Land SM
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4.3.2 How uncertainty characteristics change in time. 

To analyse how uncertainty characteristics might change in time, we conducted an 

examination of extreme soil moisture values at the sites. By focusing on extreme values 

of wet and dry we can discern shifts in uncertainty characteristics that might occur as 

seasons change. Figure 4.5 shows the results from a comparison of CRNS and Satellite 

soil moisture data. Each of the sites was assigned into one of three groups, 

representative of dry, moderate, and wet sites. The categorization was based on their 

site-specific average CRNS soil moisture, with the lower 25th percentile deemed dry, 

the upper 25th percentile regarded as wet, and the remainder classified as moderate 

(i.e., between 25th and 75th percentiles). The geographical locations of the sites within 

each group are shown in Figure 4.2 above. After groups are established, data from 

each group was collated into a dataset. Meaning that there is a single table for dry 

sites, moderate sites, and wet sites respectively. The soil moisture values of each 

dataset were subdivided into the lowest 10th percentile, the highest 10th percentile, 

and the rest of the data. This allows us to explore how uncertainty characteristics might 

differ at the extremes of soil moisture, whilst ensuring we are exploring characteristics 

of similar sites. Starting with the dry sites, we found that during the driest periods (i.e., 

lowest 10th percentile), bias uncertainty primarily contributed to the difference, 

accounting for ~90%. In contrast, the wettest periods of the dry sites displayed 

different characteristics, with almost 70% of the difference coming from correlation 

uncertainty. When analysing the group of wet sites, we observed opposing 

characteristics, with bias dominating the wettest periods and correlation dominating 

the driest periods. Interestingly, for the moderate sites, we find that bias dominates at 

both the 10th and 90th percentile and is almost absent from the bulk of the data. We 

can see from Figure 4.4b that for the more moderate sites, bias is accounting for ~30% 

of the uncertainty, but the temporal results here suggest that this is mostly originating 

from the most extreme wet and dry periods of soil moisture readings. The results 

evidently show that the uncertainty characteristics, such as the bias, change over time 
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at the sites, and interestingly, we found that these shifts heavily depend on the soil 

moisture conditions at the site. 

 

 

4.3.3 Impacts of bias correction (CDF matching) on time series data 

As previously discussed, bias correction, often achieved by rescaling values from one 

dataset to match the systemic characteristics of another, is a common practice when 

comparing sensors of different support volumes. The above analysis did not undertake 

this step, as we were interested in understanding the total uncertainty characteristics 

at the reference CRNS sites. Here we explore the influence of bias correction 

techniques, specifically, the impact of CDF matching on soil moisture values. Figure 4.6 

below presents a collection of figures demonstrating the impact of CDF matching on 

a soil moisture dataset. Figures 4.6a and 4.6b demonstrate analysis between CRNS vs 

Satellite soil moisture, and CRNS vs ERA5-Land, respectively. The results echo those 

shown for Figures 4.4a and 4.4b, respectively, but in this case, results are not 

normalized. Figure 4.6c shows a comparison of the reference CRNS data, with Satellite 

soil moisture data that has been CDF matched to resemble the systemic characteristics 

of ERA5-Land soil moisture (termed Sat-CDF), whilst Figure 4.6d shows the RMSD 

Figure 4.5: the propor:on of uncertainty between CRNS and Satellite SM aEributed to extreme values 
of soil moisture (highest and lowest 10th percen:le of es:mates). Sites are grouped into dry, moderate, 
and wet based on their average CRNS SM values. 
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decomposition results when comparing the ERA5-Land soil moisture data and the Sat-

CDF soil moisture data. It is clear from this bottom figure that the CDF matching 

process is performing as we would expect, eliminating most of the bias and deviation 

differences, and what remains are the correlation differences (i.e., the temporal 

dynamics of the satellite data has been retained). What is immediately obvious is that 

when we compare both the ERA5-Land soil moisture data (4.4b) and the Sat-CDF soil 

moisture data (4.4c) to the reference CRNS soil moisture data, the overall RMSD and 

uncertainty decomposition are now markedly similar. Whilst the temporal dynamics 

have been retained, the total uncertainty characteristics have been almost entirely 

transferred from the ERA5-Land SM data to the Satellite SM data, when both datasets 

are compared to the reference CRNS data.  
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a) CRNS vs ESA-CCI SM

b) CRNS vs ERA5-Land SM

c) CRNS vs ESA-CCI (CDF matched to ERA5-Land)

d) ERA5-Land vs ESA-CCI (CDF matched to ERA5-Land)

Figure 4.6 shows the influence of rescaling methods on data. 4.6a and 4.6b show the CRNS vs 
ESA-CCI SM and CRNS vs ERA5-Land SM respec:vely. The data is the same as in Figure 4.4 
although not normalized and the frac:onal contribu:on to MSD is projected onto RMSD. Figure 
4.6c shows a comparison of CRNS data with ESA-CCI data that has been CDF matched to ERA5-
Land data. Figure 4.6d shows a comparison of ERA5-Land SM data and the ESA-CCI data CDF 
matched with ERA5-Land data.  
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Figure 4.7 below shows a one-year SM time series taken from a site from each of the 

dry (top), moderate (middle), and wet (bottom) groups. The top figure is the Santa Rita 

Creosote site in the USA (COSMOS), a semi-arid location that sees monsoonal rains 

and extremely dry conditions. Between January to March, all the soil moisture records 

show relatively strong agreement, however when the drier months from March 

onwards approach the Satellite and Modelled soil moisture datasets start to disagree 

with the CRNS data. As indicated in Figure 4.5, dry sites tend to be dominated by bias 

errors during their driest periods. This suggests that this is partly due to a disconnect 

between the in situ CRNS data and the gridded products during these driest periods. 

The middle figure shows the Holme Lacy site (COSMOS-UK) located in the UK with a 

moderate soil moisture average. Interestingly, we see greater agreement between the 

original satellite soil moisture data and the CRNS soil moisture data, although again 

we find greater biases and disagreement when the soil becomes driest. The bottom 

figure shows the Redmere site (COSMOS-UK) in the UK, which is in the wet grouping 

of sites. We see that the Sat-CDF soil moisture data has relatively low deviations during 

the wetter periods, but during the driest period in July the changes in soil moisture are 

greatly exaggerated. Interestingly, this seems to be counter to what we are seeing in 

the CRNS soil moisture data, where deviations are greater during the wetter periods 

and decrease during the summer months.  
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c) Redmere, UK

b) Holme Lacy, UK

a) Santa Rita Creosote, USA

Figure 4.7 shows the actual :me series of three sites one from each of the groups: wet, 
moderate, and dry. Fig 4.7a shows the semi-arid Santa Rita Creosote, USA. Fig 4.7b shows 
the moderate Holme Lacy, UK, and Fig 4.7c shows a wet site Redmere, UK. The blue line 
represents ESA-CCI SM data, orange is ERA5-Land SM data, green is the ESA-CCI data CDF 
matched to ERA5-Land and the grey represents the CRNS data at each site.  



- 102 -   

4.4 Discussion 

Validating the performance of global gridded soil moisture products, which hold 

immense value for the environmental science community, critically relies on access to 

high quality in situ data. Global CRNS sensors provide field scale soil moisture values. 

Their horizontal resolutions effectively bridge the gap between point scale sensors and 

larger gridded products, such as those used in this study. Recognizing their potential, 

studies have already utilized CRNS sensors to validate spaceborne and modelled 

products (Montzka et al., 2017, Duygu and Akyürek 2019). Here we expand the spread 

of available sensors to the global scale by harmonizing multiple networks with the 

python tool crspy. This ensures that uncertainties are not related to processing 

methodologies. As evidence of the need for this harmonization, Chapter 3 highlighted 

how the USA COSMOS network's failure to apply the atmospheric humidity correction 

introduced a seasonal bias. By addressing such uncertainties, we ensure that observed 

differences in data truly reflect soil moisture conditions, not the differences of 

processing methodologies. With this newly harmonized global CRNS dataset we can 

investigate where differences arise with a global perspective. 

A key observation from our study is that the characteristics of uncertainty between 

CRNS soil moisture data and gridded products are significantly influenced by a site's 

overall moisture content—particularly showing pronounced biases emerge at the 

extremes of soil moisture conditions. Notably, these biases aren't static; they evolve 

over time and are heightened during extreme dry and wet phases. Why these biases 

occur remains uncertain, however one possibility is the different sensing depths of 

each of the products in the study. The CRNS estimates soil moisture from a deeper 

profile, and the depth of measurement increases in dry conditions (Zreda et al., 2012). 

This could explain why bias increases as sites get drier, as the difference in sensing 

depth widens between satellite and CRNS SM estimates. However, in this study we 

weighted the ERA5-Land reanalysis soil moisture product to match the sensing depth 

of the CRNS at each given point in time, and we still find biases increase as soil 
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moisture is at the extremes. This might point towards alternative reasons behind these 

changing uncertainty profiles.  One such possibility is that the current generation of 

algorithms for converting raw data from satellite remote sensing into soil moisture 

estimates is not capturing dynamics at the extremes of wet and dry.  

