
                          Li, M. H. L., Richards, A. G., & Sooriyabandara, M. (2024).
Experimental Validation of the Reliability-Aware Multi-UAV Coverage
Path Planning Problem. Paper presented at 2024 AIAA SciTech
Forum, Orlando, Florida, United States.

Peer reviewed version
License (if available):
Unspecified

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://research-information.bris.ac.uk/en/publications/00b7c836-716a-4a53-926f-fa46a3eaaddb
https://research-information.bris.ac.uk/en/publications/00b7c836-716a-4a53-926f-fa46a3eaaddb


Experimental Validation of the Reliability-Aware Multi-UAV
Coverage Path Planning Problem

Mickey Li∗
Autonomous Manufacturing Laboratory, University College London, United Kingdom

Arthur Richards†

Bristol Robotics Laboratory and University of Bristol, Bristol, United Kingdom

Mahesh Sooriyabandara‡

Bristol Research & Innovation Laboratory, Toshiba Research Europe Ltd, Bristol, United Kingdom

Unmanned aerial vehicles (UAVs) have become crucial for various applications, necessitating
reliable and time-constrained performance. Multi-UAV solutions offer advantages but require
effective coordination. Traditional coverage path planning methods overlook uncertainties and
individual UAV failures. To address this, reliability-aware multi-UAV coverage path planning
methods optimise task allocation to maximise mission completion probabilities given a failure
model. This paper presents an experimental validation of the reliability-aware approach,
specifically an approach using a Greedy Genetic Algorithm (GGA). We evaluate the GGA
performance in real-world environments, comparing mission reliability to computed reliability
and comparing it against a traditional multi-UAV methods. The experimental validation
demonstrates the practical viability and effectiveness of the reliability-aware approach, showing
significant improvement in mission reliability despite the inevitable mismatch between real and
assumed failure models.

I. Introduction

Uncrewed aerial vehicles (UAVs)∗ have gained significant attention in recent years for various applications, including
aerial robotics, surveillance, and infrastructure inspection [1, 2]. With the increasing deployment of UAVs in

real-world scenarios, ensuring their reliability and performance within time constraints has become a critical requirement.
Multi-UAV solutions offer advantages such as flexibility, scalability, and fault tolerance compared to single-UAV systems.
However, effective coordination and task allocation among multiple UAVs pose challenges that need to be addressed for
reliable and fastest operation [3]. Simultaneously, as the complexity and scale of missions involving multiple UAVs have
grown, the need for reliability-aware planning approaches has become increasingly evident. Real-world applications
often involve dynamic environments, time-varying mission requirements, and the potential for individual UAV failures.
Consequently, traditional coverage path planning methods that solely aim to minimise cost or time fail to account for the
inherent uncertainties and risks associated with UAV operations [4, 5].

Resilience to failures for multi-robot coverage is currently an active area of research. Early work [6, 7] defined a
given plan as robust if the mission will eventually complete as long as at least one robot remains alive. This, however, is
often the worst case, with no graceful degradation, likely providing conservative strategies in practice. More recently,
Song and Gupta [8] consider MCPP in an unknown environment with failure-prone robots by applying distributed game
theoretic decision methods in order to cooperatively decide task re-allocations on failure. Similar to our work, task
allocations are evaluated by their probabilities of success given a model of battery reliability. While this addresses the
issue of failure-prone robots, it should be noted that the approach was not validated through real-life experimentation.
On the other hand, Ramachadran et al.[9] combine a reliability constraint on the optimisation of the number of UAVs
required to complete an area coverage task, with a local re-planner to actively compensate if a robot is lost. Both of
these methods are online reactive methods which seek to find actions which minimise the effect of robot failure on
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the overall objective. Importantly, their work also demonstrates the effectiveness of their approach through real-world
testing. Inspired by the insights provided by both Song’s and Ramachandran’s work, our research focused on the
fundamental effect of planning initial paths with a reliability-aware objective function based on a priori analysis of
known environments. This is similar to [10–12], where the authors’ a-priori design strategies for non-coverage tasks are
robust to a fixed number of failures during execution. However, our strategy optimisation also takes into account the
failure of any number of robots.

