
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Object Constraint Language Based Test Case Optimisation

Jin, Kunxiang

Awarding institution:
King's College London

Download date: 09. May. 2024



Object Constraint Language Based
Test Case Optimisation

by
Kunxiang Jin

Submitted in partial fulfilment of the requirements
for the Degree of Doctor of Philosophy in Computer Science

First Supervisor: Dr. Kevin Lano
Second Supervisor: Dr. Hana Chockler

Department of Informatics
King’s College London

London, United Kingdom
March, 2024



Dedicated to

my mother Yongmei Zhao

my father Zhiqiang Jin

and

my fiancee Ning Guo

who always support me unconditionally
during the whole PhD journey

i



Acknowledgements

I would like to express my deepest gratitude to all those
who have supported and guided me throughout my journey
to completing this PhD thesis. The pursuit of this degree
has been a challenging experience, and I am grateful for the
opportunities and knowledge it has afforded me.

Foremost, I extend my heartfelt gratitude to my supervi-
sor, Dr. Kevin Lano, for his invaluable guidance, mentorship,
and support throughout my PhD journey. His wisdom, en-
thusiasm, and dedication have been instrumental in shaping
both my research and personal growth.

My sincere appreciation goes to the faculty, staff, and col-
leagues in the Department of Informatics at King’s College
London. I am grateful for the vibrant and nurturing research
environment that has allowed me to grow and learn. Special
thanks to my second supervisor, Dr. Hana Chockler, who
gave me significant support during my PhD experience.

To all my friends who sent a message of encouragement,
shared a meal, celebrated a milestone, or drank a pint. This
journey would have been immeasurably harder without you.

Lastly, I wish to acknowledge and honour the countless
researchers before me whose work has paved the way for this
research. Their contributions to the field have been a con-
stant source of inspiration and guidance.

In conclusion, while this thesis carries my name, it is the
culmination of collective efforts, sacrifices, and support from
many. I am ever grateful and dedicate this work to all who
have played a role in this challenging yet fulfilling journey.

ii



Abstract

Software testing, a pivotal phase in the Software Develop-
ment Life Cycle (SDLC), ensures the correctness and perfor-
mance of the corresponding software system. Model-based
testing (MBT) is a method to validate whether the software
system or specification satisfies the pre-defined requirements
through design models. However, with modern systems ex-
panding in complexity, testing has become a labour-intensive
and unpredictable process within the SDLC. Therefore, many
test case optimisation (TCO) techniques have been proposed
to make the testing process more manageable. But these ap-
proaches predominantly focus on code-based strategies, leav-
ing systems expressed in Object Constraint Language (OCL)
underserved. OCL is a part of the Unified Modeling Lan-
guage (UML) standard and is a type of declarative language
used to describe system specification by pre- and post- con-
ditions. Initially, OCL has been proposed as a constraint
language to add more details to the UML model, but along-
side the development of OCL itself, there are more and more
systems whose specifications are expressed in OCL.

This thesis aims to systematically investigate the feasibil-
ity of applying TCO techniques to the OCL-defined systems,
with an emphasis on test case prioritisation (TCP) and test
case minimisation (TCM) processes. A systematic literature
review for the directly related topic, UML-based test case
generation, is conducted in this thesis. Also, we adapted a
set of test case optimisation algorithms and compared the
performance between these algorithms under the context of
OCL. Moreover, we modified one metric for the TCP evalu-
ation process, which made the metric more suitable for the
MBT and mutation testing environment. Furthermore, we

iii



introduce a full set of mutation operators and corresponding
classifications to the OCL standard library, offering practical
guidance for optimisation processes.

The proposed TCO processes are validated and evalu-
ated through four real-world systems expressed in OCL with
different complexities. The experiment results demonstrate
that for the TCM process, the size of the minimised test suite
is reduced from 33.33% to 81.8% without losing any fault de-
tection ability. For the TCP process, leveraging the modified
evaluation metric, the improvements are up to 50%, indicat-
ing that the prioritised test suite can detect system defects
earlier when compared to the original one. Evaluating based
on the considerations of effectiveness, efficiency and stability,
we suggest the NSGA-II for the TCM process and the genetic
algorithm for the TCP process. When combining TCP and
TCM processes, the TCM process consistently increases the
efficiency of the TCP process by reducing the search space
for the prioritisation process.

iv



Table of Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . 4
1.3 Research Objectives . . . . . . . . . . . . . . 6
1.4 Aims and Contributions . . . . . . . . . . . . 8
1.5 Overall Thesis Structure . . . . . . . . . . . . 10
1.6 List of Publications . . . . . . . . . . . . . . 11

2 Background 13
2.1 Software Development Process . . . . . . . . 13
2.2 Model-Driven Engineering . . . . . . . . . . . 17
2.3 Model-Based Testing . . . . . . . . . . . . . 20
2.4 Object Constraint Language . . . . . . . . . 23

3 Related Works 33
3.1 Systematic Literature Review to Model-Based

Testing . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Introduction . . . . . . . . . . . . . . 34
3.1.2 Research Method . . . . . . . . . . . 35
3.1.3 Review Results . . . . . . . . . . . . . 40
3.1.4 Quality Assessment . . . . . . . . . . 50
3.1.5 Discussions . . . . . . . . . . . . . . . 53
3.1.6 Threats to Validity . . . . . . . . . . 57
3.1.7 Conclusion . . . . . . . . . . . . . . . 59

3.2 Test Case Optimisation . . . . . . . . . . . . 60

v



TABLE OF CONTENTS

3.2.1 Test Case Prioritisation . . . . . . . . 61
3.2.2 Test Case Minimisation . . . . . . . . 79
3.2.3 Test Case Selection . . . . . . . . . . 90

3.3 Mutation Testing . . . . . . . . . . . . . . . 94

4 Mutation Testing for OCL 99
4.1 Introduction . . . . . . . . . . . . . . . . . . 99
4.2 Primitive Types . . . . . . . . . . . . . . . . 103

4.2.1 Real . . . . . . . . . . . . . . . . . . 103
4.2.2 Integer . . . . . . . . . . . . . . . . . 104
4.2.3 String . . . . . . . . . . . . . . . . . . 105
4.2.4 Boolean . . . . . . . . . . . . . . . . . 106
4.2.5 UnlimitedNatural . . . . . . . . . . . 107

4.3 Collection-Related Types . . . . . . . . . . . 108
4.3.1 Collection . . . . . . . . . . . . . . . 108
4.3.2 Set . . . . . . . . . . . . . . . . . . . 110
4.3.3 OrderedSet . . . . . . . . . . . . . . . 111
4.3.4 Bag . . . . . . . . . . . . . . . . . . . 111
4.3.5 Sequence . . . . . . . . . . . . . . . . 112

4.4 Other Operators . . . . . . . . . . . . . . . . 113
4.4.1 Predefined Iterator Expressions . . . . 113
4.4.2 Structural Operator . . . . . . . . . . 114

4.5 Classification of Mutation Operators . . . . . 114
4.5.1 Supported Groups . . . . . . . . . . . 114
4.5.2 Possible Groups . . . . . . . . . . . . 122

4.6 Evaluation & Discussions . . . . . . . . . . . 124
4.7 Conclusion . . . . . . . . . . . . . . . . . . . 131

5 Test Case Prioritisation 133
5.1 TCP Process . . . . . . . . . . . . . . . . . . 135
5.2 TCP Metrics . . . . . . . . . . . . . . . . . . 141
5.3 Modified APFD Metric . . . . . . . . . . . . 144

vi



TABLE OF CONTENTS

6 Test Case Minimisation 149
6.1 TCM Process . . . . . . . . . . . . . . . . . 151
6.2 TCM Metrics . . . . . . . . . . . . . . . . . 156

7 Evaluation 159
7.1 Research Questions . . . . . . . . . . . . . . 159
7.2 Evaluation Process . . . . . . . . . . . . . . . 162
7.3 Running Example: String Process . . . . . . 169
7.4 Case Study 1: Bond . . . . . . . . . . . . . . 176
7.5 Case Study 2: Interest Rate . . . . . . . . . . 185
7.6 Case Study 3: MathLib . . . . . . . . . . . . 192
7.7 Case Study 4: UML2PY . . . . . . . . . . . . 209
7.8 Results & Discussions . . . . . . . . . . . . . 224
7.9 Threats to Validity . . . . . . . . . . . . . . 239

8 Conclusions & Future Works 243
8.1 Overview of Thesis . . . . . . . . . . . . . . . 243
8.2 Limitation . . . . . . . . . . . . . . . . . . . 247
8.3 Future Works . . . . . . . . . . . . . . . . . 248

Bibliography 251

A Review Details 281

B Specification - Case Study 1: Bond 303

C Specification - Case Study 2: Interest Rate 305

D Specification - Case Study 3: MathLib 307

E Specification - Case Study 4: UML2PY 313

vii



Chapter 1

Introduction

1.1 Overview

Software testing aims to validate the correctness and perfor-
mance of the software system and determine whether the sys-
tem specification conforms to the pre-set requirements [1]. As
the size and complexity of the system increased, testing be-
came one of the most time-consuming and unpredictable pro-
cesses within the Software Development Life Cycle (SDLC).
During the SDLC, more than 50% of time is typically spent
on testing [2], so optimising this process is necessary and
meaningful.

There are three most commonly used Test Case Opti-
misation (TCO) techniques to optimise the testing process,
which are Test Case Minimisation (TCM), Test Case Selec-
tion (TCS) and Test Case Prioritisation (TCP). TCM seeks
to speed up the testing process by removing redundant and
unnecessary test cases. TCS categorises test cases into dif-
ferent subsets and decides which subsets are requisite for ex-
ecution. Moreover, TCP aims to find the defects as early as
possible by re-ordering the test cases. The underlying objec-
tive of these techniques is to help minimise efforts spent on
testing [3].

However, the majority of current research is established

1



CHAPTER 1. INTRODUCTION

for the code-based approaches [4]. We noticed a lack of re-
search applicable to the specification of systems expressed
by Object Constraint Language (OCL). OCL is a part of the
Unified Modeling Language (UML) standard [5] and is a type
of declarative language used to describe system specification
by pre- and post- conditions. One of the critical benefits of
modelling systems by OCL is the platform-independent char-
acter, which lets OCL has the same abstract level as system
models. This feature helps us to perform the TCO processes
once. Then the results can be applied to all implementa-
tions of OCL specifications, despite the differences between
programming languages and platforms.

Model-Driven Engineering (MDE) is not a specific new
technology but rather a natural aggregation or synthesis of
various technologies around modelling and modelling soft-
ware development [6]. The goal of MDE is not only to bring
short-term efficiency to software developers but also to make
software products less sensitive to change and increase soft-
ware longevity, which in turn leads to long-term efficiency
gains. Model-Based Testing (MBT) is a part of MDE that
uses design models or specifications to perform the testing
process. MBT allows the testing process to start before soft-
ware implementation. We will provide more information re-
lated to MDE and MBT in Chapter 2.

Since MBT allows the testing process to start without ac-
tual system implementation, we need a technique to provide
the necessary information to guide the TCO processes. One
possible solution is artificial simulated system defects. Muta-
tion testing is a fault-based technique that has been studied
for over 50 years since it can be traced back to 1971 [7]. In
mutation testing, from a program or specification p, a set of
faulty versions p′ called mutants are generated by making,

2



CHAPTER 1. INTRODUCTION

for each p′, a single simple change to the original program p.
Mutation operators are the transition rules defining how to

perform these changes and derive the mutants. Mutant ver-
sions of expressions are syntactically and type-correct, but
should have a distinct semantics from their source. The find-
ings presented in [8][9] reveal a statistically significant cor-
relation between detecting mutants and identifying actual
faults, underscoring the potential of mutation testing as a
robust predictor of real fault detection capabilities. This es-
tablishes a foundational basis for leveraging mutation scores
to guide the TCO processes. Such an approach augments
the effectiveness and efficiency of the testing process without
compromising fault detection capabilities [10].

These analyses are applicable to both procedural code and
OCL, where mutants simulate common programming errors
like operator choice and logic mistakes. Moreover, regarding
mutants produced from the procedural activities of UML op-
erations, which are expressed in a procedural OCL extension
similar to Pascal statements, mutation operators align with
those used in traditional programming, indicating that the
anticipated outcomes are consistent with those reported in
related research.

Since there are still no systematic proposed mutation op-
erators for OCL specification available, in this work, we pro-
pose full set mutation operators, which mainly follow Clause
11 "OCL Standard Library" within the OCL 2.4 standard
[11]. We also present the classification of these operators
based on different facets of OCL standards and expressions.

In this work, we adapted a set of algorithms to perform
OCL-Based TCO processes, which mainly focus on TCP
and TCM processes. After proposing the optimisation algo-
rithms, we use one small-scale OCL specification as a running

3



CHAPTER 1. INTRODUCTION

example to demonstrate the proposed approach. Then, four
real-world OCL specifications are used as case studies within
the evaluation process.

We neglect TCS in this work because the selection only
retains essential test cases to re-run, and some of the test
cases have been removed during the selection process. How-
ever, the discarded test case may still be helpful in the future
testing period. Although TCM also removes some test cases,
different from TCS, the minimisation process only discards
redundant test cases [12]. The discarded test cases are un-
necessary, which means that the remaining test case has the
same testing effectiveness as the original ones. We will dis-
cuss more details in Chapter 3.

1.2 Motivations

As aforementioned, testing is one of the most time-consuming
and labour-intensive activities within the SDLC. With the
limited computing resource, the TCO is essential to save test-
ing effort. When we conducted the systematic literature re-
view on the topic of UML-based test case generation [13], we
noticed that various approaches are proposed to construct-
ing test cases. However, only a few of them performed the
TCO after test case generation. Moreover, those works that
applied the TCO after the generation phase indicate that the
optimised test cases will benefit the testing process.

The motivation behind this research work is to explore
the possibility of applying TCO processes to the systems
whose specifications are expressed in OCL. Due to OCL be-
ing on the same abstract level as the system model, it is not
dependent on any implementation language. Based on the
platform-independent character, OCL is a promising practice

4



CHAPTER 1. INTRODUCTION

for modelling the software system and supporting automatic
MDE. It is challenging as there is seldom information to guide
the OCL-based TCO. So, we propose a full set of mutation
operators for the OCL standard library. Through the artifi-
cially simulated faulty specification to gather the correspond-
ing information, which is necessary during the optimisation
processes.

More specifically, the motivations of this research project
are:
• Although TCO techniques have been widely studied over

the last decades, most of these works are based on source code
or system level. Compared to the code-based approaches,
fewer works are performed under the MBT scenarios, espe-
cially for OCL.
• The MBT process has its natural advantage that can be

conducted before the actual systems implementation phase.
Moreover, expressing system specifications at the model level
will be language or platform independent, enabling the op-
timisation result can be used for all implementations of the
corresponding OCL specifications.
• Initially, OCL has been proposed as a constraint lan-

guage to add more details to the UML model, but along-
side the development of OCL itself, there are more and more
systems that are expressed by OCL [14]. Although OCL is
not as sophisticated as other 3GLs 1, many researchers and
practitioners are contributing to the community. Therefore,
exploring the different aspects of OCL-based techniques is
worthwhile.
• Considerable approaches are proposed for various pro-

gramming languages, like Java or C, but whether these ap-
proaches are feasible under the context of OCL. And how

1Third Generation Language

5



CHAPTER 1. INTRODUCTION

should we adapt these approaches and make them possible
to the system specifications expressed in OCL.
• Mutation testing is one of the primary techniques used

to guide (or as the objective) TCO processes. However, we
noticed a lack of comprehensive mutation operators for OCL
expression, and only a few works presented limited opera-
tors. There is a need to propose the corresponding mutation
operators to the OCL library.
•When the TCO techniques are adapted to the OCL con-

text, we need to be certain that comparing the performance
and effectiveness of the optimisation algorithms is meaning-
ful.
• Most MBT approaches only perform empirical stud-

ies on small-scale case studies. In our group, we have an
archive of systems whose specifications are expressed in OCL,
and these specifications have distinct sizes and complexities.
These specifications can let us systematically validate the
proposed works and verify our ideas that TCO techniques
can be utilised for the systems whose specifications are ex-
pressed in OCL.

Although further testing automation may reduce the em-
ployment opportunities for software developers in testing, we
expect that the overall high demand for software would mean
that the testing work would be replaced by other develop-
ment work. Overall, the Object Constraint Language Based
Test Case Optimisation is a necessary research topic.

1.3 Research Objectives

Currently, most MBT works based on UML or OCL focus
on the test case generation process. Still, there is a need to
perform more research on the TCO processes, which will fur-

6



CHAPTER 1. INTRODUCTION

ther improve the automaticity and save testing effort. This
gap is addressed by doing a systematic literature review on
the topic of UML-based test case generation. This research
does not focus on the test case generation but moves further
to TCP and TCM. These optimisation techniques will save
numerous testing budgets and efforts in the testing process.

In short, the objectives of this thesis are:
• To explore the current MBT trends by conducting a

systematic literature review.
• To propose mutation operators for OCL standard library.
• To classify the proposed mutation operators.
• To apply optimisation algorithms to the TCP process.
• To apply optimisation algorithms to the TCM process.
• To evaluate OCL-based TCO processes via four real-

world case studies.
The proposed algorithms use heuristic algorithms to per-

form TCP and TCM processes, thus saving testing efforts.
We presented these algorithms, suitable for the OCL-based
approach, that can optimise test cases simultaneously dur-
ing the system implementation phase to benefit the test-
ing process. When the constructed or existing test cases
have been optimised, the testing phase can directly use them
without more budget. Until now, not much research has
been conducted on OCL-based TCO processes. To the best
of our knowledge, we are the first to apply these optimi-
sations to the system specifications expressed in OCL. In
our proposed algorithms, the optimisation problem has been
suitably adapted to the corresponding heuristic algorithms,
and the evaluation process has been performed through real-
world OCL specifications.

In order to better evaluate this research work, the following
research questions (RQs) are proposed, and we will discuss

7



CHAPTER 1. INTRODUCTION

more details in Chapter 7:
• RQ 1: Effectiveness. How effective is the TCO process

within the scope of OCL specifications?
• RQ 2: Scalability. To what extent do the proposed

algorithms scale to big or real-world OCL specifications?
• RQ 3: Comparison. Which TCO algorithm can give

the best performance?
• RQ 4: Metric. Since we modified one TCP evaluation

metric, what are the differences from the original one? And
what is the performance of the TCP process under this mod-
ified metric?
• RQ 5: Efficiency. What is the overhead (time con-

sumption) when applying the TCO process to OCL specifi-
cations?

1.4 Aims and Contributions

This research aims to perform TCO processes on the systems
whose specifications are expressed in OCL, then through the
optimised test cases to benefit the software testing process.
In this work, we apply different heuristic algorithms to opti-
misation problems and systematically evaluate the proposed
algorithms through four real-world OCL specifications. We
can conclude that performing TCO processes to systems ex-
pressed in OCL will benefit the testing process and save test-
ing efforts.

In detail, the main contributions of this research work are
as follows:
• Conducting a systematic literature review on a directly

related topic, UML-based test case generation, to this re-
search work. This review demonstrated the generic process
of different approaches to the test case generation process.

8



CHAPTER 1. INTRODUCTION

(Chapter 3)
• Proposing the full set of mutation operators to the OCL

standard library, which includes the operators to primitive
types, collection-related types, pre-defined iterator expres-
sions and structural operators. Moreover, the potential clas-
sification of these operators has been proposed. (Chapter
4)
• Classifying the proposed mutation operators into differ-

ent groups according to the logic in common. (Chapter 4)
• Proposing and applying five optimisation algorithms for

the TCP process and discussing the corresponding evaluation
metrics. (Chapter 5)
•We analysed the limitations of the most commonly used

metric, the Average Percentage of Fault Detection (APFD),
for the TCP process. These weaknesses led to the APFD
metric being unsuitable under the MBT context, and then we
proposed a modified version of the APFD metric to overcome
these defects. (Chapter 5)
• Proposing and applying five optimisation algorithms for

the TCM process and discussing the corresponding evalu-
ation metrics. Instead of the single-objective optimisation
used in the TCP process, the TCM process employs a multi-
objective optimisation process. (Chapter 6)
• Systematically evaluating the effectiveness and efficiency

of OCL-based TCO processes on four case studies with differ-
ent complexities. The performances of different optimisation
algorithms for the TCP and TCM processes are compared
and investigated. (Chapter 7)

After reviewing the UML-based test case generation, we
noticed there is a need to conduct this research work. Defin-
ing the full set of mutation operators to OCL standard li-
brary allows us to simulate the system defects by modified

9



CHAPTER 1. INTRODUCTION

OCL specifications. Then, to guide the TCO processes by
using the corresponding information. To better organise the
proposed mutation operators, we also present the classifica-
tion of these operators.

After the mutation operators to OCL specification have
been proposed, we applied the heuristic algorithms to satisfy
the OCL-based TCO problems. In the evaluation phase, we
first use a small-scale specification to demonstrate the pro-
posed approach, then validate the effectiveness and efficiency
via four different scales of OCL specifications, and the com-
parisons between these algorithms are also conducted.

The following are the research stages involved in this the-
sis:
• Introduction and fundamental background.
• The systematic literature review.
• Design and classify mutation operators.
• Propose the TCO algorithms.
• Case studies for evaluation purposes.

1.5 Overall Thesis Structure

In order to achieve our aims and better organise the over-
all structure of this thesis, eight chapters have been cate-
gorised. After Chapter 1 introduces this research, Chapter
2 provides the essential background to the software develop-
ment process, model-driven engineering, model-based test-
ing and object constraint language. In Chapter 3, we report
a systematic literature review on the directly related topic,
UML-based test case generation. Also, some related works
to TCO and mutation testing are discussed.

Chapter 4 proposes the mutation operators to OCL stan-
dard library and the corresponding classifications for these

10



CHAPTER 1. INTRODUCTION

operators in detail. Chapter 5 and Chapter 6 demonstrate
the proposed algorithms and evaluation metrics for the TCP
and TCM processes, respectively. In Chapter 5, we also mod-
ify the APFD metric for the TCP evaluation process.

Chapter 7 provides the evaluation process for this research.
One small OCL specification has been used as a running ex-
ample. Then, four case studies are proposed to evaluate the
OCL-based TCO processes. Finally, Chapter 8 summarises
the outcomes of this research work, and some possible future
works are also presented.

1.6 List of Publications

During the PhD journey, 6 publications have been published.
• Jin, Kunxiang, and Kevin Lano. "Generation of test

cases from UML diagrams-a systematic literature review."
14th Innovations in Software Engineering Conference (for-
merly known as India Software Engineering Conference).
2021.
• Jin, Kunxiang, and Kevin Lano. "Mutation Opera-

tors for Object Constraint Language Specification." STAF
Workshops. 2021.
• Lano, Kevin, Kunxiang Jin, and Shefali Tyagi.

"Model-based testing and monitoring using agileuml." Pro-
cedia Computer Science 184 (2021): 773-778.
• Jin, Kunxiang, and Kevin Lano. "OCL-based test

case prioritisation using AgileUML." Proceedings of the 25th
International Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings. 2022.
• Jin, Kunxiang, and Kevin Lano. "Design and classifi-

cation of mutation operators for OCL specification." Proceed-
ings of the 25th International Conference on Model Driven

11



CHAPTER 1. INTRODUCTION

Engineering Languages and Systems: Companion Proceed-
ings. 2022.
• Lano, Kevin, S. Kolahdouz-Rahimi, and Kunxiang

Jin. "OCL libraries for software specification and represen-
tation." Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Compan-
ion Proceedings. 2022.

12



Chapter 2

Background

In this chapter, the essential backgrounds to the software de-
velopment process, model-driven engineering (MDE), model-
based testing (MBT) and object constraint language (OCL)
are demonstrated. Regarding the TCO problems and mu-
tation testing, the detailed definition and the corresponding
related works will be discussed in the next chapter.

2.1 Software Development Process

The software development process contains the necessary ac-
tivities to develop and maintain software systems. Typically,
during SDLC, various phases are included to ensure high-
quality systems. A typical SDLC, like Figure 2.1, consists of
the following stages: planning, requirement analysis, design,
implementation, testing, deployment and maintenance.

In planning, the leaders of the project usually evaluate
the terms of the project, such as labour cost, to create the
timetable. Planning must include feedback and comments
from the stakeholders or potential ones who will benefit from
the project. Requirement analysis identifies the feasibility
of the project, defines what the system is meant to do and
which features should be included [15].

SDLC requires a design step to model the architecture of

13



CHAPTER 2. BACKGROUND

Figure 2.1: Software Development Life Cycle

the software system and how the system will work. Par-
ticularly, this step identifies the functionalities of the sys-
tem, data representation, and internal or external commu-
nications. Since developers must follow the guidelines and
design documentation of the project, the phases mentioned
earlier need to be treated carefully. After the design stage,
the actual system implementation will be started.

Testing activity is essential to ensure the system implemen-
tation conforms to the design and the functionalities run as
expected. As the size and complexity of the system increased
rapidly, testing became the most time-consuming and unpre-
dictable activity. This research work mainly focuses on this
phase and aims to optimise this process.

When the testing process is completed, the system should
be deployed to the appropriate market. The system may first
release limited segments to test in a real operating environ-
ment, then deploy the entire system. System maintenance is
an ongoing activity which includes error fixing, functionality

14



CHAPTER 2. BACKGROUND

enhancements, keeping the system running correctly, etc.
Until now, several SDLC models have been introduced that

can be applied to the software development process. In this
chapter, we will mention two development methodologies,
one traditional model and one agile model. The traditional
one is called the Waterfall model, like Figure 2.2, which was
introduced around 35 years ago [16].

Figure 2.2: Waterfall Model

In the waterfall model, through all development stages,
each process moves in a cascade mode [17]. In this model, the
next step can only start after the previous one is completely
finished. And the movements between stages are strictly doc-
umented and cannot be re-evaluated. For example, the de-
sign specifications cannot be revised when the implementa-
tion phase is started. The benefits of applying this model are
that it is easy to use, understand and manage. Also, each
step is strictly documented. However, the main disadvantage
of this model is that the team can only operate the system
once the last step is finished, which leads to high-risk and
unpredictable project results.

With the changing requirements and user needs, now 70%

15



CHAPTER 2. BACKGROUND

of organisations employ the agile approach in their businesses
[18]. There has yet to be a consensus on what actual "agile"
means [19]. But in general, the core features of agile are
iterative development, frequent communications, and early
feedback [20]. One of the most popular agile models, Scrum,
shown in Figure 2.3.

Figure 2.3: Scrum Model [21]

Scrum aims to divide the entire development process into
multiple segments and repeat a cycle of planning, design, im-
plementation, testing, etc. Each cycle is called a Sprint in
this model. Scrum is getting more attractive as this model
focuses on smaller goals and iteratively integrates these goals
into the main objectives of the project. The primary advan-
tage of applying this agile model is flexibility. Scrum is adapt-
able to the environments and requirements, especially when
the requirements are not clearly identifiable initially. This
model is suitable for project requirements that need frequent
adjustments and may not be ideal for projects that require a
well-defined plan. Moreover, Scrum needs experienced team
members to participate in the development process because
everyone involved needs to perform their duties successfully

16



CHAPTER 2. BACKGROUND

and quickly.
Due to this research not focusing on the SDLC models,

the detailed review and analysis of the traditional and agile
models can refer to [22, 23, 24, 25, 19].

Regardless of traditional or agile development models,
testing is always one of the most critical phases within the
SDLC. Software testing determines whether the implemented
system meets the expected requirements and ensures the sys-
tem does not contain apparent defects. Testing is not a "sil-
ver bullet" to promise the system is bug-free, but trying to
find as many bugs as possible [26]. Why is testing essential,
and many efforts spent on this activity? Testing is neces-
sary because if there are any software system defects, testing
helps identify and fix them earlier before the system is deliv-
ered. And during the development process, the cost of fixing
a system defect increases exponentially as the development
process moves forward in SDLC [27].

Test case and test suite are two essential components of
the testing activity. In this thesis, we informally define the
test case as the combination of a set of inputs to the software
system and the corresponding expected output. We consider
the test case passed during the testing phase if the actual
output equals the expected one. Otherwise, the test case
failed. Also, for the test suite, we define this concept as a set
or collection of test cases.

2.2 Model-Driven Engineering

In the field of computer science, the concept of MDE has
attracted broad attention worldwide, mainly after the con-
cept of Model-Driven Architecture (MDA) put forward by
the Object Management Group (OMG) in 2000 [28]. The

17



CHAPTER 2. BACKGROUND

broader context dates can be traced back to the 1980s and
1990s when various modelling techniques flourished.

MDE is not a specific new technology but rather a nat-
ural aggregation or synthesis of various technologies around
modelling and modelling software development. The goal
of MDE is not only to bring short-term efficiency to soft-
ware developers but also to make software products less sen-
sitive to change and increase software longevity, which in turn
leads to long-term efficiency gains. MDE offers a promising
approach to solving the problem that third-generation lan-
guages are unable to alleviate the complexity of platforms
and effectively express domain concepts [29]. In contrast to
the object-oriented world, MDE researchers have developed
the basic principle of everything is a model.

Compared with other software development methods,
MDE pays more attention to the abstract description for
constructing different domain knowledge based on the idea of
depicting the software system through the models. In MDE,
the developers use models and layers of automatic or semi-
automatic transformation to perform SDLC activities par-
tially or entirely.

MDE is based on high-level system models, using highly
abstract domain models as components and various model-
driven transformations to complete the system development
process. Like Figure 2.4, the system is the implementation
of the domain models, while the domain knowledge is pre-
sented by the corresponding models. By using these models
to reduce development costs and respond to complex require-
ments changes. The basic idea of MDE is to move the devel-
opment centre from programming to higher-level abstraction.
The developers utilise models to derive actual implementa-
tion code or other development artefacts, then let some or

18



CHAPTER 2. BACKGROUND

all SDLC activities can be performed automatically. This
automaticity is used to address two fundamental crises in
software, which are complexity and the flexibility to change.

Figure 2.4: Model-Driven Engineering

The advantage of MDE is using models which are closer
to human understanding and knowledge, especially visualised
models. This benefit allows designers to focus on information
relevant to the business logic rather than prematurely think-
ing about platform-specific implementation details. Espe-
cially in the face of different application domains, the model-
driven approach emphasises using convenient and flexible
models to describe the system. Based on domain knowl-
edge, achieve good communication among domain experts,
designers, system developers and others.

In general, MDE is a software development method which
takes models as the centre. Moreover, MDE has the following
benefits [30]:

19



CHAPTER 2. BACKGROUND

• Portability: Increasing system reusability and decreasing
the complexity of system development and management from
the present into the future.
• Platform Interoperability: Ensuring systems all achieve

the same business functions through rigorous approaches, re-
gardless of the detailed implementation methodologies.
• Platform Independence: The models can be used across

platforms, which significantly alleviates the time, cost, and
complexity of repositioning systems for different platforms,
including those platforms that may not yet be introduced.
• Domain Specificity: Through domain-specific models to

enable rapid implementation of systems over various plat-
forms.
• Productivity: Allowing developers, designers and system

administrators to use their own familiar language or business
concepts during the development process, which also allows
seamless communication and integration between different
teams.

2.3 Model-Based Testing

Given the importance of testing activity, MBT is one of the
most significant concepts within the scope of MDE. MBT
is a testing method in the field of software testing to vali-
date whether the system or specification under test (SUT) 1

satisfies the pre-defined requirements by using models. One
key observation is that even well-constructed manual testing
activity still consumes numerous efforts and resources [31].
MBT alleviate this deficiency by improving the automatic
level of the testing process.

1In this thesis, SUT stands for the system or specification under test. We do not clearly
distinguish them here because the system is expressed using OCL specifications in this work.

20



CHAPTER 2. BACKGROUND

Modern software engineering emphasises incremental and
iterative development processes, adopts object-oriented de-
velopment technology, improves software development qual-
ity and accelerates software development speed. Most de-
sign specifications of object-oriented software systems are
expressed by models, which contain a large amount of in-
formation that can be used for software testing. Since MBT
does not require actual implementation details, the testing
activity can be advanced to an earlier stage within SDLC.
In addition to the early start feature, the MBT also have a
high level of automation, which allows the testing efforts and
resources to be saved substantially.

Figure 2.5: Model-Based Testing

Figure 2.5 demonstrates the relationships between models,
SUT, abstract and executable test cases. In MDE, models
are used to represent the software system, and executable test
cases are used to test against the corresponding SUT. The
abstract version of executable test cases is called abstract
test cases, which are derived from models directly.

Usually, the test cases derived from the model have the
same abstraction level as the model, and these test cases

21



CHAPTER 2. BACKGROUND

are so-called abstract test cases. Abstract test cases typ-
ically cannot validate the SUT directly because those test
cases are on a higher abstraction level than the SUT [32]
[33]. The executable test cases can be derived from the cor-
responding abstract test cases, and these test cases are used
to validate the SUT directly. In most scenarios, the trans-
formation between abstract and executable test cases can be
performed automatically. However, in some circumstances,
the executable test cases can be created directly if the model
contains explicit information.

Compared to source code-based testing, one advantage for
MBT is that even if source code-based testing passed all test
cases and satisfied all testing criteria, it is still hard to say
that the SUT meets the design requirements. However, MBT
solves this problem by directly generating test cases from the
design specifications. MBT is a black-box testing technique
because this process does not require any source code.

There are various MDE tools that support the MBT pro-
cess, and three tools are briefly described as follows:
• Papyrus [34]. This tool is a graphical editing application

for UML 2 standard and has been provided as an Eclipse plu-
gin. Papyrus supports code generation, such as Java, C, and
C++, etc., and facilitates the links between external tools,
which allows the model as a driving artefact for the devel-
opment process. The generated code can help the software
system implementation and create the expected test output
from the corresponding test data.
• Umbrello [35]. Umbrello is an open-source UML diagram

modelling tool developed by the Umbrello Team. The tool
supports the model-to-text transformation, which can con-
vert UML diagrams to Java, C++, C#, PHP, Python, and
SQL specifications and supports reverse engineering. Um-

22



CHAPTER 2. BACKGROUND

brello supports XMI 2 1.2 and 2.0 as import and export files,
and this tool also supports third-party file import formats.
The XMI format specification for the UML diagram makes
the analysis and manipulation of UML models more conve-
nient and manageable. However, Umbrello does not supports
test case generation.
• AgileUML [36]. Unlike Umbrello and Papyrus, the in-

house MDE tool AgileUML supports the features like mod-
elling systems by UML or OCL, generating test cases and
constructing mutants from OCL specifications 3. AgileUML
provides the code generator for the target languages, includ-
ing Java, Swift, C++, etc. For the test case generation fea-
ture, this tool can generate abstract test cases for all sup-
ported target languages. But for JAVA, both abstract and
executable test cases can be constructed.

2.4 Object Constraint Language

When introducing OCL, UML cannot be bypassed. First,
the fundamental knowledge of UML will be discussed.

UML is a general-purpose modelling language first adopted
as a standard by OMG in 1997. It is already a de-facto stan-
dard both in industry and academia. UML has well-defined
semantics in order to avoid ambiguities. The visualisation
ability of UML models makes the system structure more in-
tuitive and easy to understand.

Using UML to demonstrate a software system will benefit
the development process by promoting communication be-
tween developers and simplifying the remaining development
activities. A model is an abstract level description of the

2XMI - XML Metadata Interchange; XML - Extensible Markup Language
3Umbrello and Papyrus do not support mutation testing.

23



CHAPTER 2. BACKGROUND

system, which contains a set of views used to represent the
design specifications of the corresponding system, from func-
tional to non-functional aspects. The information contained
within the models will help developers better plan the devel-
opment process and guide other SDLC activities. With suit-
able models, the system design can be appropriately realised
to ensure the requirements are met. Moreover, these models
can enhance flexibility when facing requirement changes.

Figure 2.6: UML Diagram Types

With the progression of the UML standard, the current
version of the standard is UML 2.5. There are 14 different
types of models used to describe the system. These mod-
els can represent different views of the corresponding sys-
tem, from structural to behavioural aspects [37]. As shown
in Figure 2.6, the structural models contain the class dia-

24



CHAPTER 2. BACKGROUND

gram, component diagram, deployment diagram, object dia-
gram, package diagram, profile diagram and composite struc-
ture diagram. At the same time, the behavioural models in-
clude the use case diagram, activity diagram, state machine
diagram, sequence diagram, communication, timing diagram
and interaction overview diagram.

In MBT, the types of UML models used in most ap-
proaches, especially in test case generation, concentrate on
the class diagram, state machine diagram, sequence diagram
and activity diagram. In these four types of diagrams, only
the class diagram is the structural diagram, which describes
the system from a high-level perspective. The remaining
three types are all behavioural diagrams. Due to this re-
search mainly focusing on OCL rather than UML, we will
briefly introduce these four types of UML models here in-
stead of comprehensively demonstrating all UML diagrams.

Class diagram is a structural diagram that defines the
entities of the system with their internal data and inter-
relationships.

State machine diagram is a state machine composed of
states, transitions, events and activities. A state machine
diagram is used to describe all possible states within the
system, and the transitions between these states, which are
caused by events [38].

Sequence diagram describes the order of messages sent be-
tween objects, emphasising the chronological order. The pri-
mary purpose of sequence diagrams is to translate require-
ments into further, more formal refinement levels. System
requirements can be refined into one or more sequence dia-
grams commonly. At the same time, sequence diagrams more
effectively describe how to assign responsibilities to each class
and why each class has corresponding responsibilities.

25



CHAPTER 2. BACKGROUND

Activity diagram is a flowchart that describes the flow of
control from activity to activity. The primary purpose of ac-
tivity diagrams is to capture the dynamic behaviours of the
system, and each activity is a particular operation within the
system. The Activity diagram also can be used to construct
the executable system via forward and reverse engineering.
Different to the sequence diagram which emphasises the flow
of control from object to object, the activity diagram empha-
sises the flow of control from activity to activity [39].

Graphical modelling languages, like UML, are preferred
by developers since these languages are convenient for defin-
ing the structural and behavioural aspects of the software
system [40]. Nevertheless, the advantages always come with
disadvantages. To better keep the notational elements more
manageable, these languages must limit the expressiveness.
This leads to only a limited subset of all domain information
can be expressed [41]. OCL is designed as a complement of
the UML in order to be able to identify all domain details
precisely and is already a part of UML standard [5].

OCL was only designed as a constraint language for UML
originally but rapidly expanded the application scope. Since
OCL can be applied to many MDE activities, such as model
transformation and specification requirements, OCL already
became a key component of MDE. Several versions of the
OCL standard have been released to adopt this language into
various MDE application domains, and the current version
of OCL is 2.4 [11].

OCL is a declarative language without any side effects,
which means OCL expressions can query or constrain the
corresponding systems but not modify them. OCL has many
benefits, and the most critical point is that OCL can add the
pre- and post- conditions to methods, operations, and mod-

26



CHAPTER 2. BACKGROUND

els, which can be used to express system specifications [42].
Pre-conditions define the necessary conditions that must be
satisfied before executing a specific operation. Conversely,
post-conditions outline the expected outcomes or behaviours
resulting from the execution of that operation. Detailed in-
sights into using OCL specifications within the context of
TCO processes, including illustrative examples, will be dis-
cussed in the running example section within Chapter 7.

However, OCL is not a programming language and does
not provide direct execution 4. Each OCL expression can
indicate a value or object in the system. Due to OCL ex-
pressions can evaluate any value or set of values in a system,
the OCL expressions have at least the same power as SQL.

OCL is based on the set theory and predicate logic and has
formal mathematical semantics [43]. However, OCL does not
use any mathematical notation because although mathemat-
ical symbols can express things clearly and unambiguously,
only a few experts can understand them. So mathematical
symbols are not appropriate for a widely used standard lan-
guage. Natural language is the most understandable, but
it is ambiguous. OCL takes a compromise between natural
language and mathematical notation.

In this research, we perform TCO processes to the systems
whose specifications are expressed in OCL. We fully sup-
ported OCL standard library within our in-house AgileUML
tool. The standard library is Clause 11 "OCL Standard Li-
brary" within the OCL 2.4 standard.

As shown in Figure 2.7, this clause describes the pre-
defined types, their operations, and pre-defined expression
templates in the OCL. Within the OCL standard Library,
the special types, the primitive types, the collection-related

4But some research attempted to make OCL executable.

27



CHAPTER 2. BACKGROUND

Figure 2.7: OCL Standard Library

types and pre-defined iterator expressions are demonstrated.
Based on the standard library of OCL standard version

2.4, there are two main groups of types, primitive types and
collection-related types and pre-defined iterator expressions.
The primitive types contain five individual types, Real, Inte-
ger, String, Boolean and UnlimitedNatural. Meanwhile, the
collection-related types include one supertype Collection, and
four sub-types, Set, OrderedSet, Bag and Sequence. The
four sub-types depend on whether duplicated elements are
allowed and whether the elements are ordered. Also, some
pre-defined iterator operations are included in the standard
library. This clause contains almost all necessary operators
and expressions to describe the system specifications.

We fully support the OCL standard library in AgileUML,
which lets most of the existing OCL specifications can be
benefited from our work. But the standard library has no
facilities for some common software aspects, such as files and

28



CHAPTER 2. BACKGROUND

processes. Various research has been proposed to make OCL
more comprehensive like [44] and [45]. We cannot guaran-
tee all the new proposed works can be supported by Ag-
ileUML. But in addition to the standard library, AgileUML
supports some additional operators, making OCL more ex-
pressive. The extra operators are described in [46] and [14].

To better understand UML and OCL, the architecture that
OMG chose for its standards is necessary to be mentioned.
The four-layered architecture shows like Figure 2.8.

Layer M0 is the actual running system, and M1 is a system
model which defines the types of entities and relationships
that make up a system. M2 is the level where the meta-model
is defined. Model elements on M1 instantiate meta-classes on
M2. M3 is the most top-level to define meta-model, and the
language used is MOF 5. The element on a certain layer is
always an instance of an element from one level higher 6 [47].

Compared to most of the TCO research work on the M0
layer, this research increases the abstract level to M1. With
the description of the system by OCL instead of the actual
system, we can ignore the differences across different pro-
gramming languages and platforms. It enables the TCP pro-
cess to be performed once, and the results can be used for
all implementations of specifications in various programming
languages or platforms.

Since OCL can easily express system behaviours, an in-
creasing number of systems use OCL to describe system spec-
ifications [48][49]. OCL specifications are used to represent
the expected behaviours of these systems through pre- and
post- conditions.

Figure 2.9 is the running example that will be used in
5Meta Object Facility
6except M3

29



CHAPTER 2. BACKGROUND

Figure 2.8: 4 Layered Architecture

Figure 2.9: OCL Example

30



CHAPTER 2. BACKGROUND

Chapter 7, and we will recall this example during the evalu-
ation process. This example models the function that com-
pares whether two sequences of strings are equal. The desired
system behaviour is described through pre- and post- condi-
tions. Through this example, we can notice OCL is a very
expressive language to express system specifications, and one
function only requires three lines to describe.

31



CHAPTER 2. BACKGROUND

32



Chapter 3

Related Works

In this chapter, the related works for this research are dis-
cussed. First, a systematic literature review of the directly
related topic, UML-based test case generation, is demon-
strated.

One of the key findings of this review is that most existing
approaches neglect the optimisation of test cases. There is a
need to conduct more research on TCO processes, which will
further benefit the testing process. Also, with the flourishing
of OCL in recent years, more and more system specifications
are expressed in OCL. These findings inspired us to perform
this research work, OCL-based test case optimisation.

After the systematic literature review, the related works
to the three main TCO processes (TCP, TCM and TCS) are
presented. Finally, we will also discuss mutation testing.

3.1 Systematic Literature Review to Model-Based
Testing

This section presented a systematic literature review on the
topic of UML-based test case generation. Sixty-two primary
studies, which range from 1999 to 2019, are chosen from
443 papers according to the selection criteria. This review
demonstrated the generic process of different approaches to

33



CHAPTER 3. RELATED WORKS

the test case generation process. The comparison standards
mainly focus on the model type, intermediate format and
coverage criteria. The research trends, deficiencies and fu-
ture works are proposed based on the analysis results of these
primary studies.

3.1.1 Introduction

The research topic of test case generation from UML dia-
grams has existed for decades, and there are numerous pub-
lications in this area. Test case generation is mainly from the
source code specification or design documentation [50]. Test-
ing based on source code specification always seems unattain-
able in the software development process because the source
code is not always fully accessible to the developer in most
projects [51]. And more important, testing on the source
code level needs to postpone the testing phase behind the im-
plementation process, which is time-consuming. The source
code level testing is cumbersome and hard to automate. On
the other hand, the design level testing can start the testing
phase before the system implementation [52].

The software testing process should run through the whole
SDLC [53]. To better benefit the development process, the
test cases are reasonable to be generated before the imple-
mentation. The generated test case can be executed immedi-
ately when the system is implemented. In MBT, design-level
documentation is used for test case generation, which leading
the testing phase can begin earlier in the SDLC. MBT is a
technique that performs testing activities based on the mod-
els, which allows test cases to be generated from one or more
system models. A model is an abstract-level description of
the SUT, and each model represents a different aspect of the
corresponding software system.

34



CHAPTER 3. RELATED WORKS

There are numerous kinds of models, for example, UML,
Labelled Transition System, Petri-Net and Markov Chains.
MBT is still a progressing field, especially for complex soft-
ware systems. One of the common approaches in the MBT
community is to perform the test case generation process au-
tomatically by using UML [54]. Therefore, using UML-based
test case generation becomes a practical and promising topic
[55].

In this systematic literature review, there are 443 publica-
tions selected through the search strings, and 62 are identi-
fied as primary studies. The main comparison points focus on
the model type, intermediate format, number of case studies,
coverage criteria, test case execution manually or automati-
cally, and whether the test cases are optimised. Through the
systematic literature review, the common practice, strengths
and weaknesses of generating test cases from UML models
are demonstrated, and future works are also proposed for
the MBT community.

3.1.2 Research Method

This part reviews the topic through a systematic literature
review methodology. And this part is divided into the
research questions, search string, exclusion criteria, quality
assessment, and data extraction.

A. Research Questions
The systematic literature review protocol is shown as Fig-

ure 3.1. The review protocol contains the necessary phases of
the review and guides the whole review process [33]. The re-
view protocol has three phases, plan review, conduct review
and document review. The plan review phase includes defin-
ing research questions, developing and validating the corre-

35



CHAPTER 3. RELATED WORKS

sponding protocol. The conduct review phase contains pri-
mary studies selection, quality assessment, data extraction
and synthesis. The Document review phase consists of writ-
ing and validating the review report.

Figure 3.1: Review Protocol

The fundamental step of a systematic literature review is
to identify the research questions. The research questions are
the discipline and guidance of the review. The research ques-
tion determines how to select the primary studies, extract the
data, and synthesise the data.

Based on the objectives of the review, the research defined
the following:

Question 1: Which UML model(s) is used by the primary
study?

Question 2: Whether the primary study required the in-
termediate format?

Question 3: Which coverage criteria does the primary
study intend to satisfy?

Question 4: Whether the generated test cases can be ex-
ecuted automatically?

36



CHAPTER 3. RELATED WORKS

Question 5: Whether the generated test cases have been
optimised?

B. Search String
The primary studies selection process starts with defining

a selection strategy. Through the selection strategy, the pri-
mary studies should be selected. The primary studies need
to cover as many approaches as possible based on the review
area without any redundant and irrelevant studies. The se-
lection strategy contains two steps. The first step is to choose
the databases to select as many relevant works as possible,
and the second is to construct the exclusion criteria to elim-
inate unrelated and repeat works [56].

The related works selected from six primary databases
range from 1999 to 2019. The six central databases are ACM,
IEEE, ISI Web of Knowledge, Science Direct, Springer and
Wiley Interscience. The end year is 2019 because we con-
ducted this review that year, and the range of studies covers
two decades.

The search strings are created manually to perform the
selection process. Based on the different databases, the cor-
responding search strings are constructed. The overall strat-
egy for creating strings is: • The Title should include model
based testing OR model based testing and test case genera-
tion OR model based testing and UML OR UML and test
case generation. • The Abstract should contain UML OR
UML and model based testing. These two strategies are used
conjunctively during the selection process.

After the search strings have been constructed, the rele-
vant works are extracted from the database through the cor-
responding search string. There are 443 papers selected by
search strings, the details shown as Table 3.1.

37



CHAPTER 3. RELATED WORKS

Table 3.1: Search Result

Database Number

ACM 2

IEEE 80

ISI Web of Knowledge 41

Science Direct 71

Springer 249

Wiley Interscience 0

Total 443

C. Exclusion Criteria
After the first step of the selection strategy, we designed

the search strings to minimise the risk of overlooking relevant
studies. Then the irrelevant and redundant works should be
eliminated by using exclusion criteria. Applying exclusion
criteria is the second step of the search strategy. The sys-
tematic literature review used the following rules to choose
works as primary studies.

Rule 1: The full text of the paper is not available.
Rule 2: The content is not written in English.
Rule 3: Papers selected by search strings are similar or

duplicated
Rule 4: Papers are irrelevant to UML-based test case gen-

eration.
Rule 5: Papers are survey paper.
Rule 6: Papers only focus on a specific type of case study.
The results paper selection process is shown in Table 3.1.

Then after adopting the defined exclusion criteria, 62 papers
are identified as primary studies. The details of each rule

38



CHAPTER 3. RELATED WORKS

and the number of chosen works are shown as Table 3.2.

Table 3.2: Exclusion Result

ALL R1 R2 R3 R4 R5 R6 Valid

ACM 2 0 0 0 0 1 0 1

IEEE 80 0 0 3 44 1 7 25

ISI 41 5 0 14 9 2 1 10

Science Direct 71 0 0 1 47 2 10 11

Springer 249 1 0 2 210 13 8 15

Wiley 0 0 0 0 0 0 0 0

Total 443 6 0 20 310 19 26 62

D. Quality Assessment
When the primary studies are selected, quality assessment

is a necessary process. This process ensures the quality of
the systematic literature review by applying assessment ques-
tions to evaluate the primary studies [57].

Each question is answered when every primary study is
reviewed, and the corresponding result is recorded. Each
question has three answers with different marks. The answers
have Fully Satisfied (1 mark), Partially Satisfied (0.5 marks),
Not Satisfied or Not Mentioned (0 mark). The proposed
assessment questions are as follows:

Question 1: Is the aim of the study explained clearly?
Question 2: Are all research questions answered?
Question 3: Is the case study described explicitly?
Question 4: Is there any deficiency or future work pre-

sented?
Question 5: Is the conclusion consistent with the goal?

39



CHAPTER 3. RELATED WORKS

E. Data Extraction
The data extraction process aims to gain all relevant in-

formation from the primary studies by reading all these 62
studies to extract data and answer the research questions.
The obtained data includes authors, publish year, publica-
tion platform, model type, intermediate format, coverage cri-
teria, number of case studies, execution type and test cases
optimisation option.

Data synthesis is also an essential process in the system-
atic literature review, through the extracted data, categorise
the data and answer the research questions. Using the quan-
titative method to read and organise the primary studies and
using related information to perform data synthesis.

3.1.3 Review Results

The review results for the primary studies will be presented
in this part. The primary studies are selected from six lead-
ing publication platforms, ACM, IEEE, ISI Web of Knowl-
edge, Science Direct, Springer and Wiley Interscience. By
combining with search strings and exclusion criteria, there
are 62 primary studies chosen out of 443 works. Figure 3.2
presents the publication year distribution of 62 studies. Ta-
ble 3.3 shows the name and publication platform for each
primary study, and Figure 3.3 demonstrates the citation re-
lationship between these studies.

The UML-based test case generation approaches are de-
rived by analysing and summarising each primary study. The
detailed reviews for each primary study are demonstrated in
Appendix A to have a better layout.

Table 3.4 demonstrates the review results. The first col-
umn is the label of each primary study. The second column is
the UML diagram used in primary studies, and the third col-

40



CHAPTER 3. RELATED WORKS

Table 3.3: Publications Details
NO. Name Platform

1 [58] Test Cases Generation from UML State Diagrams IEEE

2 [59] Automated Test Case Generation from Dynamic Models Springer

3 [60] Automated Generation of Statistical Test Cases from UML State Diagrams IEEE

4 [61] Test Case Generation for UML Statecharts ISI

5 [62] UML-Based Statistical Test Case Generation ISI

6 [63] A Method for the Automatic Generation of Test Suites from Object Models Science Direct

7 [64] Formal Test-Case Generation for UML Statecharts IEEE

8 [65] Boundary Value Testing based on UML Models IEEE

9 [66] Formal Test Generation from UML Models Springer

10 [67] Test Cases Generation from UML Activity Diagrams IEEE

11 [68] Automatic Test Case Generation from UML Communication Diagrams ISI

12 [69] A State-Based Approach to Integration Testing Based on UML Models Science Direct

13 [70] Automatic Test Case Generation from UML Sequence Diagrams IEEE

14 [71] Improving Test Coverage for UML State Machines using Transition Instrumentation Springer

15 [72] Automatic Test Case Generation from UML Models IEEE

16 [73] Test Case Automate Generation from UML Sequence Diagram and OCL Expression IEEE

17 [74] Test Case Generation by means of UML Sequence Diagrams and Labeled Transition Systems IEEE

18 [75] Automatic Test Case Generation using Unified Modeling Language UML State Diagrams IEEE

19 [76] Deriving Input Partitions from UML Models for Automatic Test Generation Springer

20 [77] Automatic Generation of Test Specifications for Coverage of System State Transitions Science Direct

21 [78] Model Based Functional Testing using Pattern Directed Filmstrips IEEE

22 [79] Research on Method of Object-Oriented Test Cases Generation Based on UML and LTS IEEE

23 [80] UML Activity Diagram-Based Automatic Test Case Generation For Java Programs ISI

24 [81] Test Case Generation from UML Subactivity and Activity Diagram IEEE

25 [82] Model-Based Software Regression Testing for Software Components. Springer

26 [83] A Novel Approach to Generate Test Cases using Class and Sequence Diagrams Springer

27 [84] A Hybrid Genetic Algorithm Based Test Case Generation using Sequence Diagrams Springer

28 [85] Generation of Executable Test Cases Based on Behavioral UML System Models ACM

29 [86] A Novel Approach of Test Case Generation for Concurrent Systems using UML Sequence Diagram IEEE

30 [87] A Search-Based OCL Constraint Solver for Model-Based Test Data Generation IEEE

31 [88] A Specification-Based Test Case Generation Method for UML OCL Springer

32 [89] Automated Test Case Generation for Object Oriented Systems Using UML Object Diagrams ISI

33 [90] Test Case Generation and Prioritization from UML Models IEEE

34 [91] Automatic Test Case Generation for UML Collaboration Diagrams ISI

35 [92] Synthesis of Test Scenarios using UML Activity Diagrams Springer

36 [93] Feedback-Directed Test Case Generation Based on UML Activity Diagrams IEEE

37 [94] Construction of Test Cases from UML Models Springer

38 [95] Combining UML Sequence and State Machine Diagrams for Data-Flow Based Integration Testing Springer

39 [96] Test Case Design using Slicing of UML Interaction Diagram Science Direct

40 [97] Generation Test Case from UML Activity Diagram Based on AC Grammar IEEE

41 [98] Extenics-Based Test Case Generation for UML Activity Diagram Science Direct

42 [99] The Web Services Composition Testing Based on Extended Finite State Machine and UML Model IEEE

43 [100] Improving Test Case Generation from UML Statecharts by using Control, Data and Communication Dependencies ISI

44 [101] Dataflow Test Case Generation from UML Class Diagrams IEEE

45 [102] Generating Test Data from A UML Activity using the AMPL Interface for Constraint Solvers Springer

46 [103] The Research on Test Case Generation Technology of UML Sequence Diagram IEEE

47 [104] SeTGaM Generalized Technique for Regression Testing Based on UML-OCL Models IEEE

48 [105] A Novel Approach for Test Case Generation from UML Activity Diagram IEEE

49 [50] Test Case Generation and Optimization using UML Models and Genetic Algorithm Science Direct

50 [106] A Hybrid Test Case Model for Medium Scale Web Based Applications IEEE

51 [107] Automated Model Driven Testing using AndroMDA and UML2 Testing Profile in Scrum Process Science Direct

52 [108] Test Case Generation for Concurrent Systems using UML Activity Diagram IEEE

53 [109] Automated Test Case Generation from UML Activity Diagram and Sequence Diagram using Depth First Search Algorithm Science Direct

54 [110] Synthesizing Test Scenarios in UML Activity Diagram using A Bio-Inspired Approach Science Direct

55 [111] Coverage Criteria for Test Case Generation using UML State Machine Diagram ISI

56 [112] Test Case Generation for Embedded System Software using UML Interaction Diagram ISI

57 [113] Generating and Evaluating Effectiveness of Test Sequences using State Machine Springer

58 [114] Agent-Based Regression Test Case Generation using Class Diagram Use Cases and Activity Diagram Science Direct

59 [115] A Memorization Approach for Test Case Generation in Concurrent UML Activity Diagram ISI

60 [116] A Search-Based Approach to Generate MC DC Test Data for OCL Constraints Springer

61 [117] Validating Object-Oriented Software at Design Phase by Achieving MC DC Springer

62 [118] Transition Coverage Based Test Case Generation from State Machine Diagram Science Direct

41



CHAPTER 3. RELATED WORKS

Figure 3.2: Distribution of Publication Year

umn is the intermediate format used in each approach. The
fourth column is the number of case studies in each work, and
the fifth column is the coverage criteria that need to be satis-
fied. The execution column indicates the execution methods
for the generated test cases, where M represents manually
and A stands for automatically. The final column is whether
the generated test cases have been optimised.

Through reviewing all primary studies, the common pro-
cess of UML-based test generation can be described as Figure
3.4. The UML model and test criteria are typically required
in order to generate test cases. The majority of the primary
studies need to transfer the UML model to an intermediate
format, but in some approaches, the step of constructing the
intermediate structure is omitted.

Based on the coverage criteria and combined with different
test case generation algorithms, the abstract test cases can
be extracted from the intermediate form or directly from the
UML diagram. The generated abstract test cases cannot be
executed directly, and most works need to create executable
test cases manually. Once the executable test cases are gener-

42



CHAPTER 3. RELATED WORKS

Figure 3.3: Citation Map

43



CHAPTER 3. RELATED WORKS

Table 3.4: Review Results
NO. Model Type Intermediate Format Number Coverage Criteria Execution Optimization

1 State Machine Diagram Extended Finite State Machine 1 Data Flow Criteria M N

2 State Machine Diagram STRIPS Planning Problems 1 Branch Coverage M N

3 State Machine Diagram NULL 1 Transition Coverage M N

4 State Machine Diagram Labelled Transition System 1 NULL M N

5 Use Case State Machine Diagrams & Usage Model 1 Transition Coverage M/A Y

6 Class, State Machine Diagram, Object Diagram IF Language 0 Branch Coverage M N

7 State Machine Diagram IOLTS 1 NULL M/A N

8 State Machine Diagram NULL 1 Predicate, Transition Path Cover-
age

M Y

9 Fondue UML CO-OPN 1 NULL M Y

10 Activity Diagram I/O Explicit Activity Diagrams 1 All Path Coverage M Y

11 Communication Diagram Communication Tree 1 Message Path, Full Predicate Cov-
erage

M Y

12 Collaboration, State Machine Diagram SCOTEM 1 All Path Coverage A N

13 Sequence Diagram Sequence Diagram Graph 1 All Path Coverage M N

14 State Machine Diagram NULL 2 Improved MC/DC Coverage M N

15 Use Case, Sequence Diagram System Testing Diagram 1 Use Case Dependency, Message
Paths

M N

16 Sequence Diagram, OCL Scenario Tree 1 Scenario Paths Coverage M N

17 Sequence Diagram Labelled Transition System 2 All Path Coverage M N

18 State Machine Diagram NULL 1 Predicate Coverage M Y

19 Class, State Machine Diagram, OCL Test Case Tree 1 All One Loop Path Coverage M N

20 Use Case, Sequence, State Machine Diagram System State Graph 4 Transition Path Coverage M N

21 OCL NULL 1 NULL M N

22 State Machine Diagram Labelled Transition System 1 Complete Transition Path Cover-
age

M N

23 Activity Diagram NULL 1 Simple Path, Trail Coverage M Y

24 Activity Diagram Composition Tree 1 Branch Coverage M N

25 Sequence Diagram Control Flow Graph 1 NULL M N

26 Class, Sequence Diagram NULL 1 Transition Coverage M N

27 Sequence Diagram NULL 1 Message Sequence Coverage M Y

28 State Machine Diagram Symbolic Transition System 1 NULL A N

29 Sequence Diagram Concurrent Composite Graph 1 Message Path Coverage M N

30 OCL NULL 1 NULL M Y

31 OCL High Order Logic Expression 1 NULL A N

32 Object Diagram Weighted Graph 1 Message Coverage M N

33 Activity Diagram Extend Activity Diagram 1 Transition Coverage M Y

34 Communication Diagram Weighted Graph 1 NULL M N

35 Activity Diagram Intermediate Testable Model 4 Selection, Loop Adequacy, Concur-
rent Coverage

M N

36 Activity Diagram NULL 1 Simple Path Coverage A N

37 Use Case, Sequence, Class Diagram, OCL Sequence Diagram Graph 1 All Path Coverage M N

38 Sequence, State Machine Diagram Control Flow Graph 1 Coupling-Based Data Flow M N

39 Sequence Diagram Message Dependency Graph 1 Message Path, Slice Coverage,
Boundary Testing

M N

40 Activity Diagram Activity Convert Grammar 1 All Path Coverage M N

41 Activity Diagram Euler Circuit 1 Transition Coverage M Y

42 Sequence, Extended State Machine Diagram EFSM-SeTM 1 All Path Coverage M N

43 State Machine Diagram LOTOS 8 Transition Coverage M Y

44 Class, State Machine Diagram Control Flow Graph 1 Path, DU Pairs Coverage M N

45 Activity Diagram A Mathematical Programming Language 2 Control Flow Coverage A N

46 Sequence Diagram Scene Test Tree 1 State Coverage M N

47 Class, State Machine Diagram SMT Language 2 NULL M N

48 Activity Diagram Activity Flow Graph 1 Path Coverage M Y

49 State Machine Diagram, Sequence Diagram System Testing Graph 1 Path Coverage M Y

50 Activity Diagram Weighted Base Graph 1 Path Coverage M N

51 Sequence Diagram UML 2.0 Testing Profile 1 NULL M N

52 Activity Diagram Input/Output Activity Diagram 1 Path Coverage M Y

53 Sequence, Activity Diagram System Testing Graph 1 Path Coverage M N

54 Activity Diagram Intermediate Testable Table 8 Path Coverage M Y

55 State Machine Diagram State Graph 0 NULL M N

56 Interaction Diagram Stimulus Linking Table 2 Object, Message Path, Condition
Coverage

M N

57 State Machine Diagram Composition Control Flow Graph 1 Path Coverage M N

58 Use Cases, Activity, Class Diagram NULL 1 NULL M N

59 Activity Diagram Concurrent Activity Graph 1 Causal Ordering Coverage M Y

60 OCL NULL 4 MC/DC Coverage M Y

61 Activity Diagram JAVA Code 4 MC/DC Coverage M N

62 State Machine Diagram State Machine Intermediate Graph 2 All Transition, Round Trip Path,
All Transition Pair Coverage

M N

44



CHAPTER 3. RELATED WORKS

Figure 3.4: Common Process in MBT

ated, execution and analysis of these test cases can be carried
out in various ways. In some primary studies, the proposed
approach only describes the process until the abstract test
cases are constructed.

After reviewing the 62 primary studies and categorising
the related information, the answers to each research ques-
tion are as followings.
•Question 1: Which UML model(s) is used by the primary

study?
The UML models are categorised as structural models and

behavioural models. Most primary studies used behavioural
models to perform the proposed approach since structural
models typically concern the structure of SUT on a higher ab-
stract level. The structural models contain general informa-
tion without detailed implementation information, and this

45



CHAPTER 3. RELATED WORKS

situation leads researchers to prefer using behavioural mod-
els [119]. The UML models used in primary studies focus on
the state machine, use case, class, object, activity, sequence
diagrams, OCL expression and others. Table 3.5 shows the
number of different UML models used in primary studies.

Table 3.5: Model Usage Statistic

UML Model Number of Studies

State Machine Diagram 22

Use Case 5

Class Diagram 7

Object Diagram 2

Activity Diagram 17

Sequence Diagram 17

OCL Expression 7

Others 6

Total 83

The statistical results show that the primary studies pre-
fer using state, activity and sequence diagrams, which are
all behavioural models, to perform the test case generation
process. Meanwhile, the other most commonly used stan-
dards are the OCL expression and the structural model class
diagram.