The remote sensing community acknowledges discrepancies between in situ and 

gridded data. However, many validation studies sidestep these biases using rescaling 

techniques, focusing predominantly on temporal dynamics. Such an approach leaves 

residual biases that can skew subsequent studies. The need to better represent SM 

dynamics at the extremes of wet and dry periods has previously been identified as a 

key area requiring continued study (Vreeckan et al., 2013). Our findings corroborate 

this sentiment: both satellite and modelled data exhibit marked disagreements with 

harmonized CRNS sensors during the most severe moisture conditions. This is of 

particular concern given that soil moisture droughts are expected to increase in the 

coming years due to climate change (Grillakis 2019), with the propagation of drought, 

from meteorological drought to agricultural (soil) drought highly dependent on 

antecedent soil moisture conditions (Kwon et al., 2019). Not only this, but due to soil 

moisture’s role in land-atmosphere feedback, this will concurrently lead to increased 

maximum temperatures, potentially further driving extreme drought scenarios (Whan 

et al., 2015). With expected increases in drought events and the significant influence 

soil moisture can have on it, the scientific community remains committed to better 

understanding the main causes of extreme events, as well as better ways to predict 

them through modelled or satellite derived data (Champagne et al., 2011, Eswar et al., 

2018, Zhang et al., 2021). Nicolai-Shaw et al. (2017), for instance, employed global 

satellite data to evaluate drought occurrences worldwide. However, based on our 

findings, such studies might overlook crucial dynamics at the soil moisture extremes. 

Whether the differences can be attributed to error due to sensor technology, or more 

related to the difference in representative soil moisture domain remains uncertain. 

Bridging the gap between point-scale data and gridded products often necessitates 
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scaling adjustments (Crow et al., 2012), typically achieved via statistical rescaling and 

bias correction techniques, like the CDF matching method highlighted earlier.   

Given the prevalence of rescaling methods, our results suggest that prevailing 

techniques used to amend systemic differences in soil moisture records might not be 

entirely suitable, particularly at the soil moisture extremes. This potential shortcoming 

is also highlighted by Gruber et al., (2020) in their satellite validation review. They 

underscore that because biases may evolve over time, applying blanket corrective 

methods might not always be ideal. Our results appear to agree with this claim. 

Uncertainty characteristics are not static in time as seen in Figure 4.5. Consequently, 

adjusting for systemic biases derived from the whole data period, and not specific to 

certain periods, may be introducing systemic biases itself. For example, if a specific dry 

site predominantly exhibits bias during its driest phases, this bias will be reflected in 

overall uncertainty metrics. Our data suggests that as these dry sites become moister, 

the bias diminishes. However, applying a consistent bias correction could 

unintentionally introduce a new bias during these moister intervals. Interestingly this 

seems to be the case whether we were looking at the satellite soil moisture product, 

or the ERA5-Land soil moisture product. One reason behind this could be that the 

linkage between modelled and satellite products are closely aligned due to the ways 

that data assimilation takes place. In the case of ERA5-Land data used in this study, 

whilst the model itself does not assimilate data, the driving data (ERA5 data) does 

assimilate data from satellite products (Hersbach et al., 2020). Recent research has 

suggested that the differences between satellite soil moisture and modelled soil 

moisture datasets is falling (Xing et al., 2023), however if the reanalysis products 

themselves continue to have the residual biases shown in satellite products, then this 

may not be so desirable. 

Building on this, we also find that CDF matching is potentially altering datasets in ways 

that make them undesirable for more statistically driven studies such as those using 

machine learning. In this study we rescaled the satellite data to match the systemic 
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metrics of the modelled data through CDF matching. When we then compared the 

corrected satellite dataset with our reference CRNS the overall RMSD and the 

decomposed uncertainty much more closely resembled that of the modelled data. This 

may present problems in certain studies if the full impact of this is not considered. For 

example, whilst assimilation of satellite soil moisture into hydrological models, which 

usually involves scaling techniques, has been demonstrated to show improvements for 

hydrological modelling (Alvarez-Garreton et al., 2014), the impact of these methods 

on more statistically driven machine learning techniques remains uncertain. This 

means caution should be given when considering rescaling methods in machine 

learning models. Machine learning methods are abstract in nature and will find 

statistical ways to predict a target from a set of input features. Given this, statistical 

rescaling techniques may be itself influential on the performance of such models. For 

example, studies have been conducted using rescaling to account for differences in 

the ISMN network of sensors, by rescaling them to match the systemic metrics of 

ERA5-Land data (O and Orth 2021). If we consider for the sake of argument that the 

CRNS data is closer to the “truth” soil moisture, the RMSD and decomposed 

uncertainty is now closer in resemblance to the modelled data used for rescaling. Given 

also that regression-based machine learning methods commonly use MSD as the loss 

function for model training, it is uncertain whether this means the model is being 

trained to be more like the original data or the data used for scaling. Further 

investigations towards understanding the impacts of this are warranted.  

As with many studies there are limitations that should be considered in this analysis. 

One limitation of this study is that the ESA-CCI SM dataset is a combined product that 

itself uses CDF matching to merge multiple satellites into a single consistent time 

series. On top of this the combined product is rescaled to match GLDAS soil moisture 

values. Given this double adjustment, it's important to exercise caution before 

attributing discrepancies solely to satellite products. Even so, it is a popular product 

that is used widely in the community to understand the influence of SM on various 
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environmental impacts, for example in studies investigating the propagation of 

agricultural drought (Chen et al., 2014). Given this, it remains important to continue to 

understand where these products remain uncertain in comparison to in-situ sensors 

so that we might improve future iterations. Another consideration is that this study 

didn't address spatial domain scaling. It's known that each soil moisture estimation 

relates to a specific spatial domain, both horizontally and vertically—especially 

considering CRNS captures soil moisture values within the root zone. 

The global CRNS network presents opportunities to further our understanding of 

global soil moisture dynamics and validate other soil moisture products. In this study 

we have looked at how we might validate the performance of other global products 

such as satellite and modelling products using a globally harmonized network of CRNS 

sensors. Future studies should continue to explore the reasons behind greater 

uncertainties at specific sites, such as those exhibiting extreme dry or wet conditions, 

and strategize ways to address these differences. An interesting research direction 

would also be to further investigate the impact common rescaling strategies might 

have on study outputs, with a particular focus on machine learning methods. Such 

investigations could lead to refined rescaling methods that better account for the 

inherent variances in soil moisture datasets. This becomes particularly significant at the 

extremes of soil moisture values. From this improved understanding we would be able 

to further improve global soil moisture products. 

4.5 Conclusions 

Global gridded satellite and reanalysis soil moisture products require validation with 

in-situ soil moisture stations, and a harmonized global CRNS network of sensors 

presents a unique opportunity to investigate residual uncertainties between such 

products and the CRNS data. The regional networks of CRNS data were reprocessed 

through crspy, providing a unified and harmonized dataset of CRNS soil moisture 

estimates that span hydroclimates across the globe. The analysis in this chapter 
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provides several key insights into the relative uncertainties of soil moisture estimates 

from CRNS, satellite, and modelled data, particularly looking at their spatial and 

temporal variations. One of the key conclusions of this chapter is that when comparing 

the satellite soil moisture to the reference CRNS soil moisture data, the source of 

uncertainty fluctuates with overall site wetness. Bias notably dominates at the 

extremities, i.e., at wetter and drier sites, while correlation and deviation become more 

influential at moderate sites. A similar pattern is seen for modelled data, with biases 

dominating at the most arid and saturated sites. This finding raises concerns regarding 

the accurate detection of extreme hydrological events such as floods and droughts, as 

the gridded products appear to be showing greater disagreement with our reference 

CRNS data during extreme periods of dry or wet soil moisture conditions. Moreover, 

the study reveals that error propagation is not only spatially variable but temporally 

variable as well, showing distinct characteristics for generally wet and generally dry 

sites. One key implication of these findings is that common bias correction and 

rescaling methods, such as CDF matching, may be suboptimal, particularly at the 

extremes of soil moisture, both spatially and temporally. By bias-correcting datasets 

to conform to the overall average statistics of a reference dataset, the dynamic nature 

of systemic biases across time is not properly accounted for. Furthermore, it is 

observed that when the Satellite soil moisture dataset that was CDF matched to ERA5-

Land soil moisture data (Sat-CDF) is compared with our reference CRNS data, the 

overall statistics of the source dataset, in this case, the ERA5-Land soil moisture, are 

almost entirely transferred to the scaled dataset. This is evidenced by the similar 

sources of uncertainty between ERA5-Land soil moisture data and Sat-CDF soil 

moisture data, when compared to the reference CRNS soil moisture data. While 

temporal soil moisture dynamics from the satellite data are preserved, the overall 

RMSD profile bears a closer resemblance to the target ERA5-Land SM data. This could 

have implications when training models, particularly machine learning-based models, 

as we may inadvertently train them to match our target dataset more than our source. 

