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Rodŕıguez-Vázquez for organizing a reading group on Onishchik’s lectures on real semisimple
Lie algebras: that book—and our thorough perusal of it—gave me a lot of inspiration for
Chapter 3 and in particular for the proof of Theorem 1. I am also enormously indebted to
my examiners, Miguel Domı́nguez-Vázquez and Fran Burstall, for their time and effort. The
amount and depth of feedback they provided and the level of detail in their comments can
only mean that they read all two hundred pages of this thesis in minute detail. I could not
have been more blessed to have such excellent examiners.

But perhaps my biggest gratitude goes to my friends, as without their unconditional love
and support I would not be writing this. I want to thank my friend Julia Dyatlova, the most
important person in my life, for always being my reason to keep going and making me a
better person. Thanks to my soulmate Tamaz Gadaev for his brilliance and being the one
person I always look up to. I am forever indebted to Valera Andreychev for his emotional
support and exceptional ability to cheer me up in any situation. Thanks to Alexei Piskunov
for being a terrific friend I can always rely on. I am grateful to Egor Kolesnikov for being
my model of resolve and perseverance. I want to thank my oldest friend Griga Andreychev:
I am happy that we can still finish each other’s sentences despite all the bumps in the road.
I also want to thank my friend Mitya Leonkin for his wit and for maintaining my faith in
humanity. Special thanks goes to Laura Wakelin for having my back and always being there
for me. I am grateful to Skye Ball and her wonderful family for their selfless kindness and
for making me feel at home. I should also mention Laura and Skye’s instrumental role in
improving my level of English: over the past few years, I have tortured them with hundreds
of obscure language-related questions, and every single time they went out of their way to
help me out. Thanks to my friends Riccardo Carini and Soham Karwa for brightening up my
PhD years despite the pandemic, war, and pretty much every calamity imaginable. Cheers to
my office buddies Tom Sharpe and Jordan Hofmann with whom I shared many breaks, had
tons of engaging conversations, and drank countless cups of tea. Tom played a special role
in helping me bring the thesis to life: he was incredibly kind to let me use some of the LATEX
formatting from his own thesis and taught me a great deal about the art of writing up.

There are surely many others who have supported me in one way or another throughout my
PhD. To all of you: you have my deepest gratitude.

This thesis was supported by the EPSRC grant EP/S021590/1 through the LSGNT.



ABSTRACT

In this thesis, we study the geometry and congruence of homogeneous hypersur-
faces in Riemannian symmetric spaces of compact and noncompact type and
obtain a number of classification results.

Firstly, we prove that every multiplicity-preserving automorphism of the re-
stricted root system of a real semisimple Lie algebra admits a natural lift to an
automorphism of that Lie algebra and show when it can be further lifted to an
isometry of an associated noncompact symmetric space.

Next, we extend the classification of homogeneous codimension-one foliations
on irreducible Riemannian symmetric spaces of noncompact type obtained by
Berndt and Tamaru to the reducible case, thus completing it for all noncompact
symmetric spaces.

After that, we obtain a complete and explicit classification, up to orbit-
equivalence, of cohomogeneity-one actions (and thus homogeneous hypersur-
faces) on a number of irreducible noncompact Riemannian symmetric spaces
of rank 2, namely on SL(3,H)/Sp(3), SO(5,C)/SO(5), and Gr∗(2,Cn+4) =
SU(n+ 2, 2)/S(U(n+ 2)U(2)), n ≥ 1.

Finally, we study homogeneous complex hypersurfaces in irreducible Hermitian
symmetric spaces. In the compact case, we make some progress on classification
of such hypersurfaces up to congruence by using Konno’s work on codimension-
one embeddings of complex flag manifolds with b2 = 1. In the noncompact
case, we obtain a partial classification result: given an irreducible noncompact
Hermitian symmetric space M realized as a simply connected solvable Lie group,
we classify those complex hypersurfaces that are also Lie subgroups of M .
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Chapter 1

INTRODUCTION

The overarching theme of this thesis is the geometry, congruence, and ultimate classifi-
cation of homogeneous hypersurfaces in Riemannian symmetric spaces. A homogeneous
submanifold in a Riemannian manifold M is an orbit of an isometric Lie group action on
M . A Riemannian symmetric space is a Riemannian manifold, each of whose points is an
isolated fixed point of an involutive isometry, called the geodesic symmetry at that point.

Riemannian symmetric spaces, or simply symmetric spaces, are perhaps one of the most
well-studied classes of Riemannian manifolds due to their exceptionally high degree of
symmetry. Every symmetric space is a Riemannian homogeneous space, so it can be
represented as a quotient of Lie groups and studied by means of Lie theory. But much
more is true: the existence of geodesic symmetries enables one to translate most of the
geometric properties of a symmetric space M = G/K into statements about the Lie group
G and its Lie algebra g. Various geometric quantities of M such as the curvature—be it
the curvature endomorphism, the Ricci curvature, or the sectional curvatures—can be
expressed in terms of the algebraic structure of g. As a result, many questions about the
geometry of symmetric spaces can be rendered algebraic and thus greatly simplified. This
puts symmetric spaces at the epicenter of a lot of quests in differential geometry (and
especially differential geometry with symmetries) in the past century. To name a few:

• Riemannian manifolds with positive sectional curvature. There are very few known
compact examples of such manifolds that are not homogeneous or cohomogeneity-one.
Homogeneous positively-curved manifolds were essentially classified around 50 years
ago by Bérard-Bergery, Wallach, etc. (see [WZ18] for a modern exposition). Those
of cohomogeneity one were handled more recently (see a general survey [Zil14]). In
either case, compact symmetric spaces of rank one (see1 Definition 2.1.8) play a
central role.

• Homogeneous Einstein manifolds. Irreducible symmetric spaces provide one of the
most elementary—yet abundant—examples of homogeneous Einstein manifolds.
They also serve as a guiding model for other such manifolds. For instance, every
symmetric space of noncompact type (Definition 2.1.77)—which is Einstein when
the metric is suitably normalized—can be realized as a simply connected solvable
Lie group with a left-invariant Riemannian metric. In light of the recently resolved
Alekseevskii conjecture ([BL23]), every homogeneous Einstein manifold of negative

1Precise definitions of many of the terms used in this introduction can be found in Chapter 2 and will
be referenced when relevant.
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1. Introduction

scalar curvature is also of this form. We refer to the survey [Jab21] for further
discussion.

• Quaternion-Kähler manifolds. These are Riemannian manifolds with holonomy
contained in Sp(n)Sp(1)—one of the seven possible holonomy groups of non-locally-
symmetric manifolds that appear in Berger’s classification of Riemannian holonomy
groups. In a certain sense, they are a generalization of hyperkähler manifolds,
although these two types of spaces do not share so much in common. Each compact
simple Lie group gives rise to a quaternion-Kähler symmetric space of positive
Ricci curvature, known as a Wolf space. Remarkably, there are no known examples
of compact quaternion-Kähler manifolds that are not locally symmetric space (or
hyperkähler); this makes Sp(n)Sp(1) the only special holonomy group without such
examples. We refer to [Bes08, Chap. 14] for a detailed discussion of these spaces and
further references.

• Isometric polar actions. A proper isometric Lie group action on a complete Rieman-
nian manifold M is called polar if there exists a complete submanifold of M that
intersects all the orbits and does so orthogonally. For many spaces, including all
simply connected irreducible symmetric spaces, such actions are a generalization of
the more well-known notion of cohomogeneity-one action. They are also related to
isoparametric submanifolds (see, e.g., [PT87]). In [Dad85], Dadok proved that linear
polar actions on Euclidean spaces have the same orbits as the restricted isotropy
representations of semisimple symmetric spaces (to be defined in Proposition 2.1.95).
(A more precise notion of orbit-equivalence will be introduced in Definition 2.3.18.)
Polar actions on irreducible symmetric spaces of compact type were classified by Koll-
ross, Lytchak, Podestà, Thorbergsson, and Gorodski ([Kol02, KL13, PT99, GK16];
see also a survey in [BCO16, Chap. 12]).

The close affinity of symmetric spaces with Lie groups and Lie algebras is also what
ultimately led to their classification. Every symmetric space is covered by a simply
connected symmetric space, which, in turn, decomposes as a product of a Euclidean
space and a number of irreducible symmetric spaces. For simply connected irreducible
symmetric spaces, the classification boils down to classifying either real simple Lie algebras
or involutive automorphisms of compact real simple Lie algebras. This was carried out by
Cartan—who was the first to study symmetric spaces systematically—almost a century
ago in [Car26, Car27].

The other half of the focus in this thesis is on homogeneous hypersurfaces. Those are
intimately related to isometric cohomogeneity-one actions : every such hypersurface can be
realized as a nonsingular orbit of an isometric cohomogeneity-one action; and conversely,
every nonsingular orbit of a such an action is a homogeneous hypersurface. Cohomogeneity-
one actions have been in the limelight because they can be used to construct Riemannian
metrics with special properties: for instance, Einstein metrics, metrics with special
holonomy, or metrics of positive sectional curvature ([BB82, BS89, GWZ08]). Since
most geometric structures on manifolds are governed by systems of partial differential
equations, one can take advantage of the following principle: if a system of PDEs is
invariant under a cohomogeneity-one action, it can be reduced to ODEs. Somewhat in
a similar spirit, one can start with an isometric cohomogeneity-one action G ↷ M and
alter the existing metric g along the orbits of G to produce a new G-invariant metric,
which might retain some properties of g or even gain new ones—this method has been

8



1. Introduction

used to construct special metrics explicitly. Coming back to homogeneous hypersurfaces,
one of their prominent features is that they have constant principal curvatures, and they
also provide the chief example of what is known as isoparametric hypersurfaces. These
hypersurfaces of Riemannian manifolds can be defined as regular level sets of certain
functions, called isoparametric functions. They were introduced at the beginning of the
twentieth century, motivated by questions in geometrical optics: they were conceived
as a model for wavefronts traveling with constant uniform velocity at each moment of
time. In space forms, they are the same as complete hypersurfaces with constant principal
curvatures, but these two classes diverge in more complex Riemannian manifolds. One
of the biggest—and still unresolved—conundrums in this area of research in the recent
decades has been the classification of isoparametric hypersurfaces in spheres (see [BCO16,
Sect. 2.9.6] for a short survey). As any other homogeneous submanifold, homogeneous
hypersurfaces carry information about the geometry of the ambient manifold, as well as
the structure of its isometry group.

There are several good reasons to study homogeneous hypersurfaces—and more generally,
homogeneous submanifolds—specifically in the context of symmetric spaces. In general,
studying and classifying homogeneous submanifolds is a grueling and perhaps unfeasible
task, not least because the isometry group of a generic Riemannian homogeneous (let
alone cohomogeneity-one) manifold is poorly understood. On the other hand, for a
semisimple symmetric space M (which includes all irreducible symmetric spaces), the
identity component I0(M) of the isometry group is semisimple, and M is the quotient
of I0(M) by a compact subgroup of a very special type, called a symmetric subgroup
(see Definition 2.1.20). This allows one to implement the extensive body of theory
about subgroups of semisimple Lie groups (some seminal works1 include [Dyn52b, Dyn52a,
Mos61]) to study and ultimately classify various homogeneous objects in symmetric spaces,
including homogeneous submanifolds and cohomogeneity-one actions. This approach is
especially fruitful in the case of symmetric spaces of compact type, which led to the
aforementioned classification of polar and cohomogeneity-one actions on such spaces—
this is also the primary reason why this thesis focuses predominantly on symmetric
spaces of noncompact type. Another reason why homogeneous submanifolds are usually
considered within the framework of symmetric spaces is that they inherit some of the
symmetry of the ambient space and often possess extra properties and special structures,
which makes the theory richer and more intricate. Finally, the class of homogeneous
submanifolds encompasses many other types of submanifolds commonly studied in the
theory of symmetric spaces, such as totally geodesic submanifolds, reflective submanifolds,
symmetric submanifolds, etc.

Returning to the opening sentence of this introduction, we must explain what we mean
by classifying homogeneous hypersurfaces. Since we are chiefly interested in submanifold
geometry, we do not wish to distinguish between two submanifolds of the same manifold
M if there is an isometry of M mapping one onto the other. If this is the case, we say that
these two submanifolds are congruent. Throughout the thesis, the problem of determining
whether two submanifolds are congruent is referred to as the problem of congruence, or
the congruence problem. The questions at the heart of this thesis are then,

1The two papers of Dynkin are ubiquitously available online, but they are in Russian. Both were
translated by the AMS [Dyn57b, Dyn57a], but these versions are behind a harsher paywall and harder to
come by.
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1. Introduction

What are the congruence classes of homogeneous hypersurfaces in a given
symmetric space? In which ways do noncongruent homogeneous hypersurfaces
differ geometrically?

These questions are considered in Chapters 4, 5, and 6 of the thesis. They are preceded
by Chapter 3, where we establish certain results that underpin the problem of congruence
on symmetric spaces of noncompact type.

∗ ∗ ∗

In Chapter 3, we lay some groundwork for the study of the congruence problem in the
later chapters. Since our main object of interest is symmetric spaces of noncompact type,
it is worth paying special attention to the congruence problem in this context. Symmetric
spaces of noncompact type are intimately related to noncompact real semisimple Lie
algebras. For this reason, they are frequently studied with tools taken from the theory of
such Lie algebras: the restricted root space decomposition, the Iwasawa decomposition, the
theory of parabolic subalgebras, etc. The first of these is arguably of highest importance,
as it underpins most of the other tools and constructions. The relation between a real
semisimple Lie algebra and its restricted root system bears a strong resemblance to its
complex analog—the classical correspondence between complex semisimple Lie algebras
and reduced root systems. Still, there are some notable differences: first, the restricted
root system is only effective for examining noncompact semisimple Lie algebras; second,
it may not be reduced; but most importantly, the dimension of a restricted root space,
known as the multiplicity of the corresponding root, does not have to be equal to 1. In
the complex case, the Isomorphism Theorem proves to be a very powerful tool; it asserts
that an isomorphism between complex semisimple Lie algebras can be defined merely on
the so-called canonical generators, provided that the Cartan matrix is preserved. Among
other things, it allows to lift, in a certain sense, every symmetry of the Dynkin diagram
of g (or, more generally, every automorphism of the root system) to an automorphism of
g. For real semisimple Lie algebras, this instrument is not available—there is no analog of
canonical generators to begin with.

The central idea of Chapter 3 is to treat the restricted root multiplicities as a feature, not
a bug, and incorporate them into the restricted root system itself. This leads naturally
to the notions of a weighted root system and a weighted Dynkin diagram. It turns out
that the noncompact part of a semisimple Lie algebra is completely determined by its
weighted restricted root system (or, equivalently, its weighted Dynkin diagram). It would
then be sensible to consider only those automorphisms of the restricted root system
and the Dynkin diagram that preserve the root weights—we call them weight-preserving
automorphisms. The main result of the chapter is the following

Theorem 1. Every weight-preserving automorphism of the restricted root system of a
real semisimple Lie algebra admits a lift to an automorphism of that Lie algebra.

We will define exactly what we mean by a lift in Subsection 3.2.1. The proof of the
theorem goes as follows. First, we show that it suffices to construct lifts only for the
weight-preserving automorphisms of the Dynkin diagram. Next, we reduce the problem
to simple noncompact Lie algebras (which correspond to irreducible root systems). After
that, we handle the cases when g is a complex simple Lie algebra or a split real form; here,
the statement can be deduced from the Isomorphism Theorem. In the remaining cases,

10



1. Introduction

there is at most one nontrivial weight-preserving automorphism of the Dynkin diagram.
Using some general theory of root systems and the classification of symmetric spaces, we
show that this nontrivial automorphism equals the negative of the longest element in the
Weyl group, whose lift is easy to construct explicitly. Some authors have stated partial
versions of this theorem without references (see, e.g., [BT03, p. 11] or [Mur52, p. 111]).

We close the chapter with a reformulation of Theorem 1 in the language of symmetric
spaces of noncompact type. Every such space M admits a natural Riemannian metric,
called the Killing metric, and every other symmetric metric differs from the Killing one
by rescaling by some positive real numbers along the de Rham factors of M . These
numbers are called the normalizing constants. The isometry group of M embeds into
the automorphism group of its isometry Lie algebra g as an open subgroup. In general,
the image of this embedding is a proper subgroup, but for some (generic) choices of
normalizing constants it is the whole Aut(g); if this is the case, we call the metric almost
Killing. In the geometric reformulation of Theorem 1, we work out explicitly which
weight-preserving automorphisms of the restricted root system of g admit a lift to an
isometry of M . The general statement is a bit involved (see Corollary 3.3.8), so we only
give a simplified version here:

Theorem 2. Let M be a symmetric space of noncompact type, and assume its metric is
almost Killing. Then every weight-preserving automorphism of the restricted root system
of the isometry Lie algebra of M admits a lift to an isometry of M .

Let us illustrate how this result can be used in practice. Many geometric objects on
symmetric spaces of noncompact type are constructed within the framework of the
restricted root space decomposition and thus rely on the root data. For instance, to
every subset of the set Λ of simple roots, one can associate a particular totally geodesic
submanifold of M , called a boundary component, which will be of paramount importance
to us throughout the thesis. It might happen that two subsets of Λ differ by a weight-
preserving automorphism of the Dynkin diagram. As we will see in Proposition 3.3.9, the
resulting boundary components will then be congruent, essentially due to Theorem 2.

∗ ∗ ∗

In Chapter 4, we study the congruence problem in the context of homogeneous codimension-
one foliations on reducible symmetric spaces of noncompact type. A homogeneous foliation
on a Riemannian manifold M is the orbit foliation of a Lie group acting on M isomet-
rically and without singular orbits. If M is a symmetric space of noncompact type,
an isometric cohomogeneity-one action on M can have at most one singular orbit (see
Proposition 2.3.43), so such actions split naturally into two categories: those that do and
those that do not have a singular orbit. Every action in the first category gives rise to a
homogeneous codimension-one foliation. On irreducible symmetric spaces of noncompact
type, such foliations were classified by Berndt and Tamaru in [BT03]. They used the
Iwasawa and restricted root space decompositions (we discuss both in Subsection 2.4.2)
to build two different types of homogeneous codimension-one foliations. Let us briefly
introduce their constructions.

Let M be a symmetric space of noncompact type, G = I0(M), and g = Lie(G). Pick any
point o ∈ M and let so be the geodesic symmetry of M at o. Then θ = Ad(so) is a Cartan
involution on g (to be defined in Definition 2.1.69). If we write B for the Killing form
of g, the form Bθ(X, Y ) = −B(X, θY ) becomes an inner product on g. We decompose

11



1. Introduction

g = k⊕ p into the +1- and −1-eigenspaces of θ and pick a maximal abelian subspace a in
p. The restricted root system Σ of g lives in a∗; we denote its Dynkin diagram by DD.
Any choice of positive roots in Σ gives rise to an Iwasawa decomposition g = k⊕ a⊕ n,
where n is a nilpotent subalgebra defined as the sum of all positive root spaces.

For any subalgebra of the solvable Lie algebra s = a⊕ n, the corresponding Lie subgroup
induces a homogeneous foliation on M ; we call any foliation that can be constructed
in this way a standard foliation, and we refer to its leaf through o as the base leaf. For
example, if we take any one-dimensional subspace ℓ ⊆ a, its orthogonal complement sℓ
in s is a subalgebra, and it gives rise to a standard codimension-one foliation, denoted
by Fℓ. Similarly, if αi is a simple root, removal of a one-dimensional subspace (does not
matter which one) from the restricted root space gαi

produces a subalgebra of s, whose
corresponding standard foliation Fαi

also has codimension 1. The notion of congruence
easily extends to this context: two foliations of M are called congruent if there exists an
isometry of M identifying their leaves (see Definition 2.3.18 for a precise formulation).
For instance, the foliations Fℓ and Fαi

are never congruent to each other: the leaves of Fℓ

are all pairwise congruent, whereas Fαi
has a unique minimal leaf (the base leaf). Now

suppose M is irreducible. The main results of [BT03] are as follows:

(a) The foliations Fℓ and Fαi
exhaust the list of all homogeneous codimension-one

foliations on M up to congruence.

(b) Given two lines ℓ, ℓ′ ⊆ a (resp., two simple roots αi,αj), the foliations Fℓ and Fℓ′

(resp., Fαi
and Fαj

) are congruent if and only if ℓ and ℓ′ (resp, αi and αj) differ by
a weight-preserving automorphism of DD.

In (b), we tacitly use the fact that every weight-preserving automorphism of DD naturally
extends to a linear operator on a. The authors used these results in their subsequent
article [BDRT10] with Dı́az-Ramos to obtain a classification result for the more general
class of homogeneous hyperpolar foliations on all (possibly reducible) symmetric spaces of
noncompact type. A homogeneous foliation on M is called hyperpolar if there exists a flat
submanifold of M , called a section, that intersects all the leaves and does so orthogonally.
Every homogeneous codimension-one foliation on M is hyperpolar: a section can be
constructed by launching a geodesic from any point orthogonally to its leaf; it can be
shown that such a geodesic will actually cross all the leaves orthogonally. When applied to
codimension-one foliations, the main result of [BDRT10] ensures that every homogeneous
codimension-one foliation on M is congruent to either some Fℓ or some Fαi

—except this
time the space is allowed to be reducible. To complete the classification, one needs to tell
when two foliations of the form Fℓ (or Fαi

) are mutually congruent. We achieve this by
utilizing the notion of a weight-preserving automorphism conceived in Chapter 3:

Theorem 3. Let M be a symmetric space of noncompact type whose Riemannian metric
is almost Killing. Two homogeneous codimension-one foliations Fℓ,Fℓ′ (resp., Fαi

,Fαj
)

on M are congruent if and only if ℓ and ℓ′ (resp., αi and αj) differ by a weight-preserving
automorphism of the Dynkin diagram of M .

If M is irreducible, every automorphism of its Dynkin diagram is automatically weight-
preserving (Theorem 3.2.10(2)), so Theorem 3 is a direct generalization of statement (b)
above. Our proof combines geometric and algebraic methods and is an extension of Berndt
and Tamaru’s original proof of (b) in [BT03]. It is based on a painstaking analysis of the
Lie bracket relations between the subalgebras a and n, and it also relies on the fact that a
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1. Introduction

symmetric space of noncompact type is determined by its weighted Dynkin diagram.

∗ ∗ ∗

In Chapter 5, we obtain an explicit classification of proper isometric cohomogeneity-
one actions (and thus homogeneous hypersurfaces) on a number of irreducible rank-two
symmetric spaces of noncompact type, namely on SL(3,H)/Sp(3), SO(5,C)/SO(5), and
Gr∗(2,Cn+4), n ≥ 1.

Compared to the compact case, the theory of cohomogeneity-one actions on symmetric
spaces of noncompact type is substantially more convoluted, which is why the saga
of classification of these actions has been ongoing for over two decades. Let H ↷ M
be such an action. Without loss of generality, we may assume that H is a connected
closed subgroup of I0(M). As we mentioned earlier, H can have at most one singular
orbit. If there is no singular orbit, the orbits form a homogeneous codimension-one
foliation, the classification of which is discussed in Chapter 4. If the action has a singular
orbit, there are two things that can happen. Let H ′ ⊂ I0(M) be a maximal proper
connected Lie subgroup containing H. In [Mos61], Mostow showed that such a maximal
subgroup is either reductive or the identity component of a parabolic subgroup of G (see
Subsection 2.4.3 for a discussion of parabolic subalgebras and subgroups). In the first
case, Berndt and Tamaru showed in [BT13] that H and H ′ have the same orbits, and the
singular orbit must be totally geodesic. For irreducible spaces, cohomogeneity-one actions
with a totally geodesic singular orbit were classified by the authors in [BT04]. They
showed that, apart from five exceptional actions, the singular orbit must be a reflective
submanifold (Definition 2.2.26). By relying on Leung’s classification of such submanifolds
in irreducible symmetric spaces of compact type ([Leu75, Leu79a]), they figured out which
reflective submanifolds arise as singular orbits of cohomogeneity-one actions, which let
them complete the classification. If H lies in a parabolic subgroup of G, its singular orbit
may not be totally geodesic. A novel approach was needed to generate such actions.

In [BT13], the authors invented two new ways of constructing cohomogeneity-one actions
on noncompact symmetric spaces. The first one is called the canonical extension, and
it is a procedure that takes isometric actions on the boundary components of M and
naturally extends them to global actions on M . The second one is known as the nilpotent
construction, and it is arguably the more intricate of the two. This method concerns
representations of certain reductive subgroups of G; we do not attempt to lay it out here
and refer to Subsection 5.1.1 for details. The main result of [BT13] asserts that any
cohomogeneity-one action on M with a non-totally-geodesic singular orbit arises via one
of these two constructions.

In a recent paper [DRDVO23], Dı́az-Ramos, Domı́nguez-Vázquez, and Otero managed to
dispense with the irreducibility assumption on M altogether. In the above step where
one takes a maximal proper subgroup of G, they used a result of Dynkin (Th. 15.1 in
[Dyn52b] or [Dyn57b]) that states that every maximal proper subalgebra of a semisimple
Lie algebra

⊕k
i=1 gi (here gi are simple) has to be of one of two forms: hi⊕

⊕
j ̸=i gj , where

hi ⊂ gi, or hi,j ⊕
⊕

l ̸=i,j gl, where gi ≃ gj and hi,j ⊂ gi⊕ gj is a diagonal subalgebra. They
also showed, roughly speaking, that the composition of a nilpotent construction with a
canonical extension is a nilpotent construction, whereas Berndt and Tamaru showed in
[BT13] that the composition of two canonical extensions is again a canonical extension. As
a result of all these works, the search for cohomogeneity-one actions on a given symmetric
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1. Introduction

space of noncompact type reduces to a problem in the representation theory of reductive
Lie groups. The complexity and obscurity of that problem depends on the space in
question but generally tends to grow along with the rank of a space. As of today, the
nilpotent construction has only yielded two new actions on spaces of rank > 1 that do not
arise via any other methods (both described in [BT13]). The primary result of Chapter 5
is the following

Theorem 4. Every proper isometric cohomogeneity-one action with a non-totally-geodesic
singular orbit on the symmetric spaces

SL(3,H)/Sp(3), SO(5,C)/SO(5), Gr∗(2,Cn+4), n ≥ 1,

arises via the canonical extension.

In other words, the nilpotent construction produces no new actions on these spaces. We
consider the three of them individually in Sections 5.2 to 5.4, and the methods we use in the
proofs are space-specific. For each of the spaces, we first give an explicit description of the
actions with a totally geodesic singular orbit, as well as those arising by canonical extension,
and then proceed to deal with the nilpotent construction—which, as we said before, is
basically a problem in the representation theory of reductive groups. For SL(3,H)/Sp(3),
it involves the standard representation of Sp(2)Sp(1) on H2, which we handle by using
the notion of quaternion-Kähler angle and the theory developed in [DRDVRV21]. For
SO(5,C)/SO(5), we utilize some techniques established in [BDV15] specifically for the
purposes of solving the nilpotent construction problem. Lastly, in the case of noncompact
complex Grassmannians of two-planes, we first use some ad-hoc arguments to simplify the
nilpotent construction, but then opt for a rather head-on approach. Here, the problem
of congruence is particularly interesting because of the unique geometric characteristics
of the space. Together with its compact dual (the duality for symmetric spaces will be
discussed in Subsection 2.1.5), the noncompact complex Grassmannian of two-planes is
the only semisimple symmetric space that is both Hermitian and quaternion-Kähler (see
Subsection 2.5.1). The interplay between these two structures provides some rather fine
tools for distinguishing between various submanifolds of M ; we will use this to deduce
that certain actions on M are not mutually congruent.

∗ ∗ ∗

Finally, in Chapter 6, we examine the topic of the thesis through the lens of complex
geometry. That is to say, we study homogeneous complex hypersurfaces in Hermitian
symmetric spaces (which are simply symmetric spaces that are also Kähler manifolds).
The property of being of real codimension 2 sets complex hypersurfaces quite far apart
from their real counterparts.

Historically, one of the first results that motivated the study of homogeneous com-
plex hypersurfaces is perhaps their classification in complex space forms by Smyth
and Nomizu in [Smy68, NS68]: they proved that, up to congruence, the submanifolds
Cn−1 ⊂ Cn, CHn−1 ⊂ CHn, and CP n−1, Qn−1 ⊂ CP n exhaust the list of homogeneous
complex hypersurfaces in simply connected complex space forms. Here Qn−1 is the stan-
dard nonsingular complex projective quadric. Another immediate example of such a
hypersurface is a totally geodesic Qn−1 ⊂ Qn. Further progress in this direction was
made by a group of Japanese mathematicians: first, Sakane and Kimura discovered
two more examples in [Sak85] and [Kim79], namely Sp(n)/Sp(n − 2)U(2) ⊂ Gr(2,C2n)
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and F4/Spin(7)U(1) ⊂ E6/Spin(10)U(1); shortly afterwords, Konno used methods from
algebraic geometry to show that the above five examples (excluding Cn−1 ⊂ Cn and
CHn−1 ⊂ CHn) exhaust the list of all homogeneous complex hypersurfaces in complex
flag manifolds with b2 = 1 ([Kon88]). These spaces include all irreducible Hermitian
symmetric spaces of compact type, and they can all be represented as a quotient of a
complex simple Lie group by a parabolic subgroup. It follows a posteriori from Konno’s
result that if such a space admits a homogeneous complex hypersurface, then it is a
Hermitian symmetric space. The only shortcoming of Konno’s classification (for us) is
that it is not up to congruence—he only shows when a complex flag manifold can be
embedded into another such manifold with b2 = 1 as a complex hypersurface. We refine
his result in the case of homogeneous complex hypersurfaces in Qn and show that they are
all congruent to the standard totally geodesic Qn−1 ⊂ Qn. We also set up the congruence
problem for the remaining two spaces Gr(2,C2n) and E6/Spin(10)U(1) and reformulate it
in the language of representation theory.

Homogeneous complex hypersurfaces in Hermitian symmetric spaces of compact type are
an interesting object of study from several geometric perspectives. To begin with, every
such hypersurface can be realized as a singular orbit of an isometric cohomogeneity-one
action on the ambient space. What is more, the principal orbits of these actions are what
is known as contact hypersurfaces. In particular, the maximal holomorphic distribution of
each such orbit is a contact structure. We discuss this briefly at the end of Subsection 6.2.4.
Eventually, for those homogeneous complex hypersurfaces S ⊂ M that are not totally
geodesic, the other singular orbit S ′ of the corresponding cohomogeneity-one action (also
known as the focal manifold of S) is a projective space over a normed real division algebra.
The ambient space M can be described as the complexification of S ′. We discuss this in
Subsection 6.2.5.

In the second half of the chapter, we turn our attention toward homogeneous complex
hypersurfaces in Hermitian symmetric spaces of noncompact type. This topic does not
seem to have been studied to any notable degree. Similarly to the compact case, we
have totally geodesic (and hence homogeneous) complex hypersurfaces CHn−1 ⊂ CHn

and Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2), n ≥ 3. Using the notion of index of a symmetric space
(discussed in Subsection 6.2.2), one can show that these are the only complete connected
totally geodesic complex hypersurfaces in irreducible Hermitian symmetric spaces of
noncompact type. By virtue of the canonical extension procedure from Chapter 5, one
can use these two examples to generate more homogeneous complex hypersurfaces on any
Hermitian symmetric space of noncompact type, provided it admits a complex boundary
component isometric to CHn or Gr∗(2,Rn+2); we show that such a boundary component
always exists. Finally, we study homogeneous complex hypersurfaces within the framework
of the Iwasawa and restricted root space decompositions. If h ⊂ s is a subalgebra, it
might happen that the o-orbit of its corresponding Lie subgroup is a complex hypersurface.
In Subsection 6.3.2, we classify all such subalgebras. Equivalently, in the language of
Chapter 4, we classify those homogeneous complex hypersurfaces that arise as the base
leaf of a standard foliation on M . As it turns out, those are very scarce, and they are
also closely related to the totally geodesic complex hypersurfaces above via the canonical
extension:

Theorem 5. Let M be an irreducible Hermitian symmetric space of noncompact type with
restricted root system Σ. The number of congruence classes of standard codimension-2
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foliations on M with a complex base leaf is 2 if Σ ≃ Cr and 1 if Σ ≃ (BC)r. The base leaf
of every such foliation can be obtained by canonical extension of a totally geodesic complex
hypersurface in a boundary component of M isometric to CHn or Gr∗(2,Rn+2), n ≥ 3.

The proof of this theorem is fleshed out in Subsections 6.3.2 and 6.3.3. To that end, we
had to devise some novel techniques to study Hermitian symmetric spaces of noncompact
type. The two key results underpinning the proof are:

(a) A relation between the almost complex structure of M and the restricted root space
decomposition of its isometry Lie algebra (Theorem 6.3.12);

(b) A relation between the lift of the almost complex structure of M to the solvable Lie
algebra s and the Lie-algebraic structure of s (Lemma 6.3.15).

We close the chapter with some conjectures and ideas for possible generalizations of
Theorem 5.
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Chapter 2

SYMMETRIC SPACES AND ISOMETRIC

ACTIONS

This chapter serves as a collection of preliminaries for the rest of the thesis. We have
opted for a more detailed and thorough exposition for a number of reasons. Firstly,
this was driven by a desire to make the thesis more self-sustained and avoid excessive
referencing. Second, in this chapter we establish the bulk of the notation and definitions
that will be required later on. We also provide numerous examples to aid understanding.
Finally, even though most of the material of this chapter can be found elsewhere in the
literature, it appears to be scattered among many textbooks and papers. Some of the
results discussed here do not seem to appear in other sources—at least according to
our knowledge; most notably, this is Proposition 2.1.52 on holonomy-induced foliations
on symmetric spaces, (a rigorous proof of) Proposition 2.1.60 on the isometry group of
certain Riemannian products, and the property of having compact Euclidean part and its
equivalent characterizations (Proposition 2.1.97). This chapter contains many references,
but three sources really stand out:

⋄ [Hel01] is our go-to reference for the general theory of symmetric spaces.

⋄ [Kna02] covers most of the theory of Lie groups and Lie algebras underpinning this
thesis. With its in-depth discussion of noncompact semisimple Lie algebras, it is
also an excellent reference for the theory of symmetric spaces of noncompact type.

⋄ [KN96a, KN96b] fully cover our needs when it comes to holonomy and homoge-
neous spaces. They also contain a thorough discussion of symmetric spaces, often
complementary to [Hel01].

Since they are so ubiquitous, we will generally omit references to these textbooks in this
chapter. Due to the preparatory nature of the chapter, we only give sporadic proofs and
rely on references most of the time. The layout of the chapter is as follows:

• In Section 2.1, we go through the basics of symmetric space, paying special attention
to Riemannian symmetric pairs and orthogonal symmetric Lie algebras, types of
symmetric spaces, holonomy, and irreducibility.

• In Section 2.2, we review various types of submanifolds in symmetric spaces and dis-
cuss their properties. We also work out a handy formula for the second fundamental
form of a homogeneous submanifold.

• In Section 2.3, we turn our attention to the theory of proper isometric actions and
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2.1. Symmetric spaces

homogeneous foliations, with a focus on polar, hyperpolar, and cohomogeneity-one
actions.

• In Section 2.4, we home in on the primary object of interest in this thesis: symmetric
spaces of noncompact type. After establishing their relation to noncompact real
semisimple Lie algebras, we recall some basic tools used to study such Lie algebras:
the restricted root space and Iwasawa decompositions as well as the theory of
parabolic subalgebras and subgroups.

• Lastly, in Section 2.5, we discuss symmetric spaces endowed with extra geometric
structures. The two types of spaces we are going to be interested in are Hermitian
and quaternion-Kähler symmetric spaces.

2.1. Symmetric spaces

The first (and largest) section of this chapter is dedicated to the general theory of
symmetric spaces. We go through the apparatus of Riemannian symmetric pairs and
orthogonal symmetric Lie algebras and discuss various aspects of the theory such as type,
rank, holonomy, irreducibility, duality, and eventually the classification. The primary
reference for this section is [Hel01].

2.1.1. Symmetric and locally symmetric spaces

The bridge between Riemannian geometry and Lie theory—which is an indispensable
component of the theory of symmetric spaces—begins with the isometry group of a
Riemannian manifold. In the following proposition, we coalesce some elementary results
about the isometry group and its Lie algebra. This is largely proven in [KN96a, Th.VI.3.4]
and [DR08]1.

Proposition 2.1.1. Let M be a Riemannian manifold with |π0(M)| < ∞, and let I(M)
be its isometry group.

(a) When endowed with the compact-open topology, I(M) is a Lie group, and its action
on M is smooth. An isometric action of a Lie group G on M is smooth if and only
if the corresponding morphism G → I(M) is smooth.

(b) Write i(M) for Lie(I(M)). Given X ∈ i(M), let X̂ ∈ X(M) be its corresponding
fundamental vector field:

X̂p =
d

dt

∣∣∣∣
t=0

exp(tX) · p = d(πp)e(X),

where πp : I(M) → M, g 7→ g · p. Then X̂ lies in the Lie subalgebra K(M) ⊆ X(M)

of Killing vector fields, and the map2 i(M) → K(M), X 7→ X̂, is an injective
anti-homomorphism of Lie algebras. Moreover, if M is complete, this map is an
anti-isomorphism.

1Note that the assumption on completeness of M in this paper is redundant.
2This is also known as the infinitesimal generator of the action I(M) ↷ M .
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2.1. Symmetric spaces

(c) Suppose M is connected and let f, f ′ ∈ I(M) be such that f(p) = f ′(p) and dfp = df ′p
for some p ∈ M . Then f = f ′. In particular, if an isometry f fixes some point p
and dfp = IdTpM , then f = IdM .

(d) Let H ⊆ I(M) be a Lie subgroup. The action H ↷ M is proper if and only if H is
a closed subgroup. In particular, the actions of I(M) and I0(M) on M are proper
and the stabilizers I(M)p and I0(M)p of any point p are compact (thus π0(I(M)) is
also finite).

(e) If M is compact, then so is I(M).

We will call the elements of I0(M) inner isometries.

Let M be a connected Riemannian manifold and p ∈ M . Take 0 < r < inj(p), where the
latter is the injectivity radius of M at p. The exponential map expp : TpM → M restricts
to a diffeomorphism between Br(0) ⊂ TpM and Br(p) ⊆ M . The linear isometry v 7→ −v
of Br(0) exponentiates to a diffeomorphism exp(tv) 7→ exp(−tv) of Br(p), called a local
geodesic symmetry of M at p.

Definition 2.1.2. A connected Riemannian manifold is called a (Riemannian) locally
symmetric space if it satisfies the following equivalent conditions:

(i) For every p ∈ M , there exists 0 < r < inj(p) such that the local geodesic symmetry
of Br(p) is an isometry.

(ii) The curvature tensor of M is parallel: ∇R = 0.

Definition 2.1.3. A connected Riemannian manifold M is called a (Riemannian)
symmetric space if for every p ∈ M there exists sp ∈ I(M) that fixes p and satisfies the
following equivalent conditions:

(i) sp is involutive and p is its isolated fixed point.

(ii) d(sp)p = − IdTpM .

(iii) sp reverses geodesics through p: if γv(t) = exp(tv), then sp ◦ γv = γ−v for every
v ∈ TpM .

If exists, such sp is unique and it is called the (global) geodesic symmetry of M at p.