The behavioural model provides a more detailed descrip-
tion of the SUT, this information provides more detail to
guide the test cases generation process, but this is only re-
stricted to a single functionality or simple system behaviour.
The structural model or OCL specification provides a high-
level overview of the SUT, and the created test cases can
comprehensively test the system. Still, the lack of system

46



CHAPTER 3. RELATED WORKS

information makes test cases more challenging to generate.
There are 83 models used in 62 primary studies, which means
some proposed approaches used more than one type of UML
model. These approaches combined the benefits from be-
havioural and structural models, which can better guide the
test case generation process.
• Question 2: Whether the primary study required the

intermediate format?
We found that the majority of proposed approaches per-

form the test cases generation process with an intermediate
format, and only 12 out of 62 works without any intermediate
form.

Different types of intermediate formats can be used to gen-
erate test cases. The original UML diagrams may not contain
enough details or are not suited for extracting the test cases
directly, especially for structural models. The majority of
intermediate formats are in one of the tree formats, and the
proposed approaches then apply a tree traversal algorithm to
construct test cases [120], like the breadth-first search algo-
rithm or depth-first search algorithm, to traverse the tree to
create test cases.
• Question 3: Which coverage criteria does the primary

study intend to satisfy?
The primary studies address various coverage criteria, but

13 out of 62 primary studies do not mention which coverage
strategy is used by the proposed approach.

Coverage criteria is the measurement used to describe the
extent of the source code or model covered by the test suite.
Coverage criteria intend to guarantee that the generated test
cases meet the pre-defined goals in the testing process. The
majority of intermediate formats in primary studies are in
tree formats, and the test cases are generated by travers-

47



CHAPTER 3. RELATED WORKS

ing the intermediate form, so most of the coverage criteria
are different forms of path coverage. The most substantial
coverage is all path coverage, which requires the traversal of
all possible paths in the graph. But without restrictions, the
created test cases are vulnerable to the paths explosion prob-
lem [121], especially if loops exist in the intermediate format.
More than twenty proposed approaches in the primary stud-
ies used path-related coverage criteria.

Another valuable and robust coverage criteria is MC/DC
coverage 1, which focuses on the combination of conditions
within decision expressions [122]. MC/DC coverage is always
used in safety-critical software, especially in aircraft and au-
tomotive systems.
• Question 4: Whether the generated test cases can be

executed automatically?
Only 7 out of 62 primary studies partially or fully support

the automatic execution of generated test cases. Most of the
proposed approaches require executing the constructed test
case manually. Moreover, they can only create abstract test
cases instead of executable ones, which misses the step that
transfers abstract test cases to executable ones.

The UML models hide the implementation details of the
corresponding software system, such as the programming
languages or platforms. Due to the platform-independent
character that the proposed approaches cannot generate ex-
ecutable test cases directly is reasonable. The transforma-
tion between abstract and executable test cases is relatively
easy to perform. The users can create executable test cases
when there is a need to test the software system on a spe-
cific platform and sufficient implementation details are avail-
able. Once the executable test cases are generated, the test

1Each test needs to independently affect the outcome of the corresponding decision expression.

48



CHAPTER 3. RELATED WORKS

execution process can be performed in various ways, either
manually or automatically.
• Question 5: Whether the generated test cases have been

optimised?
The majority of faults can be detected by a small subset

of test cases, while the generated test cases always contain
redundant test cases. How to prioritise these test cases, elim-
inate unnecessary test cases and find the most effective test
execution sequence are essential issues.

18 out of the 62 studies propose the optimisation of the
generated test cases. Most test optimisation strategies con-
cern reducing the number of test cases whilst guaranteeing
the corresponding coverage criteria [123]. The most common
coverage criteria used in test cases optimisation is MC/DC
coverage, which is that each condition in a decision predicate
can independently affect the decision result. In the DO-178B
and DO-178C standard [116], MC/DC coverage is the criteria
that must be satisfied by the most critical software.

Another common optimisation strategy is by using a
stochastic algorithm, most often a genetic algorithm. But
all the primary studies which included a stochastic optimi-
sation algorithm only proposed the approach in theory and
only provided an elementary case study. A stochastic algo-
rithm optimises the test cases by re-ordering the execution
sequence (TCP process) of the test cases, which lets the test
cases have the strong ability to find the faults that will be
executed early.

The optimisation of the constructed test case is seldom
mentioned in primary studies, although this process will ben-
efit the testing activity further. Within the primary studies,
the most common optimisation is reducing the number of
test cases while maintaining the corresponding coverage cri-

49



CHAPTER 3. RELATED WORKS

teria (TCM process). The exploration of other optimisation
methods, like TCP and TCS processes, still requires further
investigation.

3.1.4 Quality Assessment

The process that applies quality criteria to primary studies
is a critical step in the systematic literature review. Five
research questions are proposed above to assess the quality
of selected primary studies.

Table 3.6 demonstrates the quality assessment result for
each primary study by quality score. The first column is the
label of each study, and the following six columns are the
score for each assessment question and the total score. The
score of each evaluation can be 0(Not Mentioned), 0.5(Par-
tially Satisfy) and 1(Fully Satisfy).

Following are the scoring criteria for each question:
Question 1 : 1. Fully Satisfy : The abstract and intro-

duction clearly represent the aim and are consistent with
the research topic. 2. Partially Satisfy : The abstract and
introduction are related to the research topic but not well
represented.

Question 2 : 1. Fully Satisfy : The answers to research
questions are easy to find and conclude. 2. Partially Satisfy :
The answers to research questions are vague and hard to find
or miss some research questions.

Question 3 : 1. Fully Satisfy : The case study is described
clearly, and the experiment results are also clearly demon-
strated. 2. Partially Satisfy : The case study is presented
but not well demonstrated.

Question 4 : 1. Fully Satisfy : The study demonstrates the
shortage and future work or describes either aspect explicitly.

50



CHAPTER 3. RELATED WORKS

Table 3.6: Assessment Result

NO. R1 R2 R3 R4 R5 Score
1 1 1 0.5 1 1 4.5
2 1 1 1 0.5 1 4.5
3 1 0.5 1 0.5 1 4
4 1 0.5 0.5 0.5 1 3.5
5 1 1 0.5 1 1 4.5
6 1 1 0 0.5 1 3.5
7 1 1 1 1 1 5
8 1 0.5 0.5 0.5 1 3.5
9 1 0.5 1 0.5 1 4
10 1 1 1 1 1 5
11 1 1 1 0.5 1 4.5
12 1 1 1 1 1 5
13 1 1 0.5 0 1 3.5
14 0.5 0.5 0.5 1 1 3.5
15 1 0.5 0.5 0 1 3
16 1 1 1 0 1 4
17 0.5 0.5 1 0.5 0.5 3
18 1 0.5 0.5 0.5 1 3.5
19 1 1 0.5 0.5 1 4
20 1 1 1 0.5 1 4.5
21 0.5 0.5 0.5 0.5 1 3
22 1 0.5 1 0.5 0.5 3.5
23 1 1 1 0.5 1 4.5
24 1 1 1 0.5 0.5 4
25 1 0.5 1 0.5 1 3.5
26 1 0.5 0.5 0.5 1 3.5
27 0.5 0.5 0.5 0 1 2.5
28 1 0.5 0.5 0.5 1 3.5
29 1 1 1 0.5 0.5 4
30 0.5 0.5 0.5 1 1 3.5
31 1 0.5 1 1 1 4.5
32 1 0.5 1 0.5 0.5 3.5
33 1 0.5 0.5 1 1 4
34 1 0.5 1 0 1 3.5
35 1 1 1 1 1 5
36 1 0.5 0.5 0 1 3
37 1 0.5 1 0 1 3.5
38 1 1 0.5 0.5 1 4
39 1 1 1 0.5 1 4.5
40 1 0.5 1 0.5 1 4
41 1 0.5 0.5 0.5 1 3.5
42 1 1 1 0.5 1 4.5
43 0.5 1 1 0.5 1 4
44 1 0.5 1 0.5 1 4
45 1 1 1 1 1 5
46 0.5 1 0.5 0 0.5 2.5
47 0.5 0.5 1 1 0.5 3.5
48 0.5 0.5 1 1 1 4
49 1 1 0.5 0.5 1 4
50 1 0.5 1 0 1 3.5
51 1 0.5 0.5 0.5 1 3.5
52 1 0.5 1 0 1 3.5
53 1 1 1 0.5 1 4.5
54 1 1 1 1 1 5
55 0.5 0.5 0.5 0 0.5 2
56 1 1 1 0.5 1 4.5
57 1 1 1 1 0.5 4.5
58 1 0.5 0.5 0.5 0.5 3
59 1 0.5 1 0.5 1 4
60 1 1 1 1 1 5
61 1 1 0.5 1 1 4.5
62 1 1 1 0.5 1 4.5

51



CHAPTER 3. RELATED WORKS

2. Partially Satisfy : The publication only simply mentioned
the shortage or future work.

Question 5 : 1. Fully Satisfy : The conclusion is consistent
with the goal and accurately represented. 2. Partially Sat-
isfy : The conclusion is consistent with the goal to a large
degree and simply represented.

When the assessment score is above four, the publication
is meaningful and valuable, and a score above three means
reasonable. The assessment score distribution chart is shown
as Figure 3.5. The average score for the overall 62 primary
studies is 3.91, which means the overall quality of primary
studies is persuasive. Only three primary studies have an
assessment score below 3, but 7 works have the full score.
The percentage of valuable (assessment score above 4) is 56.4,
and the reasonable rate is 38.7%.

Figure 3.5: Assessment Score Distribution

52



CHAPTER 3. RELATED WORKS

3.1.5 Discussions

Some discussions related to this systematic literature review
are presented in this part.

So far, this systematic literature review has presented the
different approaches relevant to UML-based test case gener-
ation. The test cases generation step is a crucial phase in
model-driven engineering, and the typical process in MBT is
shown as Figure 3.4.

By reviewing 62 selected primary studies, the proposed ap-
proaches have similarities and differences. The review focuses
on the model type, intermediate format and coverage criteria.
On the one hand, the methods have similarities, and all stud-
ies follow the common process, even though some may skip
or miss some steps. On the other hand, the proposed works
are different, in which separate studies use various strategies
to generate test cases and satisfy coverage criteria.

Most primary studies use behavioural models to perform
the test case generation process because these models are
more related to the implementation of SUT. However, the
drawback of behavioural models is that they tend to concen-
trate on modelling either an individual function or a small
group of interconnected functions. This specificity, while pre-
cise, may narrow the scope of the model, thereby overlooking
the inherent interconnections among system attributes. The
structural models or OCL specifications can generate test
cases that cover more aspects of the SUT but need more de-
tailed information to guide and help the generation process.
Most of the approaches need an intermediate format. And
then by transferring the original UML models to the inter-
mediate structures to construct the corresponding test cases.

Most primary studies use the tree-like graph as the inter-

53



CHAPTER 3. RELATED WORKS

mediate format to perform the test case generation process.
Most coverage criteria are related to path coverage. The
search-based algorithm traverses the intermediate form to
find the corresponding paths according to the coverage crite-
ria, and each route will be a single test case. The proposed
approach applied some coverage criteria, like all path cover-
age, to construct test cases. If without any restriction, the
test case explosion problem will be caused by the loops that
existed in the intermediate format or the UML model. If
the model contains loop(s), the number of all potential paths
would be infinite. Many primary studies use expression con-
dition coverage criteria to perform the test case generation
process, for example, MC/DC and branch coverage. These
criteria discover the potential condition combination within
the decision expression, and these criteria are effective.

The MBT can apply almost to all types of systems, but
MBT is especially powerful when facing embedded systems,
distributed systems, concurrent systems, mission-critical sys-
tems and large-scale systems. The need for the testing phase
is significant, with the scale of modern software systems in-
creasing rapidly. Manually generating test cases is labour-
intensive, and it seems impossible to create them exhaus-
tively. In the meantime, testing after the implementation
phase will delay the SDLC and increase the development
budget. Generating test cases from the design model is an
excellent approach to start the testing in the early stage of
SDLC. The created test cases can guide and help the imple-
mentation process of the corresponding software system.

Following are some future orientations that may need fur-
ther exploration by the researchers in the MBT community.

The state explosion is a tricky problem in many ap-
proaches, especially when generating test cases from the

54



CHAPTER 3. RELATED WORKS

state chart diagram, activity diagram and sequence diagram.
Most works use the search-based algorithm to traverse the
UML model or intermediate format to create test cases, and
each path corresponds to one specific test case. But when
the model contains any loop-like event or transition, infinite
paths can be found in theory. Although some approaches use
techniques to avoid infeasible paths or use particular cover-
age criteria to prevent endless loops, these methods cannot
always solve the problem well. And in some case studies
are hard to determine the loop times when the model con-
tains the specific trigger event. For example, input the wrong
password three times and then trigger one particular event.
The difference between the standard and this loop type is
challenging to distinguish in this situation. How to minimise
state space and promise the coverage standard is a valuable
research aspect.

Concurrent and distributed systems are becoming increas-
ingly popular, and the UML standard supports describing
these systems. The interaction sequences of these systems are
complicated and unpredictable. If the generated test cases
exhaustively cover all possible combinations, there will be
another state explosion problem. Some approaches tried to
solve this problem by adding constraints on the software sys-
tem or UML models. Still, the effectiveness of the method
is limited and only available for particular types of systems.
How to carry out test case generation in the concurrent and
distributed system is a valuable and promising research area
in MBT.

The TCO is a significant aspect of the testing process.
Some approaches use coverage criteria to optimise generated
test cases, the most frequently used one being MC/DC cov-
erage. This method is powerful, but when dealing with com-

55



CHAPTER 3. RELATED WORKS

plex conditions, the complexity is high while the efficiency
is low. And some approaches use the stochastic algorithm,
like the genetic algorithm, to create the most effective test
suites. Most works applied to this method only proposed the
approach in theory or applied it to simple case studies, which
are challenging to reproduce. Efficiency optimising the gen-
erated test cases and maintaining feasibility still need more
investigations.

The possible solution to optimise generated test cases is
to prioritise (re-order) the generated test cases. Due to the
balance between expensive time cost and software quality,
executing all test cases is time-consuming. A small subset of
test cases can find the majority of system faults. Different
test cases have their own ability to reveal the defects within
the software system. Executing the test cases earlier, which
have the strong ability to find the error, will bring more ad-
vantages. Therefore, the right strategy to prioritise and order
the test cases can make the testing more efficient. Those test
cases that are most likely to find the faults will give high
priority and will execute earlier in the test cases execution
process. This process may be guided by the stochastic search
or machine learning algorithm, like the genetic or ant colony
algorithm. The possible validation method could be muta-
tion testing. Mutation testing will assess the improvement
of the TCP. The ordered and unsorted test suites will per-
form the same mutation testing together. If the prioritised
test suite can achieve the same level of mutation score by
using fewer test cases, this will show it is effective. And also,
some indicators, like APFD (Average Percentage of Fault De-
tection), will assess how quickly the given test suite detects
system defects. Moreover, the TCM will also benefit the test-
ing process by eliminating redundant test cases to speed up

56



CHAPTER 3. RELATED WORKS

software testing.
The discrepancy between abstract and executable test

cases is still a gap, although the transformation is relatively
easy to achieve. The entire MBT process needs transforma-
tion to complete the whole test chain. In the meantime, the
test criteria are also an important research point, which de-
termines whether the given test cases pass the tests or not.
Combining the transformation process and test criteria is a
necessary and significant process within the MBT.

Most works only validate the proposed approach on small-
scale case studies, and there is still a gap between academia
and industry. The majority of strategies only use a single or
few numbers of simple models as experiments, but in reality,
the models of the software project are much more compli-
cated. Even though the work demonstrated a satisfactory
investigation result, this cannot promise effectiveness on a
real-world project. How to apply the test case generation
techniques to industry needs constant exploration.

3.1.6 Threats to Validity

Each systematic literature review is vulnerable to numerous
validation threats, which must be pointed out and dealt with
as much as possible. In the following, some threats to validity
are discussed.

The first threat is the search strings. The systematic lit-
erature review aims to analyse all possible works in the cor-
responding research area. Manually searching the potential
works from numerous platforms seems impossible and unfea-
sible, even only focusing on a limited number of databases.
The process of constructing a search string is an empiri-
cal method and is mainly based on experience to determine
the content of strings. Even though constructing the search

57



CHAPTER 3. RELATED WORKS

strings carefully and performing the automatic search of the
relevant databases, there is no promise to include and se-
lect all possible research approaches. For example, the works
published in technical reports, company journals or written
in other languages. In this literature review, the neglected
works also have crucial contributions and affect the complete-
ness of this review. The inclusion search string and exclusion
criteria must be amended and reviewed continually to deal
with this threat. The step to confirm primary studies must
read each approach and distinguish every work carefully. The
inclusion and exclusion criteria for this review are systemi-
cally constructed, and the information to answer the research
questions is extracted through reading all potential publica-
tions.

The second threat is about the primary studies themselves.
Even select the works as carefully as possible, the quality
of these studies is essential. The research publications most
likely contain publication bias, which means the authors pub-
lish positive rather than negative results. This threat signif-
icantly affects the quality of the review but cannot control
by us. The most feasible method to solve this problem is
rigorous reading and analysis of the primary studies. By sys-
temically literature review, the impacts of this threat can be
minimised.

The other potential threat is the standard of assessing the
quality of primary studies. In this systematic literature re-
view, five questions are proposed to determine and evaluate
the quality of each study, but there is no guarantee these
questions will cover all quality standards. The proposed
questions focus on the most necessary aspects of the assess-
ment. The quality of primary studies is all on different stan-
dard levels, so the assessment process is critical. The quality

58



CHAPTER 3. RELATED WORKS

assessment questions are carefully constructed and reviewed
to ensure the evaluation of the primary studies. There may
be some threats to the review, and here only present three
main threats.

3.1.7 Conclusion

Typically, manual or exhaustive testing is unfeasible for the
real-world software system because of the large number of
inputs combination and system functions. Test cases, which
can be used to detect the flaws within SUT, are an essential
part of system testing, and test case generation is a crucial
challenging phase in the testing phase. MBT provides several
benefits to the generation process, for example, reducing gen-
eration time and making the testing start early. The UML
has already become a de-facto standard both in academia and
industry. Based on research trends and reality requirements,
the review on this topic is meaningful and valuable.

The systematic literature review is based on UML-based
test case generation, analysing 62 primary studies extracted
from 443 papers, and the selected studies range from 1999 to
2019. The review mainly focuses on the model type, inter-
mediate format and coverage criteria. Based on the review
points, five research questions are proposed. And five as-
sessment questions are used to assess the quality of selected
primary studies.

The review results from the primary studies are presented
in the review. This systematic literature review analysed
each primary study in detail, and the different proposed ap-
proaches showed the consensus of the common process of
MBT. But all primary reviews have differences in the model
usage, coverage criteria, intermediate format, execute the
test cases automatically or manually, and whether the pro-

59



CHAPTER 3. RELATED WORKS

posed approach optimises the generated test cases.
Moreover, the threats to this SLR are also mentioned in

this review. Through the review of the selected primary stud-
ies, the potential of MBT has yet to be fully explored, and
many open questions need to be discovered. Some obsta-
cles do not intuitively belong to the domain of MBT, but
these have some interrelationships with MBT. And some
other research area techniques may bring benefit to the re-
search topic, like stochastic algorithm. Some future research
orientations that may need to be investigated in the MBT
community are presented in this review.

Finally, this systematic literature review brings the over-
all evaluation of the UML-based test case generation in MBT
and may bring future research directions. This review is com-
pleted by reviewing selected primary studies and answering
research and quality assessment questions to collect the re-
lated information. The test case generation is still a signifi-
cant phase in system testing. The future work will not only
focus on the test case generation process but also extend to
the TCO processes.

3.2 Test Case Optimisation

There are three mainly used types of optimisation strategies,
which are test case prioritisation, test case minimisation and
test case selection. TCP aims to re-order the original test
cases to detect the maximum defects as early as possible.
TCM aims to reduce the number of test cases within the
test suite by eliminating redundant test cases. TCS aims to
categorise test cases to determine which test cases need to be
executed for the new system.

The main difference between the three TCO techniques

60



CHAPTER 3. RELATED WORKS

is that TCS aims to categorise the existing test suite into
different groups and choose a specific subset of test cases to
re-test the updated system. However, TCM concerns with
identifying and removing redundant or unnecessary test cases
within the original test suite. Both TCS and TCM select the
subset of the previous test suite, which means the number of
test cases will decrease. By contrast, TCP will preserve the
whole previous test suite. The prioritisation process improves
the testing ability by re-ordering the test cases within the
test suite, so the faults within the software systems can be
detected earlier.

In the following parts, we will discuss the overview, main
approaches and related works for these three optimisation
processes.

3.2.1 Test Case Prioritisation

TCP aims to re-order the sequence of test cases within the
test suite that helps the system tester to achieve the maxi-
mum testing benefit, even if the testing procedure is prema-
turely halted [124].

The TCP problem can formally be defined as [125]:

Define: Test Case Prioritisation Problem
Given: T, a test suite, PT, the set of permutations of T,

and f, a function from PT to the real numbers.
Problem: Find T ′ ∈ PT , such that (∀T ′′) (T ′′ ∈

PT ) (T ′′ ̸= T ′) [f (T ′) ≥ f (T ′′)].

And in this definition, PT is all possible combinations of
prioritisation of set T . And f is a function that, applied to
a specific ordering combination, returns an award value for
that ordering.

61



CHAPTER 3. RELATED WORKS

From the above definition, to find the potential best so-
lution T ′, the prioritisation algorithm must define the set of
every permutation PT of test cases. And then, choose the
T ′, which can maximise the function f .

Analysing every combination of test cases is almost infea-
sible in practice, especially when the test suite size is big.
Assuming a test suite contains n test cases, the size of PT is
n!. This situation may transfer the TCP problem to an in-
stance of the Traveling Salesman Problem, which is a famous
NP-complete problem [126]. Therefore, the TCP problem is
always solved by a heuristics algorithm, like the genetic algo-
rithm or ant colony algorithm, using their strong searching
capacity to construct the sequence of test cases.

TCP can reduce the testing budget by re-ordering the se-
quence of test cases in the test suite so that the critical test
cases can be executed earlier. In the test suite, test cases
have different fault detection abilities. Due to time and re-
source constraints, executing all test cases within the test
suite may be impossible. TCP increases the fault detection
speed by scheduling the sequence of test case execution. Ex-
ecuting those test cases with the most potent capacity to find
errors earlier will bring more advantages to the testing pro-
cess. Therefore, the correct strategy to prioritise test cases
to re-order the test cases can make regression testing more
efficient.

TCP does not involve the selection activity to the test
suite. It assumes that the whole test suite will be executed,
but the testing may be terminated arbitrarily during the test-
ing process.

In an empirical study of prioritisation techniques [125],
the authors applied the same algorithm to different cover-
age criteria to compare the effectiveness. The criteria in-

62



CHAPTER 3. RELATED WORKS

clude branch-total, branch-additional, statement-total, state-
additional, FEP-total and FEP-additional 2.

The branch-total approach uses the number of the cov-
ered branches by each test case to prioritise the test suite,
like the greedy algorithm, while the branch-additional uses
the number of additional uncovered branches to prioritise the
test suite. Similarly, statement-total and state-additional re-
placed the branch coverage with statement coverage. The
FEP of a test case is measured using program mutation. The
FEP-total approach prioritises test cases according to the
mutation score of individual test cases, and FEP-additional
by using additionally increased mutation scores provided by
single test cases to prioritise the test cases.

The study results showed that no coverage criteria con-
sistently outperformed others across different approaches.
However, the FEP-additional approach always resulted in a
higher fault detection ability.

Another widely used TCP technique is search-based pri-
oritisation. The various implementations of search-based al-
gorithms, for example, the genetic algorithm and ant colony
algorithm. The experiment results proved that the test cases
optimised by the search-based algorithm reached a generally
good result [127]. However, applying a search-based algo-
rithm may differ based on the selected test suite and fitness
function. The advantage of search-based prioritisation is the
strong search capacity, especially with an enormous search
space.

Also, the requirement-based test cases prioritisation. A
software system is built to meet pre-defined requirements.
Therefore, by using the requirements specifications, the crit-
ical test cases can be classified. Test cases are mapped to

2Fault Exposing Potential

63



CHAPTER 3. RELATED WORKS

the requirements tested by them, and then the prioritisation
process can be performed based on various properties. For
example, in [128], the authors used client priority, error-prone
value, volatility value, and execution difficulties to re-order
the corresponding test suite.

Another prioritisation technique is the history-based ap-
proach, which uses historical data as input to perform the
TCP process. Like [129], they used history information for
the test suite, like previous execution counts and which test
cases revealed faults, to weight each test case. However,
history-based prioritisation is restricted when the available
historical execution and fault-detection information is lim-
ited.

According to the systematic literature review [130], model-
based test cases prioritisation approaches only occupied 4%
of selected studies. The model-based test cases prioritisation
mainly focused on the state machine diagram and activity
diagram using the branch or transition information to priori-
tise the test cases. There has been more and more attention
to model-based prioritisation techniques in recent years, but
the research on high-level UML models is still under explo-
ration. Also, the model-based approach always hybrids with
other methods, like a search-based algorithm, to perform the
prioritisation process.

When the test suite is prioritised, we need a metric to
validate the effectiveness of prioritisation, to check whether
the new test suite better than the original one and to what
extent. APFD is a metric to measure how early will the
test suite detect the system faults [131]. APFD is used to
calculate the average percentage of fault detection rate for
the examined test suite and how early will the test suite
detect the system faults. The value of APFD ranges from

64



CHAPTER 3. RELATED WORKS

0 to 1. A higher value indicates the earlier faults detection
capacity. Intuitively, this metric measures how quickly the
test suite detects the system faults. Then, to measure the
effectiveness of the future TCP approach, we will use the
APFD metric. At the same time, the equation of APFD is
shown as Equation 3.1.

APFD = 1− TF1 + TF2 + · · · + TFm

nm
+

1

2n
(3.1)

In this equation, TFi indicates the test case which first
detects ith fault, n is the number of test cases within the test
suite, while m is the number of faults 3 within the software
system.

However, the APFD metric considers that every system
fault has the same severity and executing each test case has
the same testing efforts. In the actual testing process, the
test case has a unique testing cost, and each fault may have
a different degree of violation of the software system. So,
the APFDc metric is introduced in [132]. This metric takes
information about test cost and fault severity into account,
and APFDc improves the accuracy of APFD. The equation
of APFDc is defined as Equation 3.2.

APFDc =

∑m
i=1(fi ∗ (

∑n
j=TFi

tj − 1
2tTFi))∑n

j=1 tj ∗
∑m

i=1 fi
(3.2)

Similarly to the APFD calculation, in this equation, fi is
the severity of the ith fault. TFi indicates Test Case which

3real or artificially generated defects

65



CHAPTER 3. RELATED WORKS

detects the ith fault, and tj is the testing cost of the corre-
sponding test case. Also, n is the number of test cases within
the test suite, while m is the number of faults.

Above definition of APFDc contains the cost and fault
severity of the test cases. However, due to its unclear or
system-specific estimation method of fault severity and test
case cost, the practical feasibility is limited for this metric.
Most researchers are willing to use APFD to assess the effec-
tiveness of their works. While the APFD is not suitable for
mutation testing ideally, we will discuss more in Chapter 5,
and a modified version of the APFD metric is also proposed.

The studies on the TCP process have been on-going for
decades, and numerous approaches are proposed to explore
this topic. Following are some related works closely related
to this research work.

An approach using fuzzy logic to guide the test cases priori-
tisation process has been proposed in [133] by Rapos. They
transferred the UML models to the symbolic execution tree.
Then test suite size, symbolic execution tree size, relative test
case size and output significant as inputs through 39 fuzzy
rules to infer priority. They compared the proposed approach
with the random method.

Shin [134] used an alternating variable method to perform
a model-based TCP process. They customised a set of muta-
tion rules, applied them to the state machine diagram, and
then generated test cases according to mutants. The test
cases prioritisation process is based on the fault coverage cri-
teria and guided by the alternating variable method. Then
the effectiveness of the proposed approach is examined by
the APFD metric.

Pospisil [135] performed the TCP process by improved
adaptive random prioritisation (ARP). Compared to the tra-

66



CHAPTER 3. RELATED WORKS

ditional ARP, they replace the original distance function with
a multi-criteria decision-making method. Additional infor-
mation, such as path complexity and coverage information,
is used to determine priority.

Pan [136] presented the results of a systematic literature
review regarding the application of machine learning tech-
niques to test case optimisation. Also, Gupta [4] revised
the multi-objectives and hybrid approaches to the test case
prioritisation problem and proposed some future research
trends.

Both [137][138] use GA to guide the TCP process. How-
ever, in the first article, the proposed approach by Ma is
based on a control flow diagram and path information. The
latter one, presented by Rattan, uses an extended system
dependence graph to perform the prioritisation process.

Sornkliang [139] presented the work, which is directly re-
lated to the MDE scope. They assign weight to each node
within the UML activity diagram and then prioritise test
paths based on the calculation of the path scores. Through
five case studies, Chaudhary [140] compared the TCP ability
between four unsupervised clustering algorithms. The result
showed that the DBK-mean 4 algorithm out-performance all
others. Morozov [141] proposed a model-based TCP method
based on fault activation analysis and error propagation anal-
ysis for the automotive system.

Xing [142] proposed an algorithm on artificial fish school
algorithm to perform the TCP process. They define the cod-
ing way of the artificial fish, clustering, tail-chasing and for-
aging behaviours, and the effectiveness of the approach is
examined by the APFD metric and EET 5. The paper also

4Density based and Partition based K-Mean Algorithm
5Effective Execution Time

67



CHAPTER 3. RELATED WORKS

discusses how the number of iterations affects the proposed
algorithm. Mann [143] also used an evolutionary algorithm to
prioritise the generated test cases. They first constructed the
test cases by generating random test data to satisfy condition
coverage, then through a particle swarm optimisation-based
algorithm to conduct the TCP process.

Miranda [144] presented FAST, which is a set of similarity-
based techniques, to perform the TCP process. The
similarity-based approach employs min-hashing and locality-
sensitive hashing algorithms for quickly finding test cases
within a big set with maximum diversities. They compared
their method with various approaches to evaluate its effec-
tiveness. Li [145] made a deep analysis of greedy additional
algorithms for the TCP problem, and proposed an acceler-
ated version of the original algorithm to improve the effi-
ciency while preserving the effectiveness. The proposed ap-
proach uses a new data structure to store the previously se-
lected test case information to achieve higher efficiency. The
effectiveness of the method is examined by the APFD metric.

Sun [146] proposed a path-directed approach to the TCP
process for metamorphic testing. Their approach first analy-
ses feasible paths using symbolic execution and then generate
corresponding test cases based on constraint solver. The con-
structed test cases are prioritised by calculating the distances
between them based on the statement coverage.

How the parameters settings and genetic operators choices
affect the effectiveness of the genetic algorithm is studied
by Bajaj in [147]. Castro-Cabrera [12] conducted a survey
on the TCP process, which ranges from 2017 to 2019. The
results showed that TCP is still an activity research topic
and has a great deal of interest in the literature. Most of the
proposed works are based on search-based, coverage-based or

68



CHAPTER 3. RELATED WORKS

similarity-based techniques, and a large proportion of them
combined multiple methods to perform the TCP process.

In the domain of regression test case prioritisation, the
seminal work [148] offers a comprehensive evaluation of var-
ious algorithmic strategies aimed at optimising the order of
test cases. They systematically assessed the performance
of five distinct algorithms: Greedy, Additional Greedy, 2-
Optimal, Genetic Algorithms, and Hill Climbing, across a
diverse set of software programs. The study highlighted the
complex nature of choosing the right algorithm for test case
ordering, especially as software and test suites grow. This
research helps in understanding how to efficiently organise
test cases in software development, making the testing phase
more effective. Moreover, they validated the general effec-
tiveness of the genetic algorithm, which is one of the adapted
algorithms within our research.

In this work, five optimisation algorithms are implemented
to conduct the TCP process. These algorithms are Genetic
Algorithm (GA), Particle Swarm Optimisation (PSO), Fire-
fly, Fish School and Cuckoo Search algorithm.
• Genetic Algorithm (GA)
Professor John Holland first introduced the GA in the

1960s, and through DeJong and Goldberg’s further develop-
ment, formed the basic GA [149]. This algorithm is a compu-
tational model simulating the natural selection of Darwinian
evolution theory and the biological evolution process of ge-
netic mechanism. It is a method to search for the optimal
solution by mimicking the natural evolution process and try-
ing to find the optimal solution to the problem base on the
principle of survival of the fittest and gene exchange between
individuals. The basic GA process is shown like Figure 3.6.

The GA starts with the population encoded by genes which

69



CHAPTER 3. RELATED WORKS

Figure 3.6: Process of Genetic Algorithm

represent the potential solution set to the problem. Through
a series of evolutionary operators, the selection, crossover
and mutation operators, to find the best result until meet-
ing the terminate condition, typically reaching the maximum
iterations or the solution has been found.

In the GA approach, each individual is associated with a
fitness value that is used to evaluate the degree of fitness of
the corresponding chromosome. The fitness value serves as
a measure of the quality of the individual, where a higher
fitness value indicates a better performance. Individuals are
selected based on their fitness values to ensure that those with
superior adaptive performance have a higher probability of
reproducing and passing on their favourable characteristics
to the next generation.

GA are optimisation algorithms that mimic the process of
natural selection and evolution. GA relies on three primary
operators, namely the selection operator, crossover operator,
and mutation operator. The selection operator is utilised
to determine which individuals from the parent population

70



CHAPTER 3. RELATED WORKS

will be passed on to the next generation based on a specific
strategy. This strategy may involve selecting the fittest indi-
viduals at random or using a combination of these methods.

The crossover operator is employed to determine the re-
combination or crossover of individuals, which involves com-
bining the genetic material of parent individuals to produce
new offspring. This process is based on the principle of ge-
netic recombination, which is a natural process that occurs
during sexual reproduction in organisms.

The mutation operator is utilised to introduce small ran-
dom changes into the genetic material of individuals, thereby
creating new genetic variations. This operator helps to pre-
vent premature convergence of the algorithm by introducing
diversity into the population.
• Particle Swarm Optimisation (PSO)
The PSO algorithm was first proposed by Eberhart and

Kennedy in 1995 [150], and has been applied to a wide range
of applications such as optimisation of engineering design,
control systems, signal processing, and financial forecasting.
PSO has been found to be particularly effective in solving
problems that are nonlinear and have many local optima.

PSO is a meta-heuristic optimisation technique widely
used to solve complex optimisation problems. It is inspired
by the social behaviour of bird flocking and fish schooling,
where the individuals in the group exhibit collective intelli-
gence to achieve a common goal. In PSO, a population of
particles move around in the search space, adjusting their
positions and velocities based on their own experience and
that of their neighbours to find the optimal solution. The
PSO process shows like Figure 3.7.

The PSO algorithm begins by initialising a population of
particles with random positions and velocities in the search

71



CHAPTER 3. RELATED WORKS

Figure 3.7: Process of Particle Swarm Optimisation

space. Different from GA, the individuals in PSO are called
a particle.

Each particle is evaluated based on its fitness value, which
measures how well it performs with respect to the objective
function being optimised. At each iteration, the position
and velocity of each particle are updated based on their own
experience and that of the global best-performing particle.
The particles then update their positions and velocities based
on the following equations.

positionnew = positioncurrent + velocitycurrent (3.3)

velocitynew = w ∗ velocitycurrent
+ c1 ∗ rand() ∗ (positionpBest − positioncurrent)

+ c2 ∗ rand() ∗ (positiongBest − positioncurrent)

(3.4)

72



CHAPTER 3. RELATED WORKS

wnew = wcurrent ∗ α (3.5)

In Equation 3.4, w, c1, and c2 are constant parameters
that control the behaviour of particles, and rand() is a ran-
dom number generator. The positionpBest and positiongBest

represent the best position found by the particle itself and
the entire population, respectively.

In detail, w is called inertia weight, and this factor encour-
ages particles to maintain their current direction and speed.
c1 is the cognitive learning factor, which encourages particles
to move towards their personal best position. c2 is the social
learning factor, which encourages particles to move towards
the best position found by the swarm as a whole.
• Firefly Algorithm
The firefly algorithm is a more recent swarm-based opti-

misation algorithm proposed by Yang in 2009 [151], inspired
by the flashing behaviour of fireflies. The algorithm mim-
ics the way fireflies attract one another by emitting light,
with brighter fireflies attracting others and weaker ones be-
ing attracted towards brighter ones. The process of firefly
algorithm shows like Figure 3.8.

The basic idea of FA is to represent each potential solution
as a firefly in the search space. The brightness of a firefly
corresponds to the quality of the solution it represents, which
is the original or modified APFD metric in the TCP problem.

The algorithm randomly generates the initial population,
and then at each iteration, the algorithm updates the position
of each firefly based on its brightness and attraction to other
fireflies.

The movement of each firefly in FA is influenced by two

73



CHAPTER 3. RELATED WORKS

Figure 3.8: Process of Firefly Algorithm

factors, which are the brightness of the firefly itself and the
brightness of other fireflies. Fireflies move towards brighter
fireflies and are attracted to them with force inversely pro-
portional to their distance apart. The movement of a firefly
is described by the Equation 3.6.

xi(t+1) = xi(t)+β0e
−γr2ij(xj(t)−xi(t))+α(rand−0.5) (3.6)

In this equation, xi(t) and xj(t) are the positions of firefly i
and j at time t, rij is the Euclidean distance between the two
fireflies, β0 and γ are constant parameters that control the
attractiveness of other fireflies, and α is a constant parameter
that controls the randomisation factor. The term (rand - 0.5)
is a random value between -0.5 and 0.5.

The algorithm continues to iterate through these steps un-
til a stopping criterion is met, such as a maximum number
of iterations or a satisfactory solution is found. One of the
strengths of FA is its ability to explore the search space ef-
ficiently and converge to the optimal solution. It can also

74



CHAPTER 3. RELATED WORKS

handle high-dimensional problems and problems with com-
plex and nonlinear constraints.
• Fish School Algorithm
The fish school algorithm is a swarm intelligence optimisa-

tion algorithm proposed by Bastos in 2008 [152]. The algo-
rithm is inspired by the collective behaviour of fish schools.
This optimisation algorithm simulates the movement and in-
teraction of a group of fish to search for the optimal solu-
tion in a given search space. The algorithm is based on two
main components, which are collective behaviour and voli-
tive behaviour. The process of fish school algorithm shows
like Figure 3.9

Figure 3.9: Process of Fish School Algorithm

In this algorithm, individuals are referred to as fish, and
the main concept is for each fish to swim towards the best
solution to gain weight through feeding. Each fish utilises
three types of swims, including individual movement, collec-
tive movement, and volitive movement.

75



CHAPTER 3. RELATED WORKS

Each fish in the school conducts a local search (individual)
to explore promising regions in the search space. And this
local search can follow the Equation 3.7.

xi(t + 1) = xi(t) + rand(−1, 1) ∗ stepind (3.7)

In this equation, xi(t + 1) and xi(t) refers to the position
after and before individual movement, and the rand(-1, 1) is
used to determine the direction of movement. The stepind
controls the displacement of the movement.

Collective behaviour refers to the tendency of fish to move
in a group and adjust their positions and velocities based
on the average position and velocity of the group. This be-
haviour ensures that the group stays together and moves in
the same direction. In the fish school algorithm, collective
movement is modelled by the Equation 3.8 and Equation 3.9.

I =

∑N
i=1∆xi∆fi∑N

i=1∆fi
(3.8)

xi(t + 1) = xi(t) + I (3.9)

In these equations, I represents the weighted average dis-
placement of each fish, and the fish that gained a bigger im-
provement will attract other fish to move toward its position.

Volitive movement refers to the tendency of fish to make
individual decisions based on their own experience and en-
vironmental cues. This movement enables fish to adapt to
changes in the environment and find the best path to the
optimal solution. The volitive movement is modelled by the

76



CHAPTER 3. RELATED WORKS

Equation 3.10, Equation 3.11 and Equation 3.12. This move-
ment is used to regulate the exploration/exploitation ability
of the algorithm.

B(t) =

∑N
i=1 xi(t)Wi(t)∑N

i=1Wi(t)
(3.10)

xi(t + 1) = xi(t)− stepvol
xi(t)−B(t)

distance(xi(t), B(t))
(3.11)

xi(t + 1) = xi(t) + stepvol
xi(t)−B(t)

distance(xi(t), B(t))
(3.12)

The B in the equations is the barycentre of the school,
which is calculated through the position and weight of each
fish. If the overall weight of the school increases from the
last to the current iteration, the fish would intend to move
toward the barycentre. Otherwise, the fish will move away
from the barycentre. And the distance function calculates
the Euclidean distance between the fish and the barycentre.
The stepvol controls the distance of movement.

Beyond the movements, the fish school algorithm also has
a feeding operator to update the weight of each fish, which
follows the Equation 3.13.

Wi(t + 1) = Wi(t) +
∆fi

max(|∆fi|)
(3.13)

In this equation, the ∆fi is the fitness variation of the
corresponding fish during the last and current iteration, and

77



CHAPTER 3. RELATED WORKS

max(|∆fi|) is the maximum absolute fitness variation among
the whole school.

The fish school algorithm combines collective behaviour
and volitive behaviour to explore the search space efficiently
and converge on the global optima, which is a valuable op-
timisation technique that can provide high-quality solutions
to complex problems.
• Cuckoo Search Algorithm
The cuckoo search algorithm is a nature-inspired optimi-

sation technique developed by Yang in 2009 [153]. The algo-
rithm is based on the behaviour of cuckoo birds, which lay
their eggs in the nests of other bird species, leading to the sur-
vival of the fittest scenario where the cuckoo’s egg competes
with the host bird’s eggs for survival. This strategy of the
cuckoo bird has inspired the development of a meta-heuristic
optimisation algorithm that aims to search the entire solution
space to find the optimal solution to a given problem. The
process of cuckoo search algorithm shows like Figure 3.10

Figure 3.10: Process of Cuckoo Search Algorithm

The cuckoo search algorithm generates an initial popula-

78



CHAPTER 3. RELATED WORKS

tion of nests randomly and then evaluates the fitness of each
nest. The fitness function is a measure of how well a partic-
ular solution performs with respect to the problem at hand.

For each nest, generate a new solution, called a cuckoo, by
randomly selecting a nest from the population and perform-
ing a random walk in the solution space. This step is inspired
by the behaviour of cuckoo birds, where they lay their eggs
in the nests of other birds. The new solution is generated by
modifying the current solution in a random direction, which
is determined by a random number generator. The random
walk is called Lévy flight, which shows like Equation 3.14.

x
(t+1)
i = x

(t)
i + α⊕ Lévy(λ) (3.14)

After Lévy flight, evaluate the fitness of the cuckoo solu-
tion. Replace the nest with the cuckoo solution if the fitness
of the cuckoo is better than the fitness of the nest. This step
aims to keep the best solutions in the population and replace
the weaker ones with better solutions.

Abandon a fraction of the worst nests, and generate a new
nest randomly. These steps are also inspired by the behaviour
of cuckoo birds. If a host bird discovers a foreign egg in its
nest, it may abandon the nest and build a new one elsewhere.
In the cuckoo search algorithm, the fraction of abandoning a
nest is proportional to its population. If a nest is abandoned,
a new one is generated randomly. Repeat the iterations until
the stop criteria are met.

3.2.2 Test Case Minimisation

The TCM problem can formally be defined as [3]:

79



CHAPTER 3. RELATED WORKS

Define: Test Case Minimisation Problem
Given: A test suite, T , a set of test requirements r1,...,rn,

that must be satisfied to provide the desired ‘adequate’ test-
ing of the program, and subsets of T , T1 , . . . , Tn , one
associated with each of the ris such that any one of the test
cases tj belonging to Ti can be used to achieve requirement
ri.

Problem: Find a representative set, T ′, of test cases
from T that satisfies all ris.

When each test requirement in r1,...,rn is satisfied by one
of the test cases, the testing criteria will also be satisfied.
The newly formed test suite, T ′ is the representative set of
test cases selected from Tis. Moreover, to maximise the effec-
tiveness of the TCM process, the T ′ should be the minimal
representative set of Tis.

The TCM technique aims to reduce the size of the test
suite by eliminating redundant test cases in the test suite
to improve the testing ability. TCM also refers to test case
reduction, which means the elimination is permanent. How-
ever, the two concepts are essentially interchangeable.

A test suite consists of all test cases that meet all pre-
defined test requirements. As the size and complexity of
the software grow, the test suite becomes larger and larger.
Rerunning all the test cases within the test suite seems un-
feasible and increases the test budget. The TCM technique
generates a representative set from the original test suite that
satisfies all the requirements covered by the original test suite
but contains fewer test cases. A test case is redundant if other
test cases can satisfy the same requirements, then removing
this kind of test case will not decrease the fault detection
ability in most circumstances.

80



CHAPTER 3. RELATED WORKS

The heuristic-based approaches are the most widely used
techniques to perform the TCM process. These approaches
include GE, GRE heuristic, etc. 6

GE heuristic is based on the greedy and essential strategy.
An essential test case is such that the requirement ri cannot
be satisfied by any other test case. GE heuristic first selects
all essential test cases into the new test suite. Then, by using
greedy additional to choose test cases into the new test suite,
for example, select the test case that satisfies the maximum
unsatisfied requirements.

GRE heuristic [154] is the improved version of the GE
heuristic. GRE heuristic first removes all obvious redundant
test cases within the test suite, then performs a GE heuristic
to generate the test suite.

There are also many other TCM techniques, for example.
Chen [155] proposed a divide-and-conquer approach to

perform the TCM process. Divide-and-conquer decomposes
the original problem into a set of sub-problems, finds the
optimal solution to each sub-problem, and then, bottom-up
combines these optimal solutions to solve the actual prob-
lem. They extracted the essential and redundant test cases
from the original test suite. The essential set contains the
essential test cases, while the redundant set contains the test
cases, which satisfied requirements can be satisfied by other
test cases. The essential subset should be included, and the
redundant subset will be discarded to form the new test suite.

In [156], Tallam proposed a delayed greedy strategy. One
potential weakness of the greedy strategy is that the early
selected test cases may eventually be redundant by subse-
quently selected test cases. The authors overcame this weak-
ness by constructing a concept lattice, a hierarchical cluster-

6GE - Greedy Essential; GRE - Greedy Redundant Essential

81



CHAPTER 3. RELATED WORKS

ing which recorded the relationship between the test cases
and test requirements. The experiment result showed that
the delayed greedy strategy could select fewer test cases com-
pared to the greedy strategy.

In [157], Nachiyappan proposed a TCM based on a ge-
netic algorithm. The proposed approach used a mathemat-
ical model for reduction and the initial population by test
history in this model. The fitness value within the genetic
algorithm is calculated by the block-based coverage and ex-
ecution time for test cases. Test cases which violate the de-
fined fitness constraints will be rejected. The results showed
that the reduced test suite has the same coverage ability as
the original test suite. In [158], Zhang proposed an improved
quantum genetic algorithm approach that fasts the conver-
gence speed by using individual fitness values to adjust the
chromosomes dynamically.

In the empirical study [159], Wong examined whether re-
ducing the size of the test suite will affect the fault detection
ability through ten common Unix programs and randomly
generated test suites. The results showed only a little or no
reduction in fault detection effectiveness. In this study, two
assessment metrics are used to validate the effectiveness of
TCM techniques.

(1− number of test cases in the reduced test suite
number of test cases in the original test suite) ∗ 100%

(3.15)

and

(1− number of faults detected by the reduced test suite
number of faults detected by the original test suite) ∗ 100%

(3.16)

82



CHAPTER 3. RELATED WORKS

The Equation 3.15 describes how many test cases are elim-
inated after the reduction. The Equation 3.16 demonstrates
the percentage of decreased effectiveness to fault detection
ability after applying the test cases minimisation technique.

The decreased effectiveness of fault detection ability is not
excessive. To reduce the testing budget, the TCM process
can be applied to the SDLC. Moreover, if the testing cost is
directly related to the number of test cases within the test
suite, the minimisation technique is a necessary optimisation
process.

Palomo [160] used an exact search-based technique to per-
form the minimisation process and maintain the mutation
coverage meanwhile. The approach mutated the original
specifications and compared their behaviours versus the orig-
inal ones under the test suite. If the mutants cannot be killed,
the proposed mutated will classify the test case as redundant.

A genetic algorithm approach is demonstrated in [161] by
Bhatia. The proposed algorithm aims to provide optimal
fitness value by combining the genetic algorithm and class
partition. The modified GA minimise the number of test
cases by finding the most error-prone test cases based on the
priority of the path information.

Lin [162] proposed an approach to minimise test suite for
composition service by modification impact analysis. They
compared structural and variable changes and located the
impacted nodes by dependency analysis. Through the in-
fluenced information, they excluded redundant test cases to
perform the TCM process.

Hashim [163] proposed a TCM approach based on the fire-
fly algorithm. The optimisation process is combined with the

83



CHAPTER 3. RELATED WORKS

UML state machine diagram, by analysing the path coverage
for the state machine to calculate the fitness value for each
test case. Then, through a firefly algorithm to minimise the
test suite.

Deneke [164] also proposed a TCM approach by using an
evolutionary algorithm, which is based on particle swarm op-
timisation. The proposed approach through requirements
coverage information to guide the particle swarm optimisa-
tion process. They validate the effectiveness of their method
by comparing various benchmark techniques.

Li [165] proposed a mutation-based TCM and TCP ap-
proach. Based on the fault detection information of each
test case, the hierarchical clustering process is conducted.
Then the test case with the highest priority in each cluster is
selected according to the cut-level threshold. If there exists
any edge test or edge mutation program, the corresponding
one will be chosen. The edge mutation program is the faulty
mutation version that can only be killed by one specific test
case, and that test case is the edge test.

Bajaj [166] suggested an improved quantum-behaved par-
ticle swarm optimisation for TCO processes, which include
the TCM process. The proposed approach has been vali-
dated against various evolutionary algorithms. They used
fault coverage or statement coverage as the fitness function
to guide the optimisation process.

Huang [167] improved the efficiency of the adaptive ran-
dom testing technique for the TCM process by introducing
the fixed-size candidate set. Compared with the original al-
gorithm, which selects one candidate from the candidates and
generates new candidates, the proposed algorithm selects the
best candidates. According to the distance, some poor candi-
dates are discarded, and new randomly generated candidates

84



CHAPTER 3. RELATED WORKS

are added to improve efficiency. Compared with the original
algorithm, the efficiency is improved, and the effectiveness is
almost the same.

Gupta [168] proposed a TCM approach that aims to help
fault detection and localisation efficiency. They combined
the NSGA-II 7 algorithm with statement, branch coverage,
and diversity-aware mutation adequacy criteria to perform
the optimisation process.

Turner [169] also used the NSGA-II algorithm to conduct
the TCM process, in which the aim is to optimise the code
coverage and execution time.

The requirements that will be used in the TCM process can
either be the real system defects or the artificially simulated
faults. The real faults are always unavailable in the MBT
process since the actual system may still not be implemented.
Then, mutation testing is a powerful technique that helps to
guide the TCM process.

In this work, five optimisation algorithms are implemented
to conduct the TCM process. These algorithms are Non-
dominated Sorting Genetic Algorithm II (NSGA-II), Particle
Swarm Optimisation (PSO), Multi-objective Evolutionary
Algorithm based on Decomposition (MOEA/D), Strength
Pareto Evolutionary Algorithm II (SPEA2) and Cuckoo
Search algorithm.
• NSGA-II
Non-dominated Sorting Genetic Algorithm II (NSGA-II)

is an optimisation algorithm proposed by Deb in 2002 [170].
The NSGA-II is based on GA and specifically designed for
multi-objective optimisation problems.

NSGA-II aims to obtain a collection of solutions that are
Pareto-optimal, indicating that no other solution can en-

7Non-dominated Sorting Genetic Algorithm II

85



CHAPTER 3. RELATED WORKS

hance one objective without compromising at least one other
objective. To accomplish this objective, NSGA-II adopts a
fast non-dominated sorting method for identifying the top
solutions and employs a crowding distance metric to retain
diversity among the chosen solutions.

This algorithm is based on the GA, so the general process
of NSGA-II is quite similar to the GA. Start with the ran-
domly generated population, then through the evolutionary
operators iteratively to solve the corresponding problem.
• Particle Swarm Optimisation (PSO)
The multi-objective PSO algorithm is a variant of the

PSO algorithm used to optimise multiple objectives simul-
taneously, which is commonly used in complex optimisation
problems when more than one objective need to be optimised
at the same time.

The multi-objective PSO algorithm works by using a fit-
ness function that considers all the objectives that need to
be optimised. In a multi-objective PSO algorithm, instead of
trying to find a single solution that optimises a single objec-
tive, the algorithm attempts to find a set of optimal solutions,
which are the Pareto optimal set.
• MOEA/D
Multi-Objective Evolutionary Algorithm based on Decom-

position (MOEA/D) is a popular multi-objective optimisa-
tion algorithm that was first proposed by Zhang in 2007
[171]. MOEA/D is a population-based meta-heuristic algo-
rithm that optimises multiple objectives simultaneously.

The overall idea of MOEA/D optimisation is to decompose
the original multi-objective problem into single-objective
sub-problems. A local search algorithm then solves each sub-
problem, and the solutions obtained from each sub-problem
are combined to form the final Pareto optimal set. The gen-

86



CHAPTER 3. RELATED WORKS

Figure 3.11: Process of MOEA/D Algorithm

eral process of this algorithm is shown as Figure 3.11.
During the initialisation process, the MOEA/D algorithm

randomly generates a set of solutions as the initial popula-
tion. The original multi-objective problem will be decom-
posed into a set of sub-problem by selecting a set of weight
vectors. Each weight vector defines a specific linear combi-
nation between the objectives. The sub-problem optimisa-
tion phase involves applying a local search algorithm to each
sub-problem to find the optimal solution. In order to im-
prove diversity and convergence, the solutions between the
neighbourhoods of sub-problems will be exchanged. The al-
gorithm terminates when a stopping criterion is met, and
the final Pareto optimal set is returned as the output of the
algorithm.

The key of MOEA/D is the decomposition process, which
allows the multi-objective problem to be solved as a set of
single-objective subproblems. And using a neighbourhood
search mechanism further enhances the diversity and conver-

87



CHAPTER 3. RELATED WORKS

gence of the algorithm, which results in a highly efficient and
effective optimisation procedure.
• SPEA2
Strength Pareto Evolutionary Algorithm 2 (SPEA) is a

multi-objective optimisation algorithm which has been pro-
posed by Zitzler in 2001 [172]. This algorithm has already
been widely used in various fields like finance and software
engineering. The general process of SPEA2 is demonstrated
as Figure 3.12.

Figure 3.12: Process of SPEA2 Algorithm

In the initialisation process, the algorithm constructs the
initial population by randomly generating candidate solu-
tions. Each candidate individual contains a set of decision
variables according to the objectives of the problem.

In the fitness evaluation process, the fitness of each individ-
ual is calculated based on its proximity to other individuals
within the population by using a metric known as crowding
distance. The fitness value is the sum of raw fitness value
and crowding distance. The raw fitness value measures the
domination information of the corresponding candidate indi-
vidual. The crowding distance of the candidate individual is

88



CHAPTER 3. RELATED WORKS

calculated through the distances between the candidate and
the related neighbours within the search space. Introducing
the crowding distance is one of the main differences between
the SPEA and SPEA2 optimisation algorithms, which helps
to improve the diversity within the population.

During the environmental selection process, a subset of
the population will be passed to the next generation. The
selection process is mainly based on the results of the fitness
assignment process and aims to maintain a certain level of
diversity to cover more parts of the search space. This selec-
tion process combines elitism and diversity preservation to
ensure the exploration ability.

The reproduction will fulfil the gap in size between the
selected subset of the population and the population. This
step is similar to the GA process. Certain parent individuals,
usually 2, will be selected. Then, through crossover operator
to produce offspring individuals. In this step, the mutation
operator will also be included to construct the new offspring,
which helps search space more effectively. The reproduction
process will introduce new individuals to the population and
benefit the exploration ability across the search space.

• Cuckoo Search

To solve the TCM problem, we adapted the cuckoo
search algorithm into a multi-objective scenario. The multi-
objective cuckoo search algorithm is a variant of the cuckoo
search algorithm that is designed to solve multi-objective op-
timisation problems. The overall process of the algorithm
used in TCM optimisation is exactly the same as that used
in the TCP process. The algorithm starts with the randomly
generated initial population and then by using the Lévy flight
to explore the search space.

89



CHAPTER 3. RELATED WORKS

3.2.3 Test Case Selection

The TCS problem can formally be defined as [3]:

Define: Test Case Selection Problem
Given: The program, P , the modified version of P , P ′

and a test suite, T .
Problem: Find a subset of T , T ′, with which to test P ′.

When applied changes or updates to software, there is a
need to perform regression testing to check the improvements
do not bring any new defects into to system or violate the sys-
tem requirements. Re-testing all previous test cases is time-
consuming and seems unnecessary in most scenarios because
the improvement will only affect part of the system usually.
TCS aims to reduce the test suite size by choosing the test
cases related to the changed part. The majority of selection
techniques are modification-aware.

Both TCS and TCM processes reduce the test case amount
within the test suite. The key difference between these two
techniques is whether they focus on the changed part of sys-
tem specifications. TCM is often based on one system ver-
sion, but TCS is required to identify the improvements be-
tween the previous and current versions of system specifica-
tions.

By considering the following notations, the subset of fault-
revealing test cases, Tfr, the subset of modification-revealing
test cases, Tmr, the subset of modification-traversing test
cases, Tmt, and the original test suite, T . The following rela-
tionship can be established.

Tfr = Tmr ⊂ Tmt ⊂ T

90



CHAPTER 3. RELATED WORKS

TCS techniques are designed to find the subset of test cases
which belong to Tmt, due to direct finding the Tmr is hard
to perform. The subset Tmt is the closest set to Tmr without
executing the whole set of the test suite. In other words, by
finding Tmt, it is possible to determine which test cases do
not able to reveal any fault within the new version system
P ′, then to reduce the test suite size.

There are various TCS techniques based on incomplete
statistics. The techniques include integer programming,
data-flow analysis, dynamic slicing, CFG graph-walking, tex-
tual difference comparison, SDG slicing, clustering method,
design-based testing, etc. 8 Following are the partial discus-
sions of these techniques.

In [173], Agrawal proposed a set of TCS techniques based
on different program slicing methods. The execution slice of
a program is the execution traces to the corresponding test
case, which is the set of statements executed by the given test
case. A dynamic slicing technique determines the statements
by executing the given test cases. The slicing result contains
the statements which will influence the output of the pro-
gram. The difference between execution slicing and dynamic
slicing is that execution slicing may contain statements that
do not affect the output. Meantime, dynamic slicing is a spe-
cific type of execution slicing. If the slicing result contains
the modified system specification, the corresponding test case
will be included in the TCS result set.

The similarity-based TCS strategy is conducted by
Nachiyappan [157]. The general idea of this strategy is that
assume that the diversity of test cases tends to maximise
the ability to detect faults because the dissimilar test cases
will cover different parts of the system in theory. And this

8CFG - Control Flow Graph; SDG - System Dependence Graph

91



CHAPTER 3. RELATED WORKS

method by using similarity functions to calculate distances
between test cases. And then, the size of the test suite is
reduced by selecting a subset of test cases according to the
gathered distances.

The textual difference comparison method is a TCS strat-
egy that uses the difference between the current and previous
program specifications to perform the selection process. In
[174], Vokolos identified the modified parts of the system by
applying the textual comparison tool, diff, to extract the dif-
ferences between various versions of source code. The source
code is converted into canonical forms to eliminate the im-
pact of unnecessary differences. The test cases which covered
the distinctions between source codes will be selected into the
result set.

The clustering strategy is to group test cases according to
their characteristics, like the work proposed by Chen [175].
The fundamental idea of this kind of approach is that min-
imise intra-group variance and maximise inter-group vari-
ance. The advantage of the clustering method is that de-
creasing the test suite size through the grouped data then
to save the testing effort, and most of the clustering meth-
ods use similarity or distance to categorise the clusters. This
method may not be necessary to involve information about
the program changes.

The design-based or model-based testing method uses
design-level specifications to perform the TCS process. In
[176], Briand proposed a black-box UML-based approach.
The author categorised the previous test suite into obsolete,
re-testable and re-usable. This approach used behavioural
models, and sequence diagrams, to select the test cases. The
authors implemented an automated impact analysis tool for
UML and empirically evaluated the effectiveness of the ap-

92



CHAPTER 3. RELATED WORKS

proach through case studies.
Al-Refai [177] submitted the PhD dissertation about

model-based regression TCM. The proposed approach used
reverse engineering to extract activity and class diagrams
from the different software system versions and compare the
models to find the information on model changes. Then,
using the extracted information to perform the test cases se-
lection process and support inheritance hierarchy changes of
dependence relationship.

Alkhazi [178] published a work on the TCS for model
transformation. This article performed the TCS process for
model transformation, and the proposed method adopted the
genetic algorithm to complete the selection process. Rules
coverage and execution time are combined as the reference
values of fitness value to the genetic algorithm. The proposed
approach is compared with random testing, test all and other
approaches. The proposed approach is not as good as the
mono-objective one in terms of time reduction, but the pro-
posed method has a stronger advantage in transition cover-
age. This work is not directly relevant to the TCO methods
for the software system, but the underlying techniques are
mutually connected.

Dorcis [179] customised a clustering algorithm for usage
traces to perform the selection process. The clustered test
case reduces the size and redundancy of the test suite to save
the testing efforts. Based on the selection criteria, the repre-
sentative test cases that are necessary to rerun are selected
from the clusters.

Guizzo [180] experimented with the process of using the
TCS process to accelerate the genetic improvement process.
The results showed that when applied TCS process, the ef-
ficiency gains are up to 68%. This result demonstrated the

93



CHAPTER 3. RELATED WORKS

TCS process not only benefits the testing process, but also
helps various activities within software engineering.

d’Aragona [181] combined with JUnit to propose a TCS
method for the Java program. For each @Test within JU-
nit, a fake test case is invoked to construct the call graph of
the corresponding test case. If the call graph traverses the
modified parts of the program, that test case will be selected
for the rerun. And the proposed method is integrated into
IntelliJ Idea as a plug-in.

Arrieta [182] proposed a set of seeding strategies for TCS
algorithms. The general idea is to improve the efficiency
of the optimisation process through the initial population
of the search-based algorithm. The proposed strategies are
evaluated with four multi-objective search algorithms, two
different application domains and several case studies in each
of these application domains.

3.3 Mutation Testing

How can we generate test cases that reveal faults? How con-
fident are we with our test suite? Mutation testing could
be a possible solution to answer these questions by checking
the effectiveness of the test suite through artificial defects.
If the test suite cannot detect the designed faults, we reduce
confidence with the existing test suite [183].

Mutation testing provides a range of methods, tools, and
reliable results for the software testing process. There are two
basic hypotheses within mutation tests designed to find valid
test cases and real errors in the program. In a project, the
number of potential bugs is enormous, and it is impossible to
generate mutants to cover all the bugs. Therefore, traditional
mutation testing aims to find a subset of these errors that

94



CHAPTER 3. RELATED WORKS

approximate the bugs as closely as possible.
There are two primary hypotheses within mutation tests

designed to find valid test cases and real errors in the pro-
gram. The two hypotheses are: Competent Programmer Hy-
pothesis (CPH) and Coupling Effect (CE). CPH means: as-
suming that programmers are capable and they try to develop
programs better and achieve the right results, not faulty ones.
It focuses on the behaviour and intentions of the program-
mers. CE is more concerned with the category of errors in
the variation test. A simple error is often caused by a single
variation, while a large and complex error is often caused by
more variation. Complex variants are usually composed of
many simple variants.

Software testing only can prove the existence of system
faults and software failure. Still, testing can never con-
firm the absence of defects because it is nearly impossible
to perform exhaustive testing under the time and resource
constraints[184]. Also, the system faults are the aggrega-
tion of simple defects. We can validate the correctness of
the SUT by mutation testing based on the assumption that
we can change the specifications, also known as mutants, to
simulate the real system defects.

In mutation testing, from a program p, a set of faulty
programs p′ called mutants, is generated by a simple single
change to the original program p. And in the next step, a
test suite T is used to validate the corresponding systems.
Before the mutation analysis, the original system p needs
to be checked by the test suite T . This step collects the
expected behaviours of the original program p. Then, each
mutated program p′ will be executed against the test suite
T . If p′ returns a different result compared to the original
program p, this means the mutant p′ is killed. Otherwise, it

95



CHAPTER 3. RELATED WORKS

is survived.
One of the most crucial usage of mutation testing is to

measure the mutation score of test cases by mutation score
(MS), which is used to describe the percentage of the killed
mutants [185]. The equation of MS is formally defined as
Equation 3.17.