With the growing popularity of machine learning methods to tackle key questions in 
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hydrology, further investigations will be necessary to fully understand these 

implications. The analysis clearly shows that both modelled and satellite products 

exhibit greater error, especially bias, at both ends of the soil moisture spectrum. Given 

that CRNS performs particularly well at arid sites, there is an opportunity for 

understanding differences from both model and satellite datasets and potential for 

future improvements. Knowing that the global CRNS sensors are harmonized in their 

processing methods, means that they can be treated as a reference dataset without 

additional scaling needed between them. Even so, there remains uncertainty related 

to the different spatial domains of the sensors when directly comparing them, and 

improvements to the commonly applied scaling methods are required. The newly 

formed global CRNS dataset presents a unique opportunity to further our 

understanding in this regard. In summary, residual biases remain between soil 

moisture products that appear to be more prevalent at the extremes of wet and dry 

periods. Current methods to address for this may be sub-optimal and additional 

research is required to better understand this impact and mitigate it in future products. 

The global CRNS network presents a unique opportunity to support research aiming 

to improve as a globally spanning and harmonized network of soil moisture sensors. 
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5 Exploring the role of soil moisture footprint 
in predictions of evapotranspiration and 
photosynthesis. 
 
 
 
 
 
 
 
 
 
 
5.1 Introduction 

vapotranspiration (ET) and photosynthesis are important processes influencing 

ecosystem function. Gross Primary Productivity (GPP), for example, represents 

how much carbon dioxide is taken up by plants from the atmosphere via 

photosynthesis; while ET corresponds to the phase change of liquid water at the land 

surface to vapor back to the atmosphere. The magnitude and dynamics of both fluxes 

are controlled by a range of environmental factors. Here, we are particularly interested 

in understanding how the spatial representation of soil moisture (SM) can influence 

the predictions of ET and GPP simultaneously. 

SM potentially serves as a strong regulator of fluxes at the land-atmosphere boundary 

(Seneviratne et al., 2010, Novick et al., 2016). For example, SM can directly impact ET, 

acting as the main source of water for soil evaporation or plant transpiration. When 

SM is limited, a reduction in ET leads to increased sensible heat flux, and consequently 

higher near surface temperatures. This ultimately leads to land-atmospheric feedback 

mechanisms that further constraints ET (Gentine et al., 2019; Green et al., 2019, Zhou 

et al., 2019), which can lead to further ecological and hydrometeorological stresses 

such as droughts and heatwaves that are potentially getting worse and more frequent 

under climate change (Miralles et al., 2019). Furthermore, the ability of plants to uptake 

E 
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carbon dioxide comes at a cost of losing water (vapor) at the leaf-air interface. This 

biophysical process is controlled by the stomatal functioning of plants, which is also 

governed by responses to environmental conditions, including SM (Bunce 2008). 

Overall, the influence SM can have on the land surface fluxes also depends on the local 

hydroclimate, with drier sites likely being strongly driven by changing SM conditions 

when compared to humid/tropical sites (Seneviratne et al., 2019). In addition, for 

relatively drier conditions, SM heterogeneity can result in challenges regarding 

accurately estimating SM at the ecosystem level (i.e., flux footprint) (Iwema et al., 2017).  

The inter-relationship between ET, GPP, and SM have been and continue to be studied 

extensively with the success of in situ monitoring networks. The Ameriflux and 

FLUXNET are good examples of initiatives utilizing the eddy covariance technique 

around the globe and spanning decades of coverage (Baldocchi et al., 2001; Pastorello 

et al., 2020). Understanding the controlling factors of ET and GPP also plays a crucial 

role in improving the interactions between hydrology and biogeochemistry 

parameterized in Earth system models. However, despite its continuing growth, the 

spatial coverage of flux monitoring networks will always correspond to a small fraction 

of the actual land cover of the Earth. Hence, our ability to predict land surface fluxes 

everywhere globally relies on methodologies for extrapolating and upscaling our 

knowledge from the site level to larger areas. This can be achieved either through 

(physics-based) modelling (Clark et al., 2011, Best et al., 2011) or via data-driven, 

statistical, approaches (Tramontana et al., 2016). There are recent attempts to leverage 

machine learning methods, and the growing body of open data, to train machine 

learning models to make predictions of surface fluxes based on data from eddy 

covariance flux sites (Dou and Yang, 2018; Cui et al., 2021; Bodesheim et al., 2018; Jung 

et al., 2020; Barnes et al., 2021; Zeng et al., 2020). A popular approach is the FLUXCOM 

project (Tramontana et al., 2016) which provides global predictions of energy and 

carbon fluxes using several machine learning methods.  
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Whether using physics-based models or machine learning algorithms, the robustness 

of any approach ultimately relies on the volume and quality of available data. 

Particularly, SM can be estimated in various ways, each representing a distinct spatial 

coverage (i.e., SM “footprint”). For instance, Time Domain Reflectometry (TDR), 

Frequency Domain Reflectometry (FDR), and Time Domain Transmissivity (TDT) are all 

common methodologies employed for in situ (local) SM measurements and are usually 

referred to as point-scale methods (Robinson et al. 2008). We recognize that the above 

methods operate slightly differently, but for simplicity of the language, we refer to 

them here more generally as TDR. These sensors can be installed at various depths to 

monitor vertical SM changes, but only measure a small spatial footprint around the 

sensor, on the order of 10s of cm. Field scale SM estimates have become more 

accessible with the establishment of the Cosmic Ray Neutron Sensors (CRNS) (Zreda 

et al., 2008). The CRNS technology estimates root-zone SM at the so-called field scale 

(i.e., ~400-600 m diameter around the sensor and up to 0.5 m depth). A key aspect of 

the CRNS is that its footprint is similar in size with that of eddy covariance towers 

(Iwema et al., 2017). Previous studies investigated the potential of CRNS data in 

combination with eddy covariance fluxes, to close the water balance in semi-arid and 

agricultural sites (Schreiner-McGraw et al. 2016, Wang et al. 2018), and to estimate 

actual ET from SM measurements (Foolad et al. 2017). However, the use of this 

technology with several flux sites covering a wide range of biomes across the globe 

has not been previously explored. Large scale global SM estimates can be achieved 

with satellite remote sensing products, such as the Soil Moisture Active Passive (SMAP) 

(Entekhabi et al., 2010) or the ESA CCI SM remote sensing product (Dorigo et al., 2017; 

Gruber et al., 2019), two examples of many available products. Active remote sensing 

emits microwaves and measures the scattering of the signal, whereas passive remote 

sensing uses natural emissions of radiation from the Earth surface. These products tend 

to have a coarser horizontal resolution (several kms) and only estimate the surface SM 

layer (2-5cm depth) which can be somewhat decorrelated from deeper SM, more 

important for root zone regulation of surface fluxes. 
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Fundamentally, distinct SM estimates range from very localized spatial scales likely 

governed by differences in soil texture and properties, to field scales in which spatial 

variability of land cover and microtopography influences SM, and ultimately reaching 

large spatial coverage which is likely governed by variability of large meteorological 

features such as frontal systems. Each methodology, therefore, measures the different 

responses of SM to environmental conditions according to their spatial footprint (see 

Supplemental S1). However, despite having distinct SM “footprints”, the estimates 

from different technologies are too often used interchangeably for spatial scaling 

without carefully evaluating the inherent impacts of their unique spatial 

representation.  

In this study, we use machine learning to quantify how the spatial representation of 

SM (i.e., SM “footprint”) can influence the ability to predict ET and GPP fluxes at the 

multiple sites located across a wide range of hydroclimates. We replicate the feature 

set from the established and widely used global upscaling model, FLUXCOM 

(Tramontana et al., 2016). In doing so, we keep the same attributes from FLUXCOM 

except for the attribute related to SM, which gets replaced by different sources of SM 

estimates representing distinct footprints. We expect the results can provide new 

insights into the benefits and limitations of scaling SM information in Earth systems 

applications.  

5.2 Methods and data 
5.2.1 Study sites 

We identified 20 sites covering a wide range of biomes and hydroclimates globally 

with co-located TDR, CRNS sensors and eddy covariance towers, while satellite SM 

products are globally available (Table 1 and Supplemental S2). CRNS sites were 

available as part of the US COsmic-ray Soil Moisture Observing System (COSMOS) 

(Zreda et al., 2012), the Australian CosmOz (Hawdon et al., 2014), and the German 

TERENO project (Bogena et al., 2016, Wollschläger et al., 2016). We used FLUXNET 
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(Baldocchi et a., 2001) base data and further processed at each site to collect the 

appropriate flux variables for the sites in the USA. GPP was calculated by removing 

ecosystem respiration obtained from night-time Net Ecosystem Exchange (Reichstein 

et al. 2005), defined when incoming solar radiation was less than 5 W m-2 following 

Rosolem et al. (2010). Half-hourly flux data was aggregated to daily only if data gaps 

were less than 30% for that day. For the rest of the sites (one in Brazil, five in Australia, 

and two in Germany), the data were processed by local site investigators following 

similar steps.  