Some immediate examples of symmetric spaces include the Euclidean space En, the sphere
Sn, and the real hyperbolic space RHn. We will see plenty more examples below (see
Examples 2.1.35 to 2.1.38). Using the geodesic symmetries, one can show that

Proposition 2.1.4. A symmetric space is a Riemannian homogeneous space. In particular,
it is complete.

If we already know that M is homogeneous, it suffices to check the existence of geodesic
symmetries at just one point:

Proposition 2.1.5. Let M be a connected Riemannian homogeneous space. Assume that
M admits a geodesic symmetry at some point p. Then M is a symmetric space.

If a Riemannian manifold (M, g) is symmetric (resp., homogeneous), we will sometimes
express iy by saying that its metric g is symmetric (resp., homogeneous). Clearly, a
symmetric space is locally symmetric, but the converse is not necessarily true. For example,
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a compact oriented surface M of genus g ≥ 2 endowed with a metric of constant curvature
is locally symmetric because it is locally isometric to RH2 (of some radius). But the
isometry group I(M) is finite, so M is not homogeneous, let alone symmetric. Nonetheless,
we have the following result, which says, roughly speaking, that locally symmetric spaces
are not far from being symmetric:

Proposition 2.1.6. Let M be a locally symmetric space.

(a) For every point p ∈ M , there exists a neighborhood U and a symmetric space N
such that U is isometric to some open subspace of N .

(b) If M is complete, its universal Riemannian covering space is a symmetric space. In
particular, if M is also simply connected, then it is symmetric.

Part (a) of the proposition justifies the term locally symmetric space. The property of
being symmetric withstands some basic geometric constructions:

Proposition 2.1.7. Let M be a Riemannian manifold.

(a) If M = M1 × · · · ×Mk is a Riemannian product, then M is a symmetric space if
and only if each Mi is.

(b) If M is a symmetric space, then so is any Riemannian covering space of M .

The most basic geometric invariant of a symmetric space, besides the dimension, is its
rank.

Definition 2.1.8. The rank of a symmetric space M , denoted by rk(M), is the maximal
dimension of a flat totally geodesic submanifold of M .

Agreement. Throughout the thesis, all submanifolds in smooth manifolds are assumed to
be smooth and immersed, and all actions on smooth manifolds (resp., representations) are
assumed to be smooth actions by (resp., representations of) Lie groups, unless otherwise
stated.

We will discuss the definition of the rank in more detail in Subsection 2.2.1 (see Corol-
lary 2.2.24). Here we just mention a few of its basic properties.

Proposition 2.1.9. Let M be a symmetric space.

(a) If M = M1 × · · · ×Mk is a Riemannian product, then rk(M) =
∑k

i=1 rk(Mi).

(b) If M ′ is a Riemannian covering space of M , then rk(M ′) = rk(M).

Digression: compact Lie algebras

Before we go further, we need to briefly discuss some relevant parts of Lie theory; we
refer to [Kna02] for proofs and details. Let g be a Lie algebra. (All Lie algebras, vector
spaces, and representations in this thesis are going to be finite-dimensional over R by
default). We will usually denote the Cartan-Killing form by B (or Bg if there is a chance
of ambiguity). We will write Inn(g) for the (possibly nonclosed) connected Lie subgroup
of Aut(g) corresponding to the subalgebra ad(g) of Der(g) = Lie(Aut(g)). If G is any
connected Lie algebra with Lie(G) = g, then Inn(g) = Ad(G).

Definition 2.1.10. A real Lie algebra g is called compact if the group Inn(g) is compact.
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Proposition 2.1.11. The following conditions on a Lie algebra g are equivalent:

(i) g is compact.

(ii) There exists a compact Lie group G with Lie(G) ≃ g.

(iii) g is reductive and its semisimple part gss = [g, g] is compact.

(iv) g admits an invariant inner product.

(v) g is isomorphic to a Lie subalgebra of so(n) for some n.

If these conditions are satisfied, then the Killing form B is negative semi-definite.

Corollary 2.1.12. Every subalgebra and quotient of a compact Lie algebra is also compact.

Proposition 2.1.13. The following conditions on a Lie algebra g are equivalent:

(i) g is compact semisimple.

(ii) Every connected Lie group G with Lie(G) ≃ g is compact.

(iii) g is a direct sum of compact simple Lie algebras.

(iv) B is negative-definite.

Let g be any Lie algebra and k ⊆ g a subalgebra. We write Inng(k) for the connected Lie
subgroup of Inn(g) corresponding the subalgebra adg(k) of ad(g). If G is any Lie group
with Lie(G) = g and K ⊆ G is the connected Lie subgroup corresponding to k, then
Inng(k) = AdG(K).

Definition 2.1.14. A subalgebra k of a Lie algebra g is called compactly embedded if
the group Inng(k) is compact.

Remark 2.1.15. In Definition 2.1.14, it does not matter whether we treat Inng(k) as a
Lie subgroup of Inn(g) or of Aut(g), because the resulting topology and smooth structure
are the same.

Proposition 2.1.16. Let g be a Lie algebra and k ⊆ g a subalgebra. Consider the following
conditions:

(i) k is compactly embedded in g.

(ii) There exists a Lie group G with Lie(G) ≃ g such that the connected Lie subgroup
K ⊆ G corresponding to k is compact.

(iii) g admits a k-invariant inner product.

(iv) The restriction of Bg to k is negative semi-definite and its kernel coincides with
z(g) ∩ k.

(v) k is compact.

Then (i) ⇔ (ii) ⇒ (iii) ⇒ (iv),(v).

2.1.2. Riemannian symmetric pairs and orthogonal symmetric
Lie algebras

Here, we lay out how symmetric spaces can be studied effectively by means of Lie theory.
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Definition 2.1.17. A Z/2Z-grading on g is a direct sum decomposition g = g0 ⊕ g1
such that [gi, gj] ⊆ gi+j (indices taken mod 2). In other words, it means that

[g0, g0] ⊆ g0, [g1, g1] ⊆ g0, [g0, g1] ⊆ g1.

In particular, g0 is a subalgebra of g.

Observation 2.1.18. If g = g0 ⊕ g1 is a Z/2Z-grading, the summands g0 and g1 are
orthogonal with respect to B.

Proposition 2.1.19. The following pieces of data for g are equivalent:

(i) A Z/2Z-grading g = g0 ⊕ g1.

(ii) An involutive automorphism τ ∈ Aut(g).

Under this correspondence, g0 and g1 are the (+1)- and (−1)-eigenspaces of τ, respectively.

Definition 2.1.20. A pair (G,K) consisting of a connected Lie group G and a closed
subgroup K ⊆ G is called a Riemannian symmetric pair if it satisfies the following
two conditions:

(a) The subgroup AdG(K) of Inn(g) is compact. (Here g = Lie(G).)

(b) K is a symmetric subgroup of G: there exists an involutive Lie group automorphism
Θ of G such that (GΘ)0 ⊆ K ⊆ G, or in other words, K is an open subgroup of GΘ

(the subgroup of fixed points of Θ).

Two Riemannian symmetric pairs (G,K) and (G′, K ′) are called isomorphic if there
exists an isomorphism G −→∼ G′ sending K onto K ′.

Let g = Lie(G), k = Lie(K), and θ = Θ∗. Plainly, θ is an involutive automorphism of
g. Condition (b) in Definition 2.1.20 simply means that k coincides with the fixed point
subalgebra of θ. The following is an infinitesimal version of Definition 2.1.20:

Definition 2.1.21. A pair (g, θ) consisting of a real Lie algebra g and its involutive
automorphism θ is called an orthogonal symmetric Lie algebra if the fixed point
subalgebra k of θ is compactly embedded in g. Two orthogonal symmetric Lie algebras
(g, θ) and (g′, θ′) are called isomorphic if there exists a Lie algebra isomorphism φ : g → g′

such that θ′ ◦φ = φ ◦ θ.

In essence, Riemannian symmetric pairs are a Lie-theoretic tool that allows to study
symmetric spaces and their geometry globally, whereas orthogonal symmetric Lie algebras
are designed for local investigation of symmetric spaces.

Let (G,K) be a Riemannian symmetric pair with a fixed involutionΘ as in Definition 2.1.20.
If we write g = Lie(G) and θ = Θ∗, then (g, θ) is clearly an orthogonal symmetric Lie
algebra, and it does not depend on the choice of Θ (with K fixed) up to isomorphism.
What is more, we will see in Proposition 2.1.25 that, under a mild assumption, Θ is
unique. For this reason, we routinely omit the step of choosing Θ, allowing it to be any,
and call (g, θ) the orthogonal symmetric Lie algebra of (G,K). If (g, θ) is an orthogonal
symmetric Lie algebra, it is customary to denote the Z/2Z-grading of θ by g = k ⊕ p,
which we are going to do from now on.

Notation. Suppose (g, θ) an orthogonal symmetric Lie algebra. Given a vector X ∈ g,
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we are going to write Xk =
1
2
(X + θX) ∈ k and Xp = 1

2
(X − θX) ∈ p for its components

with respect to the decomposition g = k⊕ p. We will sometimes refer to these components
as the k-part and p-part of X. Likewise, given a subspace V ⊆ g, we will write
Vk = {Xk | X ∈ V } and Vp = {Xp | X ∈ V }.

Let (G,K) be a Riemannian symmetric pair and M = G/K the corresponding homoge-
neous space. We will see shortly that any G-invariant Riemannian metric makes M into a
symmetric space. To begin with, note that we have a Lie algebra anti-homomorphism
g → X(M) that sendsX to its corresponding fundamental vector field X̂. Let o = eK ∈ M
and write π : G↠M, g 7→ g · o, for the orbit map of the action G ↷ M at o. It gives rise
to a linear map

dπe : g↠ ToM,X 7→ X̂o,

which has k as its kernel. If we have Θ fixed, then dπe restricts to an isomorphism between
p and ToM . Throughout the thesis, we are going to tacitly identify p with ToM by means
of this isomorphism. The adjoint action of K on g preserves k and p, which implies:

Corollary 2.1.22. The splitting g = k⊕p is a reductive decomposition for the homogeneous
space M = G/K. The map p −→∼ ToM is an isomorphism between the adjoint representation
of K on p and its isotropy representation on ToM .

Let us write I ⊆ G for the ineffectiveness kernel of the action G ↷ M , i.e., the subgroup of
elements that act trivially on M . Clearly, I ⊆ K, and one can show that I is the maximal
normal subgroup of G contained in K. In particular, Z ∩ K ⊆ I, where Z = Z(G).
Thanks to Proposition 2.1.1(c), I can be alternatively described as the kernel of the
isotropy representation K → GL(ToM). If (g, θ) is an orthogonal symmetric Lie algebra,
we write i for the kernel of the adjoint representation k → gl(p). Similarly, this is the
maximal ideal of g contained in k. If (g, θ) comes from (G,K), we have i = Lie(I). To
single out some better-behaving Riemannian symmetric pairs and orthogonal symmetric
Lie algebras, we introduce the following

Definition 2.1.23. Let (g, θ) be an orthogonal symmetric Lie algebra. We call it

• effective if i = {0};

• weakly effective if z(g) ∩ k = {0}.

If (G,K) is a Riemannian symmetric pair, we call it infinitesimally (weakly) effective
if its corresponding orthogonal Lie algebra is (weakly) effective (this clearly does not
depend on the choice of Θ). We call (G,K) effective if I = {e}.

If (G,K) is an infinitesimally effective Riemannian symmetric pair, then I is a discrete
normal subgroup of G, so it must be central. Since Z ∩ K ⊆ I ⊆ K, we deduce that
Z ∩K = I in this case.

Observation 2.1.24. Any Riemannian symmetric pair (G,K) (resp., orthogonal symmet-
ric Lie algebra (g, θ)) gives rise to an effective one, namely (G/I,K/I) (resp., (g/i, θ)).

Proposition 2.1.25. If (g, θ) is a weakly effective orthogonal symmetric Lie algebra,
then θ is uniquely determined by k. Consequently, if (G,K) is an infinitesimally weakly
effective Riemannian symmetric pair, then Θ in Definition 2.1.20 is unique.

Proof. We know that p ⊆ k⊥, where the orthogonal complement is taken with respect to
B. By Proposition 2.1.16, the kernel of B

∣∣
k×k equals z(g) ∩ k and hence is trivial. In other
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words, k ∩ k⊥ = {0}, so p = k⊥ is determined by k.

Definition 2.1.26 (Isotropy). Let M be a connected Riemannian manifold and p ∈ M
any point.

• The isotropy group of M at p is the stabilizer K̃ = I(M)p.

• The restricted isotropy group of M at p is the identity component K̃0.

• The (restricted) isotropy representation of M at p is the representation K̃ ↪→
O(TpM) (resp., K̃0 ↪→ SO(TpM)), k 7→ dkp.

• The (restricted) linear isotropy group of M at p is the image K ⊆ O(TpM)
(resp., K0 ⊆ SO(TpM)) of the (restricted) isotropy representation at p.

• If (G,K) is a Riemannian symmetric pair, its (restricted) isotropy representa-
tion is the representation K → GL(ToM) (resp., K0 → GL(ToM)), k 7→ dko, where
M = G/K and o = eK.

• If M is a manifold, H ↷ M is an action, and p ∈ M , we will often call the stabilizer
Hp the isotropy subgroup of H at p.

If M is a connected Riemannian homogeneous space, its isotropy groups at different points
are conjugate, so we will sometimes drop the reference to a point and just say isotropy
group of M if there is no ambiguity.

Take a Riemannian symmetric pair (G,K) and consider the homogeneous space M = G/K.
We make the following simple but vital

Observation 2.1.27. The following pieces of data are in a natural 1-to-1 correspondence:

(i) A G-invariant inner product on M .

(ii) A K-invariant inner product on ToM .

(iii) A K-invariant inner product on p.

If K is connected (e.g., if M is simply connected), these are the same as:

(iv) A k-invariant inner product on p.

By Definition 2.1.20, there exists1 a K-invariant inner product on p, hence there exist
G-invariant metrics on M . Picking such a metric turns M into a Riemannian homogeneous
G-space. What is more, if we fix Θ on G as in Definition 2.1.20, it passes through the
quotient π : G↠M to a involutive isometry so of M : so(gK) = Θ(g)K or, in other words,
so ◦ π = π ◦ Θ. This isometry has o as its isolated fixed point and hence is a geodesic
symmetry at o. By Proposition 2.1.5, M a symmetric space. By Proposition 2.1.1(c), any
other choice of Θ leads to the same so. We conclude:

Corollary 2.1.28. If (G,K) is a Riemannian symmetric pair, then there exist G-invariant
metrics on M = G/K, and any of them makes M into a symmetric space. The geodesic
symmetries of M do not depend on the choice of an invariant metric.

1Actually, Definition 2.1.20 ensures that there exists a K-invariant inner product on the whole g
such that k ⊥ p. This translates to a left-invariant metric on G that is K-bi-invariant. The projection
π : G↠M becomes a Riemannian submersion, which can prove useful in certain situations.
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Definition 2.1.29. Let (G,K) be a Riemannian symmetric pair. We say that it is
associated with an orthogonal symmetric Lie algebra (g, θ) if there is an isomorphism
between (g, θ) and the orthogonal symmetric Lie algebra of (G,K). We say that (G,K)
represents a symmetric space M if there exists a G-invariant metric on G/K that makes
it isometric to M . Lastly, we say that an orthogonal symmetric Lie algebra represents a
symmetric space M if it is associated with a Riemannian symmetric pair representing M .

Normally, when we say that (G,K) is associated with (g, θ), we implicitly assume an
isomorphism as in the above definition has been fixed. Similarly, if (G,K) represents M ,
we assume a G-invariant metric on G/K and an isometry G/K ≃ M have been fixed. In
particular, this entails fixing a base point o = eK in M .

Agreement. For concrete symmetric spaces, instead of writing “let M be represented
by a Riemannian symmetric pair (G,K)”, it is customary to simply write M = G/K. In
fact, this is how most symmetric spaces are defined. We are going to use this shorthand
as well.

Every symmetric space is represented by some Riemannian symmetric pair. Indeed, if
we start with just M , take G = I0(M) and K = Go, where o ∈ M is any. Define an
involutive automorphism Θ of G to be the conjugation Cso : Θ(g) = sogso. Then K is an
open subgroup of GΘ and hence (G,K) is an effective Riemannian symmetric pair. The
corresponding orthogonal symmetric Lie algebra is given by (i(M),Ad(so)). The choice
of the base point o is irrelevant:

Lemma 2.1.30. Let M be a symmetric space, o, o′ ∈ M any two points, G = I0(M),
and K = Go, K

′ = Go′. Then the Riemannian symmetric pairs (G,K) and (G,K ′)
are isomorphic. Therefore, the corresponding orthogonal symmetric Lie algebras are
isomorphic as well.

Proof. If g ∈ G is any isometry mapping o to o′, gKg−1 = K ′, so the conjugation Cg

provides an isomorphism between (G,K) and (G,K ′).

Remark 2.1.31. Note that the same choice G = I0(M), K = Go allows to represent any
connected Riemannian homogeneous space M by a pair (G,K) that satisfies condition
(a) of Definition 2.1.20. It is condition (b) that distinguishes symmetric spaces as a very
special subclass of Riemannian homogeneous spaces.

Definition 2.1.32. Let M be any symmetric space. Given any o ∈ M , we call
(I0(M), I0(M)o) and (i(M),Ad(so)) the canonical Riemannian symmetric pair and
orthogonal symmetric Lie algebra of M , respectively.

Observation 2.1.33. Let M be a symmetric space represented by a Riemannian sym-
metric pair (G,K). Write (G,K) for the canonical Riemannian symmetric pair of M (at
o). Then we have a morphism G → G. Write G′ for the image of this morphism and
K ′ = G′ ∩K for the image of K. One can show that G′ is a closed subgroup of G (in par-
ticular, K ′ is compact). Clearly, G′ ∼= G/I,K ′ ∼= K/I. As we saw in Observation 2.1.24,
any Θ on G as in Definition 2.1.20 passes to an involution Θ′ on G′, thus showing that
(G′, K ′) is an effective Riemannian symmetric pair. At the same time, the involution
Θ = Cso on G preserves G′ and coincides with Θ′ on G′. Essentially, this means that every
Riemannian symmetric pair representing M factors through a “subpair” of the canonical
one. If (g′, θ′) is the orthogonal symmetric Lie algebra of (G′, K ′) and (g, θ) is that of
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(G,K), then θ preserves g′ and coincides with θ′ on it, hence we have k′ ⊆ k, p′ ⊆ p. But
both dim(p′) and dim(p) equal dim(M), so we deduce that p′ = p.

Every orthogonal symmetric Lie algebra is associated with some Riemannian symmetric
pair. Indeed, starting with (g, θ), take Ĝ to be a simply connected Lie group with Lie

algebra g and define Θ̂ as the (unique) lift of θ to Ĝ. For any open subgroup K̂ ⊆ ĜΘ̂,

(Ĝ, K̂) is a Riemannian symmetric pair, and its associated orthogonal Lie algebra (with

Θ̂ already defined) is (g, θ). Note that if we take K̂ = (ĜΘ̂)0, the corresponding space

M = Ĝ/K̂ is going to be simply connected.

Proposition 2.1.34. Let (g, θ) be an orthogonal symmetric Lie algebra representing

some symmetric space M . Let (Ĝ, K̂) be a Riemannian symmetric pair associated with

(g, θ) with Ĝ simply connected and K̂ connected. Then, equipped with a suitable (uniquely

determined) Ĝ-invariant metric, Ĝ/K̂ is the universal Riemannian covering space of M .

Informally, Proposition 2.1.34 says that an orthogonal symmetric Lie algebra represents a
unique symmetric space up to Riemannian covering and a choice of an invariant metric.
This encapsulates the idea that orthogonal symmetric Lie algebras are an infinitesimal
version of symmetric spaces, designed to study their local properties.

Now we discuss some examples of symmetric spaces, most of which we will meet in
profusion throughout the thesis. Things like type and duality will be defined later in the
section.

Example 2.1.35 (Euclidean space). The Euclidean space En is a symmetric space of
Euclidean type and rank n. Its isometry group is isomorphic to O(n)⋉Rn, so its canonical
symmetric pair is (SO(n)⋉Rn, SO(n)). But En can also be represented by a much smaller
effective Riemannian symmetric pair (Rn,{pt}). We will see in Proposition 2.1.97 that
this behavior is rather pathological and does not occur for “most” symmetric spaces. �

Example 2.1.36 (Rank-one symmetric spaces). Let1 n ∈ N, and let F ∈ {R,C,H,O}2.
If F = R, we require n ≥ 2, and if F = O, we require n = 2. The projective space FP n is
an irreducible symmetric space of compact type and rank 1. Unless F is R, it is simply
connected. The real projective space RP n has fundamental group Z/2Z, and its universal
Riemannian covering space is the round sphere Sn. The dual of FP n (or Sn if F = R) is
the hyperbolic space FHn, which is an irreducible symmetric space of noncompact type
and rank 1. In this thesis, whenever we say projective (resp., hyperbolic) space, we refer
to any of FP n (resp., FHn). These space are represented by the following almost effective
(see Definition 2.4.7) Riemannian symmetric pairs:

RP n = SO(n+ 1)/S(O(n)O(1)),

Sn = SO(n+ 1)/SO(n),

CP n = SU(n+ 1)/S(U(n)U(1)),

HP n = Sp(n+ 1)/Sp(n)Sp(1),

OP 2 = F4/Spin(9),

RHn = SO0(n, 1)/SO(n),

CHn = SU(n, 1)/S(U(n)U(1)),

HHn = Sp(n, 1)/Sp(n)Sp(1),

OH2 = F−204 /Spin(9).

The case of octonions needs to be handled with extra care. Due to the nonassociativity of

1In this thesis, N starts with 1, and we write N0 = N ∪{0}.
2These are the only finite-dimensional real division algebras that admit a multiplicative norm. (Many

authors include multiplicativity of the norm in the definition of a normed division algebra.)

26



2.1. Symmetric spaces

O, the spaces OP 2 and OH2 cannot be defined in terms of “octonionic lines” in O3—there
is no such concept to begin with. Instead, the Cayley projective plane is normally defined
as the set of rank-1 projectors in the exceptional Jordan algebra of Hermitian octonionic
3× 3 matrices. (We will talk about this in more detail in Subsection 6.2.5.) The Cayley
hyperbolic plane can then be defined as the dual of OP 2. One conceptual reason why the
only projective space over the octonions is a projective plane is that projective spaces
of dimension ≥ 3 have to be Desarguesian, whereas the non-associativity of O causes
this property to fail already for OP 2 (see [Bae02, AB03, VY65]). For more on OP 2, the
octonions in general, as well as their relation to exceptional Lie groups, see [Bae02].

Together with R and S1, the above spaces exhaust the list of symmetric spaces of rank 1.
When lumped together with the Euclidean spaces, they admit a number of alternative
geometric characterizations. A connected Riemannian manifold M is called two-point
homogeneous if for every p1, q1, p2, q2 ∈ M such that dist(p1, q1) = dist(p2, q2), there exists
an isometry mapping p1 to p2 and q1 to q2. A connected Riemannian homogeneous space is
called isotropic if its isotropy representation is transitive on the unit sphere (if dim(M) > 1,
this is the same as to say that the isotropy representation is of cohomogeneity one, see
Definition 2.3.6). One can show that a Riemannian manifold is two-point homogeneous
⇔ it is an isotropic Riemannian homogeneous space ⇔ it is a Euclidean space or a rank-1
symmetric space (see [Wol11, Sect. 8.12]). Compact symmetric spaces of rank 1 are also
characterized by the fact that all their geodesics are periodic, simple, and of the same
length. �

Example 2.1.37 (Grassmannians). Generalizing on the previous example, let k, n ≥ 1,
and F ∈ {R,C,H}1. If F is R, we require n ≥ 2. The Grassmannian Gr(k,Fn+k) is an
irreducible2 symmetric space of compact type and rank min{k, n}. Unless F is R, it
is simply connected. In case F = R, the Grassmannian Gr(k,Rn+k) has fundamental
group Z/2Z, and its universal Riemannian covering space is the Grassmannian of oriented
k-planes Gr+(k,Rn+k). The dual of Gr(k,Fn+k) (or Gr+(k,Rn+k) if F = R) is the
noncompact Grassmannian Gr∗(k,Fn+k), defined as the set of k-dimensional F-subspaces
in Fn+k on which the restriction of the standard symmetric bilinear (resp., Hermitian
C-sesquilinear or q-Hermitian H-sesquilinear) form of signature (n, k) is negative-definite.
It is an irreducible (except for k = n = 2) symmetric space of noncompact type and rank
min{k, n}. Whenever we say Grassmannian (resp., noncompact Grassmannian), we refer
to any of Gr(k,Fn+k) or Gr+(k,Rn+k) (resp., Gr∗(k,Fn+k)). These spaces are represented
by the following almost effective Riemannian symmetric pairs:

Gr(k,Rn+k) = SO(n+ k)/S(O(n)O(k)),

Gr+(k,Rn+k) = SO(n+ k)/SO(n)SO(k),

Gr(k,Cn+k) = SU(n+ k)/S(U(n)U(k)),

Gr(k,Hn+k) = Sp(n+ k)/Sp(n)Sp(k),

Gr∗(k,Rn+k) = SO0(n, k)/SO(n)SO(k),

Gr∗(k,Cn+k) = SU(n, k)/S(U(n)U(k)),

Gr∗(k,Hn+k) = Sp(n, k)/Sp(n)Sp(k). �

Example 2.1.38 (Compact Lie groups). Let G be a compact connected Lie group.
By Proposition 2.1.11, g = Lie(G) is compact and thus admits an Ad(G)-invariant inner
product. This translates to a bi-invariant Riemannian metric on G, which clearly makes

1These are the only finite-dimensional associative real division algebras.
2The only exception is Gr(2,R4), which is reducible. Its universal Riemannian covering space

Gr+(2,R4) is isometric to S2 × S2. The same goes for Gr∗(2,R4) ∼= RH2 × RH2.
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G into a Riemannian homogeneous space. The following fact is standard:

Proposition 2.1.39. The Lie exponential map exp: g → G coincides with its Riemannian
exponential map at e. In particular, it is surjective.

It follows from Proposition 2.1.39 that se : g 7→ g−1 is a geodesic symmetry of G at e. By
Proposition 2.1.5, G is a symmetric space. In the literature, such spaces are occasionally
said to be of group type. There is a natural choice of a Riemannian symmetric pair
representing G. Indeed, observe that G×G acts isometrically on G by (g, h) · f = gfh−1.
The isotropy subgroup of this action at e is the diagonal ∆G = {(g, g) | g ∈ G}. What is
more, ∆G is the fixed point subgroup of the involutive automorphism Θ = Cse ,Θ(g, h) =
(h, g). This implies that (G×G,∆G) is a Riemannian symmetric pair representing G. Note
that it does not have to be effective (even infinitesimally), as I = ∆Z = ∆G∩(Z×Z), where
Z = Z(G). For example, if G is abelian (i.e., a torus), then I = ∆G and (G×G)/I ≃ G.
In any case, the corresponding orthogonal symmetric Lie algebra is given by (g ⊕ g, θ)
with θ(X, Y ) = (Y,X), hence k = ∆g and p = {(X,−X) | X ∈ g}. Observe that ∆G

is trivially isomorphic to G, and we can also identify p with g as (X,−X) ↔ X. The
following observation is elementary but extremely important:

Proposition 2.1.40. Under the identifications ∆G ≃ G and p ≃ g, the isotropy represen-
tation of (G×G,∆G) is equivalent to the adjoint representation of G.

By representing G with (g⊕ g, θ) and using things like Proposition 2.1.40 and (2.1.5), one
can derive many formulas and results that are specific to symmetric spaces of group type.
We are not going to focus on that now but will see some examples later. �

Symmetric spaces as reductive homogeneous spaces

Now we discuss how various geometric properties and quantities of a symmetric space
M can be described in the language of Riemannian symmetric pairs and orthogonal
symmetric Lie algebras. We will see that many geometric objects associated to M do
not actually depend on the choice of an invariant metric. To achieve this, we start with
reductive homogeneous spaces and then see how symmetric spaces fit into the picture.
We refer to [KN96a, Ch. II, Sect. 11] and [KN96b, Ch.X, Sect. 1-2] for details.

Let M be a reductive homogeneous space of a connected Lie group G. Pick o ∈ M
and write K ⊆ G for the isotropy group of o and k ⊆ g for its Lie algebra. Let us fix a
reductive decomposition g = k⊕p. As before, we have an isomorphism ofK-representations
p −→∼ ToM, X 7→ X̂o. Observe that the orbit map π = πo : G↠M, g 7→ g·o, is a principal
K-bundle, and its associated vector bundle G×K p↠M is naturally isomorphic to the
tangent bundle TM → M . The left-invariant distribution on G determined by p is a
unique G-invariant connection on the K-bundle G↠M that coincides with p at e ∈ G.
It is called a canonical connection on G ↠ M . The induced complete G-invariant
affine connection ∇ on the associated bundle TM ↠ M is called a canonical affine
connection on M . If we pick another base point g · o, we automatically get a reductive
decomposition g = Ad(g)(k)⊕ Ad(g)(p) and thus a canonical connection on the principal
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Cg(K) ∼= K bundle πg·o : G↠M . The commutative diagram

G G

M M

πo

Cg

∼

πg·o

g
∼

provides an isomorphism of K-bundles and identifies the two canonical connections. We
see that a canonical (affine) connection does not depend on the choice of a base point up
to isomorphism. It does, however, depend on the choice of p, so whenever we say reductive
homogeneous space, we always assume a reductive decomposition (at some base point)
has been fixed. Many properties of ∇ can be described in terms of G and g.

• To begin with, one can write down an explicit formula for ∇ thought of as a covariant
derivative: given X ∈ p and any Y ∈ X(M), one has

∇XY = [X̂, Y ]o, (2.1.1)

where X̂ ∈ X(M) is, as usual, the fundamental vector field corresponding to X.

• Given X ∈ p, consider the curve γ(t) = expG(tX) · o in M and its horizontal
lift expG(tX) in G. For every t0 ∈ R, the parallel transport in G ↠ M from
π−1(γ(0)) = K to π−1(γ(t0X)) along γ is given by LexpG(t0X). Therefore, the parallel
transport in TM ↠M of Tγ(0)M to Tγ(t0X)M along γ coincides with d(expG(t0X))o.
In particular, the velocity vector field of γ is parallel, so γ is a geodesic. We see
that all geodesics of ∇ emanating from o are of the form expG(tX) · o,X ∈ p. We
summarize this in the following commutative diagram1:

p ToM

G M

expG

∼

expM

π

(2.1.2)

We immediately get the following:

Corollary 2.1.41. For any geodesic γ of ∇, there exists a unique one-parameter
subgroup g(t) of G with the following property: for every t0, t1 ∈ R,

(a) γ(t0 + t1) = g(t1) · γ(t0),

(b) The parallel transport in G↠M from γ(t0) to γ(t0 + t1) along γ is given by
dg(t1)γ(t0).

For every t ∈ R, we call g(t) ∈ G a geodesic translation along γ. The one-
parameter subgroup g(t) is called the one-parameter subgroup of geodesic
translations along γ.

• Since parallelness of a tensor field can be checked only along geodesics, we arrive at
the following

1This property lies in the heart of the definition of naturally reductive spaces—a class of Riemannian
homogeneous spaces that generalizes symmetric spaces. See [BTV95, Ch. 2] for a precise definition and
their relation to other classes of Riemannian homogeneous spaces.
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Corollary 2.1.42. Any tensor field on M invariant under geodesic translations is
parallel with respect to the canonical affine connection. In particular, any G-invariant
tensor field is parallel.

• Since ∇ is G-invariant, so are its torsion and curvature. By Corollary 2.1.42, we
have:

Corollary 2.1.43. The torsion and curvature of ∇ are parallel with respect to ∇.

• Both torsion T and curvature R of ∇ admit simple expressions in terms of the
reductive decomposition of g. For any X, Y, Z ∈ p, we have:

Ro(X, Y )Z = −[[X, Y ]k, Z], (2.1.3)

To(X, Y ) = −[X, Y ]p. (2.1.4)

Using (2.1.4), we arrive at the following conclusion:

Corollary 2.1.44. The following are equivalent for a reductive homogeneous space
M = G/K:

(i) The canonical affine connection on M is torsion-free1.

(ii) [p, p] ⊆ k.

Now we can apply all this to symmetric spaces. Let (G,K) be a Riemannian symmetric
pair. As we noted in Corollary 2.1.22, g = k ⊕ p is a reductive decomposition. Endow
M = G/K with any G-invariant metric. Combining Corollaries 2.1.42 and 2.1.44 leads to
the following:

Corollary 2.1.45. The Levi-Civita connection of the symmetric space M coincides with
the canonical affine connection and thus does not depend on the choice of a G-invariant
metric. Consequently, the exponential map, parallel transport, curvature endomorphism,
and Ricci curvature of M do not depend on that choice either.

Using this corollary and what we know about the canonical connection, we can work out
a handy Lie-algebraic expression for every type of curvature of a symmetric space.

• It follows from (2.1.3) that the curvature endomorphism of M at o is given by

Ro(X, Y )Z = −[[X, Y ], Z], (X, Y, Z ∈ p). (2.1.5)

Observe that the right-hand side does indeed lie in p. Another way to state (2.1.5)
is that the curvature operator R(X, Y ) is given by −ad[X, Y ]

∣∣
p
.

• One can use (2.1.5) to deduce that the Ricci curvature of M is in fact a multiple of
the Killing form of g (see [Bes08, Th. 7.73]):

Ric(X, Y ) = −1

2
B(X, Y ) (X, Y ∈ p). (2.1.6)

• The curvature tensor and sectional curvatures of M do of course depend on the

1Every reductive homogeneous G-space admits a unique G-invariant torsion-free affine connection
∇tf whose geodesics coincide with those of ∇. Condition (i) means that ∇tf = ∇.
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choice of an invariant metric. Thanks to (2.1.5), they have the following expressions1

at o:

Rmo(X, Y, Z,W ) = −⟨ [[X, Y ], Z]|W ⟩ (X, Y, Z,W ∈ p),

K(X, Y ) = −⟨ [[X, Y ], Y ]|X ⟩ (X, Y ∈ p, ||X|| = ||Y || = 1, X ⊥ Y ).

2.1.3. Holonomy and isometries

This part serves as a digression into a topic that underpins a lot of questions and results
in the theory of symmetric spaces: Riemannian holonomy and its relation to isometries.
First, we discuss the restricted holonomy representation of a Riemannian manifold and
how its decomposition into irreducible subrepresentations yields local and global geometric
decompositions of the manifold itself. Next, we prove an important and rather folklore
structure result on the isometry group of Riemannian products that behave like the de
Rham decomposition. Finally, we discuss a special type of isometries, called transvections,
that respect the holonomy and parallel transport in a certain sense. Our general reference
for this part is [KN96a].

Holonomy decompositions

Let M be a Riemannian manifold and p ∈ M any point. Recall that the holonomy
group Hol(M, p) ⊆ O(TpM) is defined as the group of parallel transports from p to itself
along all piecewise-smooth loops based at p. Restricting this to only those loops that are
contractible yields a subgroup Hol0(M,p) ⊆ Hol(M, p). It is well-known that Hol(M, p)
is a (possibly non-closed) Lie subgroup of O(TpM), Hol0(M, p) is its identity component,
and Hol0(M, p) is actually a closed subgroup of SO(TpM) (see [KN96a, Th. II.4.2, IV.5.5]).

Definition 2.1.46. Let M be Riemannian manifold and p ∈ M any point. We call
Hol0(M, p) the restricted holonomy group of M (at p). We call its representation
on TpM the restricted holonomy representation of M (at p). If M is connected,
we say that it is reducible if so is its restricted holonomy representation at some point.
We say that M is irreducible if it is not reducible and not flat.

Remark 2.1.47. If M is connected and p, q ∈ M are any two points, then the holonomy
groups at p and q are isomorphic by means of parallel transport along any piecewise smooth
curve from p to q; with respect to any such isomorphism, the holonomy representations at
p and q become equivalent. Consequently, if M is irreducible, then its restricted holonomy
representation at any point is irreducible. When there is no ambiguity, we will sometimes
write Hol(M) or Hol0(M) without reference to any specific point. Note that M being flat
is equivalent to Hol0(M) being trivial. The non-flatness assumption in the definition of
irreducibility rules out precisely the cases where M is one-dimensional.

Observation 2.1.48. Let M be connected and π : M̃ ↠ M its universal Riemannian
covering. Take p ∈ M and any p̃ ∈ M̃ lying over p. Note that Hol0(M̃, p̃) = Hol(M̃, p̃).

We have an isomorphism dπp̃ : Tp̃M̃ −→∼ TpM , which induces an isomorphism Hol(M̃, p̃) −→∼
Hol0(M, p). This is due to the fact that the contractible loops at p are precisely those
whose lift with initial point p̃ ends also at p̃. We deduce that the restricted holonomy

1Throughout the thesis, we usually denote Riemannian metrics and inner products by ⟨−|−⟩, unless
otherwise stated.
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representation of M is naturally equivalent to the holonomy representation of M̃ . This
means that local results using the full holonomy group work in the not simply connected
setting if one passes to the restricted holonomy group. More generally, the restricted
holonomy representation (and hence irreducibility) is preserved under Riemannian covering
maps.

Let V p ⊆ TpM be a subrepresentation of Hol0(M, p). Fix a (relatively) simply connected
neighborhood W of p. Given any q ∈ W , carry V to TqM by means of parallel transport
along any piecewise-smooth curve from p to q lying in W . By design, the resulting
subspace V q ⊆ TqM does not depend on the curve chosen. This gives a distribution
V =

⋃
q∈W V q on W . If M is simply connected, we can take W = M and thus obtain a

global distribution. The following is proven in [KN96a, Prop. IV.5.1]:

Proposition 2.1.49. The distribution V is smooth and parallel (meaning, ∇XY ∈ Γ(V )
for any X ∈ X(M), Y ∈ Γ(V )). In particular, V is involutive. The corresponding foliation
has all its leaves totally geodesic.

We need to introduce one more vital, albeit technical notion, taken from [KN96a, Sect.
IV.5].

Definition 2.1.50. Let M be a Riemannian manifold and p ∈ M any point. A direct
sum decomposition TpM = V p

0 ⊕ V p
1 ⊕ · · · ⊕ V p

k is called a canonical decomposition of
TpM if:

(a) The summands V p
i , 0 ≤ i ≤ k, are mutually orthogonal,

(b) V p
0 is the subspace of Hol0(M, p)-invariants in TpM , and

(c) Each of the summands V p
i , 1 ≤ i ≤ k, is an irreducible Hol0(M, p)-subrepresentation

of TpM .

It is easy to show inductively that canonical decompositions exist.

Proposition 2.1.51 (Holonomy decompositions). Let M be a Riemannian manifold
and p ∈ M any point.

(a) There is a unique canonical decomposition TpM = V p
0 ⊕V p

1 ⊕· · ·⊕V p
k up to reordering

of the irreducible summands.

(b) The restricted holonomy group decomposes as a product Hol0(M, p) = G1 × · · · ×Gk

of its closed connected normal subgroups such that Gi acts irreducibly on V p
i and

trivially on every other V p
j , j ̸= i.

Fix a (relatively) simply connected open neighborhood W of p and write V0, V1, . . . , Vk for
the autoparallel distributions on W determined by V p

0 , V
p
1 , . . . , V

p
k .

(c) The leaves of V0 are flat.