MS =
Km

Tm − Em
(3.17)

In this equation, Km refers to the number of killed mu-
tants, Tm is the number of generated mutants and Em is the
number of equivalent mutants. The range of mutation scores
is from 0 to 1, and a higher mutation score means higher
confidence in the corresponding test suite.

Mutation testing is an effective method to assess the qual-
ity of the test suite. But it still has some defects. One of
the problems is mutation testing needs a high computational
cost of executing an enormous number of test cases against
all mutants of the original system. Another drawback is mu-
tation testing needs many human efforts to be involved in the
mutation testing process, like the test oracle and equivalent
mutant problem [186].

The test oracle problem refers to the checking process for
the output of the original and mutated program when exe-
cuting the test suite. And strictly speaking, this problem not
only belongs to mutation testing alone. For all forms of test-
ing, when executing the given test suite, the only remaining
effort is to check the testing output. However, more mutants
mean more accuracy checks are required for the mutation
testing process, which will highly increase the testing efforts,
even though there may have some tools to check the results

96



CHAPTER 3. RELATED WORKS

automatically. This oracle cost is usually the most expensive
part of the overall test activity. In addition, due to the in-
determinacy of mutant equivalence, detection of equivalent
mutants usually requires additional human effort [187].

In the MBT area, researchers always use mutation testing
to validate the effectiveness of the proposed approach. Mu-
tation testing usually appears in the validation process of the
proposed approach. They use the proposed method to con-
struct the test suite and inject mutants into the correspond-
ing system or design specification. Then researchers use the
mutants to execute the test suite, and the mutation score will
reflect the effectiveness of the related test suite. Model-based
mutation testing always adapts to low-level behavioural mod-
els, like state chart diagrams and activity diagrams. How
to better adapt mutation testing to the high-level structural
model still need further exploration. In Chapter 4, We will
demonstrate the mutation testing process for specifications
expressed in OCL.

Many publications and surveys applied mutation testing
to various application scenarios, like [188] from Ghiduk and
[189] from Ma. This research is not trying to perform an
exhaustive survey on mutation testing while mainly focusing
on performing TCO processes to the system expressed in
OCL. So, some related works which are closely associated
with this research work are discussed in the following.

OCL is already a highly active research area, [190] and [46]
proposed to add Map type and Regular Expressions to OCL
standard by Lano, also [45] tried to refactor collection-related
types. In [191] and [192], the authors worked on the muta-
tion operators for the UML diagram, and they mentioned a
few mutation operators to OCL standard, although far from
enough to cover all OCL standard library.

97



CHAPTER 3. RELATED WORKS

After Ahmed [193] conducted a survey for mutation op-
erators to the object-oriented system, Papadakis [183] pre-
sented a detailed survey about mutation testing, which in-
cluded the descriptions of the problem, method, tool and
common practices within the field of mutation testing. This
work highlighted that mutation testing within the scope of
MDE has not been well-studied compared to the code-based
approaches in recent years, but there is a growing interest
in this direction. [185] proposed the guidelines for mutation
operators and the corresponding classification.

The classification of mutation operators to design mod-
els, mainly focused on UML models, is proposed by Strug
in [191]. Also, Hassine [194] designed a set of mutation op-
erators for the abstract state machines and proposed their
classification.

In [192] Granda proposed a set of mutation operators to
the OCL standard and validated their effectiveness through
case studies. In [195], Ascari used OCL specification and re-
lated mutation operators to validate the correctness of the
object-oriented programs. However, these papers only men-
tioned a limited number of mutation operators that can be
applied to OCL specifications, and the classification of these
operators is not considered.

98



Chapter 4

Mutation Testing for OCL

4.1 Introduction

OCL is a type of declarative language that adds constraints
to UML models or expresses the software systems by pre- and
post- conditions. Since MDE became increasingly popular in
recent years and OCL acts as a standard MDE language,
there has been a rapid growth in the number of system spec-
ifications expressed in OCL [196]. Due to these facts, the
research on OCL-based mutation testing is currently receiv-
ing more and more attention.

In mutation testing, from a program or specification p, a
set of faulty versions p′ called mutants are generated by mak-
ing, for each p′, a single simple change to the original program
p. Mutation operators are the transition rules defining how
to perform these changes and represent the mutants. Mutant
versions of expressions are syntactically and type-correct, but
should have a distinct semantics from their source.

There are plenty of studies of mutation testing estab-
lished on various programming languages. However, these
approaches are language-dependent, which means the pro-
posed mutation operators are only suitable for the corre-
sponding programming language [187]. Suppose we can pro-
pose the mutation operators above the platform-dependent

99



CHAPTER 4. MUTATION TESTING FOR OCL

level, like OCL, which is at the same level as the system
model. In that case, the mutation testing process will be
benefited from the platform-independent operators. Due to
the abstraction level of the OCL specification, the mutation
operators to OCL specification will allow the mutated speci-
fications to be generated once, and the results could be used
for all implementations of corresponding OCL specifications
in different programming languages or platforms.

In our previous work [197], we evaluated the feasibility of
OCL-based mutation testing through limited mutation op-
erators on a real-world Android system expressed in OCL.
Here, we extend our previous work to the full set of muta-
tion operators based on the OCL standard library.

This work is mainly according to Clause 11 "OCL Stan-
dard Library" within the OCL 2.4 standard [11]. This clause
describes the predefined types, their operations, and prede-
fined expression templates in the OCL. The proposed muta-
tion operators are presented in the same order as the elements
of Clause 11, although the standard presentation may need
further refinement [45].

Based on the standard library of OCL standard version
2.4, there are two main groups of types, primitive types and
collection-related types and predefined iterator expressions.
The primitive types contain five individual types, Real, Inte-
ger, String, Boolean and UnlimitedNatural. Meanwhile, the
collection-related types include one supertype Collection, and
four sub-types, Set, OrderedSet, Bag and Sequence. The four
sub-types depend on whether duplicated elements are allowed
and whether the elements are ordered. Also, some predefined
iterator operations are included in the standard library. The
proposed mutation operators are applied to these OCL spec-
ifications and follow the order they appear in the standard

100



CHAPTER 4. MUTATION TESTING FOR OCL

library.
Within the OCL standard Library, the special types, the

primitive types, the collection-related types and predefined
iterator expressions are demonstrated. For the proposed mu-
tation operators within this work, all these sub-clauses have
corresponding mutation operators except the special types
(OclAny, OclVoid, OclInvalid and OclMessage). We omit
the special types because the OCL standard mainly focuses
on the remaining types and operations. The details of these
operators are in the following sections.

OCL standard has various variable types with correspond-
ing operations, leading to the full set of mutation operators
containing many operators. There are more than one hun-
dred operators within the OCL standard library, and the
corresponding mutation operators contain hundreds of tran-
sition rules. These operators have different impacts and re-
sults for mutation testing [191]. Based on the specific testing
purposes, the OCL participators may not need to apply all
these operators. Only the subset of these operators needs to
be introduced.

There is a need to classify these mutation operators into
different groups, allowing users to select particular groups
based on their preferences. Hence, to manage the mutation
operators, we also proposed the classification of the OCL
mutation operators in this work.

The classification design in this work is inspired by [198]
and [199], incorporating their core methodologies to organ-
ise our proposed mutation operators for the OCL standard
library. The primary strategy focuses on the different facets
of OCL standards and expressions, including arithmetic, con-
ditional, relational, logical, etc. The various groups of muta-
tion operators will enable the mutation testing process and

101



CHAPTER 4. MUTATION TESTING FOR OCL

the generated mutants to be more manageable, and help to
confirm which specific parts of the specifications need to be
explored further. Moreover, users can choose which aspects
they care about more, or perform partial mutation testing
based on their priorities and time constraints.

In addressing mutation testing in the context of OCL, it
is crucial to understand its role within a broader testing
strategy and its specific benefits for software development.
This technique, which involves generating mutants or modi-
fied versions of the OCL specifications to simulate potential
faults, is aimed at evaluating the comprehensiveness of the
corresponding test suite. This approach is particularly valu-
able in enhancing the fault detection ability of the test suite,
thereby ensuring a higher quality of software development.

The application of this methodology is particularly ad-
vantageous in contexts such as regression testing, where the
primary goal is to ensure that new code changes do not in-
troduce errors into previously verified parts of the software.
Meanwhile, mutation testing can provide essential informa-
tion to guide the TCO processes under the MBT context.
For developers, mutation testing offers a systematic way to
evaluate and enhance the quality of their test suites. This is
crucial for maintaining high software quality across various
scenarios.

Moreover, the broader significance of employing mutation
testing lies in their contribution to the reliability and main-
tainability of software systems. Developers can ensure the
software remains resilient against evolving challenges through
iterative refinements prompted by mutation testing feedback,
thereby enhancing its long-term stability.

In essence, mutation testing within the OCL context en-
riches the software development life cycle by providing a

102



CHAPTER 4. MUTATION TESTING FOR OCL

proactive framework for identifying and addressing potential
model-based issues. This method not only aids in preemp-
tively securing the software against potential faults but also
supports a culture of continuous quality assurance and im-
provement, which is crucial for developing reliable and error-
resistant software applications, particularly under the con-
text of model-based testing.

The structure of this chapter is as follows. After the intro-
duction, Sections 2, 3 and 4 demonstrate the full set of mu-
tation operators for the OCL standard library, which include
primitive types, collection-related types and the remaining
operators. The classification of these operators is proposed in
Section 5. Because it is hard to find the OCL specifications
that cover all proposed operators, Section 6 partially vali-
dates the proposed mutation operators. Also, some discus-
sions that need to be considered for this chapter are included
in this section. Finally, Section 7 concludes this chapter with
an outline of future works related to this chapter.

4.2 Primitive Types

This section presents the mutation operators for primitive
types within the OCL standard library, which include Real,
Integer, String, Boolean and UnlimitedNatural.

4.2.1 Real

This part contains the mutation operators for Real.
• + (r: Real): Real

MO1 : - MO2 : ∗ MO3 : /
• - (r: Real): Real

MO1 : + MO2 : ∗ MO3 : /
• ∗ (r: Real): Real

103



CHAPTER 4. MUTATION TESTING FOR OCL

MO1 : + MO2 : - MO3 : /
• -: Real % negation of the original value (Unary)

MO1 : ∅ % eliminate the original operator
• / (r: Real): Real

MO1 : + MO2 : - MO3 : ∗
• abs(): Real

MO1 : - % negation (regardless original value)
• floor(): Integer

MO1 : floor() + 1 MO2 : floor() - 1
• round(): Integer

MO1 : floor()
• max(r: Real): Real

MO1 : min(r)
• min(r: Real): Real

MO1 : max(r)
• < (r: Real): Boolean

MO1 : >= MO2 : > MO3 : <=
• > (r: Real): Boolean

MO1 : <= MO2 : < MO3 : >=
• <= (r: Real): Boolean

MO1 : > MO2 : >= MO3 : <
• >= (r: Real): Boolean

MO1 : < MO2 : <= MO3 : >
• toString(): String

NULL % no corresponding mutation operator

4.2.2 Integer

This part contains the mutation operators for Integer.
• -: Integer % negation of the original value (Unary)

MO1 : ∅ % eliminate the original operator
• + (i: Integer): Integer

104



CHAPTER 4. MUTATION TESTING FOR OCL

MO1 : - MO2 : ∗ MO3 : /
• - (i: Integer): Integer

MO1 : + MO2 : ∗ MO3 : /
• ∗ (i: Integer): Integer

MO1 : + MO2 : - MO3 : /
• / (i: Integer): Real

MO1 : + MO2 : - MO3 : ∗
• abs(): Integer

MO1 : - % negation (regardless original value)
• div(i: Integer): Integer

MO1 : mod(i)
• mod(i: Integer): Integer

MO1 : div(i)
• max(i: Integer): Integer

MO1 : min(i)
• min(i: Integer): Integer

MO1 : max(i)
• toString(): String

NULL % no corresponding mutation operator

4.2.3 String

This part contains the mutation operators for String.
• + (s: String): String

MO1 : ∅ % eliminate the original operator
• size(): Integer

MO1 : size() - 1 MO2 : size() + 1
• concat(s: String): String

MO1 : ∅ % eliminate the original operator
• substring(lower: Integer, upper: Integer): String

% in short lower => l, upper => u
MO1 : substring(l - 1, u) MO2 : substring(l + 1, u)

105



CHAPTER 4. MUTATION TESTING FOR OCL

MO3 : substring(l, u - 1) MO4 : substring(l, u + 1)
• toInteger(): Integer

NULL % no corresponding mutation operator
• toReal(): Real

NULL % no corresponding mutation operator
• toUpperCase(): String

MO1 : toLowerCase()
• toLowerCase(): String

MO1 : toUpperCase()
• indexOf(s: String): Integer

MO1 : indexOf(s) - 1 MO2 : indexOf(s) + 1
• equalsIgnoreCase(s: String): Boolean

MO1 : = % equal
• at(i: Integer): String

MO1 : at(i - 1) MO2 : at(i + 1)
• characters(): Sequence(String)

NULL % no corresponding mutation operator
• toBoolean(): Boolean

NULL % no corresponding mutation operator
• < (u: String): Boolean

MO1 : >= MO2 : > MO3 : <=
• > u: String): Boolean

MO1 : <= MO2 : < MO3 : >=
• <= (u: String): Boolean

MO1 : > MO2 : >= MO3 : <
• >= (u: String): Boolean

MO1 : < MO2 : <= MO3 : >

4.2.4 Boolean

This part contains the mutation operators for Boolean.
• or (b: Boolean): Boolean % e.g. a or b

106



CHAPTER 4. MUTATION TESTING FOR OCL

MO1 : not a and not b MO2 : a xor b
• xor (b: Boolean): Boolean % e.g. a xor b

MO1 : a or b
• and (b: Boolean): Boolean % e.g. a and b

MO1 : not a or not b
• not: Boolean (Unary)

MO1 : ∅ % eliminate the original operator
• implies (b: Boolean): Boolean % e.g. a implies b

MO1 : a and not b
• toString(): String

NULL % no corresponding mutation operator

4.2.5 UnlimitedNatural

This part contains the mutation operators for UnlimitedNat-
ural.
• + (u: UnlimitedNatural): UnlimitedNatural

MO1 : ∗ MO2 : /
• ∗ (u: UnlimitedNatural): UnlimitedNatural

MO1 : + MO2 : /
• / (u: UnlimitedNatural): Real

MO1 : + MO2 : ∗
• div(u: UnlimitedNatural): UnlimitedNatural

MO1 : mod(u)
• mod(u: UnlimitedNatural): UnlimitedNatural

MO1 : div(u)
• max(u: UnlimitedNatural): UnlimitedNatural

MO1 : min(u)
• min(u: UnlimitedNatural): UnlimitedNatural

MO1 : max(u)
• < (u: UnlimitedNatural): Boolean

MO1 : >= MO2 : > MO3 : <=
• > u: UnlimitedNatural): Boolean

107



CHAPTER 4. MUTATION TESTING FOR OCL

MO1 : <= MO2 : < MO3 : >=
• <= (u: UnlimitedNatural): Boolean

MO1 : > MO2 : >= MO3 : <
• >= (u: UnlimitedNatural): Boolean

MO1 : < MO2 : <= MO3 : >
• toInteger(): Integer

NULL % no corresponding mutation operator
• toString(): String

NULL % no corresponding mutation operator

4.3 Collection-Related Types

This section presents the mutation operators for collection-
related types within the OCL standard library, which include
one supertype Collection, and four sub-types, Set, Ordered-
Set, Bag and Sequence.

4.3.1 Collection

This part contains the mutation operators for the supertype
Collection.
• = (c: Collection(T)): Boolean

MO1 : <>
• <> (c: Collection(T)): Boolean

MO1 : =
• size(): Integer

MO1 : size() - 1 MO2 : size() + 1
• includes(object: T): Boolean

MO1 : excludes(object)
• excludes(object: T): Boolean

MO1 : includes(object)
• count(object: T): Integer

MO1 : count(object) - 1 MO2 : count(object) + 1

108



CHAPTER 4. MUTATION TESTING FOR OCL

• includesAll(c2: Collection(T)): Boolean
MO1 : c2→ exists(e | self → excludes(e))

(Equivalent to not excludesAll(...))
• excludesAll(c2: Collection(T)): Boolean

MO1 : c2→ exists(e | self → includes(e))

(Equivalent to not includesAll(...))
• isEmpty(): Boolean

MO1 : notEmpty()
• notEmpty(): Boolean

MO1 : isEmpty()
• max(): T

MO1 : min()
• min(): T

MO1 : max()
• sum(): T

NULL % no corresponding mutation operator
• product(c2: Collection(T2)): Set(Tuple(first: T,

second: T2))
NULL % no corresponding mutation operator

• selectByKind(type: Classifier): Collection(T)
MO1 : selectByType(type)

• selectByType(type: Classifier): Collection(T)
MO1 : selectByKind(type)

• asSet(): Set(T)
NULL % no corresponding mutation operator

• asOrderedSet(): OrderedSet(T)
NULL % no corresponding mutation operator

• asSequence(): Sequence(T)
NULL % no corresponding mutation operator

• asBag(): Bag(T)
NULL % no corresponding mutation operator

• flatten(): Collection(T2)

109



CHAPTER 4. MUTATION TESTING FOR OCL

NULL % no corresponding mutation operator
Since operations selectByKind, selectByType, asSet, asOr-

deredSet, asSequence and asBag are included in all four sub-
types and have the same mutation operators, they are omit-
ted in the following subsections. Also, the operators = and
count are omitted since only OrderedSet not implemented
these operations.

The following parts are the mutation operators for Set,
OrderedSet, Bag and Sequence.

4.3.2 Set

• union(s: Set(T)): Set(T)
MO1 : intersection(s)

• union(bag: Bag(T)): Bag(T)
MO1 : intersection(bag)

• intersection(s: Set(T)): Set(T)
MO1 : union(s)

• intersection(bag: Bag(T)): Set(T)
MO1 : union(bag)

• - (s: Set(T)): Set(T)
MO1 : union(s) MO2 : intersection(s) MO3 :

symmetricDifference
• including(object: T): Set(T)

MO1 : excluding(object)
• excluding(object: T): Set(T)

MO1 : including(object)
• symmetricDifference(s: Set(T)): Set(T)

MO1 : union(s) MO2 : intersection(s) MO3 : -
• flatten(): Set(T2)

NULL % no corresponding mutation operator

110



CHAPTER 4. MUTATION TESTING FOR OCL

4.3.3 OrderedSet

• append(object: T): OrderedSet(T)
MO1 : prepend(object)

• prepend(object: T): OrderedSet(T)
MO1 : append(object)

• insertAt(index: Integer, object: T): Ordered-
Set(T)

MO1 : insertAt(index - 1, object) MO2 : inser-
tAt(index + 1, object)
• subOrderedSet(lower: Integer, upper: Integer):

OrderedSet(T)
MO1 : subOrderedSet(lower - 1, upper) MO2 : sub-

OrderedSet(lower + 1, upper)
MO3 : subOrderedSet(lower, upper - 1) MO4 : sub-

OrderedSet(lower, upper + 1)
• at(i: Integer): T

MO1 : at(i - 1) MO2 : at(i + 1)
• indexOf(obj: T): Integer

MO1 : indexOf(obj) - 1 MO2 : indexOf(obj) + 1
• first(): T

MO1 : last()
• last(): T

MO1 : first()
• reverse(): OrderedSet(T)

NULL % no corresponding mutation operator
• sum(): T

NULL % no corresponding mutation operator

4.3.4 Bag

• union(bag: Bag(T)): Bag(T)
MO1 : intersection(bag)

111



CHAPTER 4. MUTATION TESTING FOR OCL

• union(set: Set(T)): Bag(T)
MO1 : intersection(set)

• intersection(bag: Bag(T)): Bag(T)
MO1 : union(bag)

• intersection(set: Set(T)): Set(T)
MO1 : union(set)

• including(object: T): Bag(T)
MO1 : excluding(object)

• excluding(object: T): Bag(T)
MO1 : including(object)

• flatten(): Bag(T2)
NULL % no corresponding mutation operator

4.3.5 Sequence

• union (s: Sequence(T)): Sequence(T)
NULL % no corresponding mutation operator

• flatten(): Sequence(T2)
NULL % no corresponding mutation operator

• append(object: T): Sequence(T)
MO1 : preappend(object)

• prepend(object: T): Sequence(T)
MO1 : append(object)

• insertAt(index: Integer, object: T): Sequence(T)
MO1 : insertAt(index - 1, object) MO2 : inser-

tAt(index + 1, object)
• subSequence(lower: Integer, upper Integer): Se-

quence(T)
% in short lower => l, upper => u
MO1 : subSequence(l - 1, u) MO2 : subSequence(l

+ 1, u)
MO3 : subSequence(l, u - 1) MO4 : subSequence(l,

u + 1)

112



CHAPTER 4. MUTATION TESTING FOR OCL

• at(i: Integer): T
MO1 : at(i - 1) MO2 : at(i + 1)

• indexOf(obj: T): Integer
MO1 : indexOf(obj) - 1 MO2 : indexOf(obj) + 1

• first(): T
MO1 : last()

• last(): T
MO1 : first()

• including(object : T): Sequence(T)
MO1 : excluding(object)

• excluding(object : T): Sequence(T)
MO1 : including(object)

• reverse(): Sequence(T)
NULL % no corresponding mutation operator

• sum(): T
NULL % no corresponding mutation operator

4.4 Other Operators

This section contains the remaining mutation operators and
mainly focuses on predefined iterator expressions.

4.4.1 Predefined Iterator Expressions

% expr is the expression within the body. Similarly for the
operator versions with local variables → any(v | expr), etc.
• → any(expr)

MO1 : → any(not expr)

• → closure(expr)

NULL % no corresponding mutation operator
• → collect(expr)

MOi :→ collect(Mi) % each mutant Mi of expr
• → collectNested(expr)

113



CHAPTER 4. MUTATION TESTING FOR OCL

NULL % no corresponding mutation operator
• → exists(expr)

MO1 : → forAll(not expr)

• → forAll(expr)

MO1 : → exists(not expr)

(Equivalent to not (iterator → forAll(expr)))
• → isUnique(expr)

NULL % no corresponding mutation operator
• → one(expr)

MO1 : → select(expr) → size() <> 1

• → reject(expr)

MO1 : → select(expr)

• → select(expr)

MO1 : → reject(expr)

• → sortedBy(expr)

MO1 : randomShuffle() % shuffle the original order

4.4.2 Structural Operator

This subsection proposes the mutation operators for struc-
tural modifier if.
• if(expression)

MO1 : if(true) MO2 : if(not expression)
• if con then exp1 else exp2 endif

MO1 : if con then exp2 else exp1 endif

4.5 Classification of Mutation Operators

4.5.1 Supported Groups

This subsection proposes the supported groups that can be
supported by OCL standard library, and we plan to imple-
ment them within the AgileUML tool.

114



CHAPTER 4. MUTATION TESTING FOR OCL

• Bound of Relational Operator (BRO)

Original Operator Mutated Operator
< <=
<= <
> >=
>= >

Explanation: This group contains the mutation op-
erators that replace the relational operators <, <=, >,
>=, and only considers the boundary condition. For
each operator, the mutated version only considers the
corresponding transition rule.

• Numerical Value Negation (NVN)

Original Value Mutated Value
- i i
i - i

Explanation: The negation to the numerical value
for Real and Integer types, this group does not apply
to the UnlimitedNatural type due to it only having the
positive value.

• Simple Arithmetic Operator (SAO)

Original Operator Mutated Operator
+ -
- +
∗ /
/ ∗

Explanation: The SAO simply replaces the binary
operator for numerical value types, and the transition

115



CHAPTER 4. MUTATION TESTING FOR OCL

rules are shown in the above table. For each original
operator, only one corresponding mutated operator will
be applied.

• Negation of Relational Operator (NRO)

Original Operator Mutated Operator
= <>
<> =
< >=
<= >
> <=
>= <

Explanation: The NRO will negate the relational
operators in condition expressions, which is the opposite
operator to the original one, but the contained mutation
operators are typically easy to detect during mutation
testing.

• Return Empty Mutation (REM)

Return Type Return Result
Real result = 0.0
Integer result = 0
String result = ′′

Boolean result = false
UnlimitedNatural result = 0

Explanation: This group relates to the return value.
For each primitive type, the corresponding return value
is designed, mainly return 0 to the numerical value types,
false to the Boolean type, and empty string to String
type. This group will only consider the return values,
while other places will not be considered.

116



CHAPTER 4. MUTATION TESTING FOR OCL

• Return False Mutation (RFM)

Original Expression Mutated Expression
result = value result = false

Explanation: This mutation operator will be per-
formed when the return type (result) is the Boolean
type. Directly replace the original expression with false.

• Return True Mutation (RTM)

Original Expression Mutated Expression
result = value result = true

Explanation: This mutation operator will be per-
formed when the return type (result) is the Boolean
type. Directly replace the original expression with true.

• Return Null Mutation (RNM)

Return Type Mutated Expression
Non-Primitive Types result = null

Explanation: This mutation operator will be per-
formed when the return type (result) is the Collection-
Related type (non-primitive types). Directly replace the
original expression with null.

• Remove Conditional Expression (RCE)

Original Expression Mutated Expression
if (expression) if (true)

Explanation: This mutation operator directly
changes the conditional expression to true and guar-
antees the guarded expression will always be executed,

117



CHAPTER 4. MUTATION TESTING FOR OCL

which is careless about the evaluation result of the orig-
inal expression.

• Random Arithmetic Operator (RAO)

Original Expression Mutated Expression
a op b a + b

a - b
a ∗ b
a / b

Explanation: The RAO will also replace the bi-
nary operator for numerical value types. Compared to
Simple Arithmetic Operator (SAO), the RAO randomly
chooses one of the operators demonstrated in the ta-
ble, or more than one mutation will be generated. In
this category, operators are specifically designed to pre-
vent self-replacement, thereby reducing the occurrence
of equivalent mutants that arise when mutations result
in no actual change from the original.

• Constant Replacement Mutation (CRM)

Original Value Mutated Value
i 1

0
-1
- i
i + 1
i - 1

Explanation: The CRM will replace the original nu-
merical value i with following values, 1, 0, -1, - i (nega-
tion), i + 1 and i - 1. UnlimitedNatural type does not
have negative values, so some mutation operators will

118



CHAPTER 4. MUTATION TESTING FOR OCL

not be applied. Users can generate one mutant that ran-
domly applies one of the mutation operators or create
various mutants by involving more operators.

• Logical Operator Replacement (LOR)

Original Expression Mutated Expression
a op b a or b

a xor b
a and b
a implies b

Explanation: The LOR will replace the binary re-
lational operator. Like Random Arithmetic Operator
(RAO), the original operator will be replaced by a ran-
dom logical operator mentioned above, or more than
one mutation will be generated. In this category, like
RAO, operators are specifically designed to prevent self-
replacement.

• Iterator Expression Mutation (IEM)

Original Expression Mutated Expression
→ exists(expr) → forAll(not expr)
→ forAll(expr) → exists(not expr)
→ one(expr) → select(expr) → size <> 1

→ any(expr) → any(not expr)
→ reject(expr) → select(expr)
→ select(expr) → reject(expr)
→ sortedBy(expr) randomShuffle()

Explanation: The IEM will replace the operations
to the pre-defined iterator expressions. And the expr is
the expression within the body of the original operation.

119



CHAPTER 4. MUTATION TESTING FOR OCL

Similarly for the operator versions with local variables
→ any(v | expr) , etc.

• Collection Related Operator (CRO)

Original Expression Mutated Expression
isEmpty() notEmpty()
notEmpty() isEmpty()
union intersection
intersection union
symmetricDifference union

intersection
includes(obj) excludes(obj)
excludes(obj) includes(obj)
including(obj) excluding(obj)
excluding(obj) including(obj)
includesAll c2→ exists(e | self → excludes(e))

excludesAll c2→ exists(e | self → includes(e))

selectByKind selectByType
selectByType selectByKind

Explanation: The CRO will replace the original ex-
pression to the Collection-Related types with the mu-
tated expression presented in the above table.

• IF Structure Mutation (ISM)

Original Structure Mutated Structure
if con if con

then expr1 then expr2
else expr2 else expr1

endif endif

Explanation: This group corresponds to the condi-
tional structure if. The contained mutation operator

120



CHAPTER 4. MUTATION TESTING FOR OCL

exchanges the if-else expressions.

• Index Based Operator (IBO)

Original Expression Mutated Expression
size() size() + 1

size() - 1
substring(lower, upper) substring(lower + 1, upper)

substring(lower - 1, upper)
substring(lower, upper + 1)
substring(lower, upper - 1)

indexOf(s) indexOf(s) + 1
indexOf(s) - 1

at(i) at(i + 1)
at(i - 1)

insertAt(index, obj) insertAt(index + 1, obj)
insertAt(index - 1, obj)

subSequence(l, u) subSequence(l + 1, u)
subSequence(l - 1, u)
subSequence(l, u + 1)
subSequence(l, u - 1)

subOrderedSet(l, u) subOrderedSet(l + 1, u)
subOrderedSet(l - 1, u)
subOrderedSet(l, u + 1)
subOrderedSet(l, u - 1)

Explanation: Unlike the most common programming
languages which are 0-based indexing, OCL is 1-based
indexing. These mutation operators simulated the dif-
ferences between the 0-based and 1-based indexing. The
IBO will modify the original expressions by + 1 and - 1.
This is related to the common misunderstanding when
using OCL instead of other programming languages.

121



CHAPTER 4. MUTATION TESTING FOR OCL

• Reverse Original Operator (ROO)

Original Expression Mutated Expression
not ∅
min() max()
max() min()
append(obj) prepend(obj)
prepend(obj) append(obj)
first() last()
last() first()
toUpperCase() toLowerCase()
toLowerCase() toUpperCase()
abs() - (negation)

Explanation: The original operator is replaced by a
syntactically similar operator which however has a dif-
ferent semantics.

4.5.2 Possible Groups

This subsection proposes the groups that possibly can be
supported by the library, and the feasibility needs further
evaluation.
• Remove Member Variable (RMV)

Explanation: Change the value of the member
variable (defined in the method) to the initial value
according to the variable type, Real(0.0), Integer(0),
String(”), Boolean(false), UnlimitedNatural(0). Differ-
ent to Return Empty Mutation (REM), this group does
not change the return value and only focuses on the
value of the member variable. The return value remains
in the original format, and the exact return value will
be determined during the calculations within the post-
conditions.

122



CHAPTER 4. MUTATION TESTING FOR OCL

• Delete Method Call (DMC)
Explanation: The DMC will replace the method call

with the initial value according to the return type of
the original method. Real(0.0), Integer(0), String(”),
Boolean(false), UnlimitedNatural(0), Collection-Related
Types(null).

• Replace Method Call (RMC)
Explanation: The RMC will replace the method call

with another possible one with the same return type and
parameter list. Instead of Delete Method Call (DMC)
using the actual return value, this group uses the method
call with the same return type.

• Arithmetic Operator Deletion (AOD)

Original Expression Mutated Expression
a op b a

b

Explanation: The AOD will replace the original ex-
pression of a binary operator with one of its members,
and the example is shown in the table.

• Ungrouped Mutation Operators

OCL Operation Mutated Specification
floor() floor() + 1

floor() - 1
round() floor()
div() mod()
mod() div()
concat(s: String) ∅
equalsIgnoreCase(s: String) =

123



CHAPTER 4. MUTATION TESTING FOR OCL

Explanation: This group contains the mutation op-
erators that are defined according to the OCL standard
library. However, according to our classification strate-
gies, these mutation operators have not been classified
into any group, as mentioned earlier.

4.6 Evaluation & Discussions

In this section, we evaluated the proposed mutation operators
using three real-world OCL specifications from our research
group, along with additional manually created OCL specifi-
cations. The real-world specifications include Bond, Inter-
est Rate, and String Processing, which facilitate the compu-
tation of bond-related data, interest rate calculations, and
string comparisons, respectively. These specifications vary
in complexity, with their lengths ranging from 10 to 93 lines,
and are considered to be small to medium in scale. More
detailed descriptions of these OCL specifications will be in-
troduced in Chapter 7 during the evaluation process. Due
to the challenge of locating existing specifications that in-
clude all proposed mutation operators, we created specific
benchmarks manually to extend the scope of our assessment.
However, we still cannot perform a full-scale evaluation of
these operators.

To these three specifications, the system details are ex-
pressed in OCL, which means OCL specifications are used to
represent the expected behaviours of these systems through
pre- and post- conditions. Figure 4.1 shows the example
specification, which contains one function bisection and the
corresponding pre- and post- conditions.

In order to evaluate the proposed mutation operators, Ag-
ileUML treats these OCL specifications as input files. The

124



CHAPTER 4. MUTATION TESTING FOR OCL

Figure 4.1: OCL Example - bisection

corresponding test cases, mutated OCL specifications and
corresponding executable Java files can be generated. We
first examine the original specification by the generated test
suite and Java programs to collect the corresponding outputs.
Then, the same test suite will be executed against the mu-
tated specifications to determine whether the corresponding
mutants are killed. The results show in Table 4.1.

Table 4.1: Evaluation of Mutation Operators

Type Generated Mutants Mutation Score
Primitive Type 47 91.48%

Collection-Related Type 27 85.19%
Predefined Iterator Expressions 12 58.33%

Structural Operator 5 100%

In Table 4.1, how many mutants are generated and the cor-
responding mutation scores to the primitive type, collection-
related type, predefined iterator expressions and structural
operator are recorded.

From the results, the mutants for primitive type and if
structure are most likely to be killed during the testing pro-
cess. However, only around half (7) mutants for predefined it-
eration expressions have been killed. Some of them are quite
tricky but possible scenarios. For example, when changing
the operation first() to last(), in some cases, there may return
the same element.

Some mutants have not been killed during the evaluation
process, and there are two main reasons for this. First, some
mutants are equivalent mutants, which cannot be killed dur-

125



CHAPTER 4. MUTATION TESTING FOR OCL

ing the mutation testing process. Second, regarding the test
suite itself, the generated test suite failed to detect some mu-
tants. How to generate a high-quality test suite still need to
be explored further.

There is a threat to validity in this evaluation process,
which is the generalisation of our selected specifications. As
this threat always happens in most of the evaluation process,
the set of chosen specifications in this work may not rep-
resent the whole population, and the distributions of OCL
operations vary across different specifications. In order to
reduce this impact, we choose three different OCL specifica-
tions with different scales.

In this chapter, the mutation operators for the standard
OCL library and the corresponding classification of these op-
erators have been proposed. Unfortunately, we are unable
to perform the full-scale evaluation process of these opera-
tors like in our previous work [197] because it is hard to find
the OCL specifications covering all these operations. How-
ever, some points for the mutation operators and classifica-
tion need to be discussed [200].

First, the strategies that we used to design these muta-
tion operators. We employed the following strategies. 1)
The negation of the original operators. 2) The difference be-
tween OCL standard and common programming languages,
like collection-related types, most common programming lan-
guages are 0-based, but OCL is 1-based. 3) The com-
mon mistakes, such as semantic misunderstanding (confusing
→ including and → excluding, for example). And we only
design the operators for those operations presented in OCL
standard library. Although some possible future OCL types
or operations are proposed, like [44], the mutation operators
for these types or operations are skipped due to not all OCL

126



CHAPTER 4. MUTATION TESTING FOR OCL

tools supporting them. These strategies may not be opti-
mal, and they need further improvements during the future
research period. Some of the operations do not have corre-
sponding mutation operators in this work. Because, based on
our strategies, we cannot find a suitable mutation operator
for these operations, then we neglect them. Hopefully, this
gap will be solved with the help of other OCL users or our
further investigations.

In the context of primitive types in the OCL standard li-
brary, most operators are binary. The notable exception is
the unary negation (-) operator for Real and Integer types,
which is marked in the corresponding locations. For the spe-
cific instances in the proposed operators, like includesAll, the
proposed mutation operators have the equivalent format as
indicated. The condition is negated because this is a typ-
ical logic error made by specifiers, especially those inexpe-
rienced in OCL. However, this consistency in format is in-
tended solely for illustrative purposes and does not signify
any difference in their effect on the mutation testing process.

Second, the problem of equivalent mutants needs to be
discussed. Equivalent mutants are the mutated specifications
that already applied the mutation operator but did not mod-
ify the behaviour of the original specification, which makes
these mutants not possible to be killed. Although the detec-
tion of equivalent mutants is an undecidable question [201],
the existence of these mutants will affect the mutation testing
process by the results of the mutation score. If too many of
these mutants exist, the mutation score will be lower since the
dividend in Equation 3.17 will become larger than expected,
and the test cases may be underestimated. In theory, some
groups or mutation operators may generate equivalent mu-
tants, like Return False Mutation (RFM) and Return True

127



CHAPTER 4. MUTATION TESTING FOR OCL

Mutation (RTM), the mutation operators replace the value
with false or true. When the original value is always evalu-
ated as false or true, applied these mutation operators will
not change the behaviour of the corresponding specifications.
We need further experiments to evaluate which operators are
more likely to produce equivalent mutants for the proposed
mutation operators.

Furthermore, the usage of these mutation operators. Mu-
tation testing is a fault-based technique that can be applied
to many optimisation problems, like test case prioritisation
and test case minimisation. The fault detection information
can guide the corresponding optimisation process. Also, an-
other possible usage for these operators is that the fault de-
tection information can be used to validate the effectiveness
of the test suite through many evaluation metrics. For ex-
ample, APFD (Average Percentage of Fault Detection, which
measures how quickly the test suite can detect faults) [131].
Indeed, how to generate a high test coverage test suite is an
important topic. Still, for a given test suite, the mutation
operators can be used to optimise this test suite, which will
benefit the MBT process. In this research work, the mu-
tation operators will be used to guide the TCO processes
and also be used to evaluate the optimised test suite through
(modified) APFD metric.

Then, some mutation operators may generate invalid mu-
tants. For example, in expression a + b, we can generate
the mutant a/b. The mutated expression is a valid mutant
in most cases, but when b equals 0, this mutant will be in-
valid. Although the sample scenario can be detected easily by
static analysis, it is hard to determine when b results from
a function call. How to avoid this kind of scenario needs
to be treated carefully. Also, some mutation operators may

128



CHAPTER 4. MUTATION TESTING FOR OCL

generate mutants that can be killed easily.
Also, the detection possibility for different groups of muta-

tion operators. After various groups of mutants are generated
based on detailed test strategies and specific test cases, these
mutants do not have a uniform detection possibility. Some
may be identified as weak mutants (most test cases can kill
the mutant), and some may be hard to kill (only a few, even
no test case, can kill the mutant). However, when we evalu-
ate the mutation testing process, mutation scores treat them
all the same and only reflect the proportion of killed mutants.
So, how to improve this evaluation metric still need further
consideration.

In the development of our mutation operator classifica-
tion, our principal method involved grouping the proposed
mutation operators in relation to the diverse facets of the
OCL standard library. This primarily arises from our fo-
cus on altering the original operators, while the classification
procedure is directed towards organising these modifications
based on various strategic criteria. This difference in focus
might result in the omission of some operators. However,
this exclusion should not be seen as undermining the value
or applicability of the proposed mutation operators.

Moreover, there may be questions about the exclusion of
certain operators from the proposed set. For example, the
Arithmetic Operator Deletion within the classification, where
a op b is mutated to either a or b. This exclusion is in-
tentional, as the proposed mutation operators primarily aim
at modifying the original expressions rather than eliminat-
ing them. The elimination is a strategy that can be con-
sistently implemented in actual mutation testing practices.
For instance, with types such as Real, Integer, and Unlim-
itedNatural, it is often possible to retain the original value

129



CHAPTER 4. MUTATION TESTING FOR OCL

for unary expressions and one of the operands for binary ex-
pressions. Similarly, for Boolean type, one of the operands
can usually be preserved. In the case of String types, if the
original operator would return a String, the original expres-
sion can often be maintained. Additionally, methods can be
omitted for Collection-Related Types without compromising
syntactical correctness. These scenarios were excluded from
the proposed operators for simplicity, but they remain viable
strategies during the mutation testing process.

Still, about the classification of mutation operators, we
may notice that some groups have an overlap between oper-
ators. For example, both RFM and REM return false when
the type is Boolean. The reason for this scenario is differ-
ent groups cluster mutation operators together based on the
logic in common, which leads to this overlap. But when users
choose to apply the particular group or groups based on their
own needs, this overlap will not affect the mutation testing
process.

Finally, the evaluation of the proposed mutation operators
and the corresponding classification. We are currently exper-
imenting with the effectiveness of these operators. However,
there is a threat to validity if all assessments are performed
by ourselves. Since all these mutation operators are designed
based on our understanding of the OCL standard, there may
have some biases and some operators still need further im-
provements. In this work, we also propose the classification
of OCL mutation operators. The proposed classification in-
troduces a variety of mutation operator groups designed to
enhance the management of the testing process. It includes
17 supported groups that are compatible with the OCL stan-
dard library, with plans to integrate these into the AgileUML
tool. Additionally, five categories (possible groups) are iden-

130



CHAPTER 4. MUTATION TESTING FOR OCL

tified as having potential for implementation, though they
require further investigation to assess their feasibility.

4.7 Conclusion

This chapter proposes a full set of mutation operators for the
OCL standard version 2.4, mainly based on Clause 11 "OCL
standard Library". These operators will benefit the mutation
testing process. We also propose the classification of the pro-
posed operators, which provides more options to the users of
OCL in languages such as ATL, QVT 1, etc. The classifica-
tion will benefit the OCL participators in mutation testing,
which allows them to choose which kinds of mutants will be
generated based on their testing purposes. We have already
implemented most of these operators within AgileUML. How-
ever, there still needs further implementation. Also, more
evaluations of the effectiveness of the proposed operators and
classification need to be performed in the future.

1ATL - ATLAS Transformation Language; QVT - Query/View/Transformation

131



CHAPTER 4. MUTATION TESTING FOR OCL

132



Chapter 5

Test Case Prioritisation

Figure 5.1: Structure of the Proposed Framework

In order to perform the TCO processes for the systems
whose specifications are expressed in OCL, we proposed the
TeCO (Test Case Optimisation) framework. The proposed
framework supports the mutation testing, TCP and TCM

133



CHAPTER 5. TEST CASE PRIORITISATION

processes for the corresponding OCL specifications and ex-
isting test cases. Combined with the strong MDE ability of
the AgileUML tool, the proposed framework also provides
the operations to generate test cases from the OCL specifica-
tion and transfer the OCL specifications to the targeting real
implementations. The overall structure of the TeCO frame-
work is demonstrated by Figure 5.1.

The application layer includes two components which are
OCL specifications and the TeCO framework. The OCL
specification is used to describe the corresponding system
by pre- and post- conditions, which acts as the input of the
TeCO framework. The TeCO framework is the proposed
framework that directly interacts with the users to provide
various MBT activities.

The pre-processor layer provides the services that are re-
quired to perform the TCO processes. There are six com-
ponents within this layer, which are the mutants generator,
result analyser, configuration settings, CSV 1 reader, files
manager and APFD metric. The mutants generator com-
bines with AgileUML to generate the mutated OCL specifi-
cations. These mutants are used to guide the optimisation
process by the corresponding faults (mutants) detection in-
formation. The detailed transition rules to generate these
mutants are explained in Chapter 4. In this work, all mu-
tants are first-order mutants, which means each mutant only
applied a single transition rule once.

The result analyser collects the mutant detection ability
for each test case and categorises this information into the
corresponding files according to detailed OCL specifications.
Configuration settings let users specify which optimisation
algorithm, which TCO process or processes, original APFD

1Comma-Separated Values

134



CHAPTER 5. TEST CASE PRIORITISATION

metric or modified APFD metric will be used. Due to the
results information being stored in a CSV format, the CSV
reader component provides the necessary services to access
these results. Finally, the last component, the APFD metric,
accesses the APFD calculators in the utils layer to calculate
the required evaluation result.

The optimisation layer contains the specific algorithms to
perform the TCP and TCM processes. We adapted five dis-
tinct evolutionary algorithms for each of these activities. The
details of these optimisation algorithms will be demonstrated
in this (TCP process) and the next chapters (TCM process).

The last layer is the utils layer, which includes AgileUML,
APFD calculator and test cases. AgileUML provides some
fundamental MDE supports, such as test case generation
and mutants generation, to the proposed TeCO framework.
APFD calculator computes the original or modified APFD
value for the provided test suite according to the user con-
figuration. The test cases component is used to store the
generated or existing test cases.

In the following parts of this chapter, the five TCP al-
gorithms implemented in the TeCO framework will be de-
scribed. And the corresponding evaluation metric to the
TCP process will also be discussed. Moreover, we modified
one well-known metric, APFD, to make this metric more
suitable for the MBT and mutation testing environment.

5.1 TCP Process

In the TeCO framework, as demonstrated in Chapter 3,
five optimisation algorithms are implemented to conduct the
TCP process. These algorithms are Genetic Algorithm (GA),
Particle Swarm Optimisation (PSO), Firefly, Fish School and

135



CHAPTER 5. TEST CASE PRIORITISATION

Cuckoo Search algorithm. The following are the details about
how they are applied to the TCP problem.

The following are essential aspects that need to be high-
lighted regarding these prioritisation algorithms.
• Genetic Algorithm
Within the genetic algorithm, the population is a set of in-

dividuals. The solution to an optimisation problem is called
an individual, which is represented as a sequence of vari-
ables called chromosomes or gene strings. In TCP problems,
the chromosome is the permutation of the test cases, so the
chromosome length is precisely the same number of test cases
within the test suite, like Figure 5.2.

Figure 5.2: Example of Individual

In this example, there are two individuals, which are {1, 2,
3, 4, 5} and {3, 2, 1, 5, 4}. The sequence of numbers is the
execution order of the corresponding. The first individual
will execute the first test case at the beginning, then the sec-
ond, third, fourth, and fifth. However, the second individual
will start with the third test case, then the second, first, fifth
and finally the fourth one. Due to the TCP problem being
modelled as a permutation problem, each distinct number
will only appear once in the individual.

In the context of the TCP problem, the fitness value can be
represented by the evaluation result of the original or modi-
fied APFD metric. Further details regarding the APFD met-
ric will be discussed in subsequent sections.

In this thesis, the selection operator is tournament selec-

136



CHAPTER 5. TEST CASE PRIORITISATION

tion. This operator involves selecting a random subset of
individuals from the population, and then choosing the best
individual from this subset to pass to the next generation.

The crossover operator can be implemented in various
ways, such as one-point crossover, two-point crossover, and
uniform crossover. To better suit the TCP problem, the
PMX 2 operator is adopted in the TeCO framework.

In PMX, two crossover points are randomly selected on the
parent chromosomes. The segment between these crossover
points is swapped between the parents to generate offspring.
To maintain consistency and avoid duplicate elements in the
offspring, a mapping is created based on the swapped seg-
ments, allowing for the replacement of any conflicting ele-
ments with their corresponding mapped values. An example
is shown as Figure 5.3.

Figure 5.3: Example of Partially Mapped Crossover

2Partially Mapped Crossover

137



CHAPTER 5. TEST CASE PRIORITISATION

The mutation operator can be implemented in various
ways, such as bit-flip mutation, swap mutation, and inver-
sion mutation. In the TeCO framework, the mutation oper-
ator is the permutation swap operator, randomly swapping
two chromosome positions.

For the remaining parameters within the GA, we set the
population size to 50, the maximum iteration to 1000, the
crossover rate to 0.9, and the mutation rate to 1/TestSize.

These evolutionary operators and parameter settings are
the default implementation within the TeCO framework.
Due to this work not focusing on the best settings of the
optimisation algorithms, we did not systematically compare
the performance of different evolutionary operators and pa-
rameter settings. Users can modify or change these settings
according to their preferences.
• Particle Swarm Optimisation
PSO by using positions and velocities to find the optimal

solution, it is hard to represent the problem by permutation
like GA. Intuitively, PSO is an optimisation algorithm to
solve double problems. Then, how to map the double prob-
lem to the permutation problem became the critical point in
solving the TCP problem.

In the TeCO framework, we solved this situation through
the smallest value mapping. The search space of the TCP
problem has n dimensions, where n equals the number of
test cases. Then, each particle has n positions and velocities,
which are double type. When mapping the double problem to
the permutation problem, the smallest position value will be
mapped to 1, and the largest position value will be mapped to
n. Figure 5.4 gives an example of this process. The ranking
in double positions will be mapped to permutation numbers
corresponding. In case there is a tie in positions, we give the

138



CHAPTER 5. TEST CASE PRIORITISATION

first position a smaller permutation number.

Figure 5.4: Mapping Process

In the TeCO problem, for solving the TCP problem, the
original or modified APFD metric always serves as the fitness
function.

When we adapted PSO to the TCP problem in our TeCO
framework, the parameter settings were as followings: the
initial positions are randomly in [0, 4], and the initial veloci-
ties are in [-4, 4]. The value of w is 0.9, c1 is 2, c2 is 2, and α

is 0.975. The maximum iteration, same as GA, is 1000, while
the size of the particles is 50. Again, all these settings are
the default value within the TeCO framework and may not
be optimal for all scenarios. Users can modify these values
according to their own preferences.
• Firefly Optimisation
As same as the PSO algorithm, the problem is modelled

as a double problem and by using smallest value mapping to
covert to permutation problem.

The firefly algorithm updates the movement of each in-
dividual according to Equation 3.6. In the TeCO frame-
work, we do not calculate every relationship between each
firefly. Alternatively, we instead j with the global best so-
lution, which means the firefly will always move toward the
global best solution.

In the proposed TeCO framework, same as GA, we set the
population size as 50, and the maximum iterations are 1000.

139



CHAPTER 5. TEST CASE PRIORITISATION

γ is 1, β0 is 1 and α is 0.2.
• Fish School Optimisation
The fish school algorithm is a suitable method for solv-

ing double problems, using the smallest value mapping and
(modified) APFD metric for mapping function and fitness
evaluation. After randomly generating an initial population,
the algorithm iteratively optimises to find the optimal solu-
tion.

Each fish in the school conducts a local search to explore
promising regions in the search space through Equation 3.7.
In our implementation, this value change from 1 to 0.001 as
the iteration increase. The new position xi(t + 1) will only
be accepted when this movement increases the fitness value.

During the volitive movement within the fish school algo-
rithm, Euclidean distance is used to calculate the distances
between the fish and the barycentre. The stepvol in volitive
movement controls the distance of movement, which changes
from 1 to 0.01 as the iteration increases.

In the proposed TeCO framework, same as GA, we set the
population (school) size as 50, and the maximum iterations
are 1000. In the default setting, the minimum weight of each
fish is 1, and the maximum weight is 5000.
• Cuckoo Search Optimisation
During the cuckoo search optimisation, the fitness function

is a measure of how well a particular solution performs with
respect to the problem at hand, for here, it is still the original
or modified APFD value.

The Lévy flight is a type of random walk used to generate
new candidate solutions for the optimisation problem. The
Levy flight is based on the Levy distribution, which is char-
acterised by a heavy tail and a large variance, resulting in
occasional large steps in the search space. In order to better

140



CHAPTER 5. TEST CASE PRIORITISATION

implementation, in the TeCO framework, we calculate flight
through Mantegna’s algorithm by using Equation 5.1.

StepSizei = u ∗ |v|−1/α (5.1)

In this equation, u and v are random numbers generated
from a Gaussian distribution with mean 0 and variance 1, and
α is a parameter that controls the step size, which we use 1.5
in implementation. The step size represents the amount by
which the ith dimension of the current solution should be
modified to generate a new solution.

In the proposed TeCO framework, same as GA, we set the
population (nest) size as 50, and the maximum iterations are
1000. And in the default setting, the percentage of aban-
doned nests randomly generate from the range [10, 25].

5.2 TCP Metrics

The TCP problem aims to find the best execution order of
the test suite to benefit the testing process. When the test
suite is prioritised, it is essential to assess the effectiveness of
the proposed approach through evaluation metrics. An eval-
uation metric plays a crucial role in the TCP problem, which
helps to quantify the performance of the proposed TCP ap-
proach and compare the different approaches. By utilising a
well-defined evaluation metric, researchers can quantitatively
compare different TCP approaches and identify the most ef-
fective one for a given testing scenario.

From the review conducted by Khatibsyarbini [130], the
current widely used evaluation metrics within the TCP area
are shown in Figure 5.5.

141



CHAPTER 5. TEST CASE PRIORITISATION

Figure 5.5: Evaluation Metrics for TCP Process

In the statistical result, around 60% of the research chose
the APFD family, original APFD and APFDc as the evalu-
ation metric. Recall from the related works that the APFD
metric is utilised to determine the average percentage of fault
detection rate for a given test suite and assess the early de-
tection capabilities of the test suite for system faults. The
APFD metric produces a value between 0 and 1, with a higher
value indicating an increased ability to detect faults earlier.
Essentially, this metric measures the speed at which the test
suite identifies system faults. The result of the original APFD
metric can be calculated by the Equation 5.2.

APFD = 1− TF1 + TF2 + · · · + TFm

nm
+

1

2n
(5.2)

In the presented equation, TFi represents which test case
first detects the ith fault, while n indicates the total number of
test cases in the test suite, and m represents the total number
of faults within the software system. In the context of MDE,
because system faults can not be known in advance, the faults
also can be instead of the artificially injected defects.

Nonetheless, the APFD metric assumes that all system

142



CHAPTER 5. TEST CASE PRIORITISATION

faults have equal severity and each test case requires the same
amount of testing effort. In reality, each test case has a dis-
tinct testing cost, and the severity of faults may vary in their
impact during the testing process. Therefore, the APFDc

metric has been introduced, which accounts for both testing
costs and fault severity, enhancing the accuracy of the APFD.
The metric for APFDc is calculated as Equation 5.3.

APFDc =

∑m
i=1(fi ∗ (

∑n
j=TFi

tj − 1
2tTFi))∑n

j=1 tj ∗
∑m

i=1 fi
(5.3)

Similar to the APFD computation, the equation includes
fi, which represents the severity of the ith fault. TFi denotes
the test case that detects the ith fault, and tj refers to the
testing cost of the relevant test case. Additionally, n repre-
sents the total number of test cases in the test suite, while
m signifies the number of faults.

The above definition of APFDc incorporates both the cost
and fault severity of test cases. However, due to its ambigu-
ous or system-specific estimation methods for fault severity
and test case cost, the applicability of this metric is lim-
ited. Consequently, most researchers prefer using APFD to
evaluate the effectiveness of their work. From the statistical
result, 60% publications used the APFD family as the eval-
uation metric. In detail, 51% works used the APFD metric
and 9% used APFDc metric. Despite the fact that the ma-
jority of research used this family of metrics to evaluate the
effectiveness of the proposed approach, APFD has its own
shortcomings and is not ideally suited for mutation testing
and the MDE environment. We will analyse it in detail and
introduce a modified version of the APFD metric in the next
section.

143



CHAPTER 5. TEST CASE PRIORITISATION

The second widely used TCP evaluation metric is CE (cov-
erage effectiveness) metric. In the TCP process, CE evaluates
the effectiveness of the proposed approach by using a com-
bination of techniques, such as branch coverage, statement
coverage, and function coverage. These techniques are used
to measure the extent to which a test suite covers the different
aspects of the SUT and how quickly these aspects have been
covered. CE values fall between zero and one, with higher
values indicating greater effectiveness in terms of coverage.

The time execution metric is another primarily used evalu-
ation metric of the TCP process, and is distributed 7% of the
total used metric. The time execution metric is mainly used
to verify the effectiveness of the proposed TCP approach by
the time-related characters, such as the average time to find
the defects and the time to find the first defects within the
SUT.

Lastly, the remaining 23% of the overall distribution com-
prises several types of metrics, most of which have been
adapted from the APFD metric or coverage-related metrics.

Overall, the evaluation metrics used in TCP are essential
in assessing the effectiveness of the proposed approach and
identifying the most effective one for a given testing scenario.
These metrics allow researchers and practitioners to measure
the effectiveness of a TCP approach in early fault detection
ability during the testing process and in delivering higher-
quality software systems.

5.3 Modified APFD Metric

We mentioned that the original APFD metric has its own
shortcomings, especially under the mutation testing and
MDE scenario. This section will analyse the corresponding

144



CHAPTER 5. TEST CASE PRIORITISATION

information in detail and propose a modified version of the
APFD metric to overcome these imperfections.

The range of APFD metric intends to range from 0 to 1,
and a higher value indicates earlier fault detection ability.
However, the actual maximum APFD value is 1 − 1

2n, when
the first test case detects all defects. At the same time, the
minimum APFD value is 1

2n, when all defects are detected by
the last test case.

The actual result cannot range from 0 to 1. This is the
first imperfection of the original APFD value. Consider one
extreme scenario when the test suite has only one test case
that can detect all system faults. The APFD value will equal
0.5 (the highest value 1− 1

2n), which is a relatively low result
but is already the maximum value.

The second point is that the original APFD value assumes
all defects are detectable. This assumption is unfeasible when
performing mutation testing in an MDE environment. Mu-
tation testing injects mutants into the system and then val-
idates whether the test cases can kill the artificial mutants.
Due to mutated specifications being generated based on the
mutation rules, we cannot guarantee that the test suite can
detect all system defects in this scenario.

One possible solution to undetectable fault is that we as-
sume TFi is the last position in the test suite. However, this
cannot distinguish whether the test suite cannot detect the
defects or the last test case detects the defect. Walcott pro-
posed another possible solution, that when a fault is missed,
the TFi equals the number of test cases plus one [202]. This
is a feasible solution to the second imperfection of the APFD
metric, but in the extreme scenario that all faults can not be
detected, the APFD value will be − 1

2n, which does not range
from 0 to 1 any more.

145



CHAPTER 5. TEST CASE PRIORITISATION

The third imperfection is that even when two test orders
have the same APFD value, one may still be better than the
other. Considering that there are three test cases and six
faults, the fault detection information is shown as Figure 5.6.

Figure 5.6: An Example of Fault Detection

There are two test order, {1, 2, 3} and {3, 2, 1}. These two
orders have the same APFD value since the TF1+TF2 · · ·+
TFm is the same. For the first one is 2 + 1 + 1 + 1 + 1 +

3, and for the second one is 2 + 2 + 2 + 1 + 1 + 1, where
all of them are 9. TCP aims to detect faults as early as
possible, even if the testing process is prematurely halted.
From the APFD results, these two test orders have the same
effectiveness. However, if the testing process is halted after
executing only one test case, the first order can detect four
faults, while the second order can detect three faults. In this
scenario, the original APFD value may not adequately reflect
the effectiveness of the TCP approach.

To summarise, the original APFD metric suffers from the
following three disadvantages. Firstly, its actual value range
is not ranged between 0 and 1. Secondly, the metric may
not provide an accurate assessment when faults are unde-
tectable. Finally, even when two test orders have identical
APFD values, one may still be superior to the other.

While some studies, such as [158], have attempted to ad-
dress the issues identified with the original APFD metric,
none have specifically tackled its application within the con-

146



CHAPTER 5. TEST CASE PRIORITISATION

text of MDE. To address these shortcomings, we propose
introducing a reward system that increases the APFD value
when a fault is detected by the first test case. Simultane-
ously, we suggest including a penalty system that reduces
the APFD value if the fault cannot be detected by any test
case.

We proposed a modified APFD metric in this work. The
modified APFD value can be calculated by Equation 5.4 and
Equation 5.5.

APFDm = 1− TF1+TF2+···+TFm
nm + 1

2n + (α− β) ∗ λ (5.4)

λ =
1

2nm
(5.5)

In this metric, the first part is the same as the original
APFD metric. We called this part a reward and penalty
factor in the second part (α − β) ∗ λ. α is the number of
faults that can be detected by the first test case, and β is the
number of faults that cannot be detected by any test case. λ
is the reward or penalty value, which equals to 1

2nm.
The development of the modified APFD metric was driven

by the need for a more suitable tool for evaluating test suites
in the context of MDE and mutation testing and adjusting
the scoring range of the original version. This modification
aims to simplify the interpretation of evaluation results, fo-
cusing less on the specific characteristics of the test suite
and system defects. For instance, when assessing two test
suites, if their evaluation scores are close, it implies compa-
rable effectiveness between them. This strategy could miti-
gate the issue highlighted earlier, where the outcome might

147



CHAPTER 5. TEST CASE PRIORITISATION

appear relatively moderate yet already represents the maxi-
mum achievable value.

To fulfil our objective, the metric was adjusted to penalise
undetectable defects, thereby enabling the lowest possible
score within the modified APFD metric to be zero. We also
intend to design the metric to reward early fault detection
within a test suite more effectively. Currently, we extend
rewards solely to the initial test case detected, allowing the
metric to attain a maximum score of one. The exploration
of a dynamic approach to reward early fault detection more
comprehensively is an avenue we intend to investigate fur-
ther, seeking to enhance the utility of the metric and its
relevance in future applications.

Using the modified APFD value, this metric ranges from 0
(all defects are undetectable) to 1 (the first test case detects
all defects). Through the improvements, this metric has the
reward and penalty mechanism to deal with the aforemen-
tioned situations.

During the evaluation phase of this research, we will utilise
both the original and the modified versions of the APFD met-
rics. These metrics will guide the experimental procedures
and play a key role in evaluating the effectiveness of the op-
timised test suite. To gain a comprehensive understanding
of our results, we will compare and investigate the data ob-
tained using these two metrics.

148



Chapter 6

Test Case Minimisation

This chapter will focus on another test case optimisation
technique, TCM, for the systems whose specifications are
expressed in OCL. TCM, also known as test case reduction
or test suite minimisation, is a technique used in the soft-
ware testing process to reduce the number of test cases while
maintaining the overall effectiveness of the test suite. The
main goal of the TCM process is to reduce the efforts for
the software testing process without compromising testing
effectiveness.

Unlike the TCP problem, which can be modelled as a
single-objective optimisation process, the TCM problem is
consistently modelled as a multi-objective optimisation pro-
cess. The TCM process aims to decrease the number of test
cases while preserving the testing capabilities. Naturally, one
objective corresponds to the test suite size, while the other
objective(s) will relate to the testing ability.

In the multi-objective optimisation algorithm, the objec-
tives are often conflicting, and there is no single optimal so-
lution but instead a set of Pareto optimal solutions [203].
A solution is considered Pareto optimal if no other solution
in the search space can dominate this solution. To better
understand the Pareto optimal, the following concepts are
necessary to discuss.

149



CHAPTER 6. TEST CASE MINIMISATION

• Domination: Solution A dominates solution B

when all objectives of A are better than or equal to
those in B, and at least on objective in A is strictly
better than that in B. In other words, solution A

dominates solution B if there is no objective in B

outperforms A and there is at least one objective in
A outperforms that in B.

• Non-dominated solutions: Non-dominated solu-
tions are not dominated by any other solution in
the search space. These solutions represent the best
trade-offs between the conflicting objectives in a
multi-objective optimisation problem.

• Pareto optimal set: The Pareto optimal set, also
known as the Pareto front, is the set of all non-
dominated solutions in the search space. No solu-
tion in the Pareto optimal set can be improved in
one objective without degrading at least one other
objective.

The Pareto optimal set helps decision-makers understand
the trade-offs between the different objectives and select the
most appropriate solution based on their preferences or spe-
cific constraints. For the TCM problem, each solution within
the Pareto optimal set can be used to describe the minimised
test suite. But in the TeCO framework, the selection crite-
ria for the minimised test suite are based on achieving the
maximum fault detection ability with the smallest size.

In the following parts of this chapter, the five TCM al-
gorithms implemented in the TeCO framework will be ex-
plained. And the corresponding evaluation metric to the
TCM process will also be discussed.

150



CHAPTER 6. TEST CASE MINIMISATION

6.1 TCM Process

In the TeCO framework, as demonstrated in related works,
five optimisation algorithms are implemented to conduct the
TCM process. These algorithms are Non-dominated Sorting
Genetic Algorithm II (NSGA-II), Particle Swarm Optimisa-
tion (PSO), Multi-objective Evolutionary Algorithm based
on Decomposition (MOEA/D), Strength Pareto Evolution-
ary Algorithm II (SPEA2) and Cuckoo Search algorithm.

The following are essential aspects of how we adapted this
optimisation algorithm to systems whose specifications are
expressed in OCL.
• NSGA-II
In the TeCO framework, the bit data structure is used to

represent individuals, and one example is Figure 6.1.

Figure 6.1: Individuals in NSGA-II

In this example, the test suite has five test cases, and in
these two individuals, test cases {1, 3, 4} and {3, 5} will be
included in the minimised test suite separately. In this TCM
problem, the length of the chromosome equals the number of
test cases within the original test suite, and each bit position
is used to describe whether the corresponding test case is
selected for the minimised test suite, where the value of 1
indicates that the test case has been selected and 0 indicates
that it has not been selected.