To tackle these challenges, researchers have recognised the importance of developing coverage path planning
approaches that explicitly consider reliability metrics. Reliability-aware multi-UAV coverage path planning methods
seeks to optimise the allocation of tasks among UAVs, accounting for their individual failure rates, and ensuring high
mission completion probabilities within specified time constraints [13]. By promoting overlapping robot-task allocations,
these methods provide improved mission reliability, even at the expense of nominal-case time. Previous work focused on
the development of these reliability-aware coverage path planning methods for multi-UAV systems. A brief introduction
of the reliability evaluation framework along with a Linear Program solver for discrete time RA-MCPP is found in [14].
The next work [15] introduces the Reliability-Aware Multi-Agent Coverage Path Planning (RA-MCPP) problem, which
extends the traditional Multi-Agent Coverage Path Planning (MCPP) framework by explicitly optimising the Probability
of Completion (PoC) metric which incorporating agent failure rates into the path planning process. It also presents
a path-based genetic algorithm for finding PoC optimal RA-MCPP path plans. However, in this previous work it is
assumed that the environment can be discretised into a unit lattice with all moves occurring synchronously. This led to
the introduction of the Greedy Genetic Algorithm [13] where, these two assumptions are relaxed, in order to apply
RA-MCPP to larger, more complex and realistic environments.

To validate the RA-MCPP, we present in this paper the results of a carefully designed experimental validation of our
RA-MCPP approach. Our aim is to bridge the gap between theory and practice, testing if reliability improvements can
be observed, especially given the challenge of estimating the true agent failure model. In this experimental validation,
we built upon our previous work, which introduced the concept of the Greedy Genetic Algorithm for reliability-aware
coverage path planning. The GGA algorithm leverages both genetic algorithms and greedy heuristics to iteratively
optimise the allocation of tasks among UAVs, considering their reliability characteristics. While our previous work
showed promising results in theoretical scenarios, the experimental validation allows us to assess the performance and
applicability of the GGA algorithm in real-world environments. We sought to evaluate the performance of the GGA
algorithm by comparing the real-life mission reliability to the computed reliability. Additionally, we aim to compare the
performance of our reliability-aware approach with traditional multi-UAV coverage path planning methods.

However care was required in the design of the experiment in order to reduce bias of the results. The experiment is
carefully conducted in an indoor arena with three Coex Clover drones and a fixed set of batteries and chargers. All the
methods were carefully designed and pre-registered before data collection. Special attention went to pre-registering [16]
the protocols for operator intervention and maintenance in response to faults, e.g. when to push the stop button, as these
could introduce real or perceived bias in the outcome.

The remainder of this paper is organised as follows. Section II provides a review of the RA-MCPP problem and
the GGA method used in this validation. Section III presents the methodology and experimental setup employed for
the validation of our reliability-aware approach. Section IV presents and discusses the experimental results, offering
insights into the performance and effectiveness of our proposed methods. Finally, Section V concludes the paper by
summarising our findings, discussing the implications of our work, and outlining future research directions.

II. Reliability-Aware Multi-Agent Coverage Path Planning
The Reliability-Aware Multi-Agent Coverage Path Planning Problem seeks, for a given set of agents and a set of

connected tasks, to find the multi-agent path plan which maximises the probability of mission completion (PoC). The
method adopts a reduced state representation of the drones 𝑥 = (𝑡1, . . . , 𝑡𝑛) ∈ [0, 𝑡]𝑛 = S, capturing only the useful time
worked by each drone 𝑡𝑡

𝑖
∈ R, with a mission deadline 𝑡. The environment graph 𝐺 (J, 𝐸) defines a set of 𝑚 individual

tasks, described by the nodes J = ( 𝑗1, . . . , 𝑗𝑚), with the edges, 𝐸 describing valid traversable paths between two tasks.
For an agent 𝑖, the failure probability density is denoted 𝑓𝑖 (𝑡), cumulative density 𝐹𝑖 (𝑡), The probability of agent 𝑖
surviving at time t is the reliability 𝑅𝑖 (𝑡) = 1 − 𝐹𝑖 (𝑡).