(d) For every 0 ≤ i ≤ k, there exists an open neighborhood Ui of p in the leaf of Vi

through p such that the embedding U0 ∪ U1 ∪ · · · ∪ Uk ↪→ M extends to an isometry
of the Riemannian product U0 × U1 × · · · × Uk onto an open neighborhood U of p
(here each Ui embeds into U0 × U1 × · · · × Uk in the obvious way as a slice with a
constant coordinate p in all the other factors).

(e) (de Rham decomposition) If M is complete and simply connected, we can take
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W = M and each Ui to be the whole leaf Mi of Vi through p, in which case U = M
and we have an isometry M = M0 ×M1 × · · ·Mk. Moreover, here:

(1) M0 is isometric to a Euclidean space.

(2) Mi is a complete, simply connected, and irreducible for 1 ≤ i ≤ p.

(3) Gi is naturally isomorphic to Hol(Mi, p).

For a proof of Proposition 2.1.51, see [KN96a, Sect. IV.5]. It is worth pointing out that
the authors define a canonical decomposition with respect to the full holonomy group and
prove some of these results only in the case when M is simply connected, but the proofs
remains valid here due to Observation 2.1.48. For symmetric spaces, Proposition 2.1.51
admits a refinement.

Proposition 2.1.52. Let M be a symmetric space and and TpM = V p
0 ⊕ V p

1 ⊕ · · · ⊕ V p
k

the canonical decomposition at any p ∈ M .

(a) For each i, the parallel transport of V p
i to any other point of M does not depend

on the choice of a curve, and thus V p
i extends uniquely to a smooth global parallel

distribution Vi. Consequently, we have TM = V0 ⊕ V1 ⊕ · · · ⊕ Vk. The distributions
Vi are pairwise orthogonal.

(b) Each Vi is involutive, and the leaves of the corresponding foliation Fi are totally
geodesic and properly embedded (hence complete). If Ui stands for the leaf of Fi

through p, then Gi in Proposition 2.1.51(b) is naturally isomorphic to Hol0(Ui, p).

(c) Each foliation Fi is homogeneous (see Definition 2.3.15) and the action of I0(M)
on M interchanges its leaves. In particular, all the leaves of Fi are congruent to one
another (see Definition 2.3.18).

(d) The leaves of every Fi are symmetric spaces in the induced metric. For i = 0, they
are flat, whereas for 1 ≤ i ≤ k, they are irreducible.

(e) If M is simply connected, M = M0 ×M1 × · · · ×Mk is its de Rham decomposition,
and πj is the projection of M onto Mj, then V0 = π

∗
0(TM0) and (up to permutation)

Vi
∼= π∗i (TMi). For any i, the leaves of Vi are isometric to Mi by means of πi.

Definition 2.1.53. Let M by any symmetric space. The distributions Vi (resp., foliations
Fi) as in Proposition 2.1.52 are called de Rham distributions (resp., foliations) of M .
Both V0 and F0 are called Euclidean (or flat), and any leaf of F0 is called the Euclidean
(or flat) part of M . For each i = 1, . . . , k, Vi and Fi are said to be irreducible and any
leaf of Fi is called an irreducible part of M .

Example 2.1.54. Let G be a compact connected Lie group endowed with a bi-invariant
metric. Since g is compact, it splits as g = z(g) ⊕ gss, where gss = [g, g] is compact
semisimple. Let gss = g1 ⊕ · · · ⊕ gk be the decomposition of gss into the sum of its simple
compact ideals. Then g = z(g)⊕ g1 ⊕ · · · ⊕ gk is the canonical decomposition of G at e.
The flat part of G is Z(G)0, whereas the irreducible parts are the compact topologically
simple subgroups corresponding to gi. �

With Proposition 2.1.51, we can give the following geometric description of irreducibility:

Proposition 2.1.55. Let M be a connected Riemannian manifold.
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(a) If M is reducible, it is isometric to a nontrivial Riemannian product in a neighborhood
of each of its points.

(b) If M is complete, it is reducible if and only if its universal Riemannian covering
space is isometric to a nontrivial Riemannian product.

(c) Suppose the metric on M is real-analytic (e.g., M a Riemannian homogeneous space).
If M is irreducible, no open subset of M is isometric to a nontrivial Riemannian
product.

Part (c) here can be deduced from [KN96a, Th. II.10.8].

Definition 2.1.56. A connected Riemannian is said to have (resp., not have) a flat
local factor if its restricted holonomy representation has (resp., does not have) nontrivial
invariants.

Proposition 2.1.57. Let M be a connected Riemannian manifold.

(a) If M has a flat local factor, it is locally (around each of its points) isometric to a
Riemannian product with a nontrivial flat factor.

(b) If M is complete, it has a flat local factor if and only if its universal Riemannian
covering space is isometric to a Riemannian product with a nontrivial flat factor.

(c) If the metric on M is analytic and M does not have a flat local factor, no open
subset of M is isometric to a Riemannian product with a nontrivial flat factor.

Obviously, a symmetric space does not have a flat local factor if and only if its Euclidean
part is trivial.

The isometry group of a Riemannian product

Here we prove a result known colloquially as “an isometry of a Riemannian product must
permute its isometric factors”. Even though it is fairly simple and intuitively clear, this
result will prove of great importance to us in Chapters 3 and 4.

Definition 2.1.58. Let M be a connected Riemannian manifold. A Riemannian product
decomposition M = M0 ×M1 × · · · ×Mk is called de Rham-like if

(a) M0 is flat, and

(b) Mi is irreducible for 1 ≤ i ≤ k.

Example 2.1.59. The de Rham decomposition of a simply connected complete Rieman-
nian manifold is de Rham-like (hence the name). �

Let M = M0 ×M1 × · · · ×Mk be a de Rham-like decomposition. We have an obvious
embedding of Lie groups I(M0)× I(M1)× · · · × I(Mk) ↪→ I(M). This does not have to
be an isomorphism though, as some of the factors might be isometric, so there might
be additional isometries that interchange those. Let Sk be the symmetric group on k
elements, and let us introduce its subgroup

S≃
k =

{
σ ∈ Sk | Mi ≃ Mσ(i) ∀ i = 1, . . . , k

}
,
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where ≃ means isometric. For any pair of indices i, j ∈ {1, . . . , k} such that Mi ≃ Mj,
pick an isometry φij : Mi −→∼ Mj in such a way that if we have Mi ≃ Mj ≃ Ml, then
φjl ◦φij = φil. This gives an embedding

S≃k ↪→ I(M),σ 7→ φσ, where

φσ(p1, . . . , pk) = (φσ(1)1(pσ(1)), . . . ,φσ(k)k(pσ(k)))

(to be precise, this is an injective group anti-homomorphism). Surely, this embedding
depends on the choice of φij’s.

Proposition 2.1.60 (Isometry group of a Riemannian product). Let M = M0 ×
M1×· · ·×Mk be a de Rham-like decomposition. Then the isometry group I(M) decomposes
as a semidirect product

I(M) = [I(M0)× I(M1)× · · · × I(Mk)]⋊ S≃k . (2.1.7)

In particular, I(M0) × I(M1) × · · · × I(Mk) is an open normal subgroup of I(M). The
corresponding action of S≃k on it is given by σ · (g0, (gs)) = (g0, (φσ(s)s ◦ gσ(s) ◦φ−1σ(s)s)).

Proof. The subgroups I(M0)× I(M1)×· · ·× I(Mk) and S≃k clearly do not intersect inside
I(M), so we need only show that their product is the whole isometry group.

Pick any point p = (p0, p1, . . . , pk) ∈ M . Then

TpM = Tp0M0 ⊕ Tp1M1 ⊕ · · · ⊕ TpkMk

is a canonical decomposition of TpM (see Definition 2.1.50). This follows from the fact
that the restricted holonomy group at p splits naturally as Hol0(M, p) = Hol0(M1, p1)×
· · · × Hol0(Mk, pk), where the action of Hol0(Mi, pi) on TpjMj is trivial if i ̸= j and is
simply the restricted holonomy representation of Mi at pi if i = j (this agrees with
Proposition 2.1.51(b)).

Let g ∈ I(M) be any isometry and write g(p) = q = (q0, q1, . . . , qk). Since isometries
commute with parallel transport, one can show that the differential dgp : TpM −→∼ TqM
must send the canonical decomposition of TpM to that of TqM . In other words, due
to Proposition 2.1.51(a), dgp(Tp0M0) = Tq0M0, and for every i ∈ {1, . . . , k}, there exists
i′ ∈ {1, . . . , k} such that dgp(TpiMi) = Tqi′

Mi′ . Write σ ∈ Sk for the permutation
sending i to its corresponding i′. Let us write M0,p for M0 ×{(p1, . . . , pk)} and Mi,p for
{(p0, p1, . . . , pi−1)}×Mi×{(pi+1, . . . , pk)} for any i = 1, . . . , k (and the same at q). These
are totally geodesic submanifolds of M , and we have obvious isometries M0,p

∼= M0
∼=

M0,q,Mi,p
∼= Mi

∼= Mi,q. Since isometries commute with the exponential map, g must
send M0,p onto M0,q and Mi,p onto Mσ(i),q. This implies that Mi ≃ Mσ(i), so σ actually

lies in the subgroup S≃k of Sk. We also have the isometries M0
∼= M0,p

g−→ M0,q
∼= M0 and

Mi
∼= Mi,p

g−→ Mσ(i),q
∼= Mσ(i), 1 ≤ i ≤ k, which we denote by g0 and gi, respectively. By

construction, the isometry

(g0, gσ−1(1) ◦φ1σ−1(1), . . . , gσ−1(k) ◦φkσ−1(k)) ◦ σ−1

lies in the product of I(M0) × I(M1) × · · · × I(Mk) and S≃k and coincides with g on
M0,p ∪

⋃
1≤i≤k Mi,p. But then the differentials of these two isometries at p must coincide
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as well. Since an isometry of a connected Riemannian manifold is uniquely determined by
its value at a point and its differential at that point, the constructed isometry coincides
with g, which finishes the proof.

Corollary 2.1.61. Let M = M0 ×M1 × · · · ×Mk be a de Rham-like decomposition. Then
I0(M) = I0(M0)× I0(M1)× · · · × I0(Mk).

Remark 2.1.62. Proposition 2.1.60 allows a slightly different reformulation if we group
the isometric factors together. Namely, let M = M0 ×M l1

1 × · · · ×M lk
k be a de Rham-like

decomposition where Mi ̸≃ Mj for i ̸= j and M li
i simply means the product of li copies of

Mi. Then each φij used in the construction of S≃k ↪→ I(M) would have to be an isometry
between two copies of Ms for some s ∈ {1, . . . , k}, so we can take it to be the identity.
The group S≃l (here l =

∑k
i=1 li) then consists of those permutations that shuffle the first

l1 elements with each other, the next l2 elements with each other, and so on. Hence,
S≃l ≃ Sl1 × · · · × Slk . The embedding S≃l ↪→ I(M) then looks like

σ(p0, p1, . . . , pl) = (p0, pσ(1), . . . , pσ(l)),

and decomposition (2.1.7) becomes

I(M) =
[
I(M0)× I(M1)

l1 × · · · × I(Mk)
lk
]
⋊ S≃l .

Remark 2.1.63. The argument used in the proof of Proposition 2.1.60 can also be used
to prove the uniqueness property of the decomposition M = M0×M1×· · ·×Mk. Namely,
assume we have another de Rham-like decomposition M = M ′

o ×M ′
1 × · · · ×M ′

s. Then
k = s and there exist a permutation σ ∈ Sk, an isometry φ0 : M0 −→∼ M ′

0, and a collection
of isometries φi : Mi −→∼ M ′

σ−1(i), such that the resulting isometry

M0 ×M1 × · · · ×Mk −→∼ M ′
0 ×M ′

1 × · · · ×M ′
l

is of the form

(p0, p1, . . . , pk) 7→ (φ0(p0),φσ(1)(pσ(1)), . . . ,φσ(k)(pσ(k))).

As a special case, we get the well-known uniqueness property of the de Rham decomposition.

The relation between holonomy and isometries

In symmetric spaces, there is a remarkable interplay between parallel transport and
isometries. Since the former only uses the connection and not the metric, we need to
broaden the scope of our consideration temporarily. If M is a Riemannian manifold, we
can treat it as an affine manifold—endowed with the Levi-Civita connection. Its group of
isometries then becomes a subgroup of an a priori larger group of affine transformations.

More generally, let M be a connected smooth manifold with an affine connection ∇. The
group A(M) of affine transformations of M is a Lie group in the compact-open topology
(see [KN96a, Th.VI.1.5]). Let P stand for the frame bundle of M . Then P is foliated by
the holonomy bundles of ∇: given u ∈ P , its leaf P (u) consists of all points of P reachable
from u by a piecewise-smooth horizontal curve. The affine group A(M) acts naturally on
P and permutes the leaves.
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Definition 2.1.64. An affine transformation f of (M,∇) is called a transvection if it
preserves some (⇔ every) holonomy bundle P (u) ⊆ P . The group of all transvections
of (M,∇) is denoted by Tr(M). An affine space (M,∇) is called affine reductive if
Tr(M) acts transitively on some (⇔ every) holonomy bundle P (u).

Clearly, Tr(M) is a normal subgroup of A(M). An affine transformation f is a transvection
if for some (⇔ every) p ∈ M , there exists a piecewise-smooth curve γ from p to f(p)
such that dfp : TpM −→∼ Tf(p)M coincides with the parallel transport along γ. For example,
in a reductive homogeneous space G/H equipped with the canonical connection, every
geodesic translation is a transvection. On the other hand, M is an affine reductive space
if and only if for every p, q ∈ M and every piecewise-smooth curve γ from p to q, there
exists a transvection f mapping p to q such that dfp coincides with the parallel transport
along γ.

It is proven in [Kow79] that an affine space (M,∇) is affine reductive if and only if M
can be expressed as a reductive homogeneous space G/K so that ∇ coincides with the
canonical affine connection (hence the name). Using Corollary 2.1.45 and the results of
[Kow79], one can show the following:

Proposition 2.1.65. Any symmetric space M is affine reductive. If we write (G,K) for
its canonical Riemannian symmetric pair, then Tr(M) is contained in G and is in fact a
connected closed normal Lie subgroup of G. Its corresponding ideal of g is [p, p]⊕ p. In
particular, Tr(M) acts transitively on M , contains all one-parameter subgroups of geodesic
translations, and is in fact generated by geodesic translations.

Remark 2.1.66. LetM be a symmetric space, (G,K) its canonical Riemannian symmetric
pair, and X ∈ p. Then the geodesic translation expG(tX) can be expressed as the
composition of two geodesic symmetries, namely sexpM ( t

2
X) ◦ so. Consequently, Tr(M) is

contained in the subgroup of I(M) generated by all the geodesic symmetries.

We can use Proposition 2.1.65 to draw some conclusions about the holonomy group of a
symmetric space. For a general Riemannian manifold M , the only relation that always
exists between its isometries and holonomy is that the holonomy groups are preserved
under isometries: given f ∈ I(M) and p ∈ M , dfp induces an isomorphism between
O(TpM) and O(Tf(p)M) under which Hol(M, p) gets identified with Hol(M, f(p)). In
particular, the full linear isotropy group K at p normalizes Hol(M, p). For symmetric
spaces, however, more is true, as implied by Proposition 2.1.65:

Proposition 2.1.67. Let M be a symmetric space, o ∈ M any point, and let K ⊆ O(ToM)
be the full linear isometry group. Then Hol(M, o) ⊆ K is a normal subgroup. If (g, θ) is
the canonical orthogonal symmetric Lie algebra of M at o, then the holonomy Lie algebra
at o is given by hol(M, o) = [p, p] ⊆ k.

The last statement of Proposition 2.1.67 follows from Proposition 2.1.65 and the Ambrose-
Singer theorem (and is true for any affine reductive space). Later we will see that
a stronger version of this result holds for a special subclass of symmetric spaces (see
Proposition 2.1.97). If M is represented by an arbitrary orthogonal symmetric Lie algebra
(g, θ), the holonomy Lie algebra representation at o is given (modulo the kernel) by the
restriction of the adjoint representation k → so(p) to [p, p].

Before we go further, we mention one more crucial result that gives a somewhat intrinsic
description of the linear isotropy group of a simply connected symmetric space. Recall
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that if we have a vector space V , the representation of GL(V ) (resp., gl(V )) on V extends
uniquely to one on the full tensor algebra TV =

⊕
p,q≥0 T

(p,q)V by algebra automorphisms
(resp., derivations) such that, on V ∗, it coincides with the dual representation. This
extension preserves the bi-degree and commutes with all contractions. The following is
proven in [Hel01, p. 227, Ex.A6] (see p. 564 for the solution):

Proposition 2.1.68. Let M be a simply connected symmetric space and o ∈ M any point.
The full linear isotropy group K at o (resp., its Lie algebra k) consists precisely of those
elements of GL(ToM) (resp., gl(ToM)) that preserve the inner product1 go ∈ T (0,2)ToM
and the curvature endomorphism Ro ∈ T (1,3)ToM .

Essentially, Proposition 2.1.68 allows one to extend an operator on a tangent space to
M to a global isometry of M if certain conditions are satisfied. We will use it repeatedly
throughout the thesis.

2.1.4. Types of symmetric spaces

Now, we introduce the three types of symmetric spaces and discuss how they are the
building blocks for all symmetric spaces.

Let g be a real semisimple Lie algebra. The Killing form B of g is nondegenerate, but it
can be of mixed signature.

Definition 2.1.69. Let θ be an involutive automorphism of g and g = k ⊕ p the
corresponding Z/2Z-grading. We call θ a Cartan involution and g = k⊕ p its Cartan
decomposition if B is negative-definite on k and positive-definite on p.

Let g be a real semisimple Lie algebra with a fixed Cartan involution θ and the corre-
sponding Cartan decomposition g = k ⊕ p. Consider a symmetric bilinear form on g
given by Bθ(X, Y ) = −B(X, θY ). One can readily see that Bθ coincides with B on p
and equals −B on k. In particular, Bθ is positive-definite. The property of Bθ being
positive-definite can be taken as an alternative definition of a Cartan involution.

Example 2.1.70. Let g be a transpose-invariant semisimple subalgebra of sl(n,R). Then
θ(X) = −X t is a Cartan involution on g. �

Example 2.1.70 essentially exhausts all examples of Cartan involutions:

Proposition 2.1.71. Let g be a real semisimple Lie algebra with a Cartan involution θ.
Then g is isomorphic to a transpose-invariant subalgebra of sl(n,R) such that θ becomes
X 7→ −X t.

Proof. Since we have an inner product Bθ on g, every A ∈ gl(g) has an adjoint operator
A∗. Define an operator †θ on gl(g) by †θ(X) = −X∗. One can readily see that †θ is an
involutive automorphism of gl(g). Moreover, it preserves ad(g) = Der(g) ⊆ sl(g), and the
isomorphism ad: g −→∼ ad(g) identifies θ with †θ, i.e., ad(θX) = ad(X)∗. After choosing
an orthonormal basis for g, †θ becomes the negative transpose of a matrix.

Cartan involutions are designed to study noncompact Lie algebras due to the following

1This condition cuts out precisely O(ToM) (resp., so(ToM)).
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Proposition 2.1.72. The following conditions on a real semisimple Lie algebra g are
equivalent:

(i) g is compact.

(ii) Idg is a Cartan involution.

In this case, Idg is the only Cartan involution on g.

Proposition 2.1.73 (Cartan involutions). Let g be a real semisimple Lie algebras.

(a) There exists a Cartan involution on g.

(b) Any two Cartan involutions on g are conjugate via Inn(g).

An important property of a Cartan involution is that it makes g into an orthogonal
symmetric Lie algebra:

Proposition 2.1.74. If θ is a Cartan involution on g, then k is a compactly embedded
subalgebra of g. In particular, (g, θ) is an orthogonal symmetric Lie algebra.

In fact, k is a maximal compactly embedded subalgebra of g, as can be shown from
Proposition 2.4.1(d). We are now ready to define the types of symmetric spaces. We start
on the level of Lie algebras.

Let g be a compact semisimple Lie algebra and θ ∈ Aut(g) any nontrivial involution.
Then (g, θ) is an orthogonal symmetric Lie algebra. Indeed, if we take G to be a simply
connected Lie group with Lie algebra g, then G is compact by Proposition 2.1.13. If we
lift θ to an involution Θ on G, GΘ will be a closed subgroup of G and hence compact. By
Proposition 2.1.16, k is compactly embedded. We call (g, θ) an orthogonal symmetric Lie
algebra of compact type. Note that it is automatically weakly effective.

Let g be a noncompact real semisimple Lie algebra with a Cartan involution θ. By
Proposition 2.1.74, (g, θ) is an orthogonal symmetric Lie algebra, and we say that it is of
noncompact type. It is also automatically weakly effective.

From Proposition 2.1.73, we immediately get:

Corollary 2.1.75. An orthogonal symmetric Lie algebra of noncompact type is completely
determined by its underlying Lie algebra up to isomorphism.

Finally, let p be a finite-dimensional real vector space and k ⊆ gl(p) the Lie algebra of
some compact subgroup of GL(p). Then we can treat p as an abelian Lie algebra and form
a semidirect sum g = k+ p. It is easy to see that this is a Z/2Z-grading on g, hence by
Proposition 2.1.19 it yields an involution θ ∈ Aut(g). By design, k is compactly embedded
in g, and thus (g, θ) is an effective orthogonal symmetric Lie algebra. Note that p is an
abelian ideal in g. Inspired by this example, we say that a weakly effective orthogonal
symmetric Lie algebra (g, θ) is of Euclidean type if p is an abelian ideal in g (it suffices
to ask that p is a subalgebra).

Observation 2.1.76. The notion of type of an orthogonal symmetric Lie algebra is
clearly respected by isomorphisms.

Definition 2.1.77. A Riemannian symmetric pair (G,K) is said to be of compact,
noncompact, or Euclidean type if so is its orthogonal symmetric Lie algebra (g, θ). A

39



2.1. Symmetric spaces

symmetric space M is said to be of compact, noncompact, or Euclidean type if so is
its canonical Riemannian symmetric pair.

Remark 2.1.78. In the literature on the subject, it is common to refer to symmetric
spaces of (non)compact type simply as (non)compact symmetric spaces. We will also
sometimes do this if there is no chance of ambiguity.

Observation 2.1.79. The notion of type of a Riemannian symmetric pair is also respected
by isomorphisms. Therefore, the notion of type of a symmetric space is well defined (by
Lemma 2.1.30) and respected by isometries.

Proposition 2.1.80. Let X stand for “compact”, “noncompact”, or “Euclidean”.

(a) If a Riemannian symmetric pair is of type X, then so is its corresponding symmetric
space G/K for any choice of a G-invariant metric. In other words, if M is repre-
sented by an orthogonal symmetric Lie algebra (g, θ) of type X, then M is of type
X.

(b) Conversely, if a symmetric space M is of type X, then so is every infinitesimally
weakly effective Riemannian symmetric pair and weakly effective orthogonal sym-
metric Lie algebra that represents M .

Definition 2.1.77 together with Proposition 2.1.13 immediately implies the following

Corollary 2.1.81. Let (G,K) be a Riemannian symmetric pair. If it is of compact (resp.,
noncompact) type, then G is compact (resp., noncompact) semisimple.

Example 2.1.82. Recall from Example 2.1.38 that a compact connected Lie group G
endowed with a bi-invariant metric is a symmetric space. Now, G is represented by a
Riemannian symmetric pair (G×G,∆G), so if G is compact semisimple, it is a symmetric
space of compact type. �

Example 2.1.83. The Cartan involution θ(X) = −X t on sl(n,R) admits a lift to an
involution Θ(A) = (At)−1 on SL(n,R). This gives rise to a Riemannian symmetric pair
(SL(n,R), SO(n)) and thus a symmetric space SL(n,R)/SO(n) of noncompact type. This
space is special due to the following fact: every symmetric space M of noncompact type
can be realized as a totally geodesic submanifold of SL(n,R)/SO(n) for some n. This can
be deduced relatively easily from Proposition 2.1.71 and Proposition 2.2.12.

Now we discuss why symmetric spaces of the above three types are the building blocks for
all symmetric spaces.

Proposition 2.1.84. Let (g, θ) be a weakly effective orthogonal symmetric Lie algebra.
Then there exist ideals g0, gc, gnc in g such that:

(a) g = g0 ⊕ gc ⊕ gnc.

(b) Each of the three ideals is invariant under θ. In particular, we have θ = (θ0, θc, θnc).

(c) (g0, θ0) is an orthogonal symmetric Lie algebra of Euclidean type.

(d) (gc, θc) is an orthogonal symmetric Lie algebra of compact type.

(e) (gnc, θnc) is an orthogonal symmetric Lie algebra of noncompact type.
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The corresponding subspaces p0, pc, pnc of p are uniquely determined and do not depend
on the choice of g0, gc, and gnc. If (g, θ) is effective, then g0, gc, and gnc are uniquely
determined.

Definition 2.1.85. If (g, θ) is an effective orthogonal symmetric Lie algebra, the ideals
g0, gc, gnc are called its Euclidean, compact, and noncompact part, respectively.

A proof of Proposition 2.1.84 can be found in [Hel01, Th.V.1.1]. Let us now discuss the
geometric equivalent of Proposition 2.1.84. Given a symmetric space M , let V0, V1, . . . , Vk

and F0,F1, . . . ,Fk be its de Rham distributions and foliations, respectively. Let Vc (resp.,
Vnc) be the sum of all Vi whose corresponding irreducible part (leaf of Fi) is of compact
(resp., noncompact) type.

Proposition 2.1.86. (a) The distributions Vc and Vnc are parallel (hence involutive),
and we have an orthogonal decomposition TM = V0 ⊕ Vc ⊕ Vnc.

(b) Let Fc and Fnc stand for the foliations corresponding to Vc and Vnc, respectively.
Each of these two foliations has properly embedded totally geodesic leaves that are all
congruent to each other by means of the action of I0(M). The leaves of Fc (resp.,
Fnc) are symmetric spaces of compact (resp., noncompact) type.

(c) Suppose M is represented by a weakly effective orthogonal symmetric Lie algebra
(g, θ) and g = g0 ⊕ gc ⊕ gnc as in Proposition 2.1.84. Then p0 = (V0)o, pc = (Vc)o,
and pnc = (Vnc)o. Moreover, (g0, θ0), (gc, θc), and (gnc, θnc) naturally represent the
leaves of F0,Fc, and Fnc, respectively.

(d) If M is simply connected, it naturally decomposes as a Riemannian product M =
M0 ×Mc ×Mnc. In terms of the de Rham decomposition of M , Mc (resp., Mnc) is
the product of all the irreducible de Rham factors of compact (resp., noncompact)
type.

We call Vc and Fc (resp, Vnc and Fnc) the compact (resp., noncompact) distribution
and foliation of M , respectively. Any leaf of Fc (resp., Fnc) is called the compact (resp.,
noncompact) part of M .

Example 2.1.87 (The unitary group). Consider the group U(n) (n ≥ 2) endowed
with a bi-invariant metric. Its Euclidean part if isometric to the circle and coincides
with the center Z(U(n)) =

{
eiλE | λ ∈ R

}
. The compact part is irreducible and given

by SU(n) ⊆ U(n), and the noncompact part is trivial. Note that U(n) does not split as
the product of its Euclidean and compact parts because they intersect at n points (the
intersection is the subgroup of n-th roots of unity inside Z(U(n))). �

It turns out that the noncompact part of a symmetric space always splits off as a
Riemannian factor:

Proposition 2.1.88. Any symmetric space M decomposes as a Riemannian product of
its noncompact part Mnc and a symmetric space M ′ with a trivial noncompact part1.

Conceptually, Proposition 2.1.88 owes to the fact that a symmetric space of noncompact
type is Hadamard (Proposition 2.1.92) and its group of inner isometries is centerless

1In other words, the universal Riemannian covering space of M ′ is the Riemannian product of a
Euclidean space with a symmetric space of compact type.
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(Corollary 2.4.5). Using expression (2.1.5), one can relate the type of a symmetric spaces
to its curvature:

Proposition 2.1.89 (Type vs curvature). Let M be a symmetric space.

(a) M is of Euclidean type ⇔ M is flat.

(b) M is of compact type ⇔ M does not have a flat local factor and is of nonnegative
sectional curvature.

(c) M is of noncompact type ⇔ M does not have a flat local factor and is of nonpositive
sectional curvature.

Corollary 2.1.90. A symmetric space is of type X if and only if its universal Riemannian
covering space is of type X.

Using Proposition 2.1.89, one can derive some basic geometric properties of the three
types of symmetric spaces.

Proposition 2.1.91. A symmetric space of Euclidean type is a Riemannian product of a
Euclidean space and a flat torus.

Regarding symmetric spaces of noncompact type, one can prove that they are always
simply connected (see Proposition 2.4.1). Since they are also of nonpositive sectional
curvature, we have:

Proposition 2.1.92. A symmetric space M of noncompact type is a Hadamard manifold.
In particular, M is diffeomorphic to a Euclidean space. In fact, for every p ∈ M ,
expp : TpM → M is a diffeomorphism.

Finally, a symmetric space of compact type is a quotient of a compact connected semisimple
Lie group by a compact subgroup. Using the long exact sequence of homotopy groups,
one obtains:

Proposition 2.1.93. A symmetric space of compact type is compact and has a finite
fundamental group.

Remark 2.1.94. Symmetric spaces of compact type have positive Ricci curvature by
Proposition 2.1.89(b). The assertion of Proposition 2.1.93 then also follows from Myers’s
theorem.

The following proposition singles out a special class of symmetric spaces:

Proposition 2.1.95 (Semisimplicity criteria). Let M be a symmetric space. The
following are equivalent:

(a) M does not have a flat local factor.

(b) The Euclidean part of M is trivial.

(c) M is a Riemannian product of symmetric spaces of compact and noncompact type.

(d) The isometry group I(M) is semisimple1.

(e) For some (⇔ any) infinitesimally weakly effective Riemannian symmetric pair (G,K)
representing M , G is semisimple.

1We do not require semisimple Lie groups to be connected in general.
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(f) For some (⇔ any) weakly effective orthogonal symmetric Lie algebra (g, θ) repre-
senting M , g is semisimple.

Definition 2.1.96 (Semisimplicity). A symmetric space is called semisimple if it
satisfies the conditions in Proposition 2.1.95. A Riemannian symmetric pair (G,K)
(resp., an orthogonal symmetric Lie algebra (g, θ)) is called semisimple if G (resp., g) is
semisimple.

Suppose a symmetric space M is represented by an orthogonal symmetric Lie algebra
(g, θ) (resp., a Riemannian symmetric pair (G,K)). If the latter is semisimple, then
so is M . The converse is not true: provided M is semisimple, (g, θ) (resp., (G,K)) is
semisimple if and only if it is (infinitesimally) weakly effective.

Agreement. Whenever a semisimple symmetric space is represented by an orthogonal
symmetric Lie algebra (or a Riemannian symmetric pair), we are going to assume by
default that the latter is semisimple, unless otherwise stated.

Together with compact connected Lie groups, semisimple symmetric spaces belong to a
larger class of better-behaving symmetric spaces that admits a number of characterizations.

Proposition 2.1.97. The following are equivalent for a symmetric space M :

(a) The Euclidean part of M is compact.

(b) M is a Riemannian product of a compact symmetric space with a symmetric space
of noncompact type.

(c) The canonical orthogonal symmetric Lie algebra (g, θ) of M has [p, p] = k.

(d) For every Riemannian symmetric pair (G,K) representing M , the morphism G →
I0(M) is surjective. In other words, G/I ∼= I0(M).

(e) For some (⇔ every) p ∈ M , Hol0(M, p) coincides with the restricted linear isotropy
group K0 at p. In other words, Hol(M, p) is an open subgroup of the linear isotropy
group K.

(f) Tr(M) = I0(M).

If these conditions are satisfied, we say that M has compact Euclidean part. In this
case, there is a unique effective Riemannian symmetric pair (resp., orthogonal symmetric
Lie algebra) representing M up to isomorphism—the canonical one.

Sketch of the proof. To begin with, (c) is equivalent to (e) by Proposition 2.1.67, to (f)
by Proposition 2.1.65, and implies (d) by Observation 2.1.33. For any symmetric space
M , (Tr(M),Tr(M)o) is a Riemannian symmetric pair representing M , so (d) implies (f).
Next, (a) is equivalent to (b) by Proposition 2.1.88. The equivalence of (a) and (c) can be
shown by passing to the universal Riemannian covering space. One of the main steps is
to show that if (g, θ) is an effective semisimple orthogonal symmetric Lie algebra, then
[p, p] = k. In the noncompact case, this is the content of problems 22-25 in [Kna02, Sect.
VI] (see p. 558 for a solution). In general, this follows from the proof of Proposition 2.1.84
in [Hel01, Th.V.1.1].

Example 2.1.98. By Proposition 2.1.95(b), any semisimple symmetric space has compact
Euclidean part. �
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Example 2.1.99. A compact connected Lie group G with a bi-invariant metric has
compact Euclidean part, which follows trivially by Proposition 2.1.97(b). As we saw in
Example 2.1.38, G can be represented by the Riemannian symmetric pair (G×G,∆G),
whose inefficiency kernel is given by I = ∆Z . It then follows from Proposition 2.1.97(d)
that I0(G) ∼= (G×G)/∆Z . �

Remark 2.1.100. Part (e) of Proposition 2.1.97 means that for a symmetric space M
with compact Euclidean part, the restricted holonomy and isotropy representations are
the same thing. If M is represented by a Riemannian symmetric pair (G,K), they are
both given by the adjoint representation of K0 on p (modulo the kernel).

2.1.5. Irreducibility, duality, and the classification

In this final part of the section, we discuss the classification of symmetric spaces. To that
end, we first need to talk about two more crucial ingredients in this theory: irreducibility
and duality. Once again, the primary reference here is [Hel01].

Irreducibility

The property of being irreducible has a number of useful reformulations for symmetric
spaces.

Proposition 2.1.101 (Irreducibility criteria). The following are equivalent for a
symmetric space M :

(a) M is irreducible.

(b) M is not flat and its restricted isotropy representation is irreducible.

(c) For some (⇔ any) Riemannian symmetric pair (G,K) representing M , (G,K) is
not of Euclidean type, and its restricted isotropy representation is irreducible.

(d) For some (⇔ any) orthogonal symmetric Lie algebra (g, θ) representing M , (g, θ) is
not of Euclidean type, and the adjoint representation k → so(p) is irreducible.

Definition 2.1.102. A Riemannian symmetric pair (G,K) is called irreducible if it is
not of Euclidean type and the representation of K0 on p is irreducible. An orthogonal
symmetric Lie algebra is called irreducible if it is not of Euclidean type and the
representation of k on p is irreducible.

Proposition 2.1.101 essentially means that the three notions of irreducibility agree: if
(g, θ) is an orthogonal symmetric Lie algebra associated with a Riemannian symmetric
pair (G,K), and they represent a symmetric space M , then (g, θ) is irreducible ⇔ (G,K)
is irreducible ⇔ M is irreducible. From Proposition 2.1.84, we also have:

Corollary 2.1.103. An irreducible symmetric space (or a weakly effective orthogonal
symmetric Lie algebra, or an infinitesimally weakly effective Riemannian symmetric pair)
is semisimple and in fact of either compact or noncompact type.

In compliance with our agreement on page 43, if M is an irreducible symmetric space,
any orthogonal symmetric Lie algebra (or Riemannian symmetric pair) representing it is
assumed to be (infinitesimally) weakly effective by default.
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Proposition 2.1.104. An orthogonal symmetric Lie algebra (g, θ) is irreducible if and
only if k is a maximal proper subalgebra of g. A Riemannian symmetric pair (G,K) is
irreducible if and only if K0 is a maximal proper connected Lie subgroup of G.

Proof. We need only prove the first statement. If k ⊊ h ⊊ g is a larger proper subalgebra,
then h ∩ p ⊊ p is a nontrivial proper subrepresentation of k. Conversely, if V ⊊ p is such
a subrepresentation, consider the subalgebra h = k⊕ V .

Orthogonal symmetric Lie algebras can be decomposed into irreducible parts, which can
be regarded as the infinitesimal version of the de Rham decomposition for symmetric
spaces:

Proposition 2.1.105. Let (g, θ) be a weakly effective orthogonal symmetric Lie algebra.
There exist ideals gi, 0 ≤ i ≤ k, such that:

(a) g = g0 ⊕ g1 ⊕ · · · ⊕ gk.

(b) θ preserves gi for every 0 ≤ i ≤ k. In particular, θ can be written (θ0, θ1, . . . , θk).

(c) Each (gi, θi) is a weakly effective orthogonal symmetric Lie algebra.

(d) (g0, θ0) is of Euclidean type, and (gi, θi) is irreducible for 1 ≤ i ≤ k.

If we write gi = ki ⊕ pi, then pi’s are uniquely determined and do not depend on the choice
of gi’s. Moreover, if (g, θ) is effective, the ideals gi are unique.

Remark 2.1.106. Let (g, θ) be an effective orthogonal symmetric Lie algebra decomposed
as g = g0 ⊕ g1 ⊕ · · · ⊕ gk as in Proposition 2.1.105. Then the Euclidean part of g is g0,
while its compact (resp., noncompact) part is the sum of all gi such that (gi, θi) is of
compact (resp., noncompact) type.

Proposition 2.1.105 is closely related to the de Rham distributions:

Proposition 2.1.107. Let M be a symmetric space represented by a weakly effective
orthogonal symmetric Lie algebra (g, θ), and let g = g0 ⊕ g1 ⊕ · · · ⊕ gk be as in Proposi-
tion 2.1.105. Then p = p0 ⊕ p1 ⊕ · · · ⊕ pk is the canonical decomposition of p ∼= ToM (in
particular, its summands are pairwise orthogonal). If we let F0,F1, . . . ,Fk stand for the
corresponding de Rham foliations, then (gi, θi) represents any leaf of Fi.

The normalizing constants

Having discussed irreducibility, we can now talk about the degree of freedom one has when
choosing an invariant metric on a symmetric space and what role this choice plays. Before
doing that, we need to say a few words about Schur’s lemma and its validity over R.

The easy part of Schur’s lemma works trivially over any field: any nonzero morphism
between two irreducible representations of a group is an isomorphism. The “hard” part—
which asserts that the space of such morphisms is at most one-dimensional—is only
applicable over algebraically closed fields. Nevertheless, there is a substitute if the ground
field is R. Indeed, let V be a real irreducible representation of a group G. Thanks to the
easy part of Schur’s lemma, the space EndG(V ) is a finite-dimensional associative unital
division algebra over R. By the Frobenius theorem, it must be isomorphic to R,C, or H.
In the latter two cases, there exists an invariant complex (resp., quaternionic) structure
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on V . Fix such a structure; in case of H, pick a basis J1, J2, J3 of the quaternionic
structure and thus turn V into a left H-module (see Subsection 2.5.2 for all the necessary
definitions). Now assume that G is a compact Lie group and the representation is smooth.
By a standard averaging argument, V admits an invariant Euclidean, Hermitian, or
quaternion-Hermitian (depending on the dimension of EndG(V )) inner product h. The
real part g of h is an invariant symmetric R-bilinear form on V . The space BilG(V ) of
invariant R-bilinear forms on V is canonically isomorphic to HomG(V, V

∗), hence it has
the same dimension as EndG(V ). It is easy to see that

BilG(V ) is spanned by


g if EndG(V ) ≃ R,
g,ω if EndG(V ) ≃ C,
g,ω1,ω2,ω3 if EndG(V ) ≃ H,

where ω(v, w) = g(Iv, w), I is the complex structure on V , and ωi(v, w) = g(Jiv, w). As
the forms ω and ωi are skew-symmetric, we see that the space of invariant symmetric
R-bilinear forms on V is 1-dimensional and spanned by g. We deduce:

Corollary 2.1.108. Let V be an irreducible real representation of a compact Lie group
G. There exists a unique—up to rescaling by a positive constant—G-invariant Euclidean
inner product on V .