The configurations for the three evolutionary operators, se-
lection, crossover and mutation operators, are similar to the

151



CHAPTER 6. TEST CASE MINIMISATION

GA. The selection operator is tournament selection, which
randomly selects a subset of the population from the original
one and then chooses the best one according to the fitness
value. A larger tournament size increases the chance of select-
ing the best individual, but also increases the computational
cost of the selection process, usually 2.

The crossover operator by default in the TeCO framework
is two points crossover, which selects two crossover points
in the parent solutions, and swaps the corresponding parts
between these points to create new offspring solutions. Figure
6.2, and the crossover rate has been set to 0.9.

Figure 6.2: Two Points Crossover

The default mutation operator is bit flip mutation, which
flips each bit position (0 to 1 and 1 to 0) according to the
mutation probability, and this rate is set to 1/TestSize. For
the remaining parameters within the NSGA-II, we set the
population size to 50, and the maximum iteration to 1000.

One of the most critical processes within the NSGA-II al-
gorithm is fitness evaluation, which corresponds to the multi-
objectives. The TCM process aims to save testing efforts by
reducing the number of test cases, so the first optimisation

152



CHAPTER 6. TEST CASE MINIMISATION

objective is Number of Test Cases.
Also, the reduction should not compromise the fault de-

tection ability or decrease as little as possible, and then the
second optimisation objective is Fault Detection Ability. In
case there is no actual fault detection information within the
MDE or OCL context, this information will be instead by
the mutant detection ability.

The TCM process only decides which test case should be
selected into the minimised test suite and does not change
the order of the test cases. Intuitively, this process will not
be related to the APFD metric, but actually, this objective
will help to choose which redundant test case should be re-
moved. As an illustration, suppose that test case 2 and test
case 5 both have the ability to identify identical faults. In
this scenario, the optimisation process will decide to remove
which test case according to the detailed detection ability of
test cases 3 and 4 rather than randomly remove one arbi-
trarily. This preference is based on eliminating which one
can benefit from the early fault detection ability. Then, the
third objective is Original or Modified APFD metric.

In short, there are three objectives, the number of test
cases, fault or mutant detection ability and the original or
modified APFD metric.
• Particle Swarm Optimisation (PSO)
In the TeCO framework, the PSO algorithm used to solve

the TCM problem follows the same general process as de-
scribed in the previous chapter. However, the main difference
is how to map the double problem to TCP or TCM problem.
For TCP, the smallest value mapping is used to map each
double value to the position of the test case. On the other
hand, for TCM, a random larger value is used to solve the
mapping problem.

153



CHAPTER 6. TEST CASE MINIMISATION

The random larger value is used to map the double prob-
lem to the TCM problem. The length of each particle is N

the same as the number of test cases, and then for each par-
ticle, there will be N double values during the optimisation
process. Figure 6.3 demonstrates the mapping process.

Figure 6.3: TCM Mapping Process

The mapping process first randomly chooses one double
value within the individual or the customised value, like the
average value. Then, each double value within the individ-
ual that is larger than the chosen value will be selected into
the minimised test suite. In the provided value, mapping
1 chooses the average value, which lets test cases {2, 4, 6,
8} are included. Mapping 2 determined to use the second-
ranking value, -3.12, which leads to the test cases {2, 4, 5,
6, 7, 8} have been included. Then mapping 3 consists of
the test case {2, 4, 8} through the fifth-ranking value 3.56.
The random value is used here, and through the stochastic
searching ability of the optimisation algorithm to find the
optimal solutions across the whole search space.

The median value is not recommended to be used during
the mapping process due to this value will let only exact N

2 or
N
2 −1

1 test cases will be included in the minimised test suite.
1Which depending on the boundary condition.

154



CHAPTER 6. TEST CASE MINIMISATION

The average value has not been excluded due to this value is
sensitive to the extreme value, which lets the average value
may not be constrained to the fixed-size test suite during the
minimisation process.

The objectives used in this algorithm are the same as
NSGA-II, the number of test cases, fault or mutant detec-
tion ability and the original or modified APFD metric.

When we adapted PSO to the TCM problem in our TeCO
framework, the parameter settings were as followings: The
maximum iteration is 1000, the population size is 50, the
range of each double value is [-1000, 1000], and the number
of objectives is 3.
• MOEA/D
In the TeCO framework, for this algorithm, we applied the

original MOEA/D algorithm that is supported by JMetal
framework [204]. In order to keep the consistency across
different TCM algorithms, we also set the population size
to 50 and the maximum iterations to 1000. Same with the
previous algorithms, the objectives are the number of test
cases, fault or mutant detection ability and the original or
modified APFD metric, and using random larger value to
map double and TCM problems.
• SPEA2
In the SPEA2 algorithm, reproduction is a crucial phase

that contributes to the generation of new offspring, which
potentially possess better fitness values compared to their
parents. This process involves selecting individuals based on
their fitness and using genetic operators such as crossover
and mutation to create a new population.

In the TeCO framework, the default maximum generation
is 1000, population size is 50, the selection operator is tourna-
ment selection, the crossover operator is two points crossover,

155



CHAPTER 6. TEST CASE MINIMISATION

the crossover possibility is 0.9, the mutation operator is the
bit flip operator, and the mutation rate is 1/TestSize. The
optimisation objectives of the SPEA2 are the number of test
cases, fault or mutant detection ability and the original or
modified APFD metric. As with the other adapted algo-
rithms, the population size is set to 50.
• Cuckoo Search
Different from the TCP problem, the double problem will

be mapped to a bit problem instead of a permutation prob-
lem in the TCM process. For here, we still use the random
larger value to perform the mapping process. And in the fit-
ness evaluation process, the aim will be transferred from the
specific evaluation metric to the Pareto optimal set.

In the proposed TeCO framework, same as other TCM
algorithms, we set the population (nest) size as 50, and the
maximum iterations are 1000. The optimisation objectives of
this algorithm are the number of test cases, fault or mutant
detection ability and the original or modified APFD metric.

6.2 TCM Metrics

The TCM problem aims to benefit the testing process by
executing fewer test cases to achieve the same testing effec-
tiveness. When the test suite is minimised, it is essential
to assess the effectiveness of the proposed approach through
evaluation metrics. An evaluation metric plays a crucial role
in the TCM problem, which helps quantify the performance
of the proposed approach.

One of the most widely used evaluation metrics is code
coverage, which measures the proportion of code that the
minimised test suite has covered. According to the granu-
larity, the code coverage includes statement coverage, state-

156



CHAPTER 6. TEST CASE MINIMISATION

ment coverage, path coverage, etc. These different specific
coverage-based metrics correspond to the proportion of ex-
ecutable statements, decision points and possible execution
paths that have been examined by the minimised test suite.
These metrics are useful for evaluating the effectiveness of
the proposed TCM approach, and ensuring the removed test
cases will not decrease the code coverage ability.

Test execution time is also an important metric to evaluate
the effectiveness of the TCM process. This type of metric
includes total and average test case execution time. Since
one of the objectives of the TCM process is to speed up the
testing process, time is an apparent measurement to evaluate
the effectiveness of the proposed approach.

Fault detection metrics measure the performance of the
minimised test suit in terms of fault detection ability. The
TCM process benefits the testing process by removing redun-
dant test cases. Still, the fault detection ability is necessary
to guarantee not to be compromised or lost any little as pos-
sible. This type of metric examines the fault detection ability
of the minimised test suite against the original one to mea-
sure the effectiveness of the proposed TCM approach. This
metric is one of the evaluation metrics we used in this thesis.

Size metric measures the number of test cases or the re-
duction rate of the minimised test suite. The reduction ratio
measures the percentage of test cases that have been removed
during the optimisation process. This metric is a significant
evaluation metric since the main aim of the TCM process is
to reduce the number of test cases. This is the other evalua-
tion metric that we used in the evaluation process.

In this thesis and the proposed TeCO framework, the
Equation 6.1 and Equation 6.2 will be used to evaluate the
effectiveness of the TCM process.

157



CHAPTER 6. TEST CASE MINIMISATION

(1− number of test cases in the reduced test suite
number of test cases in the original test suite) ∗ 100% (6.1)

(1− number of faults detected by the reduced test suite
number of faults detected by the original test suite) ∗ 100% (6.2)

The TCM optimisation process aims to decrease the num-
ber of test cases within the test suite while maintaining the
fault detection ability. These two equations correspond to the
purposes of the TCM process. One relates to the reduction
rate of the minimised test suite, and the other corresponds to
fault detection ability. The aims are to reduce as many test
cases as possible while losing as little fault detection ability
as possible. Under the MDE or OCL environment, real sys-
tem faults can not be used directly in the evaluation process.
The system defects will be simulated by mutants mentioned
in previous sections. The original or modified APFD met-
ric will also be used in this thesis to analyse how the TCM
process will affect these evaluation metrics.

158



Chapter 7

Evaluation

7.1 Research Questions

In order to evaluate this research work systematically, the
following five main research questions (RQs) were proposed
in Chapter 1.
• RQ 1: Effectiveness. What is the effectiveness

of the TCO processes within the context of OCL?
RQ 1.1: Effectiveness for the TCM process.

RQ 1.1.1: What is the test suite reduction rate
achieved by the adapted algorithms during the TCM
process?
RQ 1.1.2: What is the fault detection capability of
the adapted algorithms during the TCM process?

RQ 1.2: Effectiveness for the TCP process.

RQ 1.2.1: What are the performances of the adapted
TCP algorithms under the (modified) APFD metric?
RQ 1.2.2: How does the performance of the adapted
algorithms during the TCP process compare with a
random approach?

RQ 1.3: Does the sequence of TCP and TCM processes
affect the overall optimisation process?

159



CHAPTER 7. EVALUATION

• RQ 2: Scalability. How scalable are the pro-
posed algorithms in handling real-world OCL speci-
fications with varying complexities?
• RQ 3: Comparison. Which of the adapted TCO

algorithms performs optimally during the optimisa-
tion processes?

RQ 3.1: During the TCM process, which algorithm demon-
strates superior performance?

RQ 3.2: During the TCP process, which algorithm per-
forms the best?

RQ 3.3: Which type of OCL specification is most compat-
ible with the proposed algorithms?
• RQ 4: Metric. How to evaluate the modified

APFD metric?
RQ 4.1: What are the differences between the original and

the modified APFD metric?
RQ 4.2: How does the TCP process perform when evalu-

ated under the original and modified metrics?
• RQ 5: Efficiency. What is the time overhead

when the TCO processes are applied to the systems
whose specifications are expressed in OCL?

RQ 5.1: What is the overhead for each proposed algorithm
during the TCM process?

RQ 5.2: What is the overhead for each proposed algorithm
during the TCP process?

RQ 5.3: What is the overhead during the pre-process phase
preceding the optimisation processes?

This study primarily investigates the practicability of im-
plementing TCO strategies within systems whose specifica-
tions are expressed by OCL. Thus, RQ 1 is proposed to eval-
uate the effectiveness of this application.

The TCM process aims to reduce the size of test cases

160



CHAPTER 7. EVALUATION

while maintaining its fault detection ability. Accordingly, the
effectiveness of minimisation algorithms is frequently evalu-
ated via the test suite reduction rate and the fault detection
capability compared to the original one. RQ 1.1 is introduced
to examine the effectiveness of the TCM process.

The TCP process is designed to optimise the testing pro-
cedure by rearranging the order of the test sequence. Thus,
RQ 1.2 is presented to investigate the effectiveness of the
TCP process. Furthermore, RQ 1.3 determines whether the
sequence of the TCM and TCP processes has any relevance
to the optimisation results. While, RQ 2 measures how the
scalability of the proposed algorithms can be applied to the
OCL specifications with different complexities.

As we have adapted five distinct optimisation algorithms
for the TCM and TCP processes separately, it becomes cru-
cial to compare their relative effectiveness. Beyond the in-
trinsic nature of the algorithms, which type of OCL specifi-
cations are better compatible with the proposed algorithms
is also necessary to be discussed. This subject is examined
by RQ 3.

The APFD metric has been modified to accommodate the
context of MBT better. RQ 4 has been proposed to evaluate
the differences between the original one and the performance
of the TCP process under the adjusted metric.

While effectiveness is a key consideration, the efficiency of
the proposed algorithms is equally crucial. RQ 5 is designed
to measure the computational overhead of these algorithms,
and efficiency is assessed by considering time consumption.

161



CHAPTER 7. EVALUATION

7.2 Evaluation Process

To answer the research question and assess our proposed
method, we utilise four distinct OCL specifications collected
from real-world studies: Bond, Interest Rate, MathLib and
UML2PY. These studies vary in their complexity. The
specifics of each case study, including their size (as measured
by lines of code) and the number of operations, are demon-
strated in Table 7.1. Figure 7.1 provides an example OCL
specification for a single function macaulayDuration within
in the Bond case study, which including the function name,
pre-conditions, and post-conditions.

Table 7.1: Case Study Details

Study Name Size Operation
Bond 93 5

Interest Rate 41 2
MathLib 212 15
UML2PY 1053 18

Figure 7.1: OCL Example

During the experiment process, the AgileUML tool will
generate corresponding test cases (forming the original test
suite), mutated specifications, and executable JAVA files
when given OCL specifications as input. For a particular
function, the number of generated test cases (at a functional
level) for the four case studies ranges from 2 to 243.

The mutated OCL specifications are created in accordance

162



CHAPTER 7. EVALUATION

with the corresponding OCL expressions and invariant vari-
ables, using the detailed transition rules shown in Chapter 4.
The test cases at the functional level are constructed using
the boundary value of each parameter and the various combi-
nations of these parameters. The boundary value analysis in
our context involves both lower and upper bounds of numer-
ical ranges (also the values around and within the boundary)
as critical points for test case generation. The empty, null,
and random values are used for the String type to perform
boundary testing. Also, the test values can be directly con-
figured by the end user.

The selection of boundary value analysis over more ad-
vanced methods, as discussed in the systematic literature re-
view, warrants justification. The primary rationale behind
this choice is twofold. First, boundary value analysis offers
a straightforward method for identifying critical faults with
minimal computational resources. Its simplicity and direct-
ness in pinpointing potential error-prone areas make it an
attractive option for initial testing phases. Second, while
advanced testing techniques provide broader coverage and
deeper insights into potential system vulnerabilities, they of-
ten require more sophisticated setup and significantly greater
computational effort.

However, it is important to acknowledge the limitations
of relying exclusively on boundary value analysis. Advanced
testing methodologies can supplement boundary value anal-
ysis by providing a more comprehensive examination. The
current version of the AgileUML tool solely supports bound-
ary testing, while future enhancements could involve inte-
grating these sophisticated approaches to enrich the depth
and breadth of testing strategies.

Algorithm 1 shows the general process for the TCM activ-

163



CHAPTER 7. EVALUATION

Algorithm 1 General Test Case Minimisation Process
Input: OCL Specification
Output: Selected Test Cases
1: AgileUML ← OCL Specification (mutated specifications, test suite, executable

Java program are generated)
2: information ← agileUMLAnalysis(testSuite, mutants)
3: initialPopulation(testSuite)
4: until Stop Criteria do
5: Evolutionary Operator(s)
6: setObjective(0, selectedSize)
7: setObjective(1, faultDetectionRate)
8: setObjective(2, APFDMetric)
9: fitnessEvaluation(population)

10: end until
11: solutions ← getSolutions()
12: result ← solutionAnaysis(solutions)

ity, where the input is OCL specification and the output is
the selected (minimised) test cases. The first two lines are
the preparation works for the algorithm. When the input
specification for the AgileUML tool set is OCL, the mutated
OCL specification, test suite and corresponding executable
JAVA programs can be generated. The generated test suite
is treated as the original one, waiting to be minimised.

In line 2, AgileUML will analyse the original test suite
and mutants to extract the necessary information, mainly
focusing on which test case can detect which mutants. De-
spite various attempts to make OCL directly executable
[205, 206, 207], when system specifications are expressed in
OCL, the test suite cannot run directly against these speci-
fications. To tackle this obstacle, we initially produce corre-
sponding JAVA specifications via model-to-text transforma-
tion, which are then used to test the suite. It is worth noting
that this is just one viable solution we have opted for and is
not the exclusive answer.

line 3 - line 10 detail the key procedures of the TCM al-
gorithms. Beginning with a randomly generated population,

164



CHAPTER 7. EVALUATION

then repetitively using evolutionary operators to solve the
associated problem. As previously described in Chapter 6, in
this study, we define three objectives for the TCM process.
These objectives are the number of test cases, the ability to
detect mutants, and the measure of the original or modified
APFD metric. The intent of using the APFD metric as an
objective is to optimise the testing ability when multiple test
cases share the same detection capability. In this study, we
exclusively used the modified APFD metric in this context.

The multi-objective optimisation algorithm will generate
a solution set known as the Pareto set. This set contains
a group of solutions where none can outperform the others
based on all objectives simultaneously. However, we need
to select one final solution as the minimisation result. The
selection criteria for this solution are based on achieving the
maximum fault detection ability with the smallest size. This
choice aligns with the objective of the TCM process, which
aims to minimise the number of test cases while ensuring a
high fault detection rate.

We always give the highest priority to the fault capabilities
over the size of the test suite, as the goal of the minimisation
process is to enhance the testing procedure without reducing
its effectiveness. Consider a scenario in the Pareto optimal
set: one test case retains 40% of the original test cases but
offers 90% of fault detection ability compared to the original
test suite, while another maintains 50% of the test cases with
unchanged fault detection capability. In such a scenario, the
second test case would be chosen as the minimisation result.

Algorithm 2 demonstrates the general process for the TCP
action. The input can either come from the minimised test
cases from the TCM process or from the original OCL spec-
ification when conducting the TCP process exclusively. The

165



CHAPTER 7. EVALUATION

Algorithm 2 General Test Case Prioritisation Process
Input: Selected Test Cases or OCL Specification
Output: Prioritised Test Cases
1: initialPopulation(selectedTestSuite)
2: until stop criteria do
3: Evolutionary Operator(s)
4: setObjective(APFDMetric)
5: fitnessEvaluation(population)
6: end until
7: result ← getSolution()

first approach involves merging TCM and TCP processes,
whereas the second approach runs the TCP process in isola-
tion. In instances where the input is the OCL specification,
some preparation work is needed, similar to the first two lines
within Algorithm 1. In contrast to TCM, TCP has a single
objective, the original or modified APFD metric.

The following details the configurations for each optimisa-
tion algorithms. To limit the influence of parameter config-
urations, the same settings were applied across all four case
studies.

The TCP process has five optimisation algorithms, GA,
PSO, Firefly, Fish School and Cuckoo Search algorithm. For
the GA optimisation algorithm, the crossover rate was also
0.9, and the Partially Mapped Crossover (PMX) was the
crossover operator of choice. The mutation rate was defined
as1/TestSize, and a permutation swap mutation operator
was used. When we adapted PSO to the TCP problem in
our TeCO framework, the parameter settings were as follow-
ings: the initial positions are randomly in [0, 4], and the
initial velocities are in [-4, 4]. The value of w is 0.9, c1 is 2,
c2 is 2, and α is 0.975. As for the firefly algorithm, we set γ
as 1, β0 as 1 and α as 0.2. The initial light intensity randomly
ranged from -5 to 5. Within the fish school algorithm, the
minimum weight of each fish is 1, and the maximum weight

166



CHAPTER 7. EVALUATION

is 5000. Within the cuckoo search algorithm, we set the num-
ber of abandoned nests randomly generated from the range
[10, 25].

The TCM process also has five optimisation algorithms,
NSGA-II, PSO, Cuckoo Search, MOEA/D and SPEA2. For
the NSGA-II algorithm (used for TCM), we adopted a
crossover rate of 0.9 with a two-point crossover operator.
The mutation rate was set to 1/TestSize, employing a bit-
flip mutation operator. Binary tournament selection was the
chosen selection operator. For the PSO algorithm, different
from the TCP process, the range of each double value is set
as [-1000, 1000]. The cuckoo search algorithm uses the same
setting as the TCP process. For the MOEA/D algorithm, we
applied the original MOEA/D algorithm that is supported by
JMetal framework. The default setting for the SPEA2 algo-
rithm is the selection operator is tournament selection, the
crossover operator is two points crossover, the crossover pos-
sibility is 0.9, the mutation operator is bit flip operator, and
the mutation rate is 1/TestSize.

In our TCO approach, which encompasses both TCM and
TCP processes, we do not aim to identify the best combina-
tion of these optimisation algorithms. During our evaluation
process, we chose to use the NSGA-II algorithm for the TCM
process and the GA algorithm for the TCP process due to the
solid overall performance delivered by these two algorithms.

All these settings are defaulted within the TeCO frame-
work and may not be optimal for all scenarios. The users
can modify these settings according to their own preferences.

During the preliminary phase of this study, an informal
combinatorial experiment was conducted in which the popu-
lation interval was set at 10 and the iteration interval at 100.
This led us to the final configuration of 50 for the population

167



CHAPTER 7. EVALUATION

size and 1000 for the iterations across all optimisation algo-
rithms. For our chosen case studies, these settings delivered
effective outcomes in a reasonable overhead.

However, it is critical to note that this study is not primar-
ily focused on identifying the most optimal configurations for
the optimisation algorithm. Hence, the parameters we chose
to work with may not be the best for all circumstances. In
real-world applications, these variables and the evolutionary
operators can be adjusted based on specific needs and re-
quirements.

For the original APFD metric, undetectable defects are not
taken into account. In our experimental approach, when we
encounter a mutant that cannot be detected, we hypothesise
the last test case will identify the mutant, thus making the
TFi equal to the total number of test cases in the test suite.

Given the inherent randomness in both optimisation algo-
rithms, we carried out each experiment 50 times to decrease
the deviations. To maintain a consistent experiment environ-
ment, all experiments were conducted on the same machine
with MacOS 12.3.1, a 2GHz Quad-Core Intel Core i5 proces-
sor, and 16GB 3733 MHz LPDDR4X RAM. The algorithms
were implemented in the JAVA within IntelliJ Idea IDE.

In the subsequent section, we will use a straightforward
system, String Process, as our running example to explain the
entire procedure involved in executing the TCO processes.
This particular system was chosen for its simplicity and the
ease with which it allows us to showcase the various steps
and strategies involved in our optimisation processes.

We will demonstrate how the AgileUML has participated
in the optimisation process, the form in which tests are ini-
tially generated, how the TCM and TCP processes optimise
these tests, etc.

168



CHAPTER 7. EVALUATION

Following the running example, the next four sections will
present the results and corresponding analysis of the four case
studies. These results contain details about the original test
suite, the time required for each algorithm, and the overall
overhead for the entire optimisation process. In the context
of the TCM process, the selection rate and the rate of fault
detection loss will be provided. The selection rate measures
the percentage of test cases included in the minimised test
suite relative to the original, calculated by comparing the
count of test cases in both the minimised and the original
suites. Meanwhile, fault detection loss evaluates the reduc-
tion in the ability to detect faults when comparing the min-
imised test suite to the original. As for the TCP process, the
prioritised test suite will be compared against a randomised
approach under the original and modified APFD metrics.

7.3 Running Example: String Process

This section will showcase an illustrative running example
of the OCL-based test case optimisation process using a
straightforward system named String Process. This system
will serve as a practical example to better understand the
various steps involved in the optimisation process. The spec-
ification for this system is shown in Figure 7.2.

This system offers a singular function that conducts a lex-
icographical comparison between two sequences of sq1 and
reversed sq2. If all strings in sq1 precisely match the corre-
sponding strings in sq2, the function will return a value of
0. If, however, a mismatch is found, the function will return
either -1 or 1. Specifically, if the string in sq1 is lexicograph-
ically lesser than the corresponding string in sq2, the result
will be -1. If the contrary is true, the result will be 1.

169



CHAPTER 7. EVALUATION

Figure 7.2: System Specification for String Process

Once the system is loaded within the AgileUML tool, the
corresponding UML diagram is presented as Figure 7.3.

Figure 7.3: Loaded System

The generated JAVA operation to the original specification
is shown as Figure 7.4.

Utilising the function provided as Figure 7.5, we can gen-
erate both mutants and corresponding test cases.

Upon completion of this operation, it is noticeable from
the UML diagram, Figure 7.6, that two mutants have
been created. The original specification result = sq1-
>compareTo(sq2)->reverse();, has been altered to result =
sq1->compareTo(sq2->copy()); and result = sq2->reverse()-

170



CHAPTER 7. EVALUATION

Figure 7.4: JAVA Code to Original Specification

Figure 7.5: AgileUML Function

>compareTo(sq1);.
The corresponding generated JAVA operations to these

two mutants are demonstrated in Figure 7.7.
Initially, the test suite is run against the original speci-

fication to collect the expected behaviour of the operation.
Subsequently, it is executed on the mutated specification(s)
to obtain the respective outcome(s) and determine if the mu-
tant(s) have been identified.

In the context of OCL, which is based on an object-
oriented system, different instances of a class can yield varied
results for a specific function, even when the input param-
eters are the same. Given that the String Process system
contains only one class without any attributes, a single class
instance, app8x_0, is generated in the input file, as can be
seen in Figure 7.8.

171



CHAPTER 7. EVALUATION

Figure 7.6: Updated UML Diagram

Figure 7.7: JAVA Code to Mutated Specifications

Figure 7.8: Class Instance

172



CHAPTER 7. EVALUATION

In discussing the correct or expected system outputs, in
some cases, there is an objective correct result to compare
against. In particular, there is a known correct result with
mathematical functions such as factorial or combinatorial.
For code generators such as UML2PY, one check on correct-
ness is that the target code compiles. Otherwise, the output
from the original specification may serve as the correct result.

The test cases at the functional level are constructed us-
ing the boundary value of each parameter and the various
combinations of these parameters. In this example, there
are 25 test cases have been constructed. When we have the
input file, we can use the Tests GUI, Figure 7.9, generated
by AgileUML to perform mutation testing and collect the
corresponding result.

Figure 7.9: Tests GUI

Once we have gathered the mutation testing results, they
can be fed into the TeCO framework to execute the TCO
process. The configuration part of the framework, as pre-
sented in Figure 7.10, only requires the location of the result
file. It allows users the flexibility to customise the optimi-
sation procedures, allowing them to choose between TCM,
TCP, or a combination of both processes, as well as their

173



CHAPTER 7. EVALUATION

preferred algorithms. In this instance, as illustrated in the
figure, both the TCM and TCP processes are being utilised,
with the NSGA-II algorithm assigned to the TCM process
and the GA algorithm given to the TCP process. The eval-
uation metric for this configuration is the modified APFD
metric.

Figure 7.10: TeCO Configuration

Before the commencement of the optimisation process, a
pre-processing step is carried out on the result file. This stage
primarily focuses on separating the result file and extracting
essential information, such as the correlation between test
cases and the mutants they can identify. This data is then
documented and stored in the form of CSV file(s), as illus-
trated in Figure 7.11 (a fragment).

Figure 7.11: CSV File

174



CHAPTER 7. EVALUATION

Once the pre-processing phase is finished, the TeCO frame-
work will carry out the TCO processes based on the user con-
figuration. The resulting log is displayed as seen in Figure
7.12. Alongside the information displayed on the console,
relevant data is also archived in accordance with the corre-
sponding result file path.

Figure 7.12: Test Case Optimisation Result

In regards to the TCM process, the most critical informa-
tion displayed on the console is the rate of selection along
with the corresponding selected test cases. The fault (muta-
tion) detection rate for both the original and minimised test
suites will also be demonstrated.

Simultaneously, for the TCP process, the initial APFD
value according to the assessment metric is displayed. Details
of the prioritised test suite and its corresponding APFD value
will be compared to a randomised approach. To compare the
differences between the original and modified metrics, we will
also present the original APFD value for the prioritised test

175



CHAPTER 7. EVALUATION

suite in this instance.
In the following four sections, the experiment results for

the corresponding case study will be demonstrated and anal-
ysed.

7.4 Case Study 1: Bond

This section provides a comprehensive overview of the ex-
perimental results of the first case study, Bond, available in
Appendix B. Subsequent case studies will follow a similar
structure in presentation. Table 7.2 details the Bond system,
including the names of the operations, the size of the faults
(mutants), the size of the original test suite (directly gener-
ated by AgileUML), the corresponding original and modified
APFD values and the fault detection rate. Within the Bond
study, these operations are symbolised by codes A1 - A5 for
simplicity.

The concept of faults is tied to the object-oriented nature
of OCL, where varying class instances can lead to different
outcomes, even with identical input parameters. Therefore,
the fault size is determined as a combination of the mutants
generated for each operation and the specific instances re-
lated to the system specification. For instance, if a specific
class has m instances and there are n mutated specifications
for a given operation, then the fault size can be determined
by multiplying m by n, yielding m × n. For the Bond study,
625 unique instances were constructed, considering the class
attributes, then resulting in the fault size is always the mul-
tiplication of 625 (like m in the example). Due to the lim-
itation of space, all data will be retained to a maximum of
four decimal places. The fault detection rate is presented as
a ratio, not in percentage form.

176



CHAPTER 7. EVALUATION

Table 7.2: Bond Case Study Details

Name Fault Test APFD APFDm Detection
A1 bisection 1250 64 0.9399 0.9399 1
A2 discount 1250 80 0.9187 0.9187 1
A3 macaulayDuration 1875 4 0.6376 0.6836 0.6853
A4 timeDiscount 1250 80 0.9187 0.9187 1
A5 value 1875 4 0.7389 0.8186 0.8186

Table 7.3: TCM Results for Bond

Name A1 A2 A3 A4 A5
NSGA-II
Selection Rate 43.5937 43.225 50 43.25 50
Detection Loss 0 0 0 0 0

Time (ms) 3600.38 5901.3 6251.02 5786.12 6304.36
PSO
Selection Rate 41.8437 42.1 50 42.025 50
Detection Loss 0 0 0 0 0

Time (ms) 389064.74 620476.86 558595.36 601616.8 567772.34
Cuckoo Search
Selection Rate 43.9062 43.65 50 44.3 50
Detection Loss 0 0 0 0 0

Time (ms) 411514.58 664105.18 570286.5 656759.94 604004.28
SPEA2
Selection Rate 41.7812 41.95 34 42.025 34
Detection Loss 0 0 0 0 0

Time (ms) 189250.94 304152.68 283929 296608.92 238486.88
MOEA/D
Selection Rate 41.375 41.75 50 41.8 50
Detection Loss 0 0 0 0 0

Time (ms) 4037.62 6348.64 5758.34 6042.38 6061.78

177



CHAPTER 7. EVALUATION

Table 7.3 displays the average outcomes when executing
the TCM process exclusively. Within the table, details are
provided for each algorithm, including the selection rate,
fault detection loss rate, and time consumed in milliseconds.
The selection rate and fault detection loss rate are presented
in percentages.

Figure 7.13: Bond: TCM Distribution

It is observable that NSGA-II and MOEA/D are the most
compatible algorithms for the TCM process under evaluation
for time usage, PSO and Cuckoo Search are the slowest ones,
and SPEA2 is in the middle of these groups. Figure 7.13 dis-
plays the distribution of the selection rate for the minimised
test suite for each minimisation algorithm. In the chart pre-
sented, each group of plots corresponds to a distinct opera-
tion within the system specification. For a specific group, five
colours can be observed, with each one representing a differ-
ent minimisation algorithm. These algorithms are sequenced
as NSGA-II (blue), PSO (orange), Cuckoo Search (yellow),
SPEA2 (green), and MOEA/D (red) for the TCM context.
In the remaining TCM distribution figures, the colour scheme
remains consistent with what we have used here. However,
if the deviation is slight, the colour of the plot might blend

178



CHAPTER 7. EVALUATION

into the grey border. Observing this chart, it is noticeable
that, except for operations A3 and A5 for the SPEA2 algo-
rithm, the minimisation process consistently exhibits a stable
performance with only slight deviations across 50 executions.

Table 7.4 details the results of the TCP process for the
Bond case study. The table is segmented into five distinct
parts, each representing a unique prioritisation algorithm.
Within each part, details are provided for both the origi-
nal and modified APFD metrics. These details include the
prioritised results, the corresponding random results for the
same metric, and the time consumption for the prioritisation
process.

From the prioritisation results table, it can be informally
but clearly observed that in the Bond case study, GA consis-
tently performs the best in terms of time usage. The PSO,
Firefly, and Cuckoo Search algorithms share a similar level
of time consumption, while the Fish School algorithm always
takes the longest.

For the specific operation A5, the analysis reveals that
the optimised test suite has the same evaluation outcome
under both the original and modified APFD metrics. This
scenario arises when the original test suite is already arranged
in an optimal testing sequence, thus leaving no possibility
for enhancement. However, such an optimal condition is not
always achievable with every generated test suite. Therefore,
we conducted further comparisons between the prioritised
test suite and a randomly generated approach, which will be
demonstrated in the following.

Similarly to the previous figure, Figure 7.14 and Figure
7.15 display the distribution of APFD value for the priori-
tised test suite under the original and modified metric. Much
like the earlier distribution chart for the TCM process, each

179



CHAPTER 7. EVALUATION

Table 7.4: TCP Results for Bond

Name A1 A2 A3 A4 A5
GA

APFD 0.9886 0.9935 0.6383 0.9937 0.7389
Random 0.8844 0.9491 0.5863 0.9376 0.7050

Time (ms) 2194.48 2140.52 7097.42 2099.76 6136.56
APFDm 0.9947 0.9996 0.6843 0.9996 0.8186
Random 0.8980 0.9479 0.6078 0.9444 0.7587

Time (ms) 2188.06 2169.42 7119.42 2103.9 6158.28
PSO

APFD 0.9886 0.9932 0.6383 0.9937 0.7389
Random 0.9002 0.9393 0.5907 0.9437 0.6742

Time (ms) 139222.88 162822.88 416150.68 159067.42 377595.78
APFDm 0.9946 0.9994 0.6843 0.9996 0.8186
Random 0.8979 0.9480 0.6138 0.9393 0.7207

Time (ms) 220400.08 279079.52 487119.32 261134.08 433921.2
Firefly

APFD 0.9881 0.9930 0.6383 0.9937 0.7389
Random 0.8934 0.9460 0.6043 0.9621 0.7022

Time (ms) 161535.12 175901.16 371644.08 168485.08 333263.42
APFDm 0.9944 0.9996 0.6843 0.9994 0.8186
Random 0.8973 0.9463 0.6279 0.9437 0.7531

Time (ms) 159063.8 179948.38 372078.62 167928.7 324446.2
Fish School

APFD 0.9886 0.9930 0.6383 0.9937 0.7389
Random 0.8864 0.9360 0.5968 0.9365 0.6869

Time (ms) 1130607.32 1052639.54 2738217.84 1043040.8 2337481.4
APFDm 0.9947 0.9994 0.6843 0.9996 0.8186
Random 0.8919 0.9453 0.6121 0.9402 0.7151

Time (ms) 1272115.84 1247468.78 3443070.7 1237350.02 2901368.06
Cuckoo Search

APFD 0.9886 0.9932 0.6383 0.9937 0.7389
Random 0.9044 0.9373 0.5938 0.9555 0.6835

Time (ms) 219088.6 271409.22 476489.88 255396.94 420470.66
APFDm 0.9946 0.9996 0.6843 0.9994 0.8186
Random 0.8979 0.9480 0.6138 0.9393 0.7207

Time (ms) 220398.2 279083.04 487121.74 261137.52 433923.96

180



CHAPTER 7. EVALUATION

Figure 7.14: Bond: TCP Distribution under Original APFD Metric

Figure 7.15: Bond: TCP Distribution under Modified APFD Metric

181



CHAPTER 7. EVALUATION

Table 7.5: Bond: Comparison between Random Approach (p-value)

Name A1 A2 A3 A4 A5
GA

APFD 2.7277e-19 1.5166e-16 6.8667e-16 7.2112e-17 1.4235e-08
APFDm 1.3585e-19 7.9893e-17 6.3002e-17 9.7413e-14 1.1706e-20

PSO
APFD 3.3081e-20 1.1621e-16 6.5652e-15 2.3051e-16 2.5726e-09
APFDm 2.3433e-19 3.0667e-17 6.0886e-17 2.1413e-16 2.0421e-20

Firefly
APFD 1.1888e-18 6.5921e-15 1.9553e-14 2.8077e-14 1.4137e-08
APFDm 6.0254e-19 1.0714e-18 5.9916e-17 4.3793e-16 1.1823e-20

Fish School
APFD 3.3071e-20 3.6648e-17 2.0076e-14 1.9882e-17 1.6966e-07
APFDm 3.3101e-20 2.1194e-18 2.0361e-14 6.2622e-17 2.5216e-11

Cuckoo Search
APFD 4.4468e-19 3.2102e-17 6.6073e-15 4.7601e-14 8.0996e-07
APFDm 2.3433e-19 1.8155e-17 6.0886e-17 3.6391e-16 2.0421e-20

group of plots corresponds to a specific operation, and each
colour represents a distinct prioritisation algorithm. How-
ever, the sequence of these algorithms within each group has
shifted to GA (blue), PSO (orange), Firefly (yellow), Fish
School (green), and Cuckoo Search (red). In the remaining
TCP distribution figures, the same as the TCM figures, the
colour scheme remains consistent with what we have used
here. If the deviation is minor, the colour of each plot might
be blurred by the grey border. From the figures, the results
demonstrate all algorithms are stable during the prioritisa-
tion process under the corresponding APFD metric.

We performed the non-parametric Wilcoxon test on the
original and modified APFD metrics to verify a significance
level of 5%, with the null hypothesis that the observed differ-
ences between the prioritised test suite and random approach
are not statistically significant. The results are shown in Ta-
ble 7.5. The results show that the proposed prioritisation
algorithms always perform better than the random approach.

Table 7.6 combines the TCM (NSGA-II) and TCP (GA)

182



CHAPTER 7. EVALUATION

Table 7.6: TCO Results for Bond

Name A1 A2 A3 A4 A5
Selection Rate 43.5937 43.2 50 42.975 50
Detection Loss 0 0 0 0 0

APFD 0.9645 0.9843 0.5913 0.9836 0.6593
APFDm 0.9781 0.9986 0.6833 0.9979 0.8186
Random 0.8034 0.9016 0.6714 0.9042 0.6807

Time (ms) 2037.2 1940.76 5045.76 1916.94 4506.9
Overhead 42270.96 ms

processes together and includes the average selection rate,
fault detection loss rate, the original APFD value, modified
APFD value for the optimised test suite and the modified
APFD value for the random approach. For the TCO process,
we initially applied the TCM process on the original test
suite, followed by the TCP process. We collected the time
expense for the TCP process on the minimised test suite to
validate whether the TCM process could benefit the TCP
process in terms of time usage. The Overhead line captures
the average total overhead, encompassing time allocations for
generating test cases and mutants, processing fault detection
information, and the operational time for the NSGA-II and
GA for all operations within the corresponding case study.

In order to check whether the TCM process could benefit
the TCP process in terms of time usage, we also conduct the
non-parametric Wilcoxon test on the time usage for the TCP
process, and the results are shown in Table 7.7. The results
illustrate that within this case study, the prioritisation time
for minimised test suites is always less than the original one.

It is reasonable to deliver these results since the TCM pro-
cess will decrease the search space of the TCP process, en-
hancing overall efficiency.

We utilised five different algorithms for both the TCM
and TCP processes with the intent of identifying which one

183



CHAPTER 7. EVALUATION

Table 7.7: Bond: Comparison of TCP Time after Minimisation (p-value)

Name p-value
A1 1.3894e-13
A2 2.6998e-15
A3 7.0581e-18
A4 2.4533e-13
A5 7.0644e-18

Table 7.8: Bond: Rank for TCM Algorithms

Name A1 A2 A3 A4 A5
NSGA-II b b b b b

PSO a a b a b
Cuckoo Search b b b c b

SPEA2 a a a a a
MOEA/D a a b a b

performed best in terms of effectiveness. To determine this,
we conducted pairwise comparisons following Kruskal-Wallis
and Dunn’s test. The results are shown in Table 7.8 - 7.10,
with significant differences between the approaches denoted
by different letters within the tables. Specifically, Table 7.8
represents the results for the TCM process, Table 7.9 displays
the results for the TCP process under the original APFD
metric, and Table 7.10 illustrates the results for the TCP
process employing the modified APFD metric.

In the comparative analysis of optimisation algorithms
across four case studies, the letters found in the result ta-
bles categorise the algorithms by their effectiveness. Distinct
letters between two methods signify a significant difference
in their effectiveness (with a p-value < 0.05). Conversely,
when two methods are assigned the same letter(s), it indi-
cates that the difference in their performances is not statisti-
cally significant. Algorithms associated with letters closer to
the beginning of the alphabet exhibit superior performance.

From the information in Table 7.8, for this case study, the

184



CHAPTER 7. EVALUATION

Table 7.9: Bond: Rank for TCP Algorithms under Original APFD

Name A1 A2 A3 A4 A5
GA a a a a a
PSO a a a a a

Firefly b a a a a
Fish School a a a a a

Cuckoo Search a a a a a

PSO, SPEA2, and MOEA/D algorithms outperform both
NSGA-II and Cuckoo Search. When considering time con-
sumption as a factor, both NSGA-II and MOEA/D are more
efficient than the other algorithms. Consequently, in the con-
text of this case study, MOEA/D appears to be the most
fitting algorithm for the minimisation process.

Table 7.10: Bond: Rank for TCP Algorithms under Modified APFD

Name A1 A2 A3 A4 A5
GA a a a a a
PSO a a a a a

Firefly a a a a a
Fish School b a a a a

Cuckoo Search a a a a a

From Table 7.9 and Table 7.10, we observe that in most
cases, these prioritisation algorithms do not exhibit statisti-
cally significant differences under both original and modified
APFD metrics. However, examining the previous table re-
veals that there are noticeable variations in time, with GA
being identified as the fastest algorithm.

7.5 Case Study 2: Interest Rate

Our second case study is called Interest Rate, and the de-
tailed system specification is in Appendix C. Table 7.11 de-
tails this system. Within the Interest Rate study, these op-
erations are symbolised by codes B1 - B2 for simplicity. For

185



CHAPTER 7. EVALUATION

Table 7.11: Interest Rate Case Study Details

Name Fault Test APFD APFDm Detection
B1 nelsonseigal 9 243 0.9727 0.9727 1
B2 ns 3 243 0.4190 0.4183 0.6666

Table 7.12: TCM Results for Interest Rate

Name B1 B2
NSGA-II
Selection Rate 43.7860 42.4279
Detection Loss 0 0

Time (ms) 146.44 141.52
PSO
Selection Rate 40.3292 40.8312
Detection Loss 0 0

Time (ms) 5656.34 5839.9
Cuckoo Search
Selection Rate 40.5185 42.9053
Detection Loss 0 0

Time (ms) 19261.5 18769.02
SPEA2
Selection Rate 44.5102 36.8971
Detection Loss 0 0

Time (ms) 5670.82 4044.08
MOEA/D
Selection Rate 43.5720 43.4074
Detection Loss 0 0

Time (ms) 150.2 140.9

this case study, there only one class instance is constructed.
Similarly, Table 7.12 displays the average outcomes when

only executing the TCM process for this case study. The
selection rate and fault detection loss rate are presented in
percentages, and the time consumption is measured in mil-
liseconds.

From the examination of the result table, the situation is
akin to what was observed in the Bond case study. NSGA-II
and MOEA/D appear as the most time-efficient algorithms
for the TCM process under evaluation. In contrast, the
Cuckoo Search algorithm became the slowest in this context.

186



CHAPTER 7. EVALUATION

Meanwhile, PSO and SPEA2 shared a similar level of time
consumption.

Figure 7.16 displays the distribution of the selection rate
for the minimised test suite for each minimisation algorithm
across 50 executions. The distribution chart has two groups
of plots because this case study encompasses only two opera-
tions. For the TCM process across all four case studies, each
colour within the respective group corresponds to a distinct
minimisation algorithm, ordered as NSGA-II, PSO, Cuckoo
Search, SPEA2, and MOEA/D. Generally, the minimisation
process shows a steady performance, marked by only minor
fluctuations.

Figure 7.16: Interest Rate: TCM Distribution

Table 7.13 details the results of the TCP process for the
Interest Rate case study.

In examining the prioritisation results from the Interest
Rate case study, the GA algorithm clearly leads the group,
consistently delivering the fastest performance in terms of
time usage. The Fish School algorithm always takes the
longest time to complete the tasks. Positioned between
these two extremes, the Firefly and Cuckoo Search algorithms
demonstrate similar time consumption levels, while the PSO

187



CHAPTER 7. EVALUATION

Table 7.13: TCP Results for Interest Rate

Name B1 B2
GA

APFD 0.9974 0.6659
Random 0.9794 0.6061

Time (ms) 77.44 169.3
APFDm 0.9993 0.6666
Random 0.9820 0.6111

Time (ms) 66.98 81.94
PSO

APFD 0.9974 0.6659
Random 0.9795 0.6065

Time (ms) 14648.9 14872.48
APFDm 0.9993 0.6666
Random 0.9828 0.6076

Time (ms) 14527.96 14788.58
Firefly

APFD 0.9974 0.6659
Random 0.9775 0.6007

Time (ms) 179196.32 179719.54
APFDm 0.9993 0.6666
Random 0.9818 0.6070

Time (ms) 176726.8 177014.84
Fish School

APFD 0.9974 0.6659
Random 0.9810 0.6052

Time (ms) 1828569.78 1740017.34
APFDm 0.9993 0.6666
Random 0.9807 0.6028

Time (ms) 1926360.58 1814902
Cuckoo Search

APFD 0.9974 0.6659
Random 0.9812 0.5939

Time (ms) 230349.88 231581.74
APFDm 0.9993 0.6666
Random 0.9850 0.6066

Time (ms) 232736.06 233680.7

188



CHAPTER 7. EVALUATION

operates at a faster pace.

Figure 7.17: Interest Rate: TCP Distribution under Original APFD Metric

Figure 7.17 and Figure 7.18 display the distribution of
APFD value for the prioritised test suite under the origi-
nal and modified metric. For the TCP process in all case
studies except the fourth, each colour within the designated
group represents a specific prioritisation algorithm sequenced
as GA, PSO, Firefly, Fish School, and Cuckoo Search. Based
on the figures, the results reveal consistent stability across
all algorithms during the prioritisation process, as evaluated
under the corresponding APFD metric.

We also performed the non-parametric Wilcoxon test on
the original and modified APFD metrics to verify a signifi-
cance level of 5%, with the null hypothesis that the observed
differences between the prioritised test suite and random ap-
proach are not statistically significant for this case study.
The results are shown in Table 7.14. The results show that
the proposed prioritisation algorithms always perform better
than the random approach.

Table 7.15 shows the collected results when we combine
the TCM and TCP process jointly.

189



CHAPTER 7. EVALUATION

Figure 7.18: Interest Rate: TCP Distribution under Modified APFD Metric

Table 7.14: Interest Rate: Comparison between Random Approach (p-value)

Name B1 B2
GA

APFD 6.6082e-20 5.9347e-18
APFDm 3.3003e-20 1.6842e-18

PSO
APFD 1.2546e-19 6.9008e-17
APFDm 3.3023e-20 1.6759e-18

Firefly
APFD 1.2571e-19 3.2877e-20
APFDm 3.3052e-20 1.6819e-18

Fish School
APFD 1.2535e-19 4.6465e-19
APFDm 3.2945e-20 1.6800e-18

Cuckoo Search
APFD 6.0962e-20 4.6517e-19
APFDm 3.3033e-20 4.6231e-19

Table 7.15: TCO Results for Interest Rate

Name B1 B2
Selection Rate 44.0823 42.6666
Detection Loss 0 0

APFD 0.9942 0.6650
APFDm 0.9984 0.6666
Random 0.9566 0.5304

Time (ms) 26.64 28.26
Overhead 327.88 ms

190



CHAPTER 7. EVALUATION

Table 7.16: Interest Rate: Comparison of TCP Time after Minimisation (p-value)

Name p-value
B1 5.5686e-16
B2 1.6016e-16

Table 7.17: Interest Rate: Rank for TCM Algorithms

Name B1 B2
NSGA-II b c

PSO a b
Cuckoo Search a cd

SPEA2 b a
MOEA/D b d

To investigate if the TCM process could lead to time-
saving benefits for the TCP process, we conducted a non-
parametric Wilcoxon test on the time usage for the TCP
process. The results, displayed in Table 7.16, show that in
this case study, the prioritisation time for minimised test
suites is consistently less than that for the original ones.

In order to compare or rank these TCM and TCP
algorithms, we conducted pairwise comparisons following
Kruskal-Wallis and Dunn’s tests. The results are shown in
Table 7.17 - 7.19, with significant differences between the
approaches denoted by different letters within the tables.

From Table 7.17, it becomes apparent that definitively de-
termining the best algorithm for the TCM process is a com-
plex task. For instance, while the Cuckoo Search algorithm
exhibits outstanding performance in B1, its efficacy reduces
in B2, leading to a less favourable outcome. An approach can
have more than one letter. As an example, looking at the re-
sults for B2 operation, we can tell that Cuckoo Search is
not different from MOEA/D, and it is also not different from
NSGA-II, even though NSGA-II is different from MOEA/D.

Upon reviewing Table 7.18 and Table 7.19, and combining

191



CHAPTER 7. EVALUATION

Table 7.18: Interest Rate: Rank for TCP Algorithms under Original APFD

Name B1 B2
GA a a
PSO a a

Firefly a a
Fish School a a

Cuckoo Search a a

Table 7.19: Interest Rate: Rank for TCP Algorithms under Modified APFD

Name B1 B2
GA a a
PSO a a

Firefly a a
Fish School a a

Cuckoo Search a a

the findings with the results from the Bond case study, we
observed that in most scenarios, the five prioritisation algo-
rithms do not show statistically significant differences under
both the original and modified APFD evaluation metrics. As
a result, in the subsequent two case studies, we will refrain
from reporting the rankings between these algorithms unless
a significant difference is noted for the specific operation.

7.6 Case Study 3: MathLib

Our third case study is called MathLib, and the detailed
system specification is in Appendix D. Table 7.20 details this
system. Within the Interest Rate study, these operations are
symbolised by codes C1 - C15 for simplicity. For this case
study, there only one class instance is constructed. More
details about the system are available in [14].

Similarly, Table 7.21 - 7.23 demonstrates the average re-
sults for this case study when only the TCM process is im-
plemented. The metrics displayed include the selection rate
and the fault detection loss rate, both represented as percent-

192



CHAPTER 7. EVALUATION

Table 7.20: MathLib Case Study Details

Name Fault Test APFD APFDm Detection
C1 acosh 3 3 0.6111 0.7222 1
C2 asinh 4 5 0.9 1 1
C3 atanh 4 5 0.6 0.6 0.75
C4 bitwiseAnd 8 25 0.32 0.315 0.75
C5 bitwiseNot 3 5 0.6333 0.6333 1
C6 bytes2integer 6 7 0.2142 0.1785 0.5
C7 combinatorial 5 20 0.155 0.14 0.4
C8 decimal2binary 2 5 0.5 0.5 1
C9 decimal2bits 2 5 0.8 0.85 1
C10 decimal2hex 2 5 0.9 1 1
C11 decimal2oct 2 5 0.8 0.85 1
C12 decimal2octal 2 5 0.9 1 1
C13 integer2bytes 3 5 0.4333 0.4666 1
C14 modInverse 5 20 0.345 0.34 0.8
C15 modPow 4 100 0.795 0.795 1

ages, along with the time consumption, which is measured in
milliseconds.

Analysing the results table shows similarities to obser-
vations made in earlier case studies. The NSGA-II and
MOEA/D algorithms consistently stand out as the most
time-effective options for the TCM process. The Cuckoo
Search algorithm tends to be the slowest, with the excep-
tion of the C5 operation. A particularly interesting finding
in this study is the significant variation in time usage by the
SPEA2 algorithm across different operations.

Figure 7.19 - 7.21 display the distribution of the selec-
tion rate for the minimised test suite for each minimisation
algorithm across 50 executions.

From the presented figures, it can be observed that the
performances of the PSO and MOEA/D algorithms are con-
sistently stable across all 15 operations. The Cuckoo Search
algorithm exhibits occasional slight instability for the opera-
tions C4 and C7. NSGA-II generally maintains stability but
exhibits exceptions in C4, C6, C7, and C14. Interestingly, the

193



CHAPTER 7. EVALUATION

Table 7.21: TCM Results for MathLib (1)

Name C1 C2 C3 C4 C5
NSGA-II
Selection Rate 33.3333 60 60 34.8 20
Detection Loss 0 0 0 0 0

Time (ms) 17.42 13.98 15.1 21.82 14.9
PSO
Selection Rate 66.6666 60 60 44 60
Detection Loss 0 0 0 0 0

Time (ms) 287.48 320.78 306.86 722.54 297.64
Cuckoo Search
Selection Rate 66.6666 60 60 45.76 60
Detection Loss 0 0 0 0 0

Time (ms) 431.7 598.58 592.9 2238.58 568.26
SPEA2
Selection Rate 33.3333 33.6 35.6 25.52 20
Detection Loss 0 0 0 0 0

Time (ms) 23.24 6.76 15.12 1668.8 1945.58
MOEA/D
Selection Rate 66.6666 60 60 44 20
Detection Loss 0 0 0 0 0

Time (ms) 23.4 21.5 19.44 31.24 20.16

Table 7.22: TCM Results for MathLib (2)

Name C6 C7 C8 C9 C10
NSGA-II
Selection Rate 33.7142 33 60 60 60
Detection Loss 0 0 0 0 0

Time (ms) 14.72 19.28 14.3 13.18 13.86
PSO
Selection Rate 42.8571 45 60 60 60
Detection Loss 0 0 0 0 0

Time (ms) 348.6 566.16 250.7 266.24 263.42
Cuckoo Search
Selection Rate 43.4285 47 60 60 60
Detection Loss 0 0 0 0 0

Time (ms) 721.24 1692.16 536.34 539.54 535.94
SPEA2
Selection Rate 14.2857 24.8 31.6 34 34
Detection Loss 0 0 0 0 0

Time (ms) 1297 1466.94 408.58 9.7 7.12
MOEA/D
Selection Rate 42.8571 45 60 60 60
Detection Loss 0 0 0 0 0

Time (ms) 20.88 27.7 18.64 20.34 19.42

194



CHAPTER 7. EVALUATION

Table 7.23: TCM Results for MathLib(3)

Name C11 C12 C13 C14 C15
NSGA-II
Selection Rate 60 60 60 31.7 41.84
Detection Loss 0 0 0 0 0

Time (ms) 13.52 14.38 13.9 18.62 42.4
PSO
Selection Rate 60 60 60 45 41
Detection Loss 0 0 0 0 0

Time (ms) 264.92 270.04 269.08 558.78 2114.44
Cuckoo Search
Selection Rate 60 60 60 45 41.54
Detection Loss 0 0 0 0 0

Time (ms) 533.62 529.14 534.22 1718.08 7938.42
SPEA2
Selection Rate 32.4 36.8 32.4 18.2 42.66
Detection Loss 0 0 0 0 0

Time (ms) 8.96 6.14 20.76 1383.72 2714.42
MOEA/D
Selection Rate 60 60 60 45 42.1
Detection Loss 0 0 0 0 0

Time (ms) 19.22 20.72 19.16 27.18 62.26

Figure 7.19: MathLib: TCM Distribution (1)

195



CHAPTER 7. EVALUATION

Figure 7.20: MathLib: TCM Distribution (2)

Figure 7.21: MathLib: TCM Distribution (3)

196



CHAPTER 7. EVALUATION

SPEA2 algorithm is consistently unstable throughout this
case study. Despite efforts to identify the cause, the under-
lying reason for this phenomenon remains unattainable. We
remain hopeful that future research may shed light on this
phenomenon, leaving an open question that may be interest-
ing for future research.

Table 7.24 - 7.26 detail the results of the TCP process for
the MathLib case study.

In the MathLib case study, as reflected in the results tables
and consistent with earlier observations, the GA algorithm
consistently outperforms all other algorithms in terms of time
usage. Following GA, the ranking in time usage becomes
apparent, with PSO coming next, then Firefly, followed by
Cuckoo Search. The Fish School algorithm is once again
found to be the slowest, requiring the most time to complete
the prioritisation task.

In the data presented within the tables, we observe that
certain prioritised test suites achieve a modified APFD value
of 1, meaning that the initial test case identifies all of the
defects or mutants within the system. This occurrence is
not unusual in this specific case study, given that the system
being modelled is largely centred on mathematical computa-
tions. When mutants are constructed for these pure mathe-
matical operators, like altering addition to subtraction, such
mutants tend to be easily killed.

Similar to A5, both C10 and C12 already have an opti-
mal sequence within the original test suite, meaning that the
prioritised test suites do not show any improvement under
the evaluation metric. However, achieving such an optimal
condition within the original test suite is not always possible.
Consequently, we conducted further comparisons between the
prioritised test suite and a random approach, and the com-

197



CHAPTER 7. EVALUATION

Table 7.24: TCP Results for MathLib(1)

Name C1 C2 C3 C4 C5
GA

APFD 0.8333 0.9 0.6990 0.7389 0.9
Random 0.66 0.9 0.6040 0.4745 0.8213

Time (ms) 5.12 3.48 3.82 7.84 3.52
APFDm 1 1 0.7470 0.7497 1
Random 0.8277 1 0.6185 0.4882 0.8806

Time (ms) 5.32 3.78 4.24 10.56 4.4
PSO

APFD 0.8333 0.9 0.6980 0.7388 0.9
Random 0.6488 0.9 0.5950 0.475 0.8280

Time (ms) 41.76 61.58 65.34 527.06 59.2
APFDm 1 1 0.7470 0.7494 1
Random 0.7588 1 0.6245 0.4643 0.9026

Time (ms) 41.36 60.02 64.22 531.04 58.98
Firefly

APFD 0.8333 0.9 0.6970 0.738 0.9
Random 0.6577 0.9 0.6060 0.4742 0.8453

Time (ms) 52.06 79.56 82.6 719.78 69.56
APFDm 1 1 0.7455 0.7491 1
Random 0.7544 1 0.6050 0.4307 0.9206

Time (ms) 50.94 80.3 84.1 740.74 69.64
Fish School

APFD 0.8333 0.9 0.6980 0.7388 0.9
Random 0.6377 0.9 0.6030 0.4712 0.8146

Time (ms) 283.68 400.4 415.14 3166.18 310.88
APFDm 1 1 0.7440 0.7497 1
Random 0.7833 1 0.6135 0.442 0.8886

Time (ms) 283.84 399.72 411 3123.2 311.74
Cuckoo Search

APFD 0.8333 0.9 0.6990 0.7394 0.9
Random 0.6311 0.9 0.6060 0.4538 0.8080

Time (ms) 162.9 247.62 260.32 1643.04 237.82
APFDm 1 1 0.7455 0.7497 1
Random 0.7877 1 0.6255 0.4838 0.8973

Time (ms) 166.42 267.76 274.98 1772.16 265.08

198



CHAPTER 7. EVALUATION

Table 7.25: TCP Results for MathLib(2)

Name C6 C7 C8 C9 C10
GA

APFD 0.4985 0.393 0.9 0.9 0.9
Random 0.4085 0.2254 0.724 0.882 0.476

Time (ms) 4 6.56 3.26 3.26 3.38
APFDm 0.4978 0.3835 1 1 1
Random 0.4042 0.1901 0.836 0.97 0.442

Time (ms) 5.22 8.56 3.98 4.1 4.04
PSO

APFD 0.4971 0.395 0.9 0.9 0.9
Random 0.4271 0.2190 0.716 0.876 0.524

Time (ms) 96.54 385.86 59.98 57.12 56.16
APFDm 0.4957 0.385 1 1 1
Random 0.4307 0.2145 0.814 0.97 0.512

Time (ms) 99.08 383.98 57.66 57.16 58.98
Firefly

APFD 0.4999 0.3838 0.9 0.9 0.9
Random 0.4271 0.2092 0.762 0.878 0.464

Time (ms) 110.32 481.36 69.14 66.98 67.78
APFDm 0.4957 0.3725 1 1 1
Random 0.4021 0.2132 0.8340 0.964 0.528

Time (ms) 112.84 497.1 70.96 68.14 69.78
Fish School

APFD 0.4957 0.395 0.9 0.9 0.9
Random 0.4214 0.2102 0.73 0.878 0.476

Time (ms) 502.44 2030.54 317.88 318.34 317.82
APFDm 0.4957 0.385 1 1 1
Random 0.4149 0.2039 0.775 0.973 0.49

Time (ms) 511.58 1969.44 314.64 318.52 310
Cuckoo Search

APFD 0.4985 0.395 0.9 0.9 0.9
Random 0.4242 0.2048 0.738 0.878 0.504

Time (ms) 345.38 1135.16 234.44 226.56 233.14
APFDm 0.4978 0.385 1 1 1
Random 0.4042 0.1979 0.778 0.97 0.582

Time (ms) 392.9 1329.3 269.22 265.16 263.8

199



CHAPTER 7. EVALUATION

Table 7.26: TCP Results for MathLib(3)

Name C11 C12 C13 C14 C15
GA

APFD 0.9 0.9 0.7 0.7817 0.9924
Random 0.884 0.838 0.5906 0.4252 0.9104

Time (ms) 3.04 3.1 3.38 6.4 20.86
APFDm 1 1 0.7333 0.7987 0.9960
Random 0.973 0.886 0.6386 0.4245 0.9283

Time (ms) 3.78 3.82 4.1 7.9 26.42
PSO

APFD 0.9 0.9 0.7 0.7785 0.9925
Random 0.882 0.822 0.6026 0.4627 0.9099

Time (ms) 56.78 61.04 66.38 375.6 3154.16
APFDm 1 1 0.7333 0.7987 0.9962
Random 0.97 0.923 0.6346 0.4462 0.9153

Time (ms) 57.54 62.1 66.96 383.06 3210.2
Firefly

APFD 0.9 0.9 0.7 0.7713 0.9920
Random 0.886 0.832 0.6106 0.4216 0.9015

Time (ms) 67.88 70.28 71.46 478.42 13577.78
APFDm 1 1 0.7333 0.7975 0.9957
Random 0.982 0.899 0.6253 0.3855 0.9055

Time (ms) 69.26 70.96 71.86 492.22 14224.48
Fish School

APFD 0.9 0.9 0.7 0.7753 0.9925
Random 0.888 0.818 0.6026 0.4263 0.9132

Time (ms) 314.98 304.42 320.04 1919.96 78026.38
APFDm 1 1 0.7333 0.7975 0.9962
Random 0.949 0.884 0.652 0.405 0.9083

Time (ms) 315.78 306.58 330.26 1895.3 77912.18
Cuckoo Search

APFD 0.9 0.9 0.7 0.7817 0.9925
Random 0.872 0.856 0.5719 0.4476 0.9098

Time (ms) 227.66 230.86 233.1 1131.64 15586.84
APFDm 1 1 0.7333 0.7987 0.9962
Random 0.979 0.913 0.616 0.4038 0.9046

Time (ms) 260.26 259.82 260.6 1290.6 17303.24

200



CHAPTER 7. EVALUATION

parison will be demonstrated later.
Figure 7.22 - 7.24 and Figure 7.25 - 7.27 display the distri-

bution of APFD value for the prioritised test suite under the
original and modified metric. The figures indicate that all the
algorithms used in the prioritisation process maintain consis-
tent stability, with only occasional fluctuations observed.

Figure 7.22: MathLib: TCP Distribution under Original APFD Metric (1)

Figure 7.23: MathLib: TCP Distribution under Original APFD Metric (2)

We also performed the non-parametric Wilcoxon test on
the original and modified APFD metrics to verify a signifi-
cance level of 5%, with the null hypothesis that the observed

201



CHAPTER 7. EVALUATION

Figure 7.24: MathLib: TCP Distribution under Original APFD Metric (3)

Figure 7.25: MathLib: TCP Distribution under Modified APFD Metric (1)

202



CHAPTER 7. EVALUATION

Figure 7.26: MathLib: TCP Distribution under Modified APFD Metric (2)

Figure 7.27: MathLib: TCM Distribution under Modified APFD Metric (3)

203



CHAPTER 7. EVALUATION

Table 7.27: MathLib: Comparison between Random Approach (p-value) (1)

Name C1 C2 C3 C4 C5
GA

APFD 3.5577e-12 1 1.6850e-15 2.8645e-19 1.0375e-09
APFDm 1.4457e-08 1 1.4205e-13 7.3740e-19 4.3253e-10

PSO
APFD 9.8785e-12 1 2.7943e-17 3.0815e-19 3.9898e-10
APFDm 6.7074e-11 1 9.3113e-11 4.2020e-18 6.0835e-09

Firefly
APFD 4.3051e-10 1 4.6714e-14 2.8188e-18 7.3957e-08
APFDm 6.7798e-11 1 3.0942e-13 3.8581e-19 7.3823e-08

Fish School
APFD 1.2851e-12 1 4.7617e-14 1.3074e-18 2.3531e-11
APFDm 4.3569e-10 1 2.0696e-12 7.1526e-19 8.358e-12

Cuckoo Search
APFD 4.6598e-13 1 1.3963e-15 7.0003e-19 1.6685e-10
APFDm 6.7284e-11 1 1.2587e-11 4.7288e-20 1.5584e-10

differences between the prioritised test suite and random ap-
proach are not statistically significant for this case study.
The results are shown in Table 7.27 - 7.29. The results show
that the proposed TCP processes always perform better than
the random approach except C2 and some parts of C6.