Then, given a set of 𝑛 agents, each following failure distributions 𝑓𝑖 (𝑡) and environment graph 𝐺 (J, 𝐸) containing a
set of 𝑚 task nodes and a set of traversable edges 𝐸 between them. Let 𝜓𝑖 ∈ Ψ be a finite ordered subset of connected
tasks 𝑗 ∈ J (i.e. a path through 𝐺). A path for each agent forms a strategy 𝜓 = {𝜓1, ..., 𝜓𝑛} ∈ Ψ𝑛. Given a strategy 𝜓, a
subset of the agent work done states S can be defined to be completion states, such that reaching a completion state
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implies completion of all tasks, and hence the mission. The probability of reaching a completion state can be analysed
based on the reliability functions 𝑅𝑖 (𝑡), yielding the 𝑃𝑜𝐶 (𝜓, 𝑡). For full details, the reader is encouraged to refer to
Section 3 of [13]. Then the optimisation objective is to find the 𝑛 paths in the strategy 𝜓 = 𝜓1, ..., 𝜓𝑛 which maximises
the reliability metric of probability 𝑃𝑜𝐶 (𝜓) by a deadline 𝑡, whilst ensuring all tasks have been visited.

max
𝜓∈Ψ𝑛

𝑃𝑜𝐶 (𝜓, 𝑡) (1)

subject to, ⋃
𝑖∈1..𝑛

𝜓𝑖 = J (2)

(𝜓𝑖,𝑘 , 𝜓𝑖,𝑘+1) ∈ 𝐸 ∀𝑘 < |𝜓𝑖 |,∀𝑖 ∈ 1...𝑛 (3)

This optimisation problem has been previously solved using a Greedy-Genetic Algorithm [13], which employs a
meta-heuristic optimisation approach for finding high reliability multi-agent path plans. In this work it was found that
the 𝑃𝑜𝐶 is submodular, which implies that a greedy approach can give a bounded approximation of the optimal. This
approach takes advantage of this finding and uses a genetic algorithm to greedily generate single candidate trajectories
𝜓𝑖 which maximise PoC when combined with trajectories 𝜓1, ..., 𝜓𝑖−1 found in previous iterations. This method was
found [13] to find strategies with greater theoretical PoC than any other optimisation method, and provide significantly
greater reliability compared to existing environment partition based multi-agent coverage methods.

III. Experimental Validation of Reliability-Aware Planning
The experimental method was to fly three drones in an indoor flying arena so as to visit a set of task locations.

Flights were performed using two sets of paths, one set optimised for reliability by GGA, and the other optimised for
time to completion. The real drones suffered from real failures, so the real completion rates can be analysed. Given
the potential for bias in an experiment such as this, the experiment design, protocols and analysis described in this
paper were Pre-Registered to the Open Science Framework† prior to conducting the experiment [16]. The intent of
Pre-Registration is to demonstrate transparency and rigour in the application of the scientific process, ensuring that the
experiment is not biased accidentally or otherwise by operator judgement. The following describes the core elements
of the experimental methodology. Further details are given in the Pre-Registration [16], including details of the data
collected, and the specific order of operations which is not included here for brevity.

A. Experiment Aim
This experiment aims to compare the mission performance rate of a reliability aware (RA) coverage path against a

reliability-unaware, minimum-time (MT) coverage path using three drones in the flight arena. In each trial, the drones
will fly one of the two coverage paths and it will be noted whether the mission was successful, i.e. all tasks were
completed, or whether it failed. Through repeating the trials we will gain a series of successes and failures through
which we can analyse the hypothesis. The hypotheses are the following:

• Null Hypothesis (𝐻0): Three drones flying trajectories optimised for maximum probability of completion of all
tasks provide the same probability of mission completion when compared to the same drones flying trajectories
optimised for minimum total flight time.

