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WAVE REFLECTION
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Dept. of Civil Engineering
Sohngaardsholmsvej 57
DK-9000 Aalborg, Denmark

ABSTRACT

This report is Aalborg University’s first contribution to the MAS2-CT92
project: Full scale dynamic load monitoring of rubble mound breakwaters.

One of the objectives of the MAST II programme is determination of the forces
acting on the armour units and the hydraulic pressure set-up in the breakwater
core and foundation layers.

In order to interpret the measured forces correct, it is important to know the
incident waves to the breakwater. As the wave field in front of a reflecting
structure consist of both incident waves and reflected waves, methods capable
of separating the incident waves and the reflected waves must be used.

This report introduces the wave reflection phenomenon, presents methods for
estimating wave reflection and gives status for ongoing evaluation of the meth-
ods for estimating reflection.

Finally, a appropriate method to be used in the MAST II programme in order
to describe incident waves is proposed.



1 Introduction

1.1 Design of harbours and breakwaters

Coastal and offshore engineering cover a wide spectrum in the field of civil engi-
neering. Some of the major subjects involved are the construction of harbours and

breakwaters.

Design of breakwaters and breakwater lay-outs are based on the need for an ac-
ceptable wave climate in the harbour and in the harbour entrance. However, the
complex behaviour of waves propagating into a more or less closed basin makes the
design of the quaywalls and breakwaters important.

When a physical or numerical model is used for wave climate investigations it is
important that the model will provide reliable results. Naturally this depends upon
whether the boundary conditions in the model are correct.

Establishing the correct boundary conditions is a problem due to scale effects. How-
ever the important properties of a boundary are the absorption, transmission and
reflection of waves.

In order to provide correct reflection characteristics in the models one must know
the true reflection characteristics for the structure under study.

The wave field in front of a structure consist of both incident waves and reflected
waves. As one cannot first measure the incident waves and then the reflected waves,
methods are required to separate or distinguish between the incident and reflected

waves.



1.2 Wave Reflection

Wave reflection occurs when waves are propagating onto breakwaters and quaywalls.

Separating the incident waves and the reflected waves from a recorded wave eleva-
tion time series has several purposes. Either:

e The reflection characteristic for a structure is wanted, or
e The incident wave characteristic for a given site is wanted

The reflection characteristics for a structure are mainly wanted in sheltered areas,
e.g. inside harbours, where the level of wave disturbance plays an important role
in the design situation. Though, also the reflection characteristics of breakwaters
are wanted, because it is important for the wave climate in the harbour entrance.

Generally a low reflection is wanted.

In order to apply physical models and numerical models the reflection characteris-
tics must be modelled correct.

The incident waves are wanted where response of a structure (breakwater) is wanted
as function of the incoming waves in front (seaward) of the reflecting structure.

In the following several different methods for separating incident waves and re-
flected waves will be presented. After separation of the incident waves and the
reflected waves it is easy to calculate the reflection characteristics for the structure.

The following methods for separating the waves will be divided into two main
groups:

e 2D methods
The waves are assumed to be 2-dimensional (long crested)

e 3D methods
The waves are assumed to be 3-dimensional (short crested)

There is a wide need for 2D methods due to the amount of experiments carried
out in wave flumes. In wave flumes reflection and re-reflection influence upon the
validity of measurements if it is not possible to extract the incident waves. Further
when operating in the near shore environment the wave-field will often be approx-
imately two-dimensional as the waves diffract, i.e. they bend towards orthogonals
to the shore.



The 2D methods presented herein are all based on surface elevation measurements
at a number of positions.

Three of the 2D methods are derived from the same principles but for various num-
ber of probes. The simplest method requires two probes. The other methods need
three or more probes. The three first methods work in frequency domain and give
the incident wave spectrum as well as the reflected wave spectrum. The last 2D
method works in #ime domain and gives the incident wave timeseries.

There is a considerable step from 2D methods to 3D methods. This is due to the
circumstance that 3D methods for estimation of random sea states even without
reflection are tedious and not as reliable as 2D methods. In principle, all methods
for estimating directional wavespectra may be considered as a tool to determine re-
flection coefficients. However, only a few methods are capable of handling reflected
seas as the reflected waves propagate with the same frequency as the incident waves,
and thereby makes it impossible or at least difficult to distinguish. One should also
recall that the direction of the waves is unknown in contrast to a 2D case.

As an intermediate case there is oblique long crested waves. This may be considered
as a 3D case having a very narrow peak in the directional spreading function.
This justifies the assumption that only one direction is present. Furthermore in
laboratories real oblique waves can be generated. This may be used to determine
the 3D reflection characteristics for e.g. a breakwater by use of physical models.



2 Two-dimensional methods

In the following four methods for separation of incident and reflected waves in a
two-dimensional wave field will be presented.

The first three methods are all working in the frequency domain and have the same
basic principle. They assume the wave elevation to be a sum of regular waves travel-
ling with different frequency and phase. The first method by Goda & Suzuki needs
measurements of the wave elevation in two distinct points. Hence by use of Fourier
analysis the amplitude of the incident and reflected waves for a given frequency
can be estimated. This procedure does not account for the noise which probably is
contaminated in the measured wave signals, i.e. the measured wave elevations.

The method presented by Mansard & Funke takes this into account, but also re-
quires the wave elevation to be measured in three distinct points. By applying
Fourier analysis this should result in the same waves except that the measured
noise varies from wave gauge to wave gauge. That is, 10 Fourier coefficients are
needed but only 6 are available. Instead the noise is expressed in terms of the
Fourier coefficients for the incident and reflected waves and the measured coeffi-
cients. The best estimate of the Fourier coefficients is then found by minimising

the noise.

The method by Zelt & Skjelbreia extents the method to apply to an arbitrary num-
ber (though larger than one) of wave gauges. Further a weighting of each frequency
component is introduced. This is to control the possible influence of singularities
which occur for some geometric relations between the distances between the probes.

Finally a method by Frigaard & Brorsen is presented. This method is based on
another approach than the previously mentioned methods. The method has the
advantage that it works in the #ime domain.

Other methods have been published but they will not be presented herein. The



methods by Goda & Suzuki and Mansard & Funke are the methods being used
most often as they are relatively simple to apply and yield reliable results within
most applications.

2.1 Goda & Suzuki’s method

The method presented by Goda & Suzuki (1976) is the most simple method. It
is based on the assumption that the wave elevation can be considered as a sum of
waves travelling with different frequency, amplitude and phase. Further for each
wave a reflected wave will travel in the opposite direction. The method makes
use of Fourier analysis and will due to singularities put constraint to the distance
between the waveprobes. The method is very easy to implement but has a lack of
accuracy as no measuring errors are accounted for.

The surface elevation in a two-dimensional wave field is assumed to be a summation
of a number of waves, say N waves, i.e.

N
n(x,t) = ancos(kns — wnt + D) b1
n=1

where 1 is the surface elevation relative to MWL
x is the position of the wave gauge in a predefined coordinatesystem
t is time
a, 18 the amplitude
k, is the wavenumber
wy, is the angular frequency of the waves
®,, is the phase

If reflection happens 7?7 may be expanded to

N N
n(x,t) =Y arnco8(kn® — Wat + Brn) + Y Grpn c08(kn + wit + Prpn) (2.2)
n=1

n=1

where indices I and R denotes incident and reflected respectively.

In the following the index n will be omitted for simplicity, that is, only one frequency
is considered. Hence eq. (?77) will consist of only two terms:

n(z,t) = aycos(kr —wt+ O1) + apcos(kz + wt + Ppr) (2:3)
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Figure 2.1: Definition sketch showing z 5.