When we delve into the details of C2, we discover that
all the generated test cases within the original test suite can
detect the same mutants exactly. This leads to a situation
where, no matter the sequence of execution, the result will be
absolutely the same. Therefore, the evaluation metrics reveal
no improvement in this instance, and even when compared
to a random approach, the situation remains unchanged with
no enhancement. The situation with C6 arises because mul-
tiple orders of test cases can reach an optimal state. In some
instances, there may be no significant differences when com-
pared to a random approach.

Table 7.30 - 7.32 shows the collected results when we com-
bine the TCM and TCP process concurrently. Within the
tables, certain cells are denoted by "-", indicating that fol-

204



CHAPTER 7. EVALUATION

Table 7.28: MathLib: Comparison between Random Approach (p-value) (2)

Name C6 C7 C8 C9 C10
GA

APFD 6.5763e-05 4.2157e-19 1.2073e-12 1.7954e-03 5.8785e-15
APFDm 2.8514e-01 1.6603e-19 1.7046e-10 9.3299e-04 1.7981e-16

PSO
APFD 1.4524e-02 1.2342e-19 3.3858e-12 2.4435e-04 5.5215e-14
APFDm 5.513e-01 3.257e-20 4.285e-10 9.3299e-04 5.9774e-15

Firefly
APFD 6.3786e-02 4.431e-18 4.0094e-10 4.8008e-04 5.3726e-14
APFDm 3.7932e-02 3.1473e-15 6.135e-09 2.4435e-04 5.9264e-15

Fish School
APFD 5.4412e-11 .236e-20 1.3505e-13 4.8008e-04 5.9917e-15
APFDm 2.0518e-07 1.2378e-19 7.0643e-11 1.7954e-03 1.8407e-16

Cuckoo Search
APFD 7.1895e-02 1.2353e-19 2.453e-11 4.8008e-04 6.1069e-15
APFDm 7.3593e-02 3.1709e-20 1.2169e-12 9.3299e-04 1.6095e-13

Table 7.29: MathLib: Comparison between Random Approach (p-value) (3)

Name C11 C12 C13 C14 C15
GA

APFD 3.4255e-03 1.7108e-06 4.7475e-14 9.2924e-19 4.7016e-20
APFDm 9.3852e-04 7.353e-08 2.5343e-11 7.9089e-19 1.1096e-19

PSO
APFD 1.7954e-03 3.144e-08 4.3617e-13 3.2716e-18 3.2801e-20
APFDm 9.3299e-04 7.5629e-06 1.4399e-13 3.8972e-17 3.2936e-20

Firefly
APFD 6.4895e-03 7.5941e-06 2.5101e-11 1.143e-17 4.2278e-19
APFDm 1.2231e-02 8.1249e-07 2.6035e-11 7.0318e-20 3.4608e-19

Fish School
APFD 1.2231e-02 3.2195e-08 1.2366e-12 2.7159e-17 3.2907e-20
APFDm 6.8688e-06 7.4166e-08 1.1447e-12 3.7612e-19 3.281e-20

Cuckoo Search
APFD 6.1035e-05 6.4229e-05 4.5655e-16 3.4939e-19 3.2685e-20
APFDm 6.4895e-03 1.7276e-06 5.2238e-14 3.0784e-18 3.2907e-20

205



CHAPTER 7. EVALUATION

Table 7.30: TCO Results for MathLib (1)

Name C1 C2 C3 C4 C5
Selection Rate 33.3333 60 60 35.92 20
Detection Loss 0 0 0 0 0

APFD - 0.8333 0.6650 0.7201 -
APFDm - 1 0.7475 0.7484 -
Random - 1 0.5900 0.4550 -

Time (ms) 0 3.46 3 4.12 0
Overhead 336.14 ms

Table 7.31: TCO Results for MathLib (2)

Name C6 C7 C8 C9 C10
Selection Rate 35.4285 33.8000 60 60 60
Detection Loss 0 0 0 0 0

APFD 0.37 0.3849 0.8333 0.8333 0.8333
APFDm 0.37 0.3547 1 1 1
Random 0.37 0.1959 0.935 1 0.5066

Time (ms) 2.8108 3.64 3.16 2.88 3.18
Overhead 336.14 ms

lowing the TCM process, only a single test case remains.
Consequently, the TCP process becomes redundant and un-
necessary in such instances.

In the results of the TCO, we found that certain cases,
such as C9 and C11, resemble the previously mentioned C2.
In these instances, the test cases in the prioritised suite all
have the same ability to detect mutants, meaning that the
minimisation process did not select the fewest necessary test
cases. Consequently, the prioritisation of the minimised suite

Table 7.32: TCO Results for MathLib (3)

Name C11 C12 C13 C14 C15
Selection Rate 60 60 60 31.9 41.78
Detection Loss 0 0 0 0 0

APFD 0.8333 0.8333 0.5 0.7451 0.9815
APFDm 1 1 0.5555 0.7974 0.9902
Random 1 0.8483 0.5555 0.4431 0.8535

Time (ms) 2.66 2.92 2.68 3.38 8.92
Overhead 336.14 ms

206



CHAPTER 7. EVALUATION

Table 7.33: MathLib: Comparison of TCP Time after Minimisation (p-value)

Name p-value Name p-value Name p-value
C1 - C6 2.0754e-12 C11 6.9555e-05
C2 3.4163e-02 C7 1.5432e-16 C12 2.9457e-04
C3 7.3789e-05 C8 4.3427e-03 C13 4.3644e-06
C4 3.0111e-16 C9 9.6766e-07 C14 7.6147e-16
C5 - C10 6.7426e-07 C15 9.5572e-18

became redundant. This occurrence may be attributed to the
fact that the minimisation process is a multi-objective opti-
misation process, with the (modified) APFD metric chosen
as one of its goals. Including the number of test cases within
the equation for this metric may generate conflicting objec-
tives during the minimisation process, and then leading to
this situation. An interesting insight from this observation is
the potential for future research, focusing on improving the
multi-objective optimisation process.

To explore whether the TCM process might result in time-
saving advantages for the TCP process, we performed a non-
parametric Wilcoxon test on the time consumed during the
TCP process. The findings, illustrated in Table 7.33, re-
veal that in this particular case study, the time required for
prioritising the minimised test suites is consistently shorter
than that for the original ones, except for the cases where
prioritisation process was deemed unnecessary.

In order to compare or rank these TCM algorithms,
we conducted pairwise comparisons following Kruskal-Wallis
and Dunn’s tests. The results are shown in Table 7.34 and
7.35 , with significant differences between the approaches de-
noted by different letters within the tables.

From the result tables, we observe that SPEA2 consis-
tently leads the selection rate for the TCM process in the
majority of cases, with the exception of C15. The PSO,

207



CHAPTER 7. EVALUATION

Table 7.34: MathLib: Rank for TCM Algorithms (1)

Name C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
NSGA-II a a b b a b a b b b

PSO b a b c b c b b b b
Cuckoo Search b a b c b c b b b b

SPEA2 a a a a a a a a a a
MOEA/D b a b c a c b b b b

Table 7.35: MathLib: Rank for TCM Algorithms (2)

Name C11 C12 C13 C14 C15
NSGA-II b b b b cd

PSO b b b c a
Cuckoo Search b b b c bc

SPEA2 a a a a e
MOEA/D b b b c de

Cuckoo Search, and MOEA/D algorithms are often grouped
together, except in instances C5 and C15. This grouping
typically demonstrates the lowest effectiveness in terms of
selection rate. NSGA-II exhibits instability in its rankings,
aside from C15, it ranks first four times, three times be-
tween SPEA2 and the aforementioned group, and seven times
within that group. C15 shows a break from the usual pat-
tern, with SPEA2 performing the worst and PSO perform-
ing the best. Despite SPEA2 usually performing the best
in comparison, the dramatic instability in both effectiveness
and efficiency may make users cautious about choosing it for
the minimisation process.

Table 7.36 and Table 7.37 illustrate the comparisons that
reveal significant differences between the proposed prioritisa-
tion algorithms.

In this case study, under the original and modified APFD
metric, the prioritisation algorithms for the three mentioned
operations have significant differences, and it seems the Fire-
fly performs slightly worse than others in these instances.

208



CHAPTER 7. EVALUATION

Table 7.36: MathLib: Rank for TCP Algorithms under Original APFD

Name C6 C7 C15
GA a a a
PSO a a a

Firefly a b b
Fish School b a a

Cuckoo Search a a a

Table 7.37: MathLib: Rank for TCP Algorithms under Modified APFD

Name C6 C7 C15
GA a a a
PSO b a a

Firefly b b b
Fish School b a a

Cuckoo Search a a a

However, for the overall TCP process for this study, all
these prioritisation algorithms have similar effectiveness un-
der the (modified) APFD metric. When also taking time
usage into account, GA appears to exhibit the best overall
performance.

7.7 Case Study 4: UML2PY

Our final case study is UML2PY, and the detailed system
specification is in Appendix E. Table 7.38 details this system.
Within the UML2PY study, these operations are symbolised
by codes D1 - D18 for simplicity. For this case study, 216
class instances are constructed for BasicExpression and one
for Property.

Similarly, Table 7.39 - 7.41 present the average outcomes
from this case study when only executing the TCM process.
The tables display metrics like the selection rate and the
fault detection loss rate, both shown in percentages, and time
consumption, measured in milliseconds.

Examining the results table reveals patterns consistent

209



CHAPTER 7. EVALUATION

Table 7.38: UML2PY Case Study Details

Name Fault Test APFD APFDm Detection
D1 instancesOps 2 2 0.25 0.125 0.5
D2 contextAndObject 648 5 0.3666 0.3666 0.6666
D3 isOclExceptionCreation 2808 5 0.8384 0.9230 0.9230
D4 mapAttributeExpression 864 125 0.5949 0.5934 0.625
D5 mapBasicExpression 1944 125 0.3213 0.3186 0.3333
D6 mapErrorCall 432 25 0.5533 0.5499 0.8333
D7 mapFunctionExpression 6696 125 0.7118 0.7114 0.9032
D8 mapInsertAtFunctionExpression 432 125 0.764 0.764 1
D9 mapIntegerFunctionExpression 1080 125 0.156 0.1528 0.2
D10 mapOperationExpression 864 125 0.708 0.707 0.75
D11 mapReferencedAttributeExpression 648 125 0.3213 0.3186 0.3333
D12 mapSetAtFunctionExpression 432 125 0.764 0.764 1
D13 mapStaticAttributeExpression 216 125 0.9560 0.9560 1
D14 mapStaticOperationExpression 432 125 0.916 0.916 1
D15 mapTypeExpression 4752 5 0.7787 0.8530 0.8939
D16 mapValueExpression 1728 5 0.7 0.7625 0.875
D17 mapVariableExpression 2592 125 0.5413 0.5396 0.5833
D18 noContextnoObject 648 5 0.1 0.0333 0.3333

with earlier case studies. Both NSGA-II and MOEA/D al-
gorithms appear as the most time-efficient for the TCM pro-
cess. In this case study, the PSO algorithm often takes the
longest, with Cuckoo Search being slightly quicker, though
they operate at roughly the same time efficiency level. The
SPEA2 algorithm typically falls between these two groups.
One observation unique to this study is that some opera-
tions demand significantly more time compared to previous
case studies, attributed to the presence of large-scale mu-
tants and test cases. Notably, for the operation D7, the
most time-consuming algorithm, PSO, takes an average of
approximately 27.4 hours to finalise the prioritisation pro-
cess, whereas NSGA-II completes it in roughly 20 minutes.

Figure 7.28 - 7.30 illustrate the distribution of the selec-
tion rate for each minimisation algorithm based on 50 runs.

Based on the displayed figures, most algorithms exhibit
consistent performance across scenarios. However, as ob-
served in earlier case studies, SPEA2 occasionally shows vari-

210



CHAPTER 7. EVALUATION

Table 7.39: TCM Results for UML2PY (1)

Name D1 D2 D3 D4 D5 D6
NSGA-II
Selection Rate 50 40 60 41.776 41.776 43.68
Detection Loss 0 0 0 0 0 0

Time (ms) 12.22 593.12 20205.2 23694.46 127896.86 492.86
PSO
Selection Rate 50 60 60 42.0159 41.968 43.68
Detection Loss 0 0 0 0 0 0

Time (ms) 563.14 60998.52 2062836.24 2478647.52 13888421.92 45358.52
Cuckoo Search
Selection Rate 50 60 60 45.232 46.688 46
Detection Loss 0 0 0 0 0 0

Time (ms) 482.06 61555.5 1684309 1967762.96 10113338.46 41394.46
SPEA2
Selection Rate 50 32 36.4 41.5680 41.568 37.76
Detection Loss 0 0 0 0 0 0

Time (ms) 1658.34 9932.02 189385.04 990830.24 4881267.74 23234.98
MOEA/D
Selection Rate 50 60 60 42.2079 42.0479 43.68
Detection Loss 0 0 0 0 0 0

Time (ms) 24.24 666.2 17663.84 19419.98 103200.42 428.7

Table 7.40: TCM Results for UML2PY (2)

Name D7 D8 D9 D10 D11 D12
NSGA-II
Selection Rate 42.096 42.208 42.1279 41.888 41.712 42.096
Detection Loss 0 0 0 0 0 0

Time (ms) 1048380.34 748.02 5535.28 25250.92 14143.82 739.28
PSO
Selection Rate 42.544 42.688 44.368 41.904 41.968 42.464
Detection Loss 0 0 0 0 0 0

Time (ms) 98869108.7 73691.26 572120.88 2564276.3 1477092.04 73061.34
Cuckoo Search
Selection Rate 45.68 45.648 49.184 44.368 47.04 45.68
Detection Loss 0 0 0 0 0 0

Time (ms) 93198424.92 77653.56 419637.1 2041206.14 1164418.82 77923.72
SPEA2
Selection Rate 41.056 41.024 40.672 41.264 41.776 41.024
Detection Loss 0 0 0 0 0 0

Time (ms) 49173291.32 36393.4 219861.18 995533.2 566077 37613.18
MOEA/D
Selection Rate 42.3199 42.1759 42.3519 42.3199 42.3519 42.128
Detection Loss 0 0 0 0 0 0

Time (ms) 823357.66 728.02 4186.18 20819.68 11254.42 732.96

211



CHAPTER 7. EVALUATION

Table 7.41: TCM Results for UML2PY (3)

Name D13 D14 D15 D16 D17 D18
NSGA-II
Selection Rate 41.76 42.352 40 20 42.384 20
Detection Loss 0 0 0 0 0 0

Time (ms) 679.84 972.8 58970.94 7264.12 60109.9 165.28
PSO
Selection Rate 41.76 41.872 60 60 42.634 60
Detection Loss 0 0 0 0 0 0

Time (ms) 68293.36 92934.7 6336982.94 765060.48 6975869.46 15361.48
Cuckoo Search
Selection Rate 44.224 44.3679 60 60 47.2479 60
Detection Loss 0 0 0 0 0 0

Time (ms) 68780.6 98861.48 4634164.6 611897.24 5582338.56 14714.72
SPEA2
Selection Rate 41.84 41.888 32 20 41.936 20
Detection Loss 0 0 0 0 0 0

Time (ms) 32576.06 48980.24 648155.7 294334.14 2364379.64 9738.62
MOEA/D
Selection Rate 42.0959 41.9679 40 60 42.2879 60
Detection Loss 0 0 0 0 0 0

Time (ms) 629.62 934.3 49361.1 6708.26 54250.44 257.02

Figure 7.28: UML2PY: TCM Distribution (1)

Figure 7.29: UML2PY: TCM Distribution (2)

212



CHAPTER 7. EVALUATION

Figure 7.30: UML2PY: TCM Distribution (3)

ability, notably in operations such as D2 and D6.
Table 7.42 - 7.44 detail the results of the TCP process

for the UML2PY case study. In this study, when using the
Fish School algorithm for prioritisation, the process was not
completed even after two days. Consequently, we deemed
this algorithm unsuitable for this case study and omitted its
results.

In the UML2PY case study, the results tables reveal a
trend similar to previous findings that the GA algorithm con-
sistently takes the lead in time efficiency compared to other
algorithms. After GA, the time usage hierarchy is evident
with PSO, Firefly, and then Cuckoo Search. Remarkably,
the Fish School algorithm was deemed unsuitable for this
context. The infeasibility of this specific algorithm was due
to the inability to provide the prioritisation results within
a practical period (two days), which may be attributed to
the complexity and extensive scope of operations encoun-
tered during the optimisation process. Specifically, for op-
eration D7, the most time-consuming in the TCM process,
the TCP process demanded roughly 15 hours for PSO, Firefly
and Cuckoo Search algorithm. In contrast, GA accomplished
the same task in about 15 minutes.

Figure 7.31 - 7.33 and Figure 7.34 - 7.36 display the dis-
tribution of APFD value for the prioritised test suite under

213



CHAPTER 7. EVALUATION

Table 7.42: TCP Results for UML2PY (1)

Name D1 D2 D3 D4 D5 D6
GA

APFD 0.5 0.5666 0.8384 0.6237 0.3346 0.8193
Random 0.395 0.4919 0.8384 0.6217 0.3338 0.7113

Time (ms) 4.1 857.68 16469.72 42589.78 261379.36 536.06
APFDm 0.5 0.5666 0.9230 0.6248 0.3332 0.8323
Random 0.305 0.4799 0.9230 0.6212 0.3326 0.7223

Time (ms) 2.68 814.32 15830 41444.58 245046 496.24
PSO

APFD 0.5 0.5666 0.8384 0.6235 0.3346 0.8186
Random 0.36 0.5066 0.8384 0.6217 0.3341 0.6999

Time (ms) 76.78 45832.4 858736.96 2259018.64 13455823.62 27727.04
APFDm 0.5 0.5666 0.9230 0.6246 0.3332 0.8323
Random 0.3275 0.4906 0.9230 0.6194 0.3327 0.7219

Time (ms) 107.76 46813.14 862121.54 2253994.9 13832833.56 27334.82
Firefly

APFD 0.5 0.5666 0.8384 0.6230 0.3346 0.818
Random 0.355 0.5013 0.8384 0.6213 0.3340 0.7139

Time (ms) 80.4 52213.96 887041.62 2296554.22 13776911.8 28891.14
APFDm 0.5 0.5666 0.9230 0.6245 0.3332 0.8313
Random 0.305 0.4733 0.9230 0.6207 0.3320 0.7143

Time (ms) 106.66 52337.18 886176 2281375.68 13603419.02 29127.74
Cuckoo Search

APFD 0.5 0.5666 0.8384 0.6235 0.3345 0.8186
Random 0.425 0.4626 0.8384 0.6222 0.3341 0.7073

Time (ms) 143.56 62795.66 967612.74 2538895.52 14863963.4 32780.54
APFDm 0.5 0.5666 0.9230 0.6247 0.3332 0.8313
Random 0.2675 0.4853 0.9230 0.6210 0.3326 0.7213

Time (ms) 173.66 60245.52 944511.4 2502393.66 14934077.9 32597.1

214



CHAPTER 7. EVALUATION

Table 7.43: TCP Results for UML2PY (2)

Name D7 D8 D9 D10 D11 D12
GA

APFD 0.8997 0.9956 0.2022 0.7479 0.3346 0.9958
Random 0.8850 0.9537 0.1938 0.7461 0.3338 0.9387

Time (ms) 1040076.5 229.88 12145.1 39253.58 30050.82 230.02
APFDm 0.9029 0.9995 0.1998 0.7498 0.3332 0.9995
Random 0.8821 0.9357 0.1892 0.7452 0.3316 0.9250

Time (ms) 862544.42 213.6 11878.32 38329.26 29532.8 211.1
PSO

APFD 0.8995 0.9956 0.2023 0.7478 0.3346 0.9956
Random 0.8834 0.9537 0.1914 0.7459 0.3338 0.9320

Time (ms) 48785943.08 16599.44 639865.78 2088140.46 1595350.4 16844.14
APFDm 0.9027 0.9995 0.1999 0.7496 0.3332 0.9992
Random 0.8870 0.9508 0.1861 0.7474 0.3323 0.9373

Time (ms) 55057559.78 16842.86 645427.7 2066891.94 1578389.76 16815.5
Firefly

APFD 0.8995 0.9950 0.2022 0.7477 0.3345 0.9958
Random 0.8840 0.9438 0.1901 0.7449 0.3339 0.9382

Time (ms) 57198281.86 38360.04 672176.44 2106987.04 1614246.84 38369.52
APFDm 0.9027 0.9992 0.1997 0.7498 0.3330 0.9990
Random 0.8856 0.9401 0.1875 0.7480 0.3326 0.9261

Time (ms) 56424854.34 38264.08 668027.34 2105416.82 1605824.26 38221.56
Cuckoo Search

APFD 0.8997 0.9956 0.2022 0.7479 0.3346 0.9958
Random 0.8832 0.9396 0.1910 0.7456 0.3342 0.9460

Time (ms) 53906267.84 46976.9 742452.6 2341433.1 1794201.98 47049.76
APFDm 0.9029 0.9997 0.1998 0.7498 0.3330 0.9995
Random 0.8867 0.9363 0.1885 0.7470 0.3322 0.9296

Time (ms) 57305775.3 46567.48 742623.92 2330855.4 1773364.76 46324.86

215



CHAPTER 7. EVALUATION

Table 7.44: TCP Results for UML2PY (3)

Name D13 D14 D15 D16 D17 D18
GA

APFD 0.9958 0.9958 0.8060 0.8 0.5781 0.3666
Random 0.9941 0.9649 0.7951 0.7455 0.5164 0.2253

Time (ms) 78.94 228.38 54273.12 7152.04 116588.42 256.4
APFDm 0.9995 0.9997 0.8803 0.875 0.5771 0.3333
Random 0.9962 0.9716 0.8732 0.8155 0.5262 0.1526

Time (ms) 74.8 210.4 52146.72 6763.22 112976.4 232.82
PSO

APFD 0.9958 0.9958 0.8060 0.8 0.5793 0.3666
Random 0.9938 0.9678 0.7922 0.75 0.5258 0.2293

Time (ms) 8322.14 16352.32 2884341 390749.7 6141649.2 13199.5
APFDm 0.9992 0.9995 0.8803 0.875 0.5786 0.3333
Random 0.9965 0.9733 0.8717 0.8025 0.5153 0.1546

Time (ms) 8314.9 16370.84 2888595.3 389998.76 6191992.22 13154.84
Firefly

APFD 0.9956 0.9956 0.8060 0.8 0.5697 0.3666
Random 0.9931 0.9641 0.7962 0.74 0.5178 0.2333

Time (ms) 29064.62 37665.78 3038223.3 438775.28 6732420.08 13766.24
APFDm 0.9992 0.9990 0.8803 0.875 0.5693 0.3333
Random 0.9963 0.9645 0.8706 0.822 0.5254 0.1613

Time (ms) 28875.32 37246.18 3023643.3 435634.14 6650265.7 13516.42
Cuckoo Search

APFD 0.9956 0.9958 0.8060 0.8 0.5709 0.3666
Random 0.9939 0.9664 0.7929 0.7465 0.5244 0.2386

Time (ms) 35780.54 45453.42 3353145.94 505206.06 7434245.54 15310.02
APFDm 0.9990 0.9992 0.8803 0.875 0.5710 0.3333
Random 0.9982 0.9657 0.8704 0.81025 0.5198 0.1726

Time (ms) 35207.52 44817.48 3388085.74 502585.88 7440845.72 14999.12

216



CHAPTER 7. EVALUATION

the original and modified metric. In this case study, the Fish
School algorithm was not applicable. Thus, the distribution
figures for the TCP process display groups with four distinct
colours. Each colour represents a specific prioritisation algo-
rithm, arranged in the order of GA, PSO, Firefly, and Cuckoo
Search. The figures highlight the consistent stability across
the algorithms during the prioritisation process, with only
infrequent fluctuations observed.

Figure 7.31: UML2PY: TCP Distribution under Original APFD Metric (1)

Figure 7.32: UML2PY: TCP Distribution under Original APFD Metric (2)

Figure 7.33: UML2PY: TCP Distribution under Original APFD Metric (3)

217



CHAPTER 7. EVALUATION

Figure 7.34: UML2PY: TCP Distribution under Modified APFD Metric (1)

Figure 7.35: UML2PY: TCP Distribution under Modified APFD Metric (2)

Figure 7.36: UML2PY: TCM Distribution under Modified APFD Metric (3)

218



CHAPTER 7. EVALUATION

Table 7.45: UML2PY: Comparison between Random Approach (p-value) (1)

Name D1 D2 D3 D4 D5 D6
GA

APFD 2.9743e-07 1.0287e-09 1 2.0601e-04 2.1455e-03 1.6213e-13
APFDm 3.7869e-09 2.4871e-11 1 6.5772e-06 1.4988e-02 5.0707e-13

PSO
APFD 5.6318e-10 1.4024e-08 1 1.5261e-04 1.4735e-02 1.2496e-15
APFDm 5.5342e-08 6.4274e-11 1 1.4579e-08 2.8292e-02 1.95e-14

Firefly
APFD 2.0898e-10 1.4199e-08 1 6.1823e-04 7.8706e-03 1.1941e-13
APFDm 3.7869e-09 1.2078e-12 1 7.6233e-05 1.0742e-03 1.2417e-14

Cuckoo Search
APFD 2.9902e-05 1.4193e-13 1 1.8928e-03 2.5674e-02 1.2751e-15
APFDm 2.6485e-11 2.4251e-11 1 5.2278e-06 8.1289e-03 5.4178e-13

Table 7.46: UML2PY: Comparison between Random Approach (p-value) (2)

Name D7 D8 D9 D10 D11 D12
GA

APFD 1.1572e-17 1.239e-19 1.0928e-16 1.8434e-06 1.1115e-03 7.7392e-20
APFDm 2.5618e-16 1.0107e-15 5.6305e-15 3.3971e-08 4.7624e-05 6.7245e-18

PSO
APFD 1.2472e-14 1.3831e-19 1.7622e-17 1.6553e-05 5.7755e-04 1.1494e-19
APFDm 5.8263e-13 1.8745e-18 6.1491e-17 4.6044e-05 1.4756e-03 2.1169e-16

Firefly
APFD 4.1214e-16 1.6763e-18 1.9878e-17 2.0306e-06 2.2163e-03 8.6179e-20
APFDm 3.485e-15 7.8144e-15 4.6132e-17 6.5663e-04 9.4138e-02 1.3838e-17

Cuckoo Search
APFD 3.6818e-17 1.0605e-19 2.4099e-17 1.6983e-05 1.5233e-02 9.6899e-20
APFDm 1.1405e-15 1.1378e-17 2.1633e-18 2.3372e-06 3.504e-03 2.916e-15

We utilised the non-parametric Wilcoxon test on both the
original and modified APFD metrics, setting a significance
threshold at 5%. The underlying null hypothesis was that
the differences observed between the prioritised test suite and
the random approach were not statistically significant in this
study. As detailed in Table 7.45 - 7.47, the evidence suggests
that our proposed TCP methods generally outperform the
random strategy, apart from in the D3 instance.

Upon closely examining D3, we find a similarity with the
earlier mentioned C2. In this situation, every test case gener-
ated within the original suite can precisely identify the same
mutants. Consequently, irrespective of the test sequence,
the outcomes remain identical. Thus, no improvement is

219



CHAPTER 7. EVALUATION

Table 7.47: UML2PY: Comparison between Random Approach (p-value) (3)

Name D13 D14 D15 D16 D17 D18
GA

APFD 6.4108e-20 1.186e-19 4.2023e-10 1.7658e-16 5.9389e-18 5.4067e-15
APFDm 1.9747e-03 1.589e-14 8.072e-07 1.5751e-06 6.3766e-18 1.8221e-16

PSO
APFD 9.6665e-20 8.9637e-20 5.0696e-14 1.8262e-14 4.7193e-20 6.0764e-15
APFDm 3.5749e-03 1.5191e-13 7.4968e-08 2.0925e-12 6.6195e-20 5.3744e-17

Firefly
APFD 2.5909e-18 3.83e-19 4.1211e-10 4.7257e-14 1.1163e-17 6.0088e-16
APFDm 3.3804e-03 4.504e-13 1.0312e-09 8.833e-04 5.8993e-16 6.0735e-16

Cuckoo Search
APFD 1.484e-18 9.1537e-20 6.1603e-11 1.8516e-16 6.1851e-17 4.5794e-13
APFDm 2.3344e-01 8.8409e-15 2.5228e-09 3.414e-09 7.8126e-18 1.8148e-15

Table 7.48: TCO Results for UML2PY (1)

Name D1 D2 D3 D4 D5 D6
Selection Rate 50 40 60 41.744 41.584 44
Detection Loss 0 0 0 0 0 0

APFD - 0.4166 0.7820 0.6223 0.3362 0.8015
APFDm - 0.4166 0.9230 0.6246 0.3330 0.8310
Random - 0.4166 0.9230 0.6175 0.3306 0.6787

Time (ms) 0 413.34 11093.66 14645.76 82150.2 348.76
Overhead 1958134.06 ms

indicated by the evaluation metrics, and this is maintained
even when compared to a random approach, with no evident
progress in results.

For the case of D13, when evaluated using the modified
APFD metric, the Cuckoo Search algorithm did not show a
significant difference from the random approach. As this was
an isolated incident, we theorised it might be due to random
variation. To confirm this, we executed an additional 20 runs
for this specific scenario, and the results delivered a p-value
below 0.05.

Table 7.48 - 7.50 presents the outcomes from concurrently
running the TCM and TCP processes. In these tables, cells
marked with "-" denote situations where, after the TCM pro-
cess, only one test case is left. As a result, proceeding with
the TCP process in these cases is redundant.

In this study, for operations D1, D16 and D18, the results

220



CHAPTER 7. EVALUATION

Table 7.49: TCO Results for UML2PY (2)

Name D7 D8 D9 D10 D11 D12
Selection Rate 42.144 42.2559 42.16 42.144 42.064 42.144
Detection Loss 0 0 0 0 0 0

APFD 0.8952 0.9893 0.2055 0.7451 0.3362 0.9901
APFDm 0.9027 0.9986 0.1998 0.7498 0.3330 0.9994
Random 0.8705 0.8910 0.1776 0.7445 0.3312 0.8751

Time (ms) 499110.5 219.52 3896.86 13545.98 9918.06 225.18
Overhead 1958134.06 ms

Table 7.50: TCO Results for UML2PY (3)

Name D13 D14 D15 D16 D17 D18
Selection Rate 41.776 42.4 40 20 42.416 20
Detection Loss 0 0 0 0 0 0

APFD 0.9902 0.9901 0.6742 - 0.5686 -
APFDm 0.9998 0.9994 0.8598 - 0.5670 -
Random 0.9966 0.9359 0.8598 - 0.4686 -

Time (ms) 66.34 222.08 29368.18 0 38629.96 0
Overhead 1958134.06 ms

post-minimisation made the subsequent prioritisation redun-
dant. Like certain cases within the MathLib case study, we
found in operation D3, the test cases in the prioritised suite
all have the same ability to detect mutants, meaning that
the minimisation process did not select the fewest necessary
test cases. The reason for this could be tied to the multi-
objective optimisation for the minimisation process, which
may demand deeper exploration in future studies.

To assess if the TCM process offers time efficiency ben-
efits for the TCP process, we conducted a non-parametric
Wilcoxon test on the time spent during the TCP process for
the original and minimised test suite. The results are pre-
sented in Table 7.51.

From our analysis, in most instances of this study, the
time taken to prioritise minimised test suites is consistently
shorter than the original ones, except for cases where pri-
oritisation was considered unnecessary. However, there were

221



CHAPTER 7. EVALUATION

Table 7.51: UML2PY: Comparison of TCP Time after Minimisation (p-value)

Name p-value Name p-value Name p-value
D1 - D7 7.0661e-18 D13 2.9601e-18
D2 6.9178e-18 D8 1.5718e-08 D14 2.5375e-15
D3 7.0581e-18 D9 7.0597e-18 D15 7.0613e-18
D4 7.0613e-18 D10 7.0645e-18 D16 -
D5 1.3493e-16 D11 7.0645e-18 D17 7.0661e-18
D6 1.1607e-16 D12 2.1596e-12 D18 -

Table 7.52: UML2PY: Rank for TCM Algorithms (1)

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
NSGA-II a a b ab a b b b b ab

PSO a b b ab a b b b c ab
Cuckoo Search a b b c b c c c d c

SPEA2 a a a a a a a a a a
MOEA/D a b b b a b b b b b

some instances, specifically in operations D8, D12 and D14.
Although the comparison results are significantly different,
the prioritisation time for the original test suite is slightly
less than the minimised one. Given that these processes were
completed within one second, this may be due to the influ-
ence of system scheduling. These rare occurrences could be
a point of in-depth study in future research.

To evaluate and rank the TCM algorithms, we employed
Kruskal-Wallis and Dunn’s tests for pairwise comparisons.
The outcomes can be found in Table 7.52 and Table 7.53.
Distinct letters in the tables highlight significant variances
among the methods.

Table 7.53: UML2PY: Rank for TCM Algorithms (2)

Name D11 D12 D13 D14 D15 D16 D17 D18
NSGA-II a b a a a a ab a

PSO ab b a a b b b b
Cuckoo Search c c b b b b c b

SPEA2 ab a a a a a a a
MOEA/D b b a a b b ab b

222



CHAPTER 7. EVALUATION

Table 7.54: UML2PY: Rank for TCP Algorithms

Original: D17 Modified: D17
GA b b
PSO a a

Firefly c c
Cuckoo Search c c

Based on the results from the tables, SPEA2 consistently
tops the selection rate in the TCM process across all scenar-
ios. Contrary to the previous MathLib case study, NSGA-II
here presents a notable challenge to SPEA2, often falling
within the same group. PSO and MOEA/D consistently
show comparable effectiveness in terms of selection rate. In
contrast, Cuckoo Search always performs the worst if there
is any significant difference existing in this study. When fac-
toring in the time metric, NSGA-II seems more favourable
for the minimisation process.

Table 7.54 presents the comparison results for TCP algo-
rithms. Particularly, only in operation D17 do we find a
notable difference between these algorithms when consider-
ing both the original and modified APFD metrics. Therefore,
we have combined these two parts into a single table.

In these two instances, PSO stands out as the top per-
former, closely followed by GA. Cuckoo Search and Firefly
report similar levels of effectiveness. Upon examining the de-
tailed average results (both original and modified), it is clear
that, although statistically distinct, the differences between
them are less than 0.01. Summarising this case study, all
prioritisation algorithms exhibit similar effectiveness when
evaluated using the original and modified APFD metrics.
However, GA takes the lead when we account for time ef-
ficiency, and the Fish School algorithm is found unsuitable
for this setting.

223



CHAPTER 7. EVALUATION

7.8 Results & Discussions

At the beginning of this chapter, we proposed five main re-
search questions, and then the results for four real-world case
studies have been detailed in the previous sections. In this
section, based on the experiment results, we will clarify the
answers to those research questions alongside the discussions
based on the results.
• RQ 1: Effectiveness. What is the effectiveness

of the TCO processes within the context of OCL?
RQ 1.1: Effectiveness for the TCM process.

RQ 1.1.1: What is the test suite reduction rate
achieved by the adapted algorithms during the TCM
process?

Answer: An analysis of Table 7.3, 7.12, 7.21 -
7.23, and 7.39 - 7.39 indicates that the execu-
tion of the TCM process on the original test suite
results in a reduction of size between 33.3% and
81.8%, without any loss in fault detection capac-
ity. Generally, the minimised test suite contains
around 40% of the original test cases. These re-
sults confirm the efficacy and safety of applying
the TCM process to systems whose specifications
are expressed in OCL.
Figure 7.13, 7.16, 7.19 - 7.19 and 7.28 - 7.30
display the distribution of the selection rate for
the minimised test suite for each case study. Each
plot in these figures corresponds to a particular
operation and minimisation algorithm within the
respective case study. Observing these charts, it is
noticeable that, except for the SPEA2 algorithm,

224



CHAPTER 7. EVALUATION

the minimisation process consistently exhibits a
stable performance with only slight deviations in
most scenarios.

RQ 1.1.2: What is the fault detection capability of
the adapted algorithms during the TCM process?

Answer: Drawing from the data in Table 7.3,
7.12, 7.21 - 7.23, and 7.39 - 7.39, we noticed
that across all four case studies, the rates of fault
detection loss all stand at zero. This suggests
that post-minimisation, the resulting test suites
retain the fault detection capability exhibited by
their original ones. Thus, by inference, apply-
ing TCM algorithms on systems whose specifi-
cations are expressed in OCL does not diminish
their fault detection capability, considering these
methodologies as both effective and safe.

RQ 1.2: Effectiveness for the TCP process.

RQ 1.2.1: What are the performances of the adapted
TCP algorithms under the (modified) APFD metric?

Answer: We examined the effectiveness of the
TCP process using the original and modified
APFD metrics without the involvement of the
TCM process. From the Table 7.4, 7.13, 7.24
- 7.26, and 7.42 - 7.44, we can find regardless of
which metric is used for evaluation, there is an ob-
servable increase in the APFD value following the
prioritisation process in most cases. While A5,
C2, C10, C12, and D3 show no improvements,
we further analysed these specific instances. The
absence of enhancement can be traced to the op-

225



CHAPTER 7. EVALUATION

timal sequencing already present in the original
test suite, which results in the prioritisation pro-
cess not offering any additional benefits to the
testing process.
From Figure 7.14 - 7.15, 7.17 - 7.18, 7.22 - 7.27
and 7.31 - 7.36 display the distribution of the
evaluation results for the prioritised test suites
under the original and modified APFD metrics.
Each plot in these figures corresponds to a par-
ticular operation and prioritisation algorithm un-
der the corresponding APFD metric. Regarding
these charts, it is noticeable that, for all adapted
algorithms, the prioritisation process consistently
exhibits a stable performance with only occasional
fluctuations observed.

RQ 1.2.2: How does the performance of the adapted
algorithms during the TCP process compare with a
random approach?

Answer: We observed that, with the excep-
tions of operations A5, C2, C10, C12, and D3,
enhancements were seen in all instances under
both the original and modified APFD metrics.
These particular operations already maintained
the optimal sequences within their original test
suites. To explore deeper into the effectiveness of
our algorithms, we performed the non-parametric
Wilcoxon test on the original and modified APFD
metrics to verify a significance level of 5%, with
the null hypothesis that the observed differences
between the prioritised test suite and random ap-

226



CHAPTER 7. EVALUATION

proach are not statistically significant for these
case studies. Referencing the results in Table 7.5,
7.14, 7.27 - 7.29 and 7.45 - 7.47, it is evident
that most operations display a noticeable variance
from the random approach, except for operations
C2, D3, and specific comparisons of C6. The lat-
ter, C6, is unique as numerous test case orders can
achieve an optimal state, occasionally resulting in
no significant difference from a random approach.
Diving deeper into the characteristics of the two
exceptional operations, C2 and D3, it becomes
clear that every generated test case in the original
test suite can identically detect the same mutants.
This equivalence leads to a scenario where, irre-
spective of the execution order, outcomes remain
consistent. Thus, our evaluation metrics do not
report any significant improvement in such sit-
uations, and this consistency persists even when
compared with a random strategy. Based on these
findings, we can infer that the prioritised test
suites always exhibit significant deviations from
random approaches.

RQ 1.3: Does the sequence of TCP and TCM processes
affect the overall optimisation process?

Answer: In our integrated TCO approach, combining the
TCM and TCP phases, our goal was not to identify the ul-
timate combination of optimisation algorithms. Instead,
we applied the NSGA-II for the TCM and the GA for
TCP during the evaluation based on their consistent and
reliable performances. The TCO strategy began with ap-

227



CHAPTER 7. EVALUATION

plying TCM to the original test suite and subsequently
moved to the TCP. The collective results can be reviewed
in Table 7.6, 7.15, 7.30 - 7.32, and 7.48 - 7.50.

The presence of "-" in certain table cells signifies that
post-minimisation, only a singular test case was left in
the test suite. This causes the subsequent TCP process
redundant. Observing beyond these particular cases, it
becomes evident that the TCO processes invariably pro-
mote the effectiveness of the testing process, both in terms
of selection rate and the (modified) APFD metrics.

In some instances, like C2 and C9, and D3, the minimi-
sation process did not yield the smallest test suite. This
might be due to the multi-objective nature of the min-
imisation process, where the (modified) APFD metric, in-
cluding the number of test cases within the equations,
can introduce conflicting goals. The purpose of this ob-
jective is to favour earlier testing ability when multiple
test cases exhibit similar fault detection capabilities. A
preliminary experiment we conducted on the running ex-
ample showed that this metric indeed selected the corre-
sponding test cases and achieved its purpose. Although
this objective sometimes prevents the minimisation pro-
cess from achieving the optimal minimisation result and
needs further investigation, we still suggest that the (mod-
ified) APFD metric should remain a part of the objectives
during the TCM process.

We were also keen to explore whether the TCM and
TCP sequence influenced the final optimisation outcomes.
While the effectiveness remains largely uninfluenced by
the sequence, efficiency witnesses a notable impact where
the TCM process trims the search space for the TCP pro-

228



CHAPTER 7. EVALUATION

cess. A non-parametric comparison of the time usages
between the TCP process applied to both original and
minimised test suites is illustrated in Table 7.7, 7.16, 7.33,
and 7.51. These tables substantiate that the TCM process
consistently increases the efficiency of the TCP process,
except for cases where prioritisation is unnecessary.

In summary to RQ 1, the results validate that applying
the TCP process, the TCM process, or a combination of
both, generally brings advantages to the testing process
for systems whose specifications are expressed in OCL.
This observation is consistent regardless of whether the
original or the modified version of APFD is used as the
evaluation metric.

• RQ 2: Scalability. How scalable are the pro-
posed algorithms in handling real-world OCL speci-
fications with varying complexities?

To thoroughly evaluate the scalability and adaptability of
our adapted algorithms and proposed TeCO framework,
we conduct four distinct real-world case studies. These
studies are chosen based on their variability in terms of
complexity and size. Specifically, when assessed based on
lines of specifications, the sizes ranged from a brief 41 lines
to a more extensive 1053 lines. Regarding operations, the
number was from a minimal 2 to a more comprehensive
18. When considering the number of clauses of OCL ex-
pressions for a specific operation, the number is from 1 to
29. A critical metric, the number of faults, which is repre-
sented by the mutants generated across various instances,
had a wide range, fluctuating from a mere 2 to a substan-
tial 6696. Furthermore, when we measure the scalability

229



CHAPTER 7. EVALUATION

based on the number of produced test cases, the figures
range from 2 to 243.

Considering the time factor, the overall time overhead
for the TCO process, utilising both the NSGA-II and GA
algorithms, was commendably efficient. It ranged from an
almost immediate duration of a mere second to about 30
minutes, depending on the complexities, typically shorter
than the time one might spend on a lunch break.

Considering this broad range of data and the consistent
performance across diverse scenarios, it is evident that
our adapted optimisation algorithms and TeCO framework
are well-suited for the systems whose specifications are ex-
pressed in OCL, irrespective of their size or complexity.

• RQ 3: Comparison. Which of the adapted TCO
algorithms performs optimally during the optimisa-
tion processes?

RQ 3.1: During the TCM process, which algorithm demon-
strates superior performance?

For the TCM process, we adapted five algorithms, NSGA-
II, PSO, Cuckoo Search, SPEA2 and MOEA/D, in this
work. Examining their effectiveness using the selection
rate metric, data from Table 7.8, 7.17, 7.34 - 7.35 and
7.52 - 7.53 reveals that definitively determining the best
algorithm for the TCM process is a complex task.

For the Bond study, SPEA2, MOEA/D, and PSO took
the top rank, with NSGA-II running behind, then the
Cuckoo Search. In the Interest Rate study, there was
no definitive leader. In the MathLib study, SPEA2 con-
sistently outperformed others, with NSGA-II following
closely and the rest under-performing. For the UML2PY
study, while SPEA2 took the lead, NSGA-II was a close

230



CHAPTER 7. EVALUATION

competitor. PSO and MOEA/D were mid-tier perform-
ers, with Cuckoo Search performing the worst.

Considering execution time, NSGA-II and MOEA/D
were the fastest. Like the selection rate, the execution
time for SPEA2 is still unstable and inconsistent across
operations. Due to the unstable and unpredictable per-
formance of SPEA2, the users should be cautious when
choosing SPEA2 as the minimisation algorithm. Given
the consistent performance in both effectiveness and effi-
ciency, we suggest for NSGA-II as the primary choice for
the TCM process.

RQ 3.2: During the TCP process, which algorithm per-
forms the best?

We selected and adapted five prioritisation algorithms,
GA, PSO, Firefly, Fish School and Cuckoo Search, in
this research work. We intend to compare their effective-
ness when measured under both the original and modified
APFD metrics. Surprisingly, there was minimal variation
in the performance across these algorithms. However, cer-
tain instances, namely A1, C5, C7, C15, and D7, demon-
strated the minor differences between these algorithms.
Exploring deeper into the details of these outcomes, we
noticed that while these results were statistically signifi-
cant, their actual differences were minor, indicating that
the practical differences in real-world applications might
be negligible.

But when considering the time factor inside, the GA
consistently exhibited superior speed. In contrast, the Fish
School algorithm was notably the slowest and even can-
not produce the result in a reasonable time within the
UML2PY case study.

231



CHAPTER 7. EVALUATION

RQ 3.3: Which type of OCL specification is most compat-
ible with the proposed algorithms?

During our assessment, we conducted experiments on four
real-world case studies, each varying in size and complex-
ity. Two primary facets appeared to affect the general
optimisation processes.

The Impact of Original Test Suite: The intrinsic char-
acter of the original test suite sets the upper limitation
for the optimisation process. While the inherent fault
detection capability remains unaltered post-optimisation,
the restructured suite might detect defects earlier or re-
quire fewer test cases instead of more defects. Both the
TCM and TCP processes alter the original test suite, and
our evaluation metrics consistently compare the optimised
suite with the original and random ones. This raises a
question: Are these optimisations still meaningful if the
initially generated test suite is considered sufficient, the
conditions we have already noted in some instances of our
case studies? Indeed, it is always desirable to optimise
the test case generation process. However, it is crucial
to note that a perfect generation process cannot always
be guaranteed. Furthermore, numerous pre-existing test
suites still need to be optimised, illustrating the continu-
ing applicability of these optimisation techniques.

The Influence of System Specifications: System spec-
ifications predominantly impact optimisation efficiency.
Key factors here include specification length, number of
operations, and expression types. Logically, if specifica-
tions feature larger numbers of operations or lengths (or
more clauses in the post-condition), the optimisation pro-
cess will naturally demand more time. While size is of-

232



CHAPTER 7. EVALUATION

ten discussed, the nature of the expressions should not be
overlooked. Specifications only composed of straightfor-
ward mathematical operations tend to be processed more
swiftly than those involving String or Collection-based op-
erations.

In summary, the original test suite and system spec-
ifications jointly influence the optimisation process, with
their co-relationship determining both the outcome and ef-
ficiency of the TCO processes.

To summarise RQ 3, for the TCM process, while SPEA2
often yields the smallest test cases, its unpredictability in
both effectiveness and efficiency makes NSGA-II a more
reliable choice. In the TCP process, the adapted algo-
rithms display similar performance when evaluated under
the original and modified APFD metrics. However, con-
sidering execution speed, GA emerges as the better option.
Determining which specification type best suits the pro-
posed optimisation algorithms is complex. Factors like
specification length, operation numbers, and expression
types influence the overall performance of the adapted al-
gorithms. However, employing NSGA-II and GA ensures
that one consistently derives optimised test suites effec-
tively and efficiently in most scenarios.

• RQ 4: Metric. How to evaluate the modified
APFD metric?

RQ 4.1: What are the differences between the original and
the modified APFD metric?

This research question aims to uncover the correlation and
variances between the original and modified versions of
the APFD metric. The modified variant enhances the

233



CHAPTER 7. EVALUATION

original by introducing a reward and penalty system for
the test case and undetectable defects. Throughout our
experimental procedure, we could not determine a direct
map formula between these two metrics. However, we can
consolidate our findings into three main observations.

Firstly, when the number of defects identifiable by the
first test case matches the number of undetectable defects,
both metrics will produce identical results since the α and
β will cancel each other out. In this case, the modified
APFD metric essentially reverts to its original form.

Secondly, when the initial test case can identify a ma-
jority of defects, surpassing those that are undetectable,
then the value derived from the modified APFD will gen-
erally be higher than that from the original APFD metric.

In the third scenario, conversely, when the first test case
has a lesser capability to detect defects compared to those
that remain undetectable, the modified APFD value will
typically fall below the original one.

This dynamic highlights how the modified APFD met-
ric seeks a balance between early fault detection ability
and accounting for undetected defects. These key features
make this metric more suitable for MBT and mutation
testing procedures.

RQ 4.2: How does the TCP process perform when evalu-
ated under the original and modified metrics?

During the prioritisation process, employing either the
original or the modified APFD metric as the objective
showed no significant differences in effectiveness. How-
ever, the modified version provided improvements over
the original by adjusting the scale of results, managing
undetectable defects, and promoting the early detection

234



CHAPTER 7. EVALUATION

of faults. Meanwhile, there are some aspects of the mod-
ified metric that deserve clarification. Our modifications
aimed to address the constraints of the original metric,
notably its inability to span a 0 to 1 range and its ap-
proach to managing undetectable faults. For the modified
APFD metric, in situations where all faults can be de-
tected, the maximum value could touch 1. But, if some
faults remain unattainable, the highest value matches the
fault detection rate, noticeable in cases like B2 and D3.
Despite the improvements of the modified version brings
over the original and makes it more suitable under the
MBT and mutation testing context, it is clear that there
still have room for further enhancement of the modified
APFD metric.

Given that the original APFD metric does not account
for undetected defects, we have made an assumption dur-
ing the evaluation process. When we encounter a mutant
that cannot be detected, we predict that the final test case
will detect it, setting TFi equal to the total number of test
cases in the test suite. This assumption poses a potential
threat to the research’s validity.

Lastly, the matter of equivalent mutants is also nec-
essary to be discussed. These are mutated specifications
that, even after mutation, retain the behaviour of the orig-
inal specification. Identifying equivalent mutants is recog-
nised as an undecidable problem. Yet, they do influence
mutation testing, especially for the results of mutation
scores. In our experimental framework, we have directly
classified equivalent mutants as undetectable.

235



CHAPTER 7. EVALUATION

In summary of RQ 4, in the test case prioritisation process,
applying either the original or the modified APFD met-
ric as the guiding objective demonstrated no substantial
differences in their overall effectiveness. Nevertheless, the
modified APFD metric introduced notable advancements
by fine-tuning the scale of measurement, effectively ad-
dressing undetectable defects, and enhancing the capacity
for early fault detection. This refined version incorporates
a reward and penalty mechanism for the test cases that
detect defects at the beginning and for those defects that
remain undetected. Although there is potential for further
refinement of the modified APFD metric, it is better tai-
lored for the context of MBT and mutation testing than
the original one.

• RQ 5: Efficiency. What is the time overhead
when the TCO processes are applied to the systems
whose specifications are expressed in OCL?

RQ 5.1: What is the overhead for each proposed algorithm
during the TCM process?

Based on the results from Table 7.3, 7.12, 7.21 - 7.23, and
7.39 - 7.41, it is evident that for the minimisation process,
NSGA-II and MOEA/D consistently top the rankings in
terms of time efficiency. As for its effectiveness, the effi-
ciency ranking of the SPEA2 algorithm showcases incon-
sistency. Aside from the SPEA2 algorithm, PSO generally
surpasses Cuckoo Search in performance, although there
are exceptions in the UML2PY case study.

For the notably intricate operation, D7, NSGA-II took
an average of 17.5 minutes, while MOEA/D finished in
13.7 minutes to complete the minimisation process. On

236



CHAPTER 7. EVALUATION

the other hand, the slowest algorithm for this task, PSO,
took roughly 27.4 hours. Even though SPEA2 often tops
the list in effectiveness, it still consumed 13.6 hours for
this operation. Given this evident difference in efficiency,
we still recommend that NSGA-II as the primary choice
for the minimisation process.

RQ 5.2: What is the overhead for each proposed algorithm
during the TCP process?

The time needed for the prioritisation process varies con-
siderably, depending on the specific size and complexity of
each operation. Nonetheless, from Table 7.4, 7.13, 7.24 -
7.26, and 7.42 - 7.44, a consistent ranking of the adapted
algorithms emerged across the four studies. GA consis-
tently topped the list, followed by PSO, Firefly, Cuckoo
Search, and Fish School taking the most time. The ex-
ception was in the Bond case study, where Firefly outper-
formed PSO.

In most cases, GA was able to generate a prioritised test
suite swiftly, often within seconds. In our evaluation of the
most complicated operation, D7, GA took an estimated
14.5 minutes. In contrast, other algorithms took around
15.5 hours for the same task, with Fish School failing to
yield results in a practical time frame.

Further, when examining time consumption for priori-
tising both the original and minimised test suite using
GA, as highlighted earlier, the TCM process consistently
sped up the time usage for the TCP process. This effi-
ciency can be attributed to the TCM process reducing
the search space for the prioritisation process.

RQ 5.3: What is the overhead during the pre-process phase
preceding the optimisation processes?

237



CHAPTER 7. EVALUATION

In the evaluation process section, we detailed that be-
fore the actual optimisation, whether users opt for TCM,
TCP, or a combination of both, the TeCO framework ne-
cessitates a pre-processing stage to extract essential infor-
mation. Recognising the overhead of this stage is crucial.
The data from Table 7.6, 7.15, 7.30, and 7.48 gives insight
into the overhead of the TCO processes under our de-
fault configuration (NSGA-II for TCM and GA for TCP).
Across these four studies, the average overheads for the
initial phase are 3728.92, 37.6, 74.16 and 16790.48 mil-
liseconds, accounting for 8.1%, 10.2%, 18%, and 0.8% of
the total time consumption, respectively.

From this data, it is clear that the initial phase tends
to consume a certain proportion of the total overhead, an
understandable outcome given that it encompasses input-
output operations, which are time-consuming. The In-
terest Rate and MathLib studies seem to have a higher
percentage, mainly because their total overheads fall be-
low one second with the default configuration of the
TeCO framework. The MathLib study has more op-
erations with the system specifications, which leads to
more input-output actions, explaining its higher percent-
age of time consumption. As the complexity and size ex-
pand, this percentage typically drops as more time gets
directed towards the optimisation process, as observed in
the UML2PY study. In sum, it is clear that the time taken
for the pre-processing phase is a reasonable fraction of the
entire optimisation process.

In summarising RQ5, it is evident that the time required
for both TCP and TCM is influenced by the specific op-

238



CHAPTER 7. EVALUATION

timisation algorithm employed. Our evaluation, based
on four real-world case studies, indicated that for the
TCM process, MOEA/D and NSGA-II consistently lead
the competition in performance. Considering both its ef-
ficiency and effectiveness, NSGA-II is preferred for the
minimisation process. While all the adapted TCP algo-
rithms displayed comparable effectiveness, GA appeared
the most time-efficient. The initial pre-processing time
before the optimisation process takes a certain portion of
the total time, but it remains reasonable and acceptable.

7.9 Threats to Validity

This section addresses the potential threats to validation dur-
ing the evaluation phase.

Threats to Internal Validity: This threat is related to po-
tential inconsistencies in the treatment of case studies that
might influence the outcomes [144]. We have mitigated these
threats by ensuring all case studies were conducted under the
same configuration and environment, although these config-
uration settings are determined through an informal combi-
natorial experiment.

Every algorithm was written in JAVA, and each experi-
ment was conducted on the same machine. For both TCM
and TCP algorithms, consistent parameters were used across
all studies, such as population size and number of maxi-
mum iterations, regardless of the differences in OCL spec-
ification. These precautions helped minimise the internal
validity threats.

While these configurations have been validated through an
informal combinatorial analysis, we cannot ensure they are
optimal. This research primarily aimed to verify the feasibil-

239



CHAPTER 7. EVALUATION

ity of applying TCO processes to systems with specifications
in OCL instead of the configurations of the optimisation al-
gorithms. Users of the TeCO framework can adjust these
configurations based on their specific needs.

Threats to External Validity: Although we used four case
studies and one running example for our experiments, the
primary threat to external validity is the limited generalis-
ability of these chosen studies.

As with any empirical evaluation, the OCL specifications
in this study may not fully represent the entire population.
To mitigate this threat, we selected systems that are ex-
pressed in OCL with varying complexity, with generated test
cases ranging from a handful to hundreds.

Moreover, as with the OCL specifications, the chosen op-
timisation algorithms do not encompass the entire popula-
tion. We selected five algorithms each for the TCM and
TCP processes, analysing and comparing them. These algo-
rithms have been well-researched, which helps in mitigating
potential external threats.

Threats to Construct Validity: Our work adapted ten op-
timisation algorithms to navigate the TCM and TCP pro-
cesses. The stochastic nature of the evolutionary algorithm
may result in inconsistent outcomes between different execu-
tions. To minimise this threat, we ran each experiment 50
times and used the averaged results.

Another threat is linked to the minimisation algorithms
being the multi-objective optimisation algorithms, producing
a Pareto set. It is impractical to examine every solution in the
Pareto set manually. To deal with this threat, we selected the
solution from the result set with the maximum fault detection
ability and minimised test size according to the objective of
the TCM process.

240



CHAPTER 7. EVALUATION

In the TCM process, we have identified three objectives,
whereas the TCP process is guided by a single objective.
These selections are based on the inherent purposes of min-
imisation and prioritisation problems. The adequacy of these
objectives or the potential enhancement from integrating
more objectives remains an area for further exploration in
future research.

Furthermore, some operations within the OCL standard
library lacked corresponding mutation operators in this work
because, based on our strategies, we were unable to identify
suitable mutation operators for these operations, leading us
to omit them.

Lastly, our approach of ignoring equivalent mutants and
treating them as undetectable also presents a potential valid-
ity threat. These gaps might be bridged with contributions
from other OCL users and through further research.

241



CHAPTER 7. EVALUATION

242



Chapter 8

Conclusions & Future Works

8.1 Overview of Thesis

We have explored the feasibility of applying various TCO
techniques to the systems whose specifications are expressed
in OCL and validated the adapted algorithms through four
real-world case studies in this research work.

Through a systematic literature review on the topic of
UML-based test case generation, we found numerous meth-
ods have been proposed for the generation process. However,
post-generation TCO was often ignored. The few studies
which did consider TCO highlighted its potential to benefit
the testing process. With the evolving OCL standards, its
utility in system definitions has amplified, but only limited
research tried to bridge the gap.

In this thesis, we adapted five algorithms each for TCM
and TCP processes and implemented them within the TeCO
framework. Given the abstraction level of OCL is the same as
the system model, it remains independent of implementation
languages. This independence allows for a one-time TCO
process application, benefitting all detailed specification im-
plementations, irrespective of programming language or plat-
form variances. However, this universality poses challenges.
For instance, the inability to access real system defects be-

243



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

comes a burden in guiding the TCO. In order to solve this
condition, we proposed the full-set mutation operations and
corresponding classifications to the OCL standard library.

After the adaption of these algorithms, we evaluated
and compared their effectiveness and efficiency through four
real-world case studies with various sizes and complexities.
Recognising the limitations of the initial APFD metric in
the context of MBT and mutation testing, we introduced a
modified APFD metric. In general, within the TCM pro-
cess, it is challenging to single out one superior minimisation
algorithm definitively. However, based on the stability, se-
lection rate and time usage, we recommend the NSGA-II
could be the first choice. As for the TCP process, all the
adapted algorithms presented similar levels of effectiveness
when evaluated with both the original and modified APFD
metrics. Nevertheless, when considering efficiency, GA con-
sistently ranked highest across five prioritisation algorithms.

When we combined the TCM and TCP processes, NSGA-
II and GA, we observed consistent efficiency improvements
for the TCP process after the TCM process. This efficiency
arises as the minimised test suite reduces the search space
during prioritisation. Across four case studies, the total over-
head time for the TCO process has been proven acceptable,
fluctuating from a few seconds to around 30 minutes based
on the complexities, typically less than a lunch break.

Chapter 2 offers a comprehensive background to our re-
search, which includes essential information about the soft-
ware development process, model-driven engineering, model-
based testing and object constraint language. Within the
software development section, the traditional and agile de-
velopment models are both discussed. The chapter then
switched its focus to the context of MDE and MBT, ex-

244



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

plaining their advantages, general process and corresponding
development tools. Lastly, the chapter presents an in-depth
overview of the OCL, highlighting its development journey,
characters and overall structure.

Chapter 3 presents the related works for this research.
First, a systematic literature review of the directly related
topic, UML-based test case generation, is demonstrated. Our
findings revealed that many existing approaches often over-
look test case optimisation, motivating us to research the
TCO processes. The chapter then discussed the three pri-
mary TCO processes, which are test case prioritisation, test
case minimisation and test case selection. The chapter con-
cludes with an insightful discussion of mutation testing.

Chapter 4 proposes full-set mutation operators for the
OCL standard version 2.4, mainly based on Clause 11 "OCL
standard Library". These operators will benefit the testing
process when actual system defects are unavailable. We also
propose the classifications of the proposed operators, which
provide more options to the users of OCL in languages such
as ATL, QVT, etc. The classifications will benefit the OCL
practitioners in mutation testing and allow them to choose
which kinds of mutants will be generated based on their test-
ing purposes.

Chapters 5 and 6 provide a comprehensive exploration of
the adapted algorithms, which include the problem defini-
tion, solution presentation and default configurations. Addi-
tionally, standard evaluation metrics for the TCP and TCM
processes are discussed in these chapters. Within Chapter 5,
we analysed the limitations of the original APFD metric in
the context of MBT and mutation testing and subsequently
proposed a modified version of the APFD metric to mitigate
these shortcomings.

245



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

Chapter 7 begins with a detailed explanation of the re-
search questions to the evaluation process. Then we em-
ployed a running example to demonstrate the general process
of the TeCO framework. This chapter forwards to the eval-
uation of the OCL-based TCO processes, utilising four case
studies of various complexities. The performances of differ-
ent optimisation algorithms for the TCP and TCM processes
are compared and investigated. We addressed the initial re-
search questions and the corresponding discussions based on
the experiment results.

This thesis has delivered the following contributions:

• Undertook a systematic literature review focusing on
UML-based test case generation, offering insights into overall
methodologies within test case generation.

• Introduced a comprehensive set of mutation operators
related to the OCL standard library.

• Categorised the proposed mutation operators into differ-
ent classifications based on shared logic principles.

• Assessed the shortcomings of the widely-adopted APFD
metric under the context of MBT and mutation testing and
introduced a modified version to address these limitations.

• Adapted and implemented five optimisation algorithms
specific to the TCP process alongside a discussion on relevant
evaluation metrics.

• Adapted and implemented five optimisation algorithms
for the TCM process, accompanied by a discussion on rele-
vant evaluation metrics.

• Executed a comprehensive evaluation of OCL-based
TCO methodologies across four case studies with various
complexities.

246



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

8.2 Limitation

Our research encountered three primary limitations.
Firstly, the absence of relevant literature on the topic

posed a challenge. While TCO techniques are well-studied
in broader contexts, there is a noticeable lack of research
related to the OCL context. This made it difficult to bench-
mark and compare our adapted algorithms with established
methods in the field. To address this, we shifted our focus,
comparing our adapted TCM and TCP algorithms among
themselves. For the TCP process, we also compared them
with an essential random approach, establishing a baseline
for our analysis.

The second limitation revolved around the mutation op-
erators linked to the OCL standard library. We introduced
a comprehensive set of operators and their classifications,
yet certain operations or operators remained devoid of corre-
sponding mutation operators. We hope that, with collective
efforts from the OCL community and our future research,
these gaps will be bridged. It is also worth mentioning that
we intentionally excluded mutation operators for some new
proposed OCL types or operations, primarily because they
are not universally supported by all OCL tools.

The last one is about the optimisation algorithms that
we utilised. In our study, we adapted and evaluated five
TCM and five TCP algorithms. However, these selections do
not encompass the full range of available optimisation tech-
niques. There might be other algorithms out there that offer
superior performance in terms of both effectiveness and effi-
ciency. Our primary objective was to assess the feasibility of
applying TCO processes to systems whose specifications are
expressed in OCL. For both the TCP and TCM processes,

247



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

our parameter configurations might not be optimal. More-
over, in the combined TCO process, we did not exhaustively
evaluate all potential combinations of these algorithms. In-
stead, we employed an informal combinatorial approach to
determine these configurations.

