
 Bewley, T., Lawry, J., Richards, A. G., Craddock, R., & Henderson, I.
(2022). Reward Learning with Trees: Methods and Evaluation.
https://doi.org/10.48550/arXiv.2210.01007 Focus to learn more

Early version, also known as pre-print

Link to published version (if available):
10.48550/arXiv.2210.01007 Focus to learn more

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.48550/arXiv.2210.01007 Focus to learn more
https://doi.org/10.48550/arXiv.2210.01007 Focus to learn more
https://research-information.bris.ac.uk/en/publications/79b5e98b-f5cd-48f5-b67e-7f94a07fd4f6
https://research-information.bris.ac.uk/en/publications/79b5e98b-f5cd-48f5-b67e-7f94a07fd4f6

Preprint. Under review.

REWARD LEARNING WITH TREES:
METHODS AND EVALUATION

Tom Bewley1, Jonathan Lawry1, Arthur Richards1, Rachel Craddock2 & Ian Henderson2

1University of Bristol and 2Thales, United Kingdom
{firstname.surname}@{1bristol.ac.uk,1uk.thalesgroup.com}

ABSTRACT

Recent efforts to learn reward functions from human feedback have tended to use
deep neural networks, whose lack of transparency hampers our ability to explain
agent behaviour or verify alignment. We explore the merits of learning intrinsi-
cally interpretable tree models instead. We develop a recently proposed method
for learning reward trees from preference labels, and show it to be broadly com-
petitive with neural networks on challenging high-dimensional tasks, with good
robustness to limited or corrupted data. Having found that reward tree learning
can be done effectively in complex settings, we then consider why it should be
used, demonstrating that the interpretable reward structure gives significant scope
for traceability, verification and explanation.

1 INTRODUCTION

For a reinforcement learning (RL) agent to reliably achieve a goal or desired behaviour, this objective
must be encoded as a reward function. However, manual reward design is widely understood to be
challenging, with risks of under-, over-, and mis-specification leading to undesirable, unsafe and
variable outcomes (Pan et al., 2022). For this reason, there has been growing interest in enabling RL
agents to learn reward functions from normative feedback provided by humans (Leike et al., 2018).
These efforts have proven successful from a technical perspective, but an oft-unquestioned aspect of
the approach creates a roadblock to practical applications: reward learning typically uses black-box
neural networks (NNs), which resist human scrutiny and interpretation.
For advocates of explainable AI (XAI), this is a problematic state of affairs. The XAI community is
vocal about the safety and accountability risks of opaque learning algorithms (Rudin, 2019), but an
inability to interpret even the objective that an agent is optimising places us in yet murkier epistemic
territory, in which an understanding of the causal origins of learnt behaviour, and their alignment
with human preferences, becomes virtually unattainable. Black-box reward learning could also be
seen as a missed scientific opportunity. A learnt reward function is a tantalising object of study
from an XAI perspective, due to its triple status as (1) an explanatory model of revealed human
preferences, (2) a normative model of agent behaviour, and (3) a causal link between the two.
The approach proposed by Bewley & Lecue (2022) provides a promising way forward. Here, human
preference labels over pairs of agent behaviours are used to learn tree-structured reward functions
(reward trees), which are hierarchies of local rules that admit visual and textual representation and
can be leveraged to monitor and debug agent learning. In this paper, we adapt and extend the
method (including by integrating it with model-based RL agents), and compare it to NN-based re-
ward learning in a challenging aircraft handling domain. We find it to be broadly competitive on both
quantitative metrics and qualitative assessments, with our new modification to tree growth yielding
significant improvements. The resultant trees are small enough to be globally interpretable (≈ 20
leaves), and we demonstrate how they can be analysed, verified, and used to generate explanations.
The primary contribution of this paper is positive evidence that reward learning can be performed
effectively using interpretable models such as trees, even in complex, high-dimensional continuous
environments. Our secondary contributions are improvements to the originally-proposed learning
algorithm, as well as metrics and methods for reward evaluation and interpretability that may be
useful to others working in what remains a somewhat preparadigmatic field. After reviewing the
necessary background and related work in Sections 2 and 3, we present our refinement of reward
tree learning in Section 4, and describe how we deploy it online with a model-based agent in Section
5. Section 6 contains our experiments and results, which consider both quantitative and qualitative
aspects of learning performance, and an illustrative analysis of learnt tree structures. Finally, Section
7 concludes and discusses avenues for future work.

1

ar
X

iv
:2

21
0.

01
00

7v
1

 [
cs

.L
G

]
 3

 O
ct

 2
02

2

Preprint. Under review.

2 BACKGROUND AND RELATED WORK

Markov Decision Processes (MDPs) In this canonical formulation of sequential decision making,
the state of a system at discrete time t, st ∈ S , and the action of an agent, at ∈ A, condition the
successor state st+1 according to a dynamics function D : S × A → ∆(S) (we use ∆(·) to denote
the set of all probability distributions over a set). A reward function R : S × A × S → R then
outputs a scalar reward rt+1 given st, at and st+1. RL algorithms use exploratory data collection to
learn action-selection policies π : S → ∆(A), with the goal of maximising the expected discounted
sum of future reward ED,π

∑∞
h=0 γ

hrt+h+1, γ ∈ [0, 1].

Reward Learning In the usual MDP framing, R is an immutable property of the environment,
which belies the practical fact that AI objectives originate in the uncertain goals and preferences of
fallible humans (Russell, 2019). Reward learning (or modelling) (Leike et al., 2018) replaces hand-
specified reward functions with models learnt from humans via revealed preference cues such as
demonstrations (Ng et al., 2000), scalar evaluations (Knox & Stone, 2008), approval labels (Griffith
et al., 2013), corrections (Bajcsy et al., 2017), and preference rankings (Christiano et al., 2017).

XAI for RL (XRL) Surveys of XAI for RL (Puiutta & Veith, 2020; Heuillet et al., 2021) tax-
onomise a diverse and expanding range of methods. A key division is between intrinsic approaches,
which imbue agents with structure such as object-oriented representations (Zhu et al., 2018) or
symbolic policy primitives (Verma et al., 2018), and post hoc (often visual) analyses of learnt rep-
resentations (Zahavy et al., 2016), including computing feature importance/saliency (Huber et al.,
2019). Spatiotemporal scope varies from the local explanation of single actions (van der Waa et al.,
2018) to the global summary of entire policies by showing representative trajectories (Amir & Amir,
2018) or critical states (Huang et al., 2018). While most post hoc methods focus on single policies,
some provide insight into the dynamics of agent learning (Dao et al., 2018; Bewley et al., 2022).

Explainable Reward Functions At the intersection of reward learning and XRL lie efforts to im-
prove human understanding of reward functions and their effects on action selection. While this
area is “less developed” than other XRL sub-fields (Glanois et al., 2021), a distinction has again
emerged between intrinsic approaches which create rewards that decompose into semantic com-
ponents (Juozapaitis et al., 2019) or optimise for sparsity (Devidze et al., 2021), and post hoc ap-
proaches which apply feature importance analysis (Russell & Santos, 2019), counterfactual probing
(Michaud et al., 2020), or simplifying transformations (Jenner & Gleave, 2022). Sanneman & Shah
(2022) use a set of human-oriented metrics to compare the efficacy of reward explanation techniques.

Trees for Explainable Agency Prior uses of tree models in XRL again divide into intrinsic meth-
ods, in which an agent’s policy (Silva et al., 2020), value function (Liu et al., 2018; Roth et al., 2019)
or dynamics model (Jiang et al., 2019) is implemented as a tree, and post hoc tree approximations of
an existing agent’s (usually NN) policy (Bastani et al., 2018; Coppens et al., 2019) or transitions in
the environment (Bewley et al., 2022). Related to our focus on human-centric learning: Cobo et al.
(2012) learn tree-structured MDP abstractions from human demonstrations; Lafond et al. (2013) use
tree models to model expert judgements in a naval air defence setting; and Tambwekar et al. (2021)
warm-start RL by converting a natural language specification into a differentiable tree policy.

3 PREFERENCE-BASED REWARD LEARNING

We adopt the preference-based approach to reward learning, in which a human is presented with
pairs of agent trajectories (sequences of state, action, next state transitions) and expresses which of
the two they prefer as a solution to a given task of interest. A reward function is then learnt to explain
the pattern of preferences. This approach is popular in the existing literature (Wirth et al., 2016;
Christiano et al., 2017; Lee et al., 2021b) and has a firm psychological basis. Experimental results
indicate that humans find it cognitively easier to make relative (vs. absolute) quality judgements
(Kendall, 1975; Wilde et al., 2020) and exhibit lower variance when doing so (Guo et al., 2018).
This is due in part to the lack of requirement for an absolute scale to be maintained in working
memory, which is liable to induce bias as it shifts over time (Eric et al., 2007).
We formalise a trajectory ξi as a sequence (xi1,..., xiT i), where xit = φ(sit−1, a

i
t−1, s

i
t) ∈ RF repre-

sents a single transition as an F -dimensional feature vector. Given N trajectories, Ξ = {ξi}Ni=1, we
assume the human provides K ≤ N(N − 1)/2 pairwise preference labels, L = {(i, j)}Kk=1, each
of which indicates that the jth trajectory is preferred to the ith (denoted by ξj � ξi). Figure 1 (left)
shows how a preference dataset D = (Ξ,L) can be viewed as a directed graph.

2

Preprint. Under review.

4.1 4.2 4.3 4.4

Figure 1: Left: The input to preference-based reward learning is a directed graph over a trajectory
set Ξ = {ξi}Ni=1, where each edge (i, j) represents a preference ξj � ξi. Each member of Ξ is a
sequence in RF (blue connectors show mapping). Right: The four model induction stages; return
estimation (Section 4.1), leaf-level reward prediction (4.2), tree growth (4.3), and pruning (4.4).

To learn a reward function from D, we must assume a generative model for the preference labels.
Typically, it is assumed that the human produces labels in Boltzmann-rational accordance with the
sum of rewards (or return) output by a latent reward function over the feature space, R : RF → R.
This is formalised by adapting the classic preference model of Bradley & Terry (1952):

P (ξj � ξi|R) =
1

1 + exp(1
β (G(ξi|R)−G(ξj |R)))

, where G(ξi|R) =
∑T i

t=1
R(xit), (1)

and β > 0 is a temperature coefficient. The objective of reward learning is to approximate R within
some learnable function classR. This is often formalised as minimising the negative log-likelihood
(NLL) loss over L. Wirth et al. (2016) also use the discrete 0-1 loss, which considers only the
directions of predicted preferences rather than their strengths. These two losses are defined as:

`NLL(D, R) =
∑

(i,j)∈L

− logP (ξj � ξi|R); `0-1(D, R) =
∑

(i,j)∈L

I[P (ξj � ξi|R) ≤ 0.5]. (2)

4 REWARD TREE INDUCTION

In prior work, the function classR has been that of linear modelsR(x) = w ·x (Sadigh et al., 2017),
which have very limited expressivity, or deep NNs (Christiano et al., 2017), which resist human in-
terpretation. As an intermediate option, Bewley & Lecue (2022) (henceforth BL) propose the reward
tree model. Here, the parameter space consists of node-level splitting rules and reward predictions
for an axis-aligned decision tree, whose leaves induce a hyperrectangular partition of RF . These
parameters are non-differentiable, making end-to-end optimisation of the losses in Equation 2 com-
putationally intractable. BL introduce a bespoke, multi-stage model induction method that greedily
optimises a proxy objective at each stage. The four stages outlined in this section, and depicted in
Figure 1 (right), represent a refinement of this approach with simplified notation.

4.1 TRAJECTORY-LEVEL RETURN ESTIMATION

The stage considers the N trajectories as atomic units, and uses the preference graph to construct a
vector of return estimates g ∈ RN , which should be higher for more commonly preferred trajectories
(blue in Figure 1 (4.1), c.f. red). This is a vanilla preference learning problem of the kind routinely
faced in AI, psychology and economics, and thus admits a standard solution. BL’s original proposal
finds the least squares solution for g under Thurstone’s Case V preference model (Gulliksen, 1956).
For consistency with prior work, we instead minimise the NLL loss under the Bradley-Terry model
(we find it makes little difference to the result). Concretely, the proxy objective for this stage is

argmin
g∈RN

[∑
(i,j)∈L

− log
1

1 + exp(gi − gj)

]
, subject to

{
min(g) = 0

or max(g) = 0
and std(g) = β, (3)

where β is the mean trajectory length in Ξ,
∑N
i=1 T

i/N . The min-or-max constraint ensures that
all return estimates have the same sign (positive or negative), which aids both policy learning and
interpretability (see Appendix A.1). We optimise Equation 3 by unconstrained gradient descent with
the Adam optimiser (Kingma & Ba, 2014), followed by post-normalisation to meet the constraints.

4.2 LEAF-LEVEL REWARD ESTIMATION

The vector g estimates trajectory-level returns, but the aim of reward learning is to decompose these
into sums of rewards for the constituent transitions. BL’s novel contribution is to do this using a tree
model T , consisting of a hierarchy of rules that partition the transition-level feature space RF into
LT hyperrectangular subsets called leaves. Let leafT : RF → {1..LT } be a function that maps a
feature vector x ∈ RF to the leaf in which it resides by propagating it through the rule hierarchy. The

3

Preprint. Under review.

predicted reward for any x lying in leaf l is defined as an average over g, weighted by the proportion
of timesteps that each trajectory in Ξ spends in l:

RT (x) = rleaf(x), where rl =

N∑
i=1

gi

T i

∑T i

t=1 I[leafT (xit) = l]∑N
i=1

∑T i

t=1 I[leafT (xit) = l]
, ∀ 1 ≤ l ≤ LT . (4)

In essence, the effect of Equation 4 is to predict higher reward in leaves that contain more timesteps
from trajectories with high g values. While ostensibly naı̈ve, BL find that this time-weighted credit
assignment is more robust than several more sophisticated alternatives. It reduces the number of free
parameters in subsequent induction stages, permits fast implementation, and provides an intuitive
interpretation of predicted reward that is traceable back to the contribution of each ξi ∈ Ξ. Figure 1
(4.2) shows how timesteps from ξ1, ξ3 and ξ4 contribute to the reward prediction for one leaf.

4.3 TREE GROWTH

Recall that the objective of preference-based reward learning is to find a reward model that optimises
a measure of fidelity toD, such as the losses in Equation 2. When the model is a tree, this is achieved
by the discrete operations of growth (adding partitioning rules) and pruning (removing rules). Given
a tree T , a new rule has the effect of splitting the lth leaf with a hyperplane at a location c ∈ Cf along
the f th feature dimension (where Cf ⊂ R is a set of candidate split thresholds, e.g. all midpoints
between unique values in Ξ). Let T + [lfc] denote the newly-enlarged tree. Splitting recursively
creates an increasingly fine partition of RF . Figure 1 (4.3) shows an example with 23 leaves.
A central issue is the criterion for selecting the next rule to add. BL use the proxy objective of
minimising the local variance of reward predictions, which is exactly the CART algorithm (Breiman
et al., 2017). While very fast, this criterion is only loosely aligned with fidelity toD. We additionally
consider the more direct criterion of greedily maximising the immediate reduction in `0-1:

argmax1≤l≤LT , 1≤f≤F, c∈Cf
[
`0-1(D, RT)− `0-1(D, RT+[lfc])

]
. (5)

In Section 6.1, we show that switching to this criterion consistently improves performance on most
quantitative measures (we also tried a criterion based on `NLL, but found it to be far more computa-
tionally costly and prone to overfitting). Recursive splitting stops when either no reduction in `0-1
can be achieved by any single split, or a tree size limit LT = Lmax is reached.

4.4 TREE PRUNING

Growth is followed by a pruning sweep which reduces the size of the tree by rule removal. Such
reduction is beneficial for both performance (Tien et al. (2022) find that increased model capacity
raises the risk of causal confusion in preference-based reward learning) and human comprehension
(in the language of Jenner & Gleave (2022), it is a form of “processing for interpretability”). Given
a tree T , one pruning operation has the effect of merging two leaves into one by removing the rule at
the common parent node. Let T denote the sequence of nested subtrees induced by pruning the tree
recursively back to its root, at each step removing the rule that minimises the next subtree’s `0-1. We
select the T ∈ T that minimises `0-1, additionally regularised by a term that encourages small trees:
argminT ∈T[`0-1(D, RT) + αLT], where α ≥ 0. Note that even with α = 0 pruning may still yield
a reduced tree, as unlike in traditional decision tree induction, the effect of individual rules on `0-1
depends on the order in which they are added or removed. In the example in Figure 1 (4.4), pruning
yields a final tree with 3 leaves, for which indicative leaf-level reward predictions are shown.

5 ONLINE LEARNING SETUP

5.1 ITERATED POLICY AND REWARD LEARNING

Sections 3 and 4 do not discuss the origins of the trajectories Ξ, or how reward learning relates to
the downstream objective of learning a policy for the underlying task. Following most recent work
since Christiano et al. (2017), we resolve both questions with an online bootstrapped approach.
Assuming an episodic MDP, the ith episode of policy learning produces a new trajectory ξi to add to
Ξ. We immediately connect ξi to the preference graph by asking the human to compare it to Kbatch
random trajectories from the existing set (while Sadigh et al. (2017) and others have proposed active
querying schemes, that is not our focus here, and this simple strategy performs satisfactorily). We
then update the reward tree on the full preference graph via the four stages given in Section 4. We
find that BL’s original method of starting growth from the current state of the tree causes lock-in to
poor initial solutions, so instead re-grow from scratch on each update. The rule structure nonetheless
tends to stabilise, as the enlarging preference graph becomes increasingly similar for later updates.

4

Preprint. Under review.

For the (i+ 1)th episode, the policy learning agent then attempts to optimise for the newly-updated
reward. By iterating this process up to a total preference budget Kmax and/or episode budget Nmax,
we hope to converge to both a reward tree that reflects the human’s preferences, and an agent policy
that satisfies those preferences. Appendix A.2 contains pseudocode for the online algorithm.

5.2 INTEGRATION WITH MODEL-BASED RL
Reward learning methods are generally agnostic to the structure of the policy learning agent; this
modularity is hailed as an advantage over other human-agent teaching paradigms (Leike et al., 2018).
In line with most recent works, BL use a model-free RL agent, specifically soft actor-critic (SAC)
(Haarnoja et al., 2018). However, other works (Reddy et al., 2020; Rahtz et al., 2022) use model-
based RL (MBRL) agents that leverage learnt dynamics models and planning. MBRL is attractive in
the reward learning context because it disentangles the predictive and normative aspects of decision-
making. Since (assuming no changes to the environment) dynamics remain stationary during online
reward learning, the amount of re-learning required is reduced and along with it, the risk of pitfalls
such as manipulation (Armstrong et al., 2020) and premature convergence. MBRL agents also
provide a richer target for XAI methods due to “the explicit nature of their world knowledge and of
the reasoning performed to take decisions” (Hoffmann & Magazzeni, 2019). In future work, we plan
to explore how this could be synergistic with the adoption of reward trees (see Section 7). Finally,
MBRL can be very data-efficient; we find that switching from SAC to a model-based algorithm
called PETS (Chua et al., 2018) reduces training steps by multiple orders of magnitude, and cuts
wall-clock runtime (see Appendix B). PETS selects actions by decision-time planning through a
learnt dynamics model D′ : S × A → ∆(S) up to a horizon H . In state s, planning searches for a
sequence of H future actions that maximise return under the current reward model:

argmax
(a0,...,aH−1)∈AH

ED′
[∑H−1

h=0
γhRT (φ(sh, ah, sh+1))

]
, where s0 = s, sh+1 ∼ D′(sh, ah). (6)

The first action a = a0 is executed, and then the agent re-plans on the next timestep. In practice, D′
is an ensemble of probabilistic NNs, the expectation over D′ is replaced by a Monte Carlo estimate,
and the optimisation is approximated by the iterative cross-entropy method.

6 EXPERIMENTS AND RESULTS

In this section, we combine quantitative and qualitative evaluations to assess the performance of
reward tree learning, specifically in comparison to the standard approach of using NNs. We also
illustrate how the intrinsic interpretability of reward trees allows us to analyse what they have learnt.
Our experiments consider three episodic tasks in an aircraft handling environment, in which the
agent must manoeuvre an aircraft (the ego jet, EJ) in a desired manner relative to a second reference
jet (RJ) whose motion, if any, is considered part of the environment dynamics. These tasks provide
useful test cases for reward learning because each has a large space of plausible reward functions,
which may reflect the divergent priorities and stylistic preferences of domain experts. Such expert
knowledge is often tacit and difficult to codify by hand (Sternberg & Horvath, 1999), motivating a
data-driven approach. Figure 2 shows a schematic of each task, and Appendix C contains a broader
justification for this experimental domain alongside task and implementation details.

Ego Jet

Reference Jet State = [positions, attitudes,
 velocities, accelerations]

Action = [pitch, roll,
 yaw, thrust]

RJ

EJ

Follow

RJ
EJ

Chase
RJ

EJ

Land

Figure 2: Handling tasks. Follow: turn to fly in formation with RJ on a linear path. Chase: maintain
distance/line of sight to RJ as it turns randomly. Land: approach a runway using RJ as a reference.

In place of costly human-in-the-loop evaluation, our experiments use synthetic oracle preferences
with respect to nominal reward functions of varying complexity, which are given in Appendix C.3.
This approach is popular (Griffith et al., 2013; Christiano et al., 2017; Reddy et al., 2020; Lindner
et al., 2021) as it enables scalable systematic comparison, with the ability to quantify performance
(and in our case, appraise learnt trees) in terms of reconstruction of a known ground truth. However,
emulating a human with an oracle that responds with perfect rationality is unrealistic (Lee et al.,
2021a). For this reason, Section 6.3 examines the performance impacts of noisy and myopic oracles,
and a restricted data budget. Experimental details and hyperparameters are given in Appendix D.

5

Preprint. Under review.

6.1 QUANTITATIVE PERFORMANCE

We evaluate online reward learning with PETS using trees with both `0-1-based and variance-based
split criteria, baselined against the de facto standard of using NNs (see Appendix D.4 for details).
We use Kmax = 1000 preferences over Nmax = 200 online trajectories, and perform 10 repeats. As
a headline statistic, we compute the oracle regret ratio (ORR), which is the drop in median oracle
return of PETS agents deployed using each trained reward model compared with direct access to the
oracle reward, as a fraction of the drop to a random policy (lower is better). Below are the median
(top) and minimum (bottom) ORR values across the 10 repeats for each task-model combination:

Follow Chase Land
NN Tree(0-1) Tree (var) NN Tree (0-1) Tree (var) NN Tree (0-1) Tree (var)
.000 .120 .284 −.030 .040 .126 .014 .050 .062
−.010 .057 .158 −.051 −.011 .065 −.030 .011 .010

We observe that: 1) NN reward learning is strong on all tasks; 2) switching to a reward tree induces
a variable performance hit; 3) `0-1 splitting consistently outperforms the variance-based method; and
4) both NN and tree models sometimes exceed the direct use of the oracle (negative ORR). This has
been observed before (Cao et al., 2021) and may be due to improved shaping in the learnt reward.
Figure 3 expands these results with more metrics, revealing subtler trends not captured by head-
line ORR values. Metrics are plotted as time series over the 200 learning episodes (sliding-window
medians and interquartile ranges across repeats). In the left column (a), the ORR of online trajecto-
ries shows how agent performance converges. For Follow, there is a gap between the models, with
`0-1 splitting clearly aiding performance but still lagging behind the NNs. The learning rates for
Chase and Land are more homogeneous, but the NNs reach somewhat lower asymptotes. For the
reward tree models, (b) shows how the number of leaves changes over time. The variance-based
trees tend to grow rapidly initially before stabilising or shrinking, while the `0-1 trees enlarge more
conservatively, suggesting this method is less liable to overfit to small preference graphs. Trees of
a readily-interpretable size (≈ 20 leaves) are produced for all tasks; it is possible that performance
could be improved by independently tuning the size regulariser α per task. (c) shows `0-1 over time,
which tends to increase as the growing preference graph presents a harder reconstruction problem,
though the shape of all curves suggests convergence (note that random prediction gives `0-1 = 0.5).
For Follow and Land, the trees that directly split on `0-1 actually perform better than the NNs; they
more accurately predict the direction of preferences in the graph. The fact that this does not trans-
late into lower ORR indicates that the problems of learning a good policy and exactly replicating the
preference dataset are not identical, a point made by Lindner et al. (2021). In the final two columns,
we follow Gleave et al. (2021) in performing an unbiased, policy-invariant comparison of the mod-
els by correlating their outputs with the oracle reward functions on common evaluation datasets (see
Appendix D.5 for dataset creation). We compute online correlations with the oracles in terms of
both transition-level rewards (d) and the ordinal ranking of trajectories by return (e), the latter via
the Kendall (1938) τ coefficient. The curves subtly differ, indicating that it is possible to reconstruct
trajectory rankings (and by extension, any pairwise preferences) to a given accuracy with varying
fidelity at the individual reward level. However, the common overall trend is that `0-1-based trees
outperform variance-based ones, with NNs sometimes improving again by a smaller margin, and
sometimes bringing no additional benefit. Moving top-to-bottom down the tasks, the gap between
models reduces from both sides; NN performance worsens while variance-based trees improve.

0
0.

5
1

Fo
llo

w
La

nd
C

ha
se

Online ORRa Rank correlatione
NN

Tree (0-1)
Tree (var)

0
0.

5
1

0
0.

2
0.

4

0-1 lossc

0
0.

05
0.

1
0.

15
0

0.
05

0.
1

0.
15

0
0.

05
0.

1
0.

15

0.
25

0.
5

0.
75

1

0
0.

25
0.

5
0.

75
1

Tree sizeb

10
20

10
20

10
20

0
0.

5
1

0
0.

5
1

0.
2

0.
6

1

0
0.

5
1

Reward correlationd

Figure 3: Time series of metrics for online NN- and tree-based reward learning on all three tasks.

6

Preprint. Under review.

A potentially important factor in these experiments is that the oracle reward for Follow is a sim-
ple linear function, while the other two contain progressively more terms and discontinuities (see
Appendix C.3). A trend suggested by these results is thus that the performance gap between NN
and tree architectures (on both ORR and correlation metrics) reduces as the ground truth reward
becomes more complex and nonlinear. Further experiments would be needed to test this hypothesis.

6.2 VISUAL TRAJECTORY INSPECTION

While useful for benchmarking, quantitative metrics provide little insight into the structure of the
learnt solutions. They would also mostly be undefined when learning from humans since the ground
truth reward is unknown. We therefore complement them with a visual analysis of induced agent
behaviour. Figure 4 plots 500 trajectories of PETS agents using the best repeat by ORR for each
task-model combination, across a range of features as well as time (see Appendix C.2 for feature
definitions). Dashed curves show the trajectory with the highest predicted return according to each
model. We also show trajectories for PETS agents with direct oracle access, and for random policies.
The high-level trend is that all models are far closer to the oracle than random, with few examples
of obviously incorrect behaviour (highlighted in red, due to colouring by ORR). The NNs induce
trajectories that are almost indistinguishable from the oracle, although the `0-1-based reward trees lag
not far behind, with the variance-based trees producing more anomalies. Successes of the `0-1 trees
include the execution of Follow with a single banked turn before straightening up, as shown by the
up error time series (a). Indeed, the trajectories for this model are almost imperceptibly different
from those of the NN, a result which is belied by the mediocre ORR of 0.158. This underlines the
importance of joint quantitative-qualitative evaluation. For Chase (b), the `0-1 tree has learnt to keep
the agent narrowly above the altitude threshold alt < 50, below which the oracle reward is strongly
negative (see Appendix C.3). The threshold is violated in only eight of 500 trajectories (1.6%). For
Land, the `0-1 tree replicates the oracle in producing a gradual reduction in alt (c) while usually
keeping pitch close to 0 (d), although the distribution of roll values is less narrow.
In contrast, the agent using the variance-based tree for Follow sometimes fails to reach the target
position (e; red trajectories), and also does not reliably straighten up to reduce up error (f).
For Chase, the altitude threshold does not appear to have been learnt precisely, and lower-altitude
trajectories often fail to close the distance to RJ (g and h; red trajectories). For Land, the variance-
based tree gives a later and less smooth descent (i), and less consistent pitch control (j), than the NN
or `0-1-based tree, although all models produce a somewhat higher altitude profile than the oracle.

Oracle Tree (var)

Fo
llo

w

0 353-3
1

31

dist

cl
os

in
g

sp
ee

d

1 20

0
up

 e
rr

or

Timestep

C
ha

se
La

nd
50

35
0

al
t

los error

-1
.4

0
1.

55

roll

pi
tc

h

0 200

0
30

al
t

dist hor

ORR
0 1

0

-

1 20

20
15

0

Timestep

di
st

0,0

0,0

Random

e

g

j

h

f
Tree (0-1)

a

b

d
c

Highest return
according
to oracle

NN
Highest return

according
to model

i

Figure 4: Agent trajectories using the best models by ORR, with oracle and random for comparison.

6.3 SENSITIVITY ANALYSIS

It is important to consider how learning performance degrades with reduced or corrupted data. In
Figure 5, we evaluate the effect of varying the number of preferences Kmax (with fixed Nmax = 200)
and trajectories Nmax (with fixed Kmax = 1000) on reward learning with NNs and `0-1-splitting
trees. Following Lee et al. (2021a), we also create more human-like preference data via two modes
of oracle irrationality: preference noise (by using a nonzero Boltzmann temperature β to give a
desired error rate on the coverage datasets) and a myopic recency bias (by exponentially discounting
earlier timesteps when evaluating trajectory returns). We run five repeats for all cases, and report the
medians and interquartile ranges of ORR (lower is better) and rank correlation (higher is better).
Both NN and tree models exhibit good robustness with respect to all four parameters. Although
NNs remain superior in most cases, the gap varies, and is often reduced compared to the base

7

Preprint. Under review.

O
ra

cl
e

m
yo

pi
a

(

)

ChaseFollow

Pr
ef

er
en

ce
bu

dg
et

(

)

T
ra

je
ct

or
y

bu
dg

et
(

)

NN
Tree (0-1)

Land

1000
2000
4000

500
250

200
400
800

100
50

0.98

0.2
0.3
0.4

0

0.95
0.9
0.8

0.1

0.45O
ra

cl
e

er
ro

r
pr

ob
ab

ili
ty

(v
ia

)

1

ORR

0 0.5 1

Rank correlation

0 0.5 1 0 0.5 10 0.5 1 0 0.5 1 0 0.5 1

Average NN-Tree Gap

NN
better

-0.25 0 0.25 -0.25 0 0.25

ORR ORR ORR

Tree
better

Tree
better

NN
better

a
Rank correlation Rank correlation Rank correlation

Figure 5: Comparative sensitivity analysis of reward learning with NNs and trees.

cases (bold labels). The budget sensitivity is low, with little improvement for Kmax > 1000 and
Nmax > 200, and no major drop even with 25% of the data as the base case. For all tasks, the oracle
error probability can increase to around 20% before significant drops in performance are observed.
This is a promising indicator of the transferability of reward tree learning to imperfect human data.
Another general observation is that the trends for trees are somewhat smoother than for NNs, with
fewer sharp jumps and fewer instances of very high spread across the five repeats.
In the right column (a), we aggregate these results by taking the difference between the NN and tree
metrics, and averaging across the three tasks. In all cases aside from rank correlation with β > 0,
the NN-tree performance gap tends to become more favourable to the tree models as the varied
parameter becomes more challenging (top-to-bottom). This sensitivity analysis thus indicates that
trees are at least as robust to difficult learning scenarios as NNs, and may even be slightly more so.

6.4 TREE STRUCTURE ANALYSIS

Thus far we have shown that reward learning with `0-1-based trees can be competitive with NNs,
but not quite as performant overall. We now turn to a concrete advantage which may tip practical
tradeoffs in its favour: the ability to interpret the learnt model, and analyse how its structure arises
from the underlying preference graph. In this section we favour depth over breadth, so focus on the
single best tree by ORR on the Chase task. The analysis in Figure 6 is divided into sections (a – d):
(a) This reward tree has 17 leaves. The oracle reward, printed below, uses four features, all of
which are used in the tree in ways that are broadly aligned (e.g. lower los error leads to leaves
with higher reward). The model has learnt the crucial threshold alt < 50, correctly assigning low
reward when it is crossed. This explains why we observe rare violations of the altitude threshold
in Figure 4. However, it has not learnt the ideal distance to RJ, dist = 20, with 43.3 being the
lowest value used in a rule. This could be because the underlying preference graph lacks sufficient
preferences to make this distinction; adopting an active querying scheme may help to discover such
subtleties efficiently. Other features besides those used by the oracle are present in the tree, indicat-
ing some causal confusion (Tien et al., 2022). This may not necessarily harm agent performance, as
it could provide beneficial shaping (e.g. penalising positive closing speed, which indicates in-
creasing distance to RJ). That may indeed be the case for this model since ORR is actually negative.
(b) We plot the tree’s predicted reward against the oracle reward for all timesteps in the online
trajectories (correlation = 0.903). The predictions for each leaf lie along a horizontal line. Most
leaves, including 1 and 2, are well-aligned on this data because their oracle reward distributions are
tightly concentrated around low/high averages respectively (note that the absolute scale is irrelevant
here). Leaf 16 has a wider oracle reward distribution, with several negative outliers. An optimal tree
would likely split this leaf further, perhaps using the alt < 50 threshold. The one anomaly is leaf
13, which contains just a single timestep from ξ77. This trajectory is the eighth best in the dataset
by oracle return, but this leaf assigns that credit to a state that seemingly does not merit it, as the
distance to RJ is so high (dist > 73). This may be an example of suboptimal tree induction, but
the fact that its origin can be pinpointed precisely is a testament to the value of interpretability.
(c) We leverage the tree structure to produce a human-readable explanation of reward predictions
for a single trajectory, which may be of value to an end user (e.g. a pilot). We consider ξ191, a rare

8

Preprint. Under review.

r=2.48

dist≥43.3?

r=3.12

alt≥50.2?

No

r=2.15

dist≥95.4?

Yes

(1) r=0.937

No

r=3.17

los error≥1.10?

Yes

r=3.22

roll error≥0.847?

No

r=3.04

abs roll≥1.56?

Yes

(2) r=3.35

No

(3) r=3.18

Yes

r=3.14

closing speed≥7.63?

No

(6) r=2.92

Yes

(4) r=3.16

No

(5) r=2.47

Yes

r=2.31

alt≥50.0?

No

r=1.72

closing speed≥8.34?

Yes

(7) r=0.763

No

r=2.34

dist≥73.0?

Yes

r=2.47

abs roll≥0.744?

No

r=2.22

alt error≥2.14?

Yes

r=2.72

dist≥68.7?

No

r=2.37

delta hdg error≥-3.68?

Yes

(8) r=2.78

No

(9) r=2.45

Yes

(10) r=3.20

No

(11) r=2.37

Yes

(12) r=2.76

No

r=2.21

los error≥0.0126?

Yes

(13) r=3.92

No

r=2.21

thrust≥3.54?

Yes

(14) r=1.70

No

(15) r=2.21

Yes

(16) r=1.76

No

(17) r=0.78

Yes

Intermediate reward for
non-leaf node by timestep-

weighted average

Oracle reward:

a

d r=2.48

dist≥43.3?

r=3.12

No

r=2.15

dist≥95.4?

Yes

(1) r=0.937

No

(2) r=3.17

Yes

r=2.31

alt≥50.0?

No

(6) r=1.72

Yes

(3) r=0.763

No

r=2.34

dist≥73.0?

Yes

(4) r=2.47

No

(5) r=2.22

Yes

0 43.3 95.4 150dist

0
35

0
al

t
50

73

alt≥50.2?

Total: 30 timesteps

1

2 4 5 6

3

1

and

Predicted reward
0 4.45 b (13) r = 3.92

(2) r = 3.35

(16) r = 1.76

(1) r = 0.937

, t = 2

(16)
(15)

(11)

(7)1
4

Pr
ed

ic
te

d
re

w
ar

d

Timestep1 20

c

Oracle reward
(rescaled)

-300 -200 -100 0

1
4

Oracle reward

Pr
ed

ic
te

d
re

w
ar

d

T
im

estep

Trajectory return
estimate

0 89

Figure 6: Analysis of a reward tree learnt for the Chase task.

case that violates the altitude threshold. The time series of reward shows that the 20 timesteps are
spent in leaves 16, 15, 11 and 7. Rescaled oracle rewards are overlaid in teal, and show that the
model’s predictions are well-aligned. To the right, we translate this visualisation into a textual form,
similar to a nested program. Read top-to-bottom, the text indicates which rules of the tree are active
at each timestep, and the effect this has on predicted reward. This trajectory starts fairly positively,
with reward gradually increasing over the first 16 timesteps as dist is reduced to between 43.3 and
73, but then falls dramatically when the alt < 50 threshold is crossed. We are unaware of any
method that could extract such a compact explanation of sequential predictions from an NN.
(d) We isolate a subtree, starting at the root node, that splits only on dist and alt. We give a
spatial representation of the subtree, and how it is populated by the 200 online trajectories, using a
2D partition plot analogous to those in Figure 1. Zooming into leaf 1, which covers cases where the
altitude threshold is violated, we see that it contains a total of 30 timesteps across four trajectories.
By Equation 4, the low reward for this leaf results from a weighted average of the return estimates
for these four trajectories, which in turn (by Equation 3) are derived from the preference graph. We
can use this inverse reasoning to ask why this leaf has much lower reward than its sibling (leaf 2 of
the subtree). A proximal explanation comes by filtering the graph for preferences that specifically
compare trajectories that visit those two leaves. 49 such preferences exist, and in all cases, the oracle
prefers the trajectory that does not visit leaf 1. Some of these preferences may be more practically
salient than others. For example, we might highlight trajectories that feature more than once (e.g.
ξ28 is preferred to both ξ18 and ξ48), or cases where trajectories with low overall return estimates
are nonetheless preferred to those in leaf 1 (e.g. ξ43 � ξ21 and ξ56 � ξ47). We believe that much
more could be done to extend this framework for traceable explanation of preference-based reward.

7 CONCLUSION AND FUTURE WORK

Reward learning with trees provides a promising alternative to black-box NNs, and could enable
more trustworthy and verifiable agent alignment. Through oracle experiments on high-dimensional
tasks, we show that reward trees with around 20 leaves can achieve quantitative and qualitative per-
formance close to that of NNs, with a more direct split criterion bringing consistent improvements.
We find evidence that the NN-tree gap reduces as the ground truth reward becomes more nonlinear,
and remains stable or reduces further in the presence of limited or corrupted data. While practical
applications may accept some loss in performance for a gain in interpretability, further algorithmic
improvements should be sought, including to move beyond locally-greedy split criteria. However,
our immediate aim is to develop an end-to-end framework for explainable model-based agents with
preference-based reward trees (roughly: planning can be reframed as comparing alternative paths
through the discrete leaves of the tree). Having established this framework, we then intend to evalu-
ate reward learning and explanation with real human preferences in the aircraft handling domain.

9

Preprint. Under review.

REFERENCES

Dan Amir and Ofra Amir. Highlights: Summarizing agent behavior to people. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1168–1176,
2018.

Stuart Armstrong, Jan Leike, Laurent Orseau, and Shane Legg. Pitfalls of learning a reward
function online. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 1592–1600. International Joint Con-
ferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/221. URL
https://doi.org/10.24963/ijcai.2020/221. Main track.

Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning robot objectives
from physical human interaction. In Conference on Robot Learning, pp. 217–226. PMLR, 2017.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via pol-
icy extraction. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
e6d8545daa42d5ced125a4bf747b3688-Paper.pdf.

Tom Bewley and Freddy Lecue. Interpretable preference-based reinforcement learning with tree-
structured reward functions. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pp. 118–126, 2022.

Tom Bewley, Jonathan Lawry, and Arthur Richards. Summarising and comparing agent dynamics
with contrastive spatiotemporal abstraction. In IJCAI/ECAI Workshop on Explainable Artificial
Intelligence, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and
regression trees. Routledge, 2017.

Zehong Cao, KaiChiu Wong, and Chin-Teng Lin. Weak human preference supervision for deep
reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 32(12):
5369–5378, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in Neural Information
Processing Systems, 31, 2018.

Luis C Cobo, Charles L Isbell Jr, and Andrea L Thomaz. Automatic task decomposition and state
abstraction from demonstration. Georgia Institute of Technology, 2012.

Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, and Ann Nowé. Distilling deep reinforce-
ment learning policies in soft decision trees. In IJCAI/ECAI Workshop on Explainable Artificial
Intelligence, 2019.

Giang Dao, Indrajeet Mishra, and Minwoo Lee. Deep reinforcement learning monitor for snapshot
recording. In 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 591–598. IEEE, 2018.

Jan De Leeuw and Patrick Mair. Multidimensional scaling using majorization: Smacof in r. Journal
of statistical software, 31:1–30, 2009.

Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable reward
design for reinforcement learning agents. Advances in Neural Information Processing Systems,
34:20118–20131, 2021.

10

https://doi.org/10.24963/ijcai.2020/221
https://proceedings.neurips.cc/paper/2018/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf

Preprint. Under review.

Brochu Eric, Nando Freitas, and Abhijeet Ghosh. Active Preference Learning with Discrete Choice
Data. Advances in Neural Information Processing Systems, 20, 2007.

Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu.
A survey on interpretable reinforcement learning. arXiv preprint arXiv:2112.13112, 2021.

Adam Gleave, Michael D Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differ-
ences in reward functions. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=LwEQnp6CYev.

Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and Andrea L Thomaz.
Policy shaping: Integrating human feedback with reinforcement learning. Advances in neural
information processing systems, 26, 2013.

Harold Gulliksen. A least squares solution for paired comparisons with incomplete data. Psychome-
trika, 21(2):125–134, 1956.

Yuan Guo, Peng Tian, Jayashree Kalpathy-Cramer, Susan Ostmo, J Peter Campbell, Michael F
Chiang, Deniz Erdogmus, Jennifer G Dy, and Stratis Ioannidis. Experimental design under the
bradley-terry model. In IJCAI, pp. 2198–2204, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. PMLR, 2018.

Alexandre Heuillet, Fabien Couthouis, and Natalia Dı́az-Rodrı́guez. Explainability in deep rein-
forcement learning. Knowledge-Based Systems, 214:106685, 2021.

Jörg Hoffmann and Daniele Magazzeni. Explainable ai planning (xaip): overview and the case of
contrastive explanation. Reasoning Web. Explainable Artificial Intelligence, pp. 277–282, 2019.

Sandy H Huang, Kush Bhatia, Pieter Abbeel, and Anca D Dragan. Establishing appropriate trust
via critical states. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3929–3936. IEEE, 2018.

Tobias Huber, Dominik Schiller, and Elisabeth André. Enhancing explainability of deep reinforce-
ment learning through selective layer-wise relevance propagation. In Joint German/Austrian Con-
ference on Artificial Intelligence (Künstliche Intelligenz), pp. 188–202. Springer, 2019.

Erik Jenner and Adam Gleave. Preprocessing reward functions for interpretability. arXiv preprint
arXiv:2203.13553, 2022.

Wei-Cheng Jiang, Kao-Shing Hwang, and Jin-Ling Lin. An experience replay method based on tree
structure for reinforcement learning. IEEE Transactions on Emerging Topics in Computing, 9(2):
972–982, 2019.

Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. Explainable rein-
forcement learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable Artificial
Intelligence, 2019.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

MG Kendall. Rank Correlation Methods; Griffin, C., Ed, 1975.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforcement.
In 2008 7th IEEE international conference on development and learning, pp. 292–297. IEEE,
2008.

Daniel Lafond, Sébastien Tremblay, and Simon Banbury. Cognitive shadow: A policy capturing
tool to support naturalistic decision making. In 2013 IEEE International Multi-Disciplinary Con-
ference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 139–
142. IEEE, 2013.

11

https://openreview.net/forum?id=LwEQnp6CYev

Preprint. Under review.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-
based reinforcement learning. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 1), 2021a. URL https://openreview.net/
forum?id=ps95-mkHF_.

Kimin Lee, Laura M Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In International Conference on
Machine Learning, pp. 6152–6163. PMLR, 2021b.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018.

David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, and Andreas Krause. In-
formation directed reward learning for reinforcement learning. Advances in Neural Information
Processing Systems, 34:3850–3862, 2021.

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
learning with linear model u-trees. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 414–429. Springer, 2018.

Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. arXiv
preprint arXiv:2012.05862, 2020.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=JYtwGwIL7ye.

Erika Puiutta and Eric Veith. Explainable reinforcement learning: A survey. In International cross-
domain conference for machine learning and knowledge extraction, pp. 77–95. Springer, 2020.

Matthew Rahtz, Vikrant Varma, Ramana Kumar, Zachary Kenton, Shane Legg, and Jan Leike. Safe
deep rl in 3d environments using human feedback. arXiv preprint arXiv:2201.08102, 2022.

Siddharth Reddy, Anca Dragan, Sergey Levine, Shane Legg, and Jan Leike. Learning human objec-
tives by evaluating hypothetical behavior. In International Conference on Machine Learning, pp.
8020–8029. PMLR, 2020.

Aaron M Roth, Nicholay Topin, Pooyan Jamshidi, and Manuela Veloso. Conservative q-
improvement: Reinforcement learning for an interpretable decision-tree policy. arXiv preprint
arXiv:1907.01180, 2019.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Jacob Russell and Eugene Santos. Explaining reward functions in Markov decision processes. In
The Thirty-Second International Flairs Conference, 2019.

Stuart Russell. Human compatible: Artificial intelligence and the problem of control. Penguin,
2019.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learn-
ing of reward functions. In Proceedings of Robotics: Science and Systems (RSS), 2017.

Lindsay Sanneman and Julie A Shah. An empirical study of reward explanations with human-robot
interaction applications. IEEE Robotics and Automation Letters, 2022.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Optimiza-
tion methods for interpretable differentiable decision trees applied to reinforcement learning. In
Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pp. 1855–1865. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.
press/v108/silva20a.html.

12

https://openreview.net/forum?id=ps95-mkHF_
https://openreview.net/forum?id=ps95-mkHF_
https://openreview.net/forum?id=JYtwGwIL7ye
https://proceedings.mlr.press/v108/silva20a.html
https://proceedings.mlr.press/v108/silva20a.html

Preprint. Under review.

Robert J Sternberg and Joseph A Horvath. Tacit knowledge in professional practice: Researcher
and practitioner perspectives. Psychology Press, 1999.

Pradyumna Tambwekar, Andrew Silva, Nakul Gopalan, and Matthew Gombolay. Specifying and
interpreting reinforcement learning policies through simulatable machine learning. arXiv preprint
arXiv:2101.07140, 2021.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel Brown. A study of
causal confusion in preference-based reward learning. arXiv preprint arXiv:2204.06601, 2022.

Jasper van der Waa, Jurriaan van Diggelen, Karel van den Bosch, and Mark Neerincx. Contrastive
explanations for reinforcement learning in terms of expected consequences. In IJCAI/ECAI Work-
shop on Explainable Artificial Intelligence, 2018.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045–5054. PMLR, 2018.

Nils Wilde, Alexandru Blidaru, Stephen L Smith, and Dana Kulić. Improving user specifications for
robot behavior through active preference learning: Framework and evaluation. The International
Journal of Robotics Research, 39(6):651–667, 2020.

Christian Wirth, Johannes Fürnkranz, and Gerhard Neumann. Model-free preference-based rein-
forcement learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns. In
International conference on machine learning, pp. 1899–1908. PMLR, 2016.

Guangxiang Zhu, Zhiao Huang, and Chongjie Zhang. Object-oriented dynamics predictor. Advances
in Neural Information Processing Systems, 31, 2018.

13

Preprint. Under review.

A METHODOLOGICAL DETAILS

A.1 SIGN CONSTRAINT FOR RETURN ESTIMATES

Applying a sign constraint to the trajectory-level return estimates means that rewards output by
a reward tree (via Equation 4) are also all either positive or negative. This has no effect on any
measure of preference reconstruction since preferences are invariant to affine transformations of an
underlying utility function. However, we find it brings two distinct benefits:

• Enabling the prevention of perverse incentives for agents to terminate or elongate episodes
in tasks with termination conditions (negative rewards on non-terminal transitions incen-
tivise termination, while positive rewards incentivise elongation).

• Simplifying the manual interpretation of tradeoffs between rewards from different leaves
of a tree (understanding the relative impacts of “more of a negative reward” and “less of a
positive reward” requires the awkward mental juggling of negatives).

For the task with a termination condition in this paper (Land), we use negative rewards (max =
0 constraint) to disincentivise episode elongation, because termination is generally indicative of
success. For the two fixed-length tasks (Follow and Chase) we default to using positive rewards
(min = 0 constraint). Although this is arbitrary, our own experience is that positive rewards make
for somewhat more intuitive interpretation of the tree structure, and its effect on agent actions.
We stress that this is purely anecdotal; the relative human interpretability of positive, negative and
mixed-sign rewards would be a worthy subject for deeper empirical investigation.

A.2 PSEUDOCODE FOR ONLINE ALGORITHM

See Algorithm 1 below.

14

Preprint. Under review.

Algorithm 1 Online preference-based reward tree learning
Inputs: Possibly pre-trained dynamics model D′, feature function φ, trajectory budget Nmax,
preference budget Kmax, tree size limit Lmax, tree size regularisation α

1: Initialise empty preference graph Ξ← ∅, L ← ∅
2: Initialise one-leaf tree T with r← [0]
3: for i ∈ {1, ..., Nmax} do
4: Initialise time t← 0 and environment state si0
5: while episode not yet terminated do . Model-based trajectory generation (Sec.5.2)
6: Compute action ait using PETS algorithm

with D′ and rewards via Equation 4
7: Send ait to environment and get next state sit+1
8: Update D′ on recent transitions . May not be required; see Appendix D.3
9: xit+1 ← φ(sit, a

i
t, s

i
t+1)

10: t← t+ 1
11: end while
12: ξi ← (xi1, ..., xiT i)
13: Kbatch ← min((Kmax − |L|)/(Nmax + 1− i), |Ξ|)
14: for k ∈ {1, ...,Kbatch} do . Preference batch collection (Sec 3)
15: Sample ξj from Ξ uniformly without replacement
16: Query human for preference ξi � ξj or ξj � ξi

17: L ← L ∪
{
{(i, j)} if ξj � ξi
{(j, i)} otherwise

18: end for
19: Ξ← Ξ ∪ {ξi}
20: if |L| > 0 then
21: Compute g via Equation 3 . Trajectory-level return estimation (Sec 4.1)
22: Initialise one-leaf tree T
23: C ← midpoints between per-feature unique values in Ξ
24: while LT < Lmax do . Tree growth (Section 4.3)
25: for l ∈ {1, ..., LT } do
26: for f ∈ {1, ..., F} do
27: for c ∈ Cf do
28: Compute `0-1 reduction for T + [lfc] via Equation 5
29: end for
30: end for
31: end for
32: if max(`0-1 reduction) ≤ 0 then
33: break . Stop tree growth early
34: end if
35: l, f, c← argmax(`0-1 reduction)
36: T ← T + [lfc]
37: end while
38: T = ()
39: while LT > 1 do . Tree pruning (Section 4.4)
40: for l ∈ {1, ..., LT } do
41: Compute `0-1 reduction for T − [l] . T − [l] denotes pruning lth leaf
42: end for
43: l← argmax(`0-1 reduction)
44: T ← T − [l]
45: Append T to T
46: end while
47: T ← argminT ∈T(`0-1 plus α-scaled tree size)
48: end if
49: end for

15

Preprint. Under review.

B COMPARISON TO MODEL-FREE REINFORCEMENT LEARNING

One of the most consistently observed benefits of model-based RL is its sample efficiency, and this
trend holds in our context. Running Algorithm 1 unchanged except for the use of a soft actor-critic
(SAC) agent for policy learning, we find that approximately two orders of magnitude more environ-
ment interaction is required to achieve equivalent performance in terms of regret at convergence. In
turn, this increases wall-clock runtime by 10-20 times, thereby outweighing the higher per-timestep
computational cost of PETS over SAC. The caption of Figure A1 gives further details.

PETS (200 episodes)

O
nl

in
e

O
R

R

NN
Tree (var)
Tree (0-1)

SAC (200 episodes) SAC (1k episodes) SAC (10k episodes) SAC (50k episodes)

W
al

l-
cl

oc
k

tim
e

(m
in

ut
es

)

Episode 1 200

20
0

40
0

1
20

0
40

0
1000 1

20
0

40
0

10000 1

20
0

40
0

500001 200

20
0

40
0

Episode Episode Episode Episode

0
0.

5
1

0
0.

5
1

0
0.

5
1

0
0.

5
1

0
0.

5
1

Figure A1: Comparing the use of PETS (model-based) and SAC (model-free) agents on the Follow
task (see Appendix C.3 for task details). The PETS results are taken directly from Figure 3. For SAC
we retain the total preference budget of Kmax = 1000, but for longer runs add episode trajectories to
Ξ and L at a reduced frequency so that Nmax = 200 (e.g. for 50000 episodes, only 1 in 250 episodes
are added to the graph; the rest are skipped). All SAC agents use policy and value networks with two
256-unit hidden layers each, learning rates of 1e−4 and 1e−3 for the policy and value updates with
the Adam optimiser, a discount factor of γ = 0.99, and an interpolation factor of 0.99 for Polyak
averaging of the target networks. Updates use mini-batches of 32 transitions sampled uniformly
from a rolling replay buffer of capacity 5e4.
We find that initially running SAC for a total of 200 episodes, matching our PETS experiments,
gives the model-free learning algorithm insufficient time to achieve good performance in terms of
regret on the oracle reward function (a higher learning rate leads SAC to become unstable). We then
progressively increase the length of SAC runs until regret performance matches the use of PETS,
and find that this requires around 50000 episodes, an increase of 250 times. It is noteworthy that
the variance-based tree model seems to perform best in the short-runtime regime, but worst in the
long-runtime regime. Time constraints prevented us from investigating whether this holds in other
tasks, but such an investigation would be worthwhile.
In terms of wall-clock time (on a single NVIDIA Tesla P100 GPU), running reward learning with
SAC for 1000 episodes is roughly equivalent to 200 episodes using PETS (25-60 minutes, depending
on the reward model architecture). For 50000 episodes, this time increases to 9 hours. This brings
a very practical disadvantage: if reward learning were done using human preferences instead of an
oracle, that person would have to dedicate more than a full working day to the exercise, most of
which would be spent waiting for several minutes between each successive preference batch.

16

Preprint. Under review.

C AIRCRAFT HANDLING ENVIRONMENT

C.1 MOTIVATION

Pilots of fast jet aircraft require exceptional handling abilities, acquired over years of advanced train-
ing. There would be immense practical value in developing a method for distilling the knowledge
and preferences of pilots and other domain experts into a software model that captures realistic
handling behaviour. The scalability of such a model would make it useful for strategic planning
exercises, training of a range of operational roles, and development and testing of other software
systems. However, as in many contexts where intuitive decision-making and rapid motor control
are paramount, the preferences of experts (over the space of fast jet handling trajectories) are in
large part tacit, and thus defy direct scrutiny or verbal description. Put simply: experts know good
handling when they see it, but cannot directly express why.1 This makes it practically challenging
to accurately elicit this knowledge for codification into an automated system.

The methods presented in this paper form the basis of a possible solution to this dilemma. Given
a dataset of trajectories executed by an artificial learning agent and labelled with pairwise expert
preferences (which require only tacit knowledge to produce), we use statistical learning algorithms
to construct an interpretable explanatory model of those preferences. The result is two distinct
outputs that could form valuable components of future planning, training and development software:

1. A tree-structured reward function, which may be used for automated scoring of flight tra-
jectories executed by human or artificial pilots. We aim for this to produce an evaluation
that is consistent, unbiased and aligned with the judgement that the original expert would
have made, alongside an explanatory rationale that can be leveraged to justify, verify and
improve handling behaviour.

2. A model-based RL agent capable of executing high-quality handling behaviour with respect
to the reward function, for use in simulation.

It should be noted that any realistic handling scenario would involve multiple experts somewhat-
differing knowledge and expertise. A natural extension of our approach, which we see as valuable
future work, is to learn individual reward functions for each expert, then leverage the intrinsic in-
terpretability to identify biases, inconsistencies and tradeoffs. This suggests a third application of
reward tree learning: providing a basis for evaluating and training the experts themselves.

C.2 IMPLEMENTATION

We consider a simple set-piece formulation of the aircraft handling problem, in which the piloting
agent is given a short time window to manoeuvre their aircraft (the ego jet, EJ) in a particular manner
relative to a second reference jet (RJ). Special cases of this formulation create a wide variety of tasks
for the pilot to solve. Options include:

• RJ is a friendly aircraft which EJ should accompany in formation flight.
• RJ is adversarial and EJ must outmanoeuvre it to gain a tactical advantage.
• Rather than being a distinct physical entity, RJ defines a goal pose (position and attitude)

for EJ to reach. The goal pose may be fixed or moving over time.

We developed this formulation to strike a balance between simplicity and generality; many realistic
scenarios faced by a fast jet pilot involve interaction with a single other airborne entity. On a practical
level, it provides scope for the definition of many alternative tasks given the same state and action
spaces, and largely unchanged dynamics.

The state space contains the positions, attitudes, velocities and accelerations of both EJ and RJ
(state dimensionality = 37) and the action space consists of pitch, roll, yaw and thrust demands for

1This statement certainly underestimates the rich complexity of human expertise; in reality, an expert’s
mental model is likely to be partly tacit and partly explicit. The general strategy of preference-based reward
learning is to operate as if the mental model were 100% tacit, and explore what can be achieved under such
a strong restriction. Real-world applications would likely benefit from combining this approach with some
amount of hand-coded expert knowledge.

17

Preprint. Under review.

EJ only (action dimensionality = 4). The EJ dynamics function integrates these demands with a
simplified physics engine, including gravity and air resistance (we make no claim of realism here;
the simulator is merely a proof of concept). A new action is accepted every 25 steps of the physics
engine, reducing an agent’s decision frequency to approximately 1Hz. RJ dynamics, as well as the
conditions of state initialisation and termination, vary between tasks (see Appendix C.3).

The final generic aspect of the implementation is the feature function φ, which maps the transition
space S × A × S (total dimensionality = 37 + 4 + 37 = 78) into an F -dimensional space of task-
relevant features. In consultation with engineers with experience of aerospace simulation and control
algorithms, we devised the following set of F = 30 features that is sufficiently expressive to capture
the important information for all three of our target tasks, without being overly specialised to one or
providing too much explicit guidance to the reward learning process. Apart from those containing
“delta” or “rate”, all features are computed over the successor state for each transition, st+1.

dist Euclidean distance between EJ and RJ
closing speed Closing speed between EJ and RJ (negative = moving closer)

alt Altitude of EJ
alt error Difference in altitude between EJ and RJ (negative = EJ is lower)

delta alt error Change in alt error between st and st+1

dist hor Euclidean distance between EJ and RJ in horizontal plane
delta dist hor Change in dist hor between st and st+1 (negative = moving closer)
pitch error Absolute difference in pitch angle between EJ and RJ

delta pitch error Change in pitch error between st and st+1

abs roll Absolute roll angle of EJ
roll error Absolute difference in roll angle between EJ and RJ

delta roll error Change in roll error between st and st+1

hdg error Absolute difference in heading angle between EJ and RJ
delta hdg error Change in hdg error between st and st+1

fwd error Angle between 3D vectors indicating forward axes of EJ and RJ
delta fwd error Change in fwd error between st and st+1

up error Angle between 3D vectors indicating upward axes of EJ and RJ
delta up error Change in up error between st and st+1

right error Angle between 3D vectors indicating rightward axes of EJ and RJ
delta right error Change in right error between st and st+1

los error Angle between forward axis of EJ and vector from EJ to RJ
(measures whether RJ is in EJ’s line of sight)

delta los error Change in los error between st and st+1

abs lr offset Magnitude of projection of vector from EJ to RJ onto RJ’s rightward axis
(measures left-right offset between the two aircraft in RJ’s reference frame)

speed Airspeed of EJ
g force Instantaneous g-force experienced by EJ

pitch rate Absolute change of EJ pitch between st and st+1

roll rate Absolute change of EJ roll between st and st+1

yaw rate Absolute change of EJ yaw between st and st+1

thrust Instantaneous thrust output by EJ engines
delta thrust Absolute change in thrust between st and st+1

C.3 TASKS AND ORACLES

In this paper, we consider three concrete tasks that instantiate the general EJ-RJ framework. For
each, we construct a plausible oracle reward function from a subset of the 30 features, meaning
that reward learning is in part a feature selection problem (tree models perform feature selection
explicitly whenever they add a new splitting rule). Although the precise nature of the oracle reward
functions is secondary, and those given below are among many equally reasonable alternatives,
we dedicated several hours of development time to ensuring they yield reasonable behaviour upon
visual inspection. The difficulty and seeming arbitrariness of this manual reward design process is
precisely why reward learning (ultimately from real human preferences) is an enticing proposition.
Descriptions of the three tasks, along with their respective oracles, are given below:

• Follow: Here RJ follows a linear horizontal flight path at a constant velocity, which is
oriented opposite to the initial velocity of EJ. The goal is to turn onto and then maintain the
path up to the episode time limit of 20 timesteps. This constitutes a very simple form of

18

Preprint. Under review.

formation flight. The oracle reward function incentivises closing the distance to the moving
target, and matching the upward axes of EJ and RJ:

r = −(dist + 0.05× closing speed + 10× up error).

• Chase: Here RJ follows an erratic trajectory generated by random control inputs, and the
goal is to chase it without taking EJ below a safe altitude of 50. Episodes terminate after
20 timesteps. The oracle reward function incentivises keeping RJ at a distance of 20 and
within EJ’s line of sight, while keeping EJ oriented upright. It also has a large penalty for
dropping below the safe altitude:

r = −(abs(dist− 20) + 10×los error+ 5×abs roll+

{
100 if alt < 50
0 otherwise).

• Land: Here the goal is to execute a safe approach towards landing on a runway, where
RJ represents the ideal landing position (central, zero altitude, slight upward pitch). EJ is
initialised at a random altitude, pitch, roll and offset, such that landing may be challenging
but always physically possible. An episode terminates if EJ passes RJ along the axis of
the runway, or after 25 timesteps otherwise. The oracle reward function for this task is
by far the most complex of the three, including terms that incentivise continual descent,
penalise g-force and engine thrust, and punish the agent for making contact with the ground
(alt < 0.6) before the start of the runway:

r = −(0.05× abs lr offset + 0.05× alt + hdg error + abs roll

+0.5× pitch error + 0.25× (yaw rate + roll rate + pitch rate)

+0.1× g force + 0.025× thrust + 0.05× delta thrust

+

{
1 if delta dist hor > 0
0 otherwise +

{
2 if delta alt > 0
0 otherwise

+

{
1 if abs lr offset > 10
0 otherwise +

{
10 if alt < 0.6
0 otherwise).

19

Preprint. Under review.

D IMPLEMENTATION AND EXPERIMENT DETAILS

D.1 ORACLE PREFERENCES

Oracle preferences are generated in accordance with the Bradley-Terry model given in Equation 1,
i.e. by computing the returns for the two trajectories ξi and ξj , and sampling from a Boltzmann
distribution parameterised by those returns. In our main experiments, we set the temperature coeffi-
cient β = 0, which results in the oracle deterministically selecting the trajectory with higher return
(ties broken uniform-randomly). In Section 6.3 we study cases with β > 0, which provide a more
realistic emulation of real human preference data.

D.2 HYPERPARAMETERS FOR TREE INDUCTION

In all experiments, we use the following hyperparameters during tree induction. These were iden-
tified through informal search, and we make no claim of optimality, but they do lead to reasonable
performance on the three tasks of varying complexity. This indicates a general insensitivity of the
method to precise hyperparameter values, which is often practically advantageous.

• Trajectory return estimation using the Adam optimiser with a learning rate of 0.1. Optimi-
sation stops when the mean `NLL changes by < 1e−5 between successive gradient steps.

• Per-feature candidate split thresholds C defined as all midpoints between adjacent unique
values in the trajectory set Ξ. These are recomputed on each update.

• Tree size limit Lmax = 100.

• Tree size regularisation coefficient α = 5e−3.

As mentioned in Appendix A.1, we enforce negative rewards (max = 0 constraint) for the Land
task, and positive rewards (min = 0 constraint) for Follow and Chase.

D.3 MODEL-BASED RL IMPLEMENTATION

For conceptual details on the PETS algorithm, we refer readers to the original paper by Chua et al.
(2018). In our implementation, the dynamics model is an ensemble of five NNs, each with four hid-
den layers of 200 hidden units and ReLU activations. State vectors are pre-normalised by applying a
hand-specifed scale factor to each dimension. Decision-time planning operates over a time horizon
of H = 10 and consists of 10 iterations of the cross-entropy method. Each iteration samples 20
candidate action sequences from an independent Gaussian, of which the top 5 in terms of return are
identified as elites, then updates the sampling Gaussian towards the elites with a learning rate of 0.5.
In all experiments we use γ = 1, meaning no temporal discounting is applied during planning.

In our experiments, we find that the particular dynamics of the aircraft handling environment permit
us to pre-train D′ on random offline data, and accurately generalise to states encountered during on-
line reward learning. This means we perform no further updates to the model while reward learning
is ongoing. As well as improving wall-clock speed, this avoids complexity and convergence issues
arising from having two interacting learning processes (note that simultaneous learning is completely
unavoidable with model-free RL). To pre-train, we collect 1e5 transitions by rolling out a uniform
random policy, then update each of the five networks on 1e5 independently sampled mini-batches of
256 transitions, using the mean squared error loss over normalised next-state predictions.

D.4 NEURAL NETWORK REWARD LEARNING BASELINE

We baseline our reward tree models against the de facto standard approach of reward learning using
a NN. In constructing this baseline, we aimed to retain as much of Algorithm 1 as possible, so that
only the model architecture varies. The result is that we replace lines 21-47 with the following:

20

Preprint. Under review.

21: for m ∈ {1, ...,M} do
22: Lmini-batch ← a mini-batch of B preference labels sampled from L
23: Compute `NLL over Lmini-batch via Equations 1 and 2
24: Backpropagate loss and update network parameters
25: end for
26: rall ← reward predictions for all feature vectors in Ξ
27: Scale network outputs by 1/std(rall)
28: Shift network outputs by −min(rall) or −max(rall), depending on desired reward sign

The new lines 26-28 replicate the two constraints applied in Equation 3.

In all experiments, we follow Lee et al. (2021b) in implementing the reward model as a three-layer
network with 256 hidden units each and leaky ReLU activations, and performing the update on line
24 using the Adam optimiser (Kingma & Ba, 2014) with a learning rate of 3e−4. On each update,
we sample M = 100 mini-batches of size B = 32 and take one gradient step per mini-batch.

D.5 COVERAGE DATASETS FOR POLICY-INVARIANT EVALUATION

Gleave et al. (2021) recently highlighted the importance of comparing and evaluating learnt reward
functions in a policy-invariant manner, by using a common evaluation distribution rather than on-
policy data generated by agents optimising for each reward. Ideally, the offline evaluation data
should have high coverage (i.e. high-entropy state distribution, both high- and low-quality trajecto-
ries), in order to characterise the reward functions’ outputs across a spectrum of plausible policies.

In our context, we can generate data that satisfies these requirements by leveraging the known oracle
reward functions and the PETS algorithm. We deploy PETS using the oracle reward, but randomise
the planning parameters (number of planning iterations ∈ {1, ..., 50}, number of action sequence
samples ∈ {4, ..., 50}) on every episode. In all cases, we take the top 25% of action sequences as
elites. This randomisation results in trajectories that are sometimes near-optimal with respect to the
oracle, sometimes moderate in quality, and sometimes barely better than random. For all three tasks,
we generate a dataset of 200 evaluation trajectories in this manner.

21

Preprint. Under review.

E VISUALING REWARD FUNCTIONS WITH SIMILARITY EMBEDDINGS

Here we briefly discuss a novel form of reward visualisation which we developed and found valu-
able during our own analysis. Given some measure of similarity between reward functions, such as
the EPIC metric proposed by Gleave et al. (2021), we can compute a matrix of pairwise similarities
between any number of such functions (computational cost permitting). We can then produce a 2D
embedding of the functions by applying multidimensional scaling (MDS). Visualising this embed-
ding as a scatter plot enables the discovery of salient patterns and trends in the set of functions.

In Figure A2, we use the metric of rank correlation on the coverage datasets, and the SMACOF MDS
algorithm (De Leeuw & Mair, 2009), to embed all 30 model repeats and the oracle for each task.
This gives an impression of the models’ similarity not just to the oracle, but to each other. Aside
from the Follow NNs, which form a tight cluster near the oracle, the distribution for each model
indicates roughly equal consistency between repeats. The overlap of convex hulls suggests that the
rankings produced by all models are broadly similar for Land, but more distinct for Chase. Shading
points by ORR reveals that while models further from the oracle tend to induce worse-performing
policies, the trend is not monotonic. This reinforces the point made elsewhere that the problems of
learning a good policy and exactly replicating the ground truth reward are not identical.

Oracle

ORR
10

Follow Chase LandNN
Tree (0-1)
Tree (var)

Figure A2: Rank correlation embeddings for all model repeats from the main experiments, with the
scatter point for each repeat shaded by ORR.

Populating such embedding plots more densely, perhaps by varying model hyperparameters, could
provide a means of mapping the space of learnable reward functions and its relationship to policy
performance. It would also be straightforward to compute similarity values for the same model
repeat at multiple checkpoints during learning. This would yield a trajectory in the rank embedding
space, which could aid the assessment of the stability and convergence properties of online learning
with different models and hyperparameter values.

22

	1 Introduction
	2 Background and Related Work
	3 Preference-based Reward Learning
	4 Reward Tree Induction
	4.1 Trajectory-level Return Estimation
	4.2 Leaf-level Reward Estimation
	4.3 Tree Growth
	4.4 Tree Pruning

	5 Online Learning Setup
	5.1 Iterated Policy and Reward Learning
	5.2 Integration with Model-based RL

	6 Experiments and Results
	6.1 Quantitative Performance
	6.2 Visual Trajectory Inspection
	6.3 Sensitivity Analysis
	6.4 Tree Structure Analysis

	7 Conclusion and Future Work
	A Methodological Details
	A.1 Sign Constraint for Return Estimates
	A.2 Pseudocode for Online Algorithm

	B Comparison to Model-free Reinforcement Learning
	C Aircraft Handling Environment
	C.1 Motivation
	C.2 Implementation
	C.3 Tasks and Oracles

	D Implementation and Experiment Details
	D.1 Oracle Preferences
	D.2 Hyperparameters for Tree Induction
	D.3 Model-based RL Implementation
	D.4 Neural Network Reward Learning Baseline
	D.5 Coverage Datasets for Policy-Invariant Evaluation

	E Visualing Reward Functions with Similarity Embeddings