Sampling the surface elevation at two positions within a distance of z; ; measured
in the direction of propagation of the waves, as illustrated in fig. 77, yields:

m = n(z1,t) = arcos(kz; —wt+ ®r) + agcos(kzy + wt + $r)

Ny = n(x9,t) = arcos(kzy —wt+ O;r) + agcos(kzy + wt + $r) (2.4)
Decomposing the trigonometric terms in eq. (??) by use of
cos AcosBtsinAsinB = cos(AF B) (25]
leads to
m = ay(sin(kz; + ®5) sin(wt) + cos(kxy + 5) cos(wt))
+ag (cos(kzs + @g) cos(wt) — sin(kzy + Pgr) sin(wt)) (2.6)
ne = aj(sin(kzy + @;)sin(wt) + cos(kxy + 1) cos(wt))
+ag (cos(kzy + Ppg) cos(wt) — sin(kzy + Pg) sin(wt)) (2.7)
which is rearranged to
m = Ajcos(wt)+ By sin(wt) (2.8)
7y = Ajycos(wt)+ Bysin(wt) '
where
A = ajcos(kzy + @) + agcos(kz, + Pg)
B, = arsin(kz; + @) — agsin(kz, + Op) (2.9)

Ay = ajcos(kzy + @) + agcos(kzy + Og)
B, = arsin(kzy + @7) — agsin(kzy + Og)



In eq. (?7) the elevation is seen to be a composite signal of a sine and cosine
signal having different time-constant amplitude, i.e. the LHS of eq. (?7) must cor-
respond to the Fourier coeflicients which can be obtained from Fourier analysis of
the recorded time series.

Thus eq. (?7) contains four equations with four unknowns, i.e. ay, ag, ®; and ®p.
The solution giving the amplitudes is given by Goda & Suzuki (1976) as:

ar = m\/(/lg — Al COS(:ICSL‘LQ) - Bl Siﬂ(kﬂfl’z))z
+(By + Ay sin(kzy 2) — By cos(kzy2))?

(2.10)

ap = m\/(/lg —A]_ COS(kfl,Q) '%"Bl Sin(kml,Q))Q
+(By — A; sin(kz; o) — By cos(kzy 3))?

where z19 = 23 — Z3.

It is seen from eq. (?77?) that singularities will occur for sin(kz;.) = 0. Hence it

should be avoided that
Ba_. = where A=0,1.2,...

L 2
Further Goda & Suzuki (1976) suggest to avoid values in the range £0.05%3% at
the singularity points. For a wide wave spectrum this will be impossible for all fre-
quencies, but of course values applying for the peak frequencies should be weighted

highest.

For regular waves the method is quite accurate but for irregular waves the confidence
of the FFT analysis plays a significant role. However in both cases noise may be
the dominant error as it cannot be accounted for.

2.2 Mansard & Funke’s method

As a natural extension to the method by Goda & Suzuki, Mansard & Funke (1980)
presented a three-points method. Here an additional probe is taken into use which
makes it possible to add an error to the measurements and hence minimise it in a
least squares sense.

The general equation for a progressive wave field is obtained as in the previous
method, i.e. eq. (?7):

N
nlpd) = ) apcos{ky® =w,t-t8,) (2.11)
n=1



The wave elevation given by eq. (?7) and eq. (??) is separated into incident waves
and reflected waves, also as previously, but now a noise function is added. This
leads to:

N N
n(z,t) = a1, co8(knt — wpt + rp) + Y apn co8(knt + wnt + Pry)
n=1 n=1
or
N
n(z,t) = > oracos(kn — wnt + By)
fid
N
+ 3" arp cos(kn( + 225) + wnt + Oy +0,) + Q1) (2.12)
n=1

Here in contrary to Goda & Suzuki (1976) the distance from the point of observation
to the reflecting structure is assumed known. However as the distance may be
impossible to determine (e.g. for a slope) a phase 6, is introduced to compensate
for this. This has the consequence that the phase ®, remains the same for the
incident and reflected wave. (t) is the noise function and expresses all kinds of
errors. g is the distance from the wave probe to the reflecting structure.

/
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Figure 2.2: Definition sketch.

Mansard & Funke allow a phaseshift #; to occur at the reflecting structure. For
three probes placed as indicated on fig. 7?7 eq. (?7) can be applied for each probe.



Hence

M = 1(Zp 1)
N
= Y arnc08(knp — wat + By)
=1
N
+ > arn cos(ka(zy, + 22Rp) + wit + By +0,) + Qu(2) (2.13)
n=1

where index p refer to probe number.

Inserting z; ,, which is the distance from the 1st probe to the p’th probe, eq. (?7)
can be modified to

N
N = Y araco8(kn(1 + Z1p) — wat + Bp)
n=1

N
+ > agp cos(kn(1 +22R1 — T1p) +wnt + P +6,) + Qp(t)  (2.14)

n=1

In the following until eq. (??) only one frequency will be considered, i.e. index n
will be omitted. Thus

e = arcos(k(ey + &1p) —wt+ @)
+apcos(k(zy + 22r1 — Z1,p) + wt + D +0,) + Q,(2) (2.15)

The following manipulations have the purpose to derive an algebraic solution, which
is based on a minimisation of the noise function.

Fourier transformation of eq. (?7) yields

A, +iB, = arexp (ik(z1 +z1,) +1D)
+agexp (ik(z1 + 2zp1 — Z1,) +4(P +6))

1Y, exp(iy) (2.16)
where A, and B, are the Fourier coefficients.
Let
Z; = arexp(tkzy +19) (2.17)
Zr = agrexp(ik(z1 + 2zg,1) + (P +6;)) (2.18)
Zyy = Ypexp(ipy) (2.19)

where index /N refer to noise.



Now, eq. (?7) can be applied to each probe yielding

A1—|—?;Bl = Z[+ZR+ZN!1
Az + ‘LBQ = Z[ exp(ikml,g) + ZR eXp(*’L‘k‘ﬂSl’Q) + ZN,Q
Az + 1By = Zrexp(ikzys) + Zrexp(—ikz13) + Zn3
or in general form
Ap+iB, = Zyexp (ikzyp) + Zrexp (—ikx1y) + Znyp (2.20)

One is interested in solving ?? with regard to Z; and Zg as they contain informa-
tion of the reflection coefficients.

Now eq. (??7) can be rearranged to

£ = Z[+ZRﬁ(A1+iBl)
&y = Z[ exp(ik:clig) -+ ZR EXp(“E—kﬁTLg) = (AQ + ’LBQ) (2.21)
£3 = Z[ exp(ik:cl,g) -+ ZR exp(~éka¢1,3) e (Ag + LBg)

where

ep = —Znp+ [e(Z1, Zr)
Minimising the noise function Q,(¢) introduced in eq. (??) correspond to minimis-
ing the sum of squares of €, for all p, i.e.

Z(ep)z = Z(Z} exp(ikzy,) + Zgexp(—ikzip) — (Ap + iB,))* (2.22)

p:l p:]_

should be minimised.

Assuming that the minimum of eq. (??) is achieved when both partial derivatives
are zero, i.e.
oy .5 8T &
Lp=18p _ O2p=18 _ (2.23)
0Zy 0ZR

Hence one obtains:

3
0 = QZ(ZI exp(tkzy,p) + Zgexp(—ikzyp) — (Ap +1By)) exp(ikzy )
p=1
(2.24)
3
0 = 2 (Zrexp(ikzyp) + Zrexp(—ike1,p) — (Ap +iBp)) exp(—ika1,p)
p=1



When written out and again including index n eq. (?7) leads to

Zyn(1 + exp(i2k,a12) + exp(i2knz13)) + 3Zpn =

(A]_;n + ?:Bl,n) + (Azjﬂ + ?;Bg’n) exp(iknml,z) + (A;g,n + ’iBg’n) eXp(’-':kniﬂl,g)
Zrn(1 +exp(—i2knz12) + exp(—i2knz13)) +3Z1n =

(A1 +1B1,n) + (Azn +1B2n) exp(—iknz1,2) + (A3 n + 183 ) exp(—ik,z1 3)

The solution is given by Mansard & Funke (1980) as:

ZI,n

ZR,n

where

Dy,

Ry
Q1
Ry
Qo,n
Rsp
@sn

DL?L((AI,TL -+ '!':Bl,n)(Rl,'n =+ 'E:Ql,n)

+(A2,n + Bﬁ,n)(RQ,n + 'éQZ,n) + (AB,n + "';BS,n)(RB,n + iQS,n))
2= ((A1,n +iB1n)(Ri,n — iQ1,n)

+(A2,'n, s iB2,n)(R2,'n, - iQ2,n) 1= (A3,n o iBB,n)(RS,ﬂ - ?;Q3,ﬂ))

2(sin? (knz1 ) + sin?(knzy 3) + sin®(knz13) — kn12))
sin?(knx1,2) + sin (ko1 3)

sin(knz12) c0s(knz12) + sin(k,z1,3) cos(knz1,3)
sin(knzy 3) sin(knz13 — knz12)

sin(knz13) cos(knz13 — knz12) — 28in(knz12)
—sin(k,z12) sin(kn®13 — knZ1,2)

sin(knz12) cos(knt13 — kn212) — 2sin(kn21 3)

(2.25)

(2.26)

The only unknowns in eq. (?7) are the Fourier coefficients of the measured wave

elevations. These are obtained by use of FF'T analysis of the measurements.