8.3 Future Works

The final section outlines potential future research directions.
A promising area for future exploration centres around

the optimisation process, notably in the domain of multi-
objective optimisation. During our evaluation process, there
were scenarios where the minimised test suite was not op-
timal. This might be attributed to the conflicts between
objectives. Addressing these conflicts presents a fascinating
research challenge. Moreover, assessing the advantages of
integrating more objectives or experimenting with varying
objective combinations in TCP and TCM processes remains
a topic for more in-depth exploration.

An intriguing outcome was observed during the TCM pro-
cess, particularly with the Running Example, Case Study 2
and operation C15, where the minimised test suite ended up
with a larger number of test cases than the faults they were
capable of detecting. Following the minimisation process, it
became apparent that the remaining test cases outnumbered
the faults within the system. Such an imbalance indicates
that the TCM process may not always yield the most efficient
or minimal test suite. The reason behind this phenomenon
remains unclear despite attempts to understand its underly-
ing causes. This unexpected outcome highlights a need for
further in-depth analysis in subsequent research.

To address the limitations of the original APFD metric in

248



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

the context of MBT and mutation testing, we introduced a
modified APFD metric. This modification employed a static
reward and penalty system to address the corresponding lim-
itations, rewarding test cases that detect defects in the first
place and penalising those undetected defects. Future work
could explore a dynamic reward and penalty approach to en-
hance this modified APFD metric further.

As the OCL standard library expands with newer ex-
pressions and operators from the community, system spec-
ifications will inevitably incorporate these additions. This
presents a continual need to develop mutation operators for
these evolving elements. Although our present strategies for
the standard library serve their purposes, they can benefit
from refinements and enhancements. Notably, there are OCL
operations that do not have corresponding mutation opera-
tors due to the challenges in finding a proper operator with
our current strategies. We hope collaborations with the com-
munity and further research will bridge this gap.

Although we neglected the equivalent mutants during our
evaluation in this study, their presence undoubtedly presents
a captivating avenue for research. The existence of unde-
tectable equivalent mutants can mislead mutation testing re-
sults, particularly the mutation score. If an overwhelming
number of these mutants are present, it could lead to mis-
judgments regarding the effectiveness of test cases. Simple
equivalent mutants might be easily identified through static
analysis. However, for the complex expressions or data types,
such as String and Collection, there remains significant ex-
ploration to be done.

The field of optimisation is vast, and there is always poten-
tial for new algorithms or techniques that might offer better
efficiency or effectiveness. Future work can investigate more

249



CHAPTER 8. CONCLUSIONS & FUTURE WORKS

algorithms for evaluation, especially those that have been
proposed in recent studies.

Last, we plan to extend the TCO processes to a broader
array of OCL specifications to establish more general find-
ings. We intend to consider a more extensive range of OCL
expressions and operators to obtain more precise outcomes,
thereby refining our results and increasing the array of sys-
tem specifications suitable for case study examination.

In conclusion, our journey through the intricacies of testing
and optimisation in the context of OCL has revealed several
insights and also pointed towards areas that deserve further
exploration.

250



Bibliography

[1] D. Maciel, A. C. Paiva, and A. R. Da Silva, “From re-
quirements to automated acceptance tests of interactive
apps: An integrated model-based testing approach.” in
ENASE, 2019, pp. 265–272.

[2] P. R. Srivatsava, B. Mallikarjun, and X.-S. Yang, “Op-
timal test sequence generation using firefly algorithm,”
Swarm and Evolutionary Computation, vol. 8, pp. 44–
53, 2013.

[3] S. Yoo and M. Harman, “Regression testing minimiza-
tion, selection and prioritization: a survey,” Software
testing, verification and reliability, vol. 22, no. 2, pp.
67–120, 2012.

[4] N. Gupta, A. Sharma, and M. K. Pachariya, “An in-
sight into test case optimization: ideas and trends with
future perspectives,” IEEE Access, vol. 7, pp. 22 310–
22 327, 2019.

[5] S. Ali, T. Yue, M. Zohaib Iqbal, and R. K. Panesar-
Walawege, “Insights on the use of OCL in diverse in-
dustrial applications,” in International conference on
system analysis and modeling. Springer, 2014, pp. 223–
238.

[6] A. M. Madni and M. Sievers, “Model-based systems en-
gineering: motivation, current status, and needed ad-

251



BIBLIOGRAPHY

vances,” in Disciplinary convergence in systems engi-
neering research. Springer, 2018, pp. 311–325.

[7] R. J. Lipton, “Fault diagnosis of computer programs,”
1971.

[8] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser, “Are mutants a valid substi-
tute for real faults in software testing?” in Proceedings
of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2014, pp. 654–
665.

[9] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mu-
tation an appropriate tool for testing experiments?”
in Proceedings of the 27th international conference on
Software engineering, 2005, pp. 402–411.

[10] Z. Wei, W. Xiaoxue, Y. Xibing, C. Shichao, L. Wenxin,
and L. Jun, “Test suite minimization with mutation
testing-based many-objective evolutionary optimiza-
tion,” in 2017 International Conference on Software
Analysis, Testing and Evolution (SATE). IEEE, 2017,
pp. 30–36.

[11] O. M. Group, “Omg document formal/2014-02-03,” in
Object Constraint Language (OCL) Specification. Ver-
sion 2.4., 2014.

[12] M. d. C. de Castro-Cabrera, A. García-Dominguez, and
I. Medina-Bulo, “Trends in prioritization of test cases:
2017-2019,” in Proceedings of the 35th annual acm sym-
posium on applied computing, 2020, pp. 2005–2011.

[13] K. Jin and K. Lano, “Generation of test cases from
UML diagrams-a systematic literature review,” in 14th

252



BIBLIOGRAPHY

Innovations in Software Engineering Conference (for-
merly known as India Software Engineering Confer-
ence), 2021, pp. 1–10.

[14] K. Lano, S. Kolahdouz-Rahimi, and K. Jin, “OCL li-
braries for software specification and representation,”
in Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems:
Companion Proceedings, 2022, pp. 894–898.

[15] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan,
“Software development life cycle agile vs traditional ap-
proaches,” in International Conference on Information
and Network Technology, vol. 37, no. 1, 2012, pp. 162–
167.

[16] W. W. Royce, “Managing the development of large soft-
ware systems: concepts and techniques,” in Proceedings
of the 9th international conference on Software Engi-
neering, 1987, pp. 328–338.

[17] B. Shiklo, “8 software development models: Sliced,
diced and organized in charts,” Nov 2022.
[Online]. Available: https://www.scnsoft.com/blog/
software-development-models

[18] P. Pulse, “Pulse of the profession.” Project Manage-
ment Institute Newtown Square, PA, 2017.

[19] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,
“Agile software development methods: Review and
analysis,” arXiv preprint arXiv:1709.08439, 2017.

[20] R. Kneuper, “Sixty years of software development life
cycle models,” IEEE Annals of the History of Comput-
ing, vol. 39, no. 3, pp. 41–54, 2017.

253

https://www.scnsoft.com/blog/software-development-models
https://www.scnsoft.com/blog/software-development-models


BIBLIOGRAPHY

[21] K. Schwaber and J. Sutherland, “The scrum guide,”
Scrum Alliance, vol. 21, no. 19, p. 1, 2011.

[22] V. Guntamukkala, H. J. Wen, and J. M. Tarn, “An
empirical study of selecting software development life
cycle models,” Human Systems Management, vol. 25,
no. 4, pp. 265–278, 2006.

[23] T. Dybå and T. Dingsøyr, “Empirical studies of agile
software development: A systematic review,” Informa-
tion and software technology, vol. 50, no. 9-10, pp. 833–
859, 2008.

[24] N. B. Ruparelia, “Software development lifecycle mod-
els,” ACM SIGSOFT Software Engineering Notes,
vol. 35, no. 3, pp. 8–13, 2010.

[25] Y. Bassil, “A simulation model for the water-
fall software development life cycle,” arXiv preprint
arXiv:1205.6904, 2012.

[26] F. Brooks and H. Kugler, No silver bullet. April, 1987.

[27] M. Dawson, D. N. Burrell, E. Rahim, and S. Brewster,
“Integrating software assurance into the software devel-
opment life cycle (sdlc),” Journal of Information Sys-
tems Technology and Planning, vol. 3, no. 6, pp. 49–53,
2010.

[28] R. Soley et al., “Model driven architecture,” OMG white
paper, vol. 308, no. 308, p. 5, 2000.

[29] D. C. Schmidt et al., “Model-driven engineering,”
Computer-IEEE Computer Society-, vol. 39, no. 2,
p. 25, 2006.

254



BIBLIOGRAPHY

[30] J.-M. Jézéquel, “Taming variability in software engi-
neering: Past, present & future,” MDENet Annual
Symposium, 2022.

[31] P. D. Marinescu and C. Cadar, “make test-zesti: A sym-
bolic execution solution for improving regression test-
ing,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 716–726.

[32] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Job-
stl, and H. Brandl, “Momut:: UML model-based muta-
tion testing for UML,” in 2015 IEEE 8th International
Conference on Software Testing, Verification and Vali-
dation (ICST). IEEE, 2015, pp. 1–8.

[33] B. Uzun and B. Tekinerdogan, “Model-driven architec-
ture based testing: A systematic literature review,” In-
formation and Software technology, vol. 102, pp. 30–48,
2018.

[34] (2022) Eclipse papyrus. [Online]. Available: https:
//www.eclipse.org/papyrus/

[35] (2022) Umbrello project. [Online]. Available: https:
//umbrello.kde.org

[36] (2022) AgileUML repository. [Online]. Available: https:
//github.com/eclipse/agileuml/

[37] L. Briand and Y. Labiche, “A UML-based approach to
system testing,” Software and systems modeling, vol. 1,
no. 1, pp. 10–42, 2002.

[38] Y. D. Salman and N. L. Hashim, “Automatic test case
generation from UML state chart diagram: a survey,” in
Advanced Computer and Communication Engineering
Technology. Springer, 2016, pp. 123–134.

255

https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://umbrello.kde.org
https://umbrello.kde.org
https://github.com/eclipse/agileuml/
https://github.com/eclipse/agileuml/


BIBLIOGRAPHY

[39] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuan-
dong, and Z. Guoliang, “Generating test cases from
UML activity diagram based on gray-box method,”
in 11th Asia-Pacific software engineering conference.
IEEE, 2004, pp. 284–291.

[40] D. Bork, D. Karagiannis, and B. Pittl, “A survey of
modeling language specification techniques,” Informa-
tion Systems, vol. 87, p. 101425, 2020.

[41] J. Cabot, “The ultimate object constraint language
(OCL) tutorial,” May 2020. [Online]. Available:
https://modeling-languages.com/ocl-tutorial/

[42] S. Weißleder and D. Sokenou, “Automatic test case gen-
eration from UML models and OCL expressions,” Soft-
ware Engineering 2008, 2008.

[43] M. Richters and M. Gogolla, “OCL: Syntax, semantics,
and tools,” in Object Modeling with the OCL. Springer,
2002, pp. 42–68.

[44] E. Willink, “An OCL map type,” in OCL Workshops,
2019.

[45] M. Gogolla, L. Burgueño, and A. Vallecillo, “Refactor-
ing collections in OCL.” in STAF Workshops, 2021, pp.
142–148.

[46] K. Lano, “Adding regular expression operators to
OCL.” in STAF Workshops, 2021, pp. 162–168.

[47] J. Warmer and K. Objecten, “The future of UML,”
OMG Information Day, Amsterdam, p. 31, 2001.

[48] E. Willink, “Reflections on OCL 2.” J. Object Technol.,
vol. 19, no. 3, pp. 3–1, 2020.

256

https://modeling-languages.com/ocl-tutorial/


BIBLIOGRAPHY

[49] A. Maraee and A. Sturm, “The usage of constraint spec-
ification languages: a controlled experiment,” in Enter-
prise, Business-Process and Information Systems Mod-
eling: 20th International Conference, BPMDS 2019,
24th International Conference, EMMSAD 2019, Held
at CAiSE 2019, Rome, Italy, June 3–4, 2019, Proceed-
ings 20. Springer, 2019, pp. 329–343.

[50] N. Khurana and R. Chillar, “Test case generation
and optimization using UML models and genetic al-
gorithm,” Procedia Computer Science, vol. 57, pp. 996–
1004, 2015.

[51] S. Achour and M. Benattou, “A model based test-
ing approach for java bytecode programs.” J. Comput.,
vol. 13, no. 9, pp. 1098–1114, 2018.

[52] C. Pérez and B. Marín, “Automatic generation of test
cases from UML models,” CLEI Electron. J, vol. 21,
no. 1, 2018.

[53] S. A. Slaughter, D. E. Harter, and M. S. Krishnan,
“Evaluating the cost of software quality,” Communica-
tions of the ACM, vol. 41, no. 8, pp. 67–73, 1998.

[54] A. Hartman, M. Katara, and S. Olvovsky, “Choosing a
test modeling language: A survey,” in Haifa Verifica-
tion Conference. Springer, 2007, pp. 204–218.

[55] A. Hussain, S. Tiwari, J. Suryadevara, and E. Enoiu,
“From modeling to test case generation in the industrial
embedded system domain,” in Federation of Interna-
tional Conferences on Software Technologies: Applica-
tions and Foundations. Springer, 2018, pp. 499–505.

257



BIBLIOGRAPHY

[56] M. Shafique and Y. Labiche, “A systematic review of
model based testing tool support,” Carleton University,
Canada, Tech. Rep. Technical Report SCE-10-04, pp.
01–21, 2010.

[57] C. M. Gerpheide, R. R. Schiffelers, and A. Serebrenik,
“Assessing and improving quality of qvto model trans-
formations,” Software Quality Journal, vol. 24, no. 3,
pp. 797–834, 2016.

[58] Y. G. Kim, H. S. Hong, D.-H. Bae, and S. D. Cha,
“Test cases generation from UML state diagrams,” IEE
Proceedings-Software, vol. 146, no. 4, pp. 187–192, 1999.

[59] P. Fröhlich and J. Link, “Automated test case gener-
ation from dynamic models,” in European Conference
on Object-Oriented Programming. Springer, 2000, pp.
472–491.

[60] P. Chevalley and P. Thevenod-Fosse, “Automated gen-
eration of statistical test cases from UML state dia-
grams,” in 25th Annual International Computer Soft-
ware and Applications Conference. COMPSAC 2001.
IEEE, 2001, pp. 205–214.

[61] D. Seifert, S. Helke, and T. Santen, “Test case gen-
eration for UML statecharts,” in International Andrei
Ershov Memorial Conference on Perspectives of System
Informatics. Springer, 2003, pp. 462–468.

[62] M. Riebisch, I. Philippow, and M. Götze, “UML-based
statistical test case generation,” in Objects, Compo-
nents, Architectures, Services, and Applications for a
Networked World: International Conference NetObject-
Days, NODe 2002 Erfurt, Germany, October 7–10,
2002 Revised Papers 4. Springer, 2003, pp. 394–411.

258



BIBLIOGRAPHY

[63] A. Cavarra, C. Crichton, and J. Davies, “A method
for the automatic generation of test suites from object
models,” in Proceedings of the 2003 ACM symposium
on Applied computing, 2003, pp. 1104–1109.

[64] S. Gnesi, D. Latella, and M. Massink, “Formal test-
case generation for UML statecharts,” in Proceedings.
Ninth IEEE International Conference on Engineering
of Complex Computer Systems. IEEE, 2004, pp. 75–
84.

[65] P. Samuel and R. Mall, “Boundary value testing based
on UML models,” in 14th Asian Test Symposium
(ATS’05). IEEE, 2005, pp. 94–99.

[66] D. Buchs, L. Pedro, and L. Lúcio, “Formal test genera-
tion from UML models,” in Dependable Systems: Soft-
ware, Computing, Networks. Springer, 2006, pp. 145–
171.

[67] H. Kim, S. Kang, J. Baik, and I. Ko, “Test cases gen-
eration from UML activity diagrams,” in Eighth ACIS
international conference on software engineering, arti-
ficial intelligence, networking, and parallel/distributed
computing (SNPD 2007), vol. 3. IEEE, 2007, pp. 556–
561.

[68] P. Samuel, R. Mall, and P. Kanth, “Automatic test case
generation from UML communication diagrams,” In-
formation and software technology, vol. 49, no. 2, pp.
158–171, 2007.

[69] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar,
M. Z. Z. Iqbal, and A. Nadeem, “A state-based ap-
proach to integration testing based on UML models,”

259



BIBLIOGRAPHY

Information and Software Technology, vol. 49, no. 11-
12, pp. 1087–1106, 2007.

[70] M. Sarma, D. Kundu, and R. Mall, “Automatic test
case generation from UML sequence diagram,” in 15th
International Conference on Advanced Computing and
Communications (ADCOM 2007). IEEE, 2007, pp.
60–67.

[71] M. Friske and B.-H. Schlingloff, “Improving test cov-
erage for UML state machines using transition instru-
mentation,” in International Conference on Computer
Safety, Reliability, and Security. Springer, 2007, pp.
301–314.

[72] M. Sarma and R. Mall, “Automatic test case generation
from UML models,” in 10th International Conference
on Information Technology (ICIT 2007). IEEE, 2007,
pp. 196–201.

[73] B.-L. Li, Z.-s. Li, L. Qing, and Y.-H. Chen, “Test
case automate generation from UML sequence diagram
and OCL expression,” in 2007 international conference
on computational intelligence and security (cis 2007).
IEEE, 2007, pp. 1048–1052.

[74] E. G. Cartaxo, F. G. Neto, and P. D. Machado, “Test
case generation by means of UML sequence diagrams
and labeled transition systems,” in 2007 IEEE Inter-
national Conference on Systems, Man and Cybernetics.
IEEE, 2007, pp. 1292–1297.

[75] P. Samuel, R. Mall, and A. K. Bothra, “Automatic test
case generation using unified modeling language (UML)
state diagrams,” IET software, vol. 2, no. 2, pp. 79–93,
2008.

260



BIBLIOGRAPHY

[76] S. Weißleder and B.-H. Schlingloff, “Deriving input par-
titions from UML models for automatic test genera-
tion,” in Models in Software Engineering: Workshops
and Symposia at MoDELS 2007, Nashville, TN, USA,
September 30-October 5, 2007, Reports and Revised Se-
lected Papers 10. Springer, 2008, pp. 151–163.

[77] M. Sarma and R. Mall, “Automatic generation of test
specifications for coverage of system state transitions,”
Information and Software Technology, vol. 51, no. 2,
pp. 418–432, 2009.

[78] T. Clark, “Model based functional testing using pat-
tern directed filmstrips,” in 2009 ICSE Workshop on
Automation of Software Test. IEEE, 2009, pp. 53–61.

[79] F. Zeng, Z. Chen, Q. Cao, and L. Mao, “Research on
method of object-oriented test cases generation based
on UML and lts,” in 2009 First International Confer-
ence on Information Science and Engineering. IEEE,
2009, pp. 5055–5058.

[80] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li,
“UML activity diagram-based automatic test case gen-
eration for java programs,” The Computer Journal,
vol. 52, no. 5, pp. 545–556, 2009.

[81] X. Fan, J. Shu, L. Liu, and Q. Liang, “Test case gen-
eration from UML subactivity and activity diagram,”
in 2009 Second International Symposium on Electronic
Commerce and Security, vol. 2. IEEE, 2009, pp. 244–
248.

[82] G. Batra, Y. K. Arora, and J. Sengupta, “Model-based
software regression testing for software components,”

261



BIBLIOGRAPHY

in International Conference on Information Systems,
Technology and Management. Springer, 2009, pp. 138–
149.

[83] S. Asthana, S. Tripathi, and S. K. Singh, “A novel ap-
proach to generate test cases using class and sequence
diagrams,” in International Conference on Contempo-
rary Computing. Springer, 2010, pp. 155–167.

[84] M. Shirole and R. Kumar, “A hybrid genetic algorithm
based test case generation using sequence diagrams,” in
International Conference on Contemporary Computing.
Springer, 2010, pp. 53–63.

[85] C. Schwarzl and B. Peischl, “Generation of executable
test cases based on behavioral UML system models,”
in Proceedings of the 5th Workshop on Automation of
Software Test, 2010, pp. 31–34.

[86] M. Khandai, A. A. Acharya, and D. P. Mohapatra,
“A novel approach of test case generation for concur-
rent systems using UML sequence diagram,” in 2011
3rd International Conference on Electronics Computer
Technology, vol. 1. IEEE, 2011, pp. 157–161.

[87] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, “A search-
based OCL constraint solver for model-based test data
generation,” in 2011 11th International Conference on
Quality Software. IEEE, 2011, pp. 41–50.

[88] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff,
“A specification-based test case generation method for
UML/OCL,” in Models in Software Engineering: Work-
shops and Symposia at MODELS 2010, Oslo, Norway,
October 2-8, 2010, Reports and Revised Selected Papers
13. Springer, 2011, pp. 334–348.

262



BIBLIOGRAPHY

[89] M. Prasanna and K. Chandran, “Automated test
case generation for object oriented systems using
UML object diagrams,” in International Conference on
High Performance Architecture and Grid Computing.
Springer, 2011, pp. 417–423.

[90] A. Gantait, “Test case generation and prioritization
from UML models,” in 2011 Second International Con-
ference on Emerging Applications of Information Tech-
nology. IEEE, 2011, pp. 345–350.

[91] M. Prasanna, K. R. Chandran, and K. Thiruvenkadam,
“Automatic test case generation for UML collaboration
diagrams,” IETE Journal of research, vol. 57, no. 1, pp.
77–81, 2011.

[92] A. Nayak and D. Samanta, “Synthesis of test scenar-
ios using UML activity diagrams,” Software & Systems
Modeling, vol. 10, no. 1, pp. 63–89, 2011.

[93] X. Chen, N. Ye, P. Jiang, L. Bu, and X. Li, “Feedback-
directed test case generation based on UML activity di-
agrams,” in 2011 Fifth International Conference on Se-
cure Software Integration and Reliability Improvement-
Companion. IEEE, 2011, pp. 9–10.

[94] V. Sawant and K. Shah, “Construction of test cases
from UML models,” in Technology Systems and Man-
agement. Springer, 2011, pp. 61–68.

[95] L. Briand, Y. Labiche, and Y. Liu, “Combining UML se-
quence and state machine diagrams for data-flow based
integration testing,” in European Conference on Mod-
elling Foundations and Applications. Springer, 2012,
pp. 74–89.

263



BIBLIOGRAPHY

[96] R. K. Swain, V. Panthi, and P. K. Behera, “Test case
design using slicing of UML interaction diagram,” Pro-
cedia Technology, vol. 6, pp. 136–144, 2012.

[97] K. Pechtanun and S. Kansomkeat, “Generation test
case from UML activity diagram based on ac gram-
mar,” in 2012 International Conference on Computer
& Information Science (ICCIS), vol. 2. IEEE, 2012,
pp. 895–899.

[98] L. Li, X. Li, T. He, and J. Xiong, “Extenics-based test
case generation for UML activity diagram,” Procedia
Computer Science, vol. 17, pp. 1186–1193, 2013.

[99] C.-S. Wu and C.-H. Huang, “The web services composi-
tion testing based on extended finite state machine and
UML model,” in 2013 Fifth International Conference
on Service Science and Innovation. IEEE, 2013, pp.
215–222.

[100] V. Chimisliu and F. Wotawa, “Improving test case gen-
eration from UML statecharts by using control, data
and communication dependencies,” in 2013 13th Inter-
national Conference on Quality Software. IEEE, 2013,
pp. 125–134.

[101] R. Anbunathan and A. Basu, “Dataflow test case gen-
eration from UML class diagrams,” in 2013 IEEE In-
ternational Conference on Computational Intelligence
and Computing Research. IEEE, 2013, pp. 1–9.

[102] F. Kurth, S. Schupp, and S. Weißleder, “Generating
test data from a UML activity using the ampl interface
for constraint solvers,” in International Conference on
Tests and Proofs. Springer, 2014, pp. 169–186.

264



BIBLIOGRAPHY

[103] Y. Li and L. Jiang, “The research on test case gener-
ation technology of UML sequence diagram,” in 2014
9th International Conference on Computer Science &
Education. IEEE, 2014, pp. 1067–1069.

[104] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard,
and J. Botella, “Setgam: Generalized technique for re-
gression testing based on UML/OCL models,” in 2014
Eighth International Conference on Software Security
and Reliability (SERE). IEEE, 2014, pp. 147–156.

[105] A. K. Jena, S. K. Swain, and D. P. Mohapatra, “A
novel approach for test case generation from UML ac-
tivity diagram,” in 2014 International Conference on
Issues and Challenges in Intelligent Computing Tech-
niques (ICICT). IEEE, 2014, pp. 621–629.

[106] M. Bilal, N. Sarwar, and M. S. Saeed, “A hybrid test
case model for medium scale web based applications,”
in 2016 Sixth International Conference on Innovative
Computing Technology (INTECH). IEEE, 2016, pp.
632–637.

[107] M. Elallaoui, K. Nafil, R. Touahni, and R. Messoussi,
“Automated model driven testing using andromda and
UML2 testing profile in scrum process,” Procedia Com-
puter Science, vol. 83, pp. 221–228, 2016.

[108] P. Mahali, S. Arabinda, A. A. Acharya, and D. P. Mo-
hapatra, “Test case generation for concurrent systems
using UML activity diagram,” in 2016 IEEE Region 10
Conference (TENCON). IEEE, 2016, pp. 428–435.

[109] I. S. Meiliana, R. S. Alianto, G. F. Daniel et al., “Au-
tomated test case generation from UML activity dia-

265



BIBLIOGRAPHY

gram and sequence diagram using depth first search al-
gorithm,” Procedia Comput Sci, vol. 116, p. 629â, 2017.

[110] V. Arora, R. Bhatia, and M. Singh, “Synthesizing test
scenarios in UML activity diagram using a bio-inspired
approach,” Computer Languages, Systems & Struc-
tures, vol. 50, pp. 1–19, 2017.

[111] Y. D. Salman, N. L. Hashim, M. M. Rejab, R. Romli,
and H. Mohd, “Coverage criteria for test case generation
using UML state chart diagram,” in AIP Conference
Proceedings, vol. 1891, no. 1. AIP Publishing LLC,
2017, p. 020125.

[112] P. Mani and M. Prasanna, “Test case generation for
embedded system software using UML interaction dia-
gram,” Journal of Engineering Science and Technology,
vol. 12, no. 4, pp. 860–874, 2017.

[113] V. Panthi and D. P. Mohapatra, “Generating and eval-
uating effectiveness of test sequences using state ma-
chine,” International Journal of System Assurance En-
gineering and Management, vol. 8, no. 2, pp. 242–252,
2017.

[114] P. K. Arora and R. Bhatia, “Agent-based regression test
case generation using class diagram, use cases and ac-
tivity diagram,” Procedia Computer Science, vol. 125,
pp. 747–753, 2018.

[115] S. Kamonsantiroj, L. Pipanmaekaporn, and S. Lorpun-
manee, “A memorization approach for test case gen-
eration in concurrent UML activity diagram,” in Pro-
ceedings of the 2019 2nd International Conference on
Geoinformatics and Data Analysis, 2019, pp. 20–25.

266



BIBLIOGRAPHY

[116] H. Sartaj, M. Z. Iqbal, A. A. A. Jilani, and M. U. Khan,
“A search-based approach to generate mc/dc test data
for OCL constraints,” in International Symposium on
Search Based Software Engineering. Springer, 2019,
pp. 105–120.

[117] S. K. Barisal, S. S. Behera, S. Godboley, and D. P.
Mohapatra, “Validating object-oriented software at de-
sign phase by achieving mc/dc,” International Jour-
nal of System Assurance Engineering and Management,
vol. 10, no. 4, pp. 811–823, 2019.

[118] S. Pradhan, M. Ray, and S. K. Swain, “Transition cov-
erage based test case generation from state chart dia-
gram,” Journal of King Saud University-Computer and
Information Sciences, 2019.

[119] W. Y. Kim, H. S. Son, and R. Y. C. Kim, “A study on
test case generation based on state diagram in modeling
and simulation environment,” in Advanced Communica-
tion and Networking: Third International Conference,
ACN 2011, Brno, Czech Republic, August 15-17, 2011.
Proceedings. Springer, 2011, pp. 298–305.

[120] R. K. Sahoo, S. K. Nanda, D. P. Mohapatra, and M. R.
Patra, “Model driven test case optimization of UML
combinational diagrams using hybrid bee colony al-
gorithm,” International Journal of Intelligent Systems
and Applications, vol. 9, no. 6, p. 43, 2017.

[121] A. Bader, A. S. M. Sajeev, and S. Ramakrishnan, “Test-
ing concurrency and communication in distributed ob-
jects,” in Proceedings. Fifth International Conference
on High Performance Computing (Cat. No. 98EX238).
IEEE, 1998, pp. 422–428.

267



BIBLIOGRAPHY

[122] M. R. Woodward and M. A. Hennell, “On the relation-
ship between two control-flow coverage criteria: all jj-
paths and mcdc,” Information and Software Technol-
ogy, vol. 48, no. 7, pp. 433–440, 2006.

[123] P. Murthy, P. Anitha, M. Mahesh, and R. Subra-
manyan, “Test ready UML statechart models,” in Pro-
ceedings of the 2006 international workshop on Scenar-
ios and state machines: models, algorithms, and tools,
2006, pp. 75–82.

[124] M. G. Epitropakis, S. Yoo, M. Harman, and E. K.
Burke, “Empirical evaluation of pareto efficient multi-
objective regression test case prioritisation,” in Proceed-
ings of the 2015 International Symposium on Software
Testing and Analysis, 2015, pp. 234–245.

[125] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE
Transactions on software engineering, vol. 27, no. 10,
pp. 929–948, 2001.

[126] J. F. Silva Ouriques, E. G. Cartaxo, and P. D.
Lima Machado, “Revealing influence of model structure
and test case profile on the prioritization of test cases
in the context of model-based testing,” Journal of Soft-
ware Engineering Research and Development, vol. 3,
no. 1, pp. 1–28, 2015.

[127] S. Li, N. Bian, Z. Chen, D. You, and Y. He, “A simula-
tion study on some search algorithms for regression test
case prioritization,” in 2010 10th International Confer-
ence on Quality Software. IEEE, 2010, pp. 72–81.

[128] H. Srikanth, L. Williams, and J. Osborne, “System test
case prioritization of new and regression test cases,” in

268



BIBLIOGRAPHY

2005 International Symposium on Empirical Software
Engineering, 2005. IEEE, 2005, pp. 10–pp.

[129] J.-M. Kim and A. Porter, “A history-based test pri-
oritization technique for regression testing in resource
constrained environments,” in Proceedings of the 24th
international conference on software engineering, 2002,
pp. 119–129.

[130] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tu-
meng, “Test case prioritization approaches in regression
testing: A systematic literature review,” Information
and Software Technology, vol. 93, pp. 74–93, 2018.

[131] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Test case prioritization: An empirical study,” in Pro-
ceedings IEEE International Conference on Software
Maintenance-1999 (ICSM’99).’Software Maintenance
for Business Change’(Cat. No. 99CB36360). IEEE,
1999, pp. 179–188.

[132] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incor-
porating varying test costs and fault severities into test
case prioritization,” in Proceedings of the 23rd Interna-
tional Conference on Software Engineering. ICSE 2001.
IEEE, 2001, pp. 329–338.

[133] E. J. Rapos and J. Dingel, “Using fuzzy logic and sym-
bolic execution to prioritize UML-RT test cases,” in
2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). IEEE,
2015, pp. 1–10.

[134] K.-W. Shin and D.-J. Lim, “Model-based test case pri-
oritization using an alternating variable method for re-

269



BIBLIOGRAPHY

gression testing of a UML-based model,” Applied Sci-
ences, vol. 10, no. 21, p. 7537, 2020.

[135] T. Pospisil, J. Sobotka, and J. Novak, “Enhanced adap-
tive random test case prioritization for model-based test
suites,” Acta Polytechnica Hungarica, vol. 17, no. 7,
2020.

[136] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand,
“Test case selection and prioritization using machine
learning: a systematic literature review,” Empirical
Software Engineering, vol. 27, no. 2, pp. 1–43, 2022.

[137] B. Ma, L. Wan, N. Yao, S. Fan, and Y. Zhang, “Evolu-
tionary selection for regression test cases based on di-
versity,” Frontiers of Computer Science, vol. 15, no. 2,
pp. 1–3, 2021.

[138] P. Rattan, M. Arora, M. Rakhra, V. Goel et al., “A
neoteric approach of prioritizing regression test suites
using hybrid esdg models,” Annals of the Romanian
Society for Cell Biology, pp. 2965–2973, 2021.

[139] W. Sornkliang and T. Phetkaew, “Target-based test
path prioritization for UML activity diagram using
weight assignment methods,” International Journal of
Electrical and Computer Engineering, vol. 11, no. 1, p.
575, 2021.

[140] S. Chaudhary and A. Jatain, “Performance evaluation
of clustering techniques in test case prioritization,” in
2020 International Conference on Computational Per-
formance Evaluation (ComPE). IEEE, 2020, pp. 699–
703.

270



BIBLIOGRAPHY

[141] A. Morozov, K. Ding, T. Chen, and K. Janschek, “Test
suite prioritization for efficient regression testing of
model-based automotive software,” in 2017 Interna-
tional Conference on Software Analysis, Testing and
Evolution (SATE). IEEE, 2017, pp. 20–29.

[142] Y. Xing, X. Wang, and Q. Shen, “Test case prioritiza-
tion based on artificial fish school algorithm,” Computer
Communications, vol. 180, pp. 295–302, 2021.

[143] M. Mann, P. Tomar, and O. P. Sangwan, “Bio-inspired
metaheuristics: evolving and prioritizing software test
data,” Applied Intelligence, vol. 48, pp. 687–702, 2018.

[144] B. Miranda, E. Cruciani, R. Verdecchia, and
A. Bertolino, “Fast approaches to scalable similarity-
based test case prioritization,” in Proceedings of the
40th International Conference on Software Engineer-
ing, 2018, pp. 222–232.

[145] F. Li, J. Zhou, Y. Li, D. Hao, and L. Zhang, “Aga: An
accelerated greedy additional algorithm for test case
prioritization,” IEEE Transactions on Software Engi-
neering, vol. 48, no. 12, pp. 5102–5119, 2021.

[146] C.-a. Sun, B. Liu, A. Fu, Y. Liu, and H. Liu, “Path-
directed source test case generation and prioritization
in metamorphic testing,” Journal of Systems and Soft-
ware, vol. 183, p. 111091, 2022.

[147] A. Bajaj and O. P. Sangwan, “Study the impact of
parameter settings and operators role for genetic al-
gorithm based test case prioritization,” in Proceedings
of International Conference on Sustainable Computing
in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur-India, 2019.

271



BIBLIOGRAPHY

[148] Z. Li, M. Harman, and R. M. Hierons, “Search algo-
rithms for regression test case prioritization,” IEEE
Transactions on software engineering, vol. 33, no. 4,
pp. 225–237, 2007.

[149] D. Whitley, “A genetic algorithm tutorial,” Statistics
and computing, vol. 4, pp. 65–85, 1994.

[150] R. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory,” in MHS’95. Proceedings of the
sixth international symposium on micro machine and
human science. Ieee, 1995, pp. 39–43.

[151] X.-S. Yang, “Firefly algorithms for multimodal opti-
mization,” in Stochastic Algorithms: Foundations and
Applications: 5th International Symposium, SAGA
2009, Sapporo, Japan, October 26-28, 2009. Proceed-
ings 5. Springer, 2009, pp. 169–178.

[152] C. J. Bastos Filho, F. B. de Lima Neto, A. J. Lins,
A. I. Nascimento, and M. P. Lima, “A novel search al-
gorithm based on fish school behavior,” in 2008 IEEE
international conference on systems, man and cyber-
netics. IEEE, 2008, pp. 2646–2651.

[153] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,”
in 2009 World congress on nature & biologically inspired
computing (NaBIC). Ieee, 2009, pp. 210–214.

[154] T. Y. Chen and M. F. Lau, “A new heuristic for test
suite reduction,” Information and Software Technology,
vol. 40, no. 5-6, pp. 347–354, 1998.

[155] ——, “On the divide-and-conquer approach towards
test suite reduction,” Information sciences, vol. 152,
pp. 89–119, 2003.

272



BIBLIOGRAPHY

[156] S. Tallam and N. Gupta, “A concept analysis inspired
greedy algorithm for test suite minimization,” ACM
SIGSOFT Software Engineering Notes, vol. 31, no. 1,
pp. 35–42, 2005.

[157] S. Nachiyappan, A. Vimaladevi, and C. SelvaLakshmi,
“An evolutionary algorithm for regression test suite re-
duction,” in 2010 International Conference on Commu-
nication and Computational Intelligence (INCOCCI).
IEEE, 2010, pp. 503–508.

[158] Y.-k. Zhang, J.-c. Liu, Y.-a. Cui, X.-h. Hei, and M.-
h. Zhang, “An improved quantum genetic algorithm
for test suite reduction,” in 2011 IEEE International
Conference on Computer Science and Automation En-
gineering, vol. 2. IEEE, 2011, pp. 149–153.

[159] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur, “Effect of test set minimization on fault de-
tection effectiveness,” in Proceedings of the 17th inter-
national conference on Software engineering, 1995, pp.
41–50.

[160] F. Palomo-Lozano, A. Estero-Botaro, I. Medina-Bulo,
and M. Núñez, “Test suite minimization for muta-
tion testing of ws-bpel compositions,” in Proceedings
of the Genetic and Evolutionary Computation Confer-
ence, 2018, pp. 1427–1434.

[161] P. K. Bhatia et al., “Test case minimization in cots
methodology using genetic algorithm: a modified ap-
proach,” in Proceedings of ICETIT 2019. Springer,
2020, pp. 219–228.

[162] X. Lin, H. Zhang, H. Xia, L. Yu, X. Fang, X. Chen, and
Z. Wang, “Test case minimization for regression testing

273



BIBLIOGRAPHY

of composite service based on modification impact anal-
ysis,” in International Conference on Web Information
Systems and Applications. Springer, 2020, pp. 15–26.

[163] N. L. Hashim and Y. S. Dawood, “Test case minimiza-
tion applying firefly algorithm,” International Jour-
nal on Advanced Science, Engineering and Information
Technology, vol. 8, no. 4-2, pp. 1777–1783, 2018.

[164] A. Deneke, B. G. Assefa, and S. K. Mohapatra, “Test
suite minimization using particle swarm optimization,”
Materials Today: Proceedings, vol. 60, pp. 229–233,
2022.

[165] L. Li, Y. Zhou, Y. Yuan, and S. Wu, “An extensive
study on multi-priority algorithm in test case prioriti-
zation and reduction,” in 2021 2nd Asia Service Sci-
ences and Software Engineering Conference, 2021, pp.
48–57.

[166] A. Bajaj, A. Abraham, S. Ratnoo, and L. A. Gabralla,
“Test case prioritization, selection, and reduction using
improved quantum-behaved particle swarm optimiza-
tion,” Sensors, vol. 22, no. 12, p. 4374, 2022.

[167] R. Huang, H. Chen, W. Sun, and D. Towey, “Candi-
date test set reduction for adaptive random testing: An
overheads reduction technique,” Science of Computer
Programming, vol. 214, p. 102730, 2022.

[168] N. Gupta, A. Sharma, and M. K. Pachariya, “Multi-
objective test suite optimization for detection and
localization of software faults,” Journal of King
Saud University-Computer and Information Sciences,
vol. 34, no. 6, pp. 2897–2909, 2022.

274



BIBLIOGRAPHY

[169] A. J. Turner, D. R. White, and J. H. Drake, “Multi-
objective regression test suite minimisation for mock-
ito,” in Search Based Software Engineering: 8th Inter-
national Symposium, SSBSE 2016, Raleigh, NC, USA,
October 8-10, 2016, Proceedings 8. Springer, 2016, pp.
244–249.

[170] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: Nsga-
ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[171] Q. Zhang and H. Li, “Moea/d: A multiobjective evo-
lutionary algorithm based on decomposition,” IEEE
Transactions on evolutionary computation, vol. 11,
no. 6, pp. 712–731, 2007.

[172] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Im-
proving the strength pareto evolutionary algorithm,”
TIK-report, vol. 103, 2001.

[173] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A.
London, “Incremental regression testing,” in 1993 Con-
ference on Software Maintenance. IEEE, 1993, pp.
348–357.

[174] F. I. Vokolos and P. G. Frankl, “Pythia: A regression
test selection tool based on textual differencing,” in Re-
liability, Quality and Safety of Software-Intensive Sys-
tems: IFIP TC5 WG5. 4 3rd International Conference
on Reliability, Quality and Safety of Software-Intensive
Systems (ENCRESS’97), 29th–30th May 1997, Athens,
Greece. Springer, 1997, pp. 3–21.

[175] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using
semi-supervised clustering to improve regression test se-

275



BIBLIOGRAPHY

lection techniques,” in 2011 Fourth IEEE International
Conference on Software Testing, Verification and Vali-
dation. IEEE, 2011, pp. 1–10.

[176] L. C. Briand, Y. Labiche, and S. He, “Automating re-
gression test selection based on UML designs,” Informa-
tion and Software Technology, vol. 51, no. 1, pp. 16–30,
2009.

[177] M. Al-Refai, “Towards model-based regression test se-
lection,” Ph.D. dissertation, Colorado State University,
2019.

[178] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and
M. Wimmer, “Multi-criteria test cases selection for
model transformations,” Automated Software Engineer-
ing, vol. 27, pp. 91–118, 2020.

[179] V. Dorcis, F. Bouquet, and F. Dadeau, “Clustering
of usage traces for regression test cases selection,” in
2022 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW).
IEEE, 2022, pp. 138–145.

[180] G. Guizzo, J. Petke, F. Sarro, and M. Harman, “En-
hancing genetic improvement of software with regres-
sion test selection,” in 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE).
IEEE, 2021, pp. 1323–1333.

[181] D. A. d’Aragona, F. Pecorelli, S. Romano, G. Scan-
niello, M. T. Baldassarre, A. Janes, and V. Lenarduzzi,
“Catto: Just-in-time test case selection and execution,”
in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022,
pp. 459–463.

276



BIBLIOGRAPHY

[182] A. Arrieta, P. Valle, J. A. Agirre, and G. Sagardui,
“Some seeds are strong: Seeding strategies for search-
based test case selection,” ACM Transactions on Soft-
ware Engineering and Methodology, 2022.

[183] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon,
and M. Harman, “Mutation testing advances: an anal-
ysis and survey,” in Advances in Computers. Elsevier,
2019, vol. 112, pp. 275–378.

[184] S. Dalal, K. Solanki et al., “Challenges of regression
testing: A pragmatic perspective.” International Jour-
nal of Advanced Research in Computer Science, vol. 9,
no. 1, 2018.

[185] L. Gutiérrez-Madronal, J. J. Domınguez-Jiménez, and
I. Medina-Bulo, “Mutation testing: Guideline and mu-
tation operator classification,” ICCGI 2014, p. 184,
2014.

[186] E. J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, 1982.

[187] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE transactions
on software engineering, vol. 37, no. 5, pp. 649–678,
2010.

[188] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata, “Higher
order mutation testing: A systematic literature re-
view,” Computer Science Review, vol. 25, pp. 29–48,
2017.

[189] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-
Xu, C. Xie, L. Li, Y. Liu, J. Zhao et al., “Deepmu-
tation: Mutation testing of deep learning systems,” in

277



BIBLIOGRAPHY

2018 IEEE 29th international symposium on software
reliability engineering (ISSRE). IEEE, 2018, pp. 100–
111.

[190] K. Lano and S. Kolahdouz-Rahimi, “Extending OCL
with map and function types,” in International Con-
ference on Fundamentals of Software Engineering.
Springer, 2021, pp. 108–123.

[191] J. Strug, “Classification of mutation operators applied
to design models,” in Key Engineering Materials, vol.
572. Trans Tech Publ, 2014, pp. 539–542.

[192] M. F. Granda, N. Condori-Fernández, T. E. Vos, and
O. Pastor, “Mutation operators for UML class dia-
grams,” in International Conference on Advanced In-
formation Systems Engineering. Springer, 2016, pp.
325–341.

[193] Z. Ahmed, M. Zahoor, and I. Younas, “Mutation oper-
ators for object-oriented systems: A survey,” in 2010
The 2nd International Conference on Computer and
Automation Engineering (ICCAE), vol. 2. IEEE, 2010,
pp. 614–618.

[194] J. Hassine, “Design and classification of mutation oper-
ators for abstract state machines,” Int. J. Adv. Softw,
vol. 6, no. 1, pp. 80–91, 2013.

[195] L. C. Ascari and S. R. Vergilio, “Mutation testing based
on OCL specifications and aspect oriented program-
ming,” in 2010 XXIX International Conference of the
Chilean Computer Science Society. IEEE, 2010, pp.
43–50.

278



BIBLIOGRAPHY

[196] A. Ali, H. A. Maghawry, and N. Badr, “Model-based
test case generation approach for mobile applications
load testing using OCL enhanced activity diagrams,”
in 2021 Tenth International Conference on Intelligent
Computing and Information Systems (ICICIS). IEEE,
2021, pp. 493–499.

[197] K. Jin and K. Lano, “Mutation operators for object
constraint language specification,” in OCL Workshops,
2021, pp. 128–134.

[198] Q. Zhu, A. Panichella, and A. Zaidman, “A systematic
literature review of how mutation testing supports qual-
ity assurance processes,” Software Testing, Verification
and Reliability, vol. 28, no. 6, p. e1675, 2018.

[199] S. Sualim, R. Mohamad, and N. A. Saadon, “Ontology
of mutation testing for java operators,” International
Journal of Innovative Computing, vol. 8, no. 2, 2018.

[200] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class mu-
tation operators for java,” in 13th International Sym-
posium on Software Reliability Engineering, 2002. Pro-
ceedings. IEEE, 2002, pp. 352–363.

[201] A. J. Offutt and J. Pan, “Detecting equivalent mu-
tants and the feasible path problem,” in Proceedings
of 11th Annual Conference on Computer Assurance.
COMPASS’96. IEEE, 1996, pp. 224–236.

[202] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and
R. S. Roos, “Timeaware test suite prioritization,” in
Proceedings of the 2006 international symposium on
Software testing and analysis, 2006, pp. 1–12.

279



BIBLIOGRAPHY

[203] M. Li and X. Yao, “Quality evaluation of solution sets
in multiobjective optimisation: A survey,” ACM Com-
puting Surveys (CSUR), vol. 52, no. 2, pp. 1–38, 2019.

[204] J. J. Durillo and A. J. Nebro, “jmetal: A java framework
for multi-objective optimization,” Advances in Engi-
neering Software, vol. 42, no. 10, pp. 760–771, 2011.

[205] M. Egea and V. Rusu, “Formal executable semantics
for conformance in the mde framework,” Innovations
in Systems and Software Engineering, vol. 6, pp. 73–
81, 2010.

[206] F. Büttner and M. Gogolla, “On OCL-based imperative
languages,” Science of Computer Programming, vol. 92,
pp. 162–178, 2014.

[207] A. D. Brucker, F. Tuong, and B. Wolff, “Featherweight
OCL: A proposal for a machine-checked formal seman-
tics for OCL 2.5,” in 15th International Workshop on
OCL and Textual Modeling co-located with 18th Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems, 2015, p. 199.

280



Appendix A

Review Details

In this appendix, detailed reviews of each primary study are
presented.
• Primary Study 1 : This study uses the state diagram

to perform the test case generation process. The proposed
approach converts the UML state diagram to extended fi-
nite state machines and then transfers them to a flow graph.
Based on data flow coverage criteria to create the test cases.
The reason for not applying the path coverage criteria is that
the infeasible path in the flow graph is difficult to estimate.
• Primary Study 2 : In the previous work of the author, the

process of transforming the use case diagram into the state
diagram was completed. This study uses the state diagram to
generate test cases. The STRIPS technology in AI Planning
is used in the whole generation process. The state diagram
will be converted into a specific format that can be used in
STRIPS to generate test cases. During test case generation,
branch coverage guides the whole process and ensures that
all pre- and post- conditions are satisfied.
• Primary Study 3 : This study uses the statistical test-

ing technique to automatically generate test cases from the
UML state diagram without using any intermediate format.
The proposed approach can be used for test case genera-
tion of Java programs and satisfy transition coverage criteria.

281



APPENDIX A. REVIEW DETAILS

Based on the coverage criteria, the proposed algorithm gen-
erates different inputs to execute transitions randomly and
tries to cover every transition. Finally, the mutation test is
used to compare the proposed method with data, which are
completely randomly generated, showing certain advantages.
• Primary Study 4 : In this study, the state diagram is

transformed into a common semantic expression, labelled
transition system. The main contribution is to define a
proper method to represent the semantic interpretation of
the UML state machine diagram. A FIFO (first in first out)
queue is used to describe the different abstract input pa-
rameters that stand for the generated test cases. For parallel
events, using multiple test cases to show all the possible com-
binations of events, although a tremendously large number
of test cases may be produced.
• Primary Study 5 : The proposed approach uses the use

case diagram to generate test cases. The main approach is to
refine the use cases and convert them into state machine dia-
grams through model transformations. The state diagram is
transformed into the usage model by usage graph. This step
requires the involvement of the customer or expert to deter-
mine the probability of an event. Finally, the usage model
is used to generate test cases. In the generation process, the
minimum arc coverage, equivalent to transition coverage, is
guaranteed to be implemented. Then test cases in a partic-
ular order are randomly generated to form the test suite.
• Primary Study 6 : The proposed method uses class di-

agrams, state diagrams, and object diagrams to determine
the existing behaviours in the system. The method converts
these graphs to an intermediate format in the IF language
that describes the communication state machine. The test
cases are then automatically generated by using the external

282



APPENDIX A. REVIEW DETAILS

TGV tool. The generated test cases satisfy all the possible
values in the IF expression, and the test cases are created
that enable the expression to obtain acceptable results.
• Primary Study 7 : This study used the UML state ma-

chine diagram to generate test cases and proposed a theo-
retical method to perform conformance testing on the state
machine diagram. The proposed approach uses an input/out-
pairs transition system (IOLTS), which is a modified LTS, to
provide a suitable semantic model to state machine diagrams.
• Primary Study 8 : This study uses the state machine di-

agram to generate test cases without using any intermediate
format. The generated test cases satisfy the full predicate
coverage and transition coverage. The proposed approach
uses the depth-first search algorithm to perform the creation
process. It combines with the boundary testing technique to
reduce the number of test cases and avoid test case explo-
ration problems.
• Primary Study 9 : The proposed approach uses Fondue

UML, a dialect of UML, to generate test cases by using the
formal method. The proposed approach uses environment,
protocol and operation diagrams corresponding to collabora-
tion, state diagrams and OCL expressions in UML. The pro-
posed method contains two phases. The first step transfers
Fondue UML to concurrent object-oriented Petri Nets by us-
ing model transformation, then uses author-defined language
to perform the test cases creation process. In the generation
process, the defined language can choose the types of test
cases to avoid countless test cases.
• Primary Study 10 : This study uses the activity diagram

to perform the test case generation process. The proposed
approach converts activity diagrams to I/O explicit activity
diagrams and then transfers the intermediate diagrams to

283



APPENDIX A. REVIEW DETAILS

the directed graph. Based on all paths coverage criteria to
generate test cases. In the conversion process, through the
single stimulus principle to avoid the state explosion prob-
lem. And in the test case generation step, the approach only
retains the elementary paths, which are the paths without
repeat occurrences of any node, to eliminate redundant test
cases.
• Primary Study 11 : In this study, authors use UML com-

munication diagrams to perform the test case generation pro-
cess. The overall idea of this approach is first to convert
communication diagrams into a communication tree. This
transformation eliminates the loop paths in communication
diagrams, at the meantime, this conversion solves the space
exploration problem. Based on the communication tree, the
proposed approach uses post-order traverse and boundary
coverage to generate test cases. The generated test cases
satisfy the message paths and full predicate coverage. As the
proposed approach uses the communication tree, the path
selection strategy is simple, and the proposed approach can
reach a high test coverage rate.
• Primary Study 12 : This study uses collaboration dia-

grams and state diagrams to perform systemically test case
generation. The main approach is to combine the collabora-
tion and state diagrams and transfer them into an intermedi-
ate form called SCOTEM (State Collaboration Test Model).
Through the traverse of the graph to generate the test cases,
one independent path relates to one test case. This approach
uses all-path coverage as the test criteria. The motivation of
this approach is to reflect the interactions among the different
components of the system under test to avoid integration er-
rors. The authors also perform mutation tests to validate the
effectiveness of the proposed approach, and the result shows

284



APPENDIX A. REVIEW DETAILS

that all-path coverage criteria can kill most of the mutations.
• Primary Study 13 : The authors derive test cases from

UML sequence diagrams and achieve the all-path coverage
criteria. The proposed approach converts sequence diagram
to sequence diagram graph, and collect the necessary infor-
mation from other UML diagrams, like class diagram, use
case template or data dictionary. When completing the pro-
cess of generating the sequence diagram graph, traverse all
possible paths to generate test cases. Each independent path
corresponds to one specific test case. And the whole pro-
cess does not require any modification of the UML models or
manually set input/output data.
• Primary Study 14 : The authors enhance the state di-

agrams to improve the coverage capabilities of an existing
commercial test cases generation tool and achieve a cover-
age level more than MC/DC coverage. The basic idea of the
proposed approach is to use the pre-processor to calculate
the sequences of transitions by adding additional conditions
and counters to achieve a higher coverage level. The post-
processor is used to concatenate the test cases to reduce the
number of the test suite. In the meantime, the proposed
approach does not decrease the coverage level nor lead the
system to an invalid trace.
• Primary Study 15 : This study derives test cases from

use case diagrams and sequence diagrams. The proposed ap-
proach converts use case diagrams and sequence diagrams to
use case and sequence graphs. Then a system testing model
is generated through the intermediate models plus the neces-
sary information from class diagrams, use case template, and
data dictionary. By using all use cases and all use case de-
pendencies plus all message path coverage criteria, traverse
the system testing model to generate the test cases. This

285



APPENDIX A. REVIEW DETAILS

approach mainly avoids system level errors.
• Primary Study 16 : This study uses the UML sequence

diagram and OCL expression to generate test cases automat-
ically. The proposed approach first converts the sequence
diagram into a scenarios tree, another representation of the
sequence diagram, and then traverses the tree-like graph to
find paths to generate test cases. Meanwhile, use OCL ex-
pressions to determine the input data and satisfy the pre-
and post- condition. The generated test cases achieve the
scenario path coverage. The authors reach a high coverage
level without excessive test cases.
• Primary Study 17 : This study uses the sequence dia-

gram to generate test cases, mainly focusing on mobile appli-
cations. The proposed approach uses the labelled transition
system as the intermediate format, and the depth-first search
algorithm is used to traverse the graph to perform the gener-
ation process. The labelled transition system uses redundant
labels to represent alternative flows and loops. And the gen-
erated test cases can satisfy all path coverage criteria. This
study uses two case studies to demonstrate the main steps,
and the effectiveness of the proposed approach is checked by
these case studies.
• Primary Study 18 : This study uses state machine dia-

grams to generate test cases from the UML model, and the
whole process does not use any intermediate format. The
proposed approach mainly focuses on three steps. First, use
the depth-first search or breadth-first search algorithm to
select predicates. Second, use the predicate transformation
process to convert predicates into predicate functions. Fi-
nally, the predicate function and boundary test techniques
are used to generate test cases. In the generation process,
the proposed approach satisfies full predicate coverage crite-

286



APPENDIX A. REVIEW DETAILS

ria and minimises the size of the generated test set. Accord-
ing to the result, this approach can achieve a higher transition
path coverage level than random testing.
• Primary Study 19 : This approach uses class diagram,

state machine diagram and OCL expression to perform in-
put partition and boundary testing. The proposed algorithm
combines the information gathered from the OCL pre-, post-
condition and class diagram, then transfers the state machine
diagram into a test case tree. Then, traverse the test case
tree to generate test cases, and the entire process satisfies all
one-loop path coverage criteria. The authors use the muta-
tion injection technique to compare the proposed algorithm
with two different commercials tool and demonstrate the ef-
fectiveness of the proposed algorithm.
• Primary Study 20 : This study uses UML models (use

case, sequence, state diagram) to perform the test case gen-
eration process. The proposed approach extracts all possible
scenarios from the sequence diagram, each use case corre-
sponding to one sequence diagram, and uses possible scenar-
ios to generate the system state graph. According to the
transition path coverage criteria, traverse the system state
graph to create test cases and combine them with the state
diagram to verify the outcome of the test case. In the end,
the authors demonstrate four different experiments and use
mutation testing to validate the effectiveness of the proposed
approach.
• Primary Study 21 : This study aims to use another for-

mat called snapshots and filmstrips to express OCL expres-
sion. The new formats can express the constraints and ben-
efit the test case generation process. The idea is to use in-
dependent graphs or expressions to reduce the complexity of
pre- and post- conditions in OCL expressions. The proposed

287



APPENDIX A. REVIEW DETAILS

approach defines a new language to express the constraints
and makes the constraints have precise semantics. The au-
thors use many examples to show how the proposed approach
works.
• Primary Study 22 : This study aims to use the state ma-

chine diagram to generate test cases for the object-oriented
system. The overall idea is to create a UML state machine
diagram for the SUT and transfer the state machine diagram
to a labelled transition system, then use a graph search algo-
rithm to traverse the labelled transition system to generate
test cases. Each test case consists of a sequence of system
function calls corresponding to the events. The authors use
one case study to demonstrate the effectiveness of the pro-
posed algorithm.
• Primary Study 23 : This study uses the activity diagram

and Java program specification to perform grey box testing.
The proposed approach uses an activity diagram to guide the
Java program instrument process, then randomly generates a
large number of test cases according to the program execution
traces. After generating abundant test cases, combined with
the activity diagram to match the expected activity diagram
behaviour to perform the test case selection process. The
selected test cases satisfy the corresponding test criteria. The
approach also can check the consistency between the Java
program and the activity diagram.
• Primary Study 24 : This study uses the activity diagram

to generate test cases, and the activity diagram may contain
the sub-activity diagram. The proposed approach combines
the sub-activity diagrams and activity diagrams to gener-
ate the composition tree, demonstrating the hierarchical re-
lationship between these diagrams. In the composition tree,
the leaf nodes represent the atomic activity diagram, and

288



APPENDIX A. REVIEW DETAILS

the parent nodes represent the compound activity diagrams.
The test case generation strategy is called the bottom-up
strategy, which traverses the tree, generates the test for the
bottom level, and then generates the test for a higher level.
When all level test cases are generated, use the round-robin
method to combine the test cases to construct the final test
suite. Compared with the complete combination strategy,
the proposed approach can reach a relatively high coverage
percentage without the test case explosion problem.
• Primary Study 25 : This study uses the sequence dia-

gram to perform regression testing. The proposed approach
chooses which test cases can be used in a newer system ver-
sion and which ones should be added. The idea is to construct
the control flow graph from the sequence diagram. When
there is a new version of the sequence diagram, construct
a newer control flow graph from the latest version of the
corresponding sequence diagram. Then traverse the control
flow graphs, extract test scenarios, compare the test scenar-
ios from two version control flow graphs to decide which test
cases should be reused or discarded, and generate the new
test cases to cover the new transition.
• Primary Study 26 : This study aims to generate test

cases automatically without using any intermediate format.
The proposed approach uses class and sequence diagrams to
perform the generation process. The diagrams are exported
into XMI formats, and then the algorithm extracts the test
sequence from the XMI file of the sequence diagram. Then
the proposed approach uses the class diagram to determine
the value of variables and finally uses robustness testing to
generate test cases. The generated test case satisfies the tran-
sition coverage criteria on the sequence diagram. The authors
also compare the amount of generated test cases with BVA

289



APPENDIX A. REVIEW DETAILS

and Worst Case testing.
• Primary Study 27 : This study combines the UML se-

quence diagram and a genetic algorithm to generate test
cases automatically. The proposed approach first analysis
the sequence diagram to extract the relevant information,
like the methods called and the parameters of each method,
then encodes this information into chromosomes. There are
three types of the method call, which are constructor, simple
method invocation and value assignment. Using the fitness
function to calculate the fitness value, the individual who can
cover more messages will gain a higher fitness value. Through
iterative evolution, use the best performance population to
generate test cases. The generated test suit can satisfy 100%
message sequence coverage from the test results.
• Primary Study 28 : This study generates executable test

cases based on the UML state machine diagram. The pro-
posed approach first transfers the state diagram into a sym-
bolic transition system. In this process, some pseudo states
may represent junction, condition, entry, exist and deep his-
tory states. The proposed approach generates the initial
paths from the transition system through the information
(the marked elements) provided by an engineer. Then it ex-
tracts the relevant information, like parameters in the state
machine diagram. Then the approach generates abstract test
cases and transfers them into an executable format. The
authors also compare the proposed approach with random
testing.
• Primary Study 29 : This study uses the sequence dia-

gram to generate test cases for a concurrent system. The ba-
sic idea of the proposed approach is to transfer the sequence
diagram into an intermediate format called the concurrent
composition graph. The authors defined the transformation

290



APPENDIX A. REVIEW DETAILS

rules between UML diagrams and concurrent composition
graphs, then traversed the graph by using depth-first search
and breadth-first search to deal with sequential and concur-
rent messages. The gathered test sequence can directly con-
vert into test cases. The generated test cases satisfy the mes-
sage sequence path coverage, which can cover each possible
path in the concurrent composition graph.
• Primary Study 30 : This study aims to use OCL expres-

sion to generate the test data which can satisfy the OCL con-
straints. The proposed algorithm uses the heuristic search-
based algorithm to perform the generation process, the au-
thor defined the fitness value, called branch distance, for OCL
expression, and the fitness function is available for both prim-
itive types and collection-related types. There are three dif-
ferent algorithms used in this study, which are the genetic al-
gorithm, (1 + 1) evolutionary algorithm and random search-
ing. The authors show the results of these three algorithms
and make comparisons between the algorithms.
• Primary Study 31 : This study uses the OCL expression

to generate cases, and the proposed tool supports the genera-
tion of test drivers. The proposed approach first transfers the
normal OCL expression to high order logic format, then un-
folds high-order logic expression to construct the disjunctive
normal form. By traversing each part of the DNF expres-
sion to generate test cases. The transformation process also
considers the invariants of the OCL expression and combines
the invariants, pre-condition and post-condition to construct
the high-order logic expression. And the authors use a single
linked list as an example to demonstrate how to generate test
cases.
• Primary Study 32 : This study generate test cases from

UML object diagram. The overall idea is to transfer the ob-

291



APPENDIX A. REVIEW DETAILS

ject diagram into a directed graph called the weighted graph.
Through the transformation process, determine the messages
sequence between objects and assign the weight to each mes-
sage. The weight is assigned in ascending order. The pro-
posed approach generates test cases from the least weight,
traverses the graph until all messages are covered, and gen-
erates some invalid test cases (the message weight does not
increase consecutively). The authors performed the mutation
test to validate the effectiveness of the proposed approach.
• Primary Study 33 : This study generates test cases and

prioritises them from the UML activity diagram. The pro-
posed algorithm identifies possible test flows from the UML
activity diagram and transfers the UML activity diagram to
an extended activity diagram, which adds the stereotype, like
input, output and computes, to some states convenient for
generating test steps. By using the depth-first search algo-
rithm to traverse the extended activity diagram to generate
test cases. This study also proposed an approach to priori-
tise the test cases, which assigns the weight for edges in the
extended activity diagram to satisfy transition coverage cri-
teria as a prerequisite. Test cases are selected based on the
weight of the test flow.
• Primary Study 34 : This study uses UML 2.0 collab-

oration diagram to generate test cases automatically. The
proposed algorithm transfers the collaboration diagram to
an intermediate graph called the weighted graph. In the
conversion process, the message is assigned a weight value
based on the sequence of the messages. Then traverse the
graph to generate the test cases by using Prim’s and Dijk-
stra’s algorithms. The authors also use fault-based testing
to demonstrate the effectiveness of the proposed approach.
• Primary Study 35 : This study uses the activity dia-