Corollary 2.1.109. If (G,K) is an irreducible Riemannian symmetric pair, then there
is a unique G-invariant Riemannian metric on M = G/K up to rescaling by a positive
constant.

Now, let (g, θ) be a weakly effective irreducible orthogonal symmetric Lie algebra. There
is a natural k-invariant inner product on p:

⟨−|−⟩B =

{
−B
∣∣
p×p if (g, θ) is of compact type,

B
∣∣
p×p = Bθ

∣∣
p×p if (g, θ) is of noncompact type.

(2.1.8)

Owing to Corollary 2.1.108, any other k-invariant inner product on p is proportional to
⟨−|−⟩B. More generally, let (g, θ) be a weakly effective orthogonal symmetric Lie algebra,
and let g = g0 ⊕ g1 ⊕ · · · ⊕ gk be as in Proposition 2.1.105. The restriction of B to p has
kernel p0, the other summands pi are pairwise orthogonal with respect to it, and we have
B
∣∣
p×p = B1

∣∣
p1×p1

+ · · ·+Bk

∣∣
pk×pk

. Combining these arguments with Proposition 2.1.107,

we arrive at the following important

Corollary 2.1.110. Let (g, θ) be a weakly effective orthogonal symmetric Lie algebra,
and let g = g0 ⊕ g1 ⊕ · · · ⊕ gk be as in Proposition 2.1.105. For any k-invariant inner
product ⟨−|−⟩ on p, the summands pi are pairwise orthogonal, and we have

⟨−|−⟩ = ⟨−|−⟩0 + λ1⟨−|−⟩B1
+ · · ·+ λk⟨−|−⟩Bk

, (2.1.9)

where ⟨−|−⟩0 is a k0-invariant inner product on p0, and λi > 0. The constants λi do not
depend on the choice of such a decomposition of (g, θ).

In particular, if M is a symmetric space, one can represent it by some weakly effective
orthogonal symmetric Lie algebra (g, θ) and decompose go as in (2.1.9). It turns out that
the resulting constants λi are invariants of M .
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Proposition 2.1.111. Let M be a symmetric space represented by a weakly effective
orthogonal symmetric Lie algebra (g, θ). Decompose the k-invariant inner product go on
p as in (2.1.9) and let λ1, . . . , λk > 0 be the resulting constants. These constants depend
neither on the choice of a weakly effective orthogonal symmetric Lie algebra representing
M , nor on the choice of a base point. If M ′ is another space isometric to M , it has the
same constants up to reordering.

A general proof of this result is complicated by the fact that M may not be simply
connected. To deal with this, one has to prove some structure results on the deck
transformation group of the universal Riemannian covering of M . We will prove this
statement in the special case when M is simply connected and semisimple.

Proof. Let M be a simply connected semisimple symmetric space represented by a weakly
effective orthogonal symmetric Lie algebra (g, θ). By Proposition 2.1.95, g is semisimple,
so it splits as a sum of two ideals i⊕g′, where i is the ineffectiveness kernel. The involution
θ respects this decomposition and is trivial on i. The Killing form of g′ is the restriction
of that of g. This means that we can replace the initial orthogonal symmetric Lie algebra
with an effective one, which, by Proposition 2.1.97, is simply the canonical one. So we
take G = I0(M) and K = Go. Let M = M1 × · · · ×Mk be the de Rham decomposition.
By Corollary 2.1.61, G = G1 × · · · ×Gk, where Gi = I0(Mi). The isometry Lie algebra
splits accordingly as g = g1 ⊕ · · · ⊕ gk, and we have go = λ1⟨−|−⟩B1

+ · · ·+ λk⟨−|−⟩Bk
.

We need to prove that if M ′ is a space isomorphic to M with analogous decompositions
at some o′, then λi and λ

′
i coincide up to reordering.

Let f : M −→∼ M ′ be an isometry. We may assume it maps o to o′. The uniqueness of de
Rham decomposition (Remark 2.1.63) implies that M ′ has the same number of de Rham
factors (say, M ′ = M ′

1×· · ·×M ′
k), and f is of the form (pi)

k
i=1 7→ (fσ−1(i)(pσ−1(i)))

k
i=1, where

σ ∈ Sk and fi : Mi −→∼ M ′
φ(i) is an isometry. Let Fi : Gi −→∼ G′φ(i) stand for g 7→ fi ◦ g ◦ f−1i

and φi : gi −→∼ g′φ(i) for (Fi)∗. We have the following commutative diagram:

pi p′σ(i)

ToiMi To′
σ(i)

M ′
σ(i)

∼

fi
∼

∼

d(φi)oi
∼

The top arrow is an isometry with respect to the inner products ⟨−|−⟩Bi
and ⟨−|−⟩B′

σ(i)
,

whereas the bottom one is an isometry with respect to (gi)oi = λi⟨−|−⟩Bi
and (g′σ(i))o′σ(i) =

λ′σ(i)⟨−|−⟩B′
σ(i)

. This implies that λi = λ
′
σ(i), which concludes the proof.

Definition 2.1.112. The constants λ1, . . . , λk defined above are called the normalizing
constants of M . If M is semisimple and all the normalizing constants are equal to 1, the
metric on M is called Killing.

It is important to point out that if we have a symmetric space M represented by a
Riemannian symmetric pair (G,K), and go is decomposed as in (2.1.9), we can rescale the
normalizing constants however we want, and the resulting inner product will still be K-
invariant, so it would give rise to another G-invariant metric on M . Roughly speaking, this
procedure amounts to dilating the initial metric g by some positive constants along each of
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the irreducible de Rham foliations F1, . . . ,Fk. We shall call this procedure rescaling the
normalizing constants of M . One can show that the rescaled metric has the same group
of inner isometries (although the full isometry group might change). On a semisimple
symmetric space, the Killing metric is unique by Proposition 2.1.111. In a sense, it is
the canonical metric defined purely algebraically, and the normalizing constants tell how
much the Riemannian metric of M differs from the Killing one.

Another thing we can do in the semisimple case is to extend the Killing metric to an
invariant inner product on the whole isometry Lie algebra. Let (g, θ) be a semisimple
orthogonal symmetric Lie algebra, and let g = g1 ⊕ · · · ⊕ gk be as in Proposition 2.1.105.
Then we can define an inner product ⟨−|−⟩Bi

on each gi:

⟨−|−⟩Bi
=

{
−Bi if (g, θ) is of compact type,

(Bi)θi if (g, θ) is of noncompact type.
(2.1.10)

Note that this agrees with (2.1.8). Adding these up and letting the ideals gi be mutually
orthogonal leads to a k-invariant inner product1 ⟨−|−⟩B = ⟨−|−⟩B1

+ · · ·+ ⟨−|−⟩Bk
on

g. It is not hard to show that ⟨−|−⟩B does not depend on the choice of a decomposition
of g as above. This inner product proves especially useful in the noncompact type (where
it can be written simply as Bθ). If there is no ambiguity, we will sometimes drop the
subscript B and write this inner product simply as ⟨−|−⟩.

Warning. Suppose a semisimple orthogonal symmetric Lie algebra (g, θ) represents a
symmetric spaceM . Then, there are two a priori distinct inner products on p: ⟨−|−⟩B

∣∣
p×p

and go. By definition, they coincide precisely when the metric is Killing. In the presence of
M , we will normally write go as ⟨−|−⟩o or just ⟨−|−⟩, so one cannot drop the subscript
of ⟨−|−⟩B in this case.

Remark 2.1.113. When we have a specific symmetric space M represented by a Rieman-
nian symmetric pair (G,K), we never impose any restrictions on the choice of a G-invariant
metric on M , unless otherwise stated. If M is irreducible, such a metric is unique up
to a constant by Corollary 2.1.109, but in general, there exists a host of such metrics.
For example, the Grassmannian Gr(2,R4) = SO(4)/S(O(2)O(2)) admits a 2-dimensional
family of SO(4)-invariant symmetric metrics. So when we say that another symmetric
space M1 is isometric to M , we mean isometric with respect to some G-invariant metric.
One needs to be cautious when given yet another space M2 “isometric to M”: unless the
isometries M1 ≃ M and M2 ≃ M are with respect to the same metric on M , M1 and M2

may not be mutually isometric. (In the irreducible case, they would be homothetic.)

Recall from (2.1.6) that the Ricci curvature of a symmetric space is given by Rico =
−1

2
B
∣∣
p×p. The normalizing constants can thus be used to formulate when a symmetric

space is Einstein:

Proposition 2.1.114 (Einsteinness criterion). A symmetric space M is Einstein if
and only if it is of Euclidean (Ric = 0), compact (Ric > 0), or noncompact (Ric < 0)
type, and in the latter two cases its normalizing constants need to be all equal to each
other (so the metric has to be proportional to the Killing one). In particular, irreducible
symmetric spaces are Einstein.

1This notation might be a little ambiguous as it does not capture the dependence of ⟨−|−⟩B on θ.
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Duality

There is a 1-to-1 correspondence between (simply connected) symmetric spaces of compact
and noncompact type. This remarkable feature is called the duality. A symmetric space
M and its dual M∗ share a lot in common, including rank, irreducibility, holonomy, the
set of totally geodesic submanifolds, etc. As we will witness repeatedly throughout the
thesis, results obtained for M often carry over essentially for free to M∗.

Let (g, θ) be an orthogonal symmetric Lie algebra. Inside the complexification gC,
consider the subspace g∗ = k⊕ ip. It is straightforward to verify that this is a Z/2Z-graded
subalgebra of gC. Let us denote the resulting involutive automorphism (X+ iY 7→ X− iY )
by θ∗.

Proposition 2.1.115. Let (g, θ) be an orthogonal symmetric Lie algebra.

(a) (g∗, θ∗) is an orthogonal symmetric Lie algebra. It is called the dual of (g, θ).

(b) If (g, θ) and (g′, θ′) are isomorphic, then so are (g∗, θ∗) and (g′∗, θ′∗).

(c) If (g, θ) is of compact type, then (g∗, θ∗) is of noncompact type, and vice versa.

Now we carry the dualization construction over to symmetric spaces. Since the Euclidean
case is of little interest, we confine our attention to semisimple symmetric spaces. Let M
be a simply connected semisimple symmetric space. Take any orthogonal symmetric Lie
algebra (g, θ) representing M and consider its dual (g∗, θ∗). Take a simply connected Lie
group G∗ with Lie algebra g∗, lift θ∗ to an involutive automorphism Θ∗ of G∗, and take
K∗ = (G∗Θ

∗
)0 to be the connected Lie subgroup of G∗ corresponding to k ⊂ g∗. If ⟨−|−⟩o

stands for the Riemannian metric of M at o, then define an inner product on ip by the
formula ⟨iX | iY ⟩∗ = ⟨X |Y ⟩o. It is clearly K∗-invariant, so it makes M∗ = G∗/K∗ into a
simply connected semisimple symmetric space, which we call the dual of M . Let us denote
the base point eK∗ of M∗ by o∗. Note that we have a natural isometric isomorphism
ToM ∼= p ∼= ip ∼= To∗M

∗. The following are some basic properties of duality:

Proposition 2.1.116 (Properties of duality). Let M be a simply connected semisimple
symmetric space.

(a) M∗ does not depend on the choice of o ∈ M up to isometry.

(b) M∗∗ ≃ M .

(c) If N is another simply connected semisimple symmetric space isometric to M , then1

N∗ ≃ M∗.

(d) dim(M∗) = dim(M).

(e) rk(M∗) = rk(M).

(f) If M = M1×· · ·×Mk is the de Rham decomposition of M , then M∗ = M∗
1 ×· · ·×M∗

k

is the de Rham decomposition of M∗. In particular, M is irreducible if and only if
M∗ is.

(g) Under the identification ToM ∼= To∗M
∗, the linear isotropy groups K ⊆ O(ToM) and

1One can say that the duality is an involutive functor from the groupoid of simply connected semisimple
symmetric spaces to itself.
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K∗ ⊆ O(To∗M
∗) coincide1, and hence so do the holonomy groups Hol(M, o) and

Hol(M∗, o∗).

(h) Under the identification ToM ∼= To∗M
∗, the curvatures of M and M∗—be it R, Rm,

Ric, S, or K—are of opposite signs.

(i) If M of compact type, then M∗ is of noncompact type, and vice versa.

The classification of symmetric spaces

In this final part of the section, we discuss how the introduction of Lie theory to the
theory of symmetric spaces ultimately leads to their classification. The first step is to
observe how irreducibility of a symmetric space is related to whether its isometry Lie
algebra is simple.

Observation 2.1.117. Let g be a semisimple Lie algebra with a Cartan involution θ,
and let g =

⊕k
µ=1 gµ ⊕

⊕n
ν=k+1 gν be its decomposition into simple ideals, where the

first k ideals are compact (whose sum we call the compact part of g) and the rest are
noncompact (whose sum we call the noncompact part2 of g). Then, by Proposition 2.1.72,
θ respects this decomposition and is the identity on the compact ideals. Consequently, an
orthogonal symmetric Lie algebra (g, θ) of noncompact type is effective if and only if g
has no nontrivial compact ideals. In particular, the isometry Lie algebra of a symmetric
space of noncompact type has no nontrivial compact ideals.

Combining Observation 2.1.117 with Proposition 2.1.107, we obtain:

Proposition 2.1.118. An effective orthogonal symmetric Lie algebra (g, θ) of noncompact
type is irreducible if and only if g is simple. Consequently, a symmetric space of noncompact
type is irreducible if and only if the Lie group I0(M) is topologically simple (⇔ the isometry
Lie algebra i(M) is simple).

Later, we will see that for M irreducible of noncompact type, I0(M) is actually simple
in the group-theoretic sense (see Corollary 2.4.5). However, this is no longer true in the
compact type, even on the level of Lie algebras. For example, a compact topologically
simple Lie group G with a bi-invariant metric is an irreducible compact symmetric space,
but its isometry Lie algebra g⊕ g is a sum of two simple ideals. Fortunately, this is the
only thing that can happen, as the following proposition shows. Recall that a complex
Lie algebra that is simple over C is also simple over R ([Kna02, Prop. 6.95]). In this case,
we are going to say that it is simple without specifying the ground field.

Proposition 2.1.119. Let (g, θ) be an effective irreducible orthogonal symmetric Lie
algebra. Then exactly one of the following holds:

(I) g is compact simple.

(II) g is compact and it splits as a sum of two isomorphic simple ideals interchanged by
θ.

(III) g is noncompact simple and it does not admit a complex structure making it into a
complex Lie algebra ⇔ g is noncompact and gC is simple.

1Note that this follows directly from Proposition 2.1.68
2If (g, θ) is an effective semisimple orthogonal symmetric Lie algebra, then the compact and noncompact

parts of g as defined here coincide with those defined in Proposition 2.1.84.
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(IV) g is noncompact simple and it admits a complex structure making it into a complex
Lie algebra ⇔ g is noncompact and gC splits (over C) as a sum of two isomorphic
simple ideals.

Depending on the case, we are going to say that (g, θ) is of type I, II, III, or IV,
respectively.

Definition 2.1.120. Let (G,K) be an infinitesimally effective irreducible Riemannian
symmetric pair. We say that (G,K) is of type is of type I, II, III, or IV if so is its
orthogonal symmetric Lie algebra. An irreducible symmetric space M is said to be of
type I, II, III, or IV if so is some (⇔ any) infinitesimally effective Riemannian symmetric
pair representing it.

The four types behave well with respect to duality:

Proposition 2.1.121. Let (g, θ) be an effective irreducible orthogonal symmetric Lie
algebra. Then:

• (g, θ) is of type I ⇔ (g∗, θ∗) is of type III.

• (g, θ) is of type II ⇔ (g∗, θ∗) is of type IV.

The same is true for simply connected irreducible symmetric spaces and their duals.

Example 2.1.122. Recall from Example 2.1.82 that a compact connected semisimple Lie
group G endowed with a bi-invariant metric is a symmetric space of compact type. From
Proposition 2.1.40 we see that G is irreducible if and only if it is topologically simple. In
this case, it is clearly of type II. �

It is clear that the simply connected irreducible symmetric spaces of type II are exhausted
by simply connected compact topologically simple Lie groups. But can such a group have
a symmetric quotient that is no longer a Lie group? This possibility is ruled out by the
following (see [Hel01, Prop.X.1.2]):

Proposition 2.1.123 (Type II). Any irreducible symmetric space of type II is isometric
to a compact topologically simple Lie group with a bi-invariant metric.

With this in mind, we have the following global description of types I-IV:

Proposition 2.1.124. Let M be an irreducible symmetric space represented by an in-
finitesimally effective Riemannian symmetric pair (G,K).

(I) M is of type I precisely when G is a compact topologically simple Lie group.

(II) M is of type II precisely when it is a compact topologically simple Lie group with a
bi-invariant metric.

(III) M is of type III precisely when G is a noncomplex noncompact topologically simple
Lie group.

(IV) M is of type IV precisely when G is a complex topologically simple Lie group.

In (III) and (IV), G can be chosen simple.

Up to the question of coverings, the classification of symmetric spaces boils down to the
classification of irreducible simply connected symmetric spaces—thanks to the de Rham
decomposition. This is equivalent to classifying effective irreducible orthogonal symmetric
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Lie algebras. By duality, it suffices to focus on the noncompact or compact type only. For
type IV, this is simply the matter of classifying complex simple Lie algebras—which is
classically done by means of root systems and Dynkin diagrams. This is also equivalent
to classifying compact simple Lie algebras (type II). To deal with type III, one needs
to classify all real simple (non-complex) Lie algebras—that is, classify real forms of
all complex simple Lie algebras (see, e.g., [Kna02, Th. 6.105]). Equivalently, to settle
type I, one needs to classify involutions of all compact simple Lie algebras. Thanks to
Proposition 2.1.104, the classification of irreducible symmetric spaces can also be derived
from Dynkin’s classification of maximal subalgebras of semisimple Lie algebras ([Dyn52b]).
For the full list of irreducible simply connected symmetric spaces, see [Hel01, Ch.X, Sect.
6] or [BCO16, pp. 414-417]. For the noncompact ones, see also [BCO16, pp. 336-340].

Definition 2.1.125. Irreducible symmetric spaces can be divided into two categories:
M is called classical (resp., exceptional) if I0(M) is a classical (resp., exceptional) Lie
group—or a product thereof.

For a background on exceptional Lie groups (including various embeddings between them),
see [Yok09]. Here are some examples of exceptional symmetric spaces:

• Exceptional simply connected symmetric spaces of type II: E6, E7, E8, F4, G2.

• Exceptional irreducible symmetric spaces of type IV:

E6(C)/E6, E7(C)/E7, E8(C)/E8, F4(C)/F4, G2(C)/G2.

• The Cayley projective and hyperbolic planes OP 2 = F4/Spin(9) and OH2 =
F−204 /Spin(9).

2.2. Submanifold theory in symmetric spaces

In this section, we discuss some aspects of the submanifold theory in the context of
symmetric spaces. We are mainly pursuing two goals: first, we will look at various classes
of submanifolds in symmetric spaces and go through some of their properties; second,
we will derive a convenient formula for the second fundamental form of a homogeneous
submanifold that will prove useful later in the thesis. Our main reference for this part is
[BCO16].

2.2.1. Types of submanifolds in symmetric spaces

Most types of submanifolds we are interested in follow a common pattern: they can be
defined in more general Riemannian manifolds that are not necessarily symmetric, but
they possess nice additional properties when the ambient space is symmetric. Perhaps,
the most important such property that most of them acquire in the presence of symmetry
is being homogeneous.

Homogeneous submanifolds

Definition 2.2.1. Let M be a Riemannian manifold. A complete submanifold S ⊆ M is
called
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(a) (extrinsically) homogeneous if it is an orbit of an isometric Lie group action on
M ,

(b) intrinsically homogeneous if it is a Riemannian homogeneous space in the induced
metric.

Remark 2.2.2. We will usually refer to extrinsically homogeneous submanifolds as just
homogeneous. This notion is clearly stronger than being intrinsically homogeneous. Both
of these types of submanifolds are automatically complete.

If S ⊆ M is a homogeneous submanifold, its second fundamental forms at different points
are essentially the same. In particular, if S is a hypersurface, it has constant principal
curvatures and constant mean curvature.

Lemma 2.2.3. Let M be a Riemannian manifold with π0(M) finite, and let S ⊆ M be a
properly embedded submanifold. Assume that for every p, q ∈ S, there exists an isometry
of M that preserves S and maps p to q. Then S is a homogeneous submanifold. If, in
addition, S is connected, then it is an orbit of an isometric action on M by a connected
Lie group.

Proof. Define
I(M,S) = {f ∈ I(M) | f(S) = S} .

Since S is closed, I(M,S) is a closed (⇒ Lie) subgroup of I(M). By assumption, it has S
as one of its orbits. If S is connected, then the identity component I0(M,S) of I(M,S)
still acts transitively on S.

In symmetric spaces, homogeneous submanifolds are one of the most natural types of
submanifolds to study, since they retain some of the symmetry of the ambient space
and can be studied by means of Lie theory. We make a useful observation regarding
homogeneous submanifolds that we will be using repeatedly in the sequel.

Proposition 2.2.4. Let M be a symmetric space represented by a Riemannian symmetric
pair (G,K) and H ⊆ G a Lie subgroup. Write h = Lie(H) ⊆ g and S = H · o. Then,
under the identification ToM ≃ p, ToS = prp(h).

Proof.
ToS = {X̂o | X ∈ h} = {Xp | X ∈ h} = prp(h).

Totally geodesic submanifolds

Totally geodesic submanifolds are one of the most fundamental and well-known classes of
Riemannian submanifolds. A generic Riemannian manifold admits no totally geodesic
submanifolds of dimension greater than one—not even locally (see [MW19]). Things
begin to change when the ambient space acquires a sufficient degree of symmetry. The
extreme case of this is, of course, symmetric spaces, which do indeed admit an abundance
of higher-dimensional totally geodesic submanifolds. At the same time, in a symmetric
space, such a submanifold can be fully reduced to a (deceptively) simple piece of algebraic
data, called a Lie triple system. In low rank, that data is manageable enough to allow a
classification of totally geodesic submanifolds. But let us start from the beginning.
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Observation 2.2.5. If M is a Riemannian manifold and S ⊆ M is a complete connected
totally geodesic submanifold, then for any p ∈ S, we have S = exp(TpS). This observation,
however trivial, will prove highly useful as we go along.

Lemma 2.2.6. Let M be a symmetric space and S ⊆ M a complete connected submanifold.
The following are equivalent:

(i) S is totally geodesic.

(ii) For every p ∈ S, sp(S) = S.

Proof. (i) ⇒ (ii). According to Observation 2.2.5, given any p ∈ S, S = exp(TpS). As
the geodesic symmetry at a point reverses geodesics through that point, sp preserves S.
(ii) ⇒ (i). We need to show that the second fundamental form II of S vanishes. Take an
arbitrary p ∈ S and any X, Y ∈ TpS. We compute:

−II(X, Y ) = d(sp)(II(X, Y )) = II(d(sp)(X), d(sp)(Y )) = II(−X,−Y ) = II(X, Y ),

hence II = 0.

Corollary 2.2.7. A complete connected totally geodesic submanifold of a symmetric space
is a symmetric space in its own right in the induced metric.

Proof. Indeed, for every p ∈ S, sp restricts to a geodesic symmetry of S at p.

We will now see how all totally geodesic submanifolds of a symmetric space can be
constructed solely in terms of Lie-theoretic data.

Definition 2.2.8. Let M be a Riemannian manifold and p ∈ M any point. A subspace
V ⊆ TpM is called curvature-invariant if R(V, V )V ⊆ V .

Example 2.2.9. Let S ⊆ M be a totally geodesic submanifold. Then for any p ∈ S, TpS
is a curvature-invariant subspace of TpM . This follows from the Gauss formula. �

Definition 2.2.10. Let (g, θ) be an orthogonal symmetric Lie algebra. A subset V ⊆ p
is called a Lie triple system if [[V, V ], V ] ⊆ V .

Thanks to the curvature formula (2.1.5) for symmetric spaces, we have the following:

Corollary 2.2.11. Let M be a symmetric space represented by an orthogonal symmetric
Lie algebra (g, θ). Under the identification p ∼= ToM , Lie triple systems in p correspond
precisely to curvature-invariant subspaces of ToM .

It is not true for general Riemannian manifolds that every curvature-invariant subspace is
the tangent space of a totally geodesic submanifold (see [BCO16, Th. 10.3.3]). However,
we are about to see that this is the case for symmetric spaces.

Let (g, θ) be an orthogonal symmetric Lie algebra. A subalgebra h of g is called θ-stable
if it is preserved by θ, or equivalently if h = (h ∩ k)⊕ (h ∩ p). The importance of θ-stable
subalgebras stems from their intimate relationship with totally geodesic submanifolds.
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Proposition 2.2.12. Let M be a symmetric space represented by a Riemannian symmetric
pair (G,K), h ⊆ g a θ-stable subalgebra, and H ⊆ G the connected Lie subgroup corre-
sponding to h. Then the orbit H · o is a complete connected totally geodesic submanifold
of M whose tangent space at o is h ∩ p.

Proof. Being a homogeneous submanifold, S = H · o is complete. According to Propo-
sition 2.2.4, ToS = prp(h) = h ∩ p, so we need only prove that S is totally geodesic.
It suffices to show its second fundamental form II vanishes at o. Take any nonzero
X ∈ h ∩ p and observe that expG(tX) is a one-parameter subgroup in H. Therefore, the
curve expG(tX) · o lies in S. But according to (2.1.2), this curve is a geodesic in M . In
particular, IIo vanishes on X and thus IIo = 0.

It turns out that essentially every totally geodesic submanifold arises in this way. Indeed,
let (g, θ) be an orthogonal symmetric Lie algebra and V ⊆ p a Lie triple system. It follows
from the definition of a Lie triple system that h = [V, V ] ⊕ V is a Lie subalgebra of g.
Proposition 2.2.12 then implies:

Corollary 2.2.13. Let M be a symmetric space.

(a) Every curvature-invariant subspace V ⊆ TpM is the tangent space of a unique
complete connected totally geodesic submanifold of M , namely of exp(V ).

(b) Every connected totally geodesic submanifold of M is an open part of a (unique)
complete connected totally geodesic submanifold.

(c) Every complete connected totally geodesic submanifold of M is a homogeneous
submanifold.

We can summarize the discussion so far with the following commutative diagram:

{
Lie triple

systems in p

} {
θ-stable

subalgebras of g

} 
complete connected

t.g. submanifolds of M

passing through o

V 7→ [V,V ]⊕V

V 7→ expM (V )

∼

h 7→H·o

ToS←[S
∼

Remark 2.2.14. Let M be a symmetric space represented by a Riemannian symmetric
pair (G,K). Let V ⊆ p be a Lie triple system and S = expM(V ) its corresponding
complete totally geodesic submanifold. As we know from Corollary 2.2.7, S is a symmetric
space in its own right. Consider the normalizer Nk(V ). By design, [V, V ] ⊆ Nk(V ) and
Nk(V )⊕ V is a θ-stable subalgebra of g. It is not hard to show that (Nk(V )⊕ V, θ) is an
orthogonal symmetric Lie algebra representing S.

Example 2.2.15 (T. g. submanifolds of Sn). One can show that every subspace
V of a tangent space to Sn is curvature-invariant. If dim(V ) = k, the corresponding
complete totally geodesic submanifold is congruent (Definition 2.3.18) to the equatorial
sphere Sk ⊆ Sn. An analogous statement is true for RP n,RHn, and symmetric spaces of
Euclidean type. These are the only symmetric spaces exhibiting such a property. By a
result of Iwahori, they can also be characterized as the only symmetric spaces with one
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de Rham factor admitting totally geodesic hypersurfaces (see [Iwa66] or else [BCO16, Th.
11.1.6]), as well as the only symmetric spaces of constant sectional curvature. �

Example 2.2.16 (T. g. submanifolds of compact Lie groups). Let G be a compact
connected Lie group equipped with a bi-invariant metric, and let H ⊆ G be a connected
Lie subgroup. Then H is a complete totally geodesic submanifold. Indeed, it is plainly a
homogeneous submanifold, and it is preserved by the geodesic symmetric se(g) = g−1 at
e. This easily implies that H is preserved by the geodesic symmetry at any of its points,
so it is totally geodesic by Lemma 2.2.6. If we write h = Lie(H), then h becomes the Lie
triple system of H ⊆ G under the standard identification p ∼= g, (X,−X) ↔ X. �

Totally geodesic subspaces behave well with respect to duality. Let M be a simply
connected semisimple symmetric space represented by an orthogonal symmetric Lie
algebra (g, θ). Then the dual M∗ is represented by (g∗, θ∗), g∗ = k⊕ ip, and we have an
obvious isomorphism between p and p∗ = ip.

Proposition 2.2.17 (Duality for t. g. submanifolds). Let M be a simply connected
semisimple symmetric space and M∗ its dual.

(a) Under the isomorphism p ∼= p∗, the Lie triple systems in p correspond precisely to
those in ip.

(b) There is a natural 1-to-1 correspondence between the set of complete connected totally
geodesic submanifolds in M passing through o and the set of those in M∗ passing
through o∗, namely expo(V ) ↔ expo∗(iV ).

(c) The correspondence in (b) induces a 1-to-1 correspondence between the set of con-
gruence classes of complete connected totally geodesic submanifolds in M and the
set of those in M∗.

The latter statement in Proposition 2.2.17 can be deduced using Proposition 2.1.116.

Definition 2.2.18. If M is a simply connected semisimple symmetric space and S ⊆ M
a connected complete totally geodesic submanifold, we denote the corresponding complete
connected totally geodesic submanifold of M∗ by S∗ and call it the dual1 of S.

One of the big long-standing problems in the theory of symmetric spaces has been
classification of totally geodesic submanifolds. Since each such submanifold is itself a
symmetric space of rank not greater than that of the ambient space by Corollary 2.2.7, a
sort of inductive procedure is possible, so it is reasonable to confine oneself to classifying
maximal proper totally geodesic submanifolds first. Moreover, by duality, it suffices
to restrict to either compact ot noncompact type. Still, finding all maximal Lie triple
systems for a given symmetric space is a very complicated algebraic problem, so totally
geodesic submanifolds have only been classified in symmetric space that are relatively
simple in one way or another: in rank one due to Wolf ([Wol63]); in the irreducible spaces
of rank two due to Chen, Nagano, and Klein ([CN77, CN78], [Kle10], as well as the
previous 3 articles of Klein mentioned in the latter); in products or rank-one spaces due
to Rodŕıguez-Vázquez ([RV22]); there is a classification of maximal nonsemisimple totally
geodesic submanifolds due to Berndt and Olmos ([BO16]); finally, there is a classification

1It might happen that S, being a symmetric space, is itself simply connected semisimple, in which case
there is possible ambiguity between its dual as of a totally geodesic submanifold and as of a symmetric
space. The difference is insignificant though, as the latter is always going to be the universal Riemannian
covering space of the former. In such a situation, we will always mean the former, unless otherwise stated.

56



2.2. Submanifold theory in symmetric spaces

of maximal totally geodesic submanifolds in exceptional symmetric spaces due to Kollross
and Rodŕıguez-Vázquez ([KRV23]). See also the discussion on the index of a symmetric
space at the beginning of Subsection 6.2.2.

We are not going to delve into the details and methods of the above papers but will prove
one important result pertaining to maximal totally geodesic submanifolds. First of all, it
is not hard to show that the following are equivalent for a symmetric space M :

(i) The Euclidean part of M is simply connected.

(ii) The Euclidean part of M is isometric to a Euclidean space.

(iii) The fundamental group of M is finite.

Recall that even in a symmetric space, a totally geodesic submanifold does not have to be
embedded; for instance, in any symmetric space of compact type and rank greater than 1,
one could take a dense geodesic in a maximal flat (see Definition 2.2.20). With the above
equivalent conditions in mind, we can prove the following

Proposition 2.2.19. Let M be a symmetric space whose Euclidean part is simply con-
nected. Then every maximal connected proper totally geodesic submanifold of M is
automatically properly embedded.

Proof. Let M be represented by an effective Riemannian symmetric pair (G,K). Let
S ⊂ M be a maximal (⇒ complete) connected proper totally geodesic submanifold and
V = ToS ⊆ p the corresponding Lie triple system. As we noticed in Remark 2.2.14, S is
represented by (h, θ), where h = Nk(V )⊕ V . We claim that h is self-normalizing. Indeed,
if X ∈ Ng(h) and Y ∈ h, then

[θX, Y ] = θ[X, θY ] ∈ θ([X, h]) ⊆ θ(h) = h,

so Ng(h) is itself θ-stable. The intersection of Ng(h) with p is a Lie triple system containing
V , so by maximality it must be either V or the whole p. First, consider the former case.
The intersection of Ng(h) with k then has to be Nk(V ) and thus Ng(h) = h. Let H be
the connected Lie subgroup of G corresponding to h. This is a closed subgroup because
H = N0

G(h), and its orbit through o is S by Proposition 2.2.12. As we will discuss in
Remark 2.3.3, closed subgroups of G have properly embedded orbits. Let now Ng(h) ∩ k
be p. In this case, for any one-dimensional subspace ℓ ⊆ p not lying in V , the sum
V ⊕ ℓ is a larger Lie triple system, which implies that V must be a hyperplane in p.
But then S is a totally geodesic hypersurface in M . If we write g = g0 ⊕ g1 ⊕ · · · ⊕ gk
as in Proposition 2.1.105, then, by maximality, we must have V = Vi ⊕

⊕
j ̸=i pi with

Vi ⊂ pi for some 0 ≤ i ≤ k. We can thus assume M is irreducible or flat. As we
mentioned in Example 2.2.15—and with our assumption on M in mind—M must be
isometric to Sn,RP n,RHn, or En. But then S has to be a great hypersphere or a
projective/hyperbolic/affine hyperplane, respectively; in each of these cases, S is clearly
properly embedded.

Flats

Flats are a special type of totally geodesic submanifolds in symmetric spaces that are
intimately related to the notion of rank.
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Definition 2.2.20. Let M be a symmetric space. A flat in M is a complete connected
flat totally geodesic submanifold. A maximal flat is a flat that is not contained in any
larger flat.

Lemma 2.2.21. Let M be a symmetric space represented by an orthogonal symmetric Lie
algebra (g, θ). A complete connected totally geodesic submanifold S ⊆ M passing through
o is flat if and only if its corresponding Lie triple system V = TpS is an abelian subspace
of p.

Proof. If p is abelian, the curvature of S is zero due to (2.1.5). Conversely, if S is
flat, then it is a symmetric space of Euclidean type as follows from Corollary 2.2.7 and
Proposition 2.1.89. But as we saw in Remark 2.2.14, S is represented by the orthogonal
symmetric Lie algebra (Nk(V )⊕ V, θ). Now, thanks to Proposition 2.1.80, (Nk(V )⊕ V, θ)
is also of Euclidean type, which means that V is abelian.

We can thus draw a flat version of diagram on page 55:{
abelian

subspaces in p

} {
flats in M

passing through o

}
V 7→ expM (V )

ToS←[S

Suppose M is represented by a Riemannian symmetric pair (G,K). If V is an abelian
subspace of p, it is a subalgebra and its corresponding connected abelian Lie subgroup of
G is H = expG(V ). As we know from Proposition 2.2.12, the corresponding flat is the
orbit H · o.

Let us turn attention to maximal flats now. Can two maximal flats have different
dimensions? The following proposition rules out this possibility:

Proposition 2.2.22. Let M be a symmetric space represented by a Riemannian symmetric
pair (G,K).

(a) G acts transitively on the set of pointed maximal flats in M , i.e., for any two
maximal flats S, S ′ ⊆ M and any p ∈ S, p′ ∈ S ′, there exists g ∈ G mapping S onto
S ′ and p to p′.

(b) K0 acts transitively on the set of maximal abelian subspaces in p.

(c) Every tangent vector to M is tangent to some maximal flat.

(d) Every maximal flat in M is properly embedded.

Proof. To begin with, (a) immediately follows from (b) and the fact that G acts transitively
on M . Also, (c) is trivial because every vector in p lies in some maximal abelian subspace
of p. So we only need to prove (b) and (d). For (d), let S ⊆ M be a maximal flat. We
may assume it passes through o; let a ⊆ p correspond to ToS ⊆ ToM , and let A be the
connected Lie subgroup of G with Lie algebra a. This subgroup is abelian and Θ-stable,
and the restriction of Θ to it is just the inverse map. The same must then be true for the
closure A. In other words, the Lie algebra a of A is abelian and contained in p. Since it
also contains a, we must have a = a, which implies that A is closed. Being an orbit of A,
S has to be properly embedded by Remark 2.3.3.
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We now proceed to prove (b), which is essentially a problem in Lie theory. It is proven
in [Hel01, Lem.V.6.3] in case M is of compact or noncompact type, so we only show
how to reduce the general case to that. First of all, quotienting by I, we may assume
(G,K) is effective. Let g = g0 ⊕ gc ⊕ gnc be the decomposition of g into its Euclidean

and compact/noncompact parts as in Proposition 2.1.84. Let Ĝ be the universal covering

Lie group of G and Θ̂ the lift of θ to Ĝ. Take K̂ = (ĜΘ̂)0. Then we need to prove that

K̂ acts transitively on the set of maximal abelian subspaces of p, as this action factors
through the action of K0. But Ĝ splits as Ĝ0 × Ĝc × Ĝnc, and we have Θ̂ = (Θ̂0, Θ̂c, Θ̂nc),

hence K̂ = K̂0 × K̂c × K̂nc. At the same time, every maximal abelian subspace a of
p = p0 ⊕ pc ⊕ pnc is trivially of the form p0 ⊕ ac ⊕ anc, where ac is maximal abelian in pc
and anc is such in pnc. It then suffices to show that K̂c (resp., K̂nc) acts transitively on

the set of maximal abelian subspaces of pc (resp., pnc). But (Ĝc, K̂c) and (Ĝnc, K̂nc) are
of compact and noncompact type, respectively, so we are done.

Remark 2.2.23. In the setting of the proof of Proposition 2.2.22 we can go further and
decompose (g, θ) into its irreducible parts as in Proposition 2.1.105: g = g0⊕ g1⊕· · ·⊕ gk.
Then every maximal abelian subspace a of p = p0 ⊕ p1 ⊕ · · · ⊕ pk must be of the form
p0 ⊕ a1 ⊕ · · · ⊕ ak, where ai is maximal abelian in pi.

Corollary 2.2.24. All the maximal flats in a symmetric space M have the same dimension.
If M is represented by an orthogonal symmetric Lie algebra (g, θ), then rk(M) coincides
with the dimension of any maximal abelian subspace of p.