• Alternative Directional Hypothesis (𝐻1): Three drones flying trajectories optimised for maximum probability
of completion of all tasks provide a greater probability of mission completion than the same drones flying
trajectories optimised for minimum total flight time.

B. Experiment Design and Methodology
The three drones form our group of study participants which will be tasked with performing a number of trials.
Each trial involved the flight of the drones along one of two possible sets of trajectories which cover a 5x3x3 3D

lattice environment graph of physical size 4m x 1.5m x 1.5m, where each node of the graph is a task. The trajectory
generation generates an individual trajectory for each vehicle, i.e. 3 individual trajectories. The two sets of trajectories,
shown in Figure 1, are generated by optimising for the following:

†Open Science Framework https://osf.io/
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((a)) The 5x3x3 Unit Lattice Environment
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((b)) The paths for each agent optimising for fastest
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((c)) The paths for each agent optimising for reliability

Fig. 1 The environment and planned trajectory paths for ‘fastest’ and for ‘reliable’ used in this experiment.

1) Fastest time - A set of trajectories generated by partitioning the environment into almost-equal connected task
points and generating a travelling salesman path for each vehicles partition. This represents the traditional MCPP
approach.

2) Highest reliability - A set of trajectories generated by the Greedy Genetic Algorithm [15] which aims to find
paths for each robot which maximises the probability of mission completion by a deadline 𝑡.

A key challenge with the method discussed is that the true failure model of each drone is unknown. Methods for
deriving a drone’s failure model are out of the scope of this paper. In this work, a best guess based on a Bathtub
model [13, 17] is used. A Bathtub model is a 3-Weibull Mixture Model, with each model representing three stages of
possible failure: (1) Early Failure, (2) Random Failure during operation (3) End-of-life failures. In this work a model is
hand-approximated based on the maximum flight time observed from the pilot study and previous flights. This is the
same model described in [13]. Note that even though the trajectories are generated within the same 5x3x3 volume, in
practice to avoid overflight and collisions, the drone trajectories are shifted relative to each other, such that the drones
remain at least 3 meters apart.

This Study can be considered as within-subject design as the same set of drones are tasked to fly a pre-computed
fastest or reliable trajectory. Each trial was randomly assigned a set of drones to fly either fastest or reliable trajectories.
This is inline with real usage as a user would not (presumably) have access to new drones for each mission.

1. Trial Randomisation
For this experiment, the variables are randomise for each trial before starting the experiment. This variable

randomisation is strictly adhered to in order to minimise the possibility of introducing bias. Since we are analysing
random failure, where the "failure" encompasses any and all possible failure methods, we have to ensure that there is
minimum correlation between a particular type of physical failure to the methodology being used. For instance it would
be an unfair experiment if defective battery 3 was always accidentally paired with the fast method. Therefore we have
identified the various aspects of the experiment in the list below to randomise.

Each trial will be randomly assigned to one of two groups: group A will fly trajectories optimised for reliability;
group B will fly trajectories optimised for time. Therefore, each trial uses a-priori simple randomisation of the following
variables per trial:

1) Method: [Highest reliability, Fastest time]. The independent variable.
2) Trajectory Ordering: [All permutations of (0, 1, 2)]. This is required to randomise the allocation of drone to a

particular trajectory.
3) Drone Position in Physical Space: [Left, Centre, Right]. This is required to reduce air flow effects on a
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particular drone. e.g. Clover2 can have trouble flying in the centre location due to excessive prop-wash from
both sides.

4) Battery Allocation to Drone: 6 Batteries in total, allocated successive groups of three. [Permutation of Tattu
batteries (clover1, clover2, clover3), 2300mAh, 4S, 14.8V], [Permutation of Overlander batteries (clover5,
clover6, clover8), 2200mAh, 4s, 14.8V]. This is required to ensure that battery characteristics do not negatively
affect any one drone in particular. All the batteries are not new and have previously been used an unknown
amount.

5) Battery Allocation to Battery Chargers: [Permutations of 6]. This is required to ensure that battery charger
characteristics do not negatively affect any one battery in particular. The chargers are not new and have been
previously used.