We anticipate that the importance of SM representation will vary amongst different 

hydroclimates (i.e., more pronounced with increasing dryness conditions). To help us 

better characterize the hydroclimatology of each site, we computed the aridity index 

(AI) which is defined as the ratio of the mean annual precipitation over mean annual 

potential evapotranspiration. We use long-term annual means of precipitation and 

potential evapotranspiration calculated from 30-year data using the ERA5-Land 

reanalysis (Muñoz Sabater, 2019) and global potential ET (hPET, Singer et al., 2021) 

data products, respectively.  
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Table 5.1 provides informa:on on each of the sites in this study. The site code is used in Figure 
1 and 2 to differen:ate each site. Included is the la:tude and longitude, the FLUXNET eddy 
covariance tower name, data source for FLUXNET data, the aridity index (AI), land cover 
informa:on, the Köppen-Geiger classifica:on, and the plant func:onal type. 

Site 
Code Site name FLUXNET 

Code Latitude Longitude 
Aridity 
Index 

(P/PET) 

Land 
Cover 

Plant 
Function
al Type 

Flux Data 
Source 

AUS2 Daly AU-DaP -14.16 131.39 0.57 shrubland 
deciduous SAV Beringer 

(2013) 

AUS3 Gnangara AU-Gin -31.38 115.71 0.32 

tree 
broadleave

d 
deciduous 

open 

WSA 

 
Silberstein 

(2015) 

AUS6 Robson AU-Rob -17.12 145.63 0.86 

tree 
broadleave

d 
evergreen 
closed to 

open 

EBF 

 
Liddell 
(2013) 

AUS9 Tumbaru
mba AU-Tum -35.66 148.15 1.09 

tree 
broadleave

d 
evergreen 
closed to 

open 

EBF 

 
Woodgate 

(2013) 

AUS11 Yanco - -35.01 146.3 0.33 mosaic 
cropland GRA Beringer 

(2013) 

BRZ44 Pe-de-
Gigante BRZ-PdG -21.62 -47.63 0.96 

tree 
broadleave

d 
evergreen 
closed to 

open 

WSA 

 
 
- 

DEU20 Grosses 
Bruch - 52.03 11.11 1.02 Cropland CRO 

Rebmann 
et al., 
(2023) 

DEU28 Hohes 
Holz - 52.09 11.22 0.96 Forest DBF 

Rebmann 
et al., 
(2023) 

USA10 Kendall US-Wkg 31.74 -109.94 0.16 Shrubland GRA Scott 
(2022) 

USA11 Santa Rita 
Creosote US-SRC 31.91 -110.84 0.2 Shrubland OSH 

Kurc 
(2019) 

USA15 ARM-1 US-ARM 36.61 -97.49 0.68 Cropland 
rainfed CRO 

 
Biraud et 
al., (2021) 
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herbaceou
s cover 

USA23 Pinyon/Ju
niper US-SCw 33.61 -116.45 0.2 Shrubland OSH 

Goulden 
(2018) 

USA24 Coastal 
Sage US-SCs 33.73 -117.7 0.31 Shrubland OSH Goulden 

(2018) 

USA27 Morgan 
Monroe US-MMS 39.32 -86.41 1.21 

tree 
broadleave

d 
deciduous 
closed to 

open 

DBF 

Novick 
and 

Phillips 
(2022) 

USA28 Mozark US-Moz 38.74 -92.2 1.07 

tree 
broadleave

d 
deciduous 
closed to 

open 

DBF 

 
Wood and 
Gu (2022) 

USA29 Neb Field 
3 US-Ne3 41.18 -96.44 0.85 

Cropland 
rainfed 

herbaceou
s cover 

CRO 

 
Suyker 
(2022) 

USA32 Tonzi 
Ranch US-Ton 38.43 -120.97 0.63 Shrubland WSA Ma and 

Xu (2022) 

USA33 Soaproot US-CZ2 37.03 -119.26 0.72 

tree 
needleleav

ed 
evergreen 
closed to 

open 

ENF 

Goulden 
and Kelly 

(2019) 

USA38 Metolius US-Me2 44.45 -121.56 0.96 

tree 
needleleav

ed 
evergreen 
closed to 

open 

ENF 

 
Law 

(2022) 

USA60 Lucky 
Hills US-Whs 31.74 -110.05 0.16 Shrubland OSH Scott 

(2022) 

 

5.2.2 Feature list for ET and GPP predictions 

To focus on the influence the SM spatial representation (i.e., footprint) has on 

regulating ET and GPP, we replicated an established set of features for predicting 

energy and carbon fluxes following the methodology from the FLUXCOM project 
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(Tramontana et al., 2016; Jung et al., 2019). To select the most important features for 

model training, the FLUXCOM team used a guided hybrid genetic algorithm (Jung and 

Zscheischler, 2013), leading to two unique sets of features developed for energy and 

carbon fluxes separately (see Table 2 in Tramontana et al., 2016). The feature list is 

further divided into three types: spatial features (site-specific), long-term climate 

features (averaged yearly and seasonal values), and short-term features (daily weather 

values). We did not use any spatial features in this study since our goal is to isolate the 

impact of SM representation on these surface fluxes at each site individually. This 

means that we trained separate machine learning models for each site. Site-specific 

mean seasonal cycles of the variables were derived from long-term (2001-2021) 

products available from the MODIS satellite data such as the Normalized Difference 

Vegetation Index (NDVI), Land Surface Temperature Day (LSTday), and fraction of 

photosynthetically active radiation (fPAR). Finally, short-term features were derived 

from in-situ sensors (such as air temperature) collected at each site (see Supplemental 

S3 for more details).  

5.2.3 Soil moisture spatial representation (footprint) 

Our study focuses on evaluating how distinct SM estimates can influence the 

prediction of both water vapor and carbon fluxes at the land surface. FLUXCOM uses 

a simple soil water balance approach aimed at capturing water stress effects. The 

Water Availability Index (WAI) is a simple bucket type model, here produced using 

ERA5-Land data, and used in the predictions of GPP; whereas the Index of Water 

Availability (IWA) is analogous to evaporative fraction and was used in the predictions 

of ET (Tramontana et al., 2016). Jung and Zscheischler (2013) did note that direct SM 

measurements could provide additional benefits over simulated representation of SM 

but were unable to integrate direct observations to the FLUXCOM platform at the time 

due to limited availability of data. For this paper, we will refer to both WAI and IWA 

approaches together as ‘empirical’ representation of SM. 
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For point-scale representation, we simplify the choice by using a single TDR sensor 

from each site, selected as the shallowest depth. Satellite remote sensing products 

measure SM at shallow depths and, while the CRNS can effectively reach deeper soils, 

its SM contribution to the signal decays exponentially from the surface towards deeper 

soils (Schrön et al. 2017). In contrast to point-scale TDR measurements, a single CRNS 

station can provide an area-average measurement of SM, thereby being insensitive to 

small-scale heterogeneity (Franz et al. 2013). For the CRNS sensors, raw data were 

processed using the crspy package (Power et al., 2021) to ensure a fully harmonised 

methodology across all sites. Finally, we used the ESA CCI soil moisture remote sensing 

product (Dorigo et al., 2017; Gruber et al., 2019) for the satellite SM product. This 

product merges multiple satellite remote sensing datasets over a long time period, 

spanning 1978 to today with a horizontal resolution of 25km. 

5.2.4 Study aims and hypothesis 

Our study aims to evaluate the impact of distinct spatial SM representation on the 

ability to predict ET and GPP. For that, we retain all input from the FLUXCOM feature 

list with the exception of factors associated with SM. Instead, we introduce four distinct 

ways to represent SM: 

1. Empirical - Replicating the FLUXCOM method with WAI and IWA. 

2. TDR - Time Domain Reflectometry point-scale sensor, often deployed at flux 

sites. 

3. CRNS - Cosmic-Ray Neutron Sensors that provide field scale SM measurements. 

4. Satellite - the ESA CCI merged product of multiple satellite sensors.  

In addition, we added a final option, called “Null”, in which we completely remove any 

SM representation and use it as a reference comparison among all other options. 

Although we replicate our feature list from the FLUXCOM method, we have 
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implemented slightly different steps from its original approach to better suit this study. 