Example 2.2.25 (Flats in compact Lie groups). Let G be a compact connected Lie
group equipped with a bi-invariant metric. It follows from (2.1.5) that G is flat if and
only if it is abelian. In particular, a connected Lie subgroup H ⊆ G is a flat if and only if
it is abelian. It turns out that every flat in G passing through o arises in this way. Indeed,
let h ⊆ g be any subspace. Let us write V ⊆ p for the subspace corresponding to h under
g ∼= p. Then V is abelian if and only if

[V, V ] = span{([X, Y ], [X, Y ]) | X, Y ∈ h} = {0} ,

which happens precisely when h is an abelian subalgebra of g. In this case, the flat
corresponding to V is the connected abelian Lie subgroup corresponding to g. As a
consequence, maximal flats in G passing through e are nothing but maximal tori. In
particular, the rank of G as a symmetric space coincides with its rank as a Lie group. �

Reflective submanifolds

Reflective submanifolds are another special subclass of totally geodesic submanifolds
that, as the name implies, are related to reflections. They were studied in depth by
Leung, who obtained the classification of reflective submanifolds in simply connected
irreducible symmetric spaces of compact type ([Leu75, Leu79a]). By duality, that result
also yields their classification in irreducible symmetric spaces of noncompact type (see
Remark 2.2.38).

Definition 2.2.26. Let M be a Riemannian manifold. A connected submanifold S ⊆ M
is called reflective if there exists an involutive isometry σ of M such that S is a connected
component of the fixed point set Mσ.
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Example 2.2.27. Let M be a symmetric space and o ∈ M any point. Then so is an
involutive isometry. The connected components of M so other than o are called polars
of M . In the compact type case, they carry deep information about the geometry and
topology of M (see, e.g., [Nag88] and the following papers in that series). �

Proposition 2.2.28. Let M be a Riemannian manifold and S ⊆ M a reflective submani-
fold.

(a) S is properly embedded.

(b) S is totally geodesic.

(c) The involution σ in Definition 2.2.26 is unique, provided M is connected.

Proof. Let us prove that every connected component of Mσ is a properly embedded
submanifold. Indeed, given p ∈ Mσ, TpM = V+ ⊕ V−, where V± is a ±-eigenspace of dσp.
Hence, in a normal neighborhood of p, Mσ is given by exp(V+ ∩Br(0)), where Br(0) is a
small enough ball in TpM . This proves that the connected component of Mσ containing p
is embedded and totally geodesic. It is properly embedded because Mσ is closed. Note
that the other connected components may have different dimensions. We are left to show
(c). Given p ∈ S, dσp must be1 E on TpS and −E on2 NpS, so dσp is uniquely determined.
Now everything follows from Proposition 2.1.1(c).

Proposition 2.2.28 suggests that there should be an intrinsic way to describe the involution
σ in terms of S. For simplicity, we do it under the assumption that M is complete. We
first define the notion of reflection in a submanifold.

Lemma 2.2.29. Let M be a complete connected Riemannian manifold and S ⊆ M a
properly embedded submanifold. Then for every p ∈ M , there exists a closest point q ∈ S
to p, i.e., dist(p, q) = dist(p, S). Moreover, any minimizing geodesic segment from p to q
intersects S orthogonally at q.

Definition 2.2.30. Let M be a complete Riemannian manifold and S ⊆ M a properly
embedded connected submanifold. Take any p ∈ M and let q be a closest point to q in
S (see Lemma 2.2.29). Take a geodesic γ with initial point q such that γ(T ) = p for
some T ≥ 0 and γ

∣∣
[0,T ]

is minimizing. Consider the point γ(−T ) ∈ M . If γ(−T ) does

not depend on the choice of a closest point q, then we say that p is reflectable in S and
denote γ(−T ) by rS(p). If every point of M is reflectable in S, we call rS : M → M the
geodesic reflection of M in S and say that rS is well-defined.

The following essentially sums up what we have discussed so far:

Corollary 2.2.31. Let M be a complete Riemannian manifold and S ⊆ M a connected
properly embedded submanifold. The following are equivalent:

(i) S is reflective.

(ii) The geodesic reflection of M in S is well defined and is an isometry.

1Throughout the thesis, we often denote the identity operator on a vector space and the identity
element of a linear Lie group by E.

2Here and elsewhere in the thesis, if S is a submanifold, NS stands for its normal bundle and NpS
for the normal space at p ∈ S.
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If the above conditions are satisfied, then σ in Definition 2.2.26 coincides with rS. In
particular, S is a connected component of M rS . Also, S is complete.

Before we move to the case when the ambient space is symmetric, we mention one more
important property of reflective submanifolds in general.

Definition 2.2.32. Let M be a Riemannian manifold and p ∈ M any point. A subspace
V ⊆ TpM is called strongly curvature-invariant if both V and V ⊥ are curvature-
invariant. A submanifold S ⊆ M is called (strongly) curvature-invariant if TpS is
(strongly) curvature-invariant for every p ∈ S.

Example 2.2.33. As we saw in Example 2.2.9, totally geodesic submanifolds are curvature-
invariant. The converse, however, does not always hold (see [Nai00]). �

Proposition 2.2.34. Let S be a reflective submanifold in a Riemannian manifold M .
Then S is strongly curvature-invariant.

Proof. Thanks to Proposition 2.2.28 and Example 2.2.33, we need only show that the
normal spaces to S are curvature-invariant. Let X, Y, Z ∈ NpS. We compute:

dσp(R(X, Y )Z) = R(dσp(X), dσp(Y ))dσp(Z) = R(−X,−Y )(−Z) = −R(X, Y )Z,

hence R(X, Y )Z ∈ NpS.

In symmetric spaces, reflective submanifolds enjoy a special extra property: they always
come in pairs. Let M be a symmetric space and S ⊆ M a reflective submanifold. Take any
p ∈ S. As we showed in Proposition 2.2.34, NpS is curvature-invariant. Hence, according
to Corollary 2.2.13, S⊥

p = exp(NpS) is a complete connected totally geodesic submanifold
of M .

Proposition 2.2.35. The submanifold S⊥p is reflective.

Proof. Consider the composition σ = so ◦ rS. This is an isometry of M such that1 dσp is
E on NpS and −E on TpS. Since dσp is involutive, so is σ itself (by Proposition 2.1.1(c)).
Using an argument similar to the one we used in the proof of Proposition 2.2.28, it is easy
to see that S⊥p is one of the connected components of Mσ.

Observation 2.2.36. Let S ⊆ M be reflective and p, q ∈ S any two points. Thanks to
Corollary 2.2.7, S is itself a symmetric spaces, hence it is a homogeneous submanifold.
Take f ∈ I(M,S) that maps p to q. We then have f(S⊥p ) = S⊥q . So the congruence class
of S⊥p in M does not depend on p. We will refer to it as the orthogonal complement of
S and denote it simply by S⊥ if there is no ambiguity.

We finish our discussion of reflective submanifolds with one more important result. Observe
that curvature-invariant subspaces can be regarded as the infinitesimal version of totally
geodesic submanifolds, and, in a similar spirit, strongly curvature-invariant subspaces can
be regarded as the infinitesimal version of reflective submanifolds. Now, in a symmetric

1A submanifold S such that for every p ∈ S there exists an isometry of M that preserves S and whose
differential at p satisfies these two properties is called symmetric. Symmetric submanifolds are symmetric
spaces in their own right. In symmetric spaces, reflective submanifolds are symmetric, although in general
this is not true. A complete connected totally geodesic submanifold of a symmetric space is symmetric if
and only if it is reflective.
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space, as we know from Corollary 2.2.13, every curvature-invariant subspace comes from
a totally geodesic submanifold. Is the analogous statement true for strongly curvature-
invariant subspaces? It turns out, the answer is affirmative1, at least in the simply
connected case.

Proposition 2.2.37. Let M be a simply connected symmetric space, o ∈ M , and V ⊆ ToM
a strongly curvature-invariant subspace. Then there exists a (unique) reflective submanifold
S ⊆ M passing through o such that ToS = V , namely S = exp(V ).

Proof. Let M be represented by an orthogonal symmetric Lie algebra (g, θ). We need to
show that there exists f ∈ I(M) that fixes o such that dfo is E on V and −E on V ⊥. When
thought of as subspaces of p, both V and V ⊥ are Lie triple systems by assumption. Let
T ∈ GL(p) be an operator that is E on V and −E on V ⊥. Thanks to Proposition 2.1.68,
it suffices to show that T preserves the inner product and curvature tensor at o. The
former is obvious. For the latter, take X, Y, Z ∈ p. By (2.1.5), we need to show that

T [[X, Y ], Z] = [[TX, TY ], TZ]. (2.2.1)

By linearity, we may assume each of X, Y, Z lies either in V or V ⊥. If X, Y, Z all lie in V ,
so does [[X, Y ], Z], so both sides of (2.2.1) equal [[X, Y ], Z]. Similarly, if X, Y, Z ∈ V ⊥,
both sides of (2.2.1) equal −[[X, Y ], Z]. Let us consider the less trivial case when X, Y ∈ V
but Z ∈ V ⊥. Then [[TX, TY ], TZ] = −[[X, Y ], Z], so we need to show that [[X, Y ], Z]
lies in V ⊥—i.e., that ad[X, Y ] preserves V ⊥—for (2.2.1) to hold. The inner product
on p is k-invariant, which means that the adjoint representation of k on p is by skew-
symmetric operators. One such operator is ad[X, Y ], as [X, Y ] ∈ k. Since ad[X, Y ]
preserves V , it must also preserve V ⊥. Now assume X,Z ∈ V, Y ∈ V ⊥. Then we need
to have [[X, Y ], Z] ∈ V ⊥ for (2.2.1) to hold. In other words, for every W ∈ V , we want
⟨ [[X, Y ], Z]|W ⟩ = 0. But

⟨ [[X, Y ], Z]|W ⟩ = −Rm(X, Y, Z,W ) = −Rm(Z,W,X, Y ) = ⟨ [[Z,W ], X]|Y ⟩,

which is zero because [[Z,W ], X] ∈ V . The other cases can be proven in a similar way
using the symmetries of the curvature tensor.

Remark 2.2.38. Since reflective submanifolds are totally geodesic, they can be dualized
(see Proposition 2.2.17). Let M be a simply connected semisimple symmetric space and
M∗ its dual. Let S ⊆ M be a complete connected totally geodesic submanifold and
S∗ ⊆ M∗ its dual in M∗. Then, thanks to Proposition 2.2.34, Proposition 2.2.17(a), and
Proposition 2.2.37, S is reflective if and only if S∗ is.

Austere submanifolds

The last class in our list is that of austere submanifolds, which, in a sense, occupy the
middle ground between totally geodesic and minimal submanifolds. They are the only
submanifolds in the list that are not automatically homogeneous.

Definition 2.2.39. A submanifold S of a Riemannian manifold M is called austere
if for every p ∈ S and ξ ∈ NpS, the spectrum of the shape operator Aξ—when taken

1A proof of this statement can be found in [Leu73], but we believe it is incomplete, as the author
seems to omit the case when the submanifold lies diagonally within the de Rham decomposition.
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with multiplicities—is invariant under multiplication by −1. In other words, if λ is an
eigenvalue of Aξ of multiplicity m, then so is −λ.

Observation 2.2.40 (Austerity vs minimality). Another way to express the definition
of austerity is that Aξ and −Aξ have the same spectrum when counted with multiplicities.
If S is austere, its shape operators are clearly trace-free. If H stands for the mean
curvature vector field of S, then ⟨Hp |ξ⟩ = tr(Aξ) = 0, so austere submanifolds are
minimal. For surfaces in M , the notions of austerity and minimality coincide. But for
higher-dimensional submanifolds, austerity is a stronger notion in general.

Note that if S is austere and odd-dimensional, its shape operators must have nontrivial
kernels. We are not going to study austere submanifolds in detail but will discuss two
related results that will be relevant in the sequel. The first one concerns cohomogeneity-one
actions, which will be discussed in more detail in Section 2.3 (see Definition 2.3.6 and
Subsection 2.3.3).

Proposition 2.2.41. Let M be a Riemannian manifold and H ↷ M a proper isometric
action of cohomogeneity 1 by some Lie group H. Then the singular orbits of H are austere.

Proof. Let S be a singular orbit of H. Take any p ∈ S and ξ ∈ NpS. The action of Hp

on NpS is of cohomogeneity 1 by Proposition 2.3.14, so there exists h ∈ Hp such that
dhp(ξ) = −ξ. Since h is an isometry that preserves S and p, we have, on TpS:

dhp ◦ Aξ = Adhp(ξ) ◦ dhp = A−ξ ◦ dhp.

This implies that Aξ and A−ξ have the same spectrum when counted with multiplicities.
But A−ξ = −Aξ, so S is austere.

The second result pertains to austere submanifolds in the complex setting.

Proposition 2.2.42. Let M be a Kähler manifold and S ⊆ M a complex submanifold.
Then S is austere.

Proof. Since the almost complex structure I is parallel, the Levi-Civita connection on
M , thought of as a map ∇ : X(M)× X(M) → X(M), is C-linear in the second argument.
Therefore, if S ⊆ M is a complex submanifold, its second fundamental form II(X, Y ) =

(∇X Ỹ )⊥ is also C-linear in the second argument. Since II is symmetric, it is C-bilinear.
But then the shape operators are C-antilinear. Indeed, given ξ ∈ NpS and X, Y ∈ TpS,
we have

⟨Aξ(IX) |Y ⟩ = ⟨II(IX, Y ) |ξ⟩
= ⟨II(X, IY ) |ξ⟩ (II is C-bilinear)
= ⟨Aξ(X) |IY ⟩
= ⟨−IAξ(X) |Y ⟩, (I is skew-symmetric)

so Aξ ◦ I = −I ◦Aξ on TpS. Consequently, if X is an eigenvector of Aξ with eigenvalue λ,
then IX is an eigenvector with eigenvalue −λ. This implies that S is austere.
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2.2.2. The second fundamental form of a homogeneous subman-
ifold

Here we derive a relatively simple Lie algebraic formula for the second fundamental
form and shape operators of an arbitrary (extrinsically) homogeneous submanifold of a
symmetric space.

Let M be a Riemannian symmetric space represented by a Riemannian symmetric pair
(G,K). Let S ⊆ M is a homogeneous submanifold (we may assume o ∈ S). Let H ⊆ G
be a Lie subgroup having S as one of its orbits. We write h ⊆ g for the Lie algebra of H.

Proposition 2.2.43. The second fundamental form of S at o is given by

II(X, Y ) = prNoS([X
h
k , Y ]), (2.2.2)

where X, Y ∈ ToS and Xh ∈ h is any vector whose p-part is X (and Xh
k is its k-part as

usual). For any Z ∈ NoS, we have

⟨AZX |Y ⟩ = ⟨II(X, Y )|Z ⟩ = ⟨ [Xh
k , Y ]|Z ⟩, (2.2.3)

where AZ is the shape operator of S at o corresponding to Z.

Implicit in this proposition is the fact that the right hand sides of (2.2.2) and (2.2.3) do
not depend on the choice of Xh—which can also be easily verified directly: given another
lift X̃h ∈ h, Xh

k − X̃h
k = Xh − X̃h ∈ h ∩ k, so [Xh

k − X̃h
k , Y ] ∈ ToS. There are various ways

to prove this proposition, some of them shorter than the proof we are giving here (see, e.g.,
Remark 2.2.45). We have opted for this proof to highlight that this is a rather elementary
result that requires only basic techniques and computations.

Proof. Equations (2.2.2) and (2.2.3) are clearly equivalent, so it suffices to prove the latter.
The first equality in (2.2.3) is essentially the definition of AZ , hence we need only prove
the second one. The idea is to extend X, Y and Z to vector fields in a clever way and
then use the Koszul formula. The extensions of X and Z can be arbitrary, so we just take
them to be the corresponding Killing vector fields X̂ and Ẑ. We could have taken the
extension of Y to be the Killing vector field Ŷ , but it is not in general tangent to S over
S (unless S is totally geodesic). Instead, pick Y h in h whose p-component is Y and write
Y h
k for its k-component as usual. Observe that (Ŷ h)o = d(πo)e(Y

h) = Y , and Ŷ h is the
infinitesimal generator of the flow Ψt(p) = expG(tY

h) · p, so it is everywhere tangent to
the orbits of H and in particular to S. We have:

⟨II(X, Y )|Z ⟩ = ⟨(∇M
X Ŷ h)⊥ |Z ⟩ = ⟨∇M

X Ŷ h |Z ⟩

=
1

2

(
X⟨Ŷ h | Ẑ ⟩ + Y ⟨Ẑ | X̂ ⟩ − Z⟨X̂ | Ŷ h ⟩

)
+

1

2

(
−⟨X | [Ŷ h, Ẑ]o ⟩ + ⟨Y | [Ẑ, X̂]o ⟩ + ⟨Z | [X̂, Ŷ h]o ⟩

)
,

where in the last equality we apply the Koszul formula. Let us denote the contents of the
parentheses above by (∗) and (∗∗), respectively.

We first deal with (∗∗) since it is much easier. Recall that sending an element of g to its
corresponding Killing vector field on M is an antihomomorphism of Lie algebras, so we
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have
(∗∗) = ⟨X | ̂[Y h, Z]o ⟩ − ⟨Y | [̂Z,X]o ⟩ − ⟨Z | ̂[X, Y h]o ⟩.

Since the value of a Killing vector field at o is just the projection of the corresponding

element of g to p, we see that [̂Z,X]o = 0 and

(∗∗) = ⟨X |prp[Y h, Z]⟩ − ⟨Z |prp[X, Y h]⟩
= ⟨X | [Y h

k , Z]⟩ − ⟨Z | [X, Y h
k ]⟩

= ⟨X | [Y h
k , Z]⟩ + ⟨ [Y h

k , X]|Z ⟩ = 0,

where for the last equality we use the fact that the adjoint representation of k on p is
orthogonal. Now we proceed to computing (∗). We will need the following technical

Lemma 2.2.44. Let U, V,W ∈ g. Then one has

Up⟨V̂ |Ŵ ⟩ = −⟨ [Up, Vk]|Wp ⟩ − ⟨Vp | [Up,Wk]⟩.

Proof of the lemma. We begin by computing the function ⟨V̂ |Ŵ ⟩. At a point g · o ∈
M, g ∈ G, we have:

⟨V̂ |Ŵ ⟩(g · o) = ⟨d(πg·o)eV |d(πg·o)eW ⟩
= ⟨d(g−1)g·o ◦ d(πg·o)e(V ) |d(g−1)g·o ◦ d(πg·o)e(W )⟩,

where πg·o : G → M is the orbit map at g · o. The second equality follows from the fact
that g−1 is an isometry. Observe that

d(g−1)g·o ◦ d(πg·o)e = d(g−1 ◦ πg·o)e = d(πo ◦ Cg−1)e = d(πo)e ◦ Ad(g−1),

where Cg−1 is the conjugation of G by g−1. We deduce:

⟨V̂ |Ŵ ⟩(g · o) = ⟨prp(Ad(g−1)(V ))|prp(Ad(g−1)(W ))⟩.

Define a smooth function fV,W on G by the same formula:

fV,W (g) = ⟨prp(Ad(g−1)(V ))|prp(Ad(g−1)(W ))⟩.

Plainly, fV,W is the lift of the function ⟨V̂ |Ŵ ⟩ to G along πo : G → M . For this reason,

Up⟨V̂ |Ŵ ⟩ = UfV,W =
d

dt

∣∣∣∣
t=o

fV,W (expG(tU)).

Now,

fV,W (expG(tU)) = ⟨prp(Ad(expG(−tU))(V ))|prp(Ad(expG(−tU))(W ))⟩
= ⟨prp(e−t ad(U)V ) |prp(e−t ad(U)W )⟩

But prp(e
−t ad(U)V ) = prp (V − t[U, V ] +O(t2)) = Vp − t([Uk, Vp] + [Up, Vk]) + O(t2), and

the same is true for W . It follows that

fV,W (expG(tU)) = ⟨Vp |Wp ⟩
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− t
(
⟨Vp | [Uk,Wp] + [Up,Wk]⟩ + ⟨ [Uk, Vp] + [Up, Vk]|Wp ⟩

)
+O(t2),

and, differentiating at t = 0, we obtain:

Up⟨V̂ |Ŵ ⟩ = d

dt

∣∣∣∣
t=o

fV,W (expG(tU))

= −⟨Vp | [Uk,Wp]⟩ − ⟨Vp | [Up,Wk]⟩ − ⟨ [Uk, Vp]|Wp ⟩ − ⟨ [Up, Vk]|Wp ⟩
= −⟨ [Up, Vk]|Wp ⟩ − ⟨Vp | [Up,Wk]⟩ −

(
⟨ [Uk, Vp]|Wp ⟩ + ⟨Vp | [Uk,Wp]⟩

)
= −⟨ [Up, Vk]|Wp ⟩ − ⟨Vp | [Up,Wk]⟩,

which was to be proved.

Now we can apply Lemma 2.2.44 to compute (∗):

X⟨Ŷ h | Ẑ ⟩ = −⟨ [X, Y h
k ]|Z ⟩,

Y ⟨Ẑ | X̂ ⟩ = 0,

Z⟨X̂ | Ŷ h ⟩ = −⟨X | [Z, Y h
k ]⟩,

hence

(∗) = X⟨Ŷ h | Ẑ ⟩ + Y ⟨Ẑ | X̂ ⟩ − Z⟨X̂ | Ŷ h ⟩
= −⟨ [X, Y h

k ]|Z ⟩ + ⟨X | [Z, Y h
k ]⟩

= 2⟨ [Y h
k , X]|Z ⟩.

Putting it all together, we arrive at:

⟨II(X, Y )|Z ⟩ = 1

2
((∗) + (∗∗)) = ⟨ [Y h

k , X]|Z ⟩.

Since the second fundamental form is symmetric, this coincides with the desired expression
⟨ [Xh

k , Y ]|Z ⟩.

Remark 2.2.45. There is an alternative, shorter way to prove Lemma 2.2.44. Recall
from (2.1.1) (see also [Zil10, Prop. 6.34(a)]) that, given X ∈ p and Y ∈ X(M), one has
(∇X̂Y )o = [X̂, Y ]o. Going back to the setting of Lemma 2.2.44, using this formula, we
compute:

Up⟨V̂ |Ŵ ⟩ = (Ûp⟨V̂ |Ŵ ⟩)o
= ⟨∇Ûp

V̂ |Ŵ ⟩o + ⟨V̂ |∇Ûp
Ŵ ⟩o

= ⟨ [Ûp, V̂ ]o |Ŵo ⟩ + ⟨V̂o | [Ûp, Ŵ ]o ⟩
= −⟨ [Up, V ]p |Wp ⟩ − ⟨Vp | [Up,W ]p ⟩
= −⟨ [Up, Vk]|Wp ⟩ − ⟨Vp | [Up,Wk]⟩.

Remark 2.2.46. If S is given as an orbit of some isometric Lie group action H ↷ M
and H does not lie in G a priori, we can always assume H is connected and replace it
with its image in I0(M). We can then take G = I0(M) and K = Go.
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2.3. Polar and cohomogeneity-one actions

In this section, we discuss some aspects of the theory of isometric actions on general
Riemannian manifolds as well as on symmetric spaces. After some brief recap, we focus
on our main object of interest: polar and cohomogeneity-one actions. Our main references
for this section are [Mic08, Ch.VI] and [BCO16, Sect. 2.1-2.3].

2.3.1. Proper actions

We will be working almost exclusively with proper actions—as they are generally better
behaved. Before we begin, let us mention the most basic property of such actions (see
[Lee13, Prop. 21.7, 21.8]):

Proposition 2.3.1. If H is a Lie group acting properly on a smooth manifold M , then
all its orbits are properly embedded submanifolds of M , all its stabilizers are compact
subgroups, and the orbit space M/H is Hausdorff 1.

Example 2.3.2 (Linear actions). A linear action of a Lie group on a vector space is
the same as a representation on that vector space. Such an action is proper if and only if
the group is compact. �

Remark 2.3.3. Virtually all the properties of proper actions discussed below (incl.
Propositions 2.3.5 and 2.3.14) are satisfied by a larger class of actions H ↷ M , namely
such that H/I ↷ M is proper, where I is the ineffectiveness kernel. For example, if (G,K)
is a Riemannian symmetric pair, the action G ↷ M = G/K does not have to be proper:
consider, for instance, the real hyperbolic plane RH2 ∼= SL(2,R)/SO(2) represented

as S̃L(2,R)/K, where S̃L(2,R) is the universal covering group of SL(2,R) and K is a
subgroup of it isomorphic to R. In fact, the action G ↷ M proper if and only if K is
compact. However, this action factors through G/I, whose action on M is proper by
Observation 2.1.33 and Proposition 2.1.1(d). Moreover, the action of any closed subgroup
H ⊆ G on M becomes proper when factored through H/(H ∩ I). In particular, such H
has all its orbits properly embedded.

Let H be a Lie group acting properly on a smooth manifold M . Given an orbit S of
H, the set {Hp | p ∈ S} forms precisely one conjugacy class of subgroups of H, called
the isotropy type of S. At the same time, the set of conjugacy classes of subgroups
of H is partially ordered by reverse inclusion: [K1] ≤ [K2] ⇔ ∃K ′2 ∈ [K2] such that
K ′2 ⊆ K1. This induces a preorder on the orbit space M/H: H · p ≤ H · q ⇔ Hq is
conjugate to a subgroup of Hp. In particular, this gives rise to an equivalence relation
on M/H: H · p ∼ H · q ⇔ H · p ≤ H · q and H · q ≤ H · p ⇔ Hp is conjugate to Hq. We
denote the equivalence class of H · p by [H · p] and call it its (orbit) type. Let O stand
for the set of all orbit types of the action. The preorder ≤ induces a partial order on O:
[H · p] ≤ [H · q] ⇔ Hq is conjugate to a subgroup of Hp.

Definition 2.3.4. An orbit H · p is called principal if it is locally a maximal element of
M/H: there exists a neighborhood U of p such that Hp is conjugate to a subgroup of Hq

for any q ∈ U . A point p ∈ M is called principal if its orbit is principal. If M is a vector
space and the action is linear, we also say “principal vector”. The sets of principal orbits
and principal points are denoted by (M/H)reg ⊆ M/H and Mreg ⊆ M , respectively.

1One can even show that M/H is completely regular in this case (see [Mic08, Cor. 6.29]).
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Proposition 2.3.5. Let H be a Lie group acting properly on a smooth manifold M . Then:

(a) Every p ∈ M has a neighborhood U such that [H · p] ≤ [H · q] for every q ∈ U . In
other words, the orbit type is locally non-decreasing.

(b) (M/H)reg (resp., Mreg) is an open dense subset of M/H (resp., M). In particular,
principal orbits exist. The orbit type is locally constant on (M/H)reg.

(c) Suppose the orbit space M/H is connected (e.g., M is connected). Then (M/H)reg
and Mreg are connected. Consequently, all principal orbits have the same type and
thus the same dimension. The principal orbit type is the maximal element of O.

(d) If M is compact, then O is finite.

Thanks to part (c) of this proposition, we can introduce the following

Definition 2.3.6. Let H be a Lie group acting properly on a smooth manifold M in
such a way that M/H is connected. The cohomogeneity of H ↷ M is the codimension
of a principal orbit. An orbit is called singular if its dimension is less than that of a
principal orbit. An orbit is called exceptional if it is neither singular nor principal. A
point (or vector—if M is a vector space and the action is linear) p ∈ M is called singular
or exceptional if so is its orbit.

It is customary to refer to actions of cohomogeneity one simply as C1-actions. We will
also use this shorthand when we work with cohomogeneity-two actions and refer to them
as C2-actions. Similarly, we will refer to foliations of codimension one or two as C1- or
C2-foliations.

Example 2.3.7 (Actions of cohomogeneity 0). An action H ↷ M is of cohomogeneity
0 if and only if it has an open orbit. If it is proper and M/H is connected, then it has to
be transitive. In general, however, this does not have to be the case. For example, the
standard representation of GL(n,R) on Λ2(Rn)∗ is of cohomogeneity 0 but of course not
transitive. �

The nonsingular points are precisely those whose stabilizers have the lowest dimension
possible. Among them, the principal points are those whose stabilizers have the lowest
number of connected components possible. Note that parts (a) and (b) of Proposition 2.3.5
imply that the sets of singular and exceptional orbits (or points) are both closed and
nowhere dense.

Agreement. Whenever we talk about principal, singular, or exceptional orbits or coho-
mogeneity, the action in question is tacitly assumed to be proper with connected orbit
space.

We will be working with proper actions in the context of Riemannian geometry, i.e., with
proper isometric actions on Riemannian manifolds. It is worth pointing out that this does
not lead to any loss of generality:

Proposition 2.3.8. Suppose we have a proper action of a Lie group H on a smooth
manifold M . Then M admits a H-invariant Riemannian metric.

Remark 2.3.9. For isometric actions, the assumption of being proper is essentially
equivalent to an assumption that the orbits are properly embedded. Indeed, given an
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action H ↷ M with such orbits, the closure of the image of H in I(M) acts properly and
has the same orbits ([DR08, Th. 5]).

Example 2.3.10 (Orthogonal representations). A special case of an isometric action
is an orthogonal representation of a Lie group on a Euclidean space. �

Remark 2.3.11. An orbit of an isometric Lie group action on a Riemannian manifold is
by definition the same as a homogeneous submanifold (see Definition 2.2.1). What is more,
an orbit of a proper isometric action is the same as a properly embedded homogeneous
submanifold (see the proof of Lemma 2.2.3 and Proposition 2.1.1(d)).

One immediate property of proper isometric actions is that their orbits are equidistant.
Indeed, let H ↷ M be such on action with M complete and connected, and let S, S ′ ⊆ M
be two orbits. Given any p, q ∈ S, we claim that dist(p, S ′) = dist(q, S ′). Indeed, let p′ be
a closest point to p on S ′. Using the action, one can show that p is a closest point to p′

on S. Let γ be a minimizing geodesic segment between p and p′. We have

L(γ) = dist(p, p′) = dist(p, S ′) = dist(p′, S).

By Lemma 2.2.29, γ intersects both S and S ′ orthogonally. Now, if g ∈ H maps p to q,
then q′ = g(p′) is a closest point to q on S ′ and g ◦ γ is a minimizing geodesic segment
between q and q′, hence

dist(q, S ′) = dist(q, q′) = L(g ◦ γ) = L(γ) = dist(p, S ′).

One of the very important tools in the theory of proper isometric actions is the special
version of the tubular neighborhood theorem adapted to homogeneous submanifolds:

Proposition 2.3.12. Let S be a properly embedded homogeneous submanifold of a Rieman-
nian manifold M . Then there exists ε > 0 small enough such that the normal exponential
map of S is defined on N εS = {v ∈ NS | ||v|| < ε} and is a diffeomorphism from N εS
onto a neighborhood U ε(S).

Whenever S ⊆ M is as in Proposition 2.3.12 and we write N εS or U ε(S), we always
assume ε is small enough to satisfy the assertion of the proposition. Assume S is an orbit
of a proper isometric action H ↷ M . Given p ∈ S , the submanifold Sεp = exp(N ε

pS),
where N ε

pS = N εS ∩NpS, is a so-called slice of the action H ↷ M at p. It is preserved
by Hp, and the action Hp ↷ Sεp, in a sense, encapsulates all information about the action
of H in an invariant neighborhood (U ε(S)) of S. We are not going to discuss slices and
define them in general and refer to [Mic08, Th. 6.26] instead. We will, however, define
their linear version.

Let H ↷ M be a proper isometric action. Given p ∈ M , note that Hp acts linearly
and orthogonally on TpM by g 7→ dgp (this is often called the isotropy representation of
H ↷ M at p). The tangent space Tp(H · p) to the orbit H · p is a subrepresentation of
TpM and thus so is the normal space Np(H · p).

Definition 2.3.13. The representation of Hp on Np(H · p) is called the slice represen-
tation of the action H ↷ M (or simply of H) at p.

The slice representation encodes the action of H in a neighborhood of the orbit and helps
to detect orbit type.
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Proposition 2.3.14. Suppose we have a proper isometric action H ↷ M and let p ∈ M .

(a) The map exp: N ε
pS −→∼ Sεp is Hp-equivariant.

(b) The cohomogeneity of the slice representation at p coincides with the cohomogeneity
of H ↷ M .

(c) The orbit H · p is principal if and only if the slice representation at p is trivial.

We need to discuss the special case of isometric actions when there are no singular orbits.

Definition 2.3.15. A foliation F on a Riemannian manifold M is said to be homoge-
neous if there exists an isometric Lie group action H ↷ M whose orbits are precisely
the leaves of F . If H is specified, F is also called the orbit foliation1 of H. The
codimension of a foliation F is the codimension of its leaves.

Note that H in Definition 2.3.15 can be taken connected. If the leaves of F are properly
embedded, we can also assume the action of H is proper (using the same ideas as in the
proof of Lemma 2.2.3). In this thesis, we will occasionally use the following shorthand: a
foliation is called proper if all of its leaves are properly embedded.

Observation 2.3.16. Let H be a connected Lie group acting isometrically on a Rieman-
nian manifold M . Then the orbits of H form a homogeneous foliation if and only if there
are no singular orbits.

The following result will prove useful in Chapter 4 when we study homogeneous foliations
on symmetric spaces of noncompact type (see [BDRT10, Prop. 2.1] for a proof):

Proposition 2.3.17. Let M be a Hadamard manifold and H a connected Lie group
acting properly, isometrically, and without singular orbits on M . Then every orbit of H is
principal (i.e., there are no exceptional orbit).

We now introduce a suitable notion of equivalence for all the homogeneous objects we
have seen so far.

Definition 2.3.18. Two isometric actions H1 ↷ M1 and H2 ↷ M2 are called orbit-
equivalent if there exists an isometry f : M1 −→∼ M2 such that f(H1 · p) = H2 · f(p) for
every p ∈ M1. If H1 ↷ M1 and H2 ↷ M2 are orthogonal representations, we additionally
require f to be linear. Two submanifolds S1 and S2 (resp., foliations F1 and F2) of
Riemannian manifolds M1 and M2, respectively, are called (isometrically) congruent
if there exists an isometry f : M1 −→∼ M2 such that f(S1) = S2 (resp., f(S) is a leaf of
F2 for every leaf S of F1). Two isometric actions on (resp., submanifolds or foliations
of) a Riemannian manifold M are called strongly orbit-equivalent (resp., strongly
(isometrically) congruent) if f as above can be chosen in I0(M).

If there is no ambiguity and the Riemannian context is clear, we will drop the word “isomet-
ric” and simply say congruent. Note that orbit-equivalence preserves the cohomogeneity of
an action and the sets of principal, exceptional, and singular orbits, whereas congruence of
submanifolds preserves the property of being (intrinsically or extrinsically) homogeneous.
Similarly, congruence of foliations preserves the property of being homogeneous. The
question of whether two given submanifolds of M (resp., isometric actions on M) are

1Some authors use this term even when the orbits do not form a foliation by extending the notion of
a foliation and allowing it to be singular. For the general framework of singular Riemannian foliations,
see, for example, [Mol88] or [Lyt10].
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congruent (resp., orbit-equivalent) can often be highly nontrivial and features prominently
in this thesis. We will often refer to this questions as the congruence problem.

Remark 2.3.19. Suppose we have a homogeneous foliation Fi on M given as the orbit
foliation of an isometric action Hi ↷ M for i = 1, 2. Then a congruence between F1 and
F2 is the same as an orbit-equivalence between H1 ↷ M and H2 ↷ M .

Observation 2.3.20. Suppose M is a symmetric space represented by a Riemannian
symmetric pair (G,K) such that G → I0(M) is surjective (this is always the case if M
has compact Euclidean part). We claim that any isometric action on M by a connected
Lie group is orbit-equivalent to an action of a connected Lie subgroup of G. Indeed, given
H ↷ M , consider the image of H in I0(M) and let H ′ ⊆ G be the preimage of that under
G↠ I0(M). Clearly, H ′ is a Lie subgroup of G and it has the same orbits as H, hence so
does (H ′)0. Moreover, if H ↷ M is proper, then (H ′)0 is closed.

2.3.2. Polar and hyperpolar actions

Now, we proceed to a subclass of proper isometric actions with special geometric properties,
called polar actions.

Definition 2.3.21. Suppose we have a proper 1 isometric action of a Lie group H on a
complete Riemannian manifold M . A complete connected submanifold Σ ⊆ M is called a
section of the action H ↷ M if it intersects all the orbits and does so orthogonally2:

(a) Σ ∩ (H · p) ̸= ∅ for all p ∈ M .

(b) TpΣ and Tp(H · p) are orthogonal subspaces of TpM for all p ∈ Σ.

The action H ↷ M is called polar if it admits a section. An orthogonal representation of
a Lie group H on a Euclidean space V is called polar if it is polar as an action H ↷ V .

When working with polar actions, one usually restricts to connected groups, due to the
following fact, which can be easily deduced from Lemma 2.2.29:

Proposition 2.3.22. Let H be a Lie group acting properly and isometrically on a complete
Riemannian manifold M in such a way that M/H is connected. Then H acts polarly if
and only if H0 does.

We list some basic properties of polar actions:

Proposition 2.3.23 (Properties of polar actions). Let H be a Lie group, M a
complete Riemannian manifold, and H ↷ M a polar action.

(a) The dimension of any section of H ↷ M equals the cohomogeneity of the action.

(b) For every p ∈ M , there exists a section passing through it.

(c) If p ∈ M is a nonsingular point of the action and Σ ⊆ M is a section passing through
it, then TpΣ = Np(H · p).

(d) Every section of H ↷ M is a totally geodesic submanifold of M .

1Although we add properness as an assumption, in many cases it is automatically satisfied (see [Lyt10,
Cor. 1.3]).

2Some authors also add the assumption that Σ is embedded or even properly embedded. We will not
assume this by default and mention it whenever required.
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(e) If p ∈ M is a nonsingular point of the action, then there exists a unique section
passing through it, and it is given by exp(Np(H · p)).

(f) All sections of H ↷ M are mutually congruent via H. Namely, let Σ and Σ′ be two
sections, p ∈ Σ any nonsingular point of the action, q ∈ Σ′ ∩ (H · p), and g ∈ H any
element mapping p to q. Then g(Σ) = Σ′.

(g) For any p ∈ M , the slice representation Hp ↷ Np(H · p) is polar. A subspace
V ⊆ Np(H · p) is a section of the slice representation at p if and only if it is the
tangent space of a section of H ↷ M passing through p.

(h) If M is simply connected, then there are no exceptional orbits.

Proofs of most of these statements can be found in [Mic08, Ch.VI]. Most available proofs
of part (d) are incomplete, see [LNS22] for details. For (h), see [Lyt10, Cor. 1.3].

Given a complete connected Riemannian manifold M , a proper isometric action H ↷ M ,
and a principal point p, one can show that the set exp(Np(H · p)) intersects all the
orbits. So what makes polar actions special is that this set is a submanifold and it always
intersects the orbits orthogonally.

Corollary 2.3.24. All sections of a polar representation H → O(V ) are linear subspaces
of V .

Proof. By Proposition 2.3.23(d), any section has to be totally geodesic, hence an affine
subspace in V . By definition, it has to pass through 0.

Example 2.3.25 (Polar actions on Sn). Since I(Sn) = O(n + 1) ⊂ I(Rn+1), an
isometric cohomogeneity-k action of a Lie group G on Sn is the same as its orthogonal
representation of cohomogeneity k + 1 on Rn+1. What is more, such an action G ↷ Sn is
polar if and only if the corresponding representation G ↷ Rn+1 is. A section of the latter
is simply the affine cone over a section of the former. �

Part (g) of Proposition 2.3.23 asserts that all slice representations of a polar action are
polar. The converse is not true in general, which leads to another, more general class of
actions.