292



APPENDIX A. REVIEW DETAILS

gram to generate test cases automatically. The proposed
approach identifies all possible control constructs, transfers
them into composition control constructs, and combines all
nested structures into the intermediate testable model. Using
the single path in the intermediate testable model generates
the test path. Then unfold the nested structure in the sin-
gle path and combine it with the coverage criteria, which
are selection coverage, loop adequacy coverage and concur-
rent coverage, to generate test cases iteratively. The authors
used mutation testing and compared the proposed algorithm
with random testing to demonstrate the effectiveness of the
proposed approach.
• Primary Study 36 : This study uses the activity diagram

to generate executable test cases without any intermediate
format. The overall idea of the proposed approach is to
instrument code into JAVA programs and then by tracing
the execution of randomly generated test inputs to collect
the feedback to predict how the inputs impact the decision
nodes. The algorithm combines the feedback and simple path
coverage criteria to generate executable test cases. The au-
thors compared the proposed approach with random testing
to demonstrate the advantages.
• Primary Study 37 : This study uses class, sequence, use

case diagram and OCL expression to generate test cases auto-
matically. The proposed approach transfers these diagrams
into XML files. The approach extracts message flows and
condition predicates from the sequence diagram, pre- and
post- condition from the use case diagram, OCL expres-
sion, and method-relented information from the class dia-
gram, then combines this information into a sequence dia-
gram graph. The approach is based on the sequence diagram
graph, using a breadth-first search algorithm to traverse the

293



APPENDIX A. REVIEW DETAILS

graph to generate different test cases.
• Primary Study 38 : This study combines the UML se-

quence diagram and state diagram to automatically generate
test cases. The proposed approach converts the sequence and
state diagram to a control flow graph, a graph like an activity
diagram that supports most parts of the sequence and state
diagram notations. Then the approach is based on coupling-
based data flow testing criteria to retrieve test cases. The
authors compared the proposed approach with an existing
approach, called SCOTEM, to demonstrate the effectiveness
and advantages of the proposed approach.
• Primary Study 39 : This study uses the sequence dia-

gram and condition slicing techniques to perform an auto-
matic test case generation process. The proposed approach
transfers the sequence diagram to the message dependency
graph to show the relationships and dependencies of the mes-
sages. The approach selects conditional predicate from the
intermediate diagram, creates the predicates slicing dynami-
cally, and then combines this information with message path
coverage, slice coverage and boundary testing criteria to gen-
erate test cases. The authors use a simple example to demon-
strate the generation process in steps, and the generated test
cases satisfy all path coverage criteria.
• Primary Study 40 : This study converts the activity di-

agram to activity covert grammar, then uses AC grammar
to generate test cases. The proposed approach is based on
the transformation rules, which are mainly decided by the
node type in the activity diagram, and convert the activity
diagram to AC grammar. The approach iteratively adds new
test steps from the start to the stop of the production, then
generates the test cases, and the generated test set satisfies
all path coverage criteria of the corresponding activity dia-

294



APPENDIX A. REVIEW DETAILS

gram.
• Primary Study 41 : The study aims to generate test cases

with minimal size by using the activity diagram. The pro-
posed algorithm is mainly based on extension theory and
transfers the activity Euler circuit. In the transformation
process, there may be some auxiliary edges are added to
make the number of in-degree equals out-degree for the whole
graph. Then find the first loop of the Euler circuit, based on
the in-degree and out-degree, to generate the test cases. The
authors used an example to demonstrate how to generate
the test cases, and the generated test cases can satisfy the
transition coverage criteria of the activity diagram.
• Primary Study 42 : This study verifies the correctness of

the system based on web service. The proposed approach
first transfers the WS-BPEL, a standard integration lan-
guage, to the sequence diagram and WSDL to the extended
state diagram. The two types of UML diagrams combine
to generate the intermediate format EFSM-SeTM. Based on
whether the web services are stateful or stateless, there are
different representations in the EFSM-SeTM. Based on the
different coverage criteria, the approach traverses the EFSM-
SeTM diagram to generate the test cases, and the proposed
approach satisfies all path coverage criteria.
• Primary Study 43 : This study aims to improve the test

case generation process by reducing the number of test cases
and still satisfying the coverage criteria. The proposed ap-
proach transfers the state machine diagram to a formal repre-
sentation called LOTOS specifications. The approach iden-
tifies the controls, data and communication dependencies on
LOTOS specifications, and these specifications can be covert
into test purposes. And test purposes combine with the user-
defined test purpose to point out which transitions are not

295



APPENDIX A. REVIEW DETAILS

necessary for exploitation, then use the TGV tool to gener-
ate the test cases. The authors also used one study case to
demonstrate the generation process. They used seven differ-
ent studies, which contain three real-world studies, to vali-
date the effectiveness of the proposed algorithm.
• Primary Study 44 : The proposed approach generates the

state machine diagram based on the UML class diagram and
then transfers the state diagram to the control flow graph.
From the CFG, the approach first identifies the definition
and usage information for all variables and then eliminates
all invalid DU pairs. The approach can generate test cases
through valid DU (Define & use) pairs by tracing the cor-
responding variable usage. Through mutation testing, the
authors validated the effectiveness of the proposed approach,
and the generated test cases satisfy Path and DU pairs cov-
erage.
• Primary Study 45 : This study uses the UML activity

diagram and OCL expression to generate test cases. The
proposed approach converts the activity diagram and OCL
expression to a mathematical programming language as an
intermediate format, then traverse the intermediate format
to eliminate the infeasible paths. Then based on the gath-
ered information and the type of the problem, the proposed
approach uses the existing tool to generate test cases. The
authors performed mutation testing to validate the effective-
ness of the proposed approach and show the boundary value
does not affect the efficiency of test case generation for this
approach.
• Primary Study 46 : This study uses the UML sequence

diagram to generate test cases automatically. The proposed
algorithm transfers the sequence diagram to scene test trees.
Then the approach traverses the tree to slice the whole tree

296



APPENDIX A. REVIEW DETAILS

into different sub-trees, generates the test data for each sub-
tree, and combines each part of the test data to construct
test cases. The authors used an example to explain the pro-
posed approach, and the generated test cases satisfy the state
coverage criteria.
• Primary Study 47 : This study uses class diagram, state

diagram and OCL expression to perform test case selection
and test case generation processes for regression testing. The
proposed approach analyses the dependence relationship be-
tween the new diagram and the original one based on the
impact analysis of system behaviours to classify tests. Then
the approach uses classification results to determine whether
to keep, update, obsolete or generate new test cases. The
necessary diagram should be the class diagram with or with-
out the state machine diagram. The authors demonstrate the
effectiveness and efficiency of the proposed approach through
experiments.
• Primary Study 48 : The proposed approach combines the

UML activity diagram and genetic algorithm to generate and
optimise test cases automatically. This approach converts
the activity diagram to an activity flow graph via an activity
flow table and then uses the depth-first search algorithm to
generate the possible paths. Then the approach applies the
possible paths to the genetic algorithm to generate test cases,
and the fitness value depends on the weight of the paths. The
authors used the ATM example to demonstrate the whole
process, and the test cases satisfy the path coverage criteria.
• Primary Study 49 : This study uses the sequence dia-

gram, state machine diagram and the genetic algorithm to
generate test cases. The proposed approach transfers the
sequence and state machine diagram into the sequence and
state diagram graphs. Then use these two graphs to generate

297



APPENDIX A. REVIEW DETAILS

the system testing graph. The proposed approach traverses
the system testing graph to find possible paths and then ap-
plies these paths to the genetic algorithm to generate opti-
mised test cases. The authors used an online voting system
to demonstrate the process, but the chromosome definition
in the genetic algorithm is not explained clearly.
• Primary Study 50 : This study uses the activity diagram

to automatically perform the test case generation process
for medium-scale web-based applications. The proposed ap-
proach converts the activity diagram into a weighted base
graph, prioritising each transition. By traversing the graph
to find the possible path to generate corresponding test cases
and calculate the weight of flows. In the meantime, use the
weight of flows to calculate the ideal distance and the weights
of flows to approximately calculate the effort level. The au-
thors also demonstrate the traders between effort level and
ideal distance.
• Primary Study 51 : This study proposed an approach to

generate test cases based on the UML sequence diagram for
the agile project process. The proposed approach is mainly
based on model transformation techniques. The methodol-
ogy for this approach coverts the sequence diagram into UML
2.0 testing profile and then uses the AndroMDA framework
to generate test cases. The two steps are based on model-
to-model transformation and model-to-text transformation,
and the authors used an example to demonstrate the pro-
posed approach.
• Primary Study 52 : This study aims to use the activity

diagram to generate test cases for the concurrent system, es-
pecially to deal with the deadlock problem. The proposed al-
gorithm generates the input/output activity diagram, which
hides non-external I/O operations, from the UML activity

298



APPENDIX A. REVIEW DETAILS

diagram. By analysing the dependency relationship, the pro-
posed algorithm traverses the IOAD using the breadth-first
search algorithm, then combines with the lock nodes, unlock
nodes and the waiting list to generate test cases and avoid
deadlock situations. The authors used an online shopping
system to show the process, and the generated test cases
have the ability to cover all path criteria.
• Primary Study 53 : This study uses the activity diagram

and sequence diagram to generate test cases. The proposed
algorithm first transfers the activity and sequence diagram
to the corresponding graph and then combines these graphs
into the system testing graph. The approach uses a modified
depth-first algorithm to traverse the system testing graph to
find the possible paths to generate test cases. The authors
compared the results which test cases generated from the ac-
tivity graph, sequence graph and system testing graph. The
results show test cases from the system testing graph may
contain redundant test cases.
• Primary Study 54 : This study uses the UML activity

diagram and a bio-inspired algorithm to generate test sce-
narios for the concurrent system. The proposed approach
transfers the activity to an intermediate testable graph and
then applies the graph to the bio-inspired algorithm to gen-
erate the corresponding test scenarios. This study points out
the shortage of depth-first or breadth-first search algorithms.
The authors also compare the result with the generation and
ant colony optimization algorithms. The results show the
AOA has advantages when the elements in the generated
path are abundant.
• Primary Study 55 : This study mainly focused on test-

ing coverage criteria in automatic test case generation. The
authors explained the various types of criteria for the UML

299



APPENDIX A. REVIEW DETAILS

state diagram, and the state diagram first converts to the
state machine diagram. The user can use different coverage
criteria to generate test cases from the state graph according
to the requirements.
• Primary Study 56 : The proposed approach for gener-

ating test cases from the UML interaction diagram using
stack array and boundary value techniques yields efficient
test cases. And the proposed approach is validated through
two case studies.
• Primary Study 57 : This study uses the state machine

diagram to generate and prioritise the test cases. The pro-
posed approach converts the state diagram to the composite
control flow graph, and then the approach finds the path
from the CCFG to generate the test cases. The approach
uses mutation testing and APFD to prioritise the test cases
and the prioritisation process based on how many faults can
be detected by the test cases. The authors used an ATM
approach to demonstrate the whole process of the proposed
approach.
• Primary Study 58 : This study uses the class, activity

and use cases diagram to generate and select test cases for
regression testing. The class diagram identifies the changes
at the static level. At the same time, the use cases and activ-
ity diagram provide dynamic behavioural information. The
proposed approach converts UML diagrams to XML or XMI
format. Then the approach uses different agents for each
diagram to compare the old version diagram and the modi-
fied diagram to select which test cases should be reserved or
reused and which test cases should be generated.
• Primary Study 59 : This study uses the UML activity di-

agram to generate test cases for the concurrent system. The
proposed approach first converts the activity diagram to the

300



APPENDIX A. REVIEW DETAILS

concurrent activity graph, which shows the relationship be-
tween each concurrent node and can derive all possible inter-
action paths from this graph. Then the approach combines
with the user-defines constraints, which avoid the test cases
explosion problem, to traverse the graph to generate test
cases. The authors compared the proposed approach with
the depth-first search and breadth-first search algorithms to
demonstrate the advantages.
• Primary Study 60 : This study aims to generate test

data for OCL expression to achieve MC/DC coverage criteria.
The proposed approach reformulates the OCL constraints to
conjunction format and combines them with case-based rea-
soning to generate test data. The proposed approach uses
case-based reasoning to reuse the generated test cases to con-
struct new test cases and uses a maximum iteration number
to detect conflict constraints. The authors performed con-
trast experiments between four case studies to demonstrate
the effectiveness of the proposed approach.
• Primary Study 61 : The proposed approach uses the

UML activity diagram to generate test cases automatically
and aims to achieve the MC/DC coverage criteria. The ap-
proach uses three open-source and one in-house tool to per-
form the process. The overall idea is that transfer the activity
diagram to the XML file and transfer XML to XSD code, then
use JAXB to generate executable JAVA code, and finally use
jCUTE to create test cases. The proposed approach uses
COPECA to satisfy the MC/DC coverage criteria.
• Primary Study 62 : This study uses the state diagram

to generate test cases based on different coverage criteria au-
tomatically. The proposed algorithm transfers the state dia-
gram to the state machine diagram intermediate graph and
combines it with the coverage criteria to traverse the graph

301



APPENDIX A. REVIEW DETAILS

to generate test cases. The approach provides three cover-
age criteria, which are all transition, round trip path and all
transition pair coverage criteria. The authors used two stud-
ies to demonstrate the generation process and showed the
most effective coverage criteria is round trip path coverage
criteria.

302



Appendix B

Specification - Case Study 1: Bond

package app5 {
c l a s s Bond {
s t e r eo type p e r s i s t e n t ;

i nva r i an t term > 0 & term <= 100 ;
i nva r i an t coupon >= 0 & coupon <= 100 ;
i nva r i an t durat ion > 0 & durat ion <= 100 ;
i nva r i an t f requency >= 0 & frequency <= 400 ;
i nva r i an t p r i c e >= 0 & pr i c e <= 500 ;

a t t r i b u t e name i d en t i t y : S t r ing ;
a t t r i b u t e term : double ;
a t t r i b u t e coupon : double ;
a t t r i b u t e p r i c e : double ;
a t t r i b u t e f requency : i n t ;
a t t r i b u t e y i e l d der ived : double ;
a t t r i b u t e durat ion der ived : double ;

ope ra t i on d i scount ( amount : double , r : double , time : double
) : double

pre : r > −1 & r <= 1 & time >= 0
post : r e s u l t = amount / ( ( 1 + r )−>pow( time ) ) ;

ope ra t i on value ( r : double ) : double
pre : r > −1 & r <= 1
post : upper = ( term ∗ f r equency )−>f l o o r ( )−>oclAsType ( i n t ) & c

= coupon / frequency & per iod = 1 .0 / f requency & r e s u l t =
In t eg e r . subrange (1 , upper )−>c o l l e c t ( i | s e l f . d i s count ( c , r ,

i ∗ per iod ) )−>sum( ) + s e l f . d i s count (100 , r , term ) ;

opera t i on timeDiscount ( amount : double , r : double , time :
double ) : double

pre : r > −1 & r <= 1 & time >= 0
post : r e s u l t = ( amount ∗ time ) / ( ( 1 + r )−>pow( time ) ) ;

ope ra t i on macaulayDuration ( r : double ) : double
pre : r > −1 & r <= 1
post : upper = ( term ∗ f r equency )−>f l o o r ( )−>oclAsType ( i n t ) & c

= coupon / frequency & per iod = 1 .0 / f requency & r e s u l t =
( In t eg e r . subrange (1 , upper )−>c o l l e c t ( i | s e l f .

t imeDiscount ( c , r , i ∗ per iod ) )−>sum( ) + s e l f . t imeDiscount
(100 , r , term ) ) / s e l f . va lue ( r ) ;

303



APPENDIX B. SPECIFICATION - CASE STUDY 1: BOND

opera t i on b i s e c t i o n ( r : double , r l : double , ru : double ) :
double

pre : r > −1 & r l > −1 & ru > −1 & ru <= 1 & r l <= 1 & r <= 1
post : v = value ( r ) & r e s u l t = ( i f ru − r l < 0.001 then r e l s e (

i f v > p r i c e then s e l f . b i s e c t i o n ( ( ru + r ) / 2 , r , ru ) e l s e
s e l f . b i s e c t i o n ( ( r + r l ) / 2 , r l , r ) end i f ) end i f ) ;

}

usecase f indDurat ion : S t r ing {

parameter bond : Bond ;

: :
t rue => bond . durat ion = bond . macaulayDuration ( bond . y i e l d ) &

r e s u l t = "Duration i s : " + bond . durat ion
}

usecase f i ndY i e l d : S t r ing {
extendedBy f indDurat ion ;

parameter bond : Bond ;

: :
t rue => bond . y i e l d = bond . b i s e c t i o n (0 .25 , −0 .5 ,1 ) & r e s u l t = "

Yie ld i s : " + bond . y i e l d
}

}

304



Appendix C

Specification - Case Study 2: Interest
Rate

package nsapp {
c l a s s In t e r e s tRate {

a t t r i b u t e maturity : double ;
a t t r i b u t e ra t e : double ;
a t t r i b u t e i n t e r e s t r a t e I d : S t r ing ;

s t a t i c opera t i on n e l s o n s e i g a l ( t : double , v1 : double , v2 :
double , v3 : double , lambda1 : double ) : double

pre : t >= 0 & t <= 100 & v1 >= −5 & v1 <= 5 & v2 >= −5 & v2 <=
5 & v3 >= −5 & v3 <= 5 & lambda1 >= −5 & lambda1 <= 5

post : t rue
a c t i v i t y : var r e s : double ; r e s := 0 .0 ; var t s c a l e d :

double ; t s c a l e d := 0 .0 ; t s c a l e d := t / lambda1 ; var
expt s ca l ed : double ; expt s ca l ed := 0 .0 ; expt s ca l ed :=

(− t s c a l e d )−>exp ( ) ; var expra t i o : double ; expra t i o :=
0 .0 ; expra t i o := ( 1 − expt s ca l ed ) / t s c a l e d ; r e s :=
v1 + v2 ∗ expra t i o + v3 ∗ ( expra t i o − expt s ca l ed ) ;
r e turn r e s ;

s t a t i c opera t i on ns ( t : double , v1 : double , v2 : double , v3
: double , lambda1 : double ) : double

pre : t >= 0 & t <= 100 & v1 >= −5 & v1 <= 5 & v2 >= −5 & v2 <=
5 & v3 >= −5 & v3 <= 5 & lambda1 >= −5 & lambda1 <= 5

post : t rue
a c t i v i t y : var r e s : double ; r e s := 0 .0 ; i f ( t = 0 ) then

r e s := v1 + v2 e l s e ( ( i f ( t > 0 ) then r e s :=
In t e r e s tRate . n e l s o n s e i g a l ( t , v1 , v2 , v3 , lambda1 ) e l s e sk ip

) ) ; r e turn r e s ;
}

usecase plotNS : Sequence ( double ) {
parameter time : double ;
parameter v1 : double ;
parameter v2 : double ;
parameter v3 : double ;
parameter lambda1 : double ;

: :

305



APPENDIX C. SPECIFICATION - CASE STUDY 2: INTEREST RATE

t rue => r e s u l t = In t eg e r . subrange (1 , time−>f l o o r ( ) )−>c o l l e c t (
ind | In t e r e s tRat e . ns ( ind , v1 , v2 , v3 , lambda1 ) ) ;

}
}

306



Appendix D

Specification - Case Study 3:
MathLib

package mathl ib {
c l a s s MathLib {

s t a t i c a t t r i b u t e ix : i n t ;
s t a t i c a t t r i b u t e iy : i n t ;
s t a t i c a t t r i b u t e i z : i n t ;
s t a t i c a t t r i b u t e h exd i g i t : Sequence ( S t r ing ) ;

s t a t i c opera t i on i n i t i a l i s eMa thL i b ( ) : void
pre : t rue
post : t rue
a c t i v i t y :

(MathLib . h exd i g i t := Sequence{ "0" , "1" , "2" , "3" , "4" , "5" ,
"6" , "7" , "8" , "9" , "A" , "B" , "C" , "D" , "E" , "F" } ;
MathLib . s e tSeeds (1001 , 781 , 913) ) ;

s t a t i c query p i ( ) : double
pre : t rue
post : r e s u l t = 3 .14159265 ;

s t a t i c query piValue ( ) : double
pre : t rue
post : r e s u l t = 3 .14159265 ;

s t a t i c query eValue ( ) : double
pre : t rue
post : r e s u l t = 1−>exp ( ) ;

s t a t i c opera t i on se tSeeds (x : i n t , y : i n t , z : i n t ) : void
pre : t rue
post : MathLib . i x = x & MathLib . i y = y & MathLib . i z = z ;

s t a t i c opera t i on nrandom ( ) : double
pre : t rue
post : t rue
a c t i v i t y : ( MathLib . i x := ( MathLib . i x ∗ 171 ) mod 30269 ;

MathLib . i y := ( MathLib . i y ∗ 172 ) mod 30307 ; MathLib . i z
:= ( MathLib . i z ∗ 170 ) mod 30323 ; re turn ( MathLib . i x /
30269.0 + MathLib . i y / 30307.0 + MathLib . i z / 30323.0 ) ) ;

307



APPENDIX D. SPECIFICATION - CASE STUDY 3: MATHLIB

s t a t i c query random ( ) : double
pre : t rue
post : r = MathLib . nrandom ( ) & r e s u l t = ( r − r−>f l o o r ( ) ) ;

s t a t i c query combinator i a l (n : i n t , m : i n t ) : long
pre : n >= m & m >= 0
post : ( n − m < m => r e s u l t = In t eg e r . Prd (m + 1 ,n , i , i ) /

In t eg e r . Prd (1 , n − m, j , j ) ) & ( n − m >= m => r e s u l t =
In t eg e r . Prd (n − m + 1 ,n , i , i ) / In t eg e r . Prd (1 ,m, j , j ) ) ;

s t a t i c query f a c t o r i a l ( x : i n t ) : long
pre : t rue
post : ( x < 2 => r e s u l t = 1 ) & ( x >= 2 => r e s u l t = In t eg e r .

Prd (2 , x , i , i ) ) ;

s t a t i c query as inh (x : double ) : double
pre : t rue
post : r e s u l t = ( x + ( x ∗ x + 1 )−>sqr t ( ) )−>log ( ) ;

s t a t i c query acosh (x : double ) : double
pre : x >= 1
post : r e s u l t = ( x + ( x ∗ x − 1 )−>sqr t ( ) )−>log ( ) ;

s t a t i c query atanh (x : double ) : double
pre : x /= 1
post : r e s u l t = 0 .5 ∗ ( ( 1 + x ) / ( 1 − x ) )−>log ( ) ;

s t a t i c query dec ima l2b i t s ( x : long ) : S t r ing
pre : t rue
post : i f x = 0 then r e s u l t = "" e l s e r e s u l t = MathLib .

dec ima l2b i t s ( x / 2) + "" + ( x mod 2 ) end i f ;

s t a t i c query dec imal2b inary (x : long ) : S t r ing
pre : t rue
post : i f x < 0 then r e s u l t = "−" + MathLib . dec ima l2b i t s (−x )

e l s e i f x = 0 then r e s u l t = "0" e l s e r e s u l t = MathLib .
dec ima l2b i t s ( x ) end i f end i f ;

s t a t i c query dec imal2oct ( x : long ) : S t r ing
pre : t rue
post : i f x = 0 then r e s u l t = "" e l s e r e s u l t = MathLib .

dec imal2oct ( x / 8) + "" + ( x mod 8 ) end i f ;

s t a t i c query dec ima l2oc ta l ( x : long ) : S t r ing
pre : t rue
post : i f x < 0 then r e s u l t = "−" + MathLib . dec imal2oct (−x ) e l s e

i f x = 0 then r e s u l t = "0" e l s e r e s u l t = MathLib .
dec imal2oct ( x ) end i f e nd i f ;

s t a t i c query decimal2hx ( x : long ) : S t r ing
pre : t rue
post : i f x = 0 then r e s u l t = "" e l s e r e s u l t = MathLib .

decimal2hx (x/16) + ("" + MathLib . hexd ig i t−>at ( ( x mod 16)−>
oclAsType ( i n t ) + 1) ) end i f ;

s t a t i c query decimal2hex (x : long ) : S t r ing
pre : t rue

308



APPENDIX D. SPECIFICATION - CASE STUDY 3: MATHLIB

post : i f x < 0 then r e s u l t = "−" + MathLib . decimal2hx(−x ) e l s e
i f x = 0 then r e s u l t = "0" e l s e r e s u l t = MathLib . decimal2hx
(x ) end i f e nd i f ;

s t a t i c query by t e s 2 i n t e g e r ( bs : Sequence ( i n t ) ) : long
pre : t rue
post : ( bs−>s i z e ( ) = 0 => r e s u l t = 0) & ( bs−>s i z e ( ) = 1 =>

r e s u l t = bs−>at (1 ) ) & ( bs−>s i z e ( ) = 2 => r e s u l t = 256∗( bs−>
at (1 ) ) + bs−>at (2 ) ) & ( bs−>s i z e ( ) > 2 => r e s u l t = 256∗
MathLib . by t e s 2 i n t e g e r ( bs−>f ron t ( ) ) + bs−>l a s t ( ) ) ;

s t a t i c query i n t e g e r 2by t e s ( x : long ) : Sequence ( i n t )
pre : t rue
post : i f ( x/256) = 0 then r e s u l t = Sequence {(x mod 256) } e l s e

r e s u l t = MathLib . i n t e g e r 2by t e s ( x/256)−>append (x mod 256)
end i f ;

s t a t i c query integer2Nbytes ( x : long , n : i n t ) : Sequence ( i n t )
pre : t rue
post : bs = MathLib . i n t e g e r 2by t e s ( x ) & ( ( bs−>s i z e ( ) < n =>

r e s u l t = ( In t eg e r . subrange (1 , n−(bs−>s i z e ( ) ) )−>c o l l e c t (0 ) )−>
concatenate ( bs ) ) & ( bs−>s i z e ( ) >= n => r e s u l t = bs ) ) ;

s t a t i c query bitwiseAnd (x : int , y : i n t ) : i n t
pre : t rue post : t rue
a c t i v i t y :

var x1 : i n t ; x1 := x ;
var y1 : i n t ; y1 := y ;
var k : i n t ; k := 1 ;
var r e s : i n t ; r e s := 0 ;
whi l e ( x1 > 0 & y1 > 0)

do
( i f x1 mod 2 = 1 & y1 mod 2 = 1

then
r e s := r e s + k

e l s e sk ip ;
k := k ∗2 ;
x1 := x1 /2 ;
y1 := y1/2
) ;

r e turn r e s ;

s t a t i c query bitwiseOr (x : int , y : i n t ) : i n t
pre : t rue post : t rue
a c t i v i t y :

var x1 : i n t ; x1 := x ;
var y1 : i n t ; y1 := y ;
var k : i n t ; k := 1 ;
var r e s : i n t ; r e s := 0 ;
whi l e ( x1 > 0 or y1 > 0)

do
( i f x1 mod 2 = 1 or y1 mod 2 = 1

then
r e s := r e s + k

e l s e sk ip ;
k := k ∗2 ;
x1 := x1 /2 ;
y1 := y1/2

309



APPENDIX D. SPECIFICATION - CASE STUDY 3: MATHLIB

) ;
r e turn r e s ;

s t a t i c query bitwiseXor (x : int , y : i n t ) : i n t
pre : t rue post : t rue
a c t i v i t y :

var x1 : i n t ; x1 := x ;
var y1 : i n t ; y1 := y ;
var k : i n t ; k := 1 ;
var r e s : i n t ; r e s := 0 ;
whi l e ( x1 > 0 or y1 > 0)

do
( i f ( x1 mod 2) /= ( y1 mod 2)

then
r e s := r e s + k

e l s e sk ip ;
k := k ∗2 ;
x1 := x1 /2 ;
y1 := y1/2
) ;

r e turn r e s ;

s t a t i c query bitwiseNot (x : i n t ) : i n t
pre : t rue
post : r e s u l t = −(x+1) ;

s t a t i c query toBitSequence (x : long ) : Sequence ( boolean )
pre : t rue post : t rue
a c t i v i t y :

var x1 : long ; x1 := x ;
var r e s : Sequence ( boolean ) ; r e s := Sequence {} ;
whi l e x1 > 0
do

( i f x1 mod 2 = 0
then

r e s := res−>prepend ( f a l s e )
e l s e

r e s := res−>prepend ( t rue ) ;
x1 := x1/2

) ;
r e turn r e s ;

s t a t i c query modInverse (n : long , p : long ) : long
pre : p > 0 post : t rue
a c t i v i t y :

var x : long ; x := (n mod p) ;
var i : i n t ;
i := 1 ;
whi l e i < p

do
( i f ( ( i ∗x ) mod p) = 1

then return i
e l s e sk ip ;
i := i+1 ) ;

r e turn 0 ;

s t a t i c query modPow(n : long , m : long , p : long ) : long
pre : p > 0 post : t rue

310



APPENDIX D. SPECIFICATION - CASE STUDY 3: MATHLIB

a c t i v i t y :
var r e s : long ; r e s := 1 ;
var x : long ; x := (n mod p) ;
var i : i n t ;
i := 1 ;

whi l e i <= m
do

( r e s := ( ( r e s ∗x ) mod p) ; i := i + 1) ;
r e turn r e s ;

s t a t i c query doubleToLongBits (d : double ) : long
pre : t rue
post : t rue ;

s t a t i c query longBitsToDouble ( x : long ) : double
pre : t rue
post : t rue ;

}
}

311



APPENDIX D. SPECIFICATION - CASE STUDY 3: MATHLIB

312



Appendix E

Specification - Case Study 4:
UML2PY

package app {
enumeration UMLKind {

l i t e r a l va lue ;
l i t e r a l a t t r i b u t e ;
l i t e r a l r o l e ;
l i t e r a l v a r i ab l e ;
l i t e r a l constant ;
l i t e r a l f unc t i on ;
l i t e r a l queryop ;
l i t e r a l operat i on ;
l i t e r a l c l a s s i d ;

}

ab s t r a c t c l a s s NamedElement {
s t e r eo type abs t r a c t ;

a t t r i b u t e name : S t r ing ;
}

ab s t r a c t c l a s s Re la t i on sh ip extends NamedElement {
s t e r eo type abs t r a c t ;
}

ab s t r a c t c l a s s Feature extends NamedElement {
s t e r eo type abs t r a c t ;

r e f e r e n c e type : Type ;
r e f e r e n c e elementType : Type ;

}

ab s t r a c t c l a s s Type extends NamedElement {
s t e r eo type abs t r a c t ;

a t t r i b u t e typeId i d e n t i t y : S t r ing ;

opera t i on d e f a u l t I n i t i a lV a l u e ( ) : S t r ing
pre : t rue
post : t rue ;

opera t i on toPython ( ) : S t r ing

313



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

pre : t rue
post : r e s u l t = name ;

opera t i on i sSt r ingType ( ) : boolean
pre : t rue
post : ( name = " St r ing " => r e s u l t = true ) ;

}

c l a s s As soc i a t i on extends Re la t i on sh ip {

a t t r i b u t e addOnly : boolean ;
a t t r i b u t e aggregat ion : boolean ;

r e f e r e n c e memberEnd [ ∗ ] ordered : Property ;
}

c l a s s Gene ra l i z a t i on extends Re la t i on sh ip {

r e f e r e n c e s p e c i f i c : Ent ity oppos i teOf g e n e r a l i z a t i o n ;
r e f e r e n c e gene ra l : Ent ity oppos i teOf s p e c i a l i z a t i o n ;

}

ab s t r a c t c l a s s C l a s s i f i e r extends Type {
s t e r eo type abs t r a c t ;
}

ab s t r a c t c l a s s DataType extends C l a s s i f i e r {
s t e r e o type abs t r a c t ;
}

c l a s s Enumeration extends DataType {

r e f e r e n c e ownedLitera l [ ∗ ] ordered : Enumerat ionLitera l ;

ope ra t i on d e f a u l t I n i t i a lV a l u e ( ) : S t r ing
pre : t rue
post : r e s u l t = name + " ." + ownedLitera l [ 1 ] . name ;

opera t i on toPython ( ) : S t r ing
pre : t rue
post : r e s u l t = name ;

opera t i on l i t e r a l s ( ) : S t r ing
pre : t rue
post : r e s u l t = ownedLiteral−>c o l l e c t ( l t | " " + l t . name + " =

" + ownedLiteral−>indexOf ( l t ) + "\n" )−>sum( ) ;
}

c l a s s Enumerat ionLitera l extends NamedElement {
}

c l a s s Primit iveType extends DataType {

s t a t i c opera t i on i sPr imit iveType ( s : S t r ing ) : boolean
pre : t rue
post : ( s = "double " => r e s u l t = true ) & ( s = " long " =>

r e s u l t = true ) & ( s = " St r ing " => r e s u l t = true ) & ( s =
"boolean " => r e s u l t = true ) & ( s = " in t " => r e s u l t =

314



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

t rue ) & ( s = "OclType" => r e s u l t = true ) & ( s = "
OclVoid" => r e s u l t = true ) ;

s t a t i c opera t i on isPythonPrimit iveType ( s : S t r ing ) : boolean
pre : t rue
post : ( s = " f l o a t " => r e s u l t = true ) & ( s = " in t " => r e s u l t

= true ) & ( s = " s t r " => r e s u l t = true ) & ( s = "bool " =>
r e s u l t = true ) ;

ope ra t i on d e f a u l t I n i t i a lV a l u e ( ) : S t r ing
pre : t rue
post : ( name = "double " => r e s u l t = "0 .0" ) & ( name = " St r ing "

=> r e s u l t = "\"\"" ) & ( name = "boolean " => r e s u l t = "
Fal se " ) & ( name = " in t " => r e s u l t = "0" ) & ( name = "
long " => r e s u l t = "0" ) & ( true => r e s u l t = "None" ) ;

opera t i on toPython ( ) : S t r ing
pre : t rue
post : ( name = "double " => r e s u l t = " f l o a t " ) & ( name = " long "

=> r e s u l t = " in t " ) & ( name = " St r ing " => r e s u l t = " s t r "
) & ( name = "boolean " => r e s u l t = "bool " ) & ( name = "
OclType" => r e s u l t = " type" ) & ( name = "OclVoid" =>
r e s u l t = "None" ) & ( name = "OclException " => r e s u l t = "
BaseException" ) & ( true => r e s u l t = name ) ;

}

c l a s s Property {

a t t r i b u t e name : S t r ing ;
a t t r i b u t e lower : i n t ;
a t t r i b u t e upper : i n t ;
a t t r i b u t e i sOrdered : boolean ;
a t t r i b u t e isUnique : boolean ;
a t t r i b u t e i sDer ived : boolean ;
a t t r i b u t e isReadOnly : boolean ;
a t t r i b u t e i s S t a t i c : boolean ;

r e f e r e n c e q u a l i f i e r [0 −1] : Property ;
r e f e r e n c e type : Type ;
r e f e r e n c e i n i t i a lV a l u e : Express ion ;
r e f e r e n c e owner : Ent ity oppos i teOf ownedAttribute ;

opera t i on i n i t i a l i s a t i o n ( ) : S t r ing
pre : t rue
post : ( type−>oc l I sUnde f ined ( ) => r e s u l t = " s e l f . " + name +

" = None\n" ) & ( q u a l i f i e r . s i z e > 0 => r e s u l t = " s e l f
. " + name + " = d i c t ({}) \n" ) & ( q u a l i f i e r . s i z e = 0 =>
r e s u l t = " s e l f . " + name + " = " + type .
d e f a u l t I n i t i a lV a l u e ( ) + "\n" ) ;

opera t i on getPKOp( ent : S t r ing ) : S t r ing
pre : t rue
post : e = ent . toLowerCase & r e s u l t = " de f get " + ent + "ByPK(

_ex) : \ n" + " i f (_ex in " + ent + " ." + e + "_index ) : \ n"
+ " return " + ent + " ." + e + "_index [ _ex ] \ n" + "

e l s e : \ n" + " return None\n\n " ;

opera t i on getPKOps ( ent : S t r ing ) : S t r ing

315



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

pre : t rue
post : e = ent . toLowerCase & r e s u l t = " de f get " + ent + "ByPKs(

_exs ) : \ n" + " r e s u l t = [ ] \ n" + " f o r _ex in _exs : \ n" +
" i f (_ex in " + ent + " ." + e + "_index ) : \ n" + "
r e s u l t . append (" + ent + " ." + e + "_index [ _ex ] ) \n" + "
return r e s u l t \n\n " ;

}

c l a s s Operation extends Behavioura lFeature {

a t t r i b u t e isQuery : boolean ;
a t t r i b u t e i sAbs t r a c t : boolean ;
a t t r i b u t e isCached : boolean ;

r e f e r e n c e owner : Ent ity oppos i teOf ownedOperation ;
r e f e r e n c e d e f i n e r s [ ∗ ] ordered : Entity ;

opera t i on d i sp layStat i cCachedOperat ion ( indent : i n t , p :
S t r ing , obj : S t r ing ) : void

pre : t rue
post : ( Statement . tab ( indent ) + " de f " + name + "(" + p + ") : "

)−>di sp l ay ( ) & ( Statement . tab ( indent + 2) + " i f s t r (" + p
+ ") in " + obj + " ." + name + "_cache : " )−>di sp l ay ( ) & (
Statement . tab ( indent + 4) + " return " + obj + " ." + name +
"_cache [ s t r (" + p + ") ] " )−>di sp l ay ( ) & ( Statement . tab (

indent + 2) + " r e s u l t = " + obj + " ." + name + "_uncached ("
+ p + ") " )−>di sp l ay ( ) & ( Statement . tab ( indent + 2) + obj
+ " ." + name + "_cache [ s t r (" + p + ") ] = r e s u l t " )−>

di sp l ay ( ) & ( Statement . tab ( indent + 2) + " return r e s u l t " )
−>di sp l ay ( ) & "\n"−>di sp l ay ( ) & ( Statement . tab ( indent ) + "
de f " + name + "_uncached (" + p + ") : " )−>di sp l ay ( ) &
a c t i v i t y . toPython ( indent + 2)−>di sp l ay ( ) & "\n"−>di sp l ay ( ) ;

ope ra t i on disp layInstanceCachedOperat ion ( indent : i n t , p :
S t r ing , obj : S t r ing ) : void

pre : t rue
post : ( Statement . tab ( indent ) + " de f " + name + "( s e l f , " + p +

") : " )−>di sp l ay ( ) & ( Statement . tab ( indent + 2) + " i f s t r
(" + p + ") in " + obj + " ." + name + "_cache : " )−>di sp l ay
( ) & ( Statement . tab ( indent + 4) + " return " + obj + " ." +
name + "_cache [ s t r (" + p + ") ] " )−>di sp l ay ( ) & ( Statement .
tab ( indent + 2) + " r e s u l t = " + obj + " ." + name + "
_uncached (" + p + ") " )−>di sp l ay ( ) & ( Statement . tab ( indent
+ 2) + obj + " ." + name + "_cache [ s t r (" + p + ") ] = r e s u l t

" )−>di sp l ay ( ) & ( Statement . tab ( indent + 2) + " return
r e s u l t " )−>di sp l ay ( ) & "\n"−>di sp l ay ( ) & ( Statement . tab (
indent ) + " de f " + name + "_uncached ( s e l f , " + p + ") : " )
−>di sp l ay ( ) & a c t i v i t y . toPython ( indent + 2)−>di sp l ay ( ) & "\
n"−>di sp l ay ( ) ;

ope ra t i on d i sp l ayS ta t i cOpe ra t i on ( indent : i n t ) : void
pre : t rue
post : ( isCached = true & parameters . s i z e = 1 =>

disp layStat i cCachedOperat ion ( indent , parameters [ 1 ] . name ,
owner . name) ) & ( ( isCached = f a l s e or parameters . s i z e /=
1 ) => ( Statement . tab ( indent ) + " de f " + name + "(" +
Express ion . t o l i s t ( parameters . name) + ") : " )−>di sp l ay ( ) &
a c t i v i t y . toPython ( indent + 2)−>di sp l ay ( ) ) ;

316



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

opera t i on d i sp lay Ins tanceOpera t i on ( indent : i n t ) : void
pre : t rue
post : ( isCached = true & parameters . s i z e = 1 =>

disp layInstanceCachedOperat ion ( indent , parameters [ 1 ] . name , "
s e l f ") ) & ( ( isCached = f a l s e or parameters . s i z e /= 1 )
=> ( Statement . tab ( indent ) + " de f " + name + "( s e l f " +
parameters−>c o l l e c t ( p | " , " + p . name )−>sum( ) + ") : " )−>
di sp l ay ( ) & a c t i v i t y . toPython ( indent + 2)−>di sp l ay ( ) ) ;

ope ra t i on d i sp layOperat ion ( indent : i n t ) : void
pre : t rue
post : ( i s S t a t i c = true => d i sp l ayS ta t i cOpe ra t i on ( indent ) ) & (

i s S t a t i c = f a l s e => di sp lay Ins tanceOpera t i on ( indent ) ) ;
}

c l a s s Ent ity extends C l a s s i f i e r {

a t t r i b u t e i sAbs t r a c t : boolean ;
a t t r i b u t e i s I n t e r f a c e : boolean ;
a t t r i b u t e s t e r e o t ype s : Sequence ( S t r ing ) ;

r e f e r e n c e g e n e r a l i z a t i o n [ ∗ ] : Gene ra l i z a t i on oppos i teOf
s p e c i f i c ;

r e f e r e n c e s p e c i a l i z a t i o n [ ∗ ] : Gene ra l i z a t i on oppos i teOf gene ra l
;

r e f e r e n c e ownedOperation [ ∗ ] ordered : Operation oppos i teOf
owner ;

r e f e r e n c e ownedAttribute [ ∗ ] : Property oppos i teOf owner ;
r e f e r e n c e s up e r c l a s s [0 −1] : Ent ity oppos i teOf s ub c l a s s e s ;
r e f e r e n c e s ub c l a s s e s [ ∗ ] : Ent ity oppos i teOf s up e r c l a s s ;

ope ra t i on a l l L e a f Sub c l a s s e s ( ) : Set ( Ent ity )
pre : t rue
post : ( s p e c i a l i z a t i o n . s i z e = 0 => r e s u l t = Set { s e l f } ) & (

s p e c i a l i z a t i o n . s i z e > 0 => r e s u l t = s p e c i a l i z a t i o n −>
unionAl l ( s p e c i f i c . a l l L e a f Sub c l a s s e s ( ) ) ) ;

ope ra t i on a l l P r o p e r t i e s ( ) : Set ( Property )
pre : t rue
post : ( g e n e r a l i z a t i o n . s i z e = 0 => r e s u l t = ownedAttribute ) &

( g e n e r a l i z a t i o n . s i z e > 0 => r e s u l t = ownedAttribute−>union
( g e n e r a l i z a t i o n . g ene ra l . a l l P r o p e r t i e s ( ) ) ) ;

ope ra t i on a l lOpe ra t i on s ( ) : Set ( Operation )
pre : t rue
post : oonames = s e l f . ownedOperation−>c o l l e c t (name) & ( (

g e n e r a l i z a t i o n . s i z e = 0 => r e s u l t = s e l f . ownedOperation ) &
( g e n e r a l i z a t i o n . s i z e > 0 => r e s u l t = s e l f . ownedOperation

−>union ( g e n e r a l i z a t i o n . g ene ra l . a l lOpe ra t i on s ( )−>s e l e c t ( op
| op . name / : oonames ) ) ) ) ;

ope ra t i on i sApp l i c a t i onC l a s s ( ) : boolean
pre : t rue
post : ( " ex t e rna l " / : s t e r e o t ype s & "component" / : s t e r e o t ype s

) => r e s u l t = true ;

opera t i on i sAc t i v eC l a s s ( ) : boolean

317



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

pre : t rue
post : ( " a c t i v e " : s t e r e o t ype s => r e s u l t = true ) ;

ope ra t i on i sS ing l eVa lued (d : S t r ing ) : boolean
pre : t rue
post : a l l P r o p e r t i e s ( )−>e x i s t s ( p | p . name = d & p . lower = 1 & p

. upper = 1 ) => r e s u l t = true ;

opera t i on i sSetValued (d : S t r ing ) : boolean
pre : t rue
post : a l l P r o p e r t i e s ( )−>e x i s t s ( p | p . name = d & ( p . lower /= 1

or p . upper /= 1 ) & p . i sOrdered = f a l s e ) => r e s u l t = true ;

opera t i on isSequenceValued (d : S t r ing ) : boolean
pre : t rue
post : a l l P r o p e r t i e s ( )−>e x i s t s ( p | p . name = d & ( p . lower /= 1

or p . upper /= 1 ) & p . i sOrdered = true ) => r e s u l t = true ;

opera t i on d e f a u l t I n i t i a lV a l u e ( ) : S t r ing
pre : t rue
post : r e s u l t = "None " ;

opera t i on i n i t i a l i s a t i o n s ( ) : S t r ing
pre : t rue
post : r e s u l t = a l l P r o p e r t i e s ( )−>s e l e c t ( a | a . i s S t a t i c = f a l s e

)−>c o l l e c t ( x | x . i n i t i a l i s a t i o n ( ) )−>sum( ) ;

opera t i on g e n e r a l i s a t i o n S t r i n g ( ) : S t r ing
pre : t rue
post : ( g e n e r a l i z a t i o n . s i z e = 0 => r e s u l t = "" ) & (

g e n e r a l i z a t i o n . s i z e > 0 => r e s u l t = "(" + g en e r a l i z a t i o n .
any . g ene ra l . name + ") " ) ;

ope ra t i on c la s sHeader ( ) : S t r ing
pre : t rue
post : ( s up e r c l a s s . s i z e = 0 => r e s u l t = " c l a s s " + name + " : "

) & ( supe r c l a s s −>e x i s t s ( c | c . i s I n t e r f a c e = f a l s e ) =>
r e s u l t = " c l a s s " + name + "(" + sup e r c l a s s . any . name + ") :
" ) & ( true => r e s u l t = " c l a s s " + name + " : " ) ;

ope ra t i on a l l S t a t i cCach e s ( ) : S t r ing
pre : t rue
post : r e s u l t = ownedOperation−>s e l e c t ( x | x . i s S t a t i c & x .

isCached & x . parameters . s i z e = 1 )−>c o l l e c t ( y | " " + y .
name + "_cache = d i c t ({}) " + "\n" )−>sum( ) ;

opera t i on a l l In s t anceCache s ( ) : S t r ing
pre : t rue
post : r e s u l t = ownedOperation−>s e l e c t ( x | x . i s S t a t i c = f a l s e &

x . isCached & x . parameters . s i z e = 1 )−>c o l l e c t ( y | "
s e l f . " + y . name + "_cache = d i c t ({}) " + "\n" )−>sum( ) ;

opera t i on s t a t i cA t t r i b u t e s ( ) : S t r ing
pre : t rue
post : r e s u l t = " " + name . toLowerCase ( ) + "_instances = [ ] \ n"

+ " " + name . toLowerCase ( ) + "_index = d i c t ({}) \n" +
a l l P r o p e r t i e s ( )−>s e l e c t ( x | x . i s S t a t i c )−>c o l l e c t ( y | "
" + y . name + " = " + y . type . d e f a u l t I n i t i a lV a l u e ( ) + "\n" )

318



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

−>sum( ) + a l l S t a t i cCach e s ( ) ;

ope ra t i on c l a s sCons t ruc to r ( ) : S t r ing
pre : t rue
post : r e s u l t = " de f __init__( s e l f ) : \ n" + i n i t i a l i s a t i o n s ( ) +

" " + name + " ." + name . toLowerCase ( ) + "_instances .
append ( s e l f ) \n" + a l l In s tanceCache s ( ) + "\n " ;

opera t i on abs t rac tC la s sCons t ruc to r ( ) : S t r ing
pre : t rue
post : r e s u l t = " de f __init__( s e l f ) : \ n" + " " + name + " ."

+ name . toLowerCase ( ) + "_instances . append ( s e l f ) \n " ;

opera t i on cal lOp ( ) : S t r ing
pre : t rue
post : ( i sAc t i v eC l a s s ( ) => r e s u l t = " de f __call__( s e l f ) : \ n" +

" s e l f . run ( ) \n\n" ) & ( true => r e s u l t = "" ) ;

opera t i on createOp ( ) : S t r ing
pre : t rue
post : r e s u l t = " de f c r e a t e " + name + "() : \ n" + " " + name .

toLowerCase ( ) + " = " + name + "() \n" + " return " + name .
toLowerCase ( ) + "\n " ;

opera t i on createPKOp ( key : S t r ing ) : S t r ing
pre : t rue
post : r e s u l t = " de f createByPK" + name + "( _value ) : \ n" + "

r e s u l t = get " + name + "ByPK( _value ) \n" + " i f ( r e s u l t !=
None ) : \n" + " return r e s u l t \n" + " e l s e : \ n" + "
r e s u l t = " + name + "() \n" + " r e s u l t . " + key + " =
_value\n" + " " + name + " ." + name . toLowerCase ( ) + "
_index [ _value ] = r e s u l t \n" + " return r e s u l t \n " ;

s t a t i c opera t i on deleteOp ( ) : S t r ing
pre : t rue
post : r e s u l t = " de f f r e e ( x ) : \ n" + " de l x\n\n " ;

s t a t i c opera t i on instancesOps ( l e a f s : Set ( Entity ) ) : S t r ing
pre : t rue
post : ( l e a f s . s i z e = 1 => r e s u l t = " a l l I n s t anc e s_ " + l e a f s .

f i r s t . name + "() " ) & ( l e a f s . s i z e > 1 => r e s u l t = " o c l .
union ( a l l I n s t ance s_ " + l e a f s . f i r s t . name + "() , " + Entity .
instancesOps ( l e a f s . t a i l ) + ") " ) ;

ope ra t i on createOclTypeOp ( ) : S t r ing
pre : t rue
post : typename = name . toLowerCase ( ) + "_OclType" & r e s u l t =

typename + " = createByPKOclType (\"" + name + "\") \n" +
typename + " . i n s t anc e = c r ea t e " + name + "() \n" + typename
+ " . actualMetatype = type (" + typename + " . i n s t anc e ) \n " ;

opera t i on a l l In s tance sOp ( ) : S t r ing
pre : t rue
post : ( s p e c i a l i z a t i o n . s i z e = 0 => r e s u l t = " de f a l l I n s t ance s_ "

+ name + "() : \ n" + " return " + name + " ." + name .
toLowerCase ( ) + "_instances \n" ) & ( s p e c i a l i z a t i o n . s i z e >
0 => r e s u l t = " de f a l l I n s t anc e s_ " + name + "() : \ n" + "
return " + Entity . instancesOps ( a l l L e a f Sub c l a s s e s ( ) ) ) ;

319



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

s t a t i c opera t i on displayOps ( ) : S t r ing
pre : t rue
post : r e s u l t = " de f d i s p l a y i n t ( x ) : \ n" + " pr in t ( s t r ( x ) ) \n\n" +

" de f d i sp l ay l ong (x ) : \ n" + " pr in t ( s t r ( x ) ) \n\n" + " de f
d i sp laydoub l e ( x ) : \ n" + " pr in t ( s t r ( x ) ) \n\n" + " de f
d i sp l ayboo l ean (x ) : \ n" + " pr in t ( s t r ( x ) ) \n\n" + " de f
d i s p l a yS t r i n g (x ) : \ n" + " pr in t ( x ) \n\n" + " de f
d i sp laySequence (x ) : \ n" + " pr in t ( x ) \n\n" + " de f d i sp l aySe t
( x ) : \ n" + " pr in t ( x ) \n\n" + " de f displayMap (x ) : \ n" + "
pr in t ( x ) \n\n " ;

}

c l a s s Col l ect ionType extends DataType {

r e f e r e n c e elementType : Type ;
r e f e r e n c e keyType : Type ;

opera t i on d e f a u l t I n i t i a lV a l u e ( ) : S t r ing
pre : t rue
post : ( name = "Sequence" => r e s u l t = " [ ] " ) & ( name = "Set "

=> r e s u l t = " s e t ({}) " ) & ( name = "Map" => r e s u l t = " d i c t
({}) " ) & ( name = "Function" => r e s u l t = "None" ) ;

}

ab s t r a c t c l a s s Express ion {
s t e r eo type abs t r a c t ;

a t t r i b u t e needsBracket : boolean ;
a t t r i b u t e umlKind : UMLKind ;
a t t r i b u t e expId i d e n t i t y : S t r ing ;
a t t r i b u t e i s S t a t i c : boolean ;

r e f e r e n c e type : Type ;
r e f e r e n c e elementType : Type ;

s t a t i c opera t i on t o l i s t ( s : Sequence ( S t r ing ) ) : S t r ing
pre : t rue
post : ( s . s i z e = 0 => r e s u l t = "" ) & ( s . s i z e = 1 => r e s u l t =

s−>f i r s t ( ) ) & ( s . s i z e > 1 => r e s u l t = s−>f i r s t ( ) + " ," +
Express ion . t o l i s t ( s−>t a i l ( ) ) ) ;

s t a t i c opera t i on mapto l i s t ( s : Sequence ( S t r ing ) ) : S t r ing
pre : t rue
post : ( s . s i z e = 0 => r e s u l t = "" ) & ( s . s i z e = 1 => r e s u l t =

s−>f i r s t ( ) ) & ( s . s i z e > 1 => r e s u l t = s−>f i r s t ( ) + " ," +
Express ion . mapto l i s t ( s−>t a i l ( ) ) ) ;

s t a t i c opera t i on i nd ex s t r i n g ( ax : Sequence ( S t r ing ) , aind : Set
( S t r ing ) ) : S t r ing

pre : t rue
post : ( aind . s i z e > 0 & ax−>inc l ud e s (" St r ing ") => r e s u l t = " ["

+ aind−>any ( ) + " ]" ) & ( aind . s i z e > 0 & not ( ( ax−>
inc l ud e s (" St r ing ") ) ) => r e s u l t = " [" + aind−>any ( ) + "
−1]" ) & ( aind . s i z e = 0 => r e s u l t = "" ) ;

s t a t i c opera t i on pa r s t r i n g ( pars : Sequence ( S t r ing ) ) : S t r ing
pre : t rue

320



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

post : ( pars . s i z e = 1 => r e s u l t = "(" + pars−>f i r s t ( ) + ") " ) &
( pars . s i z e > 1 => r e s u l t = "(" + pars−>f i r s t ( ) + pars−>

t a i l ( )−>c o l l e c t ( p | " , " + p )−>sum( ) + ") " ) & ( pars .
s i z e = 0 => r e s u l t = "( ) " ) ;

s t a t i c opera t i on l e f tB r a ck e t ( tn : S t r ing ) : S t r ing
pre : t rue
post : ( tn = "Set " => r e s u l t = " s e t ({" ) & ( tn = "Sequence" =>

r e s u l t = " [" ) & ( tn = "Map" => r e s u l t = " d i c t ({" ) ;

s t a t i c opera t i on r i ghtBracke t ( tn : S t r ing ) : S t r ing
pre : t rue
post : ( tn = "Set " => r e s u l t = "}) " ) & ( tn = "Sequence" =>

r e s u l t = " ]" ) & ( tn = "Map" => r e s u l t = "}) " ) ;

ope ra t i on addReference (x : Bas i cExpress ion ) : Express ion
pre : t rue
post : t rue ;

opera t i on i sC o l l e c t i o n ( ) : boolean
pre : t rue
post : ( type−>oc l I sUnde f ined ( ) => r e s u l t = f a l s e ) & ( type .

name = "Set " => r e s u l t = true ) & ( type . name = "Sequence"
=> r e s u l t = true ) ;

ope ra t i on isMap ( ) : boolean
pre : t rue
post : ( type−>oc l I sUnde f ined ( ) => r e s u l t = f a l s e ) & ( type .

name = "Map" => r e s u l t = true ) ;

ope ra t i on isNumeric ( ) : boolean
pre : t rue
post : ( type−>oc l I sUnde f ined ( ) => r e s u l t = f a l s e ) & ( type .

name = " in t " or type . name = " long " or type . name = "double "
=> r e s u l t = true ) ;

ope ra t i on i s S t r i n g ( ) : boolean
pre : t rue
post : ( type−>oc l I sUnde f ined ( ) => r e s u l t = f a l s e ) & ( type .

name = " St r ing " => r e s u l t = true ) ;

ope ra t i on isEnumeration ( ) : boolean
pre : t rue
post : ( type−>oc l I sUnde f ined ( ) => r e s u l t = f a l s e ) & (

Enumeration−>c o l l e c t (name)−>inc l ud e s ( type . name) => r e s u l t =
true ) ;

s t a t i c opera t i on isUnaryCol lect ionOp ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "−>s i z e " or fname = "−>any" or fname = "−>

rev e r s e " or fname = "−>f ron t " or fname = "−>t a i l " or fname
= "−> f i r s t " or fname = "−>l a s t " or fname = "−>so r t " or
fname = "−>asSet " or fname = "−>asSequence " or fname = "−>
asOrderedSet " or fname = "−>asBag" ) => r e s u l t = true ;

opera t i on toPython ( ) : S t r ing
pre : t rue
post : t rue ;

321



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

}

c l a s s Bas icExpress ion extends Express ion {

a t t r i b u t e data : S t r ing ;
a t t r i b u t e p r e s t a t e : boolean ;

r e f e r e n c e parameters [ ∗ ] ordered : Express ion ;
r e f e r e n c e r e f e r r edPrope r ty [0 −1] : Property ;
r e f e r e n c e context [ ∗ ] : Ent ity ;
r e f e r e n c e arrayIndex [0 −1] : Express ion ;
r e f e r e n c e ob jec tRe f [0 −1] : Express ion ;

s t a t i c opera t i on isMathFunction ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = " sq r t " or fname = "exp" or fname = " log " or

fname = " s i n " or fname = " cos " or fname = "tan" or fname =
"pow" or fname = " log10 " or fname = " cbrt " or fname = "tanh
" or fname = "cosh " or fname = " s inh " or fname = " as in " or
fname = "acos " or fname = "atan" or fname = " c e i l " or fname
= "round" or fname = " f l o o r " or fname = "abs" => r e s u l t =

true ) ;

ope ra t i on noContextnoObject ( obs : Set ( S t r ing ) ) : boolean
pre : t rue
post : obs . s i z e = 0 & context . s i z e = 0 => r e s u l t = true ;

opera t i on contextAndObject ( obs : Set ( S t r ing ) ) : boolean
pre : t rue
post : context . s i z e > 0 & obs . s i z e > 0 => r e s u l t = true ;

opera t i on i sOc lExcept ionCreat ion ( obs : Set ( S t r ing ) ) : boolean
pre : t rue
post : ( data = "newOclException" or data = "

newAssert ionException " or data = "newProgramException" or
data = "newSystemException" or data = "newIOException" or
data = "newCastingException" or data = "
newNullAccessException " or data = "newIndexingException " or
data = "newArithmeticException " or data = "

newIncorrectElementException " or data = "
newAccess ingException " or data = "newOclDate" ) => r e s u l t =
true ;

opera t i on mapTypeExpression ( a inds : Set ( S t r ing ) ) : S t r ing
pre : t rue
post : ( data = " long " => r e s u l t = " i n t " ) & ( data = "double "

=> r e s u l t = " f l o a t " ) & ( data = "boolean " => r e s u l t = "
bool " ) & ( data = " St r ing " => r e s u l t = " s t r " ) & ( data =
"OclType" & ainds . s i z e > 0 => r e s u l t = "getOclTypeByPK(" +
ainds−>any ( ) + ") " ) & ( data = "OclType" & ainds . s i z e = 0
=> r e s u l t = " type" ) & ( data = "OclVoid" => r e s u l t = "None
" ) & ( data = "OclAny" => r e s u l t = "None" ) & ( data = "
OclException " => r e s u l t = "BaseException" ) & ( data = "
ProgramException" => r e s u l t = "Exception " ) & ( data = "
SystemException" => r e s u l t = "OSError" ) & ( data = "
IOException" => r e s u l t = " IOError" ) & ( data = "
Cast ingExcept ion " => r e s u l t = "TypeError" ) & ( data = "
Nul lAccessExcept ion " => r e s u l t = " Attr ibuteError " ) & (

322



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

data = " IndexingExcept ion " => r e s u l t = "LookupError" ) & (
data = "Arithmet icExcept ion " => r e s u l t = " Arithmet icError "
) & ( data = " IncorrectElementExcept ion " => r e s u l t = "
ValueError " ) & ( data = " Asser t ionExcept ion " => r e s u l t = "
Asse r t i onError " ) & ( data = " Access ingExcept ion " => r e s u l t
= "OSError" ) & ( true => r e s u l t = data ) ;

ope ra t i on mapValueExpression ( aind : Set ( S t r ing ) ) : S t r ing
pre : t rue
post : ( data = " true " => r e s u l t = "True" ) & ( data = " f a l s e "

=> r e s u l t = " Fal se " ) & ( data = " nu l l " => r e s u l t = "None"
) & ( data = "Math_NaN" => r e s u l t = "math . nan" ) & ( data =
"Math_PINFINITY" => r e s u l t = "math . i n f " ) & ( data = "

Math_NINFINITY" => r e s u l t = "−math . i n f " ) & ( aind . s i z e > 0
=> r e s u l t = data + " [" + aind−>any ( ) + " ]" ) & ( s e l f .

i sEnumeration ( ) => r e s u l t = type . name + " ." + data ) & (
true => r e s u l t = data ) ;

ope ra t i on mapVariableExpress ion ( obs : Set ( S t r ing ) , aind : Set (
S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( obs . s i z e = 0 & aind . s i z e = 0 & pars . s i z e = 0 => r e s u l t

= data ) & ( obs . s i z e = 0 & aind . s i z e = 0 & pars . s i z e > 0
=> r e s u l t = data + Express ion . pa r s t r i n g ( pars ) ) & ( obs .
s i z e = 0 & aind . s i z e > 0 & arrayIndex . type . name−>inc l ud e s ("
St r ing ") => r e s u l t = data + " [" + aind−>any ( ) + " ]" ) & (
obs . s i z e = 0 & aind . s i z e > 0 => r e s u l t = data + " [" + aind
−>any ( ) + " −1]" ) & ( obs . s i z e > 0 => r e s u l t = obs−>any ( )
+ " ." + mapVariableExpress ion ( Set {} , aind , pars ) ) ;

ope ra t i on mapStat i cAttr ibuteExpress ion ( obs : Set ( S t r ing ) , aind
: Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( obs . s i z e = 0 => r e s u l t = data + Express ion . i nd ex s t r i n g (

arrayIndex−>c o l l e c t ( expr | expr . type . name ) , aind ) ) & (
contextAndObject ( obs ) => r e s u l t = objec tRe f . any . data + " ."
+ data + Express ion . i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr |

expr . type . name ) , aind ) ) ;

ope ra t i on mapReferencedAttr ibuteExpress ion ( obs : Set ( S t r ing ) ,
aind : Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( ob j ec tRe f . any . type / : Col l ect ionType => r e s u l t = obs−>

any ( ) + " ." + data + Express ion . i nd ex s t r i n g ( arrayIndex−>
c o l l e c t ( expr | expr . type . name ) , aind ) ) & ( type . name = "
Sequence" => r e s u l t = " [ _x. " + data + Express ion .
i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr | expr . type . name ) ,
aind ) + " f o r _x in " + obs−>any ( ) + " ]" ) & ( type . name =
"Set " => r e s u l t = " s e t ({ _x. " + data + Express ion .
i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr | expr . type . name ) ,
aind ) + " f o r _x in " + obs−>any ( ) + "}) " ) ;

ope ra t i on mapAttr ibuteExpress ion ( obs : Set ( S t r ing ) , aind : Set
( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( i s S t a t i c = true => r e s u l t =

mapStat icAttr ibuteExpress ion ( obs , aind , pars ) ) & (
noContextnoObject ( obs ) => r e s u l t = data + Express ion .