The allocation was randomised using the RAND function in Google sheets per trial, and then frozen by copying the
cell values. During the experiment, the randomised values were followed for each trial.

2. Sampling and Data Collection
A pilot study of 40 flights was conducted to check procedures for data collection and analysis. This also looked

at rough reliability rates to inform sample size and procedures for the main study. It also identified and fixed a few
infrastructure problems, specifically network drop-outs and motion capture problems.

From the pilot study, a target sample size of 80-100 sample sizes was estimated, based on a chi squared (𝜒2)
goodness of fit test with significance level of 0.05, and medium effect size (0.25) and a statistic power of between 0.6
and 0.7. The effect size is estimated from our pilot data. When the experiment was undertaken, the results were close to,
but not over the significance threshold after 100 trials (𝑝 = 0.06 > 0.05, see results). The authors decided to undertake
a further 20 trials. This was the only deviation from the pre-registered method for this study.

In addition, flights are constrained by time, since only one set of flights can be performed at a time. Each is five
minutes of flying time but takes about 15 minutes including battery fitting and testing, set-up, recording, and charging
delays. They are also constrained by maintenance pending any major failures. Therefore the maximum allowed time to
conduct this experiment is capped to 2 weeks.

3. Trial Outcomes
A task is considered complete if any drone is assigned that task as its next task and it briefly stops and stabilises

within 10cm of the task location. When the central task monitor observes that all tasks have been completed, it sends a
signal to land the drones and the trial is considered completed and successful.

A trial is considered failed if the system is unable to complete all tasks due to but not limited to the following factors:
• Hardware or Communications Faults causing the drone to land itself
• Battery capacity reaching minimum threshold causing the drone to land itself
• Operator cancelling flight due to drone flying in an unsafe manner.
If a hardware fault occurs, the Operator will do their best to fix and maintain the drones, including actions such as

replacing propeller guards, replacing chipped propellers, re-fixing motion capture balls, and so on. There exists one
extra set of core replacement electronics such as the autopilot, power distribution board or companion computer which
are to be used with no extra parts being purchased. In the event of a catastrophic non-fixable failure, the study will be
terminated.

The operator has the ability to abort (land) and e-stop individual vehicles if they are deemed to be flying in an unsafe
manner. Observed from the pilot study, this mainly covers bouts of poor control and lost tracking where the vehicle does
following:

• Drifts slowly out of the safe flying volume marked by the mats
• Accelerates unexpectedly in one direction and appears to have lost tracking and control.
• Loses vertical tracking and accelerates into the ceiling.
• Extreme sudden acceleration in a random direction, identified by sudden motor pitch increase.
• Fails to stabilise into a hover during takeoff or flying to initial position for more than 30 seconds.
If the operator spots any of these patterns occurring, the operator will attempt to individually abort. Unfortunately,

depending on the nature of the failure, the abort may not safely land the vehicle, or the vehicle will get stuck on a wall or
netting and attempt to accelerate out. The operator will then attempt to e-stop that individual vehicle, which should stop
the motors. Sometimes the individual e-stop commands have been observed to not immediately stop the motors on
button press. Therefore in dangerous or unresponsive situations, the arena e-stop button will be pressed which stops all
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((a)) The flying arena with VICON cameras.

((b)) The battery charging setup with 6 batteries

((c)) The 3 Coex Clover quadrotors used for this experiment

((d)) Image of the experiment in progress from the operators
view. The GUI is visible for vehicle monitoring.

Fig. 2 The facilities and equipment used within this experiment.

vehicles.
If the mission can still be completed after the failure of a single vehicle (due to operator abort or vehicle itself), the

trial will still be successful. If all vehicles fail before mission completion due to the vehicles themselves, or operator
conducted arena wide abort or estop, the trial will be recorded as a failure.

C. Experiment Implementation

1. System Hardware
The experiment uses three Coex Clover drones. These Clovers are of an X-shaped quadcopter configuration and run

the PX4 1.12.3 autopilot firmware on top of a Coex Pix modified PixRacer autopilot. The PX4 cascading PID control
stack for each drone has been manually tuned to the best of our ability prior to the experiment. Each Clover carries a
Raspberry Pi 4B as a companion computer, connected by serial to the autopilot. The Pi performs the onboard control
described in the next subsection.