Definition 2.3.26. A proper isometric action of a Lie group G on a complete Riemannian
manifold M is called infinitesimally polar if all of its slice representations are polar.

Example 2.3.27 (Cohomogeneity-2 actions). Let G ↷ M be an isometric action of
cohomogeneity two and p ∈ M any point. By Proposition 2.3.14(b), the slice representation
of the action at p has cohomogeneity two. As we observed in Example 2.3.25, that
representation induces a cohomogeneity-one action on the unit sphere. In the next
subsection, we will see that cohomogeneity-one actions on symmetric spaces are polar. But
then the slice representation itself is polar. We deduce that isometric cohomogeneity-two
actions are infinitesimally polar. �

The importance of infinitesimally polar actions comes from the following result of Lytchak
and Thorbergsson ([LT10]): a proper isometric action G ↷ M is infinitesimally polar if
and only if the orbit space M/G, with its quotient metric space structure, is a Riemannian
orbifold. Now we go in the opposite direction and define a special subclass of polar actions.
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Definition 2.3.28. A polar action is called hyperpolar1 if its sections are flat.

We do not define hyperpolar representations as that would be redundant: being a linear
subspace, every section of a polar representation is automatically flat. On symmetric
spaces, there is an obvious upper bound on the cohomogeneity of a hyperpolar action.
Indeed, we know from Proposition 2.3.23(a) that it coincides with the dimension of a
section. But a section of a hyperpolar action is a flat totally geodesic submanifold. From
the very definition of rank, we get:

Corollary 2.3.29. Let M be a symmetric space and H ↷ M a hyperpolar action (resp., F
a hyperpolar foliation on M). Then the cohomogeneity of H ↷ M (resp., the codimension
of F) cannot exceed rk(M).

Here is an crucial example of a hyperpolar action and a polar representation.

Example 2.3.30. Let M be a semisimple Riemannian symmetric space represented by a
Riemannian symmetric pair (G,K). Then the action K0 ↷ M is hyperpolar and thus
the restricted isotropy representation K0 → SO(ToM) is polar by Proposition 2.3.23(g).
The sections of K0 ↷ M are precisely the maximal flats in M passing through p. The
sections of K0 ↷ p ∼= ToM are precisely the maximal abelian subspaces of p. �

Corollary 2.3.31. The rank of a semisimple symmetric space coincides with the cohomo-
geneity of its isotropy representation.

Definition 2.3.32. The restricted isotropy representation of a semisimple Riemannian
symmetric pair is called an s-representation.

It turns out that s-representations essentially exhaust all polar representations. The
following was proven by Dadok in [Dad85]:

Theorem 2.3.33 (Classification of polar representations). Every polar representa-
tion of a connected Lie group is orbit-equivalent to an s-representation.

Definition 2.3.34. A homogeneous foliation F on a complete Riemannian manifold M
is called polar (resp., hyperpolar) if it is the orbit foliation of a polar (resp., hyperpolar)
isometric action H ↷ M without singular orbits. In this case, a section of H ↷ M is also
said to be a section of F .

Notice that a polar homogeneous foliation is proper by definition.

2.3.3. Cohomogeneity-one actions and homogeneous hypersur-
faces

Last but not least, we discuss some aspects of the theory of cohomogeneity-one actions.
We start off with the following collection of results concerning the orbit spaces of such
actions.

1There is yet another class of isometric actions closely related to hyperpolar actions: G ↷ M is called
variationally complete if, roughly speaking, it produces enough Jacobi fields along transversal geodesics to
determine the multiplicity of focal points to the orbits (see [BS58, Def. 6.8] for a precise definition). This
notion was introduced by Bott and Samelson in their study of the topology of loop spaces of symmetric
spaces. Variationally complete actions are infinitesimally polar ([ABT13, Th. 6.3]). In [Con71], Conlon
showed that hyperpolar actions are variationally complete. In many cases, the converse is also true;
for instance, this is the case when G ↷ M is an orthogonal representation ([DSO01]), or when M is
nonnegatively curved (e.g., a compact symmetric space; see [LT07]).
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Proposition 2.3.35 (Orbit spaces of C1-actions). Let H be a connected Lie group,
M a complete connected Riemannian manifold, and H ↷ M a proper isometric action of
cohomogeneity 1.

(a) The orbit space M/H is a 1-dimensional topological manifold with or without bound-
ary, hence it is homeomorphic to R,S1, [0, 1], or [0, 1).

(b) The interior points of M/H are precisely the principal orbits.

(c) If all the orbits are principal (e.g., if M/H ≃ S1 or R), then M ↠M/H is a fiber
bundle.

(d) If M is compact, then so is M/H, hence it is homeomorphic to either S1 or [0, 1].

(e) If M is simply connected, then so is M/H, hence it is homeomorphic to R, [0, 1], or
[0, 1). Moreover, there are no exceptional orbits in this case.

(f) If M is Hadamard, then M/H is noncompact, hence it is homeomorphic to either R
or [0, 1).

Proofs of these results can be found in [Mos57, BB82, Lyt10], as well as [BB01].

Example 2.3.36. Consider the isometric C1-action of SO(2) on S2 given by rotation
around the z-axis. The orbit space of this action is homeomorphic to [0, 1], where the
endpoints correspond to the singular orbits, which are just the South and North poles. This
action factors through the Riemannian covering map π : S2 → RP 2, x 7→ [x], to produce
an isometric C1-action on RP 2. The orbit space of this action is also homeomorphic to a
closed interval, which we can identify with [0, 1/2]. The effect that π has on the orbit
spaces is that it folds S2/SO(2) ≃ [0, 1] in half. The endpoint 0 ∈ [0, 1/2] ≃ RP 2/SO(2) is
still singular, but the new endpoint 1/2 is an exceptional orbit (the image of the equator
under π) with isotropy Z/2Z. �

One useful property of C1-actions is that they are often hyperpolar. Indeed, let H ↷ M
be such an action with M complete and connected. Given a nonsingular point p ∈ M ,
the normal space Np(H · p) is 1-dimensional, so Σ = exp(Np(H · p)) is just the image of
a geodesic emanating from p orthogonally to H · p (if there is no ambiguity, we simply
call it a normal geodesic at p). As we mentioned earlier, Σ intersects all the orbits. In
theory, it might have self-intersections. Assume this is not the case and Σ is an immersed
submanifold. One can then show that Σ always intersects the orbits orthogonally (see
[DRK11, Lem. 5]). We deduce:

Corollary 2.3.37. Let M be a complete connected Riemannian manifold and H ↷ M
an isometric cohomogeneity-one action. Assume that for some nonsingular point p, the
image of a normal geodesic at p is a submanifold. Then H ↷ M is hyperpolar.

The most obvious example of a space that would satisfy the assumption of Corollary 2.3.37
is a space where the image of every geodesic is a submanifold. As we know from (2.1.2),
this includes all symmetric spaces.

Remark 2.3.38. As we mentioned earlier, some authors require the sections to be
(properly) embedded as part of the definition of a polar action. In this case, Corollary 2.3.37
would not hold in general. Still, there are many spaces where the image of every geodesic
is properly embedded: for example, Hadamard manifolds, which includes the Euclidean
spaces and all symmetric spaces of noncompact type. Even though this is no longer
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true for symmetric spaces of compact type, one can show the following: given a simply
connected symmetric space of compact type M and an isometric C1-action H ↷ M , any
geodesic that is normal to some orbit of H is closed (see [TT95, Th. 1.6(a)]).

One of the big advances in the theory of polar and C1-actions was their classification
on irreducible symmetric spaces of compact type. For Sn and RP n, the problem can be
reduced—according to Example 2.3.25—to classifying polar representations, so it follows
from Dadok’s result Theorem 2.3.33. For the other projective spaces, a classification
was essentially obtained by Podestà and Thorbergsson in [PT99] (they overlooked one
action on OP 2, which was later discovered by Kollross and Gorodski in [GK16]). In
[Kol02], Kollross classified hyperpolar and C1-actions on all irreducible symmetric spaces
of compact type. Among other things, he showed that every hyperpolar action on such
a space is either of cohomogeneity one or else orbit-equivalent to a so-called Hermann
action. Later, in a series of articles [Kol07, Kol09, Lyt14, KL13], Kollross and Lytchak
proved that polar actions (that have positive-dimensional orbits) on irreducible compact
symmetric spaces of rank ≥ 2 are hyperpolar, which completed the classification. Note
that the rank condition is essential: every symmetric space of compact type and rank 1
(and dim > 2) admits a polar action (that has a positive-dimensional orbit) that is not
hyperpolar. We refer to [BCO16, Ch. 12] for further details.

Finally, we discuss the relation between cohomogeneity-one actions and homogeneous
hypersurfaces, which will prove of great importance in Chapter 5. If H ↷ M is a proper
isometric action of cohomogeneity 1, then its principal orbits are properly embedded
homogeneous hypersurfaces. Conversely, given such a hypersurface S, Remark 2.3.11
implies that there exists a proper isometric action H ↷ M having S as an orbit (e.g.,
H = I(M,S)). We want to show that any single orbit of a C1-action determines all the
other orbits.

Definition 2.3.39. Let M be a complete Riemannian manifold and S ⊆ M a properly
embedded submanifold. Given r > 0, define Sr = {exp(v) | v ∈ NS, ||v|| = r}. Suppose
some connected component S ′r of Sr is an embedded submanifold of M . Then we call it

• an equidistant hypersurface to S if both it and S are hypersurfaces,

• a tube of radius r around S if it is a hypersurface but S had codimension greater
than 1,

• a focal manifold of S if it has codimension greater than 1.

Observation 2.3.40. Let M and S be as in Definition 2.3.39.

(a) If S has codimension greater than 1, then each Sr is connected. However, if S is a
hypersurface, Sr may have two connected components if the normal bundle NS is
trivial. For example, if H1(M,Z/2Z) = 0, then M S has 2 connected components
by a generalized version of the Jordan–Brouwer separation theorem, so Sr must
have 2 connected components—at least for r small enough. Note that these two
components may both happen to be submanifolds but of different dimension (take,
for instance, M = R3 and S a cylinder of radius r).

(b) If S is compact or a homogeneous submanifold and r is small enough, then Sr is a
properly embedded hypersurface consisting of all points of M with distance r to
S—this follows from the tubular neighborhood theorem or its homogeneous analog
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Proposition 2.3.12. In general, however, points in Sr can have distance to S less
than r. For example, if M = S2 with its round metric of diameter π and S is the
equator, then Sπ = S.

Proposition 2.3.41. Let M be a complete connected Riemannian manifold and S ⊆ M
an orbit of an isometric C1-action on M by a connected Lie group H. Then for every
r > 0, Sr is an orbit of H (or a union of two orbits if Sr is disconnected). In particular,
any orbit of H uniquely determines all the other orbits (and thus the actions itself up to
orbit-equivalence).

Proposition 2.3.41 implies that classifying C1-actions on a given Riemannian manifold is
essentially the same as classifying homogeneous hypersurfaces in it:

Corollary 2.3.42 (Homogeneous hypersurfaces vs C1-actions). A connected homo-
geneous properly embedded hypersurface S in a complete connected Riemannian manifold
M is an orbit of an isometric C1-action on M by a connected Lie group H, all of whose or-
bits are determined by S. If two such hypersurfaces are congruent, then their corresponding
C1-actions are orbit-equivalent. We thus have the following diagram:

congruence classes of

connected homogeneous

properly embedded

hypersurfaces in M




orbit-equivalence classes

of isometric C1-actions

H ↷ M with H connected

 ,
S 7→ I0(M,S)↷M

and if [S], [S ′] are mapped to the same orbit-equivalence class of C1-actions, then S ′ is
congruent to an equidistant hypersurface of S, and they are both nonsingular orbits of the
corresponding action.

In Hadamard manifolds, the orbits of a C1-action have particularly simple topology. In
combination with Proposition 2.3.41 and Proposition 2.3.35, this can be formulated in
the following proposition, which will come in handy in Chapter 5 (see [BB01, Prop. 1] for
a proof):

Proposition 2.3.43. Assume M is a Hadamard manifold of dimension n and H ↷ M
is an isometric C1-action with H connected. Then exactly one of the following is true:

(a) All the orbits of H are principal, and for any orbit S, the other orbits are precisely
the equidistant hypersurfaces to S. Each orbit is diffeomorphic to Rn−1.

(b) There exists a unique singular orbit, and it is diffeomorphic to Rk for some k < n−1.
All the other orbits are principal and diffeomorphic to Rk × Sn−k−1, and they are
precisely the tubes around the singular orbit.

2.4. Symmetric spaces of noncompact type

In this section, we hone in on the spaces of most prominence in this thesis: symmetric
spaces of noncompact type. Although any such space M is topologically trivial (Proposi-
tion 2.1.92), its isometry Lie algebra carries special structures such as the Iwasawa and
restricted root space decompositions. These structures allow to develop a rich theory of
parabolic subalgebras and subgroups—which play a central role in the theory of noncom-
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pact symmetric spaces. Together with the Iwasawa decomposition, parabolic subgroups
allow for numerous geometric constructions on M , some of which we will encounter in
Chapter 5. One of the prime ways in which noncompact symmetric spaces differ from their
compact counterparts is that their isometry groups admit way more subgroups, which
leads to more homogeneous objects such as homogeneous foliations and submanifolds. We
begin our discussion with the Cartan decomposition and its special properties, which will
allow us to deepen our understanding of this type of symmetric spaces.

2.4.1. The Cartan decomposition

The following structure result underpins most of the theory of symmetric spaces of
noncompact type. (For a proof, see [Kna02, Th. 6.31].)

Proposition 2.4.1. Let (g, θ) be an orthogonal symmetric Lie algebra of noncompact
type and G any connected Lie group with Lie algebra g.

(a) θ admits a unique lift to an automorphism Θ of G, and Θ is involutive.

(b) The fixed point subgroup K = GΘ is connected and Lie(K) = k. The pair (G,K) is
a Riemannian symmetric pair associated with (g, θ).

(c) The center Z of G is contained in K.

(d) K is compact if and only if Z is finite. In this case, K is a maximal compact
subgroup of G.

(e) The map K × p → G given by (k,X) 7→ k exp(X) is a diffeomorphism.

This result immediately yields the following description of symmetric spaces of noncompact
type:

Proposition 2.4.2. Any symmetric space of noncompact type can be represented by a
Riemannian symmetric pair (G,K), where G is a semisimple Lie group and K its maximal
compact subgroup. Moreover, M is irreducible if and only if G can be chosen topologically
simple.

Remark 2.4.3. It follows from Proposition 2.4.1(d) that if Z is finite, then any compact
subgroup of G fixes some point in the symmetric space M = G/K. This also follows
from the Cartan fixed point theorem, as the symmetric space M = G/K is nonpositively
curved by Proposition 2.1.89(c).

It turns out that the group of inner isometries of a noncompact symmetric space is
centerless. To see this, we need the following

Lemma 2.4.4. Suppose g is a Lie algebra with trivial center. Then Inn(g) has trivial
center as well. If G is a connected Lie group with Lie algebra g and Z is its center, then
G/Z has trivial center, hence Z is the largest discrete normal subgroup of G.

Proof. Since G/Z ∼= Inn(G), we only need to prove the first assertion. If g lies in the
center of Inn(g), then it must commute with every element of ad(g). Take X, Y ∈ g and
compute:

[X, gY ] = ad(X) ◦ g(Y ) = g ◦ ad(X)(Y ) = g[X, Y ] = [gX, gY ],
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so X − gX ∈ z(g) and thus gX = X. Since X was arbitrary, we conclude that g = e.

Somewhat informally, Lemma 2.4.4 says that if g is a centerless Lie algebra, then Inn(g)
is the smallest connected Lie group with Lie algebra isomorphic to g.

Corollary 2.4.5. If (G,K) is an infinitesimally effective Riemannian symmetric pair
of noncompact type, then Z = I. In particular, if (G,K) is effective, then G has trivial
center. In other words, if M is a symmetric space of noncompact type, the group I0(M)
is centerless. If M is irreducible, I0(M) is simple.

Proof. As we know, for any infinitesimally effective Riemannian symmetric pair Z∩K = I.
But Z ⊆ K by Proposition 2.4.1(c), so Z = I. The other assertions follow trivially. The
last statement follows from Proposition 2.1.118.

The fact that I0(M) is centerless is essentially the reason why symmetric spaces of
noncompact type are simply connected. Note that if M is of compact type, I0(M) may
in general have nontrivial finite center. Corollary 2.4.5 suggests a simple description of
the identity component of the isometry group of a symmetric space of noncompact type:

Corollary 2.4.6. Let M by a symmetric space of noncompact type represented by an
infinitesimally effective Riemannian symmetric pair (G,K). Then I0(M) ∼= G/Z ∼=
Ad(G) ∼= Inn(g).

We will strengthen this corollary in the next chapter (see Proposition 3.3.4).

We can give a precise formulation of the correspondence between symmetric spaces of
noncompact type and noncompact semisimple Lie algebras. Let us say that two symmetric
spaces M and M ′ of noncompact type are equivalent if they become isometric after a
suitable rescaling of their normalizing constants. For irreducible spaces, this is the same
as being homothetic, but in general, this notion of equivalence is weaker. We can now
formulate the aforementioned correspondence:

equivalence classes

of symmetric spaces

of noncompact type




isomorphism classes

of real semisimple Lie algebras

without nonzero compact ideals

M 7→ i(M)
∼ (2.4.1)

If we start with a real semisimple Lie algebra g without nonzero compact ideals, its
corresponding equivalence class of symmetric spaces of noncompact type is given by any
symmetric space represented by (g, θ), where θ is any Cartan involution on g. Consequently,
a symmetric space M of noncompact type is determined by its isometry Lie algebra up
to equivalence. Notice that this is no longer true in the compact type: for example,
the isometry Lie algebra of the Grassmann manifold Gr(k,Rn) is isomorphic to so(n)
regardless of k.

In practice, symmetric spaces are usually represented by Riemannian symmetric pairs
that are not effective but have finite I. If (G,K) is infinitesimally effective of compact
type, this is automatically the case. But in the noncompact type, this is not necessarily
true: recall the example from Remark 2.3.3, where RH2 was represented as S̃L(2,R)/K
with S̃L(2,R) the universal covering group of SL(2,R) and K a subgroup of it isomorphic
to R. To avoid such pathologies, we introduce the following
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Definition 2.4.7. A Riemannian symmetric pair (G,K) is called almost effective if I
is finite.

An almost effective Riemannian symmetric pair is infinitesimally effective. Conversely,
if (G,K) is an infinitesimally effective Riemannian symmetric pair of noncompact type,
it is almost effective ⇔ Z(G) is finite ⇔ K is compact (by Corollary 2.4.5 and Propo-
sition 2.4.1(d)). In this case, K is a maximal compact subgroup of G. Virtually all
Riemannian symmetric pairs we will be encountering in practice throughout the thesis
will be almost effective. We thus make the following

Agreement. Whenever we introduce a symmetric space as M = G/K, we tacitly
assume that (G,K) is an almost effective Riemannian symmetric pair representing
M—unless otherwise specified.

This shorthand is especially common for concrete symmetric spaces: we will often write
things like “consider M = E6/Spin(10)U(1)”, tacitly assuming that a choice of an E6-
invariant (and thus symmetric) metric has been made.

2.4.2. The restricted root space and Iwasawa decompositions

Now that we know that noncompact symmetric spaces are essentially the same as non-
compact semisimple Lie algebras, we need to spend some time on the theory of such Lie
algebras. The importance of this subsection really can not be overstated, as pretty much
most of the thesis relies on the results we are about to lay out. The exposition here closely
follows [Kna02, Ch.VI, Sect. 2-5].

Let g be a real semisimple Lie algebra and θ a Cartan involution on g. Recall that we
have an inner product on g given by Bθ(X, Y ) = −B(X, θY ). We fix it as our default
inner product on g. Note that k and p are orthogonal with respect to both B and Bθ.
Let us write Inn(g)θ for the subgroup of inner automorphisms of g that commute with θ
(this is a standard shorthand for Inn(g)Cθ). Since g is semisimple, Inn(g) = Aut0(g), and
we can identify g with the Lie algebra of Aut(g) by means of the adjoint representation:
ad: g −→∼ Der(g) = Lie(Aut(g)). Under this identification, we have

Lie(Inn(g)θ) = Der(g)Ad(θ) = Der(g)θ

∼= {X ∈ g | ad(X) ◦ θ = θ ◦ ad(X)}
= {X ∈ g | ad(X) = ad(θX)}
= {X ∈ g | θ(X) = X} = k.

The action of Inn(g)θ on g is orthogonal with respect to Bθ. Note that Inn(g)θ preserves
the Cartan decomposition and thus acts on p. By Proposition 2.4.1(b), (Inn(g), Inn(g)θ)
is a Riemannian symmetric pair. It then follows from Proposition 2.2.22(b) that:

Proposition 2.4.8. Any two maximal abelian subspaces of p differ by some element of
Inn(g)θ.

Fix a maximal abelian subspace a in p and write r = dim(a). Given any nonzero α ∈ a∗,
define

gα = {X ∈ g | ∀ H ∈ a, [H,X] = ⟨α , H ⟩X} .
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This may be a zero subspace. For this reason, we define

Σ = {α ∈ a∗ | gα ̸= {0}} , Σ0 = Σ ∪{0} .

The restriction Bθ
∣∣
a×a = B

∣∣
a×a, being nondegenerate, determines an isomorphism a −→∼ a∗.

If ξ ∈ a∗, we denote the corresponding element of a by Hξ (thus, ⟨ξ , H ⟩ = ⟨Hξ |H ⟩
for any H ∈ a). We carry the inner product from a to1 a∗ along this isomorphism:
⟨ξ|ξ′ ⟩ = ⟨Hξ |Hξ′ ⟩.

Notation. Given an inner product space V and a subspace U ⊆ V , we write V ⊖U for the
orthogonal complement of U in V . Furthermore, if we have a direct sum decomposition
V = U ⊕W such that U and W are orthogonal to each other, we sometimes stress it by
writing V = U ⊕⊥W .

We list a few properties of the objects defined so far (see [Kna02, Ch.VI, Sect. 4-5] for
proofs):

Proposition 2.4.9 (Restricted root space decomposition). Let g be a real semisimple
Lie algebra with a fixed Cartan involution θ and a maximal abelian subspace a of p.

(a) With the inner product defined above, (a∗,Σ) is a (possible reduced) root system. In
particular, Σ spans a∗.

(b) g =
⊕

α∈Σ0 gα = g0 ⊕
⊕

α∈Σ gα.

(c) The summands of the decomposition in (b) are pairwise orthogonal.

(d) For any α,β ∈ Σ0, [gα, gβ] = gα+β.

(e) g0 = k0 ⊕⊥ a, where k0 = Zk(a) = Nk(a).

(f) For any α ∈ Σ0, θ(gα) = g−α.

(g) For any α ∈ Σ and any X, Y ∈ gα, [X, θY ] = B(X, θY )Hα = −⟨X |Y ⟩Hα. In
particular, if X ̸= 0, then [X, θX] is a nonzero multiple of Hα.

Definition 2.4.10. Σ is called the restricted root system of g. The decomposition in
Proposition 2.4.9(b) is called the restricted root space decomposition of g and each
gα is called a (restricted) root space. We call dim(gα) the multiplicity of the root α
and denote it by mult(α). The Dynkin diagram of Σ is denoted by DD.

There are several other diagrams one can associate to a real semisimple Lie algebra—for
instance, the Satake and Vogan diagrams. These diagrams actually determine the Lie
algebra up to isomorphism, whereas the Dynkin diagram of the restricted root system
is only suitable for studying noncompact Lie algebras, and it only determines the Lie
algebra after some modifications (we will discuss this in detail in Chapter 3). The main
reason why the restricted root system is preferred in the context of noncompact symmetric
spaces is because it better reflects the geometry of the underlying space (as we will witness
repeatedly throughout the thesis). Notice also that, in contrast to the complex semisimple
case, the root system Σ does not have to be reduced. We will talk more about this in

1This is our default choice of an inner product on a∗. Even in the presence of a symmetric space M
represented by (g, θ), we stick with this inner product rather than one that can be induced by go

∣∣
a×a

.

The same goes for the isomorphism a −→∼ a∗.
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Section 3.2. For a full list of simple noncompact Lie algebras, their restricted root systems,
and corresponding noncompact symmetric spaces, see [BCO16, pp. 336-340].

Given α ∈ Σ, define

kα = (gα ⊕ g−α) ∩ k = {X + θX | X ∈ gα} ,
pα = (gα ⊕ g−α) ∩ p = {X − θX | X ∈ gα} .

Note that we have gα ⊕ g−α = kα ⊕ pα. It follows immediately from Proposition 2.4.9(c)
that kα ⊥ kβ and pα ⊥ pβ for α ̸= β. We also have kα ⊥ k0, pβ ⊥ a, and kα ⊥ pβ for any
α,β.

Let us denote the Weyl group of Σ by W(Σ) ⊆ O(a∗). Write NInn(g)θ(a) for the normalizer
of a in Inn(g)θ with respect to the action Inn(g)θ ↷ p. Let us define a Lie group
homomorphism Ω : NInn(g)θ(a) → GL(a∗),φ 7→ (φ

∣∣
a

∗
)−1. This map will be of great

importance to us and we will study it in more detail in Section 3.2. For the time being,
we just state the following

Proposition 2.4.11. (a) For any φ ∈ NInn(g)θ(a), Ω(φ) preserves Σ. Given α ∈ Σ0,
φ(gα) = gΩ(φ)(α). Informally, φ shuffles the summands of the restricted root space
decomposition in a way that agrees with Ω(φ).

(b) For any φ ∈ NInn(g)θ(a), Ω(φ) ∈ W(Σ).

(c) Given α ∈ Σ and any nonzero X ∈ gα normalized so that ||X|| =
√
2

||α|| , exp(ad
π
2
(X +

θX)) lies in NInn(g)θ(a) and its image under Ω is the reflection sα in the root
hyperplane α⊥. Consequently, Im(Ω) = W(Σ).

Pick a Weyl chamber D ⊂ a∗ and denote the corresponding subsets of positive and
simple roots by Σ+ and Λ = {α1, . . . ,αr}, respectively. Note that Hα1 , . . . , Hαr is a basis
for a. We have another basis, namely the dual basis of α1, . . . ,αr, which we denote
by H1, . . . ,Hr. By definition, ⟨Hi ,αj ⟩ = ⟨H i |Hαj

⟩ = δij. Since the Weyl group acts
transitively on the set of Weyl chambers, it follows from Proposition 2.4.11(c) that:

Corollary 2.4.12. For any two choices Σ+
1 ,Σ

+
2 of positive roots for Σ, there exists

φ ∈ NInn(g)θ(a) such that Ω(φ)(Σ+
1 ) = Σ

+
2 .

Because of this result as well as Propositions 2.1.73 and 2.4.8, the choices of θ, a, and Σ+

are irrelevant. For this reason, given a real semisimple Lie algebra, we will sometimes
omit that step and assume such a choice has already been fixed implicitly. Together with
some standard theory of root systems, Proposition 2.4.9(d) yields the following useful
result: two simple roots α,β ∈ Λ are orthogonal (that is, not connected by an edge in
DD) ⇔ their sum is not a root ⇔ the subspaces gα and gβ commute.

We can relate the Cartan and restricted root space decompositions as follows:

k = k0 ⊕
⊕
α∈Σ+

kα, p = a⊕
⊕
α∈Σ+

pα. (2.4.2)

All the summands in these decompositions are pairwise orthogonal. Next, define n =⊕
α∈Σ+ gα. This is a nilpotent subalgebra of n.

Proposition 2.4.13 (Iwasawa decomposition). The Lie algebra g decomposes as the
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direct sum of its subspaces g = k⊕ a⊕ n.

If we combine Propositions 2.1.73 and 2.4.8 and Corollary 2.4.12 one more time, we
see that any two Iwasawa decompositions of g differ by an inner automorphism. The
semidirect sum s = a ⊕ n is a solvable subalgebra of g. The subalgebras s and n are
commonly referred to as the solvable and nilpotent parts of the Iwasawa decomposition,
respectively. Note that s and n are graded Lie algebras:

s =
m⊕
k=0

sk, n =
m⊕
k=1

nk, where s0 = a, sk = nk =
⊕

ht(α)=k

gα. (2.4.3)

Here ht is the height function on Σ+ and m is the height of the highest root δ ∈ Σ+.

If we compare the Iwasawa and Cartan decompositions, we see that the projection to p
along k establishes a linear isomorphism s −→∼ p. This map will be of great relevance to us
in Chapter 6.

Example 2.4.14 (The hyperbolic spaces). Let g be the isometry Lie algebra of the
hyperbolic space FHn, F ∈ {R,C,H,O}, n ≥ 2. Since the rank of FHn is 1, the subspace
a ⊂ p is one-dimensional. If F is R, the restricted root system Σ is A1, but in the other
three cases Σ is (BC)1. The positive roots are α, 2α if F ̸= R and just α if F = R. The
short root α has multiplicity dimR(F)(n− 1), so gα can be identified with Fn−1. The long
root 2α has multiplicity dimR(F)− 1, so we can identify the sum a⊕ g2α with F, where a
corresponds to R and g2α to Im(F). The subalgebra n is 2-step nilpotent with center g2α
if F ̸= R and abelian if F = R. �

Example 2.4.15 (Split real forms). Every complex semisimple Lie algebra has two
(unique up to an inner automorphism) special real forms: the compact real form and
the split real form. The latter is always noncompact and admits a number of intrinsic
characterizations:

Proposition 2.4.16. The following are equivalent for a real semisimple Lie algebra g:

(i) Every root in Σ has multiplicity 1.

(ii) Every root in Λ has multiplicity 1.

(iii) k0 = {0}.

(iv) a is a maximal abelian subalgebra of g.

(v) a is a Cartan subalgebra of g.

(vi) aC is a Cartan subalgebra of gC.

If these conditions are satisfied, g is called split.

We will call a semisimple symmetric space split if its isometry Lie algebra is split (it has
to be of noncompact type). As we will see in Section 3.2, the restricted root system of a
split real semisimple Lie algebra is isomorphic to the root system of its complexification.
In particular, it is always reduced. �

Observation 2.4.17. Every complex semisimple Lie algebra g produces two natural
noncompact real semisimple Lie algebras: the realification g and a split real form g0 ⊂ g.
In Section 3.2, we will see that the restricted root systems of g and g0 are isomorphic
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to the root system ∆ of g thought of as a complex semisimple Lie algebra. Suppose g is
simple—which is equivalent to ∆ being irreducible. It might happen that there are no
more real simple Lie algebras with restricted root system isomorphic to ∆; this is the case
for ∆ = Br (r ≥ 2), Dr (r ≥ 4), E6, E7, E8, G2.

We can also lift the Iwasawa decomposition to the level of Lie groups. Let (G,K) be a
Riemannian symmetric pair associated with (g, θ). Defined A and N to be the connected
Lie subgroups of G corresponding to a and n.

Proposition 2.4.18 (Global Iwasawa decomposition). The multiplication map
K ×A×N → G is a diffeomorphism. In particular, A and N are simply connected closed
subgroups of G.

Since A normalizes N inside G, they form a semidirect product AN , which is a simply
connected closed solvable subgroup of G corresponding to s. The exponential map of A
is clearly a diffeomorphism, and one can show (e.g., by means of [OV94, Ch. 2, Th. 6.4])
that the same is true for N and AN . Now let M be a symmetric space of noncompact
type represented by (G,K). The orbit A · o is a maximal flat in M . The orbit N · o is
diffeomorphic to Rn−r and is known as a horocycle1 (here n = dim(M)). It follows from
the Iwasawa decomposition that:

Corollary 2.4.19. The solvable group AN acts simply transitively on M . The pullback of
the Riemannian metric of M along the orbit map AN −→∼ M,an 7→ an ·o, is a left-invariant
metric on AN . Consequently, every symmetric space of noncompact type is isometric to a
simply connected solvable Lie group with a left-invariant metric.

As a consequence, we see that the groups A and N do not depend on the choice of (G,K)
up to isomorphism.

2.4.3. Parabolic subalgebras and subgroups

Here we introduce the theory of parabolic subalgebras and subgroups and discuss its
relation to the geometry of symmetric spaces of noncompact type. The objects introduced
here are an indispensable tool for studying cohomogeneity-one actions on symmetric
spaces of noncompact type and will be of great use to us in Chapter 5. As always, we
start on the level of Lie algebras. (See [Kna02, Ch.VII, Sect. 7] and [BCO16, Sect. 13.2]
for a detailed exposition).

Definition 2.4.20. A maximal solvable subalgebra of a Lie algebra is called a Borel
subalgebra. A subalgebra of a complex semisimple Lie algebra is called parabolic if it
contains a Borel subalgebra.

In a complex semisimple Lie algebra g, all Borel subalgebras are conjugate by inner
automorphisms and can be described as h⊕ n, where h is a suitable Cartan subalgebra
and n is the sum of all positive root spaces (for some choice of a Weyl chamber). Parabolic
subalgebras of a complex semisimple Lie algebra are parametrized by subsets of the set
of simple roots (see [Kna02, Prop. 5.90]). We are not going to delve any deeper into the
complex case and proceed directly to real semisimple Lie algebras. If g is such a Lie
algebra, then its complexification gC is complex semisimple.

1If M has rank 1, its horocycles are hypersurfaces and are usually called horospheres. In general, a
horosphere in a Hadamard manifold is a level set of a Busemann function (see [Ebe96, Sect. 1.10]). If
M = RHn, its horospheres are actually flat and thus isometric to En−1.
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Definition 2.4.21. A subalgebra q of real semisimple Lie algebra g is called parabolic
if its complexification qC is parabolic in gC.

Let g be a real semisimple Lie algebra with a fixed choice of a Cartan involution θ and a
maximal abelian subspace a ⊆ p.

Proposition 2.4.22 (Classification of parabolic subalgebras I). Let g be a real
semisimple Lie algebra with a fixed choice of a Cartan involution θ and a maximal abelian
subspace a ⊆ p.

(a) q0 = g0 ⊕ n = k0 ⊕ a⊕ n is a minimal (by inclusion) parabolic subalgebra of g.

(b) All minimal parabolic subalgebras of g are conjugate via Inn(g). Consequently, any
parabolic subalgebra of g is conjugate via Inn(g) to one containing q0.

The parabolic subalgebras containing q0 admit an explicit description in terms of the
restricted root space decomposition. Fix a set of positive roots Σ+ ⊆ Σ. Let Φ ⊆ Λ be
any subset, write rΦ for its cardinality. Let us write ΣΦ for the root subsystem of Σ
spanned by Φ. Clearly, the choice of positive roots in Σ induces a choice of positive roots
in ΣΦ : Σ+

Φ = ΣΦ ∩ Σ+, and the corresponding set of simple roots is just Φ. Before we
proceed, we need a simple but crucial result on subalgebras of g that are θ-stable.

Lemma 2.4.23. Every θ-stable subalgebra of g is reductive.

Proof. Let h be θ-invariant in g. By Proposition 2.1.71, we can assume that h is a
transpose-invariant subalgebra of sl(n,R). It then has a representation on Rn, whose
induced invariant symmetric bilinear form tr(XY ) is nondegenerate: given nonzero X ∈ h,
we have tr(XX t) = ||X||2 > 0. A real (or complex) Lie algebra admitting a representation
whose induced invariant bilinear is nondegenerate has to be reductive (see [Kir08, Th.
5.48]). As a side result, we see that the restriction of B to any θ-stable subalgebra of g is
nondegenerate.

We can now explain how Φ gives rise to a parabolic subalgebra and study its properties.

• Define lΦ = g0 ⊕
⊕

α∈ΣΦ gα. This is a θ-stable subalgebra of g, hence it is reductive.

• Define nΦ =
⊕

α∈Σ+ Σ+Φ
gα. This is a subalgebra of n, hence it is nilpotent.

• The subalgebras lΦ and nΦ do not intersect and we have [lΦ, nΦ] ⊆ nΦ, so we can
form a semidirect sum qΦ = lΦ+ nΦ. Clearly, qΦ contains q0, so it is parabolic. The
decomposition qΦ = lΦ + nΦ is called the Chevalley decomposition of qΦ. Note
that qΦ is self-normalizing.

Example 2.4.24. Let Φ = ∅. Then l∅ = g0, n∅ = n, and q∅ = q0. �

Proposition 2.4.25 (Classification of parabolic subalgebras II). Let g be a real
semisimple Lie algebra.

(a) Every parabolic subalgebra of g containing q0 is of the form qΦ for some subset
Φ ⊆ Λ. Every parabolic subalgebra of g is conjugate via Inn(g) to qΦ for a unique
Φ ⊆ Λ.

(b) Given two subsets Φ1,Φ2 ⊆ Λ, the parabolic subalgebras qΦ1 and qΦ2 are conjugate via
Aut(g) if and only if the subsets Φ1 Φ2 differ by a weight-preserving automorphism1

1We will define and study this later in Section 3.2 (for a precise definition, see Definition 3.2.4).
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of the Dynkin diagram DD.

Example 2.4.26. Let j ∈ {1, . . . , r} be any, and let Φj = Λ {αj}. In this case, let
us simplify the notation and write j instead of Φj in subscripts and superscripts (here
and further). It follows from Proposition 2.4.25 that qj is a maximal proper parabolic
subalgebra. What is more, every maximal proper parabolic subalgebra of g is conjugate
via Inn(g) to qj for a unique j. �

We carry on with our study of qΦ and its subalgebras.

• Let aΦ =
⋂
α∈ΦKer(α) =

⊕
j∈Λ ΦRHj. It is a subspace of a of dimension r − rΦ.

One can verify that lΦ = Zg(aΦ) = Ng(aΦ).

• Define aΦ = a⊖ aΦ =
⊕

α∈ΦRHα. This is an rΦ-dimensional subspace of a.

• Next, definemΦ = lΦ⊖aΦ = k0⊕aΦ⊕
⊕

α∈ΣΦ gα. This is another θ-stable subalgebra
of g, hence it is also reductive. Plainly, the Lie algebra lΦ decomposes as a direct
sum lΦ = mΦ ⊕ aΦ. Plugging this into the Chevalley decomposition yields

qΦ = (mΦ ⊕ aΦ) + nΦ =: mΦ ⊕ aΦ + nΦ,

which is called the Langlands decomposition of qΦ.

• Write zΦ = z(mΦ). One can easily see that zΦ ⊆ k0 and that z(lΦ) = zΦ ⊕ aΦ.

• Let us write mΦ = zΦ ⊕ gΦ for the (unique) Levi decomposition of mΦ. Here
gΦ = [mΦ,mΦ] = [lΦ, lΦ] is semisimple. One readily sees that gΦ = (k0 ⊖ zΦ)⊕ aΦ ⊕⊕

α∈ΣΦ gα and that it is a θ-stable subalgebra of g. What is more, θ restricts to a
Cartan involution of gΦ, hence (gΦ, θ) is an orthogonal symmetric Lie algebra of
noncompact type. Note that it may not be effective (even if (g, θ) is) because gΦ
might have nonzero compact ideals.

• We denote bΦ = gΦ ∩ p. This is a Lie triple system in p. Note that aΦ is a maximal
abelian subspace of bΦ and the corresponding restricted root system for gΦ is ΣΦ.
Observe that the sum bΦ ⊕ aΦ is also a Lie triple system.

