
                          Jeen, S., Bewley, T., & Cullen, J. M. (2023). Conservative World
Models. https://doi.org/10.48550/arXiv.2309.15178

Early version, also known as pre-print
License (if available):
CC BY
Link to published version (if available):
10.48550/arXiv.2309.15178

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.48550/arXiv.2309.15178
https://doi.org/10.48550/arXiv.2309.15178
https://research-information.bris.ac.uk/en/publications/b2d401bf-215b-4f66-81bd-6bb1a1e78fbe
https://research-information.bris.ac.uk/en/publications/b2d401bf-215b-4f66-81bd-6bb1a1e78fbe


CONSERVATIVE WORLD MODELS

Scott Jeen
University of Cambridge
srj38@cam.ac.uk

Tom Bewley
University of Bristol
tom.bewley@bristol.ac.uk

Jonathan M. Cullen
University of Cambridge
jmc99@cam.ac.uk

ABSTRACT

Zero-shot reinforcement learning (RL) promises to provide agents that can per-
form any task in an environment after an offline pre-training phase. Forward-
backward (FB) representations represent remarkable progress towards this ideal,
achieving 85% of the performance of task-specific agents in this setting. How-
ever, such performance is contingent on access to large and diverse datasets for
pre-training, which cannot be expected for most real problems. Here, we ex-
plore how FB performance degrades when trained on small datasets that lack
diversity, and mitigate it with conservatism, a well-established feature of per-
formant offline RL algorithms. We evaluate our family of methods across var-
ious datasets, domains and tasks, reaching 150% of vanilla FB performance in
aggregate. Somewhat surprisingly, conservative FB algorithms also outperform
the task-specific baseline, despite lacking access to reward labels and being re-
quired to maintain policies for all tasks. Conservative FB algorithms perform
no worse than FB on full datasets, and so present little downside over their pre-
decessor. Our code is available open-source via https://enjeeneer.io/
projects/conservative-world-models/.

1 INTRODUCTION

Humans construct internal models of the world to solve varied tasks efficiently. Much work has fo-
cused on equipping artificial agents with analogous models (Sutton, 1991; Deisenroth & Rasmussen,
2011; Chua et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019; Schrittwieser et al., 2020;
Hafner et al., 2023), but in most cases these agents have lacked the adaptability of humans. How-
ever, some agents, like those utilising successor features (Barreto et al., 2017; Borsa et al., 2018) and
forward-backward (FB) representations (Touati & Ollivier, 2021; Touati et al., 2022), can solve any
task in an environment with no online planning or learning, and so appear to exhibit the adaptability
we desire. They achieve this by learning a model that predicts the agent’s future state visitations
when attempting to solve unencountered tasks, building a family of policies for these tasks given the
model’s predictions, and then selecting the correct policy when a test task is specified. It is models
that can be used to achieve this generality that we call world models.

Recent attention has been paid to training world models on offline data, a setting known as zero-
shot reinforcement learning (RL) (Kirk et al., 2023). The appeal of zero-shot RL is in providing
agents that can solve any task in an environment without the need for dangerous or expensive online
interaction. In Touati et al. (2022), FB models pre-trained on datasets of reward-free transitions
are able to return policies for unseen tasks in an environment that are 85% as performant as those
returned by offline RL algorithms explicitly trained for each task. FB achieves this with no prior
knowledge of the tasks, zero planning, and no online interaction. FB thus represents remarkable
progress towards the ideal of zero-shot RL.

However, such performance is only achievable if the pre-training dataset is large and diverse. Real
datasets, like those produced by an existing controller or collected by a task-directed agent, are
usually small and lack diversity. Even if we design agents to exhaustively explore environments, as
is done in Unsupervised RL (Jaderberg et al., 2016), they suffer the impracticalities of the online
RL algorithms we are trying to avoid: they act dangerously in safety-critical environments, and data
collection is time-consuming.
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Figure 1: FB’s failure mode on sub-optimal datasets and VC-FB’s resolution.. (Left) Zero-shot RL methods
must train on a dataset which was collected by a behaviour policy optimising against task zcollect, yet generalise
to new tasks zeval. Both tasks have associated optimal value functions Q∗

zcollect and Q∗
zeval for a given marginal

state. (Middle) Forward-backward (FB) representations overestimate the value of actions not in the dataset for
all tasks. (Right) Value-conservative forward-backward (VC-FB) representations suppress the value of actions
not in the dataset for all tasks. Black dots represent state-action samples present in the dataset.

Is it possible to relax the requirement for large and diverse datasets and do zero-shot RL in more re-
alistic data settings? This is the primary question we address in this paper. We begin by establishing
that FB suffers in this regime because it overestimates the value of out-of-distribution state-action
pairs. As a resolution, we propose a fix that leverages ideas from conservatism in offline RL (Ku-
mar et al., 2020) to suppress either the values (VC-FB (Figure 1 (right)) or future state visitation
measures (MC-FB) of out-of-distribution state-action pairs. In experiments across varied domains,
tasks and datasets, we show our proposals outperform vanilla FB by up to 150% in aggregate, and
surpass a task-specific baseline despite lacking access to reward labels a priori. Finally, we establish
that both VC-FB and MC-FB perform no worse than FB on full datasets, and so present little down-
side over their predecessor. We believe the proposals outlined in this work represent a step towards
deploying zero-shot RL methods in the real world.

2 BACKGROUND

Preliminaries. We consider the standard RL setup of a Markov decision process (MDP) (Sutton &
Barto, 2018). We focus on the class of continuous, finite-horizon MDPs, characterised by the tuple
(S,A,R,P, T, γ), where S ∈ Rn and A ∈ Rm are continuous spaces of environment states and
agent actions, P : S × A 7→ ∆(S) is a stochastic state transition function and R : S 7→ R≥0 is
a function mapping states to non-negative rewards (Bellman, 1957). At each timestep t, the agent
observes state st, selects action at according to a policy function π(st), transitions to the next state
st+1 ∼ P(·|st, at), and receives a reward rt+1 = R(st+1). This process repeats until a terminal
timestep t = T . The agent’s task is to learn a policy that maximises the expected discounted sum of
rewards E π,P

∑T−1
t=0 γtR(st+1), where γ ∈ [0, 1] is a discount factor.

Problem formulation. We are interested in pre-training agents to solve any arbitrary task in an
environment, where each task is characterised by a reward functionR. Therefore, instead of solving
one MDP, we wish to solve a set of MDPs, each sharing the same structure bar the reward functions
(Borsa et al., 2018). Touati et al. (2022) call this zero-shot RL, which is equivalent to multi-task
offline RL with no downstream planning allowance (Lazaric, 2012; Levine et al., 2020). During
the pre-training phase, we assume the agent has access to a static dataset of reward-free transitions
D = {(si, ai, si+1)}i∈{1,...,k} generated by an unknown behaviour policy. Once a task is revealed
downstream, the agent must return a good policy for that task with no further planning or learning.

Forward-backward representations. FB representations rely on successor measures, which gener-
alise Dayan (1993)’s successor representations to continuous MDPs (Blier et al., 2021). A successor
measure gives the expected discounted time spent in each subset of future states S+ ⊂ S after
starting in state s0, taking action a0, and following policy π thereafter:

Mπ(s0, a0, S+) :=
∑T−1

t=0 γt Pr(st+1 ∈ S+|(s0, a0), π), ∀ S+ ⊂ S. (1)
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For any reward functionR and policy π, the state-action value (Q) function is the integral ofR with
respect to Mπ:

Qπ
R(s0, a0) :=

∫
s+∈S R(s+)M

π(s0, a0, ds+). (2)

An FB representation approximates the successor measures of optimal policies for an infinite family
of reward functions, and so can be thought of as a universal successor measure. It parameterises
these policies πz by task vectors z ∈ Rd. The representation consists of a forward model F :
S × A × Rd 7→ Rd, which outputs an embedding vector summarising the distribution of future
states for a given state-action pair and policy, and a backward model B : S 7→ Rd, which outputs an
embedding vector summarising the distribution of states visited before a given state. Together, they
form a rank-d approximation to the successor measure for the entire policy family:

Mπz (s0, a0, ds+) ≈ F (s0, a0, z)
⊤B(s+)ρ(ds+), ∀ s+ ∈ S, (3)

where ρ is the state marginal in the training dataset D. Since the successor measure satisfies a
Bellman equation, F and B can be trained to improve the approximation in Equation 3 across a
distribution Z of task vectors via a temporal difference (TD) method (Samuel, 1959; Sutton, 1988):

LFB = E(st,at,st+1,s+)∼D,z∼Z [
(
F (st, at, z)

⊤B(s+)− γF̄ (st+1, πz(st+1), z)
⊤B̄(s+)

)2
− 2F (st, at, z)

⊤B(st+1)], (4)

where s+ is sampled independently from (st, at, st+1) and F̄ and B̄ are lagging target networks.
See Touati et al. (2022) for a full derivation of this loss. By Equation 2, the trained representation
can then be used to approximate the Q function for any πz : z ∼ Z and reward functionR:

Qπz

R (s0, a0) ≈
∫
s+∈S R(s+)F (s0, a0, z)

⊤B(s+)ρ(ds+)

= F (s0, a0, z)
⊤Es+∼ρ[R(s+)B(s+) ].