The drones are localised using a 12-camera VICON motion capture system using the Tracker v9.0.1 software.
VICON uses infrared to detect pre-defined rigid shapes composed of small reflective balls which have been rigidly
attached to each drone. It calculates the position and orientation of each vehicle relative to the arena origin. These are
sent to each drone’s companion computer via a wifi connection, and these packets are then forwarded to the autopilot
controller. The VICON motion capture system was calibrated at the start of each experiment day.

Figure 2 shows a number of pictures showing the parts of the system. This includes pictures of the Coex Clover
drone in detail, a picture of the 3 Coex Clover drones used in the experiment (numbered 12,13,14), the flying arena
where the motion capture cameras and timing can be seen at the top, and the batteries and battery chargers used.
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Highest Fastest
reliability time Total

Completed 54 46 100
Not completed 6 14 20
>=1 failure 23 14 37
Total 60 60 120

PoC 90% 76.67% 83.33%
Table 1 The total number of completed and not
completed trials for each method, as well as the
number of trials in which more than one drone
failed. The Proportion of Completions is reported.

Highest Fastest
Trajectories reliability time Total
t0_t1_t2 10 12 22
t0_t2_t1 15 9 24
t1_t0_t2 11 10 21
t1_t2_t0 11 7 18
t2_t1_t0 9 10 19
t2_t0_t1 4 12 17
Total 60 60 120

Table 2 The total number of trials for each tra-
jectory allocation permutation for each method.

2. System Architecture and Software
As mentioned before, this experiment is built upon the Starling infrastructure [18]. The details pertinent to

the description of this system is that it primarily utilises the Robot Operating System (ROS2 Foxy) framework for
implementation and for communication between the different functions within this system [19]. Onboard the drones, the
companion computer runs several ROS nodes. A ROS node controls the onboard sensors and LED lights for signalling
and control. Another node runs MAVROS [20] which is the bridge between our onboard ROS controller and the
MAVLINK commands required by the autopilot. Finally there is an experiment controller which performs the trajectory
following required. It accepts the trajectory from the allocator and inputs it into a linear interpolator to ensure the
vehicle flies at a set speed from task to task. Once loaded, the controller flashes its lights to signal that it is ready to
start. The onboard controller runs a state machine which runs through the following states: (1) Init, (2) Takeoff, (3)
GoToMissionStart, (4) Execute, (5) Stop, (6) Land and (7) MakeSafe.

The user has access to a physical set of buttons which send either a Mission Go, Mission Abort or Emergency
Stop. Each sends a corresponding ROS message over the network. States (2), (3) and (4) require a Mission Go before
continuing onto the next state. If the user presses Abort or the E-Stop or there is an onboard error such as loss of
communications with the ground or the flight controller, the controller goes into the Stop state (5) followed by landing
(6) and disarming (7). This interface can be seen in Figure 2

If a drone recognises that it has completed a task, it will send out a notification message to the central offboard
mission controller. The offboard mission controller also runs on the central arena server and is responsible for monitoring
the status of the mission. It also receives the current set of trajectory allocations which is parsed for a list of tasks. If all
tasks have been registered by the drones as completed, it will send automatically send a Mission Abort to signal the end
of the mission.

IV. Analysis and Results
Overall 120 trials were conducted and recorded of which 60 trials used the reliability aware method, and 60 trials

used the fastest time method. The analysis described in this section follows the pre-registered procedure. A summary of
trials is given in tables 1 and 2. Table 1 shows the total number of mission completions and failures for each method.
It also shows the number drone failures that were observed. This experimental data has been released as an open
dataset‡ [21].