Compared to the previously discussed method this method has the advantage that
it minimises the noise contaminated to the elevation measurements. Thus instead
of obtaining an exact solution a fitted solution is obtained.

Problems due to singularities, however, occur as well. Singularity will occur when

B, =0

i.e.

SinQ(kn.Tl:g) + sin®(kp13) + sinQ(kn:t:Lg, — knz12) =0



As all the terms are positive the solution is solution to
sin(knx12) = sin(k,z13) = sin(k,z13 — knZ12) =0

but if sin(k,z12) = sin(k,z13) = 0 then sin(k,z;3 — k,21,2) = 0 whereas the
solution is reduced to

Sin(kniﬁlyg) = Sin(knwl’g) z ()

which is obtained for

knZ12 = mm A kytiz = Iz m = L2.8, ..
[ = m+1lm+2,..
knzt12 = mm A kyz13 = 7w
&jm = %—Ln A 13 = %Ln = #231,2

as by definition 0 < x72 < z13. Mansard & Funke (1980) suggest that

Ly
& = e
1,2 10
L, " p L,
e I ORI
6 ke 3
Ly
T13 ?’é E“
3L,
T1,3 ?é ﬁ

2.3 Zelt & Skjelbreia’s method

Zelt and Skjelbreia (1992) introduced a method based on the same principles as
the previously described methods.

This method applies for an arbitrary number p of probes and further introduces
a weighting of the measurements from the gauges. The latter facility takes into
account the spacing between each pair of wave gauges. However determining the
weighting coefficients is a rather subjective process and requires some additional
work.

For p = 2 the method corresponds to the method by Goda & Suzuki. For p = 3
and a uniform weighting, the method corresponds to the method by Mansard &
Funke.



Once again the wave elevation is considered as a sum of incident and reflected
waves, i.e. for the pth probe at position z, utilising eq. (77)
e = Wiy, 1) = Zﬁ;l Gy p COS(knZp — wnt + @rn) +
YN arncos(knzy, + wit + Pr )

or by use of eq. (77)

N
By = Y, brpoosiRa( i) — 0t 0)
=1

N
— Z AR COS(kn (21 4+ 22R1 — 1) + Wit + O + 65) + (%)

n=1
As in the method of Mansard & Funke (1980) this is by use of the Fourier coeflicients
rearranged to eq. (77) which has the general form

Epn = L1 .0 eXp(ikar ) + Zay exp(—thnrp) — (Appn +iBpym) (2.27)

That is, if the estimated coeflicients are correct there will be no error, i.e. g,, = 0.
A function is chosen to be a weighted sum of the squares of €, ,,, i.e.

P
En=) Wpnpntpn (2.28)
p=1
where W, ,, > 0 are weighting coefficients.

It is assumed that the minimum of eq. (??) occurs where the partial derivatives
with regard to Z;, and Zg, are zero. Thus

P
> WpnEpmn exp(Eiknz1,) =0 (2.29)
p=1
Inserting eq. (?7) into eq. (77) gives:
25:1 Wp,nZI,n exp((‘ﬂknajl,p) + Z;f:l WP,TLZR,” =
Ele Won(Apn + 1By ) exp(ik, i)
(2.30)
2;1?:1 WonZin+ 25:1 WonZgnexp(—i2k,x1p) =
E;f:l Wp,n(Ap,n o in,n) eXp(*iknml,p)
This, eq. (?7) can be solved with regard to Z;, and Zg, as a linear system of

equations. Simply isolate a; , and ag, in both equations in eq. (??7) and substitute
into the other equation respectively. Hence the following solution is obtained

Zin = 2 (Sn S5 WonlApn + iBpn) exp(—iknz1 )
- Z}I;:] Wp,n(Ap,n + in,n) eXp(iknml,p) Zf;:l Wq,n eXp{—?:an:El:q))
Zrn = '51; (Sn 25=1 Won(Apn + 1Bpn) exp(iknzyp)

— 25:1 Wy n(Ap.n + iBpn) exp(—iknz1p) 25:1 Won exp(z’2knm1!q))



(2.31)

B e e Z n €xp(12kn1 ) Zanexp( 12k, 21 4)

q=1

It is seen from eq. (??) that D, = 0 will lead to singularity whereas it should be
avoided that z,, = 0 for all p and ¢ where p > g¢.

2.4 Frigaard & Brorsen’s method

Contrary to all the previously described methods, the method by Frigaard &
Brorsen (1993) works in time domain.
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Figure 2.3: Wave channel with piston-type wave generator.



To illustrate the principle of the SIRW-method the set-up shown in fig. 7?7 will be
considered. The surface elevation n{z,t) at a distance z from the wave generator
may be written as the sum of the incident and reflected waves. The incident wave
propagating away from the wave generator, and the reflected wave propagating
towards the wave generator. Even though the method works for irregular waves it
will be demonstrated in the following pages for the case of monochromatic waves.

7?(33’” = ﬁ[(ﬂf,t)-i-??R(.’JE,t)
= aycos(wt — kx + &) + agcos(wt + kx + Pg) (2-32)

where
w is cyclic frequency
a=a(w) is wave amplitude
k= k(w) is wave number
$ = ¢(w) is phase

and indices I and R denote incident and reflected, respectively.

At the two wave gauges we have:

n(zy,t) = aycos(wt — kzy + @;) + agcos(wt + kxy + Pr) (2:38)
n(xy,t) = aycos(wt — kg + ®r) + agcos(wt + kzy + Cg)
= aycos(wt — kxy — kAz + &) +
arcos(wt + kxy + KAz + ¢r) (2.34)

where x5 = 21 + Az has been substituted into eq. (77).

It is seen that the incident wave is phase shifted A® = kAx from signal n(zy,t) to
signal n(x,t), and the reflected wave is phase shifted A® = —kAx due to opposite
travel directions. These phase shifts are called the physical phase shifts and are
denoted ®2"¥* and OB respectively.

The idea in the following manipulations of the elevation signals is to phaseshift the
signals from the two wave gauges in such ways that the incident parts of the wave
signals are in phase while the reflected parts of the signals are in mutual opposite
phase. In this case the sum of the two manipulated signals is proportional to and
in phase with the incident wave signal.

An amplification C' and a theoretical phase shift ®%¢° are introduced into the
expressions for n(z,t). The modified signal is denoted n*. For the i’th wave gauge
signal the modified signal is defined as:

n(2i,t) = Caycos(wt — kx; + ®p + %) +
Cap cos(wt + kzi + @ + &) (2.35)



This gives at wave gauges 1 and 2:

n*(x1,t) = Caycos(wt — kxy + @ + &) +
Co ot + kr + By + 8 (239

n*(zy,t) = Caycos(wt —kxy + P7 + ptheoy 4
Cag cos(wt + kzg + Pp + ptheo)

= Ca] COS(UJf = kml — kAzx + (I)I == (I);heo) i
Cap cos(wt + kxy + kAx + &g + L) (2.37)

The sum of n*(z1,¢) and *(z2,t), which is denoted n°°(t), gives:

ncalc(t) o 77*(3:1, f) =+ n*($27 t)

= Caycos(wt — kxy + @7 + ) +
Cagcos(wt + kz, + Pp + (I)tlheo) 4
Ca; cos(wt — kxy — kAz 4+ & + dL<°) +
Cag Cos(wt + kxy + kAx + (pR + (I)gheo)

= 2Cayrcos(0.5(—kAx — B + 3L))
COS(wt — .ICSCI + (I']— - OS(W}DAQ; un q)iht’.o 5 (I)gheo)) +
QCO}R COS(OS(—kA:I: + (biheo _ @izheo))
cos(wt + kzy + B + 0.5(kAz + B + 3Le)) (2.38)

It is seen that n°e(t) and nr(z1,t) = ay cos(wt — kzy + ®;) are identical signals in
case:
2C c0s(0.5(—kAx — e 4 pihe)) = 1 (2.39)
0.5(—kAz + ®te0 + ey = pn. 27 n € (0,£1,£2,..) (2.40)
0.5(=kAz + Bire — Piheo) = % tm-1m  me (0,£1,42,.) (2.41)



Solving eq. (77) - eq. (??) with respect to &« @i and C gives eq. (?7?) -
eq. (??). n and m can still be chosen arbitrarily. Thus:

it = kAz +7/2+mm +n2r (2.42)

Pt = —1/2 —mm +n2r (2.43)
1

c = (2.44)

2cos(—kAz — /2 — mm)

All the previous considerations and calculations were done in order to find an am-
plification and a phaseshift for each of the two elevation signals 7; and 7,.

Eq. (?2) - eq. (??) give the result of our efforts, i.e. nr(x1,t) = n°¢(t). Remem-
bering that @0 = @thee(w), e = Htheo(w) and C = C(w) it is seen that the
aim is already reached in frequency domain. However, the implementation of the
principle will be done in time domain using digital filters.

It is seen that singularities may occur. The consequences and the handling of the
singularities will be treated later on. Here it should just be mentioned that one
way to bypass the singularities is to use a velocity meter instead of one of the two
wave gauges.

@ — nf(xla t)
n(xzq,t) — | FILTER 2 /

Figure 2.4: Flow diagram for signals in the method.

The purposes of the filters shown in fig. 7?7 are a frequency dependent amplification
and a frequency dependent phaseshift on each of the two elevation signals.

Taking n = 0 and m = 0 the frequency response functions H;(w) for filter 1 and
H,(w) for filter 2 calculated due to eq. (?7) - eq. (?7) are given on next page in
complex notation:



1

R(H)} = gomr—rry - cos(kbz+/2)
IR = zcos(ml.ww o - sin(kAa+7/2) (2.45)
Re{Hy(e)} = 2cos(kimﬁ/2) - B8~

FoslEa)) = : \ gin(—r{%) (2.46)

2cos(—kAz — 7/2)

Based on eq. (?7) and (??) it is straight forward to design the time domain filters.

2.5 Oblique waves

In the case of oblique waves, i.e. 2D-waves travelling along a line not perpendic-
ular to the reflecting structure, the previous four methods all can be applied by
assuming that the waves can be decomposed into two vectorial components, being
respectively L and || to the structure.

n(x,t) = N_ arncos(kn — wat + $ry) +

SN agrncos(knx + wat + Prp) (2.47)

where 1 is the surface elevation relative to MWL
x is the vectorial position of the wave gauge
t is time
a, is the amplitude
k, is the vectorial wavenumber
wy, 18 the angular frequency of the waves
®,, is the phase



Omitting index n and rewriting eq. (7?) in cartesian coordinates:

n(z,y,t) = arcos( kxcos(f;) + kysin(fr) — wt + O;) +
agcos( kx cos(fr) + kysin(fg) + wt + @g)

where z,y is the vectorial position of the wave gauge

k 18 the wavenumber
g is direction of wave
* Wave gauge
Breakwater

Wave fronts
* (reflected waves)

3 x
Wave fronts
(incident waves)
¥

Figure 2.5: Placement of wave gauges in front of structure.

?
? *
?

(2.48)

One example of solving the problem is to place all wave gauges on a line with

y-coordinate = 0 as shown in fig. 77. Eq. (?7) will then simplify to:

n(z,0,t) = aycos(kzcos(fr) — wt + @) +
ap cos(kz cos(fr) + wt + Pr)

(2.49)

It is seen that if the angle of the incident wave is know, and the angle of the reflected
wave is calculated using Snells law (incident angle = reflected angle) eq. (?7) is

very similar to the original expression for the wave elevation, eq(??).

The easiest way to solve the problem is to place the wave gauges on a line perpen-

dicular to the reflecting structure.



Please notice that near the structure edge-waves will exist. These waves travel
along the structure and can destroy the calculations because they are not included
in the modelling of the waves.
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3 Three-dimensional methods

3.1 Introduction

A short crested wave field is normally referred to as a three-dimensional wavefield.
This implies introduction of an additional parameter namely the direction of travel.
A two dimensional wavefield is commonly described in the frequency domain by use
of the wavespectrum, i.e. the autospectrum of the waveelevation process. Now in
the three dimensional case a directional spreading function depending on frequency
and direction of travel is introduced. The combination of the wavespectrum and
the spreading function is the directional wavespectrum. Having determined the
directional wavespectrum the wavefield is fully described in the frequency domain.

For a two dimensional seastate the elevation was assumed to be a summation of
a number of wavelets as stated in e.g. eq. (??). In a three dimensional case the
corresponding expression 1s

N M
i, ) =3, D CmnCo8(Kmn® — Wal + Pona) (3.1)

n=1m=1
where k is the wavenumber vector. Eq. (?77) implies that for each pair of discrete

values of frequency and direction of travel there exist a long crested wave propa-
gating with these properties.

The amplitude a,,, can alternatively be described by use of the wavespectrum as
the variance of a sinusoidal wave is half the amplitude squared. Hence

1

Zal = S(wm,8,)A0AwW

2711/’1

G = /25(Wnm, ) A AW (3.2)




Inserting eq. (?7) into eq. (?7?) yields

N M
wle =2 X, \/ZS(wm, 0r) ABAW co8(kpmn® — wnt + Py ) (3.3)

n=1m=1

Letting A — df and Aw — dw eq. (77) turns into a double integral
R B /00/ cos(kx — wt + ®(w, #))1/25(w, §)dfdw (3.4)
0 -

The aim of the following is to establish an expression which relates known and
measured numbers to the directional wavespectrum or the directional spreading
function. These latter functions are related through

S(w,d) = Hw,0)S(w) (3.5)

Two wave gauges are considered. These are positioned as shown in fig. 77.
Y
Gauge 2

Direction of travel

& x
Gauge 1

Figure 3.6: Definition of geometric parameters.
The elevations at gauge 1 and gauge 2 respectively are
o= ailay, t] = /Ooo /_: cos(kz; — wt + ®(w, 8))1/25(w, 8)dfdw
ne = n(xy,t) = /:o /: cos(kxy — wt + @(w,0))1/25(w, 8)dfdw
= /UOO /_z cos(kx; — wt + kripcos(f — fr2) + ®(w, §)) -
25(w, 8)dfdw
The cross-correlationfunction is obtained as

Rmnz(T) = %/UT m (t)772(t + T)dt (3.6)



Here it is necessary to specify the time argument, thus n,(t) = n1 and n3(t) = 2.

Inserting into eq.

Rmnz (7-) =

Applying the trig

2 cosa cos [
cos(a + f3)

leads to

Ry, (T) =

where
C12 (u)) =

912(w) =

(?7) yields

%—/{)T/()W/ZCos(kwl —wt+ ®(w,)) -
cos(kzy — w(t+7) + ®(w, #))25(w, 0)dfdwdt (3.7)

onometric relations

cos(a — ) + cos(a + 3)
= cosacosfd Fsinasinf

1 T roo pm

?]ﬂ fo L [cos(kr1g cos(f — fr2) — wt)

+cos(2kxy + kriacos(f — Pr2) — 2wt — wr + 2@(w, )] -
S(w, 8)dfdwdt

/[;Oo ~/77r Cos(k’r‘lg COS(9 = 612) - UJT)S((_L}’ Q)dgdw

/DDO /_1; [cos(wT) cos(kri cos(@ — Pr2))

+ sin(wT) sin(krig cos(f — f12))] S(w, 8)dfdw

fom c12(w) cos(wT)dw + /Ooo q12(w) sin(wr)dw (3.8)

f_w S(w, 0) cos(kryz cos(f — fra))dl

/Tr S(w, 9) Si]fl(k:'i"lg COS(G - ﬁlg))de

itk

is the co-spectrum and the quad-spectrum respectively. Thus
Smm (W) = c12(w) — igr2(w) (3.9)

Inserting the co- and quad-spectrum into eq. (?7) yields

8o lw) = I[ﬁ S(w, 0) exp(ikris cos(d — Br2))db

Tmnz

Spin (W)

—T

P \W) / H(w, 8) exp(kriz cos(8 — Brz))df (3.10)

So(w)

—m

Eq. (?77?) relates data, which can be computed from wave elevation measurements,
to the unknown directional spreading function. The geometry is represented by 712

and ﬁlg.



Eq. (??) is the basic relation that was in demand. It cannot be solved analytically.
Therefore methods have been proposed in order to make a reliable estimate.

It is common to all methods that they initially suggest some shape of the directional
spreading function. That may either be a parameterized analytic expression or a
number of discrete values making a step curve. This initial assumption is very
important to the ability of the particular method. The next step is to fit the
unknown parameters to the measured data. The reliability of the fit depends on
the reliability of the measured data but also on the number of coeflicients to fit,
i.e. the more coefficients the less reliability. This is a problem as a high resolution
requires many coefficients.

3.2 The Maximum Likelihood Method

In the Maximum Likelihood Method, MLM, the directional spectrum is calculated
from minimizing the errors between measured wave data (cross-correlations) and
fitted directional spectrum.

This is achieved by use of the Maximum Likelihood technique, which has named
the method.

In it most simple form MLM applies for simultaneous wave elevations, but by use
of transfer functions it can readily be extended to apply for various measurements.
The MLM was originally presented by Capon (1969), but has since been modified
by several authors. Especially the papers by Davis and Regier (1977) and Isobe et
al. (1984) are of importance.

As an initial assumption the directional spectrum is expressed as a linear com-
bination of the cross-spectra. The linear wave theory is assumed valid as well,
e

k = 2n/L

L = Lytanh(kd)
Hence the estimated directional spectrum, S(w, ), can be written as

~ N N

Sw,0) = > tmaw,8)Smn(w) (3.11)

m=1n=1

Then using

Smalw) = [ " (= — £))5(w, 0)d8 (3.12)



eq. (?77) leads to

. N N 2
5w,0) = 33 tom(w,6) f exp(—ik' (@ — xn))S(w, 8)d6
m=1n=1 0
;| kcost
where k _{ ksing [

Eq. (77) is expressed as

29
S8 = fo w(w,8,8)S(w, 8')dd’

where
N N

w(w,8,8) = > > tmalw, 8) exp(—ik'(zn — 2m))

m=1n=1

(3.13)

(3.14)

(3.15)

From eq. (?77) it is seen that the estimated directional spectrum is a convolution of
the true directional spectrum and the window function w(w, 8, 8") given by eq. (?7).

It is assumed that the coeflicients amn(w, ) can be expressed as

Umn(w, 8) = Ym(w, 0)vi(w, 8)

N N
w(w,0,0) = Y. Z_: Y (w, 8)7(w, 8) exp(—ik' (2, — Tpm))
= > Y Ym(w, 0)7;(w, 8) exp(ik'zy,) exp(—ik'z,)

Tr(w, 0) exp(—ik'z,)
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m=1 n

N
= | Z Ym(w, 0) exp(ik'x, ) |*

(3.16)

(3.17)

(3.18)



The window function is normalised by setting w(w, @,8) = 1. Having done this it
is seen from eq. (77) that if the window function is Diracs delta function, then the
estimated directional spectrum is equal to the true directional spectrum. As both
the window function and the true directional spectrum is non-negative the aim is
to minimise S(w, @) as given in eq. (77) i.e.

minimise (mizl i:l Ve (W, )75 (w, 0 )Smn(w))

The same problem can be formulated as

. s w(wa 97 9) m—l En—l /Ym( H)Tmn(w= 9)“!‘7?(@: 9))
B ( 5,0 TR SN (W, 8)Smn(w, O) 7w, 6) L

where a matrix T has been introduced as

Ton(w,8) = exp(ikzx,,)exp(—ike,) (3.20)
= Yom(w, ) Yon(w, 6) (3.21)

The maximum value of eq. (??7) is equal to the maximum eigenvalue of the matrix
S7IT. Eq. (??) is then the Rayleigh quotient of v7 (T — AS)vy* = 0 whereas

TT *
maximum (’;TS:)/Y*) =2 - (3.22)

where Mg 15 the maximum eigenvalue. Thus by multiplication of ’}/Td and §°1
and substitution of T

'YTT’}’* — )\mGZ'Y S~*
Te* = AuwSy*
B = Xty
S” 17?737* = /\mam7

Further by premultiplication by ~. yields

'7(;:8 17;737* = /\maa:'Yo'Y* (3'23)
Thus
VI8 = Anas (3.24)

It is given from eq. (?7) that
S8 & 1 Anne



Hence introducing a proportionality factor s the directional spectrum can be esti-
mated as

Sw,0) = & (735’17§) ' (3.25)
The terms in the RHS of eq. (?7) are all known when a sample has been carried
out. S is the cross-spectrum matrix and is calculated from the timeseries. 7, is
dependent only on the wavenumber vector and the geometry. The factor « is used
in order to achieve the correct variance (i.e. the measured variance). The MLM is
for the time being considered as one of the best methods for estimation of direc-
tional wavespectra. It is however not reliable when it is applied to a sea state which
include reflection. This is due to the presence of waves travelling with exactly the
same frequency. This problem arises in most methods.

MLM has been derived alternatively where a parametric form of the spreading
functions are presumed. Hiromune et al. (1992) have done this utilising Mitsuyasus
spreading function. Further the spreading function has the option to imply a re-
flected wave system which in spreading has the same form as the incoming system
but reduced in energy. This method assumes that the waves are reflected along a
structure that has a straight front.

3.3 MLM utilising standard spectra

The purpose of the present section is to present the Maximum Likelihood method
for estimating directional spectra utilising standard spectra. The presentation is
based on Isobe & Kondo (1984), Isobe (1990), Yokoki, Isobe & Watanabe (1992)
and Christensen & Sgrensen (1994). The directional spectrum is given in a stan-
dard form in terms of some unknown parameters to be estimated from measured
data. In the present section only surface elevations measurements are treated.

The starting point is M surface elevations, n(x,t), measured at M different loca-
tions x at time t. The total elevation processes n, (z,,t), p =1,2,..., M, are mod-
elled as stochastic processes. The processes are assumed to be joint stationary, er-
godic and Gaussian distributed. The mean value functions u, (t), p=1,2,..., M,
are assumed to be equal to 0. The M time series can be written as a Fourier-sum

as
N

np(®,t) = > (Apicoswit + Bypysinwt) , p=1,2,..,M (3.26)
=1
where w; = {%* and T is the length of the time series. The coefficients A,; and B,
are given as the stochastic integrals

9 T
Ay = f[;np(wp,t)coswgtdt I=1,2,... Np=1,2...,M (3.27)
2



2 (% .
B, = Tf_%np(mp,t)smwﬁdt [=1,2,... Ni=1,2,....M (3.28)

In eq. (??) the term corresponding to [ = 0 has been omitted as it equals 0.

From eq. (?7?) and eq. (?7?) it is seen that all the coefficients A,; and B,; are joint
Gaussian distributed stochastic variables.

In the following only the I’th components are considered. The primary aim is to
determine the joint distribution of the coefficients A,; and B,; p=1,2,..., M, at
the frequency wj.

The reason for limiting the analysis to a single frequency at a time is that the
unknown parameters in S(w, d) to be estimated may be frequency dependent.

The coefficients are expressed as a vector

AT == [AlAQAMBlBgBM]

As the coefficients are joint Gaussian distributed the frequency distribution function
is given in terms of the mean value function vector, E[A], and the cross covariance
function matrix & r=F AATJ. The cross covariance function matrix of size
2M x 2M is symmetric and of the form

B E
nAATz[ET D] (3.30)
where the submatrices B, E and D are M x M matrices.
From eq. (?7) and eq. (77) the following results are found
2 [%
E[A,] = ?/_% En, (zp, )] coswitdt =0 , p=1,2,...,M (3.31)
and
2 [t :
E By = T /_% Bl s tlsinwgdt =0 ;, p=12s: M (d.32)

ie. E[A]=0.