(5)

Touati et al. (2022) show that if the task vector z and policy πz are defined as follows:

z = Es+∼ρ[R(s+)B(s+) ]; (6)

πz(s) = argmaxaF (s, a, z)⊤z; (7)

and if z lies within the task distribution Z , we can expect πz to be a near-optimal policy forR. The
approximation becomes more exact as the embedding dimensionality d grows. We thereby obtain a
mechanism for zero-shot RL. In practice, given a datasetDlabelled of reward-labelled states distributed
as ρ, we can approximate z ≈ E(s,r)∼Dlabelled [ rB(s) ] by simple averaging. For the special case of a
goal-reaching task with goal sg , the task vector can be defined directly as z = B(sg). In theory, πz

is then given analytically via Equation 7, but continuous action spaces necessitate learning a separate
task-conditioned policy model in an actor-critic formulation (Lillicrap et al., 2016).

3 CONSERVATIVE FORWARD-BACKWARD REPRESENTATIONS

We begin by examining the FB loss (Equation 4) more closely. The TD target includes an action
produced by the current policy at+1 = πz(st+1). Equation 7 shows that this action is the current
best estimate of the optimal action in state s for task z. When training on a finite dataset, this max-
imisation does not constrain the policy to actions observed in the dataset, and so the policy can be-
come biased towards out-of-distribution (OOD) actions thought to be of high value–a well-observed
phenomenon in offline RL (Kumar et al., 2019; 2020). In such instances, the TD targets may be
evaluated at state-action pairs outside the dataset, making them unreliable and causing errors in the
measure and value predictions. Figure 2 shows the overestimation of Q as dataset size and quality
is varied. The smaller and less diverse the dataset, the more Q values tend to be overestimated.

The canonical fix for value overestimation in offline RL is conservative Q-learning (CQL) (Kumar
et al., 2019; 2020). Intuitively, CQL suppresses the values of OOD actions to be below those of
in-distribution actions, and so approximately constrains the agent’s policy to actions observed in the
dataset. To achieve this, a new term is added to the usual Q loss function

LCQL = α ·
(
Es∼D[max

a
Q(s, a)]− E(s,a)∼D[Q(s, a)]

)
+ LQ, (8)

3



Figure 2: FB value overestimation with respect to dataset size n and quality. Log Q values and IQM of
rollout performance on all Point-mass Maze tasks for datasets (a) RND and (b) RANDOM. Q values predicted
during training increase as both the size and “quality” of the dataset decrease. This contradicts the low return of
all resultant policies. Informally, we say the RND dataset is “high” quality, and the RANDOM dataset is “low”
quality–see Appendix A.2 for more details.

where α is a scaling parameter and LQ represents the normal TD loss on Q. This proves to be
a useful inductive bias, mitigating value overestimation and producing state-of-the-art results on
many offline RL benchmark tasks (Fu et al., 2020).

We can replicate a similar inductive bias in the FB context, substituting F (s, a, z)⊤z for Q in Equa-
tion 8 and adding the normal FB loss (Equation 4)

LVC-FB = α ·
(
Es∼D,z∼Z [max

a
F (s, a, z)⊤z]− E(s,a)∼D,z∼Z [F (s, a, z)⊤z]

)
+ LFB. (9)

The key difference between Equations 8 and 9 is that the former suppresses the value of OOD actions
for one task, whereas the latter does so for all tasks in an environment. We discuss the usefulness of
this inductive bias in Section 3.1. We call models learnt with this loss value-conservative forward-
backward representations (VC-FB).

Sampling uniformly from Z in Equation 9 may reduce values for tasks or goals that are never used
in practice. Instead, it may prove better to direct updates towards tasks we are likely to encounter.
To do so, we first recall that the backward embedding of a future state is equivalent to the task vector
for reaching that state, i.e. z+ = B(s+). Substituting this into Equation 9, we obtain a new loss that
penalises OOD actions with respect to reaching some goal state s+

LMC-FB = α ·
(
E(s,s+)∼D,z∼Z [max

a
F (s, a, z)⊤B(s+)]− E(s,a,s+)∼D[F (s, a, z)⊤B(s+)]

)
+ LFB. (10)

Whereas Equation 9 suppresses values of OOD actions for all tasks, Equation 10 suppresses the
expected visitation count to goal state s+ when taking an OOD action, because M(s, a, z, s+) =
F (s, a, z)⊤B(s+). As such, we call this variant a measure-conservative forward-backward repre-
sentation (MC-FB). We note that this variant confines conservative penalties to the part of z-space
occupied by the backward embeddings of s+ ∼ D, which in practice may be far smaller than the
z-space coverage obtained via z ∼ Z . The effectiveness of each bias is explored in Section 4.

Practical implementations of conservative FB representations require two new model components:
a conservative penalty scaling factor α and a way of computing the max operation over a contin-
uous action space. Empirically, we observe fixed values of α leading to fragile performance, so
dynamically tune it at each learning step using Lagrangian dual-gradient descent as per Kumar et al.
(2020). Appendix B.1.4 discusses this procedure in more detail. The max operation is approximated
by computing a log-sum exponential over a finite set of Q values derived from a finite set of action
samples. There are many ways to choose these samples, but again, we follow the recommendations
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Figure 3: Ignoring out-of-distribution actions.. The agents are tasked with learning separate policies for
reaching ⊛ and ⊛. (a) RND dataset with all “left” actions removed; quivers represent the mean action direction
in each state bin. (b) Best FB rollout after 1 million learning steps. (c) Best VC-FB performance after 1 million
learning steps. FB overestimates the value of OOD actions and cannot complete either task; VC-FB synthesises
the requisite information from the dataset and completes both tasks.

of Kumar et al. (2020) and mix actions sampled uniformly from a random policy and the current pol-
icy. Appendix B.1.3 provides full detail. Code snippets demonstrating the required programmatic
changes to vanilla FB implementation are provided in Appendix G. We emphasise these additions
represent only a small increase in the number of lines required to implement FB.

3.1 A DIDACTIC EXAMPLE

To understand situations in which a conservative world model may be useful, we introduce a modi-
fied version of Point-mass Maze from the ExORL benchmark (Yarats et al., 2022). Episodes begin
with a point-mass initialised in the upper left of the maze (⊚), and the agent is tasked with select-
ing x and y tilt directions such that the mass is moved towards one of two goal locations (⊛ and
⊛). The action space is two-dimensional and bounded in [−1, 1]. We take the RND dataset and
remove all “left” actions such that ax ∈ [0, 1] and ay ∈ [−1, 1], creating a dataset that has the nec-
essary information for solving the tasks, but is inexhaustive (Figure 3 (a)). We train FB and VC-FB
on this dataset and plot the highest-reward trajectories–Figure 3 (b) and (c). FB overestimates the
value of OOD actions and cannot complete either task. Conversely, VC-FB synthesises the requisite
information from the dataset and completes both tasks.

The above example is engineered for exposition, but we expect conservatism to be helpful in more
general contexts. Low-value actions for one task can often be low value for other tasks and, impor-
tantly, the more performant the behaviour policy, the less likely such low value actions are to be in
the dataset. Consider the four tasks in the Walker environment: {walk, stand, run, flip}, where
all tasks require the robot to stand from a seated position before exemplifying different behaviours.
If the dataset includes actions that are antithetical to standing, as might be the case if the behaviour
policy used to collect the dataset is highly exploratory, then both FB and VC-FB can observe their
low value across tasks. However, if the dataset does not include such actions, as might be the case
if it was collected via a near-optimal controller that never fails to stand, then FB may overestimate
the value of not standing across tasks, and VC-FB would correctly devalue them. We extend these
observations to more varied environments in the section that follows.