A. Contingency Table Analysis
Both the Fisher and Pearson test require the data in 2x2 contingency table form before analysis begins. Table 3

shows the contingency table for our experiment, with each observation being 𝑂𝑖, 𝑗 for row 𝑖 and column 𝑗 . Both tests
seek to determine whether the two categorical variables are independent in influencing their respective test statistics. It
is often regarded that the Pearson chi-squared test is used for large sample sizes such that the null hypothesis is valid
when the test statistic is distributed under the chi-squared, 𝜒2 distribution. The Fisher’s Exact Test is used for small

‡Data are available at the University of Bristol data repository, data.bris, at https://doi.org/10.5523/bris.
1577dh6ttrv3a2kadjorbrwsjv.
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Highest Fastest
Reliability Time Total

Mission Completed 54 46 100
Mission Not Completed 6 14 20
Total 60 60 120

Table 3 The 2x2 Contingency Table

sample sizes where one or more entries in the contingency table have a frequency of 5 or fewer and tests against the
hypergeometric distribution. Since the frequencies in our table are somewhere in between the two recommended sample
sizes, we use both tests to determine whether there is a significant difference between the expected frequencies and the
observed frequencies in our experiment.

To start off with the Pearson’s 𝜒2 test for statistical Independence between the variables. The test functions by
comparing the observed frequencies to the theoretical frequencies for a cell, given the hypothesis of independence. I.e.
that each data cell in the table has expected entry of 𝐸𝑖, 𝑗 = 𝑁𝑝𝑖 𝑝 𝑗 , where N is the total sample size (120). 𝑝𝑖 = 𝑂𝑖∗

𝑁
and

𝑝 𝑗 =
𝑂∗ 𝑗
𝑁

, where they are the fraction of observations of a row or column respectively for each variable combination. For
example in our table, 𝑖 = 1, 𝑗 = 1 would have 𝑝𝑖 = 100/120 and 𝑝 𝑗 = 60/120 with 𝐸1,1 = 50. Then the 𝜒2 distributed
test statistic is given by the following:

𝜒2 =

2∑︁
𝑖=1

2∑︁
𝑗=1

(
𝑂𝑖, 𝑗 − 𝐸𝑖, 𝑗

)2
𝐸𝑖, 𝑗

= 3.84 (4)

The test is then conducted by computing the probability of getting such a statistic value on a 𝜒2 distribution of
degrees of freedom 𝑘 = 𝑁𝑟 + 𝑁𝑐 − 1, where 𝑁𝑟 and 𝑁𝑐 are the number of rows and columns respectively. In our 2x2
example this gives us dof 𝑘 = 1. The one tailed test can therefore be formulated as:

𝑝 = 𝑃𝑟

(
𝜒2

1 ≥ 3.84
)
= 0.05 ≤ 0.05 (5)

which rejects the null hypothesis at the 𝛼 = 95% level in favour of the alternative hypothesis of a significant difference
in completion likelihood between using the Reliable and Fastest methods. The effect size of this test can be calculated
for our sample using the 𝜙 coefficient which shows the impact of using reliability over efficiency. The effect size is
calculated to be 𝜙 = 0.178 which is regarded as a small to medium impact from using reliability over efficiency on
probability of mission completion for coverage path planning in practice.

As secondary analysis, the Fisher’s Exact Test is conducted which calculates the exact significance of the deviation
from the null hypothesis. It achieves this by showing that any entry in the contingency table, conditioned on the
marginals, is distributed as a hypergeometric distribution on the marginals where the probability of obtaining such a set
of values out of the set of all possible tables with given marginals is the following:

The P-value for a one tailed test is then calculated as the sum of the probabilities for all tables with the same
marginals having a probability equal to or greater than 𝑂11 = 54. This gives the following if 𝑋 is our test statistic
following the hypergeometric distribution:

𝑝 = 𝑃𝑟 (𝑋 ≥ 54) = 0.042 ≤ 0.05 (6)

Which also provides enough justification to reject the null hypothesis at the 𝛼 = 95% level in favour of the alternative
hypothesis of a significant difference in completion likelihood between using the Reliable and Fastest methods.

B. Confidence Interval Analysis
Another common test is to form confidence intervals for each category of data. A k% confidence interval (CI)

around, say, the mean gives you the likelihood that the true mean is within the interval is k%. In our scenario we can
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Fig. 3 (a) The 95% Confidence Intervals representing from left to right (1) The probability of drone failure
using Reliable (2) The probability of drone failure using fastest (3) The probability of non-completion using
reliable (4) The probability of non-completion using fastest. (b) The distribution of mission durations.

form two 95% CIs, representing the probability of non-completion using the reliable or fastest method respectively. A
test is formed by determining whether the difference between the means is statistically significant.

(𝑝𝐿 , 𝑝𝑈) = 𝑝 ± 𝑧

√︂
𝑝(1 − 𝑝)

𝑛
𝑝 =

#failures
𝑛

(7)

where again 𝑧 = 1.96 is 95th percentile of the standard normal distribution.
One simple method of testing is to plot the confidence intervals and observe whether the two intervals overlap. If

those intervals overlap, they conclude that the difference between methods is not statistically significant. If there is no
overlap, the difference is significant. The interval bounds can be calculated using the Wald Binomial Proportion Interval
for each method and plotted in Figure 3(a).

Observe in Figure 3(a) that the rate of failure is higher for Reliable. This is likely due to the slightly longer flight
durations on average as seen in Figure 3(b) where Reliability takes on average an extra 2 minutes compared to the
Minimum Time paths. Despite this, the rate of mission failure is still much lower than that of the Fastest path. This
shows that the mission can succeed even if drone failures occur, hence why the CIs for Reliable differ, whereas they
are identical for Fastest. The figure shows overlap between the CIs for non-completion between the two methods,
therefore not confirming statistical significance of the difference in probabilities. However, it has been found that simply
observing overlap between confidence intervals is an extremely conservative metric and does not necessarily imply
that the difference between the two means are statistically significant. An alternative method of analysis is to form a
confidence interval from the difference in means between the two groups. Given the frequencies shown in Table 3, Let
us form the observed proportions 𝑝𝑟 = 6/60 and 𝑝𝑒 = 14/60. The observed difference is then given by 𝑑 = 𝑝𝑒 − 𝑝𝑟
with total sample size of 𝑁 = 𝑛1 + 𝑛2 = 120. For a 95% confidence interval of the mean difference, the Wald interval
can be formed from the following [22]:

(𝑝𝐿 , 𝑝𝑈) = 𝑑 ± 𝑧

√︄
𝑝𝑟 (1 − 𝑝𝑟 )

𝑛1
+ 𝑝𝑟 (1 − 𝑝𝑟 )

𝑛2
(8)

where again 𝑧 = 1.96 is 95th percentile of the standard normal distribution. Putting in the values, this outputs the 95%
confidence interval from [0.21, 26.45]. This interval contains the range of possible probability differences. Since zero
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is not in the interval, this implies that it is unlikely for there to be no difference between the means and hence the result
is also statistically significant.

V. Conclusion
This paper presents a real world validation study on the efficacy of our Reliability-Aware Coverage Path Planning

Methods in comparison to a reliability-unaware, minimum-time coverage path plan. In this study, 3 real world drones
are flown on a randomised mission of a set of trajectories generated from either plan, and the mission completion status
is reported. Overall 120 trials were collected and the results statistically analysed, identifying that the Reliability-Aware
methods made a significant improvement (𝛼 = 0.05) to the likelihood of mission completion compared to minimum time
plans. Despite the discussed limitations of sample size and failure detection, these findings provide real world validation
for the simulated and theoretical results described in previous chapters. It also demonstrates that considering reliability
as a valid method of resilient multi-agent planning and lays the groundwork for further research into reliability-aware
planning.

This validation also exposes a number of key future works. This work requires the knowledge of individual agent
failure distributions. As seen in this work, using an approximate failure distribution can still generate reliable paths,
but an investigation is needed into how to both derive an accurate failure model for an agent (for example from the
failure data collected in this experiment), and to quantify the presumed improvement in reliability if the experiment
was repeated with more accurate failure models. In addition it would provide interesting results if this experiment was
repeated using different vehicles and in different environments to determine how much the reliability can be improved
by in practice.
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