Unlike the original FLUXCOM, we have not used any gap filled data. While gap-filling 

may result in a more balanced representation of the full seasonal behaviour of these 

fluxes, it can arguably lead to duplicated data within the training and validation 

datasets. This can result in data leakage issues impacting the overall performance 

scores of the model (Allamanis, 2018) because the proportion of gap-filled data in a 

dataset may become correlated with the overall performance. As our main goal here 

is to better understand the impacts of spatial representation of SM, we have chosen 

to trade data volume with robustness, by training our machine learning model on 

fewer but more reliable non-gap filled data points. When building the dataset of daily 

observations, if gaps in the data were found for any of the input features (e.g., the TDR 

sensor value is missing but the CRNS is available), the day was excluded from the 

training dataset entirely for all model runs. We believe this choice ensures that results 

more strongly represent the relationships from the measurements directly. A machine 

learning model is trained for each individual hypothesis listed above at each individual 

site separately. This allowed us to identify how different sites respond to SM data input.  

The original FLUXCOM methodology was tested using multiple methods such as 

Random Forest and Neural Networks. Instead, our study employs an extreme gradient-

boosted regression tree model known as XGBoost (Chen and Guestrin, 2016). XGBoost 

has been proven to be a powerful machine learning method for tabular data often 

outperforming artificial neural networks whilst being efficient and quick to apply, with 

minimum hyperparameter tuning (Shwartz-Ziv and Armon, 2022). Having an algorithm 

more suitable for limited data is important as our strict quality-flag conditions led to 

fewer available observations for training.   

Our study is based on some key initial hypotheses. First, we hypothesize that the 

representation of the SM scale will be important, especially as site conditions get drier. 

Secondly, under relatively drier conditions, we also hypothesize that the knowledge 

obtained with directly observed SM at the site (i.e., in situ measurements from TDR or 
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CRNS) will result in better predictions of the fluxes compared to when using empirical 

methods or satellite remote sensing. Finally, with regards to the representation of in-

situ direct observations of SM, we hypothesize that the improvements obtained with 

the CRNS will be superior to those obtained via TDR estimates, given the more 

comparable spatial scale obtained for SM with the CRNS to the fluxes measured at the 

sites. 

5.3 Results 

The performance of the machine learning models was assessed through k-folds cross 

validation at each site. Data from each site were randomly split into 10 equal bins, 

always leaving one out for testing. This process was repeated until all data have been 

treated as both training and testing data, with the average performance of the 10 

models then calculated. To facilitate comparisons between the sites which have 

different magnitudes of fluxes, the results were normalised by dividing the models 

RMSE by the interquartile range of the predicted data, which is less sensitive to the 

influence of extreme values and allows us to see relative changes in RMSE from each 

model (Otto, 2019). 

The results for ET predictions as presented in Figure 5.1. The sites have been ordered 

from most humid (left) to most arid (right) according to the Aridity Index whose classes 

are shown in the background (see Table 5.1 for individual values). There are key 

noticeable findings from this analysis. First, we found that the way we represent SM 

footprint at humid sites is unimportant. The results suggest that SM information at 

humid sites has a low impact on ET predictions overall. This is supported by the lack 

of spread in model performance from each tested representation, including the “Null” 

case.  
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As initially hypothesized, the spatial representation of SM does indeed impact the 

prediction of ET fluxes as site conditions becomes drier. This is evident by a wider 

spread in model performance going from sub-humid to arid classes in Figure 5.1. In 

addition, ignoring the information obtained from SM can be highly detrimental as seen 

by the worst performance shown for the Null SM representation case. These findings 

likely indicate that knowledge of SM footprint is important for spatial scaling 

applications, as the SM information depends on its representation spatially. Our results 

further support our initial hypothesis that direct (in situ) observations of SM perform 

better in predicting ET fluxes. This is evident by the consistent lower nRMSE obtained 

at relatively drier sites from both CRNS and TDR cases in comparison to the empirical 

and satellite cases. We notice that empirical and satellite cases initially showed 

comparable performances to CRNS and TDR at sub-humid conditions, but both tend 

to deteriorate, and more closely compare with the Null SM representation, as aridity 

increases. Interestingly, our results could not support our initial hypothesis that ET 

predictions would show better performance using CRNS SM when compared to TDR 

SM. This initially suggests that SM footprint on the order of a few 100s of meters or 

smaller are equally beneficial for accurate predictions of ET fluxes. 

Figure 5.1 Average performance of ET predic:ons at each site using nRMSE obtained from different 
spa:al representa:ons of soil moisture. The sites are ordered from most humid (leo) to most arid 
(right) according to Aridity Index classes shown in the background. The country of origin for each 
site is given in the name with sites being located in USA (USA), Australia (AUS), Germany (DEU), and 
Brazil (BRZ) 
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While the results for GPP at humid sites follow the same pattern as seen with ET, the 

performance of the machine learning models are clearly different as aridity increases 

(Figure 5.2a). Although ignoring SM representation (i.e., Null case) has the same 

negative impact on nRMSE values for GPP, we did not find a clear performance benefit 

from cases where SM representation is obtained from in-situ direct measurements (i.e., 

CRNS and TDR) when compared to indirect SM representation (i.e., empirical) were 

used. In fact, the performance of the model using empirical estimates of SM is almost 

always superior at all sites from sub-humid to arid conditions. We also noted relatively 

poor performance of GPP prediction by machine learning models using the satellite 

remote sensing measurements. 

For GPP predictions at relatively drier sites, our findings indicate a more pronounced 

role exhibited by the integrated depth-profile of SM. This is strongly evident with the 

highest performance obtained with the 2-layer bucket type empirical model used by 

Figure 5.2 Average performance of GPP predic:ons at each site using nRMSE obtained from 
different spa:al representa:ons of soil moisture without (a) and with (b) the addi:on of a soil 
moisture memory term. The sites are ordered from most humid (leo) to most arid (right) according 
to Aridity Index classes shown in the background. Note fewer sites shown here due to unavailability 
of data. The country of origin for each site is given in the name with sites being located in USA 
(USA), Australia (AUS), Germany (DEU), and Brazil (BRZ). 
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FLUXCOM which acts as an indirect buffer (i.e., memory from deeper soils) for SM 

available for photosynthesis. On the other hand, shallow and instantaneous estimates 

of SM from satellite remote sensing offer the overall least improvements on GPP 

predictions from all cases where SM is represented in some way.  

To test this assumption, we trained additional machine learning models for each of the 

original soil moisture representations, in which an explicit SM memory factor is 

included in the original feature list. We calculated SM memory by taking a rolling-

average of CRNS SM over the previous 30-days. We chose CRNS to calculate SM 

memory because it is a direct in situ estimate which can reach slightly deeper soils, 

compared with TDR, especially at drier sites (Zreda et al., 2008, Schrön et al. 2017). The 

memory period of 30 days was obtained based on our analysis of varying memory 

lengths (Figure 5.3). For that, we retrained the XGBoost models for each site, with 

increasing lengths of memory period (from 0 to 80 days in two-day increments). The 

more arid sites show a greater improvement from increasing memory lengths up until 

30 days, at which model improvements stop, or in some cases performance even 

degrades. Performance at humid sites also improves although at a smaller rate, as 

shown in the lower plot showing relative improvement against no SM memory. 
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Figure 5.3 (a) Model performance (nRMSE) in predic:ng GPP for 
increasing length of soil moisture memory. (b) Rela:ve reduc:on in 
nRMSE when compared to same model performance with no soil 
moisture memory provided (i.e., daily soil moisture only). Individual lines 
represent one site, colour-coded by their aridity classes. The CRNS soil 
moisture data were used for this analysis. 
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Interestingly, when the 30-day SM memory is included in the prediction of GPP, model 

performance is improved across almost all instances (Figure 5.2b), with arid and semi-

arid sites showing improvements in RMSE of up to 30% or more (Figure 5.3). The 

spread in model performance from all different representations of SM is almost entirely 

removed across all aridity classes, from humid to arid. This is even evident when SM 

memory is used but without actual instantaneous knowledge of SM (i.e., our Null SM 

case). Surprisingly, this feature did not appear to be as important for ET predictions, 

particularly at the more arid sites (Supplemental S4) which could indicate a distinct 

role of SM when predicting ecosystem-based quantities (i.e., ET) versus plant-based 

quantities (i.e., GPP).  

5.4 Discussion 

Our findings suggest that the way we spatially represent SM can play a key role in 

improving the performance of land surface flux predictions, but it does so differently 

for ET and GPP fluxes. We found that ET predictions, particularly at arid sites, perform 

best when in-situ SM estimates are used by the machine learning model, in contrast 

to indirect estimates (i.e., empirical, or remote sensing) (Figure 5.1). On the other hand, 

the lower impact of SM representation observed at humid sites is not surprising as 

these sites are usually not water limited and so other features provided more strongly 

influence ET predictions. 