4 EXPERIMENTS

In this section we perform an empirical study to evaluate our proposals. We seek answers to three
questions: (Q1) Can our proposals from Section 3 improve FB performance on small and/or low-
quality datasets? (Q2) How does the performance of VC-FB and MC-FB vary with respect to task
type and dataset diversity? (Q3) Do we sacrifice performance on full datasets for performance on
small and/or low-quality datasets?
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4.1 SETUP

We respond to these questions using the ExORL benchmark, which provides datasets collected by
unsupervised exploratory algorithms on the DeepMind Control Suite (Yarats et al., 2022; Tassa et al.,
2018). We select three of the same domains as Touati & Ollivier (2021): Walker, Quadruped and
Point-mass Maze, but substitute Jaco for Cheetah. This provides two locomotion domains and two
goal-reaching domains. Within each domain, we evaluate on all tasks provided by the DeepMind
Control Suite for a total of 17 tasks across four domains. Full details are provided in Appendix A.1.

We pre-train on three datasets of varying quality. Although there is no unambiguous metric for
quantifying dataset quality, we use the reported performance of offline TD3 on Point-mass Maze
for each dataset as a proxy. We choose datasets collected via Random Network Distillation (RND)
(Burda et al., 2018), Diversity is All You Need (DIAYN) (Eysenbach et al., 2018), and RANDOM
policies, where agents trained on RND are the most performant, on DIAYN are median performers,
and on RANDOM are the least performant. As well as selecting for quality, we also select for
size. The ExORL datasets have up to 10 million transitions per domain. We uniformly sub-sample
100,000 transitions from these to create datasets that may be considered more realistically sized for
real-world applications. More details on the datasets are provided in Appendix A.2, which includes
a visualisation of the state coverage for each dataset on Point-mass Maze (Figure 6).

4.2 BASELINES

We use FB as described in Touati et al. (2022) as our sole zero-shot RL baseline. Though other
methods exist, we believe the performance gap they report is sufficient that we can rule out any other
methods as state-of-the-art. As single-task RL baselines, we use CQL and offline TD3 trained on the
same datasets relabelled with task rewards. CQL is representative of what a conservative algorithm
can achieve when optimising for one task in a domain rather than all tasks. Offline TD3 exhibits the
best aggregate single-task performance on the ExORL benchmark, so it should be indicative of the
maximum performance we could expect to extract from a dataset. Full implementation details and
hyperparameters are provided in Appendix B.2 and B.3.

We evaluate the performance of VC-FB, MC-FB and our baselines across five random seeds. To mit-
igate the well-established pitfalls of stochastic RL algorithm evaluation, we employ the best practice
recommendations of Agarwal et al. (2021) when reporting observed performance. Concretely, we
run each algorithm for 1 million learning steps, evaluating performance at checkpoints of 20,000
steps. At each checkpoint, we perform 10 rollouts and record the interquartile mean performance
across each task. We then calculate the interquartile mean of performance across seeds for each
checkpoint to create the learning curves reported in Appendix F. Results are reported with 95% con-
fidence intervals obtained via stratified bootstrapping (Efron, 1992). Full implementation details are
provided in Appendix B.1.

4.3 RESULTS

Q1. We report the aggregate performance of all FB algorithms and CQL in Figure 4. Both MC-FB
and VC-FB stochastically dominate FB, achieving 150% and 137% its performance respectively.
MC-FB and VC-FB outperform our single-task baseline in expectation, reaching 111% and 120% of
CQL performance respectively despite not having access to task-specific reward labels and needing
to fit policies for all tasks. This is a surprising result, and to the best of our knowledge, the first time
a multi-task offline agent has been shown to outperform a single-task analogue. CQL outperforms
offline TD3 in aggregate, so we drop offline TD3 from the core analysis, but report its full results
in Appendix C alongside all other methods. We note FB achieves 80% of single-task offline TD3,
which roughly aligns with the 85% performance on the full datasets reported by Touati et al. (2022).
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Figure 4: Aggregate zero-shot performance. (Left): IQM of task scores across datasets and domains, nor-
malised against the performance of CQL, our baseline. (Right) Performance profiles showing the distribution
of scores across all tasks and domains. Both conservative FB variants stochastically dominate vanilla FB. The
black dashed line represents the IQM of CQL performance across all datasets, domains, tasks and seeds.

Q2. We decompose the methods’ performance with respect to domain and dataset diversity in Figure
5. The largest gap in performance between the conservative FB variants and FB is on RND, the
highest-quality dataset. VC-FB and MC-FB reach 253% and 184% of FB performance respectively,
and outperform CQL on three of the four domains. On DIAYN, the conservative variants outperform
all methods and reach 135% of CQL’s score. On the RANDOM dataset, all methods perform similarly
poorly, except for CQL on Jaco, which significantly outperforms all methods. However, in general,
these results suggest the RANDOM dataset is not informative enough to extract valuable policies.
There appears to be little correlation between the type of domain (Appendix A.1) and the score
achieved by any method.

Walker Maze Quadruped Jaco

Zero-shot Performance (abs.)
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Figure 5: Performance by dataset and domain. IQM scores across tasks and seeds with 95% confidence
intervals. In general, the conservative FB variants perform better as dataset quality improves.
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Q3. We report the performance of all FB methods across all domains when trained on the full RND
dataset in Table 1. Both conservative FB variants maintain (and slightly exceed) the performance
of vanilla FB in expectation and exhibit identical aggregate performance. These results suggest that
performance on large, diverse datasets does not suffer as a consequence of the design decisions made
to improve performance on our small datasets that lack diversity. Therefore, we can safely adopt
conservatism into FB without worrying about performance trade-offs.

Table 1: Performance on full RND dataset. Aggregated IQM scores for all tasks with 95% confidence inter-
vals, averaged across three seeds. Both VC-FB and MC-FB maintain the performance of FB.

Domain Task FB VC-FB MC-FB
Walker all tasks 639 (616–661) 659 (647–670) 651 (632–671)
Quadruped all tasks 656 (638–674) 579 (522–635) 635 (628–642)
Maze all tasks 219 (86–353) 287 (117–457) 261 (159–363)
Jaco all tasks 39 (29–50) 33 (24–42) 34 (18–51)
All all tasks 361 381 381

5 DISCUSSION AND LIMITATIONS

Performance discrepancy between conservative variants. VC-FB outperforms MC-FB in aggre-
gate, but not in every constituent domain, which raises the question of when one variant should be
selected over the other. Suppose the tasks in our domain of interest are distributed uniformly in z-
space. In that case, we should expect VC-FB to outperform MC-FB as its conservative updates will
match the underlying task distribution. Equally, if the tasks are clustered around state embeddings
in z-space, then we should expect MC-FB to outperform VC-FB. In our experiments, we assumed
the locomotion tasks would be distributed near-uniformly in z-space, and the goal-reaching tasks
would be clustered around the goal state embeddings, thus implying better VC-FB performance on
locomotion tasks and better MC-FB performance on goal-reaching tasks. There is little evidence
to support this hypothesis. It seems intuiting the distribution of tasks in z-space a priori, and thus
selecting the correct model, is non-trivial and requires careful further investigation. If progress can
be made here, then Z could be tuned to better match the underlying task distribution of the do-
main, conservative updates could be made with respect to this improved Z , and performance of all
methods may improve.

Computational expense of conservative variants. The max value estimator used by the conser-
vative FB variants performs log-sum-exponentials and concatenations across large tensors, both of
which are expensive operations. We find that these operations, which are the primary contributors to
the additional run-time, increase the training duration by approximately 3× over vanilla FB. An FB
training run takes approximately 4 hours on an A100 GPU, whereas the conservative FB variants
take approximately 12 hours. It seems highly likely that more elegant implementations exist that
would improve training efficiency. We leave such an exploration for future work.

Learning instability. We report the learning curves for all algorithms across domains, datasets,
and tasks in Appendix F. We note many instances of instability which would require practitioners
to invoke early stopping. However, both CQL and offline TD3, our task-specific baselines, exhibit
similar instability, so we do not consider this behaviour to be an inherent flaw of any method, but
rather an indication of the difficulty of learning representations from sub-optimal data. Future work
that stabilises FB learning dynamics could boost performance and simplify their deployment by
negating the need for early stopping.