• We write DDΦ for the subdiagram of DD determined by Φ: the vertices of DDΦ are
the simple roots in Φ, while the edges of DDΦ are the edges in DD, both of whose
endpoints lie in Φ. It is not hard to see that DDΦ is the Dynkin diagram of gΦ.

• Define kΦ = qΦ ∩ k = lΦ ∩ k = mΦ ∩ k = k0 ⊕
⊕

α∈ΣΦ kα. This is a compactly
embedded subalgebra of g. Note that zΦ ⊆ kΦ.

• Finally, write g′
Φ for the noncompact part of gΦ. It is also θ-stable and reductive,

and, by Observation 2.1.117, (g′Φ, θ) is an effective orthogonal symmetric Lie algebra
of noncompact type. In particular, its Cartan decomposition is given by g′Φ =
[bΦ, bΦ] ⊕ bΦ. The restricted root system and Dynkin diagram of g′Φ are the
same as those of gΦ: ΣΦ and DDΦ, respectively. One can show (see [Sol23, Prop.
2.3, Rem. 2.4]) that the restricted root space decomposition of g′Φ is given by
g′Φ = (g′Φ ∩ k0) ⊕ aΦ ⊕

⊕
α∈ΣΦ gα (so g′Φ and gΦ only differ within k0) and, as a

subalgebra of g, it is generated by gα as α runs through ΣΦ. The compact part of
gΦ is orthogonal to g′Φ with respect to Bθ and is given by Zk0(bΦ)⊖ zΦ.

Now we lift all these subalgebras to the level of Lie groups. Here we assume that (g, θ)
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is effective, or equivalently, g does not have nonzero compact ideals. Let (G,K) be an
almost effective Riemannian symmetric pair associated with (g, θ). First things first, we
have the simply connected closed Lie subgroups AΦ ⊆ A and NΦ ⊆ N corresponding
to aΦ and nΦ, respectively. By design, AΦ is abelian and NΦ is nilpotent. Define
LΦ = ZG(aΦ). This is a (possibly disconnected) closed reductive Lie subgroup of G with
Lie algebra lΦ. The product QΦ = LΦNΦ ⊆ G is a closed Lie subgroup with Lie algebra
qΦ. The following—admittedly ad-hoc—definition will be improved upon considerably in
Proposition 2.4.36

Definition 2.4.27. A Lie subgroup of G is called parabolic if it is given by QΦ for some
choice of θ, a ⊆ p, Σ+ ⊆ Σ, and Φ ⊆ Λ.

It is not hard to see that LΦ normalizes NΦ and they intersect trivially, so we actually
have a semidirect product QΦ = LΦ ⋉NΦ, called the Chevalley decomposition of QΦ.
Using the fact that qΦ is self-normalizing, one can show that QΦ = NG(qΦ). Next, let
GΦ and G′

Φ be the connected Lie subgroups corresponding to gΦ and g′Φ, respectively.
These are closed semisimple1 subgroups of G, and they are both normal in LΦ. Write
KΦ = LΦ ∩ K, and define MΦ = KΦGΦ. These are both closed reductive subgroups
of G, Lie(KΦ) = kΦ, and Lie(MΦ) = mΦ. We have inclusions MΦ ⊆ LΦ ⊆ QΦ, and one
can show that KΦ is a maximal compact subgroup in any of these three groups. Finally,
let ZΦ stand for the center of MΦ. This is a compact subgroup of KΦ with Lie algebra
zΦ. The subgroups MΦ and AΦ commute and intersect trivially, hence we have a direct
product decomposition LΦ = MΦ × AΦ, which, when plugged into the global Chevalley
decomposition, induces the Langlands decomposition of QΦ:

QΦ = (MΦ × AΦ)⋉NΦ =: MΦ × AΦ ⋉NΦ.

With respect to this decomposition, the multiplication in QΦ is given by:

(m, a, n) · (m′, a′, n′) = (mm′, aa′, (m′a′)−1n(m′a′)n′).

Eventually, we look at the what these subgroups mean for the geometry of symmetric
spaces of noncompact type. Let M be such a space represented by the pair (G,K).
It follows from Proposition 2.2.4 that the parabolic subgroup QΦ acts on M with an
open orbit. Since QΦ is a closed subgroup, Proposition 2.1.1(d) implies that it acts
transitively on M . The isotropy subgroup of QΦ at o is KΦ. The subgroups AΦ and
NΦ produce orbits AΦ · o ≃ Er−rΦ , which is a flat lying in the maximal flat A · o, and
NΦ · o, which a properly embedded submanifold of the horocycle N · o also diffeomorphic
to a Euclidean space. We have a Lie triple system bΦ ⊆ p, which corresponds to a
properly embedded totally geodesic submanifold BΦ = GΦ · o = MΦ · o ⊆ M often called
a boundary component of M in the context of the maximal Satake compactification
of M (see, e.g., [BJ06]). The submanifold BΦ is itself a symmetric space of noncompact
type. It has rank rΦ and can be represented, for example, by the Riemannian symmetric
pair (M0

Φ, K
0
Φ). A somewhat better choice of a Riemannian symmetric pair representing

BΦ would be (G′Φ, G
′
Φ ∩K), which is almost effective thanks to the argument following

Definition 2.4.7. In particular, we have g′Φ
∼= i(BΦ). We also have a totally geodesic

submanifold FΦ = LΦ ·o ∼= LΦ/KΦ
∼= BΦ× (AΦ·o) corresponding to the Lie triple system

bΦ ⊕ aΦ (note that FΦ is a simply connected symmetric space and FΦ ≃ BΦ × (AΦ · o) is

1In many situations, semisimple Lie subgroups are automatically closed, see [Mos50, Sect. 6].
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its decomposition into the Riemannian product of its noncompact and Euclidean parts).
Finally, we can form a commutative diagram

MΦ × AΦ ⋉NΦ QΦ

BΦ × AΦ ×NΦ QΦ/KΦ M

∼

∼ ∼

The diffeomorphism BΦ × AΦ × NΦ ≃ M is called a horospherical decomposition
of M . Note that FΦ ∼= BΦ × (AΦ · o) is an isometry, but M ∼= FΦ × (NΦ · o) is just
a diffeomorphism. The submanifolds FΦ and NΦ · o of M intersect orthogonally at o.
Topologically, the horospherical decomposition is far from being noteworthy, as each of
the factors is diffeomorphic to a Euclidean space. Its significance, however, is justified by
the following fact. With respect to the Langlands and horospherical decompositions, the
action of QΦ on M can be written as:

MΦ × AΦ ⋉NΦ ↷ BΦ × AΦ ×NΦ,

(m, a, n) · (m′ · o, a′, n′) = ((mm′) · o, aa′, (m′a′)−1n(m′a′)n′). (2.4.4)

The Langlands and horospherical decomposition are going to be the main machinery
underlying the canonical extension construction, to be introduced in Chapter 5.

2.4.4. Singular vectors and points at infinity

The aspects of the theory of noncompact symmetric spaces we have discussed so far in
this section have been largely rooted in Lie theory. In this part, we talk about two more
topics that are entirely geometric in nature. The first one has to do with telling apart
tangent vectors to a symmetric space and will come in handy when we deal with the
congruence problem for cohomogeneity-one actions in Chapter 5. The second one will
allow us to give an alternative geometric definition of parabolic subgroups.

Singular and regular vectors

Tangent vectors to a Riemannian manifold can sometimes be distinguished by how they
interact with the curvature tensor. Let M be a Riemannian manifold and p ∈ M . For any
v ∈ TpM , the curvature endomorphism of M gives rise to a linear map Rp(v,−) : TpM →
so(TpM).

Definition 2.4.28. The nullity1 of v ∈ TpM , denoted by null(v), is the dimension of
Ker(Rp(v,−)) = {Y ∈ TpM | R(X, Y ) = 0}.

Obviously, the nullity of a vector is preserved under isometries. The concept of nullity
thus helps to distinguish between different tangent vectors, which can be extremely useful,
for instance, when one tries to tell whether two given submanifolds are congruent.

Now let M be a symmetric space, and let (g, θ) be any effective orthogonal symmetric Lie
algebra representing it. The effectiveness assumption ensures that the adjoint representa-
tion k → so(p) is faithful. Owing to the curvature formula (2.1.5), under the identification

1This is different from (but related to) the notion of nullity of M at p (see, e.g., [DSOV22]).
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ToM ∼= p, we have Ro(X,−) = ad[X,−]
∣∣
p
, which implies that

Ro(X, Y ) = 0 ⇔ [X, Y ] = 0, so Ker(Ro(X,−)) = Zp(X). (2.4.5)

In fact, (2.4.5) holds even if (g, θ) is just weakly effective. If a ⊆ p is a maximal abelian
subspace containing X, then a ⊆ Zp(X), so null(X) ≥ r, where r = rk(M).

Definition 2.4.29. A tangent vector X to a symmetric space M is called regular if
null(X) = r. Otherwise, it is called singular.

One can show the following:

Proposition 2.4.30. Let M be a symmetric pair represented by a weakly effective orthog-
onal symmetric Lie algebra (g, θ).

(a) For any point p, the set of regular vectors in TpM is a connected open dense cone
invariant under the isotropy representation. Consequently, the set of regular vectors
forms a connected open dense subset of TM invariant under the action of I(M).

(b) A vector X ∈ p ∼= ToM is regular ⇔ it is contained in a unique maximal abelian
subspace of p ⇔ it is tangent to a unique maximal flat of M passing through o.

(c) If X is regular, the maximal abelian subspace of p containing it is given by Zp(X), and
the maximal flat passing through o to which X is tangent is given by expM(Zp(X)).

We can say more about regular and singular vectors if M is semisimple.

Proposition 2.4.31. Let M be a semisimple symmetric space represented by a Riemannian
symmetric pair (G,K).

(a) A vector X ∈ ToM is singular (resp., regular) in the sense of Definition 2.4.29 if
and only if it is singular (resp., principal) with respect to the restricted isotropy
representation K0 → SO(ToM) (Definition 2.3.6).

(b) If X ∈ ToM is a regular vector, the unique abelian subspace Zp(X) of p containing X
is the (unique) section of the polar representation K0 → SO(ToM) passing through
X. Similarly, the unique maximal flat expM(Zp(X)) passing through o tangentially
to X is the (unique) section of the hyperpolar action K0 ↷ M .

Finally, if we specialize further to symmetric spaces of noncompact type, we have an
explicit description of regular and singular vectors in terms of restricted roots.

Proposition 2.4.32. Let M be a symmetric space of noncompact type represented by an
orthogonal symmetric Lie algebra (g, θ). Fix a maximal abelian subspace a ⊆ p and a set
of positive roots Σ+ ⊆ Σ. Given X ∈ a, its nullity is given by

null(X) = r +
∑
α∈Σ+
α(X)=0

dim(gα).

In particular, X is regular if and only if no root in Σ vanishes on it. In other words,

areg := a ∩ preg = a \
⋃
α∈Σ

Ker(α).

88



2.4. Symmetric spaces of noncompact type

Points at infinity

Recall that every noncompact symmetric space is diffeomorphic to an open Euclidean ball.
For instance, for the hyperbolic plane RH2, this can be done via the Poincaré disk model.
The boundary circle of RH2 is often called the ideal boundary and it can be attached to
RH2 in a sensible way that takes into account the geometry of the hyperbolic plane. The
same can be done in general. (For details and proofs, see [Ebe96].)

Definition 2.4.33. Let M be a Hadamard manifold. Two unit speed geodesics γ1,γ2

in M are called asymptotic if there exists C > 0 such that dist(γ1(t),γ2(t)) ≤ C for t
large enough. Clearly, being asymptotic is an equivalence relation on the set of unit speed
geodesics in M . The equivalence class of γ is denoted by γ(∞) and is called a point at
infinity for M . The set of all points at infinity for M is denoted by M(∞).

Note that isometries send asymptotic geodesics to asymptotic ones, so the action of I(M)
on M extends naturally to an action on M = M ∪M(∞). Here are a few basic properties
of M(∞):

Proposition 2.4.34. Let M be a Hadamard manifold. There is a natural topology on M
called a cone topology. With respect to this topology:

(a) M is homeomorphic to a closed ball Bn. Moreover, Int(M) = M and ∂M = M(∞).

(b) The topology on M induced from M is the original one.

(c) For every p ∈ M , the map S1
pM → M(∞), v 7→ γv(∞), is a homeomorphism. Here

S1
pM is the unit sphere in TpM and γv is the geodesic emanating from p with initial

velocity v.

(d) The action I(M) ↷M is continuous.

Example 2.4.35. Consider the real hyperbolic space RHn in the ball model. The
geodesics in RHn are precisely the intersections of RHn with circles in Rn that intersect
the boundary sphere Sn orthogonally, as well as its intersections with lines through the
origin. Two geodesics are asymptotic if and only if they meet the boundary sphere at
the same point (as t → +∞). This means that RHn(∞) can be identified with the
boundary sphere Sn, also called the ideal boundary of RHn, and this identification is a
homeomorphism. �

Our main reason for introducing points at infinity is to give a geometric description of
parabolic subgroups.

Proposition 2.4.36. Let M = G/K be a symmetric space of noncompact type. Consider
the induced continuous action G ↷ M(∞).

(a) For every x ∈ M(∞), the stabilizer Gx is a parabolic subgroup.

(b) Conversely, every proper parabolic subgroup of G is the stabilizer of some x ∈ M(∞).

Let us discuss a proof of Proposition 2.4.36 on the level of Lie algebras. The following is
proven in [Ebe96, Prop. 2.7.13(1)]:

Proposition 2.4.37. Let x ∈ M(∞), and let X ∈ ToM be such that γX(∞) = x. Assume
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that a contains X. Then the Lie algebra gx of Gx is given by

gx = g0 ⊕
⊕
α∈Σ

α(X)≥0

gα.

Having fixed a, let us now show that

{gx | X ∈ a {0} , x = γX(∞)} =
{
qΦ | Σ+ ⊆ Σ,Φ ⊆ Λ

}
.

Given gΦ, take X ∈ aΦ such that all the simple roots that are not in Φ are positive on X
and write x = γX(∞). It then easily follows that gx = qΦ. Conversely, given a nonzero
X ∈ a and the corresponding x at infinity, let ξ be the vector in a∗ corresponding to X
under the isomorphism a −→∼ a∗. The ξ lies in the closure of some (maybe not unique)
Weyl chamber C. If we write Λ for the corresponding set of simple roots, then all of
these roots are nonnegative on X by construction. Let Φ = {α ∈ Λ | α(X) = 0}. It is
straightforward to check that qΦ = gx.

Observation 2.4.38. Let Φ ⊆ Λ, X ∈ aΦ, and x = γX(∞) such that qΦ = gx as above.
Recall that the semisimple part lΦ of qΦ can be given as the centralizer of aΦ in g. It
is easy to verify that this actually coincides with Zg(X). Similarly, the subgroup LΦ
of G, initially given as ZG(aΦ), can also be described as ZG(X). Note the difference
between this and the whole parabolic subgroup QΦ, which does not fix X but does fix the
corresponding point x at infinity.

Corollary 2.4.39. Let M be a symmetric space of noncompact type and g ∈ I(M) any
isometry. By Proposition 2.4.34, the extension of g to M is a continuous transformation
of a closed Euclidean ball. By Brouwer’s fixed point theorem, it has a fixed point p. If p is
an interior point, then g has a fixed point in M . If p is a point at infinity, then g lies in
the parabolic subgroup Gp.

2.5. Hermitian and quaternionic Kähler symmetric

spaces

In the last section of the chapter, we briefly discuss symmetric spaces equipped with
additional geometric structures. In this thesis, we are primarily interested in complex and
quaternionic structures, which lead to the notions of Hermitian and quaternion-Kähler
symmetric spaces. Since this is a vast topic, we only cover those aspects that will be
relevant to us later in the thesis. Our primary references here are [Hel01, Ch.VIII] and
[Bes08, Ch. 14].

2.5.1. Hermitian symmetric spaces

Intuitively, a Hermitian symmetric space is a symmetric space that is also a complex
manifold, except we want the Riemannian and complex structures to agree. As the
following result shows, this is equivalent to asking that “sufficiently many” isometries are
holomorphic.

Proposition 2.5.1. Let M be a symmetric space endowed an orthogonal almost complex
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structure I. The following are equivalent:

(i) I is integrable and M is Kähler ⇔ I is parallel ⇔ Hol(M, o) ⊆ U(ToM).

(ii) Every geodesic symmetry of M is holomorphic with respect to I.

If these conditions are satisfied, M is called a Hermitian symmetric space.

Sketch of the proof. It is a standard fact that the almost complex structure of an almost
Hermitian manifold is parallel if and only if it is integrable and the manifold is Kähler, so
the equivalences in (i) are clear. To show that (ii) implies (i), note that every geodesic
translation of M , being a composition of two geodesic symmetries, is holomorphic. By
Corollary 2.1.42, I is parallel. For the opposite direction, first note that I being parallel
implies that every transvection of M is holomorphic. Since Tr(M) acts transitively on
M , it suffices to show that so is holomorphic. This is done in the proof of Proposition
VIII.4.2 in [Hel01].

As is always the case with parallel tensor fields, the complex structure of a Hermitian
symmetric space can be constructed in the isotropy representation and then extended to
the whole space in an invariant manner. Proposition 2.5.1 suggests a way to do this:

Corollary 2.5.2. Let M be a symmetric space represented by a Riemannian symmetric
pair (G,K). Suppose Io is an orthogonal K-invariant complex structure on ToM . Then
it extends to a unique G-invariant complex structure on M making it into a Hermitian
symmetric space. Every complex structure making M Hermitian arises in this way for a
suitable choice of (G,K).

Given a Hermitian symmetric space M , let us write Ihol(M) for the subgroup of I(M)
consisting of holomorphic isometries. It is straightforward to check that this is a closed
subgroup of I(M). As shown in the proof of Proposition 2.5.1, Ihol(M) contains Tr(M)
and thus acts transitively on M . Moreover, for every o ∈ M , Ihol(M) is preserved by
Θ = Cso , so (I0hol(M), I0hol(M)o) is a Riemannian symmetric pair representing M . It
is tacitly agreed upon that Hermitian symmetric spaces are represented by default by
Riemannian symmetric pairs (G,K) such that G acts by holomorphic isometries.

Example 2.5.3 (Complex Grassmannians). With its standard complex structure, the
Grassmannian Gr(k,Cn+k) (as well as its dual Gr∗(k,Cn+k)) is a Hermitian symmetric
space. Its group of inner isometries is PSU(n+ k) (resp., PSU(n, k)), so I0hol(M) = I0(M)
in this case. �

Example 2.5.4. Every symmetric space of Euclidean type and of even dimension is a
quotient of R2n ≃ Cn by a discrete subgroup, so it is Hermitian. For example, Cn itself
is a Hermitian symmetric space. In this case, I(M) = SO(2n)⋉ Cn, but the subgroup
Ihol(M) is much smaller: Ihol(M) = U(n)⋉Cn. �

In most interesting cases, however, the above requirement on Riemannian symmetric pairs
is redundant. Indeed, it follows from Proposition 2.1.97(f) that:

Corollary 2.5.5. If a Hermitian symmetric space M has compact Euclidean part, then
I0hol(M) = I0(M) and thus Ihol(M) is an open subgroup of I(M). In particular, for
any Riemannian symmetric pair (G,K) representing M , G acts on M by holomorphic
isometries.
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Hermitian symmetric spaces behave well with respect to products:

Proposition 2.5.6. A Riemannian product of Hermitian symmetric spaces is again
Hermitian. Conversely, if M = M0 ×M1 × · · · ×Mk is a de Rham-like decomposition and
M is a Hermitian symmetric space, then so is every Mi.

Given a Hermitian symmetric space M and a complex submanifold S ⊆ M , S is itself
Kähler. If S is a symmetric space in the induced metric (e.g., if S is complete, connected,
and totally geodesic), then it is a Hermitian symmetric space in its own right thanks to
Proposition 2.5.1. We need to introduce one more type of submanifolds that will be of
great importance later in the thesis.

Lemma 2.5.7. Let V be a Hermitian vector space. Given a real subspace U ⊆ V , the
following conditions are equivalent:

(i) U is isotropic with respect to the symplectic form of V .

(ii) I(U) ⊥ U (here I is the complex structure).

For this reason, isotropic subspaces of Hermitian vector spaces are sometimes called
totally real. Similarly, isotropic submanifolds in Kähler manifolds are occasionally called
totally real. Given such a submanifold S ⊂ M , the complex structure of M maps the
tangent bundle TS into the normal bundle NS. If M has complex dimension n, then S is
of dimension at most n, and dim(S) = n if and only if S is Lagrangian.

Example 2.5.8. For 0 ≤ k ≤ n, RP k (resp., RHk) is a totally real totally geodesic
submanifold of CP n (resp., CHn)—when embedded in an obvious way. �

Now we proceed to semisimple and irreducible Hermitian symmetric spaces.

Proposition 2.5.9. A semisimple Hermitian symmetric space M is automatically simply
connected 1.

Proof. By Proposition 2.1.95, a semisimple symmetric space decomposes as a product
M = Mc ×Mnc of its compact and noncompact parts. If M is Hermitian, so are both of
the factors, which can be shown by applying Proposition 2.5.6 to the universal Riemannian
covering space of M . The noncompact part is simply connected by Proposition 2.1.92.
For the compact part, see [Hel01, Th.VIII.4.6].

One can show that every Hermitian symmetric space of noncompact type can be represented
as an open bounded subset of Cn with a certain natural Kähler metric called the Bergman
metric (see, e.g., [Hel01, Ch.VIII, §3,7]); such subsets are known as bounded symmetric
domains. For example, for CH1 ≃ RH2, such an embedding can be given by the Poincaré
disk and upper half-plane models.

Corollary 2.5.2 implies that Hermitian symmetric spaces behave well with respect to
duality:

Corollary 2.5.10. Let M be a semisimple Hermitian symmetric space. Then the dual
M∗ carries a natural complex structure making it into a Hermitian symmetric space.

1Using this result, one can show that a Hermitian symmetric space with compact Euclidean factor
decomposes as the Riemannian product of its Euclidean and irreducible parts (see Proposition 2.1.88 and
[Bes08, 8.97]).
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In the Hermitian setting, there is an additional relation between dual spaces: a Hermitian
symmetric space of noncompact type admits a natural holomorphic embedding into its
dual as an open domain. This is known as the Borel embedding. For instance, for CH1,
this is the composition of the Poincaré disk or upper half-plane model CH1 ≃ RH2 ↪→ C
with an affine chart C ↪→ CP 1. We refer to [Wol72] for details.

Another crucial property of semisimple Hermitian symmetric spaces is that their complex
structure comes from the isotropy representation. For any Hermitian symmetric space,
observe that Io lies in both SO(ToM) and so(ToM).

Proposition 2.5.11. Let M be a semisimple Hermitian symmetric space represented by
a Riemannian symmetric pair (G,K).

(a) Io lies in the center of the linear isotropy Lie algebra k ⊆ so(ToM). Moreover, there
exists Z ∈ z(k) such that ad(Z)

∣∣
p
= Io.

(b) Io lies in the center of the restricted linear isotropy group K0 ⊆ SO(ToM). Moreover,
there exists k ∈ Z(K)0 such that Ad(k)

∣∣
p
= Io. If Z is fixed as in (a), k can be given

as exp(π
2
Z).

(c) The geodesic symmetry so is given by expG(πZ).

Proof. Thanks to Remark 2.1.100, ad(k)
∣∣
p
= k, so we just need to prove that Io lies in k.

By Proposition 2.1.68, it suffices to show that Io preserves that curvature tensor (since it
is already orthogonal. This is done in [Hel01, Th.VIII.4.5(i)]. For (b) and (c), consider
the subgroup U(ToM) ⊆ SO(ToM) and its center T = {αE | λ ∈ C, |λ| = 1}. On the
level of Lie algebras, we have t ⊆ u(ToM) ⊆ so(ToM), where t = Lie(T) = {λE | λ ∈ iR}.
Consider the 1-dimensional subalgebra h ⊆ z(k) spanned by Z and the corresponding Lie
subgroup H ⊆ Z(K)0. We have the restriction of the isotropy representation f : h −→∼ t
and the induced morphism F : H ↠ T. Given t > 0, we have F (expH(tZ)) = etIo = eitE,
which equals iE = Io for t = π/2 and −E for t = π. In the latter case, k = expH(tZ)
gives an isometry fixing o with differential −E at o, so it has to coincide with so by
Proposition 2.1.1(c).

Corollary 2.5.12. If M is a semisimple Hermitian symmetric space represented by a
Riemannian symmetric pair (G,K), then for any p ∈ M and λ ∈ C with |λ| = 1, there
exists k ∈ G that fixes p and whose differential at p is the multiplication by λ in TpM .

When combined with Corollary 2.5.2, Proposition 2.5.11 also implies:

Corollary 2.5.13. If an irreducible symmetric space admits an almost complex structure
making it into a Hermitian symmetric space, then that structure is unique up to a sign.

Recall that, in contrast to the noncompact type, a symmetric space M of compact type
can have I0(M) with nontrivial center. For example, the center of I0(S2n+1) = SO(2n+2)
is {±E}. It is worth noting that this does not happen for Hermitian symmetric spaces of
compact type (see [Hel01, Ch.VIII, Th. 6.1]).

For irreducible symmetric spaces, discerning whether a space is Hermitian is very easy.
Indeed, if M is irreducible Hermitian, the center Z(K) in Proposition 2.5.11 has to
be 1-dimensional, which follows easily from Schur’s lemma. Conversely, if (G,K) is an
irreducible Riemannian symmetric pair and K has nondiscrete center, then Z(K) has to

93



2.5. Hermitian and quaternionic Kähler symmetric spaces

contain a circle subgroup, which, in turn, has an element Z of order 4. By irreducibility,
the isometry Z2 has to coincide with so, so Z gives an isotropy-invariant complex structure
at o, which turns M into a Hermitian symmetric space by Corollary 2.5.2. A posteriori,
we see that Z(K) is 1-dimensional. From our description Proposition 2.1.119 of the 4
types of irreducible symmetric spaces, we deduce (see also [Hel01, Ch.VIII, §6]):

Corollary 2.5.14. An irreducible symmetric space M represented by a Riemannian
symmetric pair (G,K) admits a complex structure making it a Hermitian symmetric
space if and only if K has nondiscrete center. If this is the case, then Z(K) is actually
1-dimensional, and M can only be of type I or III. If, in addition, (G,K) is effective, then
Z(K) is isomorphic to the circle group.

Let M be an irreducible Hermitian symmetric space and K̃ the isotropy subgroup of I(M)

at o ∈ M . The adjoint action of K̃ preserves z(k), so each element of K̃ acts on z(k) either

trivially or as the multiplication by −1. Since K̃ meets every connected component of
I(M) and I0hol(M) = I0(M), we deduce that every isometry of M is either holomorphic
or anti-holomorphic. But more is true: there always exists an anti-holomorphic isometry,
so I0hol(M) is a proper subgroup ([Leu79b]). We deduce:

Corollary 2.5.15. If M is an irreducible Hermitian symmetric space, then Ihol(M) is a
subgroup of I(M) of index 2, and its other coset consists of anti-holomorphic isometries.

This corollary implies that changing the complex structure of an irreducible Hermitian
symmetric space from I to −I results in a Hermitian symmetric space holomorphically
isometric to the original one. From this and Corollary 2.5.13, one can see that for any
semisimple symmetric space, if there exists a complex structure making it into a Hermitian
symmetric space, then it is unique up to holomorphic isometry.

We will work with Hermitian symmetric spaces more in Chapters 5 and 6. In particular,
see Table 6.4 for the complete list of irreducible Hermitian symmetric spaces.

2.5.2. Quaternion-Kähler symmetric spaces

In this part, we discuss the quaternionic analog of Hermitian symmetric spaces. Intuitively,
it would make sense to ask that every tangent space TpM has a fixed structure of an
H-module—which would lead to the notion of a hyperkähler manifold. Unfortunately,
this is not a very useful idea in the context of symmetric spaces: a hyperkähler manifold
is Ricci-flat, and Ricci flat homogeneous spaces are flat. The key is to let a quaternionic
structure to be only locally trivial but not necessarily globally.

By a quaternionic vector space we will mean a left H-module of finite rank. The model
example is the space Hn with multiplication given by p ·v := vp, where p ∈ H, v ∈ Hn, and
the multiplication on the right-hand side is coordinate-wise. More loosely, we will say that
a quaternionic structure on a real vector space V is a choice of a unital R-subalgebra
H ⊆ End(V ) isomorphic to H. Note that H = R⊕ Im(H), and the first summand is Z(H).
The unit 2-sphere in Im(H) is precisely the set of quaternions whose square equals −1.
Therefore, a quaternionic structure on a vector space V can be written as H = RE ⊕ J ,
where J is span of elements with square −1. Apart from J , many other things in H do
not depend on the choice of an isomorphism H −→∼ H: the inner product, the conjugation,
the orientation of J , the 3-sphere S3

H of unit-length elements, and of course the 2-sphere
S2
H = S3

H ∩ J . Every element of S2
H is a complex structure on V . Note that S3

H is a
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Lie subgroup of GL(V ); and its Lie algebra can be identified with J . For any H −→∼ H,
it corresponds to the group of unit-length quaternions Sp(1) ⊆ H×. An isomorphism
H −→∼ H is the same as a triple J1, J2, J3 ∈ J satisfying the quaternionic relations
J2
1 = J2

2 = J2
3 = J1J2J3 = −E, which, in turn, is the same as an oriented orthonormal

basis for J . We call such a triple a canonical basis of the quaternionic structure on V .
The group GLH(V ) of H-linear automorphisms of V also does not depend on the choice of
H −→∼ H. Observe that GLH(V ) = ZGL(V )(S3

H), whereas the normalizer of S3
H in GL(V ) is

given by the product GLH(V ) · S3
H
∼= (GLH(V )× S3

H)/{±E}. If we pick a canonical basis
J1, J2, J3 ∈ S2

H and an H-basis e1, . . . , en for V , we get an H-isomorphism Hn −→∼ V given
by (pk)

n
k=1 7→

∑n
k=1φ(pi)ei, where φ(a+ bi+ cj+ dk) = aE+ bJ1+ cJ2+ dJ3. Under this

isomorphism, the action GLH(V ) ↷ V corresponds to the normal matrix multiplication
GL(n,H) ↷ Hn.

Definition 2.5.16. Let V be an H-vector space. A quaternion-Hermitian inner
product on V is an R-bilinear map H : V × V → H that is:

(a) quaternion-Hermitian: H(v, w) = H(w, v) ( ∀ v, w ∈ V ),

(b) H-sesquilinear: H(pv, w) = pH(v, w), H(v, pw) = H(v, w)p (∀ p ∈ H, ∀ v, w ∈
V ),

(c) positive-definite1: H(v, v) > 0 (∀ v ∈ V {0}).

Example 2.5.17. The formula H(v, w) =
∑n

i=1 viwi defines a quaternion-Hermitian inner
product on Hn. �

We will often use a prefix “q-” as a shorthand for “quaternion”. Given an H-vector space
with a q-Hermitian inner product H, observe that the real part g of H is a Euclidean inner
product. What is more, g fully determines H: for any canonical basis J1, J2, J3 ∈ Sp(1)
(e.g., i, j, k), we have:

H(v, w) = g(v, w)−
3∑

i=1

Jig(Jiv, w). (2.5.1)

With respect to g, we have S3
H ⊆ SOg(V ) and J ⊆ sog(V ). We have the group of q-unitary

transformations SpH(V ) ⊆ GLH(V ) consisting of those H-linear operators that preserve
H. One can show that SpH(V ) = GLH(V ) ∩Og(V ). Similar to the above, we have

ZOg(V )(S3
H) = SpH(V ),

NOg(V )(S3
H) = SpH(V ) · S3

H
∼= (SpH(V )× S3

H)/{±E} . (2.5.2)

An H-basis for V is H-orthonormal if and only if it is g-orthonormal. With respect
to such a basis and the induced isomorphism Hn −→∼ V , H becomes the model inner
product as in Example 2.5.17, while the groups SpH(V ) and SpH(V ) · S3

H correspond to
Sp(n) ⊆ GL(n,H) and Sp(n)Sp(1) ⊆ SO(4n), respectively. The action of the latter on
Hn ≃ R4n is given by (A, q) · v = Avq, where v is a column-vector of quaternions. As a
subgroup of GL(V ), SpH(V ) · S3

H allows a useful description in terms of its action on the
bases. Namely, it acts transitively on the set of orthonormal H-bases for V , as well as on
S2
H (by conjugation). It thus acts on the set of pairs consisting of an orthonormal H-basis

for V and a canonical basis of H, and one can show that this actions is simply transitive.

1Just like in the Euclidean and Hermitian cases, this condition can be relaxed to just nondegeneracy,
in which case H has a signature (p, q) such that p+ q = dimH(V ).
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Conversely, an element A ∈ GL(V ) lies in SpH(V ) · S3
H if and only if it preserves both the

set of orthonormal H-bases and the set of canonical bases.

Definition 2.5.16 would not make sense if we only had a vector space V with a quaternionic
structure H: we need a fixed isomorphism H −→∼ H. However, suppose we have a
Euclidean inner product g on V such that S3

H ⊆ Og(V ), or equivalently, J ⊆ sog(V )
(by a slight abuse of terminology, we will call such g quaternion-Hermitian). Then,
if we pick an isomorphism φ : H −→∼ H, formula (2.5.1) defines a q-Hermitian inner
product H on V with real part g. Any other isomorphism H −→∼ H is of the form φ ◦ Cp,
where Cp is the conjugation of H by some p ∈ Sp(1). The resulting q-Hermitian inner
product on V will then be H ′(v, w) = pH(v, w)p. Whatever the choice is, the group
Spg(V ) := SpH(V ) = Og(V ) ∩ GLH(V ) does not depend on it. Now we can proceed to
define quaternion-Kähler manifolds and symmetric spaces.

Definition 2.5.18. A smooth 4n-manifold is called almost1 quaternionic if the following
equivalent pieces of data are set:

(a) A quaternionic structure Hp on each TpM such that the resulting rank-4 subbundle
H ⊆ End(TM) (⇔ the rank-3 subbundle J ⊆ End(TM)) is smooth.

(b) A reduction of the structure group of TM to GL(n,H)Sp(1) ⊆ GL(4n,R).

Observe that an almost quaternionic manifold M comes equipped with an S3-bundle
Y ↠M,Yp = S3

p := S3
Hp

, and an S2-bundle Z ↠M,Zp = S2
p := S2

Hp
. A canonical local

frame on M is a smooth local frame J1, J2, J3 for the bundle J ↠ M over some open
subset U such that for every p ∈ U , J1p, J2p, J3p is a canonical basis of Hp.

Definition 2.5.19. An almost quaternionic manifold M is called quaternion-Hermitian
if the following equivalent pieces of date are set:

(a) A Riemannian metric g on M such that Y ⊆ O(TM) (or equivalently, J ⊆ so(TM)).

(b) A common reduction of the structure groups GL(n,H)Sp(1) and SO(4n) of TM to
Sp(n)Sp(1).

Definition 2.5.20. A quaternion-Kähler manifold is a quaternion-Hermitian manifold
satisfying the following equivalent conditions:

(a) The subbundle J ⊆ End(TM) is parallel.

(b) For every p ∈ M , Hol(M, p) ⊆ Sp(TpM) · S3
p.

A symmetric space that is also a quaternion-Kähler manifold is called a quaternion-
Kähler symmetric space.

The property of being q-Kähler can be described purely in terms of holonomy:

Proposition 2.5.21. A connected Riemannian manifold M admits an almost quaternionic
structure making it into a quaternion-Kähler manifold if and only if its holonomy is
contained in Sp(n)Sp(1).

Since Sp(n)Sp(1) is contained in SO(4n), a q-Kähler manifold must be orientable. We
also have Sp(1)Sp(1) = SO(4), which means that every orientable Riemannian manifold

1Here we are following Salamon ([Sal80, Sal82]), who reserves the term quaternionic for those almost
quaternionic manifolds that admit a torsion-free GL(n,H)Sp(1)-connection.
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of dimension 4 is q-Kähler. For this reason, it is generally assumed by default (and we
adhere to this as well) that q-Kähler manifolds are of dimension ≥ 8. For M q-Kähler,
the S2-bundle Z ↠M is called its twistor bundle and it has remarkable properties that
allow one to study M by means of complex geometry. We will not go in this direction but
will mention a few standard properties of q-Kähler manifolds.

Proposition 2.5.22 (Properties of q-Kähler manifolds). Let M be a complete
quaternion-Kähler manifold.

(a) M is Einstein. In particular, if M has positive Ricci curvature, then it is compact
and has finite fundamental group.

(b) The Einstein constant of M is zero (i.e., M is Ricci-flat) ⇔ M is locally hyperkähler
(i.e., Hol0(M) ⊆ Sp(n)). If this is the case and M is Riemannian homogeneous,
then it is flat.

(c) If M is not Ricci-flat, it is irreducible1 and Hol(M) contains the Sp(1) factor of
Sp(n)Sp(1).

(d) If the Einstein constant is positive, M is simply connected. If, in addition, M is
Riemannian homogeneous, then it is symmetric.

The second assertion in Proposition 2.5.22(b) follows from the classical fact that a Ricci-flat
Riemannian homogeneous space must be flat.

Let M be a q-Kähler manifold. Note that every local section of Z over some U is an
almost complex structure on U , and the Riemannian metric g is Hermitian with respect
to it. However, unless M is Ricci-flat, this almost complex structure is not integrable
and does not extend to a global section. This sets q-Kähler manifolds apart from their
hyperkähler counterparts.

In a q-Kähler manifold, one can distinguish several types of submanifolds based on how
they interact with the quaternionic structure.

Definition 2.5.23. Let V be a vector space endowed with a quaternionic structure H
and a q-Hermitian Euclidean inner product. A subspace U ⊆ V is called

• quaternionic, if every p ∈ H preserves U .

• totally complex, if there exists p ∈ J {0} that preserves U , and for every q ∈ J
orthogonal2 to p we have q(U) ⊥ U .

• totally real, if for every p ∈ J , p(U) ⊥ U .

A submanifold S of a quaternion-Kähler manifold M is called quaternionic, totally
complex, or totally real if so is TpS in TpM for every p ∈ S.

If U ⊆ V is a totally complex subspace preserved by J ∈ S2
H, then U is a complex

subspace of the complex vector space (V, J) and a totally real subspace of (V, J ′) for any
J ′ ∈ S2

H, J
′ ⊥ J . The following criterion is straightforward:

1This means that we cannot take products in the category of q-Kähler manifolds.
2Here we mean orthogonal with respect to the intrinsic inner product on H that comes from any

isomorphism H −→∼ H.
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Proposition 2.5.24. Let M be a quaternion-Kähler manifold and S ⊆ M an embedded
submanifold. Then S is

• quaternionic ⇔ for every p ∈ S, there exists a canonical local frame J1, J2, J3 over
a neighborhood U of p such that Ji(TqS) = TqS for each i and each q ∈ S ∩ U ,

• totally complex ⇔ for every p ∈ S, there exists a canonical local frame J1, J2, J3
over a neighborhood U of p such that J1(TqS) = TqS and J2(TqS), J3(TqS) ⊥ TqS
for each q ∈ S ∩ U ,

• totally real ⇔ for every p ∈ S, there exists a canonical local frame J1, J2, J3 over a
neighborhood U of p such that Ji(TqS) ⊥ TqS for each i and each q ∈ S ∩ U .