323



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr | expr . type . name ) ,
aind ) ) & ( obs . s i z e = 0 => r e s u l t = " s e l f . " + data +
Express ion . i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr | expr .
type . name ) , aind ) ) & ( contextAndObject ( obs ) => r e s u l t =
mapReferencedAttr ibuteExpress ion ( obs , aind , pars ) ) & ( obs .
s i z e > 0 => r e s u l t = obs−>any ( ) + " ." + data + Express ion .
i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr | expr . type . name ) ,
aind ) ) ;

ope ra t i on mapErrorCall ( obs : Set ( S t r ing ) , pars : Sequence (
S t r ing ) ) : S t r ing

pre : t rue
post : ( obs . s i z e > 0 => r e s u l t = objec tRe f . any .

mapTypeExpression ( Set {}) + Express ion . pa r s t r i n g ( pars ) ) & (
obs . s i z e = 0 => r e s u l t = data ) ;

ope ra t i on mapStat icOperat ionExpress ion ( obs : Set ( S t r ing ) , aind
: Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( i sOc lExcept ionCreat ion ( obs ) => r e s u l t = mapErrorCall (

obs , pars ) ) & ( obs . s i z e > 0 => r e s u l t = objec tRe f . any . data
+ " ." + data + Express ion . pa r s t r i n g ( pars ) + Express ion .

i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr | expr . type . name ) ,
aind ) ) & ( obs . s i z e = 0 => r e s u l t = data + Express ion .
pa r s t r i n g ( pars ) + Express ion . i nd ex s t r i n g ( arrayIndex−>
c o l l e c t ( expr | expr . type . name ) , aind ) ) ;

ope ra t i on mapInstanceOperat ionExpress ion ( obs : Set ( S t r ing ) ,
aind : Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( noContextnoObject ( obs ) => r e s u l t = data + Express ion .

pa r s t r i n g ( pars ) + Express ion . i nd ex s t r i n g ( arrayIndex−>
c o l l e c t ( expr | expr . type . name ) , aind ) ) & (
contextAndObject ( obs ) => r e s u l t = obs−>any ( ) + " ." + data +
Express ion . pa r s t r i n g ( pars ) + Express ion . i nd ex s t r i n g (

arrayIndex−>c o l l e c t ( expr | expr . type . name ) , aind ) ) & (
context . s i z e > 0 => r e s u l t = " s e l f . " + data + Express ion .
pa r s t r i n g ( pars ) + Express ion . i nd ex s t r i n g ( arrayIndex−>
c o l l e c t ( expr | expr . type . name ) , aind ) ) & ( obs . s i z e > 0
=> r e s u l t = obs−>any ( ) + " ." + data + Express ion . pa r s t r i n g (
pars ) + Express ion . i nd ex s t r i n g ( arrayIndex−>c o l l e c t ( expr |
expr . type . name ) , aind ) ) ;

ope ra t i on mapOperationExpression ( obs : Set ( S t r ing ) , aind : Set
( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( i s S t a t i c = true => r e s u l t =

mapStat icOperat ionExpress ion ( obs , aind , pars ) ) & ( i s S t a t i c
= f a l s e => r e s u l t = mapInstanceOperat ionExpress ion ( obs , aind
, pars ) ) ;

ope ra t i on mapIntegerFunct ionExpress ion ( obs : Set ( S t r ing ) , aind
: Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : obs . s i z e > 0
post : arg = obs−>any ( ) & ( " subrange " = data & pars . s i z e ( ) > 1

=> r e s u l t = " range (" + pars−>f i r s t ( ) + " , " + pars−>at (2 ) +
" +1)" ) & ( "Sum" = data => r e s u l t = " oc l . sum ( [ ( " + pars

[ 4 ] + ") f o r " + pars [ 3 ] + " in range (" + pars [ 1 ] + " , " +

324



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

pars [ 2 ] + " + 1) ] ) " ) & ( "Prd" = data => r e s u l t = " oc l . prd
( [ ( " + pars [ 4 ] + ") f o r " + pars [ 3 ] + " in range (" + pars
[ 1 ] + " , " + pars [ 2 ] + " + 1) ] ) " ) ;

ope ra t i on mapInsertAtFunctionExpress ion ( obs : Set ( S t r ing ) ,
aind : Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : obs . s i z e > 0
post : arg = obs−>any ( ) & ( type . name = " St r ing " => r e s u l t = "

oc l . i n s e r tAtS t r i ng (" + arg + " , " + pars [ 1 ] + " , " + pars
[ 2 ] + ") " ) & ( type . name /= " St r ing " => r e s u l t = " oc l .
i n s e r tAt (" + arg + " , " + pars [ 1 ] + " , " + pars [ 2 ] + ") " ) ;

ope ra t i on mapSetAtFunctionExpression ( obs : Set ( S t r ing ) , aind :
Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : obs . s i z e > 0
post : arg = obs−>any ( ) & ( type . name = " St r ing " => r e s u l t = "

oc l . s e tAtSt r ing (" + arg + " , " + pars [ 1 ] + " , " + pars [ 2 ] +
") " ) & ( type . name /= " St r ing " => r e s u l t = " o c l . setAt (" +
arg + " , " + pars [ 1 ] + " , " + pars [ 2 ] + ") " ) ;

ope ra t i on mapSubrangeFunctionExpression ( obs : Set ( S t r ing ) ,
aind : Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : obs . s i z e > 0
post : arg = obs−>any ( ) & ( pars−>s i z e ( ) > 1 => r e s u l t = arg +

" [ ( " + pars [ 1 ] + "−1) : " + pars [ 2 ] + " ]" ) & ( pars−>s i z e ( )
<= 1 => r e s u l t = arg + " [ ( " + pars [ 1 ] + "−1) : ] " ) ;

ope ra t i on mapFunctionExpression ( obs : Set ( S t r ing ) , aind : Set (
S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : obs . s i z e > 0
post : arg = obs−>any ( ) & ( data = " a l l I n s t a n c e s " => r e s u l t = "

a l l I n s t anc e s_ " + arg + "( ) " ) & ( " In t eg e r " = objec tRe f . any
. data => r e s u l t = mapIntegerFunct ionExpress ion ( obs , aind ,
pars ) ) & ( data = " c e i l " or data = " f l o o r " => r e s u l t = "
in t (math . " + data + "(" + arg + ") ) " ) & ( data = " sqr " or
data = " cbrt " => r e s u l t = " o c l . " + data + "(" + arg + ") " )
& ( Bas icExpress ion . isMathFunction ( data ) => r e s u l t = "math

. " + data + "(" + arg + ") " ) & ( data = " r ep l a c e " =>
r e s u l t = " oc l . r ep l a c e (" + arg + " , " + pars [ 1 ] + " , " +
pars [ 2 ] + ") " ) & ( data = " rep laceF i r s tMatch " => r e s u l t =
" o c l . r ep laceF i r s tMatch (" + arg + " , " + pars [ 1 ] + " , " +
pars [ 2 ] + ") " ) & ( data = " rep laceAl lMatches " => r e s u l t =
" o c l . r ep laceAl lMatches (" + arg + " , " + pars [ 1 ] + " , " +
pars [ 2 ] + ") " ) & ( data = " r ep l a c eA l l " => r e s u l t = " oc l .
r e p l a c eA l l (" + arg + " , " + pars [ 1 ] + " , " + pars [ 2 ] + ") "
) & ( data = " in s e r tAt " => r e s u l t =
mapInsertAtFunctionExpress ion ( obs , aind , pars ) ) & ( data = "
i n s e r t I n t o " => r e s u l t = " oc l . i n s e r t I n t o (" + arg + " , " +
pars [ 1 ] + " , " + pars [ 2 ] + ") " ) & ( data = " setAt " =>
r e s u l t = mapSetAtFunctionExpression ( obs , aind , pars ) ) & (
data = " oc l I sUnde f ined " => r e s u l t = "(" + arg + " == None) "
) & ( data = "oclAsType" => r e s u l t = pars−>f i r s t ( ) + "(" +
arg + ") " ) & ( data = "sum" => r e s u l t = " oc l . sum(" + arg

+ ") " ) & ( data = "prd" => r e s u l t = " oc l . prd (" + arg + ") "
) & ( data = "max" => r e s u l t = " o c l .max" + type . name + "("
+ arg + ") " ) & ( data = "min" => r e s u l t = " o c l . min" +

type . name + "(" + arg + ") " ) & ( data = " f r on t " => r e s u l t
= "(" + arg + ") [0 : −1 ]" ) & ( data = " t a i l " => r e s u l t = "("

325



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

+ arg + ") [ 1 : ] " ) & ( data = " f i r s t " => r e s u l t = "(" + arg
+ ") [ 0 ] " ) & ( data = " l a s t " => r e s u l t = "(" + arg + ")

[ −1]" ) & ( data = " so r t " => r e s u l t = " o c l . s o r t " + type .
name + "(" + arg + ") " ) & ( data = " s i z e " => r e s u l t = " l en
(" + arg + ") " ) & ( data = "toLowerCase" => r e s u l t = " oc l .
toLowerCase (" + arg + ") " ) & ( data = "toUpperCase" =>
r e s u l t = " oc l . toUpperCase (" + arg + ") " ) & ( data = "
r ev e r s e " => r e s u l t = " o c l . r e v e r s e " + type . name + "(" + arg
+ ") " ) & ( data = " subrange " => r e s u l t =
mapSubrangeFunctionExpression ( obs , aind , pars ) ) & ( true =>
r e s u l t = " oc l . " + data + "(" + arg + ") " ) ;

ope ra t i on mapClassArrayExpression ( obs : Set ( S t r ing ) , aind :
Set ( S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : umlKind = c l a s s i d
post : ( arrayIndex . any . type : Col l ect ionType => r e s u l t = " get "

+ elementType . name + "ByPKs(" + aind−>any ( ) + ") " ) & (
arrayIndex . any . type / : Col lect ionType => r e s u l t = " get " +
elementType . name + "ByPK(" + aind−>any ( ) + ") " ) ;

ope ra t i on mapClassExpression ( obs : Set ( S t r ing ) , aind : Set (
S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : umlKind = c l a s s i d
post : ( arrayIndex . s i z e > 0 => r e s u l t = mapClassArrayExpression

( obs , aind , pars ) ) & ( arrayIndex . s i z e = 0 => r e s u l t = "
a l l I n s t anc e s_ " + data + "( ) " ) ;

ope ra t i on mapBasicExpression ( ob : Set ( S t r ing ) , aind : Set (
S t r ing ) , pars : Sequence ( S t r ing ) ) : S t r ing

pre : t rue
post : ( data = " sk ip " => r e s u l t = "pass " ) & ( data = " super "

=> r e s u l t = " super ( ) " ) & ( PrimitiveType . i sPr imit iveType (
data ) => r e s u l t = mapTypeExpression ( aind ) ) & ( umlKind =
value => r e s u l t = mapValueExpression ( aind ) ) & ( umlKind =
va r i ab l e => r e s u l t = mapVariableExpress ion ( ob , aind , pars ) )
& ( umlKind = a t t r i b u t e or umlKind = r o l e => r e s u l t =
mapAttr ibuteExpress ion ( ob , aind , pars ) ) & ( umlKind =
operat ion => r e s u l t = mapOperationExpression ( ob , aind , pars )
) & ( umlKind = func t i on => r e s u l t = mapFunctionExpression (
ob , aind , pars ) ) & ( umlKind = c l a s s i d => r e s u l t =
mapClassExpression ( ob , aind , pars ) ) ;

ope ra t i on toPython ( ) : S t r ing
pre : t rue
post : r e s u l t = mapBasicExpression ( ob jec tRe f . toPython ( ) ,

arrayIndex . toPython ( ) , parameters . toPython ( ) ) ;

ope ra t i on addClass IdReference (x : Bas i cExpress ion ) :
Express ion

pre : t rue
post : Bas icExpress ion−>e x i s t s ( e | e . expId = expId + "_" + x .

data & e . data = data & e . p r e s t a t e = pr e s t a t e & e . umlKind =
umlKind & e . ob jec tRe f = objec tRe f & e . arrayIndex =
arrayIndex . addReference (x ) & e . parameters = parameters .
addReference (x ) & r e s u l t = e ) ;

opera t i on addBEReference (x : Bas i cExpress ion ) : Express ion
pre : t rue

326



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

post : Bas icExpress ion−>e x i s t s ( e | e . expId = expId + "_" + x .
data & e . data = data & e . p r e s t a t e = pr e s t a t e & e . umlKind =
umlKind & e . ob j ec tRe f = Set {x} & e . arrayIndex = arrayIndex .
addReference (x ) & e . parameters = parameters . addReference (x )
& r e s u l t = e ) ;

opera t i on addSel fBEReference (x : Bas i cExpress ion ) : Express ion
pre : t rue
post : Bas icExpress ion−>e x i s t s ( e | e . expId = expId + "_" + x .

data & e . data = data & e . p r e s t a t e = pr e s t a t e & e . umlKind =
umlKind & e . ob j ec tRe f = Set {x} & e . arrayIndex = arrayIndex .
addReference (x ) & e . parameters = parameters . addReference (x )
& r e s u l t = e ) ;

opera t i on addObjectRefBEReference (x : Bas i cExpress ion ) :
Express ion

pre : t rue
post : Bas icExpress ion−>e x i s t s ( e | e . expId = expId + "_" + x .

data & e . data = data & e . p r e s t a t e = pr e s t a t e & e . umlKind =
umlKind & e . ob j ec tRe f = objec tRe f . addReference (x ) & e .
arrayIndex = arrayIndex . addReference (x ) & e . parameters =
parameters . addReference (x ) & r e s u l t = e ) ;

opera t i on addReference (x : Bas i cExpress ion ) : Express ion
pre : t rue
post : r e s u l t = ( i f ( umlKind = c l a s s i d ) then

addClass IdReference (x ) e l s e i f ( ob j ec tRe f . s i z e = 0 ) then
addBEReference (x ) e l s e i f ( " s e l f " = objectRef−>any ( ) + ""
) then addSel fBEReference (x ) e l s e addObjectRefBEReference (x
) end i f end i f e nd i f ) ;

}

c l a s s BinaryExpress ion extends Express ion {

a t t r i b u t e operator : S t r ing ;
a t t r i b u t e va r i ab l e : S t r ing ;

r e f e r e n c e l e f t : Express ion ;
r e f e r e n c e r i gh t : Express ion ;
r e f e r e n c e accumulator : Property ;

s t a t i c opera t i on isCompar itor ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "=" or fname = "/=" or fname = "<>" or fname =

"<" or fname = ">" or fname = "<=" or fname = ">=" or fname
= "<>=" => r e s u l t = true ) ;

s t a t i c opera t i on i s I n c l u s i o n ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = " :" or fname = "−>inc l ud e s " or fname = "<:" or

fname = "−>in c l ud e sA l l " => r e s u l t = true ) ;

s t a t i c opera t i on i sExc l u s i on ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "/ :" or fname = "/<:" or fname = "−>exc ludes "

or fname = "−>exc lude sA l l " => r e s u l t = true ) ;

s t a t i c opera t i on isBooleanOp ( fname : S t r ing ) : boolean

327



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

pre : t rue
post : ( fname = "&" or fname = "or " or fname = "=>" or fname =

"−>e x i s t s " or fname = "−>f o rA l l " or fname = "−>ex i s t s 1 " =>
r e s u l t = true ) ;

s t a t i c opera t i on i sStr ingOp ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "−>indexOf" or fname = "−>count" or fname = "−>

hasPre f i x " or fname = "−>hasSu f f i x " or fname = "−>a f t e r " or
fname = "−>be fo r e " or fname = "−>last IndexOf " or fname =

"−>equa l s IgnoreCase " or fname = "−>s p l i t " or fname = "−>
isMatch" or fname = "−>hasMatch" or fname = "−>al lMatches "
or fname = "−>f i r s tMatch " or fname = "−>excludingAt " =>
r e s u l t = true ) ;

s t a t i c opera t i on i sCo l l e c t i onOp ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "−>inc lud ing " or fname = "−>exc lud ing " or fname

= "−>excludingAt " or fname = "−>exc l ud i ngF i r s t " or fname =
"−>append" or fname = "−>count" or fname = "−>indexOf" or

fname = "−>last IndexOf " or fname = "−>union" or fname = "−>
i n t e r s e c t i o n " or fname = "^" or fname = "−>isUnique " or
fname = "−>at " ) => r e s u l t = true ;

s t a t i c opera t i on i sD i s t r i bu t ed I t e r a t o rOp ( fname : S t r ing ) :
boolean

pre : t rue
post : ( fname = "−>sortedBy" or fname = "−>unionAl l " or fname =

"−>concatenateAl l " or fname = "−>i n t e r s e c t A l l " or fname =
"−>se l e c tMin ima l s " or fname = "−>se lectMaximals " => r e s u l t
= true ) ;

s t a t i c opera t i on i s I t e r a t o rOp ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "−>c o l l e c t " or fname = "−>s e l e c t " or fname =

"−>r e j e c t " or fname = "−>i t e r a t e " ) => r e s u l t = true ;

opera t i on mapDividesExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( type . name = " in t " or type . name = " long " => r e s u l t = l s

+ "/" + r s ) & ( true => r e s u l t = l s + "/" + r s ) ;

ope ra t i on mapNumericExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = "/" => r e s u l t = mapDividesExpression ( l s , r s )

) & ( operator = "mod" => r e s u l t = l s + " % " + rs ) & (
operator = "div " => r e s u l t = l s + " / " + r s ) & ( operator
= "=" => r e s u l t = l s + " == " + rs ) & ( operator = "<>="

=> r e s u l t = l s + " i s " + r s ) & ( operator = "/=" =>
r e s u l t = l s + " != " + rs ) & ( operator = "−>pow" =>
r e s u l t = "math . pow(" + l s + " , " + r s + ") " ) & ( operator
= "−>gcd" => r e s u l t = " oc l . gcd (" + l s + " , " + r s + ") " ) &

( needsBracket => r e s u l t = "(" + l s + " " + operator + " "
+ r s + ") " ) & ( true => r e s u l t = l s + " " + operator + "

" + r s ) ;

328



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

opera t i on mapComparitorExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = "=" => r e s u l t = l s + " == " + rs ) & (

operator = "<>=" => r e s u l t = l s + " i s " + r s ) & (
operator = "/=" => r e s u l t = l s + " != " + rs ) & ( operator
= "<>" => r e s u l t = l s + " != " + rs ) & ( needsBracket =>

r e s u l t = "(" + l s + " " + operator + " " + r s + ") " ) & (
true => r e s u l t = l s + " " + operator + " " + r s ) ;

ope ra t i on mapStringExpress ion ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = "=" => r e s u l t = l s + " == " + rs ) & (

operator = "<>=" => r e s u l t = l s + " i s " + r s ) & (
operator = "/=" => r e s u l t = l s + " != " + rs ) & ( operator
= " :" => r e s u l t = l s + " in " + r s ) & ( operator = "/ :"

=> r e s u l t = l s + " not in " + r s ) & ( operator = "−>
inc l ud e s " => r e s u l t = r s + " in " + l s ) & ( operator = "−>
exc ludes " => r e s u l t = r s + " not in " + l s ) & ( operator =
"−" => r e s u l t = " oc l . s ub t r a c tS t r i ng (" + l s + " , " + r s +

") " ) & ( operator = "−>hasPre f i x " => r e s u l t = l s + " .
s t a r t sw i t h (" + r s + ") " ) & ( operator = "−>hasSu f f i x " =>
r e s u l t = l s + " . endswith (" + r s + ") " ) & ( operator = "−>
equa l s IgnoreCase " => r e s u l t = " oc l . equa l s IgnoreCase (" + l s
+ " ," + r s + ") " ) & ( operator = "−>indexOf" => r e s u l t =
"(" + l s + " . f i nd (" + r s + ") + 1) " ) & ( operator = "−>
last IndexOf " => r e s u l t = " oc l . l a s t IndexOf (" + l s + " , " +
r s + ") " ) & ( operator = "−>count" => r e s u l t = l s + " .
count (" + r s + ") " ) & ( operator = "−>isMatch" => r e s u l t =
" o c l . isMatch (" + l s + " , " + r s + ") " ) & ( operator = "−>

hasMatch" => r e s u l t = " oc l . hasMatch (" + l s + " , " + r s + ")
" ) & ( operator = "−>al lMatches " => r e s u l t = " oc l .
a l lMatches (" + l s + " , " + r s + ") " ) & ( operator = "−>
f i r s tMatch " => r e s u l t = " oc l . f i r s tMatch (" + l s + " , " + r s
+ ") " ) & ( operator = "−>be fo r e " => r e s u l t = " o c l . b e f o r e ("
+ l s + " , " + r s + ") " ) & ( operator = "−>a f t e r " =>

r e s u l t = " oc l . a f t e r (" + l s + " , " + r s + ") " ) & ( operator
= "−>s p l i t " => r e s u l t = " o c l . s p l i t (" + l s + " , " + r s + ")

" ) & ( operator = "−>excludingAt " => r e s u l t = " oc l .
removeAtString (" + l s + " , " + r s + ") " ) & ( true =>
r e s u l t = l s + " " + operator + " " + r s ) ;

ope ra t i on mapStringPlus ( l s : S t r ing , r s : S t r ing ) : S t r ing
pre : t rue
post : ( l e f t . i s S t r i n g ( ) => r e s u l t = l s + " + s t r (" + r s + ") " )

& ( r i gh t . i s S t r i n g ( ) => r e s u l t = " s t r (" + l s + ") + " + rs
) ;

ope ra t i on mapBooleanExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = "&" => r e s u l t = l s + " and " + r s ) & (

operator = "=>" => r e s u l t = "((" + r s + ") i f (" + l s + ")
e l s e (True ) ) " ) & ( operator = "or " => r e s u l t = l s + " or "
+ r s ) & ( operator = "−>e x i s t s " => r e s u l t = " oc l . e x i s t s ("
+ l s + " , lambda " + va r i ab l e + " : " + r s + ") " ) & (

operator = "−>f o rA l l " => r e s u l t = " oc l . f o rA l l (" + l s + " ,

329



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

lambda " + va r i ab l e + " : " + r s + ") " ) & ( operator = "−>
ex i s t s 1 " => r e s u l t = " oc l . e x i s t s 1 (" + l s + " , lambda " +
va r i ab l e + " : " + r s + ") " ) & ( true => r e s u l t = l s + " "
+ operator + " " + r s ) ;

ope ra t i on mapBinaryCol lect ionExpress ion ( l s : S t r ing , r s :
S t r ing , l t : S t r ing , r t : S t r ing ) : S t r ing

pre : t rue
post : ( operator = " :" => r e s u l t = l s + " in " + r s ) & (

operator = "−>inc l ud e s " => r e s u l t = r s + " in " + l s ) & (
operator = "=" => r e s u l t = l s + " == " + rs ) & ( operator
= "<>=" => r e s u l t = l s + " i s " + r s ) & ( operator = "/="
=> r e s u l t = l s + " != " + rs ) & ( operator = "/ :" =>
r e s u l t = l s + " not in " + r s ) & ( operator = "−>exc ludes "
=> r e s u l t = r s + " not in " + l s ) & ( operator = "<:" =>

r e s u l t = " oc l . i n c l ud e sA l l (" + r s + " , " + l s + ") " ) & (
operator = "/<:" => r e s u l t = "( not o c l . i n c l ud e sA l l (" + r s +
" , " + l s + ") ) " ) & ( operator = "−>in c l ud e sA l l " =>

r e s u l t = " oc l . i n c l ud e sA l l (" + l s + " , " + r s + ") " ) & (
operator = "−>exc lude sA l l " => r e s u l t = " oc l . ex c l ude sA l l (" +
r s + " , " + l s + ") " ) & ( operator = "−>inc lud ing " =>

r e s u l t = " oc l . i n c l ud ing " + l t + "(" + l s + " , " + r s + ") "
) & ( operator = "−>exc lud ing " => r e s u l t = " oc l . exc lud ing "
+ l t + "(" + l s + " , " + r s + ") " ) & ( operator = "−>
exc l ud i ngF i r s t " => r e s u l t = " o c l . e x c l ud i ngF i r s t (" + l s + " ,
" + r s + ") " ) & ( operator = "−>excludingAt " => r e s u l t =

" o c l . removeAt (" + l s + " , " + r s + ") " ) & ( operator = "−>
union" => r e s u l t = " oc l . union" + l t + "(" + l s + " , " + r s
+ ") " ) & ( operator = "−>i n t e r s e c t i o n " => r e s u l t = " oc l .
i n t e r s e c t i o n " + l t + "(" + l s + " , " + r s + ") " ) & (
operator = "^" => r e s u l t = " oc l . concatenate (" + l s + " , " +
r s + ") " ) & ( operator = "−>prepend" => r e s u l t = " o c l .

prepend (" + l s + " , " + r s + ") " ) & ( operator = "−>append
" => r e s u l t = " oc l . append (" + l s + " , " + r s + ") " ) & (
operator = "−" => r e s u l t = " oc l . exc ludeAl l " + l t + "(" + l s
+ " , " + r s + ") " ) & ( operator = "−>indexOf" & r i gh t .

type . name = "Sequence" => r e s u l t = " oc l . indexOfSubSequence
(" + l s + " ," + r s + ") " ) & ( operator = "−>indexOf" &
r i gh t . type . name /= "Sequence" => r e s u l t = " oc l .
indexOfSequence (" + l s + " , " + r s + ") " ) & ( operator =
"−>last IndexOf " & r i gh t . type . name = "Sequence" => r e s u l t =
" o c l . lastIndexOfSubSequence (" + l s + " , " + r s + ") " ) & (
operator = "−>last IndexOf " & r i gh t . type . name /= "Sequence"
=> r e s u l t = " oc l . last IndexOfSequence (" + l s + " , " + r s +
") " ) & ( operator = "−>count" => r e s u l t = "(" + l s + ") .
count (" + r s + ") " ) & ( operator = "−>at " => r e s u l t = "("
+ l s + ") [ " + r s + " − 1 ]" ) & ( true => r e s u l t = l s + " "
+ operator + " " + r s ) ;

ope ra t i on mapBinaryMapExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = " :" => r e s u l t = l s + " in " + r s ) & (

operator = "−>inc l ud e s " => r e s u l t = r s + " in " + l s ) & (
operator = "=" => r e s u l t = l s + " == " + rs ) & ( operator
= "<>=" => r e s u l t = l s + " i s " + r s ) & ( operator = "/="
=> r e s u l t = l s + " != " + rs ) & ( operator = "/ :" =>
r e s u l t = l s + " not in " + r s ) & ( operator = "−>exc ludes "

330



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

=> r e s u l t = r s + " not in " + l s ) & ( operator = "<:" =>
r e s u l t = " oc l . inc ludesAl lMap (" + r s + " , " + l s + ") " ) & (
operator = "/<:" => r e s u l t = "( not o c l . inc ludesAl lMap (" +

r s + " , " + l s + ") ) " ) & ( operator = "−>in c l ud e sA l l " =>
r e s u l t = " oc l . inc ludesAl lMap (" + l s + " , " + r s + ") " ) & (
operator = "−>exc lude sA l l " => r e s u l t = " oc l . excludesAllMap

(" + r s + " , " + l s + ") " ) & ( operator = "−>inc lud ing " =>
r e s u l t = " oc l . includingMap (" + l s + " , " + r s + " , " +

va r i ab l e + ") " ) & ( operator = "−>exc lud ing " => r e s u l t = "
oc l . excludingMapValue (" + l s + " , " + r s + ") " ) & (
operator = "−>excludingAt " => r e s u l t = " oc l . excludingAtMap
(" + l s + " , " + r s + ") " ) & ( operator = "−>union" =>
r e s u l t = " oc l . unionMap (" + l s + " , " + r s + ") " ) & (
operator = "−>i n t e r s e c t i o n " => r e s u l t = " oc l .
in te r sect ionMap (" + l s + " , " + r s + ") " ) & ( operator =
"−>r e s t r i c t " => r e s u l t = " o c l . r e s t r i c t (" + l s + " , " + r s +

") " ) & ( operator = "−>a n t i r e s t r i c t " => r e s u l t = " o c l .
a n t i r e s t r i c t (" + l s + " , " + r s + ") " ) & ( operator = "−"
=> r e s u l t = " oc l . excludeAllMap (" + l s + " , " + r s + ") " ) &

( operator = "−>at " => r e s u l t = "(" + l s + ") [ " + r s + " ]"
) & ( true => r e s u l t = l s + " " + operator + " " + r s ) ;

ope ra t i on mapDis t r ibutedI te ra to rExpre s s i on ( l s : S t r ing , r s :
S t r ing , rexp : Express ion ) : S t r ing

pre : t rue
post : ( operator = "−>sortedBy" => r e s u l t = " so r t ed (" + l s + " ,

key = lambda " + expId + " : " + rexp . toPython ( ) + ") " ) &
( operator = "−>concatenateAl l " => r e s u l t = " oc l .

concatenateAl l ( [ " + rexp . toPython ( ) + " f o r " + expId + "
in " + l s + " ] ) " ) & ( operator = "−>unionAl l " & type . name
= "Sequence" => r e s u l t = " o c l . concatenateAl l ( [ " + rexp .
toPython ( ) + " f o r " + expId + " in " + l s + " ] ) " ) & (
operator = "−>unionAl l " & type . name = "Set " => r e s u l t = "
oc l . unionAl l ( [ " + rexp . toPython ( ) + " f o r " + expId + " in
" + l s + " ] ) " ) & ( operator = "−>i n t e r s e c t A l l " => r e s u l t =
" o c l . i n t e r s e c tA l l " + type . name + " ( [ " + rexp . toPython ( ) +

" f o r " + expId + " in " + l s + " ] ) " ) & ( operator = "−>
selectMaximals " => r e s u l t = " oc l . se l ectMaximals " + l e f t .
type . name + "(" + l s + " , lambda " + expId + " : " + rexp .
toPython ( ) + ") " ) & ( operator = "−>se l e c tMin ima l s " =>
r e s u l t = " oc l . s e l e c tMin ima l s " + l e f t . type . name + "(" + l s +
" , lambda " + expId + " : " + rexp . toPython ( ) + ") " ) ;

ope ra t i on mapMapIteratorExpression ( l s : S t r ing , r s : S t r ing )
: S t r ing

pre : t rue
post : ( operator = "−>s e l e c t " => r e s u l t = " o c l . se lectMap (" + l s

+ " , lambda " + va r i ab l e + " : " + r s + ") " ) & ( operator
= "−>r e j e c t " => r e s u l t = " o c l . rejectMap (" + l s + " , lambda
" + va r i ab l e + " : " + r s + ") " ) & ( operator = "−>

c o l l e c t " => r e s u l t = " oc l . co l lectMap (" + l s + " , lambda " +
va r i ab l e + " : " + r s + ") " ) ;

ope ra t i on mapIteratorExpress ion ( l s : S t r ing , r s : S t r ing , tn
: S t r ing ) : S t r ing

pre : t rue
post : l b r a ck e t = Express ion . l e f tB r a ck e t ( tn ) & rbracke t =

Express ion . r i ghtBracke t ( tn ) & ( tn = "Map" => r e s u l t =

331



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

mapMapIteratorExpression ( l s , r s ) ) & ( operator = "−>i t e r a t e
" => r e s u l t = " oc l . i t e r a t e (" + l s + " ," + accumulator .
i n i t i a lV a l u e . toPython ( ) + " , lambda " + va r i ab l e + " , " +
accumulator . name + " : (" + r s + ") ) " ) & ( operator = "−>
s e l e c t " => r e s u l t = lb ra ck e t + va r i ab l e + " f o r " +
va r i ab l e + " in " + l s + " i f " + r s + rbracket ) & (
operator = "−>r e j e c t " => r e s u l t = lb ra ck e t + va r i ab l e + "
f o r " + va r i ab l e + " in " + l s + " i f not " + r s + rbracke t
) & ( operator = "−>c o l l e c t " => r e s u l t = " [" + r s + " f o r

" + va r i ab l e + " in " + l s + " ]" ) ;

ope ra t i on mapTypeCastExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( Primit iveType . isPythonPrimit iveType ( r s ) => r e s u l t =

type . toPython ( ) + "(" + l s + ") " ) & ( true => r e s u l t = l s
) ;

ope ra t i on mapCatchExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( " : " = operator => r e s u l t = r i gh t . mapTypeExpression ( Set

{}) + " as " + l s ) & ( true => r e s u l t =
mapBinaryExpression ( l s , r s ) ) ;

ope ra t i on bothNumeric ( ) : boolean
pre : t rue
post : l e f t . isNumeric ( ) & r i gh t . isNumeric ( ) => r e s u l t = true ;

opera t i on bothStr ing ( ) : boolean
pre : t rue
post : l e f t . i s S t r i n g ( ) & r i gh t . i s S t r i n g ( ) => r e s u l t = true ;

opera t i on i s S t r i n gP l u s ( ) : boolean
pre : t rue
post : operator = "+" & ( l e f t . i s S t r i n g ( ) or r i g h t . i s S t r i n g ( ) )

=> r e s u l t = true ;

opera t i on mapBinaryExpression ( l s : S t r ing , r s : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = " :" => r e s u l t = l s + " in " + r s ) & (

operator = "−>apply " => r e s u l t = "(" + l s + ") (" + r s + ") "
) & ( operator = "−>oclAsType" => r e s u l t =

mapTypeCastExpression ( l s , r s ) ) & ( operator = "−>
oclIsTypeOf " => r e s u l t = "( type (" + l s + ") == " + rs + ") "
) & ( operator = "−>oclIsKindOf " => r e s u l t = l s + " in " +
r s ) & ( operator = "−>compareTo" => r e s u l t = " o c l .

compareTo (" + l s + " ," + r s + ") " ) & ( operator = "|−>" =>
r e s u l t = l s + " :" + r s ) & ( operator = "−>r e s t r i c t " =>

r e s u l t = " oc l . r e s t r i c t (" + l s + " ," + r s + ") " ) & (
operator = "−>a n t i r e s t r i c t " => r e s u l t = " o c l . a n t i r e s t r i c t ("
+ l s + " ," + r s + ") " ) & ( BinaryExpress ion . i sCompar itor (

operator ) => r e s u l t = mapComparitorExpression ( l s , r s ) ) & (
BinaryExpress ion . i sD i s t r i bu t ed I t e r a t o rOp ( operator ) =>
BasicExpress ion−>e x i s t s ( be | be . data = expId & be . expId =
expId + "_var iable " & r e s u l t =
mapDis t r ibutedI te ra to rExpre s s i on ( l s , rs , r i g h t . addReference (

332



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

be ) ) ) ) & ( bothNumeric ( ) => r e s u l t = mapNumericExpression
( l s , r s ) ) & ( bothStr ing ( ) => r e s u l t = mapStringExpress ion (
l s , r s ) ) & ( l e f t . i s S t r i n g ( ) & operator = "−>excludingAt "
=> r e s u l t = " oc l . removeAtString (" + l s + " ," + r s + ") " ) &

( BinaryExpress ion . i s I t e r a t o rOp ( operator ) => r e s u l t =
mapIteratorExpress ion ( l s , rs , l e f t . type . name) ) & (
BinaryExpress ion . isBooleanOp ( operator ) => r e s u l t =
mapBooleanExpression ( l s , r s ) ) & ( i s S t r i n gP l u s ( ) => r e s u l t
= mapStringPlus ( l s , r s ) ) & ( ( l e f t . i s C o l l e c t i o n ( ) or r i g h t
. i s C o l l e c t i o n ( ) ) => r e s u l t = mapBinaryCol lect ionExpress ion
( l s , rs , l e f t . type . name , r i g h t . type . name) ) & ( ( l e f t . isMap ( )
or r i g h t . isMap ( ) ) => r e s u l t = mapBinaryMapExpression ( l s ,

r s ) ) & ( operator = "−>at " => r e s u l t = "(" + l s + ") [ " +
r s + " ]" ) & ( true => r e s u l t = l s + " " + operator + " " +
r s ) ;

ope ra t i on toPython ( ) : S t r ing
pre : t rue
post : r e s u l t = mapBinaryExpression ( l e f t . toPython ( ) , r i g h t .

toPython ( ) ) ;

ope ra t i on addReference (x : Bas i cExpress ion ) : Express ion
pre : x . data /= s e l f . v a r i ab l e
post : BinaryExpress ion−>e x i s t s ( e | e . expId = expId + "_" + x .

data & e . operator = operator & e . v a r i ab l e = s e l f . v a r i ab l e &
e . umlKind = umlKind & e . l e f t = l e f t . addReference (x ) & e .

r i g h t = r i gh t . addReference (x ) & r e s u l t = e ) ;
}

c l a s s Cond i t i ona lExpres s ion extends Express ion {

r e f e r e n c e t e s t : Express ion ;
r e f e r e n c e i fExp : Express ion ;
r e f e r e n c e elseExp : Express ion ;

opera t i on mapCondit ionalExpress ion ( t s : S t r ing , l s : S t r ing ,
r s : S t r ing ) : S t r ing

pre : t rue
post : r e s u l t = "(" + l s + " i f " + t s + " e l s e " + r s + ") " ;

opera t i on toPython ( ) : S t r ing
pre : t rue
post : r e s u l t = mapCondit ionalExpress ion ( t e s t . toPython ( ) , i fExp .

toPython ( ) , e l seExp . toPython ( ) ) ;

ope ra t i on addReference (x : Bas i cExpress ion ) : Express ion
pre : t rue
post : Condi t iona lExpress ion−>e x i s t s ( e | e . expId = expId + "_"

+ x . data & e . t e s t = t e s t . addReference (x ) & e . umlKind =
umlKind & e . i fExp = ifExp . addReference (x ) & e . e lseExp =
elseExp . addReference (x ) & r e s u l t = e ) ;

}

c l a s s UnaryExpression extends Express ion {

a t t r i b u t e operator : S t r ing ;
a t t r i b u t e va r i ab l e : S t r ing ;

333



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

r e f e r e n c e argument : Express ion ;

s t a t i c opera t i on isUnaryStringOp ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "−>s i z e " or fname = "−> f i r s t " or fname = "−>

l a s t " or fname = "−>f ron t " or fname = "−>t a i l " or fname =
"−>rev e r s e " or fname = "−>di sp l ay " or fname = "−>
toUpperCase" or fname = "−>toLowerCase" or fname = "−>
to In t e g e r " or fname = "−>toReal " or fname = "−>toLong" or
fname = "−>toBoolean " or fname = "−>trim" => r e s u l t = true
) ;

s t a t i c opera t i on isReduceOp ( fname : S t r ing ) : boolean
pre : t rue
post : ( fname = "−>min" or fname = "−>max" or fname = "−>sum"

or fname = "−>prd" ) => r e s u l t = true ;

opera t i on mapNumericExpression ( arg : S t r ing ) : S t r ing
pre : t rue
post : ( operator = "−>sqr t " => r e s u l t = "math . s q r t (" + arg + ")

" ) & ( operator = "−>s in " => r e s u l t = "math . s i n (" + arg +
") " ) & ( operator = "−>tan" => r e s u l t = "math . tan (" + arg
+ ") " ) & ( operator = "−>cos " => r e s u l t = "math . cos (" +
arg + ") " ) & ( operator = "−>sqr " => r e s u l t = " oc l . sqr (" +
arg + ") " ) & ( operator = "−>f l o o r " => r e s u l t = " in t (math

. f l o o r (" + arg + ") ) " ) & ( operator = "−>c e i l " => r e s u l t =
" i n t (math . c e i l (" + arg + ") ) " ) & ( operator = "−>round"

=> r e s u l t = "round (" + arg + ") " ) & ( operator = "−>cbrt "
=> r e s u l t = " oc l . cbr t (" + arg + ") " ) & ( operator = "−>
di sp l ay " => r e s u l t = " pr in t ( s t r (" + arg + ") ) " ) & (
operator = "−>abs" => r e s u l t = "math . f abs (" + arg + ") " ) &
( operator = "−>exp" => r e s u l t = "math . exp (" + arg + ") " )
& ( operator = "−>log " => r e s u l t = "math . l og (" + arg + ") "
) & ( operator = "−>log10 " => r e s u l t = "math . log10 (" + arg
+ ") " ) & ( operator = "−>as in " => r e s u l t = "math . a s in (" +
arg + ") " ) & ( operator = "−>acos " => r e s u l t = "math . acos

(" + arg + ") " ) & ( operator = "−>atan" => r e s u l t = "math .
atan (" + arg + ") " ) & ( operator = "−>sinh " => r e s u l t = "
math . s inh (" + arg + ") " ) & ( operator = "−>cosh" => r e s u l t
= "math . cosh (" + arg + ") " ) & ( operator = "−>tanh" =>

r e s u l t = "math . tanh (" + arg + ") " ) ;

ope ra t i on mapStringExpress ion ( arg : S t r ing ) : S t r ing
pre : t rue
post : ( operator = "−>s i z e " => r e s u l t = " l en (" + arg + ") " ) &

( operator = "−>f ron t " => r e s u l t = "(" + arg + ") [0 : −1 ]" )
& ( operator = "−>t a i l " => r e s u l t = "(" + arg + ") [ 1 : ] " ) &

( operator = "−> f i r s t " => r e s u l t = "(" + arg + ") [ 0 : 1 ] " )
& ( operator = "−>l a s t " => r e s u l t = "(" + arg + ") [ −1 : ]" )
& ( operator = "−>toLowerCase" => r e s u l t = " oc l . toLowerCase
(" + arg + ") " ) & ( operator = "−>toUpperCase" => r e s u l t =
" o c l . toUpperCase (" + arg + ") " ) & ( operator = "−>

cha ra c t e r s " => r e s u l t = " o c l . cha r a c t e r s (" + arg + ") " ) & (
operator = "−>trim" => r e s u l t = " o c l . tr im (" + arg + ") " )

& ( operator = "−>rev e r s e " => r e s u l t = " oc l . r e v e r s e S t r i n g ("
+ arg + ") " ) & ( operator = "−>di sp l ay " => r e s u l t = "

pr in t (" + arg + ") " ) & ( operator = "−>i s I n t e g e r " =>
r e s u l t = " i s d i g i t (" + arg + ") " ) & ( operator = "−>isLong "

334



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

=> r e s u l t = " i s d i g i t (" + arg + ") " ) & ( operator = "−>
i sRea l " => r e s u l t = " i sd e c ima l (" + arg + ") " ) & ( operator
= "−>to In t e g e r " => r e s u l t = " oc l . t o In t e g e r (" + arg + ") " )
& ( operator = "−>toLong" => r e s u l t = " oc l . t o I n t e g e r (" +

arg + ") " ) & ( operator = "−>toReal " => r e s u l t = " f l o a t ("
+ arg + ") " ) & ( operator = "−>toBoolean " => r e s u l t = " oc l
. toBoolean (" + arg + ") " ) ;

ope ra t i on mapReduceExpression ( arg : S t r ing , tn : S t r ing , e t :
Type ) : S t r ing

pre : t rue
post : ( operator = "−>sum" & et−>oc l I sUnde f ined ( ) => r e s u l t = "

oc l . sum(" + arg + ") " ) & ( operator = "−>sum" & et .
i sSt r ingType ( ) => r e s u l t = " o c l . sumString (" + arg + ") " ) &
( operator = "−>sum" & not ( ( et . i sSt r ingType ( ) ) ) => r e s u l t

= " o c l . sum(" + arg + ") " ) & ( operator = "−>prd" => r e s u l t
= " o c l . prd (" + arg + ") " ) & ( operator = "−>max" =>

r e s u l t = " oc l .max" + tn + "(" + arg + ") " ) & ( operator =
"−>min" => r e s u l t = " o c l . min" + tn + "(" + arg + ") " ) ;

ope ra t i on mapUnaryCol lect ionExpress ion ( arg : S t r ing , tn :
S t r ing ) : S t r ing

pre : t rue
post : ( operator = "−>s i z e " => r e s u l t = " l en (" + arg + ") " ) &

( operator = "−>isEmpty" => r e s u l t = "( l en (" + arg + ") ==
0) " ) & ( operator = "−>notEmpty" => r e s u l t = "( l en (" + arg
+ ") > 0) " ) & ( operator = "−>asSet " => r e s u l t = " s e t (" +
arg + ") " ) & ( operator = "−>asSequence " => r e s u l t = "

l i s t (" + arg + ") " ) & ( operator = "−>asOrderedSet " =>
r e s u l t = " oc l . asOrderedSet (" + arg + ") " ) & ( operator =
"−>asBag" => r e s u l t = " oc l . sortSequence (" + arg + ") " ) & (

operator = "−>unionAl l " & type . name = "Sequence" => r e s u l t
= " o c l . concatenateAl l (" + arg + ") " ) & ( operator = "−>

unionAl l " & type . name = "Set " => r e s u l t = " oc l . unionAl l (" +
arg + ") " ) & ( operator = "−>i n t e r s e c t A l l " => r e s u l t = "

oc l . i n t e r s e c t A l l " + type . name + "(" + arg + ") " ) & (
operator = "−>concatenateAl l " => r e s u l t = " oc l .
concatenateAl l (" + arg + ") " ) & ( operator = "−>isUnique "
=> r e s u l t = " oc l . i sUnique (" + arg + ") " ) & ( operator =
"−>i sDe l e t ed " => r e s u l t = " de l " + arg ) & ( operator = "−>
copy" => r e s u l t = "copy . copy (" + arg + ") " ) & ( operator =
"−>any" => r e s u l t = " oc l . any (" + arg + ") " ) & ( operator

= "−>rev e r s e " => r e s u l t = " oc l . r e v e r s e " + tn + "(" + arg +
") " ) & ( operator = "−>f ron t " => r e s u l t = "(" + arg + ")
[0 : −1 ]" ) & ( operator = "−>t a i l " => r e s u l t = "(" + arg +
") [ 1 : ] " ) & ( operator = "−> f i r s t " => r e s u l t = "(" + arg +
") [ 0 ] " ) & ( operator = "−>l a s t " => r e s u l t = "(" + arg + ")
[ −1]" ) & ( operator = "−>so r t " => r e s u l t = " oc l . s o r t " + tn
+ "(" + arg + ") " ) & ( operator = "−>di sp l ay " => r e s u l t =
" pr in t ( s t r (" + arg + ") ) " ) ;

ope ra t i on mapUnaryMapExpression ( arg : S t r ing , tn : S t r ing ) :
S t r ing

pre : t rue
post : ( operator = "−>s i z e " => r e s u l t = " l en (" + arg + ") " ) &

( operator = "−>isEmpty" => r e s u l t = "( l en (" + arg + ") ==
0) " ) & ( operator = "−>notEmpty" => r e s u l t = "( l en (" + arg
+ ") > 0) " ) & ( operator = "−>asSet " => r e s u l t = " s e t (" +

335



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

arg + ") " ) & ( operator = "−>asSequence " => r e s u l t = "
l i s t (" + arg + ") " ) & ( operator = "−>asOrderedSet " =>
r e s u l t = " oc l . asOrderedSet (" + arg + ") " ) & ( operator =
"−>asBag" => r e s u l t = " o c l . sortSequence (" + arg + ") " ) & (

operator = "−>unionAl l " & type . name = "Sequence" => r e s u l t
= " o c l . concatenateAl l (" + arg + ") " ) & ( operator = "−>

unionAl l " & type . name = "Set " => r e s u l t = " oc l . unionAl l (" +
arg + ") " ) & ( operator = "−>i n t e r s e c t A l l " => r e s u l t = "

oc l . i n t e r s e c t A l l " + type . name + "(" + arg + ") " ) & (
operator = "−>concatenateAl l " => r e s u l t = " oc l .
concatenateAl l (" + arg + ") " ) & ( operator = "−>isUnique "
=> r e s u l t = " oc l . i sUnique (" + arg + ") " ) & ( operator =
"−>i sDe l e t ed " => r e s u l t = " de l " + arg ) & ( operator = "−>
copy" => r e s u l t = "copy . copy (" + arg + ") " ) & ( operator =
"−>any" => r e s u l t = " oc l . anyMap(" + arg + ") " ) & (

operator = "−>rev e r s e " => r e s u l t = " oc l . r e v e r s e " + tn + "("
+ arg + ") " ) & ( operator = "−>f ron t " => r e s u l t = "(" +

arg + ") [0 : −1 ]" ) & ( operator = "−>t a i l " => r e s u l t = "(" +
arg + ") [ 1 : ] " ) & ( operator = "−> f i r s t " => r e s u l t = "(" +
arg + ") [ 0 ] " ) & ( operator = "−>l a s t " => r e s u l t = "(" +

arg + ") [ −1]" ) & ( operator = "−>so r t " => r e s u l t = " oc l .
s o r t " + tn + "(" + arg + ") " ) & ( operator = "−>di sp l ay "
=> r e s u l t = " pr in t ( s t r (" + arg + ") ) " ) ;

ope ra t i on mapUnaryExpression ( arg : S t r ing ) : S t r ing
pre : t rue
post : ( operator = "−" => r e s u l t = "−" + arg ) & ( operator =

"?" => r e s u l t = " id (" + arg + ") " ) & ( operator = "not" =>
r e s u l t = "not " + arg ) & ( operator = "−>i sDe l e t ed " =>

r e s u l t = " de l " + arg ) & ( operator = "−>copy" => r e s u l t =
"copy . copy (" + arg + ") " ) & ( operator = "−>

oc l I sUnde f ined " => r e s u l t = "(" + arg + " == None ) " ) & (
operator = "−>o c l I s I n v a l i d " => r e s u l t = "math . i snan (" + arg
+ ") " ) & ( operator = "−>oclType" => r e s u l t = " type (" +

arg + ") " ) & ( operator = "lambda" => r e s u l t = "lambda " +
va r i ab l e + " : " + arg ) & ( operator = "−>byte2char " =>

r e s u l t = " chr (" + arg + ") " ) & ( operator = "−>char2byte "
=> r e s u l t = "ord (" + arg + ") " ) & ( operator = "−>keys " =>

r e s u l t = " oc l . keys (" + arg + ") " ) & ( operator = "−>
va lues " => r e s u l t = " oc l . va lue s (" + arg + ") " ) & (
argument . isNumeric ( ) => r e s u l t = mapNumericExpression ( arg )
) & ( argument . i s S t r i n g ( ) => r e s u l t = mapStringExpress ion (
arg ) ) & ( UnaryExpression . isReduceOp ( operator ) => r e s u l t =
mapReduceExpression ( arg , argument . type . name , argument .

elementType ) ) & ( argument . i s C o l l e c t i o n ( ) => r e s u l t =
mapUnaryCol lect ionExpress ion ( arg , argument . type . name) ) & (
argument . isMap ( ) => r e s u l t = mapUnaryMapExpression ( arg ,
argument . type . name) ) & ( operator = "−>di sp l ay " => r e s u l t
= " pr in t ( s t r (" + arg + ") ) " ) & ( operator = "−>toBoolean "
=> r e s u l t = " oc l . toBoolean (" + arg + ") " ) ;

ope ra t i on toPython ( ) : S t r ing
pre : t rue
post : r e s u l t = mapUnaryExpression ( argument . toPython ( ) ) ;

ope ra t i on addReference (x : Bas i cExpress ion ) : Express ion
pre : t rue

336



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

post : UnaryExpression−>e x i s t s ( e | e . expId = expId + "_" + x .
data & e . operator = operator & e . umlKind = umlKind & e .
argument = argument . addReference (x ) & r e s u l t = e ) ;

}

c l a s s Co l l e c t i onExpr e s s i on extends Express ion {

a t t r i b u t e i sOrdered : boolean ;

r e f e r e n c e e lements [ ∗ ] : Express ion ;

opera t i on mapCol lect ionExpress ion ( elems : Sequence ( S t r ing ) , tn
: S t r ing ) : S t r ing

pre : t rue
post : ( tn = "Set " => r e s u l t = " s e t ({" + Express ion . t o l i s t (

elems ) + "}) " ) & ( tn = "Sequence" => r e s u l t = " [" +
Express ion . t o l i s t ( elems ) + " ]" ) & ( tn = "Map" => r e s u l t =
" d i c t ({" + Express ion . mapto l i s t ( elems ) + "}) " ) & ( tn = "

Ref" & elems . s i z e > 0 => r e s u l t = " [" + elementType .
d e f a u l t I n i t i a lV a l u e ( ) + " ]∗" + elems [ 1 ] ) ;

ope ra t i on toPython ( ) : S t r ing
pre : t rue
post : r e s u l t = mapCol lect ionExpress ion ( e lements . toPython ( ) , type

. name) ;

opera t i on addReference (x : Bas i cExpress ion ) : Express ion
pre : t rue
post : Co l l e c t i onExpre s s i on −>e x i s t s ( e | e . expId = expId + "_" +

x . data & e . i sOrdered = isOrdered & e . umlKind = umlKind & e
. e lements = elements . addReference (x ) & r e s u l t = e ) ;

}

ab s t r a c t c l a s s Statement {
s t e r eo type abs t r a c t ;

a t t r i b u t e s t a t I d i d e n t i t y : S t r ing ;

s t a t i c opera t i on tab ( indent : i n t ) : S t r ing
pre : t rue
post : ( indent <= 0 => r e s u l t = "" ) & ( indent > 0 => r e s u l t =

" " + Statement . tab ( indent − 1) ) ;

ope ra t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : t rue ;

}

c l a s s ReturnStatement extends Statement {

r e f e r e n c e returnValue [0 −1] : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : ( returnValue . s i z e = 0 => r e s u l t = Statement . tab ( indent )

+ " return " + "\n" ) & ( returnValue . s i z e > 0 => r e s u l t =
Statement . tab ( indent ) + " return " + returnValue . any .
toPython ( ) + "\n" ) ;

337



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

}

c l a s s AssertStatement extends Statement {

r e f e r e n c e cond i t i on : Express ion ;
r e f e r e n c e message [0 −1] : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : ( message . s i z e = 0 => r e s u l t = Statement . tab ( indent ) + "

a s s e r t " + cond i t i on . toPython ( ) + "\n" ) & ( message . s i z e >
0 => r e s u l t = Statement . tab ( indent ) + " a s s e r t " +

cond i t i on . toPython ( ) + " , " + message . any . toPython ( ) + "\n"
) ;

}

c l a s s ErrorStatement extends Statement {

r e f e r e n c e thrownObject : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : obs = thrownObject . ob j ec tRe f & pars = thrownObject .

parameters => r e s u l t = Statement . tab ( indent ) + " r a i s e " +
thrownObject . mapErrorCall ( obs . toPython ( ) , pars . toPython ( ) ) +
"\n " ;

}

c l a s s CatchStatement extends Statement {

r e f e r e n c e caughtObject : Express ion ;
r e f e r e n c e ac t i on : Statement ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : c l e f t = caughtObject . l e f t & c r i gh t = caughtObject . r i g h t &

r e s u l t = Statement . tab ( indent ) + " except " + caughtObject .
mapCatchExpression ( c l e f t . toPython ( ) , c r i g h t . toPython ( ) ) +
" :\ n" + act i on . toPython ( indent + 2) ;

}

c l a s s FinalStatement extends Statement {

r e f e r e n c e body : Statement ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + " f i n a l l y : \ n" + body .

toPython ( indent + 2) ;
}

c l a s s UseCase {

a t t r i b u t e name : S t r ing ;

r e f e r e n c e parameters [ ∗ ] ordered : Property ;
r e f e r e n c e resu l tType : Type ;
r e f e r e n c e c l a s s i f i e rB e h a v i o u r : Statement ;

338



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

opera t i on mapUseCase ( ) : S t r ing
pre : t rue
post : ( c l a s s i f i e rB eh av i o u r −>oc l I sUnde f ined ( ) = f a l s e &

resu l tType . name /= "void " => r e s u l t = " de f " + name + "(" +
Express ion . t o l i s t ( parameters . name) + ") : \ n" +

c l a s s i f i e rB e h a v i o u r . toPython (2 ) + " return r e s u l t \n" ) & (
c l a s s i f i e rB eh av i o u r −>oc l I sUnde f ined ( ) = f a l s e & resu l tType

. name = "void " => r e s u l t = " de f " + name + "(" + Express ion

. t o l i s t ( parameters . name) + ") : \ n" + c l a s s i f i e rB e h a v i o u r .
toPython (2) + "\n" ) ;

}

c l a s s BreakStatement extends Statement {

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + "break" + "\n " ;

}

c l a s s ContinueStatement {

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + " cont inue " + "\n " ;

}

c l a s s Operat ionCal lStatement extends Statement {

a t t r i b u t e ass ignsTo : S t r ing ;

r e f e r e n c e ca l lExp : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : ( cal lExp−>oc l I sUnde f ined ( ) => r e s u l t = Statement . tab (

indent ) + "pass \n" ) & ( true => r e s u l t = Statement . tab (
indent ) + cal lExp . toPython ( ) + "\n" ) ;

}

c l a s s Imp l i c i tCa l lS ta t ement extends Statement {

a t t r i b u t e ass ignsTo : S t r ing ;

r e f e r e n c e ca l lExp : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + cal lExp . toPython ( ) + "\n

" ;
}

ab s t r a c t c l a s s LoopStatement extends Statement {
s t e r eo type abs t r a c t ;

r e f e r e n c e t e s t : Express ion ;
r e f e r e n c e body : Statement ;

}

339



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

c l a s s BoundedLoopStatement extends LoopStatement {

r e f e r e n c e loopRange : Express ion ;
r e f e r e n c e loopVar : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + " f o r " + t e s t . toPython ( )

+ " : \ n" + body . toPython ( indent + 2) ;
}

c l a s s UnboundedLoopStatement extends LoopStatement {

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + " whi le " + t e s t . toPython

( ) + " : \ n" + body . toPython ( indent + 2) ;
}

c l a s s AssignStatement extends Statement {

r e f e r e n c e type [0 −1] : Type ;
r e f e r e n c e l e f t : Express ion ;
r e f e r e n c e r i gh t : Express ion ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + l e f t . toPython ( ) + " = "

+ r i gh t . toPython ( ) + "\n " ;
}

c l a s s SequenceStatement extends Statement {

a t t r i b u t e kind : i n t ;

r e f e r e n c e statements [ ∗ ] ordered : Statement ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : ( statements . s i z e = 0 => r e s u l t = Statement . tab ( indent ) +

"pass \n" ) & ( statements . s i z e > 0 => r e s u l t = statements
−>c o l l e c t ( s | s . toPython ( indent ) )−>sum( ) ) ;

}

c l a s s TryStatement extends Statement {

r e f e r e n c e catchClauses [ ∗ ] ordered : Statement ;
r e f e r e n c e body : Statement ;
r e f e r e n c e endStatement [0 −1] : Statement ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : ( endStatement . s i z e = 0 => r e s u l t = Statement . tab ( indent )

+ " try : \ n" + body . toPython ( indent + 2) + catchClauses−>
c o l l e c t ( s | s . toPython ( indent ) )−>sum( ) ) & ( endStatement
. s i z e ( ) > 0 => r e s u l t = Statement . tab ( indent ) + " try : \ n" +
body . toPython ( indent + 2) + catchClauses−>c o l l e c t ( s | s .

340



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

toPython ( indent ) )−>sum( ) + endStatement . any . toPython (
indent ) ) ;

}

c l a s s Condit ionalStatement extends Statement {

r e f e r e n c e t e s t : Express ion ;
r e f e r e n c e i fPa r t : Statement ;
r e f e r e n c e e l s ePa r t [0 −1] : Statement ;

opera t i on e l s e c od e ( indent : i n t ) : S t r ing
pre : t rue
post : ( e l s ePa r t . s i z e = 0 => r e s u l t = "" ) & ( e l s ePa r t . s i z e >

0 => r e s u l t = Statement . tab ( indent ) + " e l s e : \ n" + e l s ePa r t
. any . toPython ( indent + 2) ) ;

ope ra t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : r e s u l t = Statement . tab ( indent ) + " i f " + t e s t . toPython ( )

+ " : \ n" + i fPa r t . toPython ( indent + 2) + e l s e c od e ( indent ) ;
}

c l a s s Creat ionStatement extends Statement {

a t t r i b u t e c r ea t e s In s t anceOf : S t r ing ;
a t t r i b u t e ass ignsTo : S t r ing ;

r e f e r e n c e type : Type ;
r e f e r e n c e elementType : Type ;

opera t i on toPython ( indent : i n t ) : S t r ing
pre : t rue
post : ( type : Ent ity => r e s u l t = Statement . tab ( indent ) +

ass ignsTo + " = None\n" ) & ( type−>oc l I sUnde f ined ( ) =>
r e s u l t = Statement . tab ( indent ) + ass ignsTo + " = None\n" )
& ( true => r e s u l t = Statement . tab ( indent ) + ass ignsTo + "
= " + type . d e f a u l t I n i t i a lV a l u e ( ) + "\n" ) ;

}

ab s t r a c t c l a s s Behavioura lFeature extends Feature {
s t e r eo type abs t r a c t ;

a t t r i b u t e i s S t a t i c : boolean ;

r e f e r e n c e parameters [ ∗ ] ordered : Property ;
r e f e r e n c e a c t i v i t y : Statement ;

}

usecase pr in tcode : void {

: :
t rue => " import o c l"−>di sp l ay ( ) & " import math"−>di sp l ay ( ) & "

import re"−>di sp l ay ( ) & " import copy"−>di sp l ay ( ) & ""−>
di sp l ay ( ) & "from mathlib import ∗"−>di sp l ay ( ) & "from
o c l f i l e import ∗"−>di sp l ay ( ) & "from oc l type import ∗"−>
di sp l ay ( ) & "from oc lda t e import ∗"−>di sp l ay ( ) & "from
oc l p r o c e s s import ∗"−>di sp l ay ( ) & "from o c l i t e r a t o r import
∗"−>di sp l ay ( ) & "from oc lda ta sou r c e import ∗"−>di sp l ay ( )

341



APPENDIX E. SPECIFICATION - CASE STUDY 4: UML2PY

& "from enum import Enum"−>di sp l ay ( ) & ""−>di sp l ay ( ) &
Entity . deleteOp ( )−>di sp l ay ( ) & Entity . displayOps ( )−>
di sp l ay ( ) ;

Enumeration : :
t rue => ( " c l a s s " + name + "(Enum) : " )−>di sp l ay ( ) & l i t e r a l s

( )−>di sp l ay ( ) & "\n"−>di sp l ay ( ) ;

Ent ity : :
i s I n t e r f a c e = true & i sApp l i c a t i onC l a s s ( ) => clas sHeader ( )−>

di sp l ay ( ) & s t a t i cA t t r i b u t e s ( )−>di sp l ay ( ) &
abs t rac tC la s sCons t ruc to r ( )−>di sp l ay ( ) & s e l f . a l lOpe ra t i on s
( )−>fo rA l l ( op | op . d i sp layOperat ion (2 ) ) ;

Ent ity : :
i s I n t e r f a c e = f a l s e & i sApp l i c a t i onC l a s s ( ) => clas sHeader ( )−>

di sp l ay ( ) & s t a t i cA t t r i b u t e s ( )−>di sp l ay ( ) &
c l a s sCons t ruc t o r ( )−>di sp l ay ( ) & cal lOp ( )−>di sp l ay ( ) & s e l f
. a l lOpe ra t i on s ( )−>fo rA l l ( op | op . d i sp layOperat ion (2 ) ) ;

Ent ity : :
i s I n t e r f a c e = f a l s e & i sApp l i c a t i onC l a s s ( ) => createOp ( )−>

di sp l ay ( ) & a l l In s tance sOp ( )−>di sp l ay ( ) & ""−>di sp l ay ( ) &
createOclTypeOp ( )−>di sp l ay ( ) & ""−>di sp l ay ( ) ;

Ent ity : :
i s I n t e r f a c e = true & i sApp l i c a t i onC l a s s ( ) => a l l In s tance sOp ( )

−>di sp l ay ( ) & ""−>di sp l ay ( ) ;

Ent ity : :
i sApp l i c a t i onC l a s s ( ) & a l l P r o p e r t i e s ( )−>e x i s t s ( k | k . i sUnique

) & key = a l l P r o p e r t i e s ( )−>s e l e c t ( i sUnique )−>any ( ) => key
. getPKOp(name)−>di sp l ay ( ) & key . getPKOps (name)−>di sp l ay ( )
& s e l f . createPKOp ( key . name)−>di sp l ay ( ) ;

Operation : :
i s S t a t i c = true & owner−>oc l I sUnde f ined ( ) => s e l f .

d i sp layOperat ion (0 ) & ""−>di sp l ay ( ) ;

UseCase : :
t rue => mapUseCase ( )−>di sp l ay ( ) & ""−>di sp l ay ( ) & ""−>di sp l ay

( ) & ""−>di sp l ay ( ) ;
}

}

342


	Introduction
	Overview
	Motivations
	Research Objectives
	Aims and Contributions
	Overall Thesis Structure
	List of Publications

	Background
	Software Development Process
	Model-Driven Engineering
	Model-Based Testing
	Object Constraint Language

	Related Works
	Systematic Literature Review to Model-Based Testing
	Introduction
	Research Method
	Review Results
	Quality Assessment
	Discussions
	Threats to Validity
	Conclusion

	Test Case Optimisation
	Test Case Prioritisation
	Test Case Minimisation
	Test Case Selection

	Mutation Testing

	Mutation Testing for OCL
	Introduction
	Primitive Types
	Real
	Integer
	String
	Boolean
	UnlimitedNatural

	Collection-Related Types
	Collection
	Set
	OrderedSet
	Bag
	Sequence

	Other Operators
	Predefined Iterator Expressions
	Structural Operator

	Classification of Mutation Operators
	Supported Groups
	Possible Groups

	Evaluation & Discussions
	Conclusion

	Test Case Prioritisation
	TCP Process
	TCP Metrics
	Modified APFD Metric

	Test Case Minimisation
	TCM Process
	TCM Metrics

	Evaluation
	Research Questions
	Evaluation Process
	Running Example: String Process
	Case Study 1: Bond
	Case Study 2: Interest Rate
	Case Study 3: MathLib
	Case Study 4: UML2PY
	Results & Discussions
	Threats to Validity

	Conclusions & Future Works
	Overview of Thesis
	Limitation
	Future Works

	Bibliography
	Review Details
	Specification - Case Study 1: Bond
	Specification - Case Study 2: Interest Rate
	Specification - Case Study 3: MathLib
	Specification - Case Study 4: UML2PY