We provide detail of negative results in Appendix D to help inform future research.

6 RELATED WORK

Conservatism in offline RL. The need for conservatism in offline RL was first highlighted by
Fujimoto et al. (2019) in which they propose batch-constrained Q-learning (BCQ), a method for
aligning the distributions of agent and behaviour policies, as a remedy. Instead of operating on
policies, Kumar et al. (2020)’s CQL operates on values, suppressing the value of OOD actions
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to be lower than in-distribution actions. More recently, Lyu et al. (2022) provided an improved
lower bound on the performance of CQL with mildly conservative Q-learning (MCQ) which is
less conservative on OOD actions close to the dataset that are often higher value than vanilla CQL
predicts. They prove that MCQ induces policies that are at least as performant as the behaviour
policy. We note that these methods could be directly ported into our proposal, which may improve
performance further.

The most similar works to ours are Kidambi et al. (2020) and Yu et al. (2020); both are model-based
offline RL methods that employ conservatism in the context of a dynamics model. Kidambi et al.
(2020) suppress the reward of predicted rollouts using a binary operator that determines whether
the rollout is within dataset support, and Yu et al. (2020) suppress rewards in proportion to the
uncertainty of rollouts as predicted by their dynamics model. Both are analogous to our OOD value
suppression in VC-FB, but are limited to the single-task setting and require a planning algorithm to
optimise the policy at test time. To our knowledge, the only work that studies zero-shot RL with sub-
optimal data is Kumar et al. (2022)’s work on scaling CQL. In multi-task Atari, they train one base
network on a large, diverse dataset of sub-optimal trajectories, then optimise separate actor heads
for each Atari task. They show that, provided a sufficiently large dataset, high parameter count CQL
networks can outperform the behaviour policy that created the dataset. However, the generality of
this approach is limited by the need for a separate head per task, meaning we need to enumerate the
tasks we wish to solve a priori. The parameterisation by task vectors z means that FB (and hence,
our approach) automatically learns policies for all tasks without such enumeration.

World models. The canonical multi-task model is Schaul et al. (2015)’s universal value function
approximator (UVFA), which conditions state-action value predictions on tasks and can be used by
a planning algorithm to return a task-conditioned policy. The planning requirement is removed by
Barreto et al. (2017)’s successor features, enabling policies to be returned from UVFA-style models
using only rudimentary matrix operations. These works laid the foundations for universal successor
features (Borsa et al., 2018) and FB representations (Touati & Ollivier, 2021; Touati et al., 2022)
that can return policies for any task in an environment instantly after a pre-training phase. Sekar
et al. (2020)’s Plan2Explore showed agents can synthesise policies zero-shot that are comparable
with those obtained via single-task when trained solely inside a world model. Ghosh et al. (2023)’s
intention-conditioned value functions can be thought of as FB representations without actions, and
so predict how states evolve with respect to a task, i.e. (s, z) ⇝ s+ rather than (s, a, z) ⇝ s+.
This is helpful as it allows representations to be learnt from data without action or reward labels,
increasing the scope of datasets on which RL algorithms can be trained. To our knowledge, no prior
work has acknowledged the deficiencies of any of these models with sub-optimal datasets, and no
work has attempted to augment these models with conservatism.

7 CONCLUSION

In this paper, we explored training agents to perform zero-shot reinforcement learning (RL) with
sub-optimal data. We established that the existing state-of-the-art method, FB representations, suf-
fer in this regime because they overestimate the value of out-of-distribution state-action values. As
a resolution, we proposed a family of conservative FB algorithms that suppress either the values
(VC-FB) or measures (MC-FB) of out-of-distribution state-action pairs. In experiments across var-
ious domains, tasks and datasets, we showed our proposals outperform vanilla FB by up to 150%
in aggregate and surpass our task-specific baseline despite lacking access to reward labels a priori.
In addition to improving performance when trained on sub-optimal datasets, we showed that per-
formance on large, diverse datasets does not suffer as a consequence of our design decisions. Our
proposals are a step towards the use of zero-shot RL methods in the real world.
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APPENDICES

A EXPERIMENTAL DETAILS

A.1 DOMAINS

We consider two locomotion and two goal-directed domains from the ExORL benchmark (Yarats
et al., 2022) which is built atop the DeepMind Control Suite (Tassa et al., 2018). Environments are
visualised here: https://www.youtube.com/watch?v=rAai4QzcYbs. The domains are
summarised in Table 2.

Walker. A two-legged robot required to perform locomotion starting from bent-kneed position. The
state and action spaces are 24 and 6-dimensional respectively, consisting of joint torques, velocities
and positions. ExORL provides four tasks stand, walk, run and flip. The reward function
for stand motivates straightened legs and an upright torse; walk and run are supersets of stand
including reward for small and large degrees of forward velocity; and flip motivates angular
velocity of the torso after standing. Rewards are dense.

Quadruped. A four-legged robot required to perform locomotion inside a 3D maze. The state
and action spaces are 78 and 12-dimensional respectively, consisting of joint torques, velocities
and positions. ExORL provides five tasks stand, roll, roll fast, jump and escape.
The reward function for stand motivates a minimum torse height and straightened legs; roll and
roll fast require the robot to flip from a position on its back with varying speed; jump adds a
term motivating vertical displacement to stand; and escape requires the agent to escape from a 3D
maze. Rewards are dense.

Point-mass Maze. A 2D maze with four rooms where the task is to move a point-mass to one of the
rooms. The state and action spaces are 4 and 2-dimensional respectively; the state space consists of
x, y positions and velocities of the mass, the action space is the x, y tilt angle. ExORL provides four
reaching tasks top left, top right, bottom left and bottom right. The mass is
always initialised in the top left and the reward is proportional to the distance from the goal, though
is sparse i.e. it only registers once the agent is reasonably close to the goal.

Jaco. A 3D robotic arm tasked with reaching an object. The state and action spaces are 55 and 6-
dimensional respectively and consist of joint torques, velocities and positions. ExORL provides four
reaching tasks top left, top right, bottom left and bottom right. The reward
is proportional to the distance from the goal object, though is sparse i.e. it only registers once the
agent is reasonably close to the goal object.

Table 2: Experimental domain summary. Dimensionality refers to the relative size of state and actions
spaces. Type is the task categorisation, either locomotion (satisfy a prescribed behaviour until the episode
ends) or goal-reaching (achieve a specific task to terminate the episode). Reward is the frequency with which
non-zero rewards are provided, where dense refers to non-zero rewards at every timestep and sparse refers to
non-zero rewards only at positions close to the goal. Green and red colours reflect the relative difficulty of these
settings.

Domain Dimensionality Type Reward
Walker Low Locomotion Dense
Quadruped High Locomotion Dense
Point-mass Maze Low Goal-reaching Sparse
Jaco High Goal-reaching Sparse

A.2 DATASETS

We train on 100,000 transitions uniformly sampled from three datasets on the ExORL benchmark
collected by different unsupervised agents: RANDOM, DIAYN, and RND. The state coverage on
Point-mass maze is depicted in Figure 6. Though harder to visualise, we found that state marginals
on higher-dimensional tasks (e.g. Walker) showed a similar diversity in state coverage.

RND. An agent whose exploration is directed by the predicted error in its ensemble of dynamics
models. Informally, we say RND datasets exhibit high state diversity.
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DIAYN. An agent that attempts to sequentially learn a set of skills. Informally, we say DIAYN
datasets exhibit medium state diversity.

RANDOM. A agent that selects actions uniformly at random from the action space. Informally, we
say RANDOM datasets exhibit low state diversity.

Figure 6: Point-mass maze state coverage by dataset. (left) RANDOM; (middle) DIAYN; (right) RND.

B IMPLEMENTATIONS

Here we detail implementations for all methods discussed in this paper. The code required to re-
produce our experiments is provided open-source at: https://github.com/enjeeneer/
conservative-world-models.

B.1 FORWARD-BACKWARD REPRESENTATIONS

B.1.1 ARCHITECTURE

The forward-backward architecture described below follows the original implementation by Touati
et al. (2022) exactly, other than the batch size which we reduce from 1024 to 512. We did this to
reduce the computational expense of each run without limiting performance. The hyperparameter
study in Appendix J of Touati et al. (2022) shows this choice is unlikely to affect FB performance.
We summarise their implementation here for the reader’s benefit. Hyperparameters are reported in
Table 3.

Forward Representation F (s, a, z). The input to the forward representation F is always prepro-
cessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1

F and P 2
F .

P 1
F and P 2

F are feedforward MLPs that embed their inputs into a 512-dimensional space. These
embeddings are concatenated and passed through a third feedforward MLP F which outputs a d-
dimensional vector, where d is our final latent dimension.

Backward Representation B(s). The backward representation B is a feedforward MLP that takes
a state as input and outputs an L2-normalised, d-dimensional latent embedding.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly pre-
processed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors P 1

π
and P 2

π . P 1
π and P 2

π are feedforward MLPs that embed their inputs into a 512-dimensional space.
These embeddings are concatenated and passed through a third feedforward MLP which outputs a
a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the
last layer to normalise their scale. As per Fujimoto et al. (2019)’s recommendations, the policy is
smoothed by adding Gaussian noise σ to the actions during training.

Misc. Layer normalisation (Ba et al., 2016) and Tanh activations are used in the first layer of all
MLPs to standardise the inputs.

B.1.2 z SAMPLING

FB representations require a method for sampling the task vector z at each learning step. Touati
et al. (2022) employ a mix of two methods, which we replicate:
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Table 3: (VC/MC) -FB Hyperparameters. The additional hyperparameters for Conservative FB representa-

tions are highlighted in blue .

Hyperparameter Value
Latent dimension d 50 (100 for maze)
F hidden layers 2
F hidden dimension 1024
B hidden layers 3
B hidden dimension 256
PF hidden layers 2
PF hidden dimension 1024
Pπ hidden layers 2
Pπ hidden dimension 1024
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam
Learning rate 0.0001
Discount γ 0.98 (0.99 for maze)
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 100,000
z mixing ratio 0.5
Conservative budget τ 50
OOD action samples per policy N 3

1. Uniform sampling of z in the hypersphere of radius
√
d ∈ Rd,

2. Biased sampling of z by passing states s ∼ D through the backward representation z =
B(s).

We sample z 50:50 from these methods at each learning step.

B.1.3 MAXIMUM VALUE APPROXIMATOR

The conservative variants of FB require a method of estimating maxa Q(s, a) which is intractable
for continuous MDP. We follow Kumar et al. (2020)’s approach for convenience, though other op-
tions are available. We sample across the action-space and compute the log-sum-exponential of
their associated Q values to estimate the maximum Q value. Kumar et al. (2020) combine actions
sampled uniformly at random, actions from the current policy at the current timestep, and actions
from the current policy at the following timestep. For VC-FB, the log-sum-exponential is computed
as follows

log
∑
a

expF (st, at, z)
⊤z = log(

1

3

∑
a

exp(F (st, at, z)
⊤z) +

1

3

∑
a

exp(F (st, at, z)
⊤z)

+
1

3

∑
a

exp(exp(F (st, at, z)
⊤z))),

= log(
1

3
Eat∼Unif(A)

[
exp(F (st, at, z)

⊤z)

Unif(A)

]
+

1

3
Eat∼π(at|st)

[
exp(F (st, at, z

⊤z)

π(at|st)

]
1

3
Eat+1∼π(at+1|st+1)

[
exp(F (st, at+1, z)

⊤z)

π(at+1|st+1)

]
),

= log(
1

3N

N∑
ai∼Unif(A)

[
exp(F (st, ai, z)

⊤z)

Unif(A)

]
+

1

6N

2N∑
ai∼π(at|st)

[
exp(F (st, ai, z

⊤z)

π(ai|st)

]
1

3N

N∑
ai∼π(at+1|st+1)

[
exp(F (st, ai, z)

⊤z)

π(ai|st+1)

]
),

(11)
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with N a hyperparameter defining the number of actions to sample across the action-space. Note:
we sample twice as many actions from the current timestep/policy than from the uniform policy,
or from the next timestep. In Appendix E, Figure 11 we show how the performance of VC-FB
varies with the number of action samples. In general, performance improves with the number of
action samples, but we limit N = 3 to limit computational burden. The formulation for MC-FB is
identical other than each value F (s, a, z)T z being replaced with measures F (s, a, z)TB(s+).

B.1.4 DYNAMICALLY TUNING α

A critical hyperparameter is α which weights the conservative penalty with respect to other losses
during each update. We initially trialled constant values of α, but found performance to be fragile to
this selection, and lacking robustness across environments. Instead, we follow Kumar et al. (2020)
once again, and instantiate their algorithm for dynamically tuning α, which they call Lagrangian
dual gradient-descent on α. We introduce a conservative budget parameterised by τ , and set α with
respect to this budget:

min
FB

max
α≥0

α·
(
Es∼D,z∼Z [max

a
F (s, a, z)⊤z]− E(s,a)∼D,z∼Z [F (s, a, z)⊤z]− τ

)
+L(F,B). (12)

Intuitively, this implies that if the scale of overestimation ≤ τ then α is set close to 0, and the
conservative penalty does not affect the updates. If the scale of overestimation ≥ τ then α is set
proportionally to this gap, and thus the conservative penalty is proportional to the degree of overes-
timation above τ . As above, for the MC-FB variant values F (s, a, z)⊤z are replaced with measures
F (s, a, z)⊤B(s+).

B.1.5 ALGORITHM

We summarise the end-to-end implementation of VC-FB as pseudo-code in Algorithm 1. MC-
FB representations are trained identically other than at line 10 where the conservative penalty is
computed for M instead of Q, and in line 12 where Ms are lower bounded via Equation 10.

Algorithm 1 Pre-training value-conservative forward-backward representations

Require: D: dataset of trajectories
FθF , BθB , π: randomly initialised networks
N , Z , ν, b: learning steps, z-sampling distribution, polyak momentum, batch size

1: for learning step n = 1...N do
2: {(si, ai, si+1)} ∼ Di∈|b| ◁ Sample mini-batch of transitions
3: {zi}i∈|b| ∼ Z ◁ Sample zs (Appendix B.1.2)
4:
5: // FB Update
6: {ai+1} ∼ π(si+1, zi) ◁ Sample batch of actions at next states from policy
7: Update FB given {(si, ai, si+1, ai+1, zi)} ◁ Equation 4
8:
9: // Conservative Update

10: Qmax(si, ai) ≈ log
∑

a expF (si, ai, zi)
T zi ◁ Compute conservative penalty (Equation 11)

11: Compute α given Qmax via Lagrangian dual gradient-descent ◁ Equation 12
12: Lower bound Q ◁ Equation 9
13:
14: // Actor Update
15: {ai} ∼ π(si, zi) ◁ Sample actions from policy
16: Update actor to maximise E[F (si, ai, zi)

⊤zi] ◁ Standard actor-critic formulation

17:
18: // Update target networks via polyak averaging
19: θ−F ← νθ−F + (1− ν)θF ◁ Forward target network
20: θ−B ← νθ−B + (1− ν)θB ◁ Backward target network
21: end for
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B.2 CQL

B.2.1 ARCHITECTURE

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark.
CQL inherits all functionality from a base soft actor-critic agent (Haarnoja et al., 2018), but adds a
conservative penalty to the critic updates (Equation 8). Hyperparameters are reported in Table 4.

Critic(s). CQL employs double Q networks, where the target network is updated with Polyak av-
eraging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an 2a-
dimensional vector, where a is the action-space dimensionality. The actor predicts the mean and
standard deviation of a Gaussian distribution for each action dimension; during training a value is
sampled at random, during evaluation the mean is used.

B.3 TD3

B.3.1 ARCHITECTURE

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark.
Hyperparameters are reported in Table 4.

Critic(s). TD3 employs double Q networks, where the target network is updated with Polyak aver-
aging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an a-
dimensional vector, where a is the action-space dimensionality. The policy is smoothed by adding
Gaussian noise σ to the actions during training.

Misc. As is usual with TD3, layer normalisation (Ba et al., 2016) is applied to the inputs of all
networks.

Table 4: Offline RL baseline algorithms hyperparameters.

Hyperparameter CQL TD3
Critic hidden layers 2 2
Critic hidden dimension 1024 1024
Actor hidden layers 2 2
Actor hidden dimension 1024 1024
Learning steps 1,000,000 1,000,000
Batch size 1024 1024
Optimiser Adam Adam
Learning rate 0.0001 0.0001
Discount γ 0.98 (0.99 for maze) 0.98 (0.99 for maze)
Activations ReLU ReLU
Target network Polyak smoothing coefficient 0.01 0.01
Sampled Actions Number 3 -
α 0.01 -
Lagrange False -
Std. deviation for policy smoothing σ - 0.2
Truncation level for policy smoothing - 0.3
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C FULL RESULTS

Table 5: Full experimental results. For each dataset-domain pair, we report the score at the step for which
the all-task IQM is maximised when averaging across 5 seeds, and the constituent task scores at that step.
Bracketed numbers represent the 95% confidence interval obtained by a stratified bootstrap.

TD3 CQL FB VC-FB MC-FB
Dataset Domain Task

RND-100k

walker

walk 210 (205–231) 138 (128–140) 184 (108–274) 446 (435–460) 247 (137–318)
stand 362 (335–379) 386 (374–391) 558 (500–637) 624 (603–639) 480 (401–517)
run 84 (78–90) 71 (63–75) 101 (88–144) 179 (159–194) 106 (72–145)
flip 162 (148–171) 153 (130–172) 163 (90–203) 325 (294–350) 164 (120–198)
all tasks 189 (177–200) 142 (135–149) 266 (233–283) 396 (381–407) 252 (188–288)

quadruped

stand 119 (9–342) 167 (73–266) 134 (91–188) 331 (199–405) 171 (71–369)
roll fast 63 (4–180) 93 (18–219) 83 (57–127) 141 (87–191) 81 (21–194)
roll 96 (8–272) 251 (126–330) 139 (68–234) 141 (98–212) 132 (40–251)
jump 85 (7–255) 128 (65–223) 121 (79–193) 159 (105–212) 97 (37–191)
escape 3 (0–10) 3 (2–4) 7 (3–12) 8 (3–15) 5 (1–12)
all tasks 81 (6–230) 129 (70–207) 93 (69–137) 168 (104–201) 104 (38–212)

point-mass maze

reach top right 457 (0–733) 433 (275–558) 0 (0–26) 0 (0–203) 99 (9–377)
reach top left 921 (895–938) 561 (493–717) 384 (0–724) 662 (218–903) 723 (363–895)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 85 (22–295) 253 (102–451) 0 (0–0) 479 (70–748) 384 (0–776)
all tasks 345 (171–405) 299 (262–364) 102 (0–181) 323 (177–412) 270 (154–459)

jaco

reach top right 0 (0–0) 37 (21–53) 0 (0–3) 1 (0–4) 17 (8–29)
reach top left 0 (0–0) 21 (12–35) 2 (1–4) 2 (0–3) 9 (1–21)
reach bottom right 0 (0–0) 37 (21–53) 0 (0–6) 5 (2–21) 16 (6–25)
reach bottom left 0 (0–0) 20 (17–28) 7 (3–15) 4 (1–21) 11 (1–45)
all tasks 0 (0–0) 31 (25–36) 4 (1–6) 7 (3–12) 17 (7–26)

all domains all tasks 135 136 97 245 178

DIAYN-100k

walker

walk 150 (132–167) 147 (118–201) 251 (158–315) 262 (141–370) 261 (175–351)
stand 263 (235–306) 406 (365–455) 498 (381–652) 455 (401–492) 423 (375–595)
run 46 (44–48) 38 (33–43) 98 (79–114) 83 (75–94) 81 (71–108)
flip 163 (152–174) 149 (116–182) 193 (136–212) 229 (195–249) 183 (150–239)
all tasks 154 (142–176) 147 (134–172) 274 (214–301) 252 (195–291) 265 (195–322)

quadruped

stand 849 (737–893) 299 (139–405) 459 (397–530) 430 (394–482) 458 (396–513)
roll fast 447 (358–500) 164 (75–195) 288 (256–328) 260 (236–282) 293 (276–299)
roll 709 (619–800) 264 (128–369) 460 (409–492) 415 (392–439) 456 (407–494)
jump 410 (368–518) 196 (97–280) 363 (318–419) 358 (324–400) 373 (341–403)
escape 23 (15–31) 6 (3–10) 45 (35–58) 32 (27–43) 42 (37–50)
all tasks 487 (440–528) 208 (98–282) 322 (285–364) 296 (272–327) 331 (302–342)

point-mass maze

reach top right 796 (655–800) 760 (489–784) 0 (0–0) 0 (0–0) 27 (0–86)
reach top left 943 (942–946) 943 (941–949) 576 (76–876) 911 (615–927) 853 (572–932)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 799 (538–808) 0 (0–0) 0 (0–1) 0 (0–0) 0 (0–0)
all tasks 798 (598–803) 380 (244–392) 144 (19–219) 227 (153–231) 213 (153–241)

jaco

reach top right 0 (0–0) 17 (10–31) 2 (0–9) 6 (2–11) 9 (5–17)
reach top left 0 (0–0) 10 (4–18) 2 (0–5) 7 (0–14) 0 (0–0)
reach bottom right 0 (0–0) 17 (10–31) 4 (2–14) 6 (2–14) 12 (2–40)
reach bottom left 0 (0–0) 2 (0–13) 10 (5–20) 5 (1–9) 10 (5–18)
all tasks 0 (0–0) 15 (9–21) 8 (5–9) 8 (5–10) 11 (4–16)

all domains all tasks 320 177 209 239 239

RANDOM-100k

walker

walk 132 (105–156) 126 (113–140) 76 (50–121) 123 (84–140) 119 (59–211)
stand 295 (251–328) 246 (194–287) 238 (201–279) 223 (206–244) 210 (187–239)
run 58 (39–65) 31 (23–49) 38 (32–48) 40 (37–46) 32 (27–38)
flip 72 (45–88) 115 (97–128) 47 (40–60) 63 (41–99) 44 (38–55)
all tasks 105 (88–111) 119 (108–131) 102 (91–119) 113 (98–125) 108 (78–127)

quadruped

stand 264 (46–532) 186 (125–296) 278 (154–493) 269 (48–618) 172 (68–284)
roll fast 151 (32–283) 161 (70–223) 96 (17–195) 43 (17–132) 78 (43–129)
roll 260 (41–449) 326 (215–434) 105 (53–188) 130 (74–185) 178 (101–402)
jump 189 (31–359) 213 (93–294) 75 (30–155) 78 (23–226) 147 (44–261)
escape 4 (1–9) 6 (2–9) 5 (2–9) 2 (1–11) 6 (1–14)
all tasks 191 (33–361) 187 (96–271) 149 (93–159) 125 (49–218) 126 (106–165)

point-mass maze

reach top right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach top left 1 (0–3) 0 (0–0) 18 (0–55) 26 (5–106) 10 (0–33)
reach bottom right 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
reach bottom left 0 (0–4) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
all tasks 0 (0–0) 0 (0–0) 4 (0–13) 6 (1–26) 2 (0–8)

jaco

reach top right 34 (15–78) 53 (45–60) 4 (0–19) 0 (0–8) 4 (0–13)
reach top left 3 (1–6) 52 (24–88) 0 (0–0) 13 (7–28) 23 (9–53)
reach bottom right 34 (15–78) 53 (45–60) 0 (0–4) 1 (1–1) 1 (0–6)
reach bottom left 3 (1–4) 32 (19–41) 2 (1–12) 0 (0–0) 0 (0–9)
all tasks 20 (10–42) 45 (39–58) 4 (0–9) 5 (2–10) 6 (4–18)

all domains all tasks 62 82 53 59 56
ALL all domains all tasks 123 128 99 148 136
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D NEGATIVE RESULTS

In this section we provide detail on experiments we attempted, but which did not provide results
significant enough to be included in the main body.

D.1 DOWNSTREAM FINETUNING

If we relax the zero-shot requirement, could pre-trained conservative FB representations be finetuned
on new tasks or domains? Base CQL models have been finetuned effectively on unseen tasks using
both online and offline data (Kumar et al., 2022), and we had hoped to replicate similar results with
VC-FB and MC-FB. We ran offline and online finetuning experiments and provide details on their
setups and results below. All experiments were conducted on the Walker domain.

Offline finetuning. We considered a setting where models are trained on a low quality dataset
initially, before a high quality dataset becomes available downstream. We used models trained on
the RANDOM-100k dataset and finetuned them on both the full RND and RND-100k datasets, with
models trained from scratch used as our baseline. Finetuning involved the usual training protocol as
described in Algorithm 1, but we limited the number of learning steps to 250k.

We found that though performance improved during finetuning, it improved no quicker than the
models trained from scratch. This held for both the full RND and RND-100k datasets. We conclude
that the parameter initialisation delivered after training on a low quality dataset does not obviously
expedite learning when high quality data becomes available.

Figure 7: Learning curves for methods finetuned on the full RND dataset. Solid lines represent base models
trained on RANDOM-100k, then finetuned; dashed lines represent models trained from scratch. The finetuned
models perform no better than models trained from scratch after 250k learning steps, suggesting model re-
training is currently a better strategy than offline finetuning.

Online finetuning. We considered the online finetuning setup where a trained representation is
deployed in the target environment, required to complete a specified task, and allowed to collect
a replay buffer of reward-labelled online experience. We followed a standard online RL protocol
where a batch of transitions was sampled from the online replay buffer after each environment step
for use in updating the model’s parameters. We experimented with fixing z to the target task during
in the actor updates (Line 16, Algorithm 1), but found it caused a quick, irrecoverable collapse in
actor performance. This suggested uniform samples from Z provide a form of regularisation. We
granted the agents 500k steps of interaction for online finetuning.

We found that performance never improved beyond the pre-trained (init) performance during fine-
tuning. We speculated that this was similar to the well-documented failure mode of online finetuning
of CQL (Nakamoto et al., 2023), namely taking sub-optimal actions in the real env, observing unex-
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pectedly high reward, and updating their policy toward these sub-optimal actions. But we note that
FB representations do not update w.r.t observed rewards, and so conclude this cannot be the failure
mode. Instead it seems likely that FB algorithms cannot use the narrow, unexploratory experience
obtained from attempting to perform a specific task to improve model performance.

Figure 8: Learning curves for online finetuning. The performance at the end of pre-training (init performance)
is plotted as a dashed line for each method. None of the methods consistently outperform their init performance
after 250k online transitions.

We believe resolving issues associated with finetuning conservative FB algorithms once the zero-
shot requirement is relaxed is an important future direction and hope that details of our negative
attempts to this end help facilitate future research.
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E HYPERPARAMETER SENSITIVITY

Figure 9: VC-FB sensitivity to conservative budget τ on Walker and Point-mass Maze. Top: RND dataset;
bottom: RANDOM dataset. Maximum IQM return across the training run averaged over 3 random seeds
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Figure 10: MC-FB sensitivity to conservative budget τ on Walker and Point-mass Maze. Top: RND
dataset; bottom: RANDOM dataset. Maximum IQM return across the training run averaged over 3 random
seeds

Figure 11: MC-FB sensitivity to action samples per policy N on Walker and Point-mass Maze. Top: RND
dataset; bottom: RANDOM dataset. Maximum IQM return across the training run averaged over 3 random
seeds.
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F LEARNING CURVES

Figure 12: Learning Curves (1/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts
and record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 13: Learning Curves (2/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts
and record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 14: Learning Curves (3/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts
and record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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G CODE SNIPPETS

G.1 UPDATE STEP

1 def update_fb(
2 self,
3 observations: torch.Tensor,
4 actions: torch.Tensor,
5 next_observations: torch.Tensor,
6 discounts: torch.Tensor,
7 zs: torch.Tensor,
8 step: int,
9 ) -> Dict[str, float]:

10 """
11 Calculates the loss for the forward-backward representation network.
12 Loss contains two components:
13 1. Forward-backward representation (core) loss: a Bellman update
14 on the successor measure (equation 24, Appendix B)
15 2. Conservative loss: penalises out-of-distribution actions
16 Args:
17 observations: observation tensor of shape [batch_size, observation_length]
18 actions: action tensor of shape [batch_size, action_length]
19 next_observations: next observation tensor of
20 shape [batch_size, observation_length]
21 discounts: discount tensor of shape [batch_size, 1]
22 zs: policy tensor of shape [batch_size, z_dimension]
23 step: current training step
24 Returns:
25 metrics: dictionary of metrics for logging
26 """
27
28 # update step common to all FB models
29 (
30 core_loss,
31 core_metrics,
32 F1,
33 F2,
34 B_next,
35 M1_next,
36 M2_next,
37 _,
38 _,
39 actor_std_dev,
40 ) = self._update_fb_inner(
41 observations=observations,
42 actions=actions,
43 next_observations=next_observations,
44 discounts=discounts,
45 zs=zs,
46 step=step,
47 )
48
49 # calculate MC or VC penalty
50 if self.mcfb:
51 (
52 conservative_penalty,
53 conservative_metrics,
54 ) = self._measure_conservative_penalty(
55 observations=observations,
56 next_observations=next_observations,
57 zs=zs,
58 actor_std_dev=actor_std_dev,
59 F1=F1,
60 F2=F2,
61 B_next=B_next,
62 M1_next=M1_next,
63 M2_next=M2_next,
64 )
65 # VCFB
66 else:
67 (
68 conservative_penalty,
69 conservative_metrics,
70 ) = self._value_conservative_penalty(
71 observations=observations,
72 next_observations=next_observations,
73 zs=zs,
74 actor_std_dev=actor_std_dev,
75 F1=F1,
76 F2=F2,
77 )
78
79 # tune alpha from conservative penalty
80 alpha, alpha_metrics = self._tune_alpha(
81 conservative_penalty=conservative_penalty
82 )
83 conservative_loss = alpha * conservative_penalty
84
85 total_loss = core_loss + conservative_loss
86
87 # step optimiser
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88 self.FB_optimiser.zero_grad(set_to_none=True)
89 total_loss.backward()
90 for param in self.FB.parameters():
91 if param.grad is not None:
92 param.grad.data.clamp_(-1, 1)
93 self.FB_optimiser.step()
94
95 return metrics

G.2 VALUE-CONSERVATIVE PENALTY

1 def _value_conservative_penalty(
2 self,
3 observations: torch.Tensor,
4 next_observations: torch.Tensor,
5 zs: torch.Tensor,
6 actor_std_dev: torch.Tensor,
7 F1: torch.Tensor,
8 F2: torch.Tensor,
9 ) -> torch.Tensor:

10 """
11 Calculates the value conservative penalty for FB.
12 Args:
13 observations: observation tensor of shape [batch_size, observation_length]
14 next_observations: next observation tensor of shape
15 [batch_size, observation_length]
16 zs: task tensor of shape [batch_size, z_dimension]
17 actor_std_dev: standard deviation of the actor
18 F1: forward embedding no. 1
19 F2: forward embedding no. 2
20 Returns:
21 conservative_penalty: the value conservative penalty
22 """
23
24 with torch.no_grad():
25 # repeat observations, next_observations, zs, and Bs
26 # we fold the action sample dimension into the batch dimension
27 # to allow the tensors to be passed through F and B; we then
28 # reshape the output back to maintain the action sample dimension
29 repeated_observations_ood = observations.repeat(
30 self.ood_action_samples, 1, 1
31 ).reshape(self.ood_action_samples * self.batch_size, -1)
32 repeated_zs_ood = zs.repeat(self.ood_action_samples, 1, 1).reshape(
33 self.ood_action_samples * self.batch_size, -1
34 )
35 ood_actions = torch.empty(
36 size=(self.ood_action_samples * self.batch_size, self.action_length),
37 device=self._device,
38 ).uniform_(-1, 1)
39
40 repeated_observations_actor = observations.repeat(
41 self.actor_action_samples, 1, 1
42 ).reshape(self.actor_action_samples * self.batch_size, -1)
43 repeated_next_observations_actor = next_observations.repeat(
44 self.actor_action_samples, 1, 1
45 ).reshape(self.actor_action_samples * self.batch_size, -1)
46 repeated_zs_actor = zs.repeat(self.actor_action_samples, 1, 1).reshape(
47 self.actor_action_samples * self.batch_size, -1
48 )
49 actor_current_actions, _ = self.actor(
50 repeated_observations_actor,
51 repeated_zs_actor,
52 std=actor_std_dev,
53 sample=True,
54 ) # [actor_action_samples * batch_size, action_length]
55
56 actor_next_actions, _ = self.actor(
57 repeated_next_observations_actor,
58 z=repeated_zs_actor,
59 std=actor_std_dev,
60 sample=True,
61 ) # [actor_action_samples * batch_size, action_length]
62
63 # get Fs
64 ood_F1, ood_F2 = self.FB.forward_representation(
65 repeated_observations_ood, ood_actions, repeated_zs_ood
66 ) # [ood_action_samples * batch_size, latent_dim]
67
68 actor_current_F1, actor_current_F2 = self.FB.forward_representation(
69 repeated_observations_actor, actor_current_actions, repeated_zs_actor
70 ) # [actor_action_samples * batch_size, latent_dim]
71 actor_next_F1, actor_next_F2 = self.FB.forward_representation(
72 repeated_next_observations_actor, actor_next_actions, repeated_zs_actor
73 ) # [actor_action_samples * batch_size, latent_dim]
74 repeated_F1, repeated_F2 = F1.repeat(
75 self.actor_action_samples, 1, 1
76 ).reshape(self.actor_action_samples * self.batch_size, -1), F2.repeat(
77 self.actor_action_samples, 1, 1
78 ).reshape(
79 self.actor_action_samples * self.batch_size, -1
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80 )
81 cat_F1 = torch.cat(
82 [
83 ood_F1,
84 actor_current_F1,
85 actor_next_F1,
86 repeated_F1,
87 ],
88 dim=0,
89 )
90 cat_F2 = torch.cat(
91 [
92 ood_F2,
93 actor_current_F2,
94 actor_next_F2,
95 repeated_F2,
96 ],
97 dim=0,
98 )
99

100 repeated_zs = zs.repeat(self.total_action_samples, 1, 1).reshape(
101 self.total_action_samples * self.batch_size, -1
102 )
103
104 # convert to Qs
105 cql_cat_Q1 = torch.einsum("sd, sd -> s", cat_F1, repeated_zs).reshape(
106 self.total_action_samples, self.batch_size, -1
107 )
108 cql_cat_Q2 = torch.einsum("sd, sd -> s", cat_F2, repeated_zs).reshape(
109 self.total_action_samples, self.batch_size, -1
110 )
111
112 cql_logsumexp = (
113 torch.logsumexp(cql_cat_Q1, dim=0).mean()
114 + torch.logsumexp(cql_cat_Q2, dim=0).mean()
115 )
116
117 # get existing Qs
118 Q1, Q2 = [torch.einsum("sd, sd -> s", F, zs) for F in [F1, F2]]
119
120 conservative_penalty = cql_logsumexp - (Q1 + Q2).mean()
121
122 return conservative_penalty

G.3 MEASURE-CONSERVATIVE PENALTY

1 def _measure_conservative_penalty(
2 self,
3 observations: torch.Tensor,
4 next_observations: torch.Tensor,
5 zs: torch.Tensor,
6 actor_std_dev: torch.Tensor,
7 F1: torch.Tensor,
8 F2: torch.Tensor,
9 B_next: torch.Tensor,

10 M1_next: torch.Tensor,
11 M2_next: torch.Tensor,
12 ) -> torch.Tensor:
13 """
14 Calculates the measure conservative penalty.
15 Args:
16 observations: observation tensor of shape [batch_size, observation_length]
17 next_observations: next observation tensor of shape
18 [batch_size, observation_length]
19 zs: task tensor of shape [batch_size, z_dimension]
20 actor_std_dev: standard deviation of the actor
21 F1: forward embedding no. 1
22 F2: forward embedding no. 2
23 B_next: backward embedding
24 M1_next: successor measure no. 1
25 M2_next: successor measure no. 2
26 Returns:
27 conservative_penalty: the measure conservative penalty
28 """
29
30 with torch.no_grad():
31 # repeat observations, next_observations, zs, and Bs
32 # we fold the action sample dimension into the batch dimension
33 # to allow the tensors to be passed through F and B; we then
34 # reshape the output back to maintain the action sample dimension
35 repeated_observations_ood = observations.repeat(
36 self.ood_action_samples, 1, 1
37 ).reshape(self.ood_action_samples * self.batch_size, -1)
38 repeated_zs_ood = zs.repeat(self.ood_action_samples, 1, 1).reshape(
39 self.ood_action_samples * self.batch_size, -1
40 )
41 ood_actions = torch.empty(
42 size=(self.ood_action_samples * self.batch_size, self.action_length),
43 device=self._device,
44 ).uniform_(-1, 1)
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45
46 repeated_observations_actor = observations.repeat(
47 self.actor_action_samples, 1, 1
48 ).reshape(self.actor_action_samples * self.batch_size, -1)
49 repeated_next_observations_actor = next_observations.repeat(
50 self.actor_action_samples, 1, 1
51 ).reshape(self.actor_action_samples * self.batch_size, -1)
52 repeated_zs_actor = zs.repeat(self.actor_action_samples, 1, 1).reshape(
53 self.actor_action_samples * self.batch_size, -1
54 )
55 actor_current_actions, _ = self.actor(
56 repeated_observations_actor,
57 repeated_zs_actor,
58 std=actor_std_dev,
59 sample=True,
60 ) # [actor_action_samples * batch_size, action_length]
61
62 actor_next_actions, _ = self.actor(
63 repeated_next_observations_actor,
64 z=repeated_zs_actor,
65 std=actor_std_dev,
66 sample=True,
67 ) # [actor_action_samples * batch_size, action_length]
68
69 # get Fs
70 ood_F1, ood_F2 = self.FB.forward_representation(
71 repeated_observations_ood, ood_actions, repeated_zs_ood
72 ) # [ood_action_samples * batch_size, latent_dim]
73
74 actor_current_F1, actor_current_F2 = self.FB.forward_representation(
75 repeated_observations_actor, actor_current_actions, repeated_zs_actor
76 ) # [actor_action_samples * batch_size, latent_dim]
77 actor_next_F1, actor_next_F2 = self.FB.forward_representation(
78 repeated_next_observations_actor, actor_next_actions, repeated_zs_actor
79 ) # [actor_action_samples * batch_size, latent_dim]
80 repeated_F1, repeated_F2 = F1.repeat(
81 self.actor_action_samples, 1, 1
82 ).reshape(self.actor_action_samples * self.batch_size, -1), F2.repeat(
83 self.actor_action_samples, 1, 1
84 ).reshape(
85 self.actor_action_samples * self.batch_size, -1
86 )
87 cat_F1 = torch.cat(
88 [
89 ood_F1,
90 actor_current_F1,
91 actor_next_F1,
92 repeated_F1,
93 ],
94 dim=0,
95 )
96 cat_F2 = torch.cat(
97 [
98 ood_F2,
99 actor_current_F2,

100 actor_next_F2,
101 repeated_F2,
102 ],
103 dim=0,
104 )
105
106 cml_cat_M1 = torch.einsum("sd, td -> st", cat_F1, B_next).reshape(
107 self.total_action_samples, self.batch_size, -1
108 )
109 cml_cat_M2 = torch.einsum("sd, td -> st", cat_F2, B_next).reshape(
110 self.total_action_samples, self.batch_size, -1
111 )
112
113 cml_logsumexp = (
114 torch.logsumexp(cml_cat_M1, dim=0).mean()
115 + torch.logsumexp(cml_cat_M2, dim=0).mean()
116 )
117
118 conservative_penalty = cml_logsumexp - (M1_next + M2_next).mean()
119
120 return conservative_penalty
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G.4 α TUNING

1 def _tune_alpha(
2 self,
3 conservative_penalty: torch.Tensor,
4 ) -> torch.Tensor:
5 """
6 Tunes the conservative penalty weight (alpha) w.r.t. target penalty.
7 Discussed in Appendix B.1.4
8 Args:
9 conservative_penalty: the current conservative penalty

10 Returns:
11 alpha: the updated alpha
12 """
13
14 # alpha auto-tuning
15 alpha = torch.clamp(self.critic_log_alpha.exp(), min=0.0, max=1e6)
16 alpha_loss = (
17 -0.5 * alpha * (conservative_penalty - self.target_conservative_penalty)
18 )
19
20 self.critic_alpha_optimiser.zero_grad()
21 alpha_loss.backward(retain_graph=True)
22 self.critic_alpha_optimiser.step()
23 alpha = torch.clamp(self.critic_log_alpha.exp(), min=0.0, max=1e6).detach()
24
25 return alpha
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