Originally, we expected a stronger delineation, in terms of overall predictive power, 

between the two representations of in-situ data (CRNS and TDR), as found by 

Schreiner-McGraw et al. 2016. That is because TDR and CRNS observations correspond 

to different spatial scales (Iwema et al., 2017, Schrön et al., 2017), with the latter being 

more comparable to the typical footprint of flux towers. Our findings did not support 

this hypothesis, as demonstrated by the fact that the difference between the 

performance of ET predictions obtained with point-scale (TDR) and field scale (CRNS) 
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is small (Figure 5.1). This remains the case even though we can see that the absolute 

values are different (Supplemental S1). As flux sites are typically setup at largely 

homogeneous areas (Rebmann et al., 2018), this resulted in limited spatial 

heterogeneity at field scale, possibly diminishing the benefits of using CRNS, 

compared to TDR, under such conditions. Additionally, machine learning models are 

powerful tools for bias correction and have been used for this specific purpose already 

(Lary et al., 2019). It is possible that the differences between CRNS and TDR are less 

pronounced than found between in situ sensors and empirical or satellite products. 

The satellite SM data did not show the same improvement in predicting ET when 

compared against our Null SM representation, as we find for the in-situ datasets 

(Figure 5.1). We are not applying bias correction to the satellite SM data in this study 

as we are primarily interested in understanding the role of spatial scales and how they 

may impact our results. As previously noted, machine learning models are 

demonstrated as good bias correctors themselves (Lary et al., 2019), but in our study, 

the dynamics of satellite SM do not correlate as strongly with in-situ datasets. This may 

explain its relatively lower performance when compared to the in-situ SM 

measurements, due to satellite products being associated with shallower, more 

dynamic, SM representation than in-situ SM. The satellite product used here is the 

ESA-CCI Soil Moisture, a merged product of multiple satellites, with physical SM ranges 

constrained by GLDAS v2.1 (Dorigo et al., 2017), which suggested superior 

performance than single satellite products when compared to in-situ measurements 

(Beck et al., 2020). The resolution of ESA CCI is 25km which may also be too coarse 

horizontally to provide information on SM conditions at the field scale. For instance, a 

recent study has shown that we can lose up to 80% of the information contained in 

SM when moving from a 30m resolution to a 1km resolution (Vergopolan et al., 2022).  

For GPP predictions, whilst SM representation is important, we found that the empirical 

SM representation with a simple 2-layer bucket model yielded overall best results, 

especially as aridity increases (Figure 5.2a). This result possibly indicated a potential 
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buffering effect from the empirical model indirectly acting as SM memory. By explicitly 

introducing a 30-day soil memory, we demonstrated the improvement in predicting 

GPP across all models trained (Figure 5.2b). This improvement is more noticeable at 

transitional to arid sites, with little impact from SM representation at the humid sites. 

Our results concur with a more recent machine learning GPP product (DryFlux) which 

also includes antecedent moisture conditions in the form of the previous months of 

precipitation in its machine learning model (Barnes et al., 2021). We further tested this 

by training our GPP models using a rain memory feature (i.e., an average of rainfall 

over previous 30 days), instead of SM. We found similar improvements to GPP 

predictions demonstrating that antecedent conditions of moisture are important more 

broadly (Supplemental S4). For completeness, we also carried out the same analysis 

including the SM memory feature for ET predictions. In this case, we found that 

although this new feature led to slightly improved predictions compared to no SM 

memory, the ET predictions using instantaneous in-situ SM still performed better at 

drier sites (Supplemental S5).  

When considering why GPP and ET predictions respond so differently to the various 

SM representations tested in our study, an important distinction to make is that GPP 

is related to plant-only processes, whereas ET is an integrated ecosystem quantity with 

contributions from both vegetation and soil (i.e., ground evaporation, plant 

transpiration, and canopy interception loss). This is especially relevant considering that 

the semi-arid sites contain lower ecosystem biomass overall. In this case, our findings 

point to the fact that direct in-situ estimates of SM are strongly associated with the 

local evaporation portion of the ET process, particularly from the ground. Our findings 

show, however, that a different SM mechanism, in which memory plays a primary role, 

is more important for better predictions of plant-related fluxes, such as GPP. We 

interpret this as the water reaching the surface taking sufficient time to be transported 

down to deeper soils, even beyond the sensing depth of the measurement 

technologies tested in this study. Given the strong relationship between 
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photosynthesis and transpiration via stomatal control (Scott et al., 2006), our results 

suggest that the role of SM memory may also be important for predictions of 

transpiration flux only.  

We found the sites with the greatest impact from SM representation to be the semi-

arid and arid sites, which all have a land cover primarily made up of shrubland. Rooting 

systems in shrublands can vary from shallow laterally expanding roots, to deeper 

penetrating tap roots (Silva and Rego, 2003, Sivandran and Bras, 2013). It is possible 

that even the deepest SM in-situ representation in our study (i.e., CRNS) fails to sense 

the deeper SM that the tap roots of these plants have access to. This could explain why 

similar sites show different responses to SM representation. For example, USA60 and 

USA10 are both sites within the Walnut Gulch experimental area in Arizona (AI=0.16), 

but USA60 appears to have a greater dependence on SM memory conditions when 

compared to USA10 for GPP predictions, apparent due to the larger spread between 

the trained models (Figure 5.2b). Whilst the landcover between both sites is broadly 

similar the exact composition of plants differs (see site descriptions at 

https://fluxnet.org/sites/site-list-and-pages/, last accessed 14/06/2023). While, the 

USA60 site consists of a greater proportion of sagebrush shrubs, the USA10 consists 

of less than 10% shrub cover, being more dominated by grasses. This example 

suggests that plant rooting strategies may be playing a large part in whether longer 

term, deeper SM is more important for GPP predictions in comparison to how we 

horizontally represent SM footprints. In summary, our findings strongly suggest 

caution must be taken when scaling of land fluxes are carried out in places where SM 

is expected to play a role, especially as site aridity increases. In those circumstances, 

the replacement of SM products should carefully be carried out with knowledge of 

their SM footprint for ET predictions, while a SM memory term should be considered 

(directly or indirectly) for prediction of plant-only fluxes such as GPP and even 

transpiration. 
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5.5 Conclusion 

Upscaling land surface fluxes of water, energy, and carbon for global coverage is of 

utmost importance for our better understanding of Earth system processes and 

associated feedback. Yet, when it comes to the role SM plays in influencing those 

predictions, little effort is devoted to better understand how different spatial footprint 

of SM impacts those fluxes. This results in different SM estimates being used 

interchangeably despite their distinct spatial representation. In this study, we have 

demonstrated using machine learning techniques that SM footprint does exert a 

strong influence on land-atmosphere fluxes of carbon and water, especially in 

transitional to arid climates. We found that for relatively dry sites (semi-arid to arid), 

the spatial footprint of SM is an important aspect that needs consideration. 

Interestingly, our results suggest distinct SM mechanisms are driving GPP and ET 

predictions. For ET predictions, SM footprint is important and particularly knowledge 

of in-situ (direct) SM measurements provides the best performance. However, we were 

not able to quantify any benefit of using field-scale estimates from CRNS, arguably 

with a more similar footprint to flux towers, in comparison to point-scale (TDR) 

representation. Our findings also suggest there are still significant benefits in relying 

on direct (in-situ) SM observations over new satellite remote sensing or empirical 

models, especially at semi-arid and arid sites. Despite its importance, SM monitoring 

networks are still far from providing optimal coverage worldwide, especially in regions 

where changes due to climate are expected to be of significant impact (Bassenbacher 

et al., 2023), and continued efforts to improve this are crucial. At transitional to arid 

sites, GPP is primarily influenced by SM memory which is more related to deeper SM 

dynamics. Here, we assume GPP acts as a function of plant-only activity, hence the 

increased importance of root water up takes from deeper soils. Importantly, we expect 

a similar mechanism takes place for the transpiration flux due to intrinsic stomatal 

regulation influenced by root zone moisture with longer memory. Unlike GPP, the 

ecosystem-based ET comprises contributions from soil and plants, and at semi-arid 
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and arid sites, soil evaporation plays an important role together with transpiration from 

shrublands. Our study provides additional insights on understanding the true nature 

of SM footprint for land surface fluxes predictions and urges caution when spatial 

scaling approaches are implemented if SM from different products, representing 

different spatial scales, are used interchangeably.  
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5.6 Supplemental Material 
S1 – Examples of soil moisture data 

 
  
 

Figure 5.4. Example from selected sites of daily soil moisture :me-series 
obtained with point-scale Time Domain Reflectometers (TDR), Cosmic-ray 
Neutron Sensor (CRNS), and the ESA CCI Soil Moisture satellite product 
(Satellite). 
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S2. Site locations 

 
 

Figure 5.5. Geographic loca:on of the sites used in this study. Please refer 
to Table 1 in the main manuscript for site summary. 
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S3. Features used in XGBoost model. 

Table S3 lists input features used in training the XGBoost models to predict either 

Gross Primary Productivity (GPP) or Evapotranspiration (ET) fluxes. The feature list is 

adapted from Tramontana et al (2016) for the FLUXCOM methodology. One of the key 

differences in our work, in comparison to the FLUXCOM methodology, is that we train 

machine learning models for each site separately. Therefore, we do not use the spatial 

(static) site descriptors available in the original feature list as such information 

becomes irrelevant at each site individually.  