Fortunately, the property of being quaternionic, totally complex, or totally real is preserved
under isometric congruence, thanks to the following result. It can be deduced from
Proposition 2.5.22(c) (see also [AM93]).

Proposition 2.5.25. Let M be a complete quaternion-Kähler manifold of nonzero scalar
curvature. Every isometry g ∈ I(M) preserves the quaternionic structure H (and thus J )
of M . In other words, for every p ∈ M and every H ∈ Hp, there exists H ′ ∈ Hg(p) such
that dgp ◦H = H ′ ◦ dgp.

Finally, we make a couple of remarks about q-Kähler symmetric spaces. If M is such a
space and it is not flat, it is irreducible and simply connected by Proposition 2.5.22(3, 4). In
light of (2.5.2), Proposition 2.5.22 also asserts that Hol(M, o) = Hol0(M, o) has a normal
subgroup isomorphic to Sp(1), whose representation on ToM is equivalent to standard
representation of Sp(1) on Hn ≃ R4n. But since M is semisimple, Hol(M, o) coincides
with the restricted linear isotropy group at o. Conversely, let M be a simply connected
irreducible symmetric space represented by a Riemannian symmetric pair (G,K), and
suppose K has a normal subgroup K0 isomorphic to Sp(1) whose representation on ToM is
equivalent to Sp(1) ↷ Hn. This means that K0 gives rise to a quaternionic structure H on
ToM . Since the isotropy representation is orthogonal, the inner product go is q-Hermitian.
By (2.5.2), the image of K in O(ToM) is contained in Spgo(ToM) · S3

H. Since this image

coincides with Hol(M, o) = Hol0(M, o), we see that the quaternionic structure on ToM
extends to the whole M and makes M into a q-Kähler symmetric space. Using this
criterion, one can figure out which of the irreducible symmetric spaces are q-Kähler (see
[Bes08, 14.52]). By examining the list of irreducible symmetric spaces, one can actually
deduce that the assumption on the representation of K0 is redundant:

Proposition 2.5.26. Let M be a simply connected irreducible symmetric space whose
restricted isotropy group (at some o ∈ M) has a normal subgroup K0 isomorphic to Sp(1).
Then the representation of K0 on ToM is equivalent to Sp(1) ↷ Hn. Consequently, M is
quaternion-Kähler.

Our discussion yields an immediate

Corollary 2.5.27. Let M be a simply connected irreducible symmetric space.

(a) There exists at most one almost quaternionic structure on M making it into a
quaternion-Kähler manifold.

(b) M is quaternion-Kähler if and only if M∗ is.

(c) M can only be quaternion-Kähler if it is of type I or III.
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Example 2.5.28. The quaternionic projective and hyperbolic spaces HP n and HHn are
q-Kähler symmetric spaces because their restricted isotropy group is Sp(n)Sp(1). In fact,
their restricted isotropy representation is isomorphic to the standard representation of
Sp(n)Sp(1) on Hn. �

Curiously, for every simple Lie group G, there exists precisely one q-Kähler symmetric
space M of type I such that I0(M) is isomorphic to G. This can be seen from the
classification, but it can also be proven directly by taking a simple Lie group G and
constructing a subgroup K (using the root data) such that G/K is a q-Kähler symmetric
space. This was originally done by Wolf in [Wol65], for which reason q-Kähler symmetric
spaces of compact type are often called Wolf spaces.

Finally, let us remark that the Grassmannians Gr(2,Cn+2) and Gr∗(2,Cn+2) (n ≥ 1) are
the only non-flat symmetric spaces that are both Hermitian and q-Kähler. It should be
noted, however, that on any of them, the complex structure I does not lie in J at any
point. This stems from the fact that in the isotropy Lie algebra k = su(n)⊕ su(2)⊕ u(1),
the summand su(2) gives rise to the quaternionic structure, whereas the complex structure
arises from u(1). We will work with these space much more closely in Chapter 5.
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Chapter 3

AUTOMORPHISMS OF REAL SEMISIMPLE LIE

ALGEBRAS AND THEIR RESTRICTED ROOT

SYSTEMS

In this first research chapter of the thesis, we launch our investigation of homogeneous
hypersurfaces in symmetric spaces. Since we are mostly interested in symmetric spaces of
noncompact type, it is worth spending some time studying the problem of congruence on
such spaces. Recall that noncompact symmetric spaces are interlinked with noncompact
real semisimple Lie algebras (see (2.4.1)). It is reasonable to expect that automorphisms
of such a Lie algebra can be translated into isometries of the corresponding space—we will
make this into a formal statement in Proposition 3.3.4. If we had a complex semisimple
Lie algebra, we could then move further to the corresponding root system and Dynkin
diagram, which encode the same amount of information; and thanks to the Isomorphism
Theorem, their automorphisms can be lifted to automorphisms of the Lie algebra. For
real semisimple Lie algebras, the natural analog of this is the restricted root system.
Unfortunately, this is no longer a 1-to-1 correspondence. Consider, for instance, the
Lie algebras sl(n,R) and sl(n,C). They both have An−1 as their restricted root system,
although they are clearly not isomorphic. This also means that we may not always be able
to lift an automorphism of the restricted root system back to the level of the Lie algebra:
the restricted root system An−1⊔An−1 of sl(n,R)⊕ sl(n,C) has an obvious automorphism
that interchanges its irreducible components, and its lift would have to interchange the
simple summands of the Lie algebra, which is impossible (we will define the notion of lift
formally in Subsection 3.2.1).

To make up for this loss of information, we adorn the restricted root system of a real
semisimple Lie algebra with an additional piece of data: to each restricted root, we attach
the dimension of the corresponding root space (in contrast to the complex case, it does
not have to be equal to one). This leads to the notions of a weighted root system and
weight-preserving root system automorphisms. It follows a posteriori from the classification
of real semisimple Lie algebras that every such Lie algebra is determined by its weighted
root system up to isomorphism. The main result of this chapter is Theorem 3.2.10 (called
Theorem 1 in the introduction), which states that every weight-preserving automorphism
of the restricted root system Σ of g can be lifted to an automorphism of g. At the end
of the chapter, we use these results to deepen our understanding of the correspondence
between real semisimple Lie algebras and noncompact symmetric spaces. We also obtain a
precise criterion for when a weight-preserving automorphism of the restricted root system
Σ of g can be lifted to an isometry of the corresponding space M (Corollary 3.3.8). This
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criterion will prove highly useful when we deal with the congruence problem in the next
two chapters. As a special case, we get Theorem 2 announced in the introduction. It
should be noted that the exposition here follows closely the author’s preprint [Sol22]. Here
is the layout of the chapter:

• In Section 3.1, we recall some basic properties of isomorphisms between root systems.
After that, we review the classical correspondence between complex semisimple Lie
algebras and reduced root systems and look at it through the lens of root system
isomorphisms.

• In Section 3.2, we introduce the notion of weight-preserving isomorphism between
root systems and prove the main theorem.

• In Section 3.3, we discuss applications of the theory developed in this chapter to
symmetric spaces of noncompact type.

3.1. Some aspects of the theory of root systems

This section mostly serves as preparation for the substantive part of the chapter. Practically
everything discussed here can be found in [Kna02, Ch. II] or [Oni04, §1,4].

3.1.1. Root system isomorphisms

We begin by reviewing some aspects of the theory of root systems. Let (V,∆) be a root
system. Here V is a finite-dimensional Euclidean real vector space and ∆ ⊆ V is the root
system itself. We are not assuming ∆ to be reduced or irreducible. First, we recall the
notion of isomorphism of root systems.

Definition 3.1.1. Let (V ′,∆′) be another root system. A linear isomorphism f : V −→∼ V ′

is called a (root system) isomorphism between (V,∆) and (V ′,∆′) (or between ∆
and ∆′, for brevity) if the following two conditions are satisfied:

(a) f(∆) = ∆′.

(b) f preserves the root integers, i.e., nf(α)f(β) = nαβ for all α,β ∈ ∆ (here nαβ = 2⟨α |β ⟩
||β||2 ).

If V ′ = V and ∆′ = ∆, we call f an automorphism of (V,∆) (or of ∆, for brevity).
The (finite) group of all automorphisms of ∆ is denoted by Aut(∆) ⊆ GL(V ).

Note that in Definition 3.1.1, condition (ii) follows from (i) automatically if f is conformal
(i.e., a scalar multiple of an isometric isomorphism). Although a root system isomorphism
does not have to be conformal in general, we are going to prove that it cannot stray too
far from being one (see Proposition 3.1.3). To this end, we need the following simple

Lemma 3.1.2. Let (V,∆) be a root system. There exists a unique (up to reordering)
orthogonal decomposition V =

⊕k
i=1 Vi such that ∆ =

⊔k
i=1∆i, where ∆i = ∆ ∩ Vi, and

(Vi,∆i) is an irreducible root system. Two roots α,β ∈ ∆ lie in the same component ∆i if
and only if there exists a chain of roots λ0, λ1, . . . , λs ∈ ∆ with λ0 = α, λs = β, such that
⟨λi−1 |λi ⟩ ≠ 0 for 1 ≤ i ≤ s.

Naturally, we call each (Vi,∆i) an irreducible component of (V,∆) and the decom-
position V =

⊕k
i=1 Vi,∆ =

⊔k
i=1∆i the decomposition of (V,∆) into its irreducible

components.
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Proof of the lemma. Introduce an equivalence relation on ∆: two roots α,β ∈ ∆ are
equivalent if and only if they can be connected by a chain of roots λ0, λ1, . . . , λs ∈ ∆
as above. This is clearly an equivalence relation, so we can write ∆ =

⊔k
i=1∆i for the

decomposition of ∆ into the equivalence classes. Define Vi to be the linear span of ∆i.
Since ∆ spans V , we have V =

∑k
i=1 Vi. By construction, given i, j ∈ {1, . . . , k} , i ≠ j,

every root α ∈ ∆i is orthogonal to every root β ∈ ∆j, so Vi ⊥ Vj. Therefore, we have an

orthogonal decomposition V =
⊕k

i=1 Vi. In particular, this implies that ∆i = ∆ ∩ Vi for
each i ∈ {1, . . . , k}. Trivially, for every subspace W ⊆ V , (W,∆ ∩W ) is a root system,

hence so is each (Vi,∆i). Note that each ∆i is irreducible by design. Let V =
⊕k′

i=1 V
′
i

be another decomposition of V as in the lemma. It follows from what we have already
proven that all roots in ∆ ∩ V ′i are equivalent to each other for each i ∈ {1, . . . , k′}. On
the other hand, if i, j ∈ {1, . . . , k′} , i ≠ j, no root in ∆∩ V ′i can be equivalent to any root

in ∆ ∩ V ′j . Consequently, the decomposition V =
⊕k′

i=1 V
′
i coincides with our constructed

decomposition up to reordering of the factors, which completes the proof.

Now we can prove the following result, which asserts that root system isomorphisms are
“almost” conformal maps.

Proposition 3.1.3. Let (V,∆) and (V ′,∆′) be root systems and f : V −→∼ V ′ an isomor-

phism between them. Write V =
⊕k

i=1 Vi,∆ =
⊔k

i=1∆i and V ′ =
⊕k′

i=1 V
′
i ,∆

′ =
⊔k′

i=1∆
′
i

for the decompositions of (V,∆) and (V ′,∆′) into their irreducible components. Then k = k′

and, after reordering Vi’s if needed, f(Vi) = V ′i and f(∆i) = ∆′i for each i ∈ {1, . . . , k}.
Moreover, for each i, f

∣∣
Vi
: Vi −→∼ V ′i is a conformal map, i.e., there exists ai > 0 such that

aif
∣∣
Vi
: Vi −→∼ V ′i is an isometry.

Proof. To begin with, observe that α ⊥ β ⇔ nαβ = 0, so f must preserve root orthog-
onality. From this it easily follows that f preserves the equivalence relation on roots
described in the proof of Lemma 3.1.2, which, in turn, implies the first assertion. For
the remainder of the proof, we may assume that both (V,∆) and (V ′,∆′) are irreducible,

and we need to proof that f is conformal. Pick any α0 ∈ ∆ and define a = ||f(α0)||
||α0|| > 0.

We will prove that a−1f is an isometry. Since a−1f already preserves the root integers, it

suffices to show that it preserves the length of each root. Note that
nαβ

nβα
= ||α||2
||β||2 whenever

⟨α|β⟩ ̸= 0. Hence, f preserves the length-ratio of any pair of non-orthogonal roots. Pick
any β ∈ ∆. According to Lemma 3.1.2, there exists a chain of roots λ0, λ1, . . . , λs with
λ0 = α0, λs = β, such that ⟨λi−1 |λi ⟩ ̸= 0 for 1 ≤ i ≤ s. We can compute:

||f(α0)||
||f(β)||

=
||f(λ0)||
||f(λ1)||

||f(λ1)||
||f(λ2)||

· · · ||f(λs−1)||
||f(λs)||

=
||λ0||
||λ1||

||λ1||
||λ2||

· · · ||λs−1||
||λs||

=
||α0||
||β||

,

i.e ||f(β)||||β|| = ||f(α0)||
||α0|| = a or, in other words, ||a−1f(β)|| = ||β||. Consequently, a−1f

preserves the lengths of all the roots and is an isometry, which means that f is conformal.

Corollary 3.1.4. If (V,∆) is an irreducible root system, then Aut(∆) ⊆ O(V ).

Proof. Take any automorphism f ∈ Aut(∆). By Proposition 3.1.3, there exists a > 0 such
that af is an isometry. Assume that f is not orthogonal, i.e., a ≠ 1. By replacing f with
f−1 if needed, we may assume a > 1, i.e., f increases the length of any nonzero vector.
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But ∆ is finite, hence so is the set of lengths of all roots in ∆. Since f(∆) = ∆, we arrive
at a contradiction.

Let (V,∆) be any root system. Let us look more closely at the automorphism group
Aut(∆). Recall that we have the Weyl group W(∆) generated by the reflections sα in
the root hyperplanes α⊥, α ∈ ∆. Each sα is orthogonal and preserves ∆, hence it is an
automorphism of ∆. We deduce that W(∆) ⊆ Aut(∆). In fact, it is a normal subgroup,
which can be easily checked on its generators: f ∈ Aut(∆),α ∈ ∆ ⇒ fsαf

−1 = sf(α).
The short exact sequence of groups W(∆) ↪→ Aut(∆)↠ Aut(∆)/W(∆) splits, albeit not
canonically. In order to split it, one first has to make a choice of positive roots (the same
standard procedure we already carried out in Subsection 2.4.2). Pick a Weyl chamber
D ⊆ V , let ∆+ ⊆ ∆ be the corresponding subset of positive roots and Λ = {α1, . . . ,αr} ⊆
∆+ the subset of simple roots. We denote the corresponding Dynkin diagram by DD. If
a simple root αi has the property that 2αi is also a root, the corresponding vertex of the
Dynkin diagram is represented by two concentric circles.

Definition 3.1.5. Let (V ′,∆′) be another root system with a fixed choice of simple roots
Λ′ ⊆ ∆′+ ⊆ ∆′ and the corresponding Dynkin diagram DD′. A bijection s : Λ −→∼ Λ′ is
called a (diagram) isomorphism between DD and DD′ if it a graph isomorphism
that preserves edge directions, the number of lines an edge consists of, and the number of
circles a vertex consists of. If V ′ = V,∆′ = ∆, and Λ′ = Λ, we call s an automorphism
of DD. The group of all automorphisms of DD is denoted by Aut(DD).

The chief example of diagram isomorphisms comes from root system isomorphisms.
Suppose that f : V −→∼ V ′ is an isomorphism between ∆ and ∆′ such that f(Λ) = Λ′. Then
s = f

∣∣
Λ
: Λ −→∼ Λ′ is clearly an isomorphism between DD and DD′. This also explains why

the Dynkin diagram of a root system is well-defined in the first place and does not depend
on the choice of a Weyl chamber: if Λ′ ⊆ ∆ is another set of simple roots, then there
exists w ∈ W(∆) ⊆ Aut(∆) mapping Λ onto Λ′, so the corresponding Dynkin diagrams
DD and DD′ are isomorphic. This construction (f 7→ f

∣∣
Λ
) actually exhausts1 all Dynkin

diagram isomorphisms between DD and DD′. Although this is a standard fact in the
theory of root systems (see, for example, [Kna02, Prop. 2.66]), we will reprove it for our
own purposes in Proposition 3.1.7 below.

Recall that for each r ≥ 1 there exists only one irreducible nonreduced root system of rank
r up to isomorphism (see [Kna02, Prop. 2.92]). It is denoted by (BC)r and its Dynkin
diagram looks like this:

Remark 3.1.6. Some authors who work only with reduced root systems ask s : Λ −→∼ Λ′ in
Definition 3.1.5 to preserve the Cartan matrix instead. This is equivalent to our definition
for reduced root systems, as the Cartan matrix and the Dynkin diagram encode the same
amount of data for such systems. However, for nonreduced root systems, our definition is
stronger because the Dynkin diagram carries more (in fact, all) information about the
root system in this case. For instance, the Cartan matrices of Br and (BC)r are the same,
whereas their Dynkin diagrams are not—the difference is precisely the vertex represented
by two concentric circles.

1This implies that a root system is fully determined by its Dynkin diagram up to isomorphism.
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It is very straightforward to compute the group Aut(DD) for all irreducible root systems
by looking at their classification:

Aut(DD) ≃


S3 if ∆ ≃ D4,

Z/2Z if ∆ ≃ An (n ≥ 2), Dn (n ≥ 5), orE6,

{e} otherwise.

Since the set of simple roots forms a basis for the underlying space of a root system,
every diagram isomorphism s : Λ −→∼ Λ′ between DD and DD′ extends uniquely to a linear
isomorphism V −→∼ V ′, which we denote by the same letter. In particular, we have a
natural group embedding Aut(DD) ⊆ GL(V ) (once again, this embedding only makes
sense after we fix the set of simple roots). Before we relate diagram isomorphisms to
root system isomorphisms, we make a few observations. First off, note that Aut(∆) acts
naturally on the set of Weyl chambers of (V,∆). Second, let V =

⊕k
i=1 Vi,∆ =

⊔k
i=1∆i

be the decomposition of (V,∆) into its irreducible components. It is easy to see that for
each i ∈ {1, . . . , k}, ∆+

i = ∆i ∩ ∆+ is a set of positive roots for ∆i. Consequently, we
have Λ =

⊔k
i=1Λi and D =

∏k
i=1Di, where Λi = Λ ∩ ∆+

i is a set of simple roots for ∆i

and Di = D ∩ Vi is the corresponding Weyl chamber. This implies that for each i, the
Dynkin diagram DDi of ∆i is a connected component of DD, and we have DD =

⊔k
i=1 DDi.

Finally, note that W(∆) =
∏k

i=1 W(∆i).

Proposition 3.1.7. Let (V,∆) and (V ′,∆′) be root systems with fixed choices of simple
roots Λ ⊆ ∆ and Λ′ ⊆ ∆′.

(a) Given any diagram isomorphism s : Λ −→∼ Λ′ between DD and DD′, its linear exten-
sion s : V −→∼ V ′ is an isomorphism between ∆ and ∆′. An isomorphism V −→∼ V ′

between ∆ and ∆′ comes from a diagram isomorphism Λ −→∼ Λ′ precisely when it
maps Λ onto Λ′.

(b) Aut(DD) ⊆ Aut(∆). In terms of the action of Aut(∆) on the set of Weyl chambers,
Aut(DD) is the stabilizer of D.

(c) Aut(∆) = W(∆)⋊ Aut(DD).

Proof. Let s : Λ −→∼ Λ′ be a diagram isomorphism between DD and DD′. Recall that
the Weyl group of a root system is generated by the simple reflections with respect to
any choice of simple roots: W(∆) is generated by {sα | α ∈ Λ} and the same is true for
W(∆′). Since s(Λ) = Λ′, we deduce that sW(∆)s−1 = W(∆′). On the other hand, it is
well known that every root in a root system is simple (or double of a simple one) for a
suitable choice of a Weyl chamber ([Kna02, Prop. 2.62]). To simplify the notation, let
us write Λ for Λ ∪ (2Λ ∩ ∆). Since the Weyl group acts transitively on the set of Weyl
chambers, we deduce that ∆ = W(∆) ·Λ (the same is true for ∆′). We know that for any
α ∈ Λ, 2α is a root if and only if 2s(α) is one. Altogether, we have:

s(∆) = s(W(∆) ·Λ) = sW(∆)s−1 · s(Λ) = W(∆′) ·Λ′ = ∆′,

so s satisfies condition (i) of Definition 3.1.1. As for condition (ii), observe that s provides
a bijection between the connected components of DD and those of DD′. Thus, for each
i ∈ {1, . . . , k}, there exists j ∈ {1, . . . , k′} (clearly, k′ = k) such that s(DDi) = DD′j,
which means that s(Λi) = Λ′j and thus s(Vi) = V ′j and s(∆i) = ∆′j. Take any α ∈ Λi
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and let a = ||s(α)||
||α|| . We want to show that for every other β ∈ Λi,

||s(β)||
||β|| = a. Assume

that β is connected to α by an edge. Consider the root systems ∆ ∩ spanR{α,β} and
∆′ ∩ spanR{s(α), s(β)}. They are both of rank 2 and we have an isomorphism between
their Dynkin diagrams provided by s. Since there are just five root systems of rank 2 up
to isomorphism, it is straightforward to see that two such root systems with isomorphic
Dynkin diagrams are isomorphic. What it means for us is that ||β||||α|| =

||s(β)||
||s(α)|| , hence

||s(β)||
||β|| = ||s(α)||

||α|| = a. Since DDi is connected, it follows by induction that s increases the
lengths of all simple roots in Λi by the same factor of a. As we already know that it
preserves the Cartan integers, we deduce that it is conformal on Vi (a

−1s : Vi −→∼ V ′j is
an isometry). But this, together with condition (i) of Definition 3.1.1, implies that it
preserves the root integers between all the roots in ∆i (and not only between the simple
ones). Since the root integers between roots lying in different components of ∆ are all
zero, we see that s is a root system isomorphism, which was to be proven. The second
assertion in part (a) of the proposition is trivial.

Part (b) follows from part (a), as s ∈ Aut(∆) preserves D if and only if it preserves Λ.

Part (c) hinges on the fact that W(∆) acts simply transitively on the set of Weyl
chambers. It is clear from (b) that W(∆) and Aut(DD) do not intersect. On the
other hand, let f ∈ Aut(∆). There exists w ∈ W(∆) such that w(f(D)) = D. But
then s = wf fixes D and thus lies in Aut(DD). Therefore, we have a decomposition
f = w−1s, w−1 ∈ W(Σ), s ∈ Aut(DD). This completes the proof of part (c).

3.1.2. Root systems and complex semisimple Lie algebras

Here we recall some aspects of the correspondence between reduced root systems and
complex semisimple Lie algebras. Let g be a (finite-dimensional) complex semisimple
Lie algebra. Pick a Cartan subalgebra h ⊂ g. We have the corresponding set of roots
∆ ⊂ h∗ and the root space decomposition g = h⊕

⊕
α∈∆ gα. The restriction of the Killing

form B of g to h is nondegenerate, so it induces a C-linear isomorphism h −→∼ h∗. Write
h∗(R) ⊂ h∗ for the real span of ∆ and h(R) ⊂ h for its preimage under h −→∼ h∗. It is a
standard fact that h(R) = {h ∈ h | f(h) ∈ R ∀f ∈ h∗(R)} (hence h∗(R) is the real dual
of h(R)), and we have h = h(R)⊕R ih(R) and h∗ = h∗(R)⊕R ih∗(R). The restriction of B
to h(R) is positive definite and we can carry it along the isomorphism h(R) −→∼ h∗(R) to
an inner product on h∗(R). This makes (h∗(R),∆) into a reduced root system. Note that
this inner product on h∗(R) is natural and does not require any additional choices, for it
comes from the Killing form, which is fully determined by Lie algebra structure of g.

Now we make a choice of positive roots ∆+ ⊂ ∆ and let Λ = {α1, . . . ,αr} be the
corresponding set of simple roots. Write Hi ∈ h(R) for the preimage of αi under the
isomorphism h −→∼ h∗ and let hi =

2
||αi||2Hi. Finally, make a choice of canonical generators

ei ∈ gαi
, fi ∈ g−αi

. It follows from the definition of hi’s that

[hi, ej] = nαjαi
ej, [hi, fj] = −nαjαi

fj.

The Isomorphism Theorem asserts that if g′ is another complex semisimple Lie algebra
with a fixed choice of h′, Λ′ = {α′1, . . . ,α′r} ⊂ ∆′, and e′i ∈ gα′

i
, f ′i ∈ g−α′

i
, 1 ≤ i ≤ r,

such that the Cartan matrices A = (nαiαj
)ri,j=1 and A′ = (nα′

iα
′
j
)ri,j=1 coincide, then there

exists a unique Lie algebra isomorphism g −→∼ g′ sending hi to h′i, ei to e′i, and fi to f ′i for
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1 ≤ i ≤ r.

Let F : g −→∼ g′ be a Lie algebra isomorphism mapping h onto h′ and write f =
(F
∣∣
h

∗
)−1 : h∗ −→∼ h′∗. It is a matter of simple computation that f(∆) = ∆′ and for

any α ∈ ∆, F (gα) = g′f(α). In particular, we have f(h∗(R)) = h′∗(R). We will slightly

abuse the notation and use the same letter f for the restriction f
∣∣
h∗(R) : h

∗(R) −→∼ h′∗(R).
As F respects the Killing forms of g and g′, it follows that f is an isometry and thus a root
system isomorphism1 between ∆ and ∆′. The Isomorphism Theorem ensures that every
isomorphism h∗(R) −→∼ h′∗(R) between ∆ and ∆′ arises in this way (this fact is essentially
equivalent to the Isomorphism Theorem and is proven directly in [Kna02, Th. 2.108]). As
a consequence, every such isomorphism is an isometry.

If we let g′ = g and h′ = h, we get a surjective Lie group homomorphism Ψ : NAut(g)(h)↠
Aut(∆), F 7→ f , where NAut(g)(h) is the normalizer of h in Aut(g). This induces an
isomorphism NAut(g)(h)/ZAut(g)(h) ∼= Aut(∆). Using the Isomorphism Theorem, it is not
hard to show that ZAut(g)(h) is the connected Lie subgroup of Aut(g) with Lie algebra
h; in particular, ZAut(g)(h) = ZInn(g)(h). Inside NAut(g)(h), there is a subgroup NAut(g)(n),
where n is the sum of positive root spaces. Its image under Ψ is Aut(DD), and we get an
isomorphism2 NAut(g)(n)/ZAut(g)(h) ∼= NAut(g)(n)/ZInn(g)(h) ∼= Aut(DD).

For each α ∈ ∆, an automorphism η ∈ NAut(g)(h) such that Ψ(η) = sα can be constructed
explicitly (here sα is the reflection of h∗(R) in the hyperplane α⊥). Namely, if eα ∈ gα and
fα ∈ g−α are such that [eα, fα] = hα (⇔ B(eα, fα) =

2
||α||2 ), then η = exp(ad π

2
(eα− fα)) ∈

NAut(g)(h) and Ψ(η) = sα (see [GG78, p. 210]). Observe also that the Isomorphism
Theorem allows to construct a section3 Aut(DD) ↪→ NAut(g)(h) of Ψ over Aut(DD): take
s ∈ Aut(DD) and send it to ŝ ∈ NAut(g)(h) given by ŝ(hi) = hs(i), ŝ(ei) = es(i), ŝ(fi) = fs(i)
(here we think of s as a permutation of {1, . . . , r} ≃ {α1, . . . ,αr}).

Eventually, we make the following observation. Recall that a root system isomorphism is
not in general an isometry (or even a conformal map). However, as we have seen, if g and
g′ are complex semisimple Lie algebras with Cartan subalgebras h and h′, respectively,
then every root system isomorphism h∗(R) −→∼ h′∗(R) between ∆ and ∆′ is an isometry.
The reason for this is that the inner products on h∗(R) and h′∗(R) come from the Killing
forms of g and g′. We can make the following definition. Let (V,∆) be any reduced root
system. Take a complex semisimple Lie algebra g and a Cartan subalgebra h ⊂ g such that
the root system (h∗(R),∆g) is isomorphic to (V,∆). Pick any isomorphism φ : V −→∼ h∗(R)
between ∆ and ∆g and carry the inner product from h∗(R) to V along φ (as we know
from Proposition 3.1.3, it simply amounts to renormalizing the existing inner product on
V by some conformal factors on the irreducible components of (V,∆)). Suppose we have
another pair (g′, h′) and an isomorphism φ′ : V −→∼ h′∗(R) between ∆ and ∆g′ . We claim
that the inner product on V pulled back from h′∗(R) along φ′ is the same. Indeed, if we
write f = φ′ ◦φ−1 : h∗(R) −→∼ h′∗(R), then f is an isomorphism between ∆g and ∆g′ . As
we discussed above, each such isomorphism is an isometry, which proves the claim. We

1This construction also shows that different choices of a Cartan subalgebra of g lead to isomorphic
root systems, as any two Cartan subalgebras differ by an inner automorphism of g. The map sending
g to (h∗(R),∆) is a 1-to-1 correspondence between the isomorphism classes of complex semisimple Lie
algebras on the one hand and of reduced root systems on the other.

2In fact, the embedding NAut(g)(n) ↪→ Aut(g) induces an isomorphism NAut(g)(n)/ZInn(g)(h) −→∼
Aut(g)/ Inn(g) = Out(g), so we end up with Out(g) ∼= Aut(DD) (see [Kna02, Th. 7.8]).

3We thus have NAut(g)(n) ∼= ZInn(g)(h)⋊Aut(DD) and Aut(g) ∼= Inn(g)⋊Aut(DD).
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call the inner product on V constructed above Killing.

Corollary 3.1.8. Let (V,∆) and (V ′,∆′) be reduced root systems with Killing inner
products. Then every isomorphism V −→∼ V ′ between ∆ and ∆′ is an isometry. In
particular, Aut(∆) ⊆ O(V ).

3.2. Real semisimple Lie algebras and their restricted

root systems

In this section, we resume our investigation of real semisimple Lie algebras and their
restricted root systems (initiated in Subsection 2.4.2) and prove the main results. See
[Kna02, Ch.VI] and [Oni04, §2,3] for a detailed exposition of the theory of real semisimple
Lie algebras.

3.2.1. Weight-preserving isomorphisms

Let g be a real semisimple Lie algebra with a fixed Cartan involution θ and maximal
abelian subspace a ⊆ p. There are three main differences between the restricted root
system Σ of g and the root system of a complex semisimple Lie algebra (apart from the
obvious difference in how the root system is constructed):

(a) Σ does not have to be reduced.

(b) Σ loses all information about the compact ideals of g.

(c) The dimensions of the restricted root spaces gα do not have to be equal to 1.

Let us address these points individually. To begin with, (a) is not really an issue, since we
know the classification of all—not necessarily reduced—root systems up to isomorphism.
As we mentioned in Subsection 3.1.1, the root systems (BC)r, r ≥ 1, exhaust the list of
all irreducible nonreduced root systems up to isomorphism. Regarding (b), we already
observed in Proposition 2.1.72 and Observation 2.1.117 that θ respects the decomposition
of g into simple ideals and is the identity precisely on the compact ideals. Later we will
see that the compact part of g is the only information lost by Σ.

Arguably, (c) is the most important difference with the complex semisimple case. Recall
that dim(gα) is said to be the multiplicity of the restricted root α. The fact that root
multiplicities do not have in be 1 turns out to be a feature, not a bug. The idea is that
we incorporate the multiplicities into the root system Σ itself, as they are precisely the
information one needs to add to Σ to fully encode the noncompact part of g. To this end,
we make the following definition: a weighted root system is a root system in which
every root is assigned a positive integer, called the multiplicity of the root. Of course, the
assignment of multiplicities to the roots in Σ is far from random. Since θ(gα) = g−α, we
know that mult(α) = mult(−α) for any α ∈ Σ.

Notation. To avoid unnecessary ambiguity, we will use the symbol Σ when talking about
weighted root systems and reserve ∆ for regular root systems.

Definition 3.2.1. Let g′ be another real semisimple Lie algebra with a Cartan involution
θ′ and a maximal abelian subspace a′ ⊆ p′ fixed, and let Σ′ ⊆ a′∗ be the corresponding
restricted root system. We call a root system isomorphism f : a∗ −→∼ a′∗ between Σ and

107



3.2. Real semisimple Lie algebras and their restricted root systems

Σ′ weight-preserving if it preserves the root multiplicities: mult(f(α)) = mult(α) for
every α ∈ Σ. We say that (a∗,Σ) and (a′∗,Σ′) are weighted-isomorphic if there exists
a weight-preserving isomorphism between them. Finally, we call a weight-preserving
isomorphism from (a∗,Σ) to itself a weight-preserving automorphism of (a∗,Σ) (or
of Σ, for short). The group of all weight-preserving automorphisms of (a∗,Σ) will be
denoted by Autw(Σ) ⊆ Aut(Σ).

Our goal in this section is to relate weight-preserving root system isomorphisms to Lie
algebra isomorphisms. Let g and g′ be as above and suppose that F : g −→∼ g′ is an
isomorphism such that F ◦ θ = θ′ ◦ F (hence F (k) = k′, F (p) = p′) and F (a) = a′.
Consider F

∣∣
a
: a −→∼ a′ and define f = (F

∣∣
a

∗
)−1 : a∗ −→∼ a′∗. Similarly to what we did in the

complex semisimple case, it is easy to check that f(Σ) = Σ′ and

F (gα) = g′f(α) for every α ∈ Σ. (3.2.1)

It is also clear that F is an isometry with respect to the inner products Bθ and B′θ′ , so f
is an isometry as well. All this implies that f is a weight-preserving isomorphism between
Σ and Σ′.

We can apply this construction to Lie algebra automorphisms. Consider the Lie group
Aut(g). We have a distinguished element of this group fixed, namely the Cartan involution
θ ∈ Aut(g).

Lemma 3.2.2. The following conditions on φ ∈ Aut(g) are equivalent:

(i) φ commutes with θ.

(ii) φ preserves the Cartan decomposition.

(iii) φ preserves k.

(iv) φ preserves p.

(v) φ is orthogonal with respect to Bθ.

We denote the subgroup of elements satisfying these conditions by Aut(g)θ.

Proof. The equivalence of (i) and (ii) is obvious. Their equivalence to (iii) and (iv) follows
from the fact that k and p are orthogonal with respect to B, and Aut(g) ⊆ OB(g). For
(v), see [Gün10, Lem. 2.2].

Note that (i) means that Aut(g)θ is the fixed point subgroup of the involutive automorphism
Cθ of Aut(g). At the same time, (v) means that this subgroup is compact and its
representation on g is orthogonal. Since g is semisimple, Aut0(g) = Inn(g), so we have an
open subgroup Inn(g)θ ⊆ Aut(g)θ. Later we will show that Aut(g)θ is actually a maximal
compact subgroup of Aut(g) and Inn(g)θ = (Aut(g)θ)0, but we do not need that now. As
we showed in Subsection 2.4.2, under the identification ad: g −→∼ Der(g) = Lie(Aut(g)),
the Lie algebra of Aut(g)θ is k.

We are especially interested in the subgroup NAut(g)θ(a) of Aut(g)
θ. This is also a compact

subgroup. Under the identification Lie(Aut(g)θ) ∼= k, the Lie algebra of NAut(g)θ(a) is
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Nk(a) = k0. According to the above discussion, we have a well-defined map1

Ω : NAut(g)θ(a) → Autw(Σ),φ 7→ (φ
∣∣
a

∗
)−1.

This is easily seen to be a Lie group homomorphism. Using some standard facts from the
theory of real semisimple Lie algebras, we can prove the following:

Proposition 3.2.3. If g and g′ are isomorphic real semisimple Lie algebras, then their
restricted root systems are weighted-isomorphic for any choices of θ, θ′, a, and a′. In
particular, the restricted root system of g does not depend on the choice of θ and a (up to
a weight-preserving isomorphism).

Proof. Let F : g −→∼ g′ be any isomorphism. By Proposition 2.1.73, we may assume without
loss of generality that F ◦ θ = θ′ ◦ F . By Proposition 2.4.8, we may assume F (a) = a′.
But now the discussion after Definition 3.2.1 implies that F induces a weight-preserving
isomorphism between Σ and Σ′.

In the context of automorphisms, equation (3.2.1) takes on the following form:

φ(gα) = gΩ(φ)(α) (∀φ ∈ NAut(g)θ(a), α ∈ Σ). (3.2.2)

We have a normal subgroup NInn(g)θ(a) ⊴ NAut(g)θ(a). As we know from Proposition 2.4.11,
Ω(NInn(g)θ(a)) = W(Σ). This implies that W(Σ) ⊆ Autw(Σ). As a consequence, restricted
roots lying in the same orbit of W(Σ) have the same multiplicities.

We make a choice of simple roots Λ ⊆ Σ+ ⊆ Σ and write D ⊆ a∗ for the positive Weyl
chamber. The Dynkin diagram DD has a natural number attached to its every vertex,
namely the multiplicity of the corresponding simple root. If a vertex consists of two circles,
i.e., corresponds to a simple root α such that 2α is also a root, we assign to it not just
one number but the ordered pair (mult(α),mult(2α)). With these numbers attached, we
call DD a weighted Dynkin diagram.

Definition 3.2.4. Let g′ be another real semisimple Lie algebra with a Cartan involution
θ′, a maximal abelian subspace a′ ⊆ p′, and a choice of positive roots Σ′+ ⊆ Σ′ fixed. We
call a diagram isomorphism s : Λ −→∼ Λ′ between DD and DD′ weight-preserving if it
preserves the vertex weights: mult(s(α)) = mult(α) (and mult(2s(α)) = mult(2α) in case
2α is a root) for every α ∈ Λ. We say that DD and DD′ are weighted-isomorphic if
there exists a weight-preserving isomorphism between them. Finally, we call a weight-
preserving isomorphism Λ −→∼ Λ from DD to itself a weight-preserving automorphism
of DD. The group of all weight-preserving automorphisms of DD will be denoted by
Autw(DD) ⊆ Aut(DD).

Since W(Σ) ⊆ Autw(Σ) and W(Σ) acts transitively on the set of Weyl chambers in a∗, we
immediately get the following:

Proposition 3.2.5. Let g and g′ be real semisimple Lie algebras with restricted root
systems Σ and Σ′, respectively. If Σ and Σ′ are weighted-isomorphic (in particular, if g
and g′ are isomorphic), then their Dynkin diagrams are weighted-isomorphic as well for

1In Subsection 2.4.2, we defined this map only on NInn(g)θ(a), but now we are extending it to a
(possibly) larger group.
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any choices of Σ+ and Σ′+. In particular, the Dynkin diagram of Σ does not depend on
the choice of Σ+ (up to a weight-preserving isomorphism).

Using the results of Subsection 3.1.2, we can prove the converse:

Proposition 3.2.6. Let g and g′ be real semisimple Lie algebras with restricted root
systems Σ and Σ′ and Dynkin diagrams DD and DD′, respectively. If DD and DD′ are
weighted-isomorphic, then so are Σ and Σ′. More specifically, if s : Λ −→∼ Λ′ is a weight-
preserving isomorphism between DD and DD′, then its unique linear extension s : a −→∼ a∗ is
a weight-preserving isomorphism between Σ and Σ′. In particular, Autw(DD) ⊆ Autw(Σ).

Proof. We already know from Proposition 3.1.7(a) that s : a −→∼ a∗ is an