In the following the cross covariance function matrix £ [A AT} will be determined.
As an example the submatrix B in eq. (??) is considered.

2 7 2
KAm,IAn,l (ﬁl,tg) = K [T \/T; N (fl) COS (u)ﬂfl) dtl . T /TZ Mn (tz) cOSs (wgtg) difg
i

T

4 2 2
- ﬁ /_T% /_T% E [nm (tl) Tin (tz)] COs (wltl) oS (Wltz) dt dts

4 2 2
= 7 sz /T2 Komn (ta — t1) cos (wit1) cos (wits) dtsdts  (3.33)
—7 =7

It is seen, that « Am AT, depends on the cross covariance between the elevation pro-
cesses M (1) and 7, (¢2). The cross covariance matrix Km,(7) is related to the
cross spectral density matrix Sy, (w) in terms of the Wiener-Khinchine relation

Gra) = 25mn(@) =2 mopa(r)e ™7 dr
= 2/00 Kmn(T) cOSwT dT — 1 - 2/00 Kmn(T) sinwT dT
where Gpn(w) is a one-sided spectrum.
Conn(td) = 2 [oo Komn(T) COSWT dT
and
@malw) = me Ko (T) sinw dr

are the co-spectrum and the quad-spectrum, respectively.

. Assuming the period T to be "very long” the following result is obtained from
eq. (77)
1 Aw

KA An, (1 t2) = KAy, 4,,(T) = T Conn (1) = 5, Cmn (W) = Bmn  (3.35)

It is concluded that B in eq. (??) equals % multiplied by the co-spectrum of the
elevation processes. Further B is time independent.

Using the same procedure the elements E and D of eq. (?7) can be found and
after some calculation the following result is obtained

Aw C Q| Auw

K,AAT(M):Q[_Q Ckg-n(w) (3.36)



i.e. the cross-covariance between the coefficients in eq. (?7) at a given frequency
wy is given in terms of the co- and quad-spectra of the elevation processes.

So far expressions have been established for the mean value vector (eq. (??) and
eq. (?7)) and the cross covariance matrix eq. (?7) of the vector A. These relations
were established at a given frequency w;. Besides the frequency the wave pattern
is also characterised by a direction of travel. The dependence of the frequency and
the direction of travel is expressed in terms of the directional spectrum S(w,6).
The following relation exists between the one-sided autospectral density G(w) and
S(w, )

W) = [ " S(w, 0) db (3.37)

Furthermore, it can be shown that S(w,#) is related to the cross spectral density
matrix, Gmn(w), of the elevation processes 7y, (®m,t) and n,(x,,t) as expressed in

eq. (77)
Gun(w) = [27 S(w,8) {exp(ik (X, — @,) + 7(w, 0) exp(ik (zm — . T))
+ r(w, 8) exp(ik (T — x,)) + 7(w, 0) exp(ik (Xm — @,) T') f3B8)

where 7(w, ) is the reflection coefficient. The modelling of reflected waves is de-
scribed in Christensen & Sgrensen (1994). T is a transformation matrix equal
to

T = [ _[1) H (3.39)

If the directional spectrum S(w, ) was known eq. (??) may be used to calculate
Gmn(w), e.g. by numerical integration.

Based on eq. (77) C and @Q are identified as the real and the imaginary parts
of G. Finally £ 4 47 (wi) can be determined from eq. (77). However, S(w, ) is
generally unknown. In the following a method will be presented which can be used
to determine a directional spectrum expressed in standard form in terms of some
unknown parameters. The method is known as the Maximum Likelihood (ML)
method. As expressed earlier the elements in A have a joint normal distribution.
The general expression for a density function of a vector A with 2M joint Gaussian
elements having a mean value vector E(A) =0 is

1 i) .
A o (-39 " 4ar0e) (840)

—1 : s ;
where |k 4 47| and & A4 AT e the determinant and the inverse matrix of & 4 47

respectively.



If S(w,0) was given eq. (?7) could be used to calculate the probability of the
observed realisation a of A, where a represents the actual Fourier coefficients ob-
tained from a given time-series. Since S(w,#), or some parameters in S(w,#), are
unknown, a Likelihood function, L(-), will be formulated. Expressed in terms of
the Likelihood function the unknown parameters in S, (w, §) are determined as the
values corresponding to the maximum value of L.

In his article Isobe (1990) uses £ time-series at each of the M locations x, , p =
1,2,...,M. Based on each of the £ time-series an estimate a® , 1=12,...,L,
of A® is obtained. The probability of a) is given by eq. (??). Assuming the £
observations to be independent the joint probability for obtaining exactly the £
observed estimates a(!) is given as p 4 (a(l)s ‘DA (a(z)) e KPR (a(ﬁ)). Therefore
Isobe (1990) suggested a Likelihood function, L(-), as the £'th root of this product,
ie.

I (a(l), ,a,(E),G) _ {pA (a(l)) < v S (a,(ﬁ))}l/ﬁ

1 2M 2M -
= exp | —= Qr Q,gh) 3.41)
(Aw)M . [det (Q) ( 2 f;z; " (
where
~ o &
th = Aw - L mZ:1 Al Amh (342)

where 2 is the measured cross spectral density matrix.

Eq. (??7) represents the probability of obtaining exactly the estimates a®, | =
1,2,..., L. The unknown quantity in eq. (??) is G (or S(w, §)).

The optimal choice of S(w, @) or (in practice) the unknown parameters in S(w,6)
are determined in order to maximise L(-), i.e. the optimal parameters maximise the
probability of obtaining exactly the observed Fourier-coefficients.

3.4 The Bayesian Directional spectrum estima-
tion Method

The Bayesian Directional spectrum estimation Method, BDM, is in principle simi-
lar to MLM. However, BDM makes use of a Bayesian approach in order to estimate
the most likely estimate of the directional spectrum.



BDM has been presented by Hashimoto et al. (1987). It is assumed, that the
directional spreading function H{(w,@) can be expressed as a piecewise-constant
function, which takes only positive values. The directional spreading function is
discretized into K intervals. Defining z,(w) as

zi(w) = In H(w, 6;) (=12 0y K KA§ =27 (3.43)
H(w,0) can be approximated to

1 (-1)A0 <0< kAl

H(w,§) ~ Zexp(wl(w))fl(ﬂ) 5 = { i ctfiermiss (3.44)

The relationship between the cross-spectrum and the directional spectrum has been
deducted to
27
Sl = / S(w, 8) exp( =ikt cOS(8 — Brn))d (3.45)
0
Inserting the approximation eq. (??) and dividing by S(w) leads to

Smn (@)
S(w)

a K
/02 exp(:}:l(w))_ﬁ((‘?) exp(—ik’?‘mn cos(8 — Bmn))do
=1

K
~ Y exp(a(w)) exp(—tkrmn co8(6; — Bmn)) AR (3.46)
=1

If M wave gauges are available, eq. (?7) can be applied to N = M (M +1)/2 spectra
of which M will be autospectra. However, considering the N complex equations
as two separate equations, i.e. the real term and the imaginary term, 2N real
equations are obtained. Expressing these in an arbitrary order eq. (??) can be
rearranged to

K
Si(w) =Y exp(mi(w))alw) +g5(w) 7=1,2,...,.M (3.47)

where an error £,,(w) of the cross-spectrum S,.,(w) has been added, and

exp(—tk7mn c0s(0) — Brn)) AY

QW = 3.48

(w) \/Smm(w) 5 (0) (3.48)
Syn(w)

Si(w) = 3.49

() S(@)y/ S (@) Sum () (3:49)

eilw) = Emal0) (3.50)

/Sonra(0) S 2)

where it is suggested that 1 < 7 < N denote real parts and N < j < 2N denote
imaginary parts. However, the number of equations involved can be altered at will.



It is assumed that £; : N(0;0?), hence when omitting the argument w

K
g;=5; = exp(z)ay : N(0;0%)

=1

S;’s and ayy’s are given. o and ;’s are to be estimated.

The probability density function for ¢; is

1 g2
ple;) = —=—exp (—27]2)

2no

The likelihood function is then

2h g?
L(e1, €2, wnean;0) = ][] exp (~%‘*"2)

=1 2mo
1 e
= e e - e
(a2 )N Xp( ;202)

1 —1 2N K 2
= Wexp (Tﬂ; (Sj-— ZGXp(ml)aﬂ) ) (3:51)

=1

=

L/(ZEl,ZEQ, LK CT) - L(El,&'g, vy OGS O') (352)

for the given S;, 7 =1,2,...,2N.

As the estimate of H(w,#) becomes smoother, it is assumed, that the differences
of second order of z; — 2x;_1 + ;5 decrease, i.e. the value

K
Z(.’L‘z — 2$;_1 + iC,g_Q)'Q (353)

=1

where o = ) and x_; = Tx_1, decreases as well.

Maximising the likelihood eq. (??) and minimising eq. (??) lead to the estimate
which also maximises

u2 G

Z(Ig o 2$g_1 + $¢_2)2
f=1

IHL(CI?],.CCQ,...,&TK;O') = 50'_2

where u is introduced as a hyperparameter. Further applying the exponential
function leads to the alternative expression

2 K
L{zi, %2 s T3 0) €XD (—@ Z(az; — 211 + 211_9)? (3.54)
=],



At this stage the Bayesian approach is introduced utilising p(y|e) o L(y|x)p(y).
When normalised the second term in eq. (??) can be regarded as the joint distri-
bution of & = (1, z2, .., Tk )

2 K

K
p(mluQ, 0-2) — (\/;L_ﬂ'()') exp (ﬁ Z(:c; — 221 + $g_2)2> (3.55)
=1

This correspond to the prior distribution and is known, when an estimate of x is
given and u and o have been estimated. Maximising eq. (?77) leads to the posterior
distribution, when inserting into p(y|x) o< L(y|x)p(y), i-e.

Ppost(®|u, o) o< L{a, 0 )pyrior (|1, o) (3.56)

Hence minimising the following quantity determine the value of &, which maximises
eq. (77)
2

1 2N K u? K
(SJ - ZeXp(.T[)O{jl) + ﬁ (Z(ﬂﬁ't — 2.’,1:,}_1 —I— .CC,E_Q)Z)

2
20 j=1 1=1 1=1

I.e. o can be omitted reducing the above quantity to

sz (5;-' e ‘E eXP(It)G’ﬂ) 2-+ u’ (i(l’z —2z1 + 551—2)2) (3.57)

j=1 =1 1=1
During the derivation of BDM it has been presumed that

e All values in the spreading functions are larger than zero

e The spreading functions are smooth (the smoothness being dependent on one
parameter)

e The errors on the spectral estimates are outcomes of a Gaussian distribution
function

The BDM turns out to be a very useful and reliable method for estimation of
directional wave spectra. Some inaccuracy arises when a reflected wave system is
involved, but it is still sufficiently reliable. Further it is rather easy to implement

numerically.
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4 Tests of the presented methods

In principle all the methods for estimating reflected waves should be tested upon:
e Ability to process data correctly
e Robustness to possible errors
e Reliability of results from real wave data

A fully systematic test series of the methods for estimating reflected waves is under
preparation at Aalborg University.

The following chapter will present the tests performed so far at Aalborg University
within the frames of this MAST2-project.

4.1 Ability to process data

In this section the performance of the methods are evaluated with numerical data
in situations where the reflection is known, and no possible noise (errors) on the
data are included.

4.1.1 MLM utilising standard spectra

In the numerical tests performed, the generated data were simultaneous realiza-
tions of surface elevation time series recorded in a CERCS wave gauge array with
a radius of 1.0 m positioned at a waterdepth of 4.0 m, see fig. 77.

Two tests were performed: One in which no reflection occurred and one in which a
wall with a reflection coefficient of r=0.5 was positioned at z=0.0 m, see fig. 77.



Figure 4.1: Wave gauge arrangement for numerical tests.

In both tests, the incident wave fields were irregular waves corresponding to a
Pierson-Moskowitz spectrum (f, = 0.5Hz, H, = 0.5m) with a Mitsuyasu-type
spreading function (6, = 7/3,s = 6). A sample frequency of f, = 4Hz was applied.

Measured cross covariance matrices were determined from a total of 45 surface el-
evation subseries each of length T=128 s.

The estimated value of the autospectral density S(w) and the maximum likelihood
estimates of the parameters 6y, s and 7 are given in fig. 7?7 and fig. 7?. For com-
parison, the target values are plotted.

In both tests, the estimated values of the parameters are in good agreement with
the target values. However, in the test involving reflection the method has some
problems separating incident and reflected waves at some frequencies resulting in
larger estimated values of the autospectral density, see fig. 77 compared to the
results obtained without reflection, see fig. 77.
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Figure 4.2: Numerical test results (no reflection).
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Figure 4.3: Numerical test results (with reflection).



4.1.2 BDM

The BDM method has been tested utilising numerical simulations of an uni-modal
wave field and a bi-modal wave field.

Only the bi-directional wave field test is shown, see fig. 77. In this case it is seen
that both peaks are estimated well. Though the narrow peak is estimated most
accurate.

0.45 T T T T
0.4
0.35
0.3

0.25
H(w,8)

Figure 4.4: Test with simulated bi-directional wave field.

| Data. Test 1. |

Date of sample 070893
Depth of water 200m
Radius of array 26m
Sample frequency 4Hz
Duration 720sec.
Quantity Elevation
Autospectrum P-M,
T, = 10s, H, = 4.0m

Directional spreading function Mits.,
51 =5, 8, = 8,8, = —90°, §; = 90°




4.2 Robustness to possible errors

In order to evaluate the performance of the proposed methods for estimating re-
flection, the methods are tested upon numerical data, where possible errors are
introduced.

The possible errors are:
e Random noise on signals
e Non-linear effects in the waves
e Phase locked waves

e Three-dimensional waves in cases where a two-dimensional method is used

Divergens in the estimation due to numerical problems in solving the system
of equations

4.2.1 Random noise on signals

The following section describes a numerical test, where the elevations are calculated
for monochromatic waves according to the shown equation:

n(z,t) = ay cos(kz — wt) + aay cos(kzx + wt) + random - 3 - ar

where o is reflection coefhicient
I¥) is noise coefficient
random is a random number in [—1; 1]

Goda & Suzuki
B w At ar o G1a | Qus | 093 | Qaverage
% | rad/sec | sec | metre | % % % %o %o
10 2m 0.0625 | 0.10 | 50.00 | 50.88 | 50.92 | 50.24 | 50.68
10 21 0.0625 | 0.10 | 10.00 | 11.03 | 10.98 | 10.14 | 10.72

Goda & Suzuki
B w At ar o a9 Q3 23 | Gaverage
% | rad/sec | sec |metre | % %o % % %
30 2T 0.0625 | 0.10 | 50.00 | 52.26 | 52.34 | 51.13 | 51.91
30 2m 0.0625 | 0.10 | 10.00 | 12.78 | 13.65 | 11.57 | 12.67




Mansard & Funke
JB w At ary o 55123 da.ve'rage
% | rad/sec | sec | metre | % % %
10 27 0.0625 | 0.10 | 50.00 | 50.50 | 50.50
10 2T 0.0625 | 0.10 | 10.00 | 10.42 | 10.42

Mansard & Funke
5} w At ar o (193 &auemge
% | rad/sec | sec | metre | % % %
30 2w 0.0625 | 0.10 | 50.00 | 51.49 | 51.49
30 27 0.0625 | 0.10 | 10.00 | 11.32 | 11.32

where At is sampling interval
¢« is reflection coefficient
indicates estimated

All tests were performed with water depth d = 0.50 metre with a 160 sec. long
time series. Distances between wave gauges were x1, = 0.25 metre and z; 3 = 0.60
metre .

The tests show good resistance to random noise. Though, the method proposed by
Mansard & Funke gives slightly better results than the method proposed by Goda
& Suzuki.

The tests were repeated for 15 different wave periods and all tests showed the same
tendency as described in the examples above.



4.2.2 Non-linear effects in the waves

All the described methods assume linear waves.

In order to examine the effect

from non-linearities a 2-order wave were generated. First with a free 2-harmonic
eq. (77), and then with a bounded 2-harmonics eq. (77):

n(zx,t) = ay cos(kr — wt) + 0.2 - ay cos(2k*x — 2wt) +
aar cos(kz + wt) + a - 0.2 - ay cos(2k*x — 2wt)
n(z,t) = ay cos(kx — wt) + 0.2 - ay cos(2kz — 2wt) +
aay cos(kz + wt) + a - 0.2 - ay cos(2kz — 2wt)

(4.1)

(4.2)

where & is wave number corresponding to w
k* is wave number corresponding to 2 - w
Goda & Suzuki
Free 2-harmonics | Bounded 2-harm
w Al op _|ep | e |G lER | GLLTT | Gy | Goaihe
rad/sec | sec | metre | metre | % % % %o V4
T 0.0625 | 0.10 0.02 50.00 | 50.04 49.78 50.12 61.10
T 0.0625 | 0.10 0.02 10.00 | 10.22 10.18 10.18 26.33
Mansard & Funke
Free 2-harmonics | Bounded 2-harm
w | At | o Jar™ | o |anter | Ghhe | Gusese | Omscrage
rad/sec | sec | metre | metre | % % % T %
s 0.0625 | 0.10 0.02 50.00 50.00 53.14
T 0.0625 | 0.10 0.02 10.00 10.00 19.42




4.2.3 Numerical problems

Numerical problems due to the discretisation of the signal and the succeeding FFT-
analysis.

Timeseries were calculated from:
n(x,t) = ay cos(kzx — wt) + aay cos(kz + wt) (4.3)

where « is reflection coefficient

Goda & Suzuki
W At ay 87 &12 &13 C7523 &a'uerage
rad/sec sec |metre| % % % % %o
27 0.0625 | 0.10 | 50.00 | 50.21 | 50.32 | 49.84 | 50.12
2 0.0625 | 0.10 | 10.00 | 10.28 | 10.45 | 9.80 10.18
0.98-27 | 0.0625 | 0.10 | 50.00 | 48.92 | 49.78 | 53.00 | 49.20
0.95-27 | 0.0625 | 0.10 | 50.00 | 53.88 | 34.64 | 53.32 | 42.98

Mansard & Funke
w At ar « C35123 afa-uerage
rad/sec | sec |metre | % % %
2m 0.0625 | 0.10 | 50.00 | 50.00 | 50.00
2m 0.0625 | 0.10 | 10.00 | 10.00 | 10.00
0.98-27 | 0.0625 | 0.10 | 50.00 | 49.66 | 49.66
0.95-27 | 0.0625 | 0.10 | 50.00 | 48.70 | 48.70

All tests were performed with water depth d = 0.50 metre with a 80 sec. long
time serie. The time serie were divided into 10 sub-series, which were cosine ta-
pered. Distances between wave gauges were 15 = 0.25 metre and x13 = 0.60 metre.

In order to examine errors from comming from a wrong calibration constant on one
or two of the wave gauges.



Timeseries were calculated from:

n(z,t) = aj cos(kx — wt) + aay cos(kzr + wt

n(zy,t) = 1.05 - ay cos(kxy — wt) + 1.05 - aay cos(kxy + wi

)
n(z1,t) = 1.00 - a; cos(kzy — wt) + 1.00 - aar cos(kzy + wt)
)
)

n(z3,t) = 1.10 - ay cos(kzs — wt) + 1.10 - aay cos(kxz + wi

Goda & Suzuki

4.3 Reliability of results from real wave data

W At ay @ Qg 13 @33 | Haverage
rad/sec | sec | metre | % % % % %
2 0.0625 | 0.10 | 50.00 | 49.61 | 55.53 | 51.30 | 52.15
2 0.0625 | 0.10 | 10.00 | 9.80 | 17.57 | 11.80 | 13.06
Mansard & Funke
w At ar o @123 | average
rad/sec | sec | metre | % % %o
27 0.0625 | 0.10 | 50.00 | 51.40 | 51.40
27 0.0625 | 0.10 | 10.00 | 18.90 | 18.90

(4.4)

In this section it is wanted to test the performance of the methods for estimating
reflection in cases with real wave data. This can be wave data from wave basins or
desirable wave data from proto type measurements.



4.3.1 BDM

In fig. 77 a test from Aalborg University’s 3D wave basin is shown.

The main direction of the incident waves is 290 degrees and the mean direction of
the reflected waves should be 70 degrees.
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Figure 4.5: Test with reflected waves in 3D wave basin. Test 2.

| Data. Test 2. |

Date of sample 090193
Depth of water 0.6m
Radius of array 0.25m
Sample frequency 10H =z
Duration 720sec.
Quantity Elevation
Autospectrum JONSWAP,
T,=08s, H,=0.1m

Directional spreading function Mits.,
truncated s; = 3,68, = —90°

The BDM method estimates the incident wave energy to be spread over a wider
range. This is reasonable considering the conditions in the basin, i.e. limitations
due to boundary conditions. The mean direction of the reflected waves though
deviate about 20 degrees.
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Conclusion

Several different methods for estimating reflection have been presented and tested
in the previous chapters.

The methods for estimating reflection are divided into groups:

e Frequency domain methods for 2-dimensional waves.
e Time domain methods for 2-dimensional waves.

e Frequency domain methods for 3-dimensional waves.
The frequency domain methods give the incident wave spectrum and the reflected
wave spectrum. The time domain methods give the incident waves as function of
time.

Some of the methods take into account the 3-dimensionality of the waves. If waves
on location are 3-dimensional it is necessary to use a method for 3-dimensional
waves, though because the methods for estimating reflection in 3-dimensional waves
introduce the directional spreading function with many degrees of freedom, they
become less statistically reliable.

In the MAST 2 project: Full scale dynamic load monttoring of rubble mound
breakwaters, it is wanted to correlate measured pore pressure in the breakwater of
Zeebriigge and forces on the armour layer blocks with the incident waves. Therefore
a time domain method for estimating incident waves is preferable.

All the methods for 3-dimensional waves need an array of wave gauges e.g. 5 wave
gauges, which is beyond the scope of the present MAST 2 project. However, this
will not be a problem in Zeebriigge as the waves in front of the harbour have a 2-
dimensional nature due to the relative mild sloping bottom in front of the harbour.

In Zeebriigge, it is recommended to use the time domain method presented in sec-
tion (2.4) for estimating incident waves.



List of symbols

Variables and functions

amplitude

realisation of A

Fourier coefficients in cartesian form

matrix of Fourier coeflicients in polar form
co-spectrum

waterdepth

frequency

peak frequency

one-sided cross-spectral density matrix between 7,, and 7,
significant waveheight

frequency response filter

directional spreading function

imaginary unit

wavenumber

wavenumber corresponding to 2w

wavenumber vector

number of time-series recorded at a wave gauge
wavelength

likelihood function

oy
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\,EE, 5
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*

SIS

M number of wave gauges

N number of wave spectra in BDM
N number of wave components
N() Gaussian distribution function
p(-) probability density function

Q quad-spectrum

distance between wave gauges
autospectrum of elevation process
directional spectrum

estimated directional spectrum

EEE
ol
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Spn(w) @ cross-spectrum between 7, and 7,
t time
At sampling interval
T wave period,
length of time series
T :  transformation matrix
(! hyperparameter
w(-) : window function
w weight coefficient
% coordinate in 1D system,
discretisation of spreading function in BDM
coordinates in 2D system
% . distance between two wave probes
Fourier coefficients, polar form
reflection coefficient
mutual angel between wave gauges,
noise coeflicient
error function
wave elevation
proportionality factor
cross-covariance function matrix
eigenvalue
phase
variance
direction of travel
phaseshift at reflecting structure
. angular frequency
w . frequency step length
(t) :  noise function
02 . estimated cross-spectral density matrix

9] : measured cross-spectral density matrix
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Subscript

incident

noise

wave gauge number,
peak

reflected

structure,

sample

T >~
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Superscript

T . transposed

* . complex conjugate,
modified elevation signal

. . integration variable

Notation

Boldface letters denotes vectors and matrices. In general
lowercase letters are vectors and uppercase letters are
matrices. Indexed vector and matrix symbols denotes
the specified element.