 
Table 5.2 Features used in the machine learning model implementa:on adapted from the 
original defini:ons by Tramontana et al (2016). MSC refers to the Mean Seasonal Cycle derived 
from 20 years of data collected from the MODIS satellite datasets. LST refers to Land Surface 
Temperature, Rpot refers to Poten:al Top of Atmosphere Radia:on, NDWI refers to the 
Normalized Difference Water Index, EVI refers to the Enhanced Vegeta:on Index, NDVI refers 
to the Normalized Difference Vegeta:on index, fPAR refers to the frac:on of photosynthe:cally 
ac:ve radia:on, SW_IN refers to Incoming Shortwave Radia:on measured at each flux site. In 
our case, SM* refers to Soil Moisture which changed depending on which representa:on was 
tested (see Methods and data in the main ar:cle), and SM_MEM is the Memory aspect of Soil 
Moisture used at specific cases as discussed in the main paper. 

Gross Primary Productivity 
(GPP) 

Evapotranspiration 
(ET) 

MSC of LSTnight Rpot 
MSC of (fPAR, LSTday) MSC of NDWI 
MSC (EVI, Rpot) MSC of LSTnight 
Temperature (air) MSC of (EVI, SW_IN) 
(SW_IN, MSC of NDVI) Rain 
SM* 
SM_MEM SW_IN 
 Relative Humidity 

 
SM* 
SM_MEM 

  
 

The different MODIS datasets were obtained using the Google Earth Engine platform 

(https://earthengine.google.com/, last accessed 19/07/2023). Below lists the specific 

products used in compiling the features described above: 
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EVI/NDVI: MOD12A2.061 Terra Vegetation Indices 16-Day Global 1km 
LSTday/LSTnight: MOD11A2.061 Terra Land Surface Temperature and Emissivity 8-
Day Global 1km  
fPAR: MOD15A2H.061 Terra Leaf Area Index/FPAR 8-Day Global 500m  
NDWI: MCD43A4_006_NDWI MODIS Combined16-Day NDWI  
 
 
S4.  Comparison between rain memory and soil moisture memory on Gross Primary 

Productivity (GPP) predictions 

 
 
  

Figure 5.6. The first two panels (a) and (b) are the same as shown in Figure 2: Average 
performance of GPP predic:ons at each site without (a) and with (b) the addi:on of a soil 
moisture memory term. The boEom panel (c) shows the average performance of GPP 
predic:ons at each site with the addi:on of a 30-day rainfall memory aEribute instead of a 
SM memory 
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S5. The impact of soil moisture memory on Evapotranspiration (ET) predictions 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7 ET predic:ons using the standard feature sets (a) and including a 30-day soil moisture 
memory (b). Whilst we find broad improvements in model performance when including the SM memory 
feature (b), we s:ll find an addi:onal improvement from including daily in situ soil moisture values, 
(e.g., at sites USA11, USA23, USA60, and USA10).  
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6 Conclusions and Outlook 
 
 
 
 
 
 
 

oil moisture plays a critical role in earth system processes, including hydrology, 

atmospheric interactions, and ecosystem health. The growing availability of 

Cosmic-Ray Neutron Sensor (CRNS) data offers exciting new opportunities for 

conducting “large-sample hydrology” studies aimed at enhancing our understanding 

of soil moisture’s role in global Earth system processes. This is increasingly important 

as Earth system models evolve with finer spatial resolutions, making obtaining soil 

moisture data at relevant scales increasingly important. CRNS stands out for its ability 

to capture field-scale soil moisture dynamics, thanks to its spatiotemporal coverage 

and the growing number of sensors worldwide. Despite its promise, CRNS data 

utilization faces challenges, such as differences between regional CRNS networks 

leading to inconsistent data processing methods. These variations introduce 

uncertainties in data comparisons, hindering their application in large scale and global 

studies. To date, no studies have successfully employed a globally harmonized CRNS 

dataset for this purpose. This thesis serves to improve our ability to utilize CRNS in a 

large sample hydrology way, conduct the first large sample type studies with this newly 

harmonized resource and further our understanding of soil moisture’s role in key Earth 

system processes with machine learning.  

The goal of this thesis was to: 

Investigate the opportunities of a harmonized and globally spanning dataset of 

CRNS-derived soil moisture to increase our understanding of the role of soil 

moisture in Earth system sciences applications. 

S 
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This was achieved through the research presented in Chapters 3, 4, and 5. The key 

overall contribution of this thesis is in demonstrating the value of a harmonized global 

CRNS dataset for exploring soil moisture’s role in Earth system dynamics and 

presenting methods to facilitate such research in future studies. Individual 

contributions from each chapter, as well as a final summary of this thesis's overall 

contribution to the field, are detailed below. 

To address the existing issue of a lack of harmonization between CRNS data across 

various networks, Chapter 3 introduces crspy, the first open-source Python package 

designed to easily process CRNS data. Until now, each CRNS network or sensor owner 

handled data processing individually, adhering to their own protocols, which led to 

inconsistencies when comparing data beyond a regional scale. One of the key 

contributions of this chapter is the building, testing, and release of the first open-

source python package, specifically designed to facilitate processing of multiple CRNS 

stations at once. A second key contribution of this chapter is using crspy to highlight 

how regional discrepancies in CRNS networks could impact the validity of global 

studies. As shown in Chapter 3, differences between each network's decision for 

processing incoming neutron intensity leads to changes in calculated soil moisture 

values. Crspy is designed to facilitate the processing of large batches of sites at once, 

with the flexibility to choose which correction steps to apply. It additionally integrates 

with other products for correction steps, such as the nmdb.eu database for incoming 

neutron correction or ERA5-Land to address missing data. The tool allows for 

harmonization which ultimately facilitates multi-site comparison at continental to 

global scale. Another key aspect of crspy is its metadata component, specifically 

designed to support large-sample hydrology studies by detailing descriptions of 

available sites. The open-source nature of crspy encourages the CRNS research 

community to adapt the tool for various research needs, such as testing revised 

theories of sensor correction and calibration. In short, crspy unlocks the potential of 

conducting large-sample hydrology studies using a harmonized CRNS network. 
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Next in Chapter 4, it is shown that there are varying sources of uncertainty in soil 

moisture estimations by comparing a harmonized global CRNS dataset to satellite and 

model-based soil moisture products. The key contribution of this chapter is showing 

that there remain residual biases in global gridded soil moisture products, when 

compared to harmonized CRNS data, and revealing the potential limitations of 

common rescaling techniques like CDF matching. Utilizing crspy, 163 CRNS stations 

were harmonized into a single, global dataset for comparison. The soil moisture data 

of each site were then compared to the corresponding values obtained from satellite 

remote sensing (ESA-CCI) and land surface model (ERA5-Land) products of soil 

moisture. The overall mean squared error was further decomposed into its three 

constituent parts; bias, deviation, and correlation, to better understand what source of 

error is dominant at each site, and how these change in space and time. The analysis 

reveals that dry and wet extremes are mainly influenced by bias, whereas transitional 

sites show a higher prevalence of correlation and deviation errors. Interestingly, this 

pattern does not hold when comparing satellite remote sensing to land surface 

models, where uncertainty sources are largely consistent across the sites. Seasonal 

variations also influence the dominant source of error; drier sites have more correlation 

and deviation errors during wet periods, and wetter sites display the opposite pattern. 

This is particularly important given that many common bias correction techniques, 

such as CDF matching, correct a time series to the total error profile, meaning that 

additional biases may be introduced to the dataset at some points of the year. 

Ultimately, the chapter highlights that while global soil moisture products like satellite 

remote sensing and land surface models hold great value, they come with uncertainties 

that are spatially and temporally inconsistent. 

Chapter 5 explores the role of spatiotemporal soil moisture representation in 

predicting land-atmosphere fluxes of carbon and water. The key contribution of this 

chapter is showing that soil moisture data source is highly influential on the accuracy 

of machine learning predictions of evapotranspiration (ET) and gross primary 
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productivity (GPP), particularly in water limited regions. Another key contribution is 

showing the contrasting mechanisms driving ET and GPP; with deeper soil moisture 

values (proxied through soil moisture memory) improving GPP predictions, and surface 

soil moisture being more closely linked to accurate ET predictions. Increasingly data 

driven, machine learning methods are being applied in the prediction of key 

environmental processes.  

To achieve these outcomes, the methodology of an established machine learning 

model for land-atmosphere flux predictions (FLUXCOM) was used. We showed that in-

situ soil moisture representation can particularly improve predictions in more arid and 

water stressed regions. Daily in-situ measurements of soil moisture increased model 

performance for ET predictions. On the other hand, GPP predictions benefit from 

considering longer-term and deeper soil moisture values. Deeper soil moisture values 

can be inferred in ML models through the soil moisture memory, which is in this study 

is an average of soil moisture over the previous month. The memory period was shown 

to incrementally improve predictions up until around 30 days, although the exact 

memory period impact varied between sites. Feature selection and engineering are 

crucial in machine learning models, emphasizing the need for high-quality, in-situ soil 

moisture data. Care should be given when selecting a source of soil moisture data for 

such tasks, as the selection has been shown to have a large impact on model outcomes. 

This chapter ultimately advocates for the expansion of in situ soil moisture monitoring 

networks, particularly in water-limited areas like semi-arid and arid regions, to improve 

predictive accuracy where soil moisture has the highest impact. 

Overall, this thesis highlights the potential in applying a large sample hydrology 

approach to harmonized CRNS networks on a global scale. CRNS sensors are crucial in 

monitoring and understanding field-scale soil moisture dynamics worldwide. While 

global expansion of these sensors is continuing, a critical barrier has been the absence 

of harmonized data processing methods. To address this, Chapter 3 introduced the 

first open-source tool designed for batch processing of multiple CRNS sites, thereby 
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enabling large-scale and global studies. Chapter 4's analysis demonstrated that the 

now harmonized CRNS network, when compared to established satellite and reanalysis 

products, revealed varying sources of error dependent on site soil moisture conditions. 

Whilst satellite-based soil moisture products offer global data availability, they still 

come with uncertainties, especially when compared to in-situ CRNS measurements. 

Chapter 5 shows that machine learning predictions of surface fluxes like ET and GPP 

improved significantly with in situ sensor data, but not so much with satellite or 

modeled data. In particular, deeper soil moisture values were shown to be important 

for predictions of GPP, and by extension transpiration. A global and harmonized soil 

moisture dataset, such as that available with CRNS, can facilitate global soil moisture 

research. 

Through the research of this thesis there are various implications to soil moisture 

science, plus several directions that could provide additional insights to those already 

shown above. First off, the open-source tool, crspy, has proven to be valuable and 

should continue to evolve in two main directions: simplified versions for newcomers 

and advanced versions for cutting-edge research. Such software not only educates the 

next generation of CRNS researchers but also serves as a valuable resource for real-

world applications, as demonstrated in Appendix C through smart agriculture 

irrigation. Recent work by McJannet and Desilets (2023), which revisits how to correct 

for incoming neutron intensity, further underscores the need for modular software 

components that can easily integrate emerging theories or formula revisions, thus 

benefiting global research with CRNS.  Beyond software, this thesis underscores the 

value of in situ soil moisture networks, especially in water-stressed regions. 

Bassenbacher et al., (2023) have already stressed the importance of optimizing sensor 

placements in the future, something further validated by Chapters 4 and 5 of this 

thesis. Future work should employ the harmonized, global CRNS dataset to identify 

gaps in current monitoring, integrating concepts, such as soil moisture signatures, to 

pinpoint underrepresented areas (Branger and McMillan 2019, Araki et al., 2021). While 



- 140 -   

global in-situ coverage may be unfeasible, we can leverage the unique strengths of 

both satellite and in-situ data. Future research should continue focus on exactly how 

and why satellite remote sensing soil moisture estimates differ from in-situ sensors 

and seek methods to correct the globally spanning satellite datasets to better match 

in-situ dynamics. Ultimately, a harmonized global CRNS network will present unique 

opportunities for understanding soil moisture's earth system impact, and continued 

efforts to expand, support, and grow such networks are crucial. 
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Co-Authored Works 
The following section briefly outlines the contribution I made to three pieces of 

research of which I was not the main author.  

Appendix A – Detecting Ground Level Enhancements Using Soil Moisture 
Sensor Networks 

Ground Level Enhancements (GLE) are space weather events that have huge negative 

consequences for the aviation industry. Solar activity increases atmospheric radiation 

to levels, leading to higher levels of neutrons in the atmosphere, which cause problems 

with avionic equipment and pose a danger to passengers and crew. Given this, there 

are ongoing efforts to monitor space weather activities such as this, which can lead to 

earlier detection and prevention of the worst impacts of such events. However due to 

the prohibitive cost of such detectors there are relatively few active across the world, 

with none currently operating in the UK. CRNS effectively measure the same thing as 

these larger detectors, albeit on a smaller scale. This leads to an opportunity to explore 

whether this network of CRNS could be used to monitor and detect adverse space 

weather events. The goal of this research was to investigate the feasibility of converting 

the CRNS network across the UK (and the globe) into a space weather monitoring 

network giving it a dual purpose. 

 

Hands, A. D. P., Baird, F., Ryden, K. A., Dyer, C. S., Lei, F., Evans, J. G., Wallbank, J. R., 
Szczykulska, M., RyleE, D., Rosolem, R., Fowler, S., Power, D., and Henley, E. M.: Detec:ng 
Ground Level Enhancements Using Soil Moisture Sensor Networks, Adv Space Res, 19, 
hEps://doi.org/10.1029/2021sw002800, 2021. 

For this work I u:lised the newly developed crspy tool to reprocess sites across the COSMOS 
(USA/Canada) network to update missing correc:ons in the original dataset.  Datasets were 
developed with and without certain correc:ons based on the project needs, demonstra:ng 
the versa:lity of crspy. 
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The key outcome of this research was in demonstrating that the current CRNS network 

can compliment the global neutron monitor network to provide space weather 

detection at finer spatial resolutions. Whilst recent GLEs where shown to be only barely 

noticeable, simulations showed that larger GLEs, that have occurred historically, could 

be detected by the network of CRNS. Given this it is suggested that work starts quickly 

on extending CRNS sensors to sites that could further support such activities, whilst 

also providing valuable soil moisture data concurrently.  

 

 

Figure A1 Renormalized COsmic-ray Soil Moisture Observing System data from seven 
sta:ons during ground level enhancement (GLE72) in September 2017 (lines with 
doEed points). Equivalent renormalized count rates from the Inuvik (INVK) neutron 
monitor sta:on are also ploEed (red line). GLE72 is represented by a dashed ver:cal 
black line.  

Hands et al., (2021) 
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Appendix B - Evaluation of reanalysis soil moisture products using Cosmic 
Ray Neutron Sensor observations across the globe. 

Information on soil moisture is critical for hydrological sciences, such as in the 

prediction of drought or flood events. Given this importance there is continued 

emphasis on the expansion of soil moisture monitoring stations across the globe. 

However, it would be impossible to monitor every part of the globe due to the 

prohibitive cost of setting up and maintaining monitoring stations. Given this, there is 

a growing number of reanalysis products that attempt to fill the gaps, spatially and 

temporally, where soil moisture data is missing in historical records. With these 

products research can be conducted across the globe in previously unmonitored 

locations. However, it is important to continue to validate such models against in situ 

sensors to ensure that the estimated values are consistent with more directly measured 

values. The CRNS serves as a great opportunity for such studies due to its field scale, 

root-zone spatial coverage and growing number of sites across the globe. However, a 

lack of harmonization between the networks has limited such studies in the past. Here 

we use globally spanning and harmonized CRNS stations to validate multiple 

reanalysis soil moisture products to test the performance against various metrics.  

 

 

Zheng, Y., Coxon, G., Woods, R., Power, D., Rico-Ramirez, M. A., McJannet, D., Rosolem, R., 
Li, J., and Feng, P.: Evalua:on of reanalysis soil moisture products using Cosmic Ray Neutron 
Sensor observa:ons across the globe, Hydrol. Earth Syst. Sci. Discuss. [preprint], 
hEps://doi.org/10.5194/hess-2023-224, in review, 2023. 

For this project I processed CRNS data using crspy to provide a global harmonized dataset. 
I also provided my experAse on the sensor technology and data structure in discussions on 
how best to approach the analysis in the paper. It is currently under review at the journal 
of Hydrology and Earth System Sciences. 
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One of the key conclusions of this study was that the performance of different 

reanalysis products varied based on different conditions. Figure A2 above shows the 

overall suggestions for which product to choose if a study is interest in a particular 

area of interest. This study paves the way for future research into exactly why different 

products perform well, or not well, under certain conditions, whilst also assisting 

researchers in deciding on a suitable source of data for future studies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2 shows recommenda:ons for 7 different reanalysis products based on their 
performance under various regions, climates, land cover, and topographic slope condi:ons.  

Zheng et al., (2023) 
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Appendix C – COSMIC-SWAMP 
 

The COSMIC-SWAMP project is an ongoing project of which I’ve been a part of. Led 

by Patrick Stowell (University of Durham) and including partners from the UK, 

Germany, and Brazil, the overall goal of this project is to interface newly developed 

CRNS soil moisture sensors into an Internet of Things smart irrigation system (SWAMP) 

for smart irrigation. As part of this project, I have been primarily involved in leading 

the development of a new version of crspy that could tackle real time processing of 

CRNS data and easily fit into an already developed system. To achieve this the crspy 

software was converted into an Application Interface Program (API) and rewritten into 

a Docker container. This allows the server version of crspy (crspy-server) to be easily 

integrated into already established set of software.  

 
 
 
 

Figure A3 shows a schema:c diagram of how the whole COSMIC-SWAMP 
ecosystem will work. Stowell (2021) 
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