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Weak values and Kirkwood–Dirac (KD) quasiprobability distributions have been independently
associated with both foundational issues in quantum theory and advantages in quantum metrology.
We propose simple quantum circuits to measure weak values, KD distributions, and spectra of
density matrices without the need for post-selection. This is achieved by measuring unitary-invariant,
relational properties of quantum states, which are functions of Bargmann invariants, the concept
that underpins our unified perspective. Our circuits also enable experimental implementation of
various functions of KD distributions, such as out-of-time-ordered correlators (OTOCs) and the
quantum Fisher information in post-selected parameter estimation, among others. An upshot is
a unified view of nonclassicality in all those tasks. In particular, we discuss how negativity and
imaginarity of Bargmann invariants relate to set coherence.
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1. INTRODUCTION

Two concepts have profoundly impacted quantum foun-
dations, metrology, and thermodynamics: weak values,
introduced in the seminal work of Aharonov, Albert, and
Vaidman [1], and the quasiprobability distribution intro-
duced by Kirkwood and Dirac [2, 3]. These were recently
connected with one another [4], and both can be exper-
imentally measured using weak measurement schemes
involving pre- and post-selection of carefully chosen ob-
servables [5]. Despite such great impact, investigations
of measurement schemes that can be implemented using
currently relevant quantum circuit architectures without
post-selection and without weak coupling are only now
beginning to appear [5, 6].
Another important carrier of nonclassical information

about a quantum state ρ, seemingly unrelated to those
discussed above, is the spectrum Spec(ρ). Spectral prop-
erties are well known to capture nonclassical features
of states such as entanglement [7] and basis-dependent
coherence [8]. Various nonclassicality properties can be
learned from the spectrum of a quantum state, or from
non-linear functions thereof, such as univariate traces of
the form Tr(ρn) for some integer n ≥ 1. In quantum infor-
mation, knowledge of such univariate traces has recently
been used to witness non-stabilizerness (i.e., “magic”)
of quantum states [9], or in subroutines for variational
quantum eigensolvers [10].
In this article, we describe a unified framework that

enables expressing Kirkwood–Dirac (KD) quasiprobabil-
ity functions, weak values, and univariate traces Tr(ρn)
in terms of more fundamental quantities, known as
Bargmann invariants. These invariants fully character-
ize the relational properties of a set of quantum states,
that is, all the properties that remain invariant under
the application of the same unitary to all states in the
set. The simplest non-trivial Bargmann invariant is the
overlap Tr(ρσ) between two states ρ and σ, and it is also
the easiest to probe experimentally [11].

The starting point for our conceptual unification is the
observation that KD distributions, weak values, univari-
ate traces, and many other constructions of interest can
be written as functions of Bargmann invariants. From this
simple yet powerful observation, we draw foundational
and practical implications. On the one hand, the connec-
tion with Bargmann invariants provides a unified view for
studying nonclassicality of sets of states for all use cases
considered in this work. On the other, it opens the door
for the use of a family of circuits that measure Bargmann

invariants to estimate any function of Bargmann invari-
ants, including all those mentioned above.

A crucial notion of nonclassicality we consider here
is that of set coherence, a basis-independent notion of
coherence proposed in Ref. [12], whereby a set of quantum
states is said to be coherent if and only if it is not pairwise
commuting. We show how this form of nonclassicality
connects with the theory of Bargmann invariants.

KD distributions can exhibit a different kind of nonclas-
sicality by taking on negative or even non-real complex
values. Similarly, the weak value of an observable is
considered nonclassical when it does not lie within the
observable’s spectrum. As it turns out, the nonclassicality
of KD distributions and weak values, which underpins
their relevance as quantum information resources, is a
relational property described by Bargmann invariants.
We show that, in general, learning the values of higher-
order invariants (beyond overlaps) is necessary to assess
nonclassicality. We also show how further assumptions
can be used to ascertain nonclassicality using overlaps
only.

More pragmatically, the nonclassicality of weak values
and KD distributions has been linked to quantum advan-
tage in metrology [13] and to quantification of quantum
information scrambling [14, 15]. Our framework describ-
ing those quantities via Bargmann invariants allows us to
use recently proposed cycle test circuits [16, 17] to directly
measure weak values and KD distributions. This enables
quantum circuit measurements of functions associated
with multiple applications; see Fig. 1 for a conceptual
scheme describing our main contributions. We compare
the performance of these circuits with the usual strategies
for performing weak measurements and quantum state
tomography. We also show how out-of-time-ordered corre-
lators (OTOCs), used to quantify information scrambling
in quantum dynamics, can be measured using the same
type of circuit. We show that this is also true for the
quantum Fisher information obtained in post-selected
parameter estimation.

We recall how these circuits can also estimate the spec-
trum of a given d-dimensional quantum state ρ via estima-
tion of Tr(ρn) for n = 1, . . . , d. This circuit architecture is
well known [18], as is the fact that one can learn spectral
properties by classical post-processing using the Faddeev–
LeVerrier algorithm [19]. Besides our unified perspective
that such quantities correspond to specific Bargmann in-
variants, we provide new sample complexity arguments
and numerical simulations suggesting that learning the
spectrum via this technique is useful for near-term appli-
cations, and is significantly simpler when compared with
other efficient techniques.

We expect our contributions to open the path to the
quantification of nonclassicality and many other applica-
tions, for example in the characterization of coherence,
entanglement, and quantum computational advantage.

Outline. This paper is organized as follows. In Sec. 2
we introduce the basic definitions and properties of KD
distributions, weak values arising from weak measure-
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Figure 1. Conceptual scheme describing the content and main contributions and their inter-relations. We show
how weak values, the Kirkwood–Dirac (KD) quasiprobability distribution, and out-of-time-ordered correlators (OTOCs) can all
be expressed as unitary-invariant quantities known as Bargmann invariants in Sec. 3. Circuits to measure them are discussed
in Sec. 4. Moreover, results on the nonclassicality of Bargmann invariants, such as those obtained in Sec. 5, enable a better
understanding and quantification of quantum advantage, where we show that negativity and imaginarity of Bargmann invariants
require set coherence.

ments, extended KD distributions, and Bargmann invari-
ants. In Sec. 3 we then propose Bargmann invariants
as the unifying concept connecting all the constructions
just described. We proceed to discuss the pragmatic
quantum circuit measurement schemes in Sec. 4, and the
foundational implications for analyzing nonclassicality
in Sec. 5. Specifically, in Sec. 4, we present our main
results, describing how one can experimentally access
weak values, KD distributions, and state spectra via the
measurement of Bargmann invariants. We compare the
efficiency and experimental particularities of estimating
weak values using the standard weak measurement ap-
proach against our proposed quantum circuits. We also
compare our scheme with other approaches to estimate
the KD distribution. Moreover, we study how the mea-
surement of higher-order Bargmann invariants enables the
estimation of the quantum Fisher information obtained
in post-selected parameter amplification, OTOCs, and
the spectrum of a density matrix. In Sec. 5, we start
by formally connecting Bargmann nonclassicality with
set coherence, hence connecting KD and weak value non-
classicality with various other notions and results in the
literature. We then study how nonclassical properties of
invariants help characterize nonclassical quasiprobability
distributions. We finish this section by analyzing mini-
mal conditions for characterizing the nonclassicality of
KD distributions and related quantities. We conclude in
Sec. 6 with an outlook on possible future work.

2. PRELIMINARIES

In this section, we recall the necessary background on
weak values, (extended) KD distributions, and Bargmann
invariants.

2.1. Weak values

Consider a system prepared (pre-selected) in state |ψ⟩,
on which one performs a weak measurement of an observ-
able A, i.e., a measurement associated with a small cou-
pling strength (when compared to the standard deviation
of the measuring pointer). Although this measurement
has the apparent downside of not generating a significant
average shift of the pointer compared to its standard devi-
ation, it has the benefit of causing little disturbance to the
system of interest. Finally, let the system be post-selected
in the state |ϕ⟩. It turns out that for this post-selection,
the average shift of the pointer used for the intermediate
weak measurement is proportional to

Aw :=
⟨ϕ|A|ψ⟩
⟨ϕ|ψ⟩

, (1)

which is known as the weak value of A [1]. Aw arises from
a first-order approximation of a certain Taylor expansion
[20]. This quantity may lie outside the spectrum of the
measured operator, either by having a non-zero imaginary
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part or by having a real part outside the spectrum of A,
in which case the weak value is said to be anomalous. In
fact, with appropriate choices of pre- and post-selections,
anomalous weak values can have arbitrarily large real or
imaginary parts. For future reference, we state this as a
definition.

Definition 1 (Weak value nonclassicality). Let A : H →
H be a Hermitian operator and |ψ⟩ , |ϕ⟩ ∈ H two non-
orthogonal vectors in a finite-dimensional Hilbert space
H. We say that the weak value Aw = ⟨ϕ|A|ψ⟩/⟨ϕ|ψ⟩
is nonclassical or anomalous if Aw /∈ Spec(A), where
Spec(A) denotes the spectrum of A.

Due to the appearance of such anomalous values and
the usual way in which these quantities are experimentally
obtained, via weak measurements, the quantum nature of
weak values has been questioned since their introduction;
see Ref. [21] for an overview. More recently, this situa-
tion seems to have changed, with the nonclassicality of
certain weak values being more well established. Impor-
tant theoretical results contributing to this understanding
state that anomalous weak values obtained from weak
measurements constitute proofs of generalized contextu-
ality [22, 23].
Since weak measurements cause little disturbance to

the measured system, they also do not extract much
information about it. As a result, protocols involving
weak measurements typically require large ensembles in
order to decrease the variance associated with them; see,
however, the recent demonstration in Ref. [24]. In spite of
this, weak values have found various practical applications.
In particular, through a method known as weak value
amplification, large weak values are used for realizing
extremely sensitive measurements [25–37]. This technique
is especially helpful in the presence of technical noise or
detector saturation [29, 32].
It is also noteworthy that weak values can be used to

estimate wave functions, i.e., a state’s representation in
position coordinates Ψ(x) := ⟨x|ψ⟩, or specific density
matrix terms [38–42]. Observe, however, that the present
work focuses exclusively on the finite-dimensional setting.

Considering the spectral decomposition of the observ-
able A, A =

∑
a∈Spec(A) a|a⟩⟨a|, with Spec(A) denoting

the spectrum of A, we see that

Aw =
∑

a∈Spec(A)

a
⟨ϕ|a⟩⟨a|ψ⟩

⟨ϕ|ψ⟩
=

∑
a∈Spec(A)

a
⟨ϕ|a⟩⟨a|ψ⟩⟨ψ|ϕ⟩

|⟨ϕ|ψ⟩|2

(2)
since, by construction, ⟨ψ|ϕ⟩ ≠ 0. Other generalizations
of weak values, such as sequential weak values or joint
weak values, provide valuable information regarding the
behavior of a given state with respect to two—possibly
incompatible—observables [43–46]. It so happens that the
numerators in the expression for the weak value above,
or those of joint weak values, correspond to values of
the KD quasiprobability distribution at the phase-space
point determined by the pre- and post-selected states [47].
These have their own relevance in quantum information

theory [4]. We now proceed to review some basic facts on
the KD quasiprobability distribution.

2.2. Kirkwood–Dirac quasiprobability distribution

Consider a finite discrete phase space I ×F , associated
with quantum states {|i⟩}i∈I and {|f⟩}f∈F that form two
orthonormal bases of a d-dimensional Hilbert space H.
The KD quasiprobability distribution for a given state
ρ ∈ D(H)1 is the function ξ(ρ|·) : I × F → C given by

ξ(ρ|i, f) := ⟨f |i⟩⟨i|ρ|f⟩ (3)

at each phase-space point (i, f) ∈ I × F . Under the
assumption that ⟨f |i⟩ ≠ 0 for all i, f , the KD distribution
provides complete information about the state ρ. This is
because, in this case, the values of the KD distribution at
phase space points are the decomposition coefficients with
respect to the orthonormal basis {|i⟩⟨f |/⟨f |i⟩}(i,f)∈I×F
of B(H), the space of bounded operators on H [48, 49].
The KD distribution has been experimentally measured
in Refs. [50–54].

The KD distribution can be extended to be well defined
for a larger number of bases, or even general projection-
valued measures (PVMs). For a family of PVMs Mi =
{Πik}k∈Ki

, with i = 1, . . . , n, the extended KD distribution
for a state ρ at a phase space point (k1, . . . , kn) ∈ K1 ×
· · · ×Kn reads

ξ(ρ|k1, . . . , kn) = Tr(Π1
k1Π

2
k2 . . .Π

n
knρ). (4)

The following definition formalizes what is understood
by nonclassicality in the context of KD distributions.

Definition 2 (KD nonclassicality). Fix {|i⟩}i∈I ,
{|f⟩}f∈F two reference orthonormal bases of a finite-
dimensional Hilbert space H. We say that the KD
quasiprobability distribution ξ(ρ|·) associated with a state
ρ ∈ D(H) is nonclassical when there exists a phase-space
point (i, f) ∈ I × F such that ξ(ρ|i, f) /∈ [0, 1].

For extended KD quasiprobability distributions, we
similarly define KD nonclassicality to mean taking on
values outside the unit interval.

2.2.1. Post-selected quantum Fisher information

The KD distribution and its extended variants are key
constructions for witnessing many nonclassical properties
of quantum dynamics [4, 5, 55]. Recent developments have
shown that the KD distribution is deeply connected to
the quantum Fisher information [5]. The latter provides

1 We denote by D(H) the set of all quantum states in the Hilbert
space H.
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the optimal rate with which one can learn some (set
of) parameter(s) θ encoded in quantum states ρθ via the
Cramér–Rao bound [56, 57]. For good introductory works
on Fisher information theory and quantum or classical
estimation theory, see, e.g., Refs. [58–60]. It is therefore
interesting from a foundational perspective to seek ways of
estimating the quantum Fisher information, an important
task for the noisy intermediate-scale quantum (NISQ)
era of technological capabilities [61–63]. Indeed, this is
currently an active research topic [64, 65].

Let us focus on a recently found connection with quan-
tum metrology. In Ref. [13], nonclassicality of the KD
distribution was connected with metrological advantage in
parameter estimation. In a prepare-and-measure metro-
logical scenario on a d-dimensional Hilbert space H, an
initial pure state ρ = |ψ⟩⟨ψ| is prepared, information
about a parameter θ is encoded through the action of
a unitary U = e−iθI with I =

∑
i λi|i⟩⟨i|, evolving to a

final state ρpsθ , which is successfully post-selected with
respect to a projector F =

∑
f |f⟩⟨f | with probability

ppsθ = Tr(Fρθ). The quantum Fisher information Ips cap-
tures the optimal rate one can learn about the parameter
θ in this setup. The following relationship was established
in Ref. [13] between the extended KD distribution and
the quantum Fisher information of post-selected states:

Ips = 4
∑
i,i′,f

λiλi′
ξ(ρθ|i, i′, f)

ppsθ
− 4

∣∣∣∣∣∣
∑
i,i′,f

λi
ξ(ρθ|i, i′, f)

ppsθ

∣∣∣∣∣∣
2

.

(5)
The extended KD distribution for this scenario takes the
form

ξ(ρθ|i, i′, f) = ⟨i|ρθ|i′⟩⟨i′|f⟩⟨f |i⟩. (6)

For a generalization of Eq. (5) to the case of multi-
parameter estimation and non-ideal observables F , see
Refs. [66, 67]. Importantly, Eq. (5) holds only for pure
states ρθ = |ψθ⟩⟨ψθ|, and was later generalized in Ref. [68].
Moreover, in Ref. [68], the relationship displayed in Eq. (5)
was used to unravel metrological advantages of post-
selected parameter amplification for the estimation of
a small parameter θ. Also, in Ref. [69], the efficiency
of the post-selection advantage was bounded, formally
relating the growth of the post-selected version of Fisher
information with the factor ppsθ .

As a remark, the KD distribution also appears as part
of the quantum Fisher information without the need for
post-selection in the so-called linear response regime, as
discussed in Ref. [5].

2.2.2. Out-of-time-ordered correlators

In Ref. [4] it was shown that the extended KD dis-
tribution underlies the out-of-time-ordered correlators
(OTOCs), commonly used to witness the scrambling of

quantum information. These are given by the expression

OTOC(t) := Tr(W †(t)V †W (t)V ρ). (7)

Intuitively, OTOCs witness scrambling of information in
the following situation. Consider a many-body system ρ
and two observablesW =W (0) and V acting over distant
regions of the system; the canonical example considers
local observables acting on the initial and final spins in
a one-dimensional lattice of size N ≫ 1. The function
OTOC(t) witnesses the noncommutativity of the observ-
able W (t) = U(t)†WU(t), the unitary evolution of W in
the Heisenberg picture by the one-parameter group U(t),
with respect to V . It thus signals the delocalization of
quantum information. The OTOC can be written as [4]∑

v1,w2,v2,w3

v1w2v
∗
2w

∗
3Tr(Π

W (t)
w3

ΠVv2Π
W (t)
w2

ΠVv1ρ), (8)

where v and w range over the eigenvalues of V =∑
v∈Spec(V ) vΠ

V
v and W =

∑
w∈Spec(W ) wΠ

W
w associated

to eigenprojectors ΠVv and ΠWw , respectively. We also

have that Π
W (t)
w = U(t)†ΠWw U(t). The choice of labels

made in Eq. (8) comes from the interpretation of Ref. [4],
where the OTOC is described by a quasiprobability natu-
rally arising from comparing the forward and backward
evolution of the system under a unitary action.
The coarse-graining hides the possible degeneracy in

the spectral decomposition of the observables. In fact, if
we take such degeneracy into account, we have that each
observable is described by

ΠVv =
∑
λv

|v, λv⟩⟨v, λv|, (9)

where the eigenspace associated with eigenvalue v is de-
scribed by the complete set of vectors |v, λv⟩ with λv
ranging over the degeneracy parameters. We find that
the OTOC can be described in a more fine-grained way
by

OTOC(t) =
∑

(v1,λv1 ),(v2,λv2 ),

(w2,λw2
),(w3,λw3

)

v1w2v
∗
2w

∗
3Ãρ, (10)

where Ãρ = Ãρ(v1, λv1 ;w2, λw2 ; v2, λv2 ;w3, λw3) is the
quasiprobability behind the OTOC [4]. This is an ex-
tended KD distribution given at each phase-space point
by

Ãρ = ⟨w3, λw3
|U |v2, λv2⟩⟨v2, λv2 |U†|w2, λw2

⟩
⟨w2, λw2

|U |v1, λv1⟩⟨v1, λv1 |ρU†|w3, λw3
⟩,

(11)

where each |vl, λvl⟩⟨vl, λvl | or |wl, λwl
⟩⟨wl, λwl

| corre-
sponds to the state of the system after a measurement
(related to observable V or W ) has been performed on it
and an outcome (vl, λvl) or (wl, λwl

) has been obtained.
As we will see shortly, the various fundamental concepts

discussed so far—namely, the KD distribution in Eq. (3),
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its extended version in Eq. (4), the quasiprobability
behind the OTOC in Eq. (11), the post-selected quantum
Fisher information in Eq. (5), and the expression for weak
values in Eq. (2)—are all written in terms of Bargmann
invariants, which we review next.

2.3. Bargmann invariants and how to measure them

General multivariate traces of quantum states can be
directly measured in an efficient manner using the cy-
cle test scheme [16] or constant-depth circuit variations
thereof [17]. They are also known as n-th order Bargmann
invariants [70]: given an n-tuple of states (ρ1, . . . , ρn), its
Bargmann invariant is

∆n(ρ1, . . . , ρn) = Tr(ρ1 . . . ρn). (12)

These quantities are invariant under the simultaneous
conjugation ρi 7→ ZρiZ

−1 by any invertible matrix Z.2

In general, we are interested in studying a set of states
{ρi}i through all the Bargmann invariants among them:
the quantities ∆n(ρi1 , . . . , ρin) for tuples of (not necessar-
ily distinct) labels (i1, . . . , in).
Bargmann invariants play an important role in linear

optics [71], characterizing multiphoton interference. In
the context of invariant theory, multivariate traces of the
form Tr(X1 . . . Xn) have been studied in depth since they
completely generate the ring of invariants over matrix tu-
ples [72]. In Ref. [16], it was pointed out that this feature
can be used to completely characterize the equivalence
classes of unitarily equivalent tuples of states, i.e., tuples
(ρi)

m
i=1 that are mapped to one another by the action of

a unitary map U simultaneously on every state in the tu-
ple: ρi 7→ UρiU

†. We refer to properties of sets of states
that are invariant under such global unitary symmetry as
relational properties. This is the most fundamental prop-
erty of Bargmann invariants: every relational property
of a set (or even a tuple) of states must be expressible
as a function of the Bargmann invariants among those
states.3 As we will see later, in many non-trivial situa-
tions, one requires non-linear functions of invariants, as
is the case for weak values. Moreover, recognizing that a
given function on a set of states can be written solely in
terms of Bargmann invariants reveals that such a function
captures relational information (see Def. 4 below). We
refer to Ref. [72, Sec. 13.9.2], and references therein, for

2 Throughout the text, when dealing with pure states ψ, we adopt
the terser notation ∆n(. . . , ψ, . . .) for ∆n(. . . , |ψ⟩⟨ψ| , . . .).

3 To avert potential misunderstanding, we reserve the letter n to
indicate the order of Bargmann invariants. When studying the
relational invariant properties of a tuple (or set) of states, we
use the letter m to denote its size if its finiteness is relevant,
as in (ρi)

m
i=1. Such properties are characterized by Bargmann

invariants ∆n(ρi1 , . . . , ρin) where i1, . . . , in ∈ {1, . . . ,m} are n
labels.

more information on polynomials over sets of matrices
that are unitarily invariant.

If we let Cn be the unitary representation of the cyclic
permutation of n elements

( 1 2 3 · · · n ) = ( 1 2 )( 2 3 ) · · · (n−1 n ) (13)

that acts as

(a1, a2, . . . , an−1, an)
Cn7−→ (an, a1, a2, . . . , an−1), (14)

it is possible to write any Bargmann invariant as

∆n(ρ1, . . . , ρn) = Tr(Cn ρ1 ⊗ · · · ⊗ ρn). (15)

Because Cn is unitary, we can use a quantum circuit
known as the Hadamard test, shown in Fig. 2(a), to
estimate the Bargmann invariant from Eq. (15). This
procedure was detailed in Ref. [16]. To estimate a generic
n-order Bargmann invariant ∆n(ρ1, . . . , ρn) we input, in
parallel, an auxiliary qubit in the state |0⟩ and the quan-
tum states ρ1, . . . , ρn. We apply a Hadamard gate to
put the auxiliary qubit in superposition, followed by a
controlled unitary operation of the unitary Cn. Depend-
ing on whether we want to estimate the real (s = 0) or
imaginary (s = 1) part of the invariant, we apply the gate
P s = diag(1, is) followed by another Hadamard gate. We
conclude the protocol by measuring the auxiliary qubit
in the Z basis.

There are different circuit constructions of Cn [16, 17],
the simplest of which consists of the applying successive
SWAP operators, thus translating into circuit form the de-
composition of the cyclic permutation into transpositions
from Eq. (13):

Cn = SWAP1,2 ◦ SWAP2,3 ◦ · · · ◦ SWAPn−1,n, (16)

as depicted in Fig 2(b). The circuit must be run multiple
times to estimate the invariant from the relative frequency
estimation of a final computational basis measurement of
the auxiliary qubit. For the specifics of implementing a
qudit SWAP operation, see Ref. [73].
In Sec. 5, we consider how this Hadamard test circuit

can be used to estimate weak values, KD distributions,
and state spectra.
Among the most commonly considered higher-order

Bargmann invariants in the literature are the univariate
traces of a single quantum state, i.e., quantities of the
form ∆n(ρ, . . . , ρ) = Tr(ρn). It is known that learning
sufficiently many of these can be used to estimate the
spectrum Spec(ρ) of a given mixed state ρ [74], an experi-
mental task relevant for, e.g., quantifying coherence [8] or
entanglement [7, 17, 75–78] using resource theory mono-
tones.
Procedures for measuring the quantities {Tr(ρn)}dn=1

have been proposed using visibility-based quantum algo-
rithms [74, 79–81], via similar implementations of the cy-
cle operator [17, 82], and using random measurements [83].

More generally, one may be interested in characterizing
all relational (i.e., unitary-invariant) properties of a set of
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Figure 2. Hadamard test circuit to measure Bargmann invariants. (a) This Hadamard test circuit can be used to
estimate the real and imaginary part of the nth order Bargmann invariant ∆n(ρ1, . . . , ρn) = Tr(ρ1 . . . ρn). The controlled-unitary
(in yellow) is a controlled cycle permutation, and the P s gate equals identity for s = 0, and diag(1, i) for s = 1. (b) Explicit
decomposition of the controlled-cycle gate in terms of 3-system controlled-swap gates, also known in the qubit case as Fredkin
gates.

m states. For pure states, there are known constructions
of complete sets of invariants using O(m2) invariants of
at most order m [16, 84]. Less is known for mixed states,
but the minimum number of invariants in a complete set
is known to depend also on the system dimension [16].

2.4. Nonclassicality of Bargmann invariants

A particularly important relational property of a set
of states, which can be completely characterized by
Bargmann invariants, is pairwise commutativity. Given
any set of states {ρi}i, this is equivalent to the existence
of some unitary U such that UρiU

† is diagonal for all i.
In Ref. [12] the term set coherence was used to describe
the property of a set of states for which no such unitary
exists. For future reference, we write this notion as a
definition.

Definition 3 (Set coherence [12]). Let {ρi}i be a set of
quantum states in a finite-dimensional Hilbert space H.
This set is said to be set incoherent if all the states in
it pairwise commute, or equivalently, if all these states
are simultaneously diagonalizable, i.e. are represented
by diagonal density matrices with respect to the same
reference basis. Otherwise, we say that the set {ρi}i is
set coherent.

Refs. [85–87] studied this property by analyzing the
simplest of Bargmann invariants, two-state overlaps
∆2(ρi, ρj) = Tr(ρiρj).

4

It is sensible to discuss the different realizations of
an invariant, or of a tuple of invariants. We say that
a value for ∆n is realisable if there exists a tuple of

4 A note on terminology: in the literature, the term overlap is
sometimes used to denote the inner product between two pure
states, rather than its modulus squared, as we do here. Moreover,
for pure states, the overlap becomes equivalent to the fidelity
between two states.

quantum states (ρ1, . . . , ρn),for some Hilbert space H,
such that ∆n(ρ1, . . . , ρn) has that value. Typically, there
are infinitely many different realizations of a given value;
for example, every tuple of the form (ψ,ψ) for a pure
state |ψ⟩ realises ∆2(ψ,ψ) = 1.

More generally, we consider tuples of Bargmann in-
variants, for example, the three overlaps among three
states

(∆2(ρ1, ρ2),∆2(ρ1, ρ3),∆2(ρ2, ρ3)) ∈ [0, 1]3. (17)

If only two-state overlaps appear, we also refer to the
tuple as an overlap tuple. It is possible to obtain linear
constraints bounding the tuples of Bargmann invariants
realizable with sets of incoherent states, as shown in Refs.
[85, 86]. We briefly sketch the main ideas of this approach.
First, it is shown that some 0/1-valued assignments to
the overlaps in a tuple are not realizable by set-incoherent
states; in our running example from Eq. (17), this is
the case, for instance, for the triple of values (1, 0, 1).
We then characterize the set of realizable, coherence-free
tuples as the convex hull of all 0/1-valued assignments
for the overlap tuple that are realizable by set-incoherent
states [86].

As the convex hull of a finite number of points, this
forms a polytope, which can also be characterized via
a finite system of facet-defining linear inequalities. For
bounding triples of overlaps among three set-incoherent
states ρ1, ρ2, and ρ3, the simplest such inequality is

∆2(ρ1, ρ2) + ∆2(ρ1, ρ3)−∆2(ρ2, ρ3) ≤ 1. (18)

This discussion will be relevant in Sec. 5 when we relate
nonclassicality of quasiprobability distributions at some
phase-space points to violations of these inequalities.

Ref. [85] studied the polytope C•
3 of overlap triples

realizable by three set-incoherent states. This polytope is
fully characterized by the inequality of Eq. (18), its index
relabellings, plus the trivial inequalities 0 ≤ ∆2 ≤ 1. We
may also consider general quantum realizations, yielding
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the set

Q•
3 =


∆2(ρ1, ρ2)
∆2(ρ1, ρ3)
∆2(ρ2, ρ3)

 ∈ [0, 1]3 : (ρi)
3
i=1 ∈ D(H)3

 .

(19)
This set was shown numerically to be convex in Ref. [85].
It is sometimes referred to as the body of quantum cor-
relations, and parts of it correspond to the elliptope of
Ref. [88]. In Refs. [85, 88] it was shown that points in Q•

3

satisfy the inequality

∆2(ρ1, ρ2) + ∆2(ρ1, ρ3) + ∆2(ρ2, ρ3)

− 2
√

∆2(ρ1, ρ2)∆2(ρ1, ρ3)∆2(ρ2, ρ3) ≤ 1.
(20)

It holds that C•
3 ⊂ Q•

3, and any point in Q•
3 \ C•

3 serves
as a witness of set coherence for the triplets realizing the
tuple of invariants.
For higher-order invariants, there are also constraints

on the values realizable using only set-incoherent states.
It was argued in Ref. [16] that negativity or imaginar-
ity of Bargmann invariants witness this form of basis-
independent coherence for a set of states, namely set
coherence. In Sec. 5 we revisit this idea.
Set coherence in particular (see Def. 3), and noncom-

mutativity of observables in general, is a unitary-invariant
property, i.e., it is independent of a choice of reference
basis. As such, deciding whether a set of observables pair-
wise commute can be framed solely in terms of Bargmann
invariants, as discussed in Ref. [16]. This, in turn, de-
mands the characterization of sufficiently many Bargmann
invariants, forming a so-called complete set of invariants,
which solves the problem entirely: knowing the values of
all Bargmann invariants in that set suffices for deciding
the property of interest. For the case of noncommutativ-
ity, the complete sets of Bargmann invariants and their
associated bounds are not known in general.

A significantly simpler task is to select a single invariant,
or an incomplete family of invariants, or functions thereof,
and use their values to merely witness nonclassicality
in the form of set coherence. Each of these witnesses
signals a different manifestation of noncommutativity
through the possible values attained by them. Because
different witnesses usually capture significantly different
phenomena, they each deserve individual analysis. Still, as
we discuss in this work, all such nonclassicality witnesses
can be framed within the following common terminology.

Definition 4 (Relational nonclassicality). Consider sets
{ρi}i of states in a finite-dimensional Hilbert space H.
A property of such sets is said to be relational when
it is captured by a function f({ρi}i) which is unitarily
invariant in that f({ρi}i) = f({UρiU†}i) for all unitaries
U . We term relational nonclassicality the realization
of values of such a relational property f that are not
realizable with set-incoherent states.

Clearly, Bargmann invariants provide a specific case
of function f in the above definition. Since this is a

particularly relevant case for the analysis in this work,
we may refer to the appearance of nonclassical values as
Bargmann nonclassicality.

Next, we start presenting our results, building on the fol-
lowing three aspects of Bargmann invariants. First, we rec-
ognize functions of Bargmann invariants that correspond
to different concepts we have reviewed, e.g., OTOCs, weak
values, and KD distributions. Following that, we point
out that cycle test circuits can be used to estimate these
quantities without the need for post-selection. Then, we
show that any nonclassical property of the functions of
invariants we consider can be linked to the nonclassicality
of the underlying invariants themselves.

3. BARGMANN INVARIANTS AS A UNIFYING
CONCEPT

In this section, we argue that Bargmann invariants serve
as a unifying concept for the discussion of nonclassicality
in KD distributions and weak values. We show how both
are functions of third-order invariants. The same holds
for extended KD distributions. A practical by-product
of this unified description is the realization that cycle
test circuits can be used to measure weak values, KD
distributions, and the spectrum of quantum states, as we
discuss in Sec. 4.
Starting with the definition of weak value in Eq. (2),

we recognize that

⟨A⟩w =
∑

a∈Spec(A)

a
∆3(ϕ, a, ψ)

∆2(ϕ, ψ)
. (21)

Thus, we regard weak values as functions of second- and
third-order invariants, encoding the relational informa-
tion between the basis associated with observable A, and
the two reference states |ϕ⟩ and |ψ⟩. While weak values
can also be viewed as averages of a conditional KD dis-
tribution [5], this requires the introduction of a second
complete basis of reference into the weak value setup.
Therefore, Eq. (21) expresses the weak value in terms of
an economical function of only the strictly necessary uni-
tary invariants, dispensing with the irrelevant, arbitrary
choice of a second reference basis.
As weak values are functions of Bargmann invariants,

they can be estimated with no need for post-selection,
up to any desired accuracy, using the cycle test circuits
of [16]. This shows that weak values need not be de-
fined with respect to weak measurement schemes, as they
were historically introduced. Eq. (21) provides a nat-
ural description of the weak value as an average of the
eigenvalues of observable A, weighted by a quasiproba-
bility distribution ∆3(ϕ, a, ψ)/∆2(ϕ, ψ) in terms of states
|ϕ⟩ , |ψ⟩. Eq. (21) also shows it is not strictly necessary
to view the weak value as merely the first term in an
infinite series describing the shift of a classical pointer
in a weak measurement scheme [20]. Together with our
analysis presented in Sec. 4, this strengthens the case for
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viewing weak values as interesting constructions of their
own, as argued, e.g., in Ref. [6].
Similarly, the KD quasiprobability distribution can

be also shown to be a relational property of the states
involved, and thus a function of Bargmann invariants.
The definition of the KD distribution at a single phase-
space point, given by Eq. (3), shows explicitly that
ξ(ρ|i, f) = ∆3(i, ρ, f), i.e., that its value is a third-order
Bargmann invariant. The KD distribution encodes the re-
lational information about the quantum state ρ we want
to describe, together with two complete Hilbert space
bases {|i⟩}i∈I and {|f⟩}f∈F .
Consequently, the question of characterizing the non-

classicality of KD distributions (see Def. 2) boils down
to characterizing the nonclassicality of individual third-
order invariants, which we address in Sec. 5. As pointed
out there, this novel perspective may prove useful in the
future for connecting KD-nonclassicality with contextual-
ity, an important open problem in quantum foundations.
From a practical point of view, this simple understanding
allows us to propose in Sec. 4 variations of cycle test
circuits to measure KD distributions with no need for
post-selection, in contrast to previous proposals based on
weak measurements.

The observation above carries over to extended KD
distributions relative to n bases, which are expressible as
(n+1)th order Bargmann invariants. More generally still,
one can express an extended KD distribution of the form
given by Eq. (4), which is relative to arbitrary PVMs (not
necessarily composed only of rank-one projectors, i.e.,
bases). That additionally involves a factor that accounts

for multiplicity. Setting ρik :=
Πi

k

Tr(Πi
k)
, one has5

ξ(ρ|k1, . . . , kn) = ∆n+1(ρ, ρ
1
k1 , . . . , ρ

n
kn)

n∏
i=1

Tr(Πiki).

(22)
This expression shows that at each phase-space point
(k1, . . . , kn) the extended KD distribution describes re-
lational properties between the probed state ρ together
with all the states {ρiki}i. Any nonclassical property
of the quasiprobability distribution must be due to the
nonclassical properties of such higher-order Bargmann
invariants.
A number of constructions that are derived from KD

distributions are, as a result, also functions of Bargmann
invariants. The extended KD distribution used in Eq. (5)
is simply the collection of all invariants of the form

ξ(ρθ|i, i′, f) = ∆4(i, ρθ, i
′, f). (23)

This leads to the representation of the post-selected quan-
tum Fisher information Ips purely in terms of Bargmann

5 This expression was suggested to us by one of the anonymous
referees.

invariants:

Ips = 4
∑
i,i′,f

λiλi′
∆4(i, ρθ, i

′, f)∑
f ∆2(ρθ, f)

−4

∣∣∣∣∣∣
∑
i,i′,f

λi
∆4(i, ρθ, i

′, f)∑
f ∆2(ρθ, f)

∣∣∣∣∣∣
2

.

(24)
Similarly, the quasiprobability distribution behind the
OTOC is an extended KD distribution:

Ãρ = ∆5(λw3 , λ
(t)
v2 , λw2 , λ

(t)
v1 , ρ(t)),

where we use the simplified notation |λwl
⟩ := |wl, λwl

⟩,
|λ(t)vl ⟩ := U(t) |vl, λvl⟩, and ρ(t) := U(t)ρU(t)†.
Finally, it is important to remember the reasoning be-

hind invariant theory: every relational property between
states can be expressed in terms of a set of Bargmann
invariants. This holds true for the spectrum of a quantum
state, with the peculiarity that here we must consider
invariants describing a (multi)set with n copies of a single
quantum state. Estimating quantities of the form

∆n(ρ, . . . , ρ) = Tr(ρn) (25)

for sufficiently large n, one can learn several interesting
properties of a single state, in particular its spectrum, as
we recall later in Sec. 4.6.

There are two upshots from the unified perspective in
terms of Bargmann invariants established in the present
section:
• First, the fact that KD distributions, OTOCs, and weak
values are functions of Bargmann invariants allows for
a unified discussion of nonclassicality in terms of the
values taken by them, in the sense of Def. 4. We use this
insight in Sec. 5, where we establish connections between
the resource theory of set coherence (discussed above,
see Def. 3) and known results on the nonclassicality of
quasiprobability distributions.

• The fact that all the constructions presented can be
written as functions of Bargmann invariants means that
cycle test circuits can be employed to estimate all of
them, as we discuss in the next section.

4. QUANTUM CIRCUITS FOR MEASURING
WEAK VALUES AND KIRKWOOD–DIRAC
QUASIPROBABILITY DISTRIBUTIONS

4.1. Kirkwood–Dirac quasiprobability

Fig. 3(a) presents a circuit for measuring the value
of the KD quasiprobability associated with pure state
|ψ⟩ at a given phase-space point (i, f): ξ(ψ|i, f) =
⟨f |i⟩⟨i|ψ⟩⟨ψ|f⟩ = ∆3(i, ψ, f). The circuit, based on a
cycle test [16], can be straightforwardly generalized to
measure any value Tr(Π1

k1
. . .Πnknρ) of extended KD dis-

tributions; cf. Secs. 4.3 and 4.4. While we here focus on
the case of pure states, the same architecture is capable
of characterizing d-dimensional mixed input states.
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Figure 3. Quantum circuits for measuring the third-order Bargmann invariants characterizing (a) Kirkwood–
Dirac quasiprobability distribution and (b) weak values. P s corresponds either to applying a phase-gate P = diag(1, i)
in case we want to estimate the imaginary part of the invariant (s = 1), or an identity P 0 = 1 = diag(1, 1) in case we want to
estimate the real part (s = 0). Circuit (a) assumes that one can prepare basis states from the two bases {|i⟩}i, {|f⟩}f defining
the KD distribution, as well as the state |ψ⟩ to be characterized. Two variations of the circuit estimate the real and imaginary
parts of the value of the KD distribution at a chosen phase-space point. For the circuit in (b), we require input states that are
eigenvectors {|a⟩}a of an observable A, as well as the pre- and post-selection states used in the standard weak measurement
protocol. On top of that, anomalous weak values result from precisely selecting the overlaps |⟨ϕ|ψ⟩|2, which can be directly
measured using the two-state SWAP test.

The circuit shown in Fig. 3(a) has four wires or systems:
the first is an auxiliary qubit, while the remaining are
d-dimensional systems described by the Hilbert space H
under study. Given a fixed choice of i and f , the circuit
initializes by preparing the product state |0⟩⊗|i⟩⊗|ψ⟩⊗|f⟩.
The specific order is relevant as the value of the Bargmann
invariant changes for different choices of orders, due to
noncommutativity of the rank-one projectors involved.
The circuit then proceeds to put the auxiliary qubit in a
superposition and perform a cascade of controlled-SWAP
operations between the remaining states, as mentioned in
Fig. 2.

Assuming that one can prepare the states |ψ⟩, |i⟩, and
|f⟩, the circuit in Fig. 3(a) measures the (real and imagi-
nary parts of) the third-order Bargmann invariant defin-
ing ξ(ψ|i, f), to precision ε, with high probability, using
O(1/ε2) samples of the triplet of states [17], and therefore
constant order of samples of the state |ψ⟩. Consequently,
the protocol can estimate the entire KD distribution of a
state in any finite dimension d to precision ε with high
probability using a total of Õ(d2/ε2) samples, where the
tilde hides log(d) terms.

Assuming that ⟨i|f⟩ ≠ 0, learning the full KD distri-
bution of a state can be used to perform full tomogra-
phy [48]. Tomography via KD distribution is neither
better nor worse in terms of sample and measurement
complexity than textbook quantum state tomography us-
ing Pauli measurements. The latter requires O(d4/ε2)
samples [89, 90] to achieve a precision ε relative to the
trace distance with high probability. Now, if we learn
the value of the KD distribution of a state ρ at every
phase-space point, we can completely reconstruct the

state by

ρ =
∑

(i,f)∈I×F

|i⟩⟨f |
⟨i|f⟩

ξ(ρ|i, f) (26)

(in fact, this equation holds for any bounded operator,
not just density matrices [4]). We count the number of
samples and measurements required to perform tomogra-
phy in this fashion, where a measurement consists of one
run of the cycle test circuit to estimate some ξ(ρ|i, f). In
order to estimate the value at each phase-space point up to
precision ε with probability 1− δ,6 we need O(ln(2/δ)/ε2)
samples, a bound provided by the Hoeffding concentration
inequality [91, 92]. Assuming that we want to estimate
at every phase-space point with the same precision ε and
probability 1− δ, the number of samples is of the order
of Õ(d2/ε2), where we hide the dependence on δ, as it is
commonly assumed to be fixed.

To compare this scaling in samples with standard to-
mography, we must quantify the success of the procedure
in terms of the distance induced by the 1-norm. Write

ξ̂ for the estimated KD distribution from the cycle test
and ρ̂ for the corresponding estimate of the state ρ, ob-
tained via Eq. (26). Assuming that the values of KD are
estimated with precision ε1 at every phase-space point,

i.e., that
∣∣∣ξ(ρ|i, f)− ξ̂(ρ|i, f)

∣∣∣ ≤ ε1 for all (i, f) ∈ I × F ,

6 Whenever we say that our learning task is successful with high
probability, we mean that we are considering 1− δ with δ > 0 a
fixed small number.
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we then have

∥ρ− ρ̂∥1 =

∥∥∥∥∥∥
∑
i,f

|i⟩⟨f |
⟨i|f⟩

(
ξ(ρ|i, f)− ξ̂(ρ|i, f)

)∥∥∥∥∥∥
1

≤ ε1

∥∥∥∥∥∥
∑
i,f

|i⟩⟨f |
⟨i|f⟩

∥∥∥∥∥∥
1

= ε1 ∥1d×d∥1 = ε1d,

(27)

using that the rank-one operators |i⟩⟨f |/⟨i|f⟩ form an
orthonormal basis of B(H). Therefore, in total, one needs

Õ(d4/ε2) samples to perform full KD state tomography ε
close in the trace distance.
However, from the above calculation, it is clear that

performing full tomography is not necessary for achiev-
ing arbitrarily good precision in learning the KD dis-
tribution of a given state ρ. Therefore, in scenarios
where one is interested in learning solely the KD distribu-
tion {ξ(ρ|i, f)}(i,f)∈I×F , the required number of Õ(d2/ε2)
samples constitutes a polynomial advantage in sample
complexity with respect to performing Pauli-based full
tomography, which requires O(d4/ε2) samples, or even
efficient incoherent full tomography [93], which requires
O(d3/ε2) samples.

4.2. Weak values

Fig. 3(b) presents a circuit for estimating the weak
value Aw of an observable A with respect to pre- and
post-selection states ψ and ϕ. It works similarly to the
cycle test described in Sec. 4.1. The main difference in
the estimation of the weak value stems from the fact
that it requires running two different circuits. The first,
used to estimate the numerator of the expression for the
weak value in Eq. (21), works just like the one shown in
Fig. 3(a), while the second corresponds to a simple SWAP-
test for estimating the denominator of Eq. (21). Such a
process estimates a single summand ∆3(ϕ, a, ψ)/∆2(ϕ, ψ).
To obtain the entire weak value, the procedure must be re-
peated for each eigenvector, and the estimated quantities
then summed after being weighted by their corresponding
eigenvalue.
The whole procedure assumes that we are able to not

only prepare the selected states |ϕ⟩ and |ψ⟩, but also each
eigenvector |a⟩ of A. This could be feasible given the
mathematical description of the spectral decomposition
of the operator A. But even in a more operational setup,
it could be achieved, for example, if assuming the ability
to perform a (strong) measurement of A on the totally
mixed state.

The nonclassicality of weak values, witnessed by anoma-
lous negative or nonreal values, can also be directly esti-
mated using the above circuit and analyzed through the
lens of Bargmann invariant nonclassicality. This result dis-
sociates once more weak values from weak measurements,
similarly to the discussions in Refs. [6, 94, 95].

The lack of post-selection might suggest that the sam-
ple complexity for measuring weak values using the cycle
test improves over the standard weak measurement pro-
tocol. The following theorem shows that this is not the
case. In fact, if the overlap between the pre- and post-
selected states is small, our bounds show that the cycle
test performs worse.

Theorem 5. For estimating the weak value Aw with
precision ε and high probability, one needs N (weak) =
O(|Aw|2/ε2∆2(ϕ, ψ)) samples when using the standard
weak measurement scheme, with ∆2(ϕ, ψ) = |⟨ϕ|ψ⟩|2 be-
ing the probability of successful post-selection. Moreover,
one needs N (cycle−test) = O(|Aw|2/ε2∆2(ϕ, ψ)

2) samples
when using the procedure based on cycle tests.

We formally prove this result in Appendix A. Intuitively,
the difference in the number of required samples comes
from the fact that the estimate using cycle tests is con-
structed from the estimation of two quantities—a second-
and a third-order invariants—while the standard weak
measurement scheme directly estimates the weak value
from the pointer’s position. Since to observe anomalous
weak values in most relevant situations—in particular in
weak-value amplification schemes—the overlap ∆2(ϕ, ψ)
needs to be close to zero,7 this difference in sample com-
plexity makes the protocol suboptimal. Therefore, one
needs to look for specific cases of interest for which the
cycle test may be more relevant. A clear example is pro-
vided by experimental situations in which one utilizes
purely imaginary weak values [96–98]. In these cases,
simply witnessing imaginarity boils down to observing
imaginary third-order invariants related to the numerator
of the weak value Aw, a task that (with high probability
and to precision ε) requires only O(d/ε2) samples.

4.3. Post-selected quantum Fisher information

We have seen that KD distributions can be extended to
involve a larger number of bases (or PVMs) as described
by Eq. (4), and that such constructions have appeared
in the literature expressing important quantities behind
OTOCs or quantum advantage in post-selected metrol-
ogy, for example. Their description effectively requires
Bargmann invariants of order higher than 3; see Eq. (22).
In Fig. 4, we describe circuits specifically targeted to
measuring such quantities.
The circuit in Fig. 4(a) measures the fourth-order

Bargmann invariant in the expression for the post-selected

7 However, note that weak values with a small imaginary part do
not require small overlaps between the pre- and post-selection
states, and are also anomalous weak values. A simple example
is the weak value of σx for a system pre-selected in |z−⟩ and
post-selected in |y+⟩, which is (σx)w = −i. A similar argument
can be made when the real part of a weak value lies slightly
outside the interval determined by the spectrum of the operator.
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Figure 4. Bargmann invariant circuits for measuring the extended Kirkwood–Dirac quasiprobability distributions
behind (a) the post-selected quantum Fisher information and (b) the out-of-time-ordered correlator. P s is as
described in Fig. 3. C4 and C5 correspond to the circuit implementation of the unitary discussed in Sec. 2.3. Part (a) shows how
one can measure the post-selected quantum Fisher information using the cycle test and applying a unitary operator Uθ = e−iθI

over the state |ψ⟩ considered in the protocol. It is assumed to be possible to prepare, in parallel, states |f⟩ associated with the
post-selection and the eigenstates related to the operator I. Part (b) shows the protocol for estimating the out-of-time-ordered
correlator from the related Bargmann invariants. A possibly scrambling unitary U is applied to ρ and to the projectors related to
the eigenspaces of v and w defined by ΠV

v and ΠW
w , respectively. It is possible to avoid an effective backwards-in-time evolution

to estimate the OTOC, for any pair of observables V and W .

quantum Fisher information; see Eq. (24). This quantity
is of interest, for example, in proof-of-principle experi-
ments such as that performed in Ref. [68]. We discuss in
detail how to make such a measurement using this simple
quantum circuit.
Recall the metrological scenario for parameter estima-

tion considered in Sec. 2.2.1, and the notation therein.
The circuit in Fig. 4(a) consists of one (auxiliary) qubit
and four systems described by the d-dimensional Hilbert
space of interest. It is initialized by preparing the product
state

|0⟩ ⊗ |i⟩ ⊗ |ψ⟩ ⊗ |i′⟩ ⊗ |f⟩ , (28)

where |i⟩, |i′⟩ are elements of an eigenbasis of (the Hamil-
tonian) I and |f⟩ an element of a basis for the range of the
(post-selecting) projector F . The order in which those
states are considered matters, being related to the order
in the KD distribution presented in Eq. (6). The circuit
then proceeds by applying a local unitary Uθ = e−iθI on
the state |ψ⟩, which encodes information about the value
of θ.
A cycle test is then performed over the four states,

similarly to the procedures discussed in Sec. 4.1 or Sec. 4.2.
The auxiliary qubit is put in a superposition and three
controlled SWAP operations are applied: first between |i⟩
and |ψθ⟩, then between |ψθ⟩ and |i′⟩, and finally between
|i′⟩ and |f⟩. As before, to estimate the real part of the
invariant from Eq. (6) one simply measures the auxiliary
qubit in the X basis, while to estimate the imaginary part
of the invariant one first applies a phase gate P = diag(1, i)
and then measures the auxiliary qubit in the X basis.

The description above corresponds to a single run of the
protocol, which estimates a specific value of the extended
KD distribution of |ψθ⟩ for a given phase-space point.
To estimate the entire function Ips, one must generate

statistics for each preparation of the form in Eq. (28)
for all the labels i, i′, and f . The basis {|i⟩}i has d
elements, corresponding to the Hilbert space dimension,
while {|f⟩}f has fewer labels than d.

A note on the measurement and sample complexity
related to estimating the post-selected quantum Fisher
information in particular, and the extended KD distribu-
tion more generally, is necessary. Estimating Ips by this
method requires Õ(d3/ε2) samples and measurements, as
all the information from the entire extended KD distribu-
tion is relevant. This does not represent an information
complexity gain to experimentally probe this quantity as
there are other approaches that require fewer samples.
For instance, as we will recall in Sec. 4.6, some techniques
to estimate the spectrum (which are also used to perform
full tomography) solve the problem using O(d2/ε2) sam-
ples. Yet, due to the intricate aspects of performing ideal
protocols such as these, the circuit from Fig. 4(a) has
the potential advantage of providing a simple and fixed
structure for the measurement to be performed.
It is worth mentioning that, as in the experiment per-

formed in Ref. [68], one may be interested in estimating a
single phase-space point of the extended KD distribution,
in order to monitor the presence of negative values. In
such a case, provided we have access to some triplet of
states {|i⟩, |i′⟩, |f⟩} with i ≠ i′, estimating a single phase-
space point has a simple scaling in terms of complexity
relative to the one described in Sec. 4.1. To estimate any
extended KD phase-space point value ξ(ρ|Πk1 , . . . ,Πkn).
one needs Õ(1/ε2) samples, while a number of samples

of order Õ((n + 1)d2/ε2) is required to perform full to-
mography of all the states and projectors involved in the
calculation.
As discussed in Ref. [13, Supp. Note 2], imaginary

values of the post-selected quantum Fisher information
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do not contribute to metrological advantages since they
cannot increase the second term of Ips as described by
Eq. (5). Hence, if one is only interested in witnessing the
presence of the resource, namely negativity, one can use
the circuit version of Fig. 4(a) with s = 0 (i.e., P s = 1)
to estimate the real part of the invariant.

To conclude this section, we remark that our circuits can
be applied, after straightforward adaptations, to estimate
more general definitions of the post-selected quantum
Fisher information matrix, relevant for multi-parameter
estimation, e.g., from Ref. [67, Eq. (37)].

4.4. Out-of-time-ordered correlators

The circuit in Fig. 4(b) applies the cycle test to mea-
sure OTOCs. From Eq. (8), we may use the fact that U
is unitary and that the equivalence between the Heisen-
berg and Schrödinger pictures to rewrite the Bargmann
invariant defining the OTOC as

Tr(ΠW (t)
w3

ΠVv2Π
W (t)
w2

ΠVv1ρ)

= Tr(U†ΠWw3
UΠVv2U

†ΠWw2
UΠVv1ρ)

= Tr(ΠWw3
UΠVv2U

†ΠWw2
UΠVv1U

†UρU†)

= Tr(ΠWw3
U(ΠVv2)Π

W
w2

U(ΠVv1)U(ρ)),

(29)

where U(·) := U(·)U† is the dynamical evolution in the
Schrödinger picture. This allows us to have the cycle test
that evaluates the OTOC without the need for applying
the reversed evolution U†. As compared with the proto-
cols for estimating OTOCs reported in Ref. [4], not only
does the cycle test avoid an effective backwards-in-time
evolution, it also does away with the need for the auxiliary
qubit to remain coherent during the scrambling dynam-
ics. The protocol estimates the extended KD distribution
behind the OTOC in either its coarse-grained version
or the fine-grained description of Eq. (11), which carries
nonclassical information that brings further relevant tools
to the analysis of the scrambling dynamics [14, 15].

These observations place the cycle test as an interesting
new paradigm for estimating OTOCs, in comparison with
all protocols reported in Ref. [4, Table I, pg. 12]. Two
important drawbacks of this protocol are: the fact that
it requires quantum information processing of possibly
many degrees of freedom in parallel, and the assumption
that one is capable of preparing the states associated with
the eigenprojectors ΠWw and ΠVv . Note that the latter
assumption can be reduced to being able to measure the
observables W and V (on any state)

A similar research direction was pursued in Ref. [99],
where the authors analyzed when indirect metrological
inference can be replaced by direct measurement processes,
focusing on the Hadamard test. Our approach allows us
to make claims that are similar in nature. For instance,
Bargmann invariants can also be used to directly measure
OTOCs.

4.5. Comparison with other methods for estimating
the Kirkwood–Dirac quasiprobability distribution

We have seen how to use cycle test circuits to estimate
the KD distribution in Sec. 4.1, weak values in Sec. 4.2,
and also two specific examples of interest in Secs. 4.3
and 4.4. We proceed to situate our measurement scheme
among those reviewed in Refs. [4, 5]. Table I compares
our proposal with several protocols found in the literature.
The first column presents the references that introduced
the measurement scheme reviewed, which in some cases
were not directly linked to estimating the KD distribu-
tion but were later shown to serve for this purpose in
Ref. [5]. The second column shows the output of the
protocol after gathering statistics, which in most cases is
later used to infer the KD distribution. The third and
fourth columns show the number of measurements and
samples of the state ρ ∈ D(H) per trial of the experiment,
where we consider weakly coupling to a pointer as an-
other measurement. The fifth column indicates whether
weak measurements are involved in the scheme, meaning
that weak couplings are necessary. Finally, the last col-
umn indicates the required number of auxiliary quantum
systems.

As these protocols are quite different in nature, it is
challenging to make fair comparisons. In what follows,
we detail the specifics of each protocol and explain the
reasoning for the information in Table I. We choose to
present the number of measurements and samples per
trial as most proposals lack a formal complexity analysis
(the exception is the protocol presented in Ref. [105]).
Making a complexity analysis for each protocol would be
beyond the scope of this work, and could potentially hide
relevant constant factors in the number of measurements
or samples needed.

Table I analyzes the resources for estimating just the
real part Re[ξ(ρ|i, f)] with i, f fixed. Estimating the imag-
inary part constitutes a different experiment in all cases
except for the interferometric protocol from Ref. [104],
which estimates inner products; in this case, our analysis
considers the estimation of the value ξ(ρ|i, f). In the
other cases, to also take into account the estimation of
Im[ξ(ρ|i, f)] one simply has to multiply all measurements
and samples by 2. Whenever there is more than one
output (e.g., second row), parallel estimations need to
take place to reconstruct the KD distribution phase-space
point ξ(ρ|i, f), increasing the number of measurements,
samples, and auxiliary systems per trial. We now proceed
to discuss each protocol in more detail.

The protocol first introduced in Ref. [48] was recently
investigated in Ref. [5] and implemented in Ref. [54]. It
demands the parallel implementation of three different
schemes, each of which uses one sample of ρ per trial:
a two-point measurement (TPM) [106] to learn pTPM

if ,
another similar scheme with a non-selective measure-
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Protocol Output # Meas. # Samples of ρ ∈ D(H) Weak Meas. # Aux. Systems

1) Fig. (3) ξ(ρ|i, f) 1 1 No 1 qubit + 2 systems H

2) Ref. [48] pTPM
if , pEND

f , pWTPM
if 5 3 No 0

3) Ref. [100] χ(u, v) 1 1 No 1 environment

4) Ref. [101] p±,if 3 1 No 1 system H

5) Ref. [102] Pointer shift 3 1 Yes 0

6) Ref. [103] Pointer shift 3 1 Yes 0

7) Ref. [104] ⟨i|ρ|f⟩, ⟨f |i⟩ 6 1 No 2 qubits

8) Ref. [104] Pweak 3 1 Yes 0

9) Ref. [105] ξ(ρ|i, f) 1 1 No 3 qubits

Table I.Comparison between our approach and other methods for estimating the Kirkwood–Dirac quasiprobability
distribution. We compare previously proposed protocols (rows 2–9) with the one studied here (row 1). The first column
shows the general output of the protocol; in the main text, we explain how one can recover the KD distribution from such
outputs. Other columns indicate the number of measurements, samples, and auxiliary systems necessary for each single trial of
the protocol, and whether it requires weakly coupling to a pointer, i.e., weak measurements. These single trials are solely for
the estimation of the real part of the KD-value ξ(ρ|i, f) for fixed ρ, i, and f . All protocols are also capable of estimating the
imaginary part with similar schemes. The protocol in row 6 estimates inner products, hence both real and imaginary parts,
which makes a fair comparison more subtle. Abbreviations: Meas.: measurement, Aux.: auxiliary.

ment8 to estimate pWTPM
if , and a final experiment with

a single measurement to estimate pEND
f . The real part

of the KD distribution is then recovered by computing
Re[ξ(ρ|i, f)] = pTPM

ij + 1
2 (p

END
f −pWTPM

if ), while the imag-
inary part can also be estimated with a similar setup. It
is unclear how this protocol scales in terms of sample
and measurement complexity. Our protocol demands
fewer measurements and samples at the cost of quantum
memory for the states |i⟩ and |f⟩.

The protocol from Ref. [100] estimates the characteris-
tic function χ(u, v) =

∑
if ξ(ρ|i, f)eiλfv+iλiu of the KD

distribution with an interferometric scheme. It needs
to couple the system of interest to an auxiliary system
(called an environment) for the estimation of the real and
imaginary parts of χ(u, v). Importantly, to recover the
KD distribution, one needs to post-process the final result
by applying an inverse Fourier transform over χ. This
might impact on the scalability, in case the classical pro-
cessing demands more precision in the estimation, as does
the classical post-processing for estimating the spectrum,
which we will see in Sec. 4.6.

While the protocols discussed above were studied with
a focus on quantum foundations and quantum thermo-
dynamics, the one from Ref. [101] provides a general
way of estimating Tr(ρAB) for two observables A and
B. It demands an auxiliary system described by the
d-dimensional Hilbert space H prepared in a maximally

8 This procedure was termed weak TPM in Ref. [5]. While no weak
measurement is needed, the fact that a non-selective (unsharp)
measurement is used resembles the statistics that can be obtained
from a weak measurement.

mixed state. It then has one joint projective measurement
over the target and auxiliary systems M± := {Π+,Π−}
with Π± := (1±SWAP)/2, together with local projec-
tive measurements in each system, {|i⟩⟨i|}i and {|f⟩⟨f |}f .
The probability of obtaining ± from the first measurement
M± followed by i and f from the local measurements is
denoted by p±,if . One then recovers the real part of
ξ(ρ|i, f) by

Re[ξ(ρ|i, f)] = d+ 1

2
p+,if −

d− 1

2
p−,if . (30)

Note that this needs more measurements per trial than our
protocol, but, due to the probabilistic nature of quantum
measurements, one cannot target specific phase-space
points unless outcomes from the local measurements are
post-selected.

The protocol from Ref. [102] is based on joint weak mea-
surements together with the estimation of higher-order
weak values, which implies that the effective output to
be measured is the statistics of an average of a pair of
pointer shifts. It is important to point out that Ref. [102]
does not directly link their findings to estimating the KD
distribution, while we (and Ref. [5]) argue that, with a
direct re-reading of the protocol, one can connect the
average shift of the pointer to KD values. The number of
measurements in total is two weak measurements involv-
ing interactions with two different pointers in sequence,
followed by final projective measurements. Since the pro-
tocol is based on standard weak measurement techniques,
there is the need for post-selection.

While the protocol just mentioned is capable of estimat-
ing the KD distribution using joint weak measurements
(requiring at least two systems) a similar approach us-
ing sequential weak measurements from Ref. [103], and
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experimentally implemented in Refs. [38, 107], is also
capable of estimating the KD distribution using a weak
measurement scheme.
The interference scheme from Ref. [104, Appendix B]

consists of estimating each inner-product ⟨f |i⟩ and ⟨i|ρ|f⟩
separately. The general way proposed to estimate ⟨i|ρ|f⟩
is using quantum state tomography and for estimating
⟨f |i⟩ the interferometer needs to estimate the real and
imaginary parts separately by performing two parallel
experiments: a SWAP test and another more involved
one. The overall protocol becomes fairly demanding in
terms of measurements and samples, especially due to
the need to reconstruct each inner product and the esti-
mation of ⟨i|ρ|f⟩. The same reference proposes a better
scheme to estimate the extended KD distribution relevant
for OTOC measurements that remains valid for general
extended KD distributions (see Table I). In each trial
of this weak-measurement-based scheme, for a general
state ρ, one performs one weak measurement and two
strong measurements in the pre/post-processing parts.9

For more details, see Ref. [104, Appendix A, Eq. (A5)]
and Ref. [4].

Finally, we comment on the more recent protocol intro-
duced in Ref. [105]. The ideas present there greatly resem-
ble our scheme since something similar to a Hadamard
test is performed (and a careful analysis of sample com-
plexity is presented). The main difference is that instead
of using auxiliary systems to prepare states |i⟩ and |f⟩
entering a generic cycle test, the method uses auxiliary
qubits and performs block-encoding unitaries Ui and Uf
that act on the joint system composed of |ψ⟩ and the
auxiliary qubits. As far as we know, this protocol is the
only one that requires a similar number of samples and
measurements to our approach without the need for major
classical post-processing. The main difference between the
two is that we avoid the need for different block-encoding
unitaries Ui and Uf for each phase-space instance, at the
cost of having access to a quantum memory with prepared
states |i⟩ and |f⟩. Sidestepping such encoding issues clar-
ifies the relational properties of the states involved, and
may simplify the classical pre-processing for larger phase
spaces, favoring our protocol. Meanwhile, for near-term
devices, the lack of a large quantum memory may be more
crucial, favoring the protocol introduced in Ref. [105].

In contrast to the other methods listed in Table I, our
protocol works even when no classical description of the
states being compared is available. In other words, the
cycle tests we use can receive as inputs unknown states
provided by third parties, which may suit applications
involving, for example, state comparisons in networks. In

9 In fact, this proposal requires three weak measurements since
they are essentially estimating a higher-order invariant appearing
in the OTOC. We use fewer weak measurements since we consider
only the usual KD distribution. While this makes it more difficult
to compare with our approach, this protocol is still an interesting
measurement scheme to be considered for estimating the KD
distribution.

that, our protocol is akin to the programmable quantum
gate arrays, first proposed in Ref. [108], where a fixed
circuit has different functionalities depending on the input
program states.
We sum up with a more detailed comparison of

our proposal with those in Table I. Our protocol re-
quires fewer measurements or samples than those from
Refs. [48, 101, 102, 104], does not require post-selection
or weak measurements as that from Ref. [102], does not
require classical post-processing of data such as that
from Ref. [100] ( which applies the inverse Fourier trans-
form), and it does not require a different Hadamard test,
nor complete information on the states |i⟩ and |f⟩, for
each KD phase-space point as that from Ref. [105]. Simi-
larly to the protocol from Ref. [105], our protocol allows
the estimation of the distribution at a single phase-space
point.

4.6. Estimating the spectrum of a quantum state

So far, all quantities considered have depicted some
relational aspect among different states in a set. Inter-
estingly, cycle test circuits can also be used to estimate
quantities associated with a single quantum state. In this
section, we start by discussing quantum circuits that can
estimate univariate trace polynomials Tr(ρn), reminiscent
of known approaches [80]. We carefully address the nu-
merics of estimating the spectrum using these quantities
due to the post-processing of classical data required by
the Faddeev–LeVerrier algorithm. Finally, we provide a
careful analysis in terms of the sample complexity needed
to perform the task, together with a comparison with the
best protocol available, known as the empirical Young
diagram algorithm. We revisit the task of learning the
spectrum, known from the early 2000s [74], in light of
the results from Ref. [109] that provided optimal bounds
for sample complexity of learning the spectrum, arguing
that with our circuits it is possible to achieve the same
efficiency with a simplified construction.
In Fig. 6, we describe the cycle test circuit that esti-

mates Tr(ρn) for any given n ∈ N. It uses a single auxil-
iary qubit and n controlled-SWAP gates over n copies of
the state ρ. This proposal is not optimal in the number of
gates, however. In Refs. [16, 17], families of circuits were
proposed with either logarithmic or constant depth. Yet,
we observe that such advantage in depth is gained at the
cost of an increase in space, as the proposals require the
preparation of auxiliary multi-party Greenberger–Horne–
Zeilinger (GHZ) states [110].

The Faddeev–LeVerrier algorithm, which uses the New-
ton identities [19, Chapter 3], allows us to compute the
characteristic polynomial of the density matrix ρ from
the quantities {Tr(ρn)}dn=1. The eigenvalues are then ob-
tained by finding the roots of the characteristic equation.
We provide code for this computation, as well as support-
ing information, in the repository [111], where we present
these ideas with an experimentally-friendly approach.
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Figure 5. Average root-mean-squared error (RMSE)
of the estimate for the real part of the eigenvalues of
random mixed states, under Gaussian noise ϵ. We start

from a data set of exact values of ∆n := Tr(ρn), {∆̂n}dn=2,
introduce Gaussian noise with standard deviation ε, and plot
the average root-mean-squared error (RMSE) of the estimated
eigenvalues under noise. The spectrum reconstruction uses
the Faddeev–LeVerrier algorithm based on Newton’s identities,
and the average RMSE is over 5000 samples, each used to
generate 1000 noisy samples. We use the Ginibre random
ensemble of mixed states of rank larger than one, employing
the algorithm introduced in Ref. [112].

This algorithm has some limitations, associated with
finding the roots of the characteristic polynomial. As
the dimension of the system increases, the coefficients
of lower-degree monomials decrease, making them prone
to numerical inaccuracies. We find that, for dimensions
greater than 9, the predicted roots have an imaginary part
larger than 10−8. This imaginary part appears because of
numerical inaccuracies, and it is independent of statistical
or experimental noise. Therefore, it does not affect the
error in the real part of the predicted eigenvalues, and
we may simply discard the imaginary part of the results.
Appendix B presents a thorough study of this behavior.

In real experiments, noisy data will distort the predic-
tions of the algorithm. In Fig. 5, we study the aggregated
root-mean-squared error (RMSE) of the real part of the
eigenvalues of random mixed density matrices considering
different amounts of noise in the experimental data. For a
given set of traces computed from a random state, we can
simulate the results from experiments by adding Gaussian
noise with standard deviation ε. This noisy set of traces
represents the average results from experiments accurate
up to an error ε. The RMSE is computed by comparing
the predictions of the algorithm using the noisy traces
with the noiseless ones. We repeat the procedure and
average with 1 × 103 noisy versions for each state, for
5× 104 random states using the Ginibre ensemble [112].
These numbers are not related to the experimental sam-
ples required to estimate the traces, but to give enough

statistics to see the response of the algorithm to noisy
data. Due to the estimation of the entire spectrum, it is
expected that higher dimensions incur a high RMSE even
for small ε. Typical error ranges in experimental realiza-
tions, e.g., ε ∼ 10−3, would allow us to estimate the entire
spectrum for dimensions 3 or 4 with good accuracy. A
lower error ε in the experimental data could be attainable
by increasing the number of samples. We remark that we
only take statistical errors into account, as more details
about the specific experimental implementation would be
needed for further error analysis.

A simpler task involves learning the largest eigenvalue
of ρ with high precision. This task should give better re-
sults as the higher-degree coefficients of the characteristic
polynomial have a greater size than those of lower degrees,
and are thus less affected by noise. We study the scaling
of the error in the estimation of the largest eigenvalue
in Appendix B. As expected, higher dimensional systems
can be studied. For instance, for an experimental error of
ε = 10−4, the average RMSE is around 5× 10−3 for di-
mension 6. However, measuring the complete set of traces
for estimating the largest eigenvalue is not an optimal pro-
cedure. While the coefficients of higher-degree monomials
of the polynomial require traces of lower orders in powers
of the density matrix, coefficients of lower degrees require
traces of higher orders. As these traces require a more
complex circuit, they will also be noisier. A sensible alter-
native for computing the largest eigenvalue is to truncate
the polynomial to a certain lower degree k [78], that is, to
compute the higher-degree coefficients of the polynomial
using traces of lower powers of ρ, {Tr(ρ2), . . . ,Tr(ρd−k)}.
In this approximation, the traces that are more difficult to
measure are not taken into account, as their contribution
is smaller.
Oddly enough, estimating the spectrum of ρ from

{Tr(ρn)}dn=1 for d > 2 has not, to the best of our knowl-
edge, received any attention from experimental investi-
gations yet, even though one can show that the required
number of samples is optimal.

Theorem 6. The number of samples needed to estimate
{Tr(ρn)}dn=1 up to precision ε in all quantities with high

probability is N = Õ(d2/ε2) with the cycle test. The
number of measurements needed over auxiliary qubits is
Õ(d/ε2).

We prove this result in Appendix B. The protocol of
Ref. [17] improves this sample complexity by logarith-
mic factors, obtaining that order O(d2/ε2) samples are
needed with high probability. One can learn the spectrum
of a given state ρ using an optimal number of samples
and measurements using the cycle test circuits described
in this work or those described in Ref. [17]. The best
bounds on the number of samples needed to estimate the
spectrum Spec(ρ) for d-dimensional mixed states ρ were
first rigorously obtained in Refs. [113, 114] with the use
of the empirical Young diagram (EYD) algorithm, later
connected with complexity-theoretic arguments [109, 115],
and formally used to show that the same sample complex-
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Figure 6. Circuit for measuring Tr(ρn). The input consists
of n copies of a d-dimensional state ρ. Measurements of Tr(ρn)
for n = 1, 2, . . . , d gives us the spectrum of ρ, via the Newton
identities.

ity is optimal for full state tomography [93, 116–118].

We provide a brief review of the EYD algorithm. Recall
that by Schur–Weyl duality, the n-tensor product of Cd

decomposes as a direct sum of irreducible representations
of U (d): (

Cd
)⊗n ∼=

⊕
λ

(Vλ)
⊗mλ (31)

where the direct sum goes over all partitions λ of n as
a sum of no more than d positive integers. The direct
sum contains mλ copies of the irreducible representation
Vλ, where mλ is the number of standard Young tableaux
corresponding to the partition λ. The irreducible represen-
tations Vλ (also known as Weyl modules in this context)
can be constructed from (Cd)⊗n as the images of cer-
tain projections. Essentially, for each standard Young
tableau, the corresponding projection acts on (Cd)⊗n by
symmetrizing the tensor indices 1, . . . , n that correspond
to each row of the tableau, and anti-symmetrizing the
indices corresponding to each column. Now, the EYD
algorithm is performed by fixing a large value of n, and
then measuring ρ⊗n with respect to the projections {Πλ},
where Πλ projects onto the subspace indexed by λ in
Eq. (31). The measurement outcome λ is a set of positive
integers that sum to n. After dividing each one by n, they
comprise an estimate for the nonzero eigenvalues of ρ.

Some important differences between the two methods
for learning the spectrum—the EYD algorithm and the
protocol using the cycle test—deserve to be mentioned.
To implement the EYD algorithm, one needs to measure
ρ⊗n in the highly entangled Schur basis (an orthonormal
basis comprised of eigenvectors of the projections Πλ),
and to obtain the spectrum with precision ε, one needs
nEYD = O

(
d2/ε2

)
. In terms of sample complexity, this

is optimal: one requires N = nEYD copies of ρ, which is
the optimal sample complexity—and the same as in our
protocol, as stated before.

At first glance, the EYD algorithm may seem to be sim-
pler, as it requires implementing only a single quantum
circuit. Indeed, one should choose a large enough value of
nEYD, and then implement the Schur transform (mapping
the Schur basis to the computational one) and measure
the final state only for that fixed nEYD. In contrast, our
approach requires estimating Tr (ρn) for n = 1, . . . , d,
where every increment of n requires a slightly larger cir-
cuit. However, this “partition” of the algorithm into d
quantum circuits holds a huge practical advantage. As is
evident from the previous paragraph, the EYD algorithm
requires a quantum computer that can reliably sustain
a highly entangled state in a Hilbert space of dimension
dnEYD . This dimension grows larger for smaller desired
precision ε. In contrast, in our approach, the largest
circuit acts on dimension dd, which still grows large for
higher values of d but does not depend on ε. Moreover,
the gate complexity of the Schur transform is polynomial
in both d and nEYD [119], while the complexity of the
circuit for measuring Tr (ρn) only depends on n.10 Thus,
the gate complexity of our approach does not depend on ε
and is generally much smaller when compared with EYD.
It should be noted that the authors of Ref. [120] over-

come the issue of gate complexity by considering a specific
experimental setup where the symmetry of the interaction
Hamiltonian is utilized to implement the Schur transform
efficiently.11

Moreover, other methods have been proposed for esti-
mating Tr(ρn). One such test, known as Brun’s multicopy
method [121], uses the fact that any polynomial f(ρ) on
the matrix elements of ρ, with respect to some fixed basis,
can be expressed as the expectation of some operator
acting over ρ⊗m for some natural number m. Observables
acting over such tensor products are sometimes called
multicopy observables and have been proposed to access
nonclassicality of quantum states in optics [122]. For a
formal comparison between our scheme and Brun’s, see
Ref. [121, Sec. V]. It is also worth mentioning that the
cycle test was used in earlier works [79], focusing on the
estimation of Tr(ρn) only, without considering more gen-
eral Bargmann invariants. Another recently introduced
methodology for general estimation of Bargmann invari-
ants is presented in Ref. [17].

5. MINIMAL EXPERIMENTAL CONDITIONS
FOR WITNESSING NONCLASSICALITY

Most of the constructions discussed in the last section
capture the community’s interest because they present

10 Or even better, achieving log(n), as shown in Ref. [16], or constant
depth, as shown in Ref. [17].

11 While acknowledging that some of the experimental aspects
needed to implement the EYD algorithm “seem like a daunt-
ing task in practice” [120, pg. 3].
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features that are puzzling to be described classically—
notably, values that are negative or have nonzero imag-
inary part. Given that the protocols discussed in this
work are capable of estimating these quantities, we are
now interested in studying minimal experimental setups
for which it is possible to witness nonclassicality in various
guises.
We first discuss how the negativity or imaginarity of

(third- and higher-order) Bargmann invariants, and in
particular that of weak values or KD distributions, can
be understood as witnessing quantum (set) coherence.
However, following Ref. [86] (see Sec. 2.4), set coher-

ence can also be witnessed from two-state overlaps. So,
afterwards, we consider to what extent these two ways of
witnessing coherence are interrelated. In particular, we
consider the question of whether anything can be inferred
about the negativity or imaginarity of third-order invari-
ants from knowledge of pairwise overlaps alone. In the
simplest scenario, with three states, it turns out that, in
general, overlaps alone are not enough to decide about
negativity or imaginarity of third-order invariants, but
if one restricts to real amplitude states, then overlap
nonclassicality and negativity of the third-order invari-
ant are mutually exclusive (complementary) witnesses of
coherence.

5.1. Negativity, imaginarity, and set coherence

5.1.1. Negativity and imaginarity as coherence witnesses

As reviewed in Sec. 2.4, the assumption of set incoher-
ence for a set {ρi}i of quantum states, described in Def. 3,
imposes restrictions on tuples of Bargmann invariants
among states drawn from that set. This was extensively
studied in Refs. [85, 86] for the case of overlaps, and briefly
mentioned in an appendix of Ref. [16] for more general
Bargmann invariants. One such restriction is that all the
invariants must necessarily be real and nonnegative (in
fact, must take values in the interval [0, 1]), as we now
see.
Consider a set of states {ρi}i in a finite-dimensional

Hilbert space H, and suppose that it is set incoherent.
This means that its elements are simultaneously diago-
nalizable, i.e., there is a basis with respect to which all
those states ρi are represented by a diagonal matrix, say

diag(p
(1)
i , . . . , p

(d)
i ), where d = dim(H). Any Bargmann

invariant drawn from this set then takes the form

∆n(ρi1 , . . . , ρin) =

d∑
k=1

p
(k)
i1
. . . p

(k)
in
. (32)

This value can be understood as the probability that, upon
measuring the n states ρi1 , . . . , ρin with an observable
corresponding to the basis that diagonalizes all the states
in {ρi}i, they all return the same outcome.
Nonreal or negative values are blatantly at odds

with this interpretation, and thus immediately rule out

a set-incoherent realization. More generally, the spe-
cific form in Eq.(32) constraints the possible values
of Bargmann invariants—and of tuples of Bargmann
invariants—admitting a set-incoherent realization.

Let us remark that Bargmann nonclassicality, as in
Def. 4, is not equivalent to set coherence or incompatibil-
ity, from Def. 3. Bargmann nonclassicality is associated
with functions of Bargmann invariants attaining values
inaccessible by set-incoherent realizations. Each depar-
ture from such a set incoherent explanation signals a
specific form of nonclassicality. A few examples that we
have already encountered are (i) Re[∆n(ρ1, . . . , ρn)] < 0
(negativity), (ii) Im[∆n(ρ1, . . . , ρn))] ̸= 0 (imaginarity),
and (iii) violations of overlap inequalities as in Eq. (18)
(interpretable as coherence from two-state overlaps, as per
Ref. [86]), each of which expresses an inequivalent form
of Bargmann nonclassicality. Imaginarity, in particular,
received some attention in Ref. [16].

5.1.2. Nonclassicality in weak values and KD distributions
as relational nonclassicality

Negativity and imaginarity have also been studied as
markers of nonclassicality for weak values or KD distribu-
tions. Given our rendering of these quantities in terms of
Bargmann invariants, the observations above admit a read-
ing in those terms. The following two lemmas are an in-
stantiation of the observations presented in Sec. 5.1.1 and
make explicit this trivial—albeit important—connection
between set coherence and negativity or imaginarity of
weak values or KD distributions.

Lemma 7. In a finite-dimensional Hilbert space H, let
|ϕ⟩, |ψ⟩ two non-orthogonal vectors, A : H → H a Her-
mitian operator, and a ∈ Spec(A) an eigenvalue of A
with corresponding eigenstate |a⟩. Then, negativity or
imaginarity of the weak value P aw of the eigenprojector
P a = |a⟩⟨a|, relative to pre- and post-selected states ψ
and ϕ, witness the set coherence of {|a⟩ , |ψ⟩ , |ϕ⟩}.

Lemma 8. Let {|i⟩}i∈I , {|f⟩}f∈F be two (reference) or-
thonormal bases of a finite-dimensional Hilbert space H,
and ρ ∈ D(H) be a state. Then, negativity or imaginarity
of ξ(ρ|i, f), the value of the KD distribution associated
with ρ at a specific phase-space point (i, f) ∈ I×F , witness
the set coherence of {ρ, |i⟩ , |f⟩}. An analogous statement
also holds for any extended KD distribution.

Note that for weak values, given that we assume pure
pre- and post-selections, the measurement of ∆2(|ψ⟩ , |ϕ⟩)
alone guarantees coherence. Recently, Ref. [123] consid-
ered in more depth the implications of Lemma 7, showing
that any anomalous weak values require coherence, in the
more general case where pre- and post-selection states
can be mixed.
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5.1.3. Set coherence beyond negativity and imaginarity

The analysis of Bargmann invariants for diagonal states
sheds some light on the reason why negativity and imag-
inarity require set coherence or noncommutativity, as
noticed in Ref. [124], while the converse is not the case.

Indeed, as already discussed, these conditions on
Bargmann invariants are only two among many that
such quantities should satisfy in order to corroborate the
assumptions connected to the classical probabilistic in-
terpretation provided by Eq. (32). It is, therefore, to
be expected that negativity or imaginarity alone are in-
capable of completely characterizing set coherence. To
illustrate this point, consider the following three states:

|ψ1⟩ := |0⟩ ,

|ψ2⟩ :=
|0⟩+

√
3 |1⟩

2
,

|ψ3⟩ :=
√
3 |0⟩+ |1⟩

2
.

(33)

These states satisfy ∆3(ψ1, ψ2, ψ3) = 3/8 > 0 and sim-
ilarly for the other orientation. As such, all Bargmann
invariants of third (and therefore of any) order among
states drawn from the set {|ψ1⟩ , |ψ2⟩ , |ψ3⟩} are real and
positive. However, this set of three states is set coher-
ent. This can be seen from the fact that they violate
the coherence-witnessing inequalities from Refs. [11, 85],
reviewed in Section 2.4. Concretely, they violate the
inequality

−∆2(ψ1, ψ2) + ∆2(ψ1, ψ3) + ∆2(ψ2, ψ3) ≤ 1, (34)

whose left-hand side, for these states, evaluates to

−1

4
+

3

4
+

3

4
=

5

4
> 1. (35)

Later on, we revisit these two-state overlap inequalities
in a different context; see Eq. (44). For proof that these
inequalities are witnesses of coherence, we refer the
reader to Refs. [11, 85] (see also the brief summary in
Sec. 2.4).

5.2. Can negativity and imaginarity be witnessed
from overlaps?

We have seen that the negativity or imaginarity of
(any) Bargmann invariant witness set coherence. In other
situations, knowledge of two-state overlaps is enough to
witness set coherence; see Refs. [85, 86].

A natural question is to understand the extent to which
such witnesses capture distinct aspects of nonclassicality.
Specifically, we ask whether—or to what extent—it is
possible to infer negativity and imaginarity of higher-order
Bargmann invariants from the knowledge of overlaps (i.e.,
second-order Bargmann invariants) alone.

5.2.1. Dimension-specific KD negativity and imaginarity
from overlaps in the whole phase space

We first review a known result of this kind. Refs. [124–
128] identified conditions that imply the presence of some
negativity or imaginarity in the KD distribution of a pure
state |ψ⟩, using only knowledge of the overlaps between
|ψ⟩ and the states in each of the reference bases. In
fact, the condition only requires possibilistic information
about such overlaps, i.e., whether they are equal to zero
(orthogonality) or not.

Concretely, let {|i⟩}i∈I and |f⟩f∈F be two orthonormal
bases of a Hilbert space of dimension d, to be used as
reference for the KD distribution, and make the usual
assumption that ⟨i|f⟩ ̸= 0 for all i, f . Given a pure state
|ψ⟩, define

nI(ψ) := |{i ∈ I : ⟨i|ψ⟩ ≠ 0}| (36)

to be the number of elements of the basis {|i⟩}i∈I not
orthogonal to |ψ⟩, or equivalently, with nonzero overlap
∆2(i, ψ); and similarly define nF with respect to the basis
|f⟩f∈F .
Then, one obtains negativity or imaginarity at some

phase-space point ξ(ψ|i, f) if

nI(ψ) + nF (ψ) > d+ 1. (37)

If, moreover, the two reference bases are mutually un-
biased, the KD distribution ξ(ψ|·) is classical, i.e., it has
real and non-negative values at every phase-space point,
if and only if [128]

nI(ψ)nF (ψ) = d. (38)

Note that, in both cases, the condition depends on the
dimension of the physical system. Moreover, in order
to apply those results, one needs (some) information
about all the overlaps ∆2(i, f),∆2(i, ψ),∆2(ψ, f), namely
whether they are zero or not.

We aim to address a related question, still about
witnessing negativity or imaginarity from overlaps alone,
but adopting a somewhat different perspective. First,
we focus on one phase-space point at a time, i.e., on
each triplet |ψ⟩, |i⟩, |f⟩ with fixed i, f . Second, we are
interested in dimension-independent witnesses, which
avoid assuming a specific Hilbert state dimension.

5.2.2. Inferring higher-order Bargmanns from overlaps: the
three-state scenario

The preceding discussion leads us to consider the mini-
mal scenario where the question of witnessing negativity
or imaginarity from two-state overlaps is meaningful. Sup-
pose that there are three (unknown) pure states |ψ1⟩, |ψ2⟩,
|ψ3⟩, and that we are able to obtain knowledge of the three
pairwise overlaps ∆2(ψ1, ψ2),∆2(ψ2, ψ3), and ∆2(ψ1, ψ3).
We ask the following question: is such information enough
to infer about the negativity or imaginarity of the third-
order Bargmann invariant ∆3(ψ1, ψ2, ψ3)?
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In the remainder of this Sec. 5, we obtain and review
some impossibility results and some partial results in this
direction.

We set some notation to facilitate precisely stating our
results about the three-state overlap scenario. Recall
from Eq. (19) the definition of the set Q•

3 ⊆ [0, 1]3 of
overlap triples realizable by quantum states, and from the
preceding paragraph in Sec. 2.4 that of the subset C•

3 ⊆ Q•
3

of those overlap triples realizable by set-incoherent states.
We are interested in distinguishing various cases for the
(not directly available) value of the third-order invariant
among the states. We write R•

3 (resp. I•
3 , P•

3 , N •
3 , Z•

3 )
for the set of overlap triples realizable by three states
ρ1, ρ2, ρ3 whose third-order invariant ∆3(ρ1, ρ2, ρ3) is real
(resp. nonreal, positive, negative, zero); for example,

R•
3 =


∆2(ρ1, ρ2)
∆2(ρ1, ρ3)
∆2(ρ2, ρ3)

 ∈ [0, 1]3 :
ρ1, ρ2, ρ3 ∈ D(H),

Im[∆3(ρ1, ρ2, ρ3)] ̸= 0

 .

(39)
Many of our results concern realizations with pure states.
We write Q◦

3 for the overlap triples realizable by three
pure states,

Q◦
3 =


∆2(ψ1, ψ2)
∆2(ψ1, ψ3)
∆2(ψ2, ψ3)

 ∈ [0, 1]3 : |ψ1⟩, |ψ2⟩, |ψ3⟩∈ H

 .

(40)
Similarly, C◦

3 , R◦
3, I◦

3 , P◦
3 , N ◦

3 ,Z◦
3 denote the sets of

overlap triples admitting a realization with pure states
that moreover satisfies the condition corresponding to

each letter as above. Finally, we use the superscript (·)(d)
to restrict the condition to realizations by states in d-
dimensional Hilbert space. Trivially, from reasoning at

the level of realizations, X ◦
3
(d) ⊆ X •

3
(d), X •◦

3
(d) ⊆ X •◦

3
(d+1),

and X •◦
3 =

⋃
d X •◦

3
(d), for all X ∈ {Q, C,R, I,P,N ,Z} and

•◦ ∈ {◦, •}.
By the same token, it is clear that P•◦

3 ∪N •◦
3 ∩Z•◦

3 = R•◦
3

and R•◦
3 ∪ I•◦

3 = Q•◦
3, but observe that, crucially, these

unions are not a priori disjoint. This is because an
element of these sets does not carry all the information
about a realization, but only the values of the overlaps
among the three realizing states; a particular overlap triple
typically admits more than one realization. Such limited
information might not even be sufficient to distinguish
real and imaginary values (or positive and negative values)
for the third-order invariant of the realizing states. In
other words, the same tuple of overlaps could be realizable
by different sets of three states, with different values for
the third-order invariant, including negative and positive,
or with and without imaginary part.12 Our first result
below (Theorem 9) establishes that this indeed happens.

12 The case Z◦
3 when the third-order Bargmann invariant

∆3(ψ1, ψ2, ψ3) is zero is easier to separate because it implies
one of the pairwise two-order invariants also vanish.

Before stating it, we make a useful remark regarding
imaginarity. A set of states can be simultaneously repre-
sented with only real amplitudes (i.e., with respect to the
same basis) if and only if all its Bargmann invariants are
real. Consequently, in the case of pure states, since a set
of three states is fully characterized by Bargmanns up to
order 3, the set R◦

3 is equivalently described as the set of
overlap values realizable by a choice of three pure states
with real amplitudes13.
5.2.3. Overlaps are, in general, not enough for negativity

and imaginarity

We now show that overlaps are, in general, not suffi-
cient to decide negativity or imaginarity of third-order
invariants, even in the case of pure states.

Theorem 9. Let |ψ1⟩ , |ψ2⟩ , |ψ3⟩ be three (unknown) pure
states in a finite-dimensional Hilbert space H. Suppose
that one is given the values of the three pairwise overlaps
∆2(ψ1, ψ2),∆2(ψ2, ψ3), and ∆2(ψ1, ψ3).

1. In general, it is not possible to discriminate between
real and strictly complex third-order Bargmann in-
variant, i.e., to decide whether Im[∆3(ψ1, ψ2, ψ3)] =
0 or Im[∆3(ψ1, ψ2, ψ3)] ̸= 0.

2. Further assuming that ∆3(ψ1, ψ2, ψ3) is real, it
is in general not possible to discriminate between
positive and negative third-order Bargmann invari-
ants, i.e., to decide whether ∆3(ψ1, ψ2, ψ3) > 0 or
∆3(ψ1, ψ2, ψ3) < 0.

In summary, R◦
3 ∩ I◦

3 ̸= ∅ and P◦
3 ∩N ◦

3 ̸= ∅.

Proof. We prove statement 1 by constructing a simple
counterexample. The idea is to find realizations with
equal overlaps but different imaginary parts of the third-
order invariant.

Considering the triplet of states (|0⟩ , |+⟩ , |i+⟩), where
|i+⟩ = (|0⟩+ i |1⟩)/

√
2, we have that all pairwise overlaps

are equal to 1/2 while their third-order invariants are
∆3 = (1 ± i)/4 (with the sign depending on the order),
hence Im[∆3] ̸= 0.
We now give a different triplet of states with all pairwise

overlaps equal to 1/2, but whose states can all be described
with only real amplitudes. The simplest such example
would be the triplet consisting of three maximally mixed
qubits, i.e., (1/2, 1/2, 1/2). This would suffice to establish
the result for mixed states, or even to show I◦

3 ∩R•
3 ̸= ∅

(even more specifically, I◦
3
(2)∩R•

3
(2) ̸= ∅). For the stated

result, however, we need an example with pure states.

13 For mixed states ρ1, ρ2, ρ3, it is conceivable that ∆3(ρ1ρ2ρ3) is
real but imaginarity still appears in higher-order invariants, such
as ∆4(ρ1, ρ2, ρ3, ρ2). As far as we know, it is an open question
whether this can happen. For now, only one of the inclusions
holds: the set of overlaps realizable by three states with real
density matrices is contained in R•

3.
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The following states (in a Hilbert space of dimension ≥ 3)
have real amplitudes and pairwise overlaps 1/2:

|0⟩+ |1⟩√
2

,
|1⟩+ |2⟩√

2
,
|0⟩+ |2⟩√

2
. (41)

We have thus established that (1/2, 1/2, 1/2) ∈ I◦
3
(2)∩R◦

3
(3).

We now proceed to prove statement 2. We do so, again,
by constructing a counterexample where two different
realizations return the same two-state overlaps but third-
order invariants that are real and of opposite sign. For
the three states

|0⟩ , |0⟩+
√
3 |1⟩

2
,
|0⟩ −

√
3 |1⟩

2
, (42)

all three overlaps equal 1/4, while ∆3 = −1/8 < 0. On the
other hand, for the three states

|0⟩ , |0⟩+
√
3 |1⟩

2
,
3 |0⟩+

√
3 |1⟩+

√
24 |2⟩

6
, (43)

all overlaps, once more, equal 1/4, while ∆3 = +1/8 > 0.

This shows that (1/4, 1/4, 1/4) ∈ N ◦
3
(2) ∩ P◦

3
(3).

The theorem above shows that the knowledge of two-
state overlaps for a given triple of states, in general,
provides insufficient information about their third-order
invariant to decide its imaginarity or negativity. The fol-
lowing theorem, pieced together from results in Ref. [85],
is a result in a similar direction, for imaginarity.

Theorem 10. A triple of overlaps is realizable by three
quantum states if and only if it is a convex combination
of triples of overlaps realizable by pure states with real
amplitudes. In other words, Q•

3 is the convex hull of R◦
3.

Proof. It was shown in Ref. [85] that all the overlap triples
that are extremal points of the set Q•

3 are realizable using
real-amplitude pure states. For completeness, we proceed
to sketch the proof of this result.

First, note that a Bargmann invariant for mixed states
can be written as a convex combination of Bargmann
invariants of pure states, using a convex decomposition of
each mixed state into pure states. Fixing a decomposition
for each mixed state in a set {ρi}i, all Bargmann invariants
drawn from the set can be written as the same convex
mixture of Bargmann invariants among pure states. In
particular, this applies to overlap triples, hence Q•

3 is
contained in the convex hull of Q◦

3. It thus suffices to look
at realizations by pure states to characterize the border
of Q•

3.
Now, any three pure states can be unitarily sent to a

concrete representation of the form

|ψ1⟩ = |0⟩ ,
|ψ2⟩ = cos(β) |0⟩+ sin(β)|1⟩,
|ψ3⟩ = cos(γ) |0⟩+ eiϕ sin(γ) sin(α)|1⟩+ sin(γ) cos(α)|2⟩,

with α, β, γ ∈ [0, π/2) and ϕ ∈ [0, 2π). This fixes
∆2(ψ1, ψ2) = cos2(β) and ∆2(ψ1, ψ3) = cos2(γ) to be

real. The existence of imaginary values in the represen-
tation of the states may therefore only affect the third
overlap ∆2(ψ2, ψ3). To conclude the argument, the maxi-
mal values achievable by ∆2(ψ2, ψ3) for any fixed values
of β, γ can be found as the extreme points of the multivari-
ate function ∆2(ψ2(α, ϕ), ψ3(α, ϕ)). Ref. [85, Appendix
A] performs these calculations explicitly, showing this
happens either if sin(α) = 0 or if sin(ϕ) = 0, both con-
ditions that imply the three states have real amplitudes.
We conclude that the overlap triples in the boundary of
Q◦

3 are realizable by pure states with real amplitudes only.
Therefore, Q•

3 is in the convex hull of R◦
3.

For the other direction, it suffices to establish that Q•
3

is convex. In fact, Q◦
3 (or even R◦

3) is. This was observed
numerically in Ref. [85]. Moreover, its bounds were an-
alytically found to correspond to the boundaries of an
elliptope, discussed in detail in Ref. [88].14. More formally,
we establish convexity by showing that if a triple of over-
laps (∆12,∆13,∆23) is pure-state realizable, then so is any
triple in the line segment connecting it to (0, 0, 0), i.e. any
triple of the form (λ∆12, λ∆13, λ∆23) for λ ∈ [0, 1]. Start-
ing from |ψ1⟩, |ψ2⟩, |ψ3⟩ the pure states in a Hilbert space
H realizing (∆12,∆13,∆23), consider the larger Hilbert
space H ⊕ C3 with {|ei⟩}3i=1 a basis for the additional

summand, and take |ψ′
i⟩ :=

√√
λ |ψi⟩ ⊕

√
1−

√
λ |ei⟩.

Then, for i ̸= j, ⟨ψ′
i|ψ′

j⟩ =
√
λ⟨ψi|ψj⟩+(1−

√
λ)⟨ei|ej⟩ =√

λ⟨ψi|ψj⟩, and so ∆2(ψ
′
i, ψ

′
j) = λ∆2(ψi, ψj). Therefore,

{|ψ′
i⟩}3i=1 realizes (λ∆12, λ∆13, λ∆23), as wanted.

In other words, this theorem shows that the realizable
overlap triples can be described as convex combinations of
overlap triples realizable by pure states that are real with
respect to some reference basis. If Theorem 9 showed that
an overlap triple does not always give enough information
to decide imaginarity of the third-order Bargmann, Theo-
rem 10 seems to indicate that it can never—or hardly—
provide useful information in this regard.
These results highlight that, to test imaginarity using

overlaps, one needs to make further assumptions on the
states, such as on purity or the Hilbert space dimension.
Indeed, a careful look at the proof of Theorem 9 suggests
there is scope for such examples if one restricts to pure

single-qubit states, Q◦
3
(2).

It turns out that, for instance, three pure single-qubit
states that have pairwise overlaps of 1/2 must have an
imaginary third-order invariant.

5.2.4. Negativity and overlaps for real amplitude states

In contrast to imaginarity, for negativity, we are able
to obtain some positive results: restricting to realizations

14 There is a dual relationship between the scenarios investigated
in Ref. [88] and those in Ref. [85]. For more information about
these aspects, we refer the reader to the discussion in Ref. [86].
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with real-amplitude states (i.e., to R◦
3), it is possible

to draw conclusions about the negativity of third-order
Bargmann invariants given only their pairwise overlaps.
In fact, it turns out that negativity and overlap nonclas-
sicality, as witnessed by the overlap inequalities such as
Eq. 18 studied in Refs. [85–87], witness mutually exclusive
forms of set coherence.

We first consider the two-dimensional case, for which we
are able to obtain a full discriminating result, partitioning

R◦
3
(2). Given pure states |ψ1⟩ , |ψ2⟩ , |ψ3⟩, the following in-

equalities are witnesses of set coherence: the first three are
the overlap inequalities defining the polytope C•

3 , the last
is nonnegativity of the third-order Bargmann invariant.

+∆2(ψ1, ψ2) + ∆2(ψ2, ψ3)−∆2(ψ1, ψ3)≤1,

+∆2(ψ1, ψ2)−∆2(ψ2, ψ3) + ∆2(ψ1, ψ3)≤1,

−∆2(ψ1, ψ2) + ∆2(ψ2, ψ3) + ∆2(ψ1, ψ3)≤1,

∆3(ψ1, ψ2, ψ3)≥0.

(44)

If the ψi are one-qubit pure states with real amplitudes
with respect to some basis, it turns out that no two of
these inequalities can be violated. For any such choice
of three states, there exists a unitary that maps them to
the rebit subspace. This implies that we can parametrize
the states in the following way;

|ψ1⟩ = |0⟩ ,
|ψ2⟩ = cos(θ) |0⟩+ sin(θ) |1⟩ ,
|ψ3⟩ = cos(ϕ) |0⟩+ sin(ϕ) |1⟩ .

(45)

with θ, ϕ ∈ [0, π] being sufficient to capture all possible
values. This yields the following values for the Bargmann
invariants:

∆2(ψ1, ψ2) = cos2(θ),

∆2(ψ1, ψ3) = cos2(ϕ),

∆2(ψ2, ψ3) = cos2(θ − ϕ),

∆3(ψ1, ψ2, ψ3) = cos(θ − ψ) cos(θ) cos(ϕ).

(46)

The domains in which each of the inequalities from
Eq. (44) is violated are plotted in Fig. 7, in terms of
the parameters θ and ϕ. There, we can observe that each
value of θ and ϕ defining a triplet of states, except when
those states are set-incoherent corresponding to borders of
the colored regions, violates one and only one inequality.

We thus conclude that R◦
3
(2) partitions into two disjoint

subsets: P◦
3
(2) and C◦

3
(2), with the latter being the disjoint

union of N ◦
3
(2) and Z◦

3
(2) (the only triples with a set-

incoherent realization, where at least one of the pairwise
overlaps vanishes).
Turning our attention to arbitrary dimension (i.e., to

R◦
3), this observation leads us to search for similar results,

converging on the lemma below. Even in this more general
case, violation of overlap inequalities and negativity of
∆3 are mutually exclusive, i.e., N ◦

3 ⊆ C◦
3 .

Lemma 11. Let |ψ1⟩, |ψ2⟩, |ψ3⟩ be pure states that are
real with respect to some basis, in a finite-dimensional

Figure 7. Negativity of third-order invariants from
measurements of overlaps only. For real-amplitude one-
qubit states, we show a complementarity relation between
negativity of third-order invariants and overlap inequalities.
Here we use the notation ∆2(i, j) = |⟨ψi|ψj⟩|2 and ∆3 =
⟨ψ1|ψ2⟩⟨ψ2|ψ3⟩⟨ψ3|ψ1⟩.

Hilbert space H of dimension d. Then, violation of any
of the inequalities

∆2(ψ1, ψ2) + ∆2(ψ1, ψ3)−∆2(ψ2, ψ3) ≤ 1,

∆2(ψ1, ψ2)−∆2(ψ1, ψ3) + ∆2(ψ2, ψ3) ≤ 1,

−∆2(ψ1, ψ2) + ∆2(ψ1, ψ3) + ∆2(ψ2, ψ3) ≤ 1.

(47)

implies that

∆3(ψ1, ψ2, ψ3) > 0. (48)

In other words, (R◦
3 \ C◦

3 ) ⊆ P◦
3 and thus N ◦

3 ⊆ C◦
3 .

If, moreover, d = 2, the converse also holds: if all
overlap inequalities are strictly satisfied (i.e., strictly less
than 1), we obtain ∆3 < 0.

We prove this lemma in Appendix C. The part of the
lemma regarding dimension d = 2 was already shown by
our previous argument and is depicted in Fig. 7. Overlaps
provide a simple test for when the third-order invariants
are positive, in which case it might simplify the search
for negativity.

6. DISCUSSION AND FUTURE DIRECTIONS

In this work, we have presented two distinct approaches
for the study of central concepts in quantum mechanics,
namely, weak values, KD distributions, and state spectra.

In this work, we have explored two complementary ap-
proaches to a better understanding of various selected
constructions useful in quantum information processing,
including weak values, KD distributions, and state spec-
tra. The first approach is more practical and application-
focused, where we show simple quantum circuits that
can be used to estimate various constructions of funda-
mental interest by measuring multivariate traces known
as Bargmann invariants. Specifically, we have described
circuits to experimentally estimate the spectrum of any
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mixed quantum state, weak values, KD quasiprobability
distribution, post-selected quantum Fisher information,
and OTOCs. The second approach is more foundational
and investigates conditions for the nonclassicality of these
functions, in particular, negativity and imaginarity, relat-
ing it to the presence of a recently introduced quantum
resource termed set coherence, which acknowledges coher-
ence as a basis-independent, relational property of a set
of states.

These results bring proof-of-principle tests of the non-
classicality of quantum theory—a vital resource for in-
formation processing—closer to current experimental ca-
pabilities. Indirect measurements of unitary invariants
up to fourth order have been made in different plat-
forms [71, 129, 130]. We believe that the unified view of
nonclassicality we discussed here may boost the interest in
a systematic exploration of nonclassicality witnessed and
quantified by unitary invariants. Moreover, the connection
between coherence theory and all the above constructions
motivates not only the development of a formal resource
theory based on Bargmann invariants but also the experi-
mental investigation of coherence for higher-dimensional
systems through the lens of resource-theoretic monotones.

The relationship between Bargmann invariants and KD
distributions could bring quantitative understanding to
other problems of interest. For instance, nonclassicality of
Bargmann invariants understood as witness of coherence
may clarify the connection between the nonclassicality of
OTOCs and scrambling of information [14] for quantum
computation. This new view could lead to more robust
and rigorous ways of benchmarking the scrambling of
information against decoherence that goes beyond numer-
ical evidence [131]. Another interesting point to notice
is that the tools described in Ref. [16] and further devel-
oped here clarify the understanding of when it is indeed
crucial to experimentally estimate higher-order invariants
in extended KD distributions. It would be interesting
to characterize the minimum cardinality and/or order
of sets of Bargmann invariants that are necessary for
quantifying nonclassicality in particular applications.

We believe that our circuits and the unified picture
in terms of Bargmann invariants will motivate further
progress in analyzing and quantifying nonclassicality and
its relation with quantum information advantage for dif-
ferent tasks. As an example, in Ref. [87], the authors
prove a quantum advantage for the task of quantum in-
terrogation relying on a function of overlaps. Our work
suggests that higher-order invariants may provide a more
complete characterization of advantages for general tasks.

Conceptually, we expect future work to consolidate—or
reject—the view that violations of different constraints
over Bargmann invariants, in the form of inequalities,

are a helpful guide to identifying different nonclassical
resources provided by quantum mechanics. We view some
of our results as preliminary steps in this direction. A
complete answer to these questions, together with a formal
framework for addressing the possible consequences for
quantum information science, has yet to be investigated.
As a final technical remark, even though some of the

results regarding the use of the univariate traces Tr(ρn)
for n = 2, . . . , d have previously appeared in the literature,
we stress that our novel sample complexity analysis and
numerical experiments have shown concrete benefits in
learning the spectrum using the higher-order Bargmann
invariants. Interesting future work in this direction could
involve experimentally probing Tr(ρn) for small n = 2, 3, 4
and using the obtained information to estimate the spec-
trum of density matrices. These estimates can serve as
subroutines in variational quantum eigensolvers aimed at
preparing Gibbs states, such as those in Ref. [10].

Given the foundational importance of KD distributions
and weak values, we expect that our unified framework
based on measurements of Bargmann invariants will pro-
vide both theoretical insight and practical recipes for
experimental implementations of the many applications
we analyze here.
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[125] S. De Bièvre, Complete incompatibility, support uncer-
tainty, and Kirkwood-Dirac nonclassicality, Phys. Rev.
Lett. 127, 190404 (2021).
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Appendix A: Formal comparison between standard
weak measurement and circuit protocol

In this section, we estimate the sample complexity
of finding weak values using the Bargmann invariants
scheme and compare it with the sample complexity of
measuring weak values using the standard protocol, known
as weak measurement. Operationally, the two procedures
are drastically different, which makes the comparison in
terms of purely complexity arguments difficult. Therefore,
for simplicity of the argument, we consider observables
A = |a⟩⟨a|. Recall that weak values can be written as

Aw =
∆3(ϕ, a, ψ)

∆2(ϕ, ψ)
. (A1)

1. Same number of samples for numerator and
denominator

In order to compute Aw with the cycle test, we must
compute the quantities in the numerator and denominator
separately: using the SWAP-test for one and the cycle
test associated with the operator C3 for the other. We
can focus solely on the complexity of estimating the real
part Aw. The same analysis can be repeated for the
imaginary part. Then, since ∆2(ϕ, ψ) is real, we must
determine the sample complexity related to estimating

the quantity Re[Aw] = Re[∆3(ϕ, a, ψ)]/∆2(ϕ, ψ), i.e., we
can focus on the real part of ∆3(ϕ, a, ψ) for the estimation
of the numerator of Aw.
The results provided by runs of such tests can be de-

scribed by random variables Xi taking values in {±1},
with i denoting each run. Denoting by p+ = (1 +
Re[∆3(ϕ, a, ψ)])/2 and p− = 1−p+ the probabilities of Xi

being +1 and −1, respectively, we write Xi’s expectation
value as E[Xi] = +p+ − p− = Re[∆3(ϕ, a, ψ)].

Assuming we have N (3) runs associated with Xi, where
superscript (3) refers to the fact that we are estimat-
ing third-order invariant, we consider the total random

variable X :=
∑N(3)

i=1 Xi. By linearity of E, E[X] =

N (3)Re[∆3(ϕ, a, ψ)]. We, then, apply Hoeffding’s inequal-
ity, a standard method in learning theory and statistical
analysis [91, 92]. According to this bound, if ai and
bi are real constants such that ai ≤ Xi ≤ bi for every
i ∈ {1, . . . , N} and X =

∑
iXi, we have that, for any

t > 0,

P[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑N(3)

i=1 (bi − ai)2

)
. (A2)

In our case, ai = −1 and bi = +1 for every i, which allows
us to rewrite the above expression as

P
[∣∣∣X −N (3)Re[∆3(ϕ, a, ψ)]

∣∣∣ ≥ t
]
≤ 2e−2t2/4N(3)

, (A3)

which implies that

P

[∣∣∣∣ XN (3)
− Re[∆3(ϕ, a, ψ)]

∣∣∣∣ ≥ t

N (3)

]
≤ 2e−t

2/2N(3)

.

(A4)

Defining δ(3) := 2e−t
2/2N(3)

, we get that δ(3)/2 =

e−t
2/2N(3) ⇒ t =

√
2N (3) ln(2/δ(3)). Hence, we can en-

sure that, with probability greater than 1− δ(3), the esti-
mator X/N (3) gives the true value of the real third-order

invariant within an error of
√
2 ln(2/δ(3))/N (3), i.e.,

P

[∣∣∣∣ XN (3)
− Re[∆3(ϕ, a, ψ)]

∣∣∣∣ ≥
√

2 ln(2/δ(3))

N (3)

]
≤ δ(3).

(A5)
Similarly, we can introduce random variables Yi for N

(2)

runs of the SWAP test, each with expectation E[Yi] =
∆2(ϕ, ψ), and the respective counterpart of other relevant
parameters to write

P

[∣∣∣∣ Y

N (2)
−∆2(ϕ, ψ)

∣∣∣∣ ≥
√

2 ln(2/δ(2))

N (2)

]
≤ δ(2), (A6)

where we have used the fact that ∆2(a, b) ≡ Re[∆2(a, b)]
for any pair of states |a⟩, |b⟩ ∈ H.

In our protocol, we have two different procedures: one
in which we use N (3) samples to estimate Re[∆3(ϕ, a, ψ)]
and another in which we use N (2) samples to estimate
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∆2(ϕ, ψ). Defining ε(n) :=
√

2 ln(2/δ(2))/N (2), we can
write

∆2(ϕ, ψ)− ε(2) ≤ Y

N (2)
≤ ∆2(ϕ, ψ) + ε(2) (A7)

or simply ∣∣∣∣ Y

N (2)

∣∣∣∣ ≥ |∆2(ϕ, ψ)− ε(2)|. (A8)

At first, let us assume that we have equal choices for the
precision with a high probability of learning the related
second- and third-order invariants, i.e., ε(2) = ε(3) ≡ ε
and δ(2) = δ(3) ≡ δ. This implies that N (2) = N (3) ≡ N .
Then, with a probability greater than 1− 2δ, we have∣∣∣∣XY −Re[∆3(ϕ, a, ψ)]

∆2(ϕ, ψ)

∣∣∣∣ =
=

∣∣∣∣∣ XN∆2 − Y
NRe[∆3]

Y
N∆2

∣∣∣∣∣
=

∣∣∣∣∣ XN∆2 −∆2Re[∆3] + ∆2Re[∆3]− Y
NRe[∆3]

Y
N∆2

∣∣∣∣∣
≤

∆2|XN − Re[∆3]|+ |Re[∆3]|| YN −∆2|
∆2

Y
N

≤ ∆2ε+ |Re[∆3]|ε
∆2|∆2 − ε|

=
1 + |Re[Aw]|∣∣∆2

ε − 1
∣∣ .

(A9)
In the last inequality, we have used that |Y/N | ≥ |∆2−ε|,
as seen in Eq. (A8). In the above expression, we have
also simplified the notation using ∆2 ≡ ∆2(ϕ, ψ) and
∆3 ≡ ∆3(ϕ, a, ψ). As a result, we conclude that

P

[∣∣∣∣XY − Re[Aw]

∣∣∣∣ ≥ 1 + |Re[Aw]|∣∣∆2

ε − 1
∣∣
]
≤ 2δ, (A10)

i.e., the resulting accuracy εT of estimating the real part
of the weak value is

εT =
1 + |Re[Aw]|∣∣∆2

ε − 1
∣∣ . (A11)

Since ε =
√
ln(2/δ)/N , we see that the number of samples

needed scales as

N = O

(
ln(2/δ)|Re[Aw]|2

∆2
2ε

2
T

)
. (A12)

This allows us to compare the sample complexity of
measuring weak values using the cycle test with the sample
complexity associated with standard weak measurement
schemes15.

In the standard weak measurement, one has a success-
ful post-selection given by Ns = |⟨ϕ|ψ⟩|2N with N the
total number of samples used. For the successful inci-
dents, the measurement outcomes are assumed to be Gaus-
sian distributed with variance satisfying σ2

i ≫ γ2|Aw|2.

Then, for every i ∈ {1, . . . , Ns}, E[Xi] = γRe[Aw]. Also,
Var[X] = Nsσ

2
i . Given that E[X/Nsγ] = Re[Aw] and be-

cause the distribution of successful incidents is Gaussian
distributed, we have that the probability within a certain
region is guaranteed by the error function

P

[∣∣∣∣ XγNs − Re[Aw]

∣∣∣∣ ≥ ε

]
≤ 1− erf

(
ε√

2Var(X/γNs)

)
.

(A13)
To simplify the notation, we use that Var(X/γNs) =
Var(X)/γ2N2

s = σ2
i /γ

2Ns and define

δ := erfc

(√
ε2γ2∆2N

2σ2
i

)
, (A14)

where erfc(x) = 1− erf(x) is the complement of the error
function. Then, the necessary total number of samples N
to estimate Re[Aw] using X/γNs is

N = 2(erfc−1(δ))2
σ2
i

ε2γ2∆2
≫ 2(erfc−1(δ))2

|Aw|2

ε2∆2
,

(A15)
which gives an order of samples better than the case of
the cycle test when ∆2 → 0 since, in this case,

N (weak) = O

(
erfc−1(δ))2

|Aw|2

ε2∆2

)
. (A16)

This implies that there might be no complex theoretic
advantage in using the cycle test protocol to implement
weak value amplification, for which ∆2(ϕ, ψ) must be
extremely small. However, this does not exclude the pos-
sibility that, for specific setups, there might be benefits
in using the cycle test—e.g., in cases where the constant
C related to the weak coupling is exponentially big. As
pointed out in the main text, for simply witnessing non-
classical values, the cycle test does provide a sample
complexity advantage since one does not need to estimate
∆2(ϕ, ψ). In particular, this feature might be interesting
in specific setups of quantum sensing using the imaginary
part of weak values.

2. Different number of samples for numerator and
denominator

Given that we expect ∆2(ϕ, ψ) ≪ 1 in various applica-
tions of weak values, e.g., weak value amplification, it is
relevant to consider the use of more samples to estimate
the overlap such that N (2) > N (3). We can, therefore, an-
alyze this particular situation to observe if (and how) the
sample complexity of estimating the weak value changes.

If we do not assume that N (2) = N (3), we have
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N (2)∆2(ϕ, ψ)

∣∣∣∣ = ∣∣∣∣N (2)∆2(ϕ, ψ)X −N (3)Re[∆3(ϕ, a, ψ)]Y

Y N (2)∆2(ϕ, ψ)
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=

∣∣∣∣N (2)∆2(ϕ, ψ)X −N (2)N (3)∆2(ϕ, ψ)Re[∆3(ϕ, a, ψ)] +N (2)N (3)∆2(ϕ, ψ)Re[∆3(ϕ, a, ψ)]−N (3)Re[∆3(ϕ, a, ψ)]Y

Y N (2)∆2(ϕ, ψ)

∣∣∣∣
≤
∣∣N (2)∆2(ϕ, ψ)X −N (2)N (3)∆2(ϕ, ψ)Re[∆3(ϕ, a, ψ)]

∣∣+ ∣∣N (2)N (3)∆2(ϕ, ψ)Re[∆3(ϕ, a, ψ)]−N (3)Re[∆3(ϕ, a, ψ)]Y
∣∣

Y N (2)∆2(ϕ, ψ)

=
N (2)∆2(ϕ, ψ)|X −N (3)Re[∆3(ϕ, a, ψ)]|+N (3)|Re[∆3(ϕ, a, ψ)]||N (2)∆2(ϕ, ψ)− Y |

Y N (2)∆2(ϕ, ψ)
.

(A17)
Hoeffding’s inequality leads to

P[|X −N (3)Re[∆3(ϕ, a, ψ)]| ≥
√

2N (3) ln(2/δ(3))] ≤ δ(3) (A18)

and

P[|Y −N (2)∆2(ϕ, ψ)| ≥
√

2N (2) ln(2/δ(2))] ≤ δ(2), (A19)

implying that, with probability ≥ 1− δ(2),

1

Y
≤ 1

N (2)∆2(ϕ, ψ)−
√
2N (2) ln(2/δ(2))

≈ 1

N (2)∆2(ϕ, ψ)
(A20)

for a sufficiently large N (2). In turn, this leads to∣∣∣∣XY − N (3)Re[∆3(ϕ, a, ψ)]

N (2)∆2(ϕ, ψ)

∣∣∣∣ ≤ N (2)∆2(ϕ, ψ)
√

2N (3) ln(2/δ(3)) +N (3)|Re[∆3(ϕ, a, ψ)]|
√
2N (2) ln(2/δ(2))

N (2)N (3)∆2(ϕ, ψ)2∣∣∣∣XY − N (3)Re[∆3(ϕ, a, ψ)]

N (2)∆2(ϕ, ψ)

∣∣∣∣ ≤
√
N (3)

N (2)∆2(ϕ, ψ)

√
2 ln(2/δ(3)) +

N (3)

(N (2))3/2∆2(ϕ, ψ)2
|Re[∆3(ϕ, a, ψ)]|

√
2 ln(2/δ(2)),

(A21)
from which we conclude that∣∣∣∣∣ X

N(3)

Y
N(2)

− Re[∆3(ϕ, a, ψ)]

∆2(ϕ, ψ)

∣∣∣∣∣ = N (2)

N (3)

∣∣∣∣XY − N (3)Re[∆3(ϕ, a, ψ)]

N (2)∆2(ϕ, ψ)

∣∣∣∣ ≤
√
2 ln(2/δ(3))√
N (3)∆2(ϕ, ψ)

+
|Re[∆3(ϕ, a, ψ)]|

√
2 ln(2/δ(2))√

N (2)∆2(ϕ, ψ)2︸ ︷︷ ︸
=:ε

.

(A22)
Defining δ := δ(2) + δ(3), we write

P

[∣∣∣∣∣ X
N(3)

Y
N(2)

− Re[∆3(ϕ, a, ψ)]

∆2(ϕ, ψ)

∣∣∣∣∣ ≥ ε

]
≤ δ. (A23)

Since we have already analyzed the case in which N (2) = N (3), we now focus on the case in which they differ. Let
us capture this difference with a parameter c, letting N (2) ∼ N (3)/∆2(ϕ, ψ)

c. Since our main interest lies in scenarios
∆2(ϕ, ψ) is assumed to be small, we want to study the situation N (2) ≫ N (3) to see if we have some improvement in
the sample complexity. Then, we assume c is positive and ∆2(ϕ, ψ)

2 ≪ 1. As a result, the total number of samples
satisfies N := N (2) +N (3) ≃ N (3)/∆2(ϕ, ψ)

c. This implies that

ε =

√
2 ln(2/δ(3))√
N (3)∆2(ϕ, ψ)

+
|Re[∆3(ϕ, a, ψ)]|

√
2 ln(2/δ(2))√

N (2)∆2(ϕ, ψ)2
=

√
2(ln(4/δ))√

N

(
1

∆2(ϕ, ψ)1+c/2
+

|Re[∆3(ϕ, a, ψ)]|
∆2(ϕ, ψ)2

)
, (A24)

15 It is noteworthy that, differently from the protocol we consider
next, there are weak measurement schemes able to estimate

both the real and imaginary parts of the weak value simultane-
ously [132].
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from which we can extract the dependency in the number of samples with precision ε in learning the real part of the
weak value:

N ≃ 2 ln(4/δ)

ε2

(
1

∆2(ϕ, ψ)1+c/2
+

|Re[∆3(ϕ, a, ψ)]|
∆2(ϕ, ψ)2

)2

. (A25)

Finally, let us study the number of samples by consid-
ering the possible values of the parameter c:

1. Case c = 2: We have 1 + c/2 = 2. Then, we
are left with an order of number of samples equal
to the one when we had N (2) = N (3) since N =
2(ln(4/δ))
ε2∆2(ϕ,ψ)4

(1+ |Re[∆3(ϕ, a, ψ)]|)2. Note that, in the

results presented in the previous subsection, the
number of samples refers to the estimation of the
real part of the weak value while, here, it refers to
the estimation of the third-order invariant. This is
the reason for the difference seen in the order of the
overlap.

2. Case 0 < c < 2: Assuming that |Re[∆3(ϕ, a, ψ)]| =
O(1) and that it does not scale with ∆2(ϕ, ψ),
it follows that |Re[∆3(ϕ, a, ψ)]|/∆2(ϕ, ψ) ≫
1/∆2(ϕ, ψ)

1+c/2 for small ∆2(ϕ, ψ). After substi-
tuting these approximations into the equation for
N , we are left with the same sample complexity as
before.

3. Case c > 2: Direct calculation leads to N ≃
2(ln(4/δ))

ε2∆2(ϕ,ψ)2+c , which is worse in sample complexity

than the previous results, and worsens the larger
the value the parameter c takes.

In summary, these calculations show that the sample
complexity does not improve statistically if one estimates
the overlaps with a larger, or even much larger, number of
samples than the number of samples necessary to estimate
the third-order invariant in the measurement of weak
values.

Appendix B: Sample and measurement complexity of
estimating the spectrum using the cycle test

1. Proof of Theorem 6

To estimate {Tr(ρ2), . . . ,Tr(ρd)}, we want to learn with
high probability 1− δ the entire set of estimators within
an error ε. Using the union bound,

P

[
d⋃
i=2

{
ρ̂i : |Tr(ρ̂i)− Tr(ρi)| ≥ ε

}]

≤
d∑
i=2

P
[
|Tr(ρ̂i)− Tr(ρi)| ≥ ε

]
= (d− 1)P

[
|Tr(ρ̂i)− Tr(ρi)| ≥ ε

]
.

(B1)
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Figure 8. Aggregated root-mean-squared error (RMSE)
spectrum estimation using the Faddeev-LeVerrier Al-
gorithm. Eigenvalues of mixed states computed from mul-
tivariate traces {Tr(ρn)}dn=1 are compared with the ones ob-
tained by diagonalization of the density matrix using numpy.
For each dimension, a data set of random 1000 density matrices
ρ is used. We sample the states using the Ginibre ensemble.

We fix P
[
|Tr(ρ̂i)− Tr(ρi)| ≥ ε

]
= δ/(d−1) such that the

total error probability is δ.

From Hoeffding’s inequality, for N independent sam-
ples Xi ∈ [a, b] and mean estimator, the number of sta-
tistical samples needed to estimate each trace is, as al-
ready mentioned in Appendix A, O(ln(2/δ)/ε2). But
each statistical sample requires O(d2) states to compute
{Tr(ρ2), . . . ,Tr(ρd)} using the cycle test. The total num-

ber of states is, therefore, Nd2 = d2

ε2 ln
√
2(d− 1)/δ and,

as a consequence, N = O
(
d2

ε2 ln(d/δ)
)
samples estimate

the chosen set of traces to precision ε with probability
1 − δ. Since the number of measurements equals the
number of statistical samples times d, which accounts for
one measurement for each element in the set of traces,
we have that the number of measurements is of order
O
(
d
ε2 ln (d/δ)

)
. This concludes the proof.

In the main text, we reported the sample complex-
ity Õ(d2/ε2) that hides log(d) factors and fixed δ to be
a reference value to prescribe what is meant by “high
probability,” usually taken to be equal to 1− δ = 2/3.
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Figure 9. Mean size of eigenvalues and RMSE per
eigenvalue. For 1000 random mixed density matrices of fixed
Hilbert space dimension 20, we study the real and imaginary
parts of the spectrum given from the Faddeev–LeVerrier algo-
rithm.

2. Numerical analysis for the Faddeev–LeVerrier
algorithm

In this section, we conduct a numerical study of the
behavior of the Faddeev–LeVerrier algorithm [19, Chapter
3], which returns the estimates of the eigenvalues of ρ,
given {Tr(ρi)}di=2 as an input.
In Fig. 8, using noiseless experimental data, i.e., the

traces {Tr(ρi)}i, we show the aggregated RMSE of the
real and imaginary parts of the spectrum of ρ. We com-
pare the predicted spectrum with the one computed via
diagonalization with numpy.
Ideally, the spectrum should be real-valued. However,

as mentioned in the main text, numerical instabilities
generate imaginary parts in the outputs of the algorithm.
At a certain dimension, the RMSE of the imaginary part
of all eigenvalues exceeds the one for the real part. This is
expected, as numerical inaccuracies occur when very small
roots need to be estimated. As a result, the aggregated
RMSE for high dimensions can be orders of magnitude
bigger than the actual size of some eigenvalues. In what
follows, we study if the appearance of these imaginary
values, as well as their size, significantly influences the
comparison between the real part of the spectrum and
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Figure 10. Average RMSE of the imaginary parts of
the spectrum estimation of 5000 random ρ. This figure
represents the imaginary counterpart of Fig. 5. Each matrix
generates 1000 noisy samples to compute the RMSE.

the ideal spectrum.
Let us take as a case study the error per eigenvalue

for a sufficiently large Hilbert space dimension. In Fig. 9,
we show the average size of the eigenvalues using 1000
random density matrices of dimension 20. The biggest
eigenvalues have sizes of order 10−2 while the associated
error between the real and imaginary part is smaller than
10−13. On the other hand, the smallest eigenvalues have
an error approximately equal to the size of the eigenvalue,
which explains the aggregated RMSE from Fig. 8 in higher
dimensions.
Although the predicted eigenvalues can contain non-

negligible imaginary parts, their presence does not affect
the prediction of the real parts. These imaginary values
come from the presence of small coefficients in the charac-
teristic polynomial. In Fig. 10, we show the RMSE of the
imaginary part in the estimation of the spectrum using
noisy data. The sudden increase for a certain dimension
is closely related to the amount of noise introduced. For
larger dimensions, smaller amounts of noise modify the co-
efficients enough to produce the appearance of imaginary
values. However, by comparing with Fig. 5, the trend of
the RMSE of real parts is not affected by these “bumps”
in the imaginary parts, allowing us to safely discard them
from the predictions.

a. Learning the largest eigenvalue

As smaller eigenvalues produce bigger errors, the
Faddeev–LeVerrier algorithm can be used to estimate
only the largest eigenvalues. In Fig. 11, we show the
RMSE of the real part in the prediction of the largest
eigenvalue using the same noisy dataset as the one used
for the prediction of the entire spectrum. Since the largest
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Figure 11. Average RMSE of the real part of largest
eigenvalue for 5000 random density matrices. Each
matrix generates 1000 noisy samples to compute the RMSE.
We see that, when focusing on the largest eigenvalue, the
accuracy of the estimation improves when compared to the
results for the entire spectrum estimation from Fig. 5 in the
main text.

eigenvalue depends mostly on the coefficients of the high-
est order, the size of these makes them less sensitive to
the noise and allows the obtaining of a RMSE of 10−3

in dimension 6 with an error ε = 10−4 for the traces.
However, as stated in the main text, computing the entire
set of traces is not recommended in this task as higher
powers in the traces of ρ are more difficult to estimate
and contribute less to the largest eigenvalue.

Appendix C: Proof of Lemma 11

Consider a general triplet of pure states
{|ψ1⟩, |ψ2⟩, |ψ3⟩} real with respect to some basis
and choose the following parametrization for it:

|ψ1⟩ = |0⟩
|ψ2⟩ = cos(β)|0⟩+ sin(β)|1⟩
|ψ3⟩ = cos(γ)|0⟩+ sin(γ) sin(α)|1⟩+ sin(γ) cos(α)|2⟩,

(C1)
where β, γ ∈ [0, π] and α ∈ [0, 2π). Under this choice,
made without loss of generality, we can define the function

h1(α, β, γ) = −∆2(ψ1, ψ2) + ∆2(ψ1, ψ3) + ∆2(ψ2, ψ3),

h2(α, β, γ) = +∆2(ψ1, ψ2)−∆2(ψ1, ψ3) + ∆2(ψ2, ψ3),

h3(α, β, γ) = +∆2(ψ1, ψ2) + ∆2(ψ1, ψ3)−∆2(ψ2, ψ3),
(C2)

where each overlap depends on the variables α, β, γ. We
can, then, study what the constraints hi > 1 represent,

i.e.,

h1 > 1 ⇒
0 < −1− cos2(β) + cos2(γ) + cos2(β) cos2(γ)+

+ sin2(β) sin2(γ) sin2(α)︸ ︷︷ ︸
∈[0,1]

+
1

2
sin(2β) sin(2γ) sin(α)

≤ −1− cos2(β) + cos2(γ) + cos2(β) cos2(γ)+

+ sin2(β) sin2(γ) +
1

2
sin(2β) sin(2γ) sin(α)

= −2 cos2(β) + 2 cos2(β) sin2(γ)

+
1

2
sin(2β) sin(2γ) sin(α)

= −2 cos2(β) + 2∆3(α, β, γ) ≤ 2∆3(α, β, γ),

(C3)

which implies that ∆3(α, β, γ) ≡ ∆3(ψ1, ψ2, ψ3) > 0,
where we have used that

∆3(α, β, γ) = ⟨ψ1|ψ2⟩⟨ψ2|ψ3⟩⟨ψ3|ψ1⟩

= cos2(β) cos2(γ) +
1

4
sin(2β) sin(2γ) sin(α).

(C4)
The same reasoning applies for h2 > 1. For h3 > 1, the
situation is less straightforward since the two functions
h3(α, β, γ)− 1 and ∆3(α, β, γ) are not totally ordered in
the domain [0, 2π)×[0, π]2. However, we can analyze what
∆3(α, β, γ) > 0 corresponds to in terms of the parameters
β and γ when α lies in some domains. From the above,
it follows that

tan(β) tan(γ) > − 1

sin(α)
⇒ ∆3(α, β, γ) > 0 (C5)

if α ∈ [0, π]. The case in which α ∈ [π, 2π] can be treated
similarly. The function h3(α, β, γ)− 1 can be written as

h3(α, β, γ)− 1 =

= −1 + cos2(β) + cos2(γ)− cos2(β) cos2(γ)

− sin2(β) sin2(γ) sin2(α)− 1

2
sin(2β) sin(2γ) sin(α)

= − sin2(β) sin2(γ)− sin2(β) sin2(γ) sin2(α)

− 1

2
sin(2β) sin(2γ) sin(α)

= − sin2(β) sin2(γ)(1 + sin2(α))

− 1

2
sin(2β) sin(2γ) sin(α).

(C6)
The condition that h3(α, β, γ) − 1 > 0 implies that
sin2(β) sin2(γ)(1 + sin2(α)) < − sin(2β) sin(2γ) sin(α)/2.

Lemma 12. For any α, β, γ ∈ [0, π], if

sin2(β) sin2(γ)(1 + sin2(α)) < −1

2
sin(2β) sin(2γ) sin(α),

(C7)
then

tan(β) tan(γ) > − 1

sin(α)
. (C8)
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(a) (b) (c)

Figure 12. Witnesses of third-order positivity. (a) The white regions in the center are the area corresponding to ∆3 ≤ 0.
The blue region is given by ∆3(α, β, γ) > 0 for α = 0.11. (b) The light-brown region overlaps with the blue region completely,
and it is given by h3(α, β, γ) − 1 > 0, showing that this condition implies ∆3(α, β, γ) > 0. However, the converse does not
necessarily hold. In fact, it is true only for α ∈ [0, π], as can be seen in (c), where we combine both configurations (a) and (b).

Proof. This lemma can be easily seen to hold numerically.
In the range of α, β, γ ∈ [0, π], we see that there is always
an overlap between the region for which the first inequality
is satisfied simultaneously with the second inequality. The
converse is not necessarily true.

The above lemma, together with Eq. (C5), implies that
h3 − 1 > 0 ⇒ ∆3 > 0, as we wanted to show. The case

α ∈ [π, 2π] is treated similarly, as already mentioned.
Fixing α = 0.11, Fig. 12 shows the region of val-

ues (β, γ) ∈ [0, π] for which the third-order invari-
ant positivity can be witnessed with the overlap in-
equality. This provides a visual way to see that
∆2(ψ1, ψ2) + ∆2(ψ1, ψ3)−∆2(ψ2, ψ3) > 1 implies posi-
tivity of the third-order Bargmann invariant, while the
converse does not always hold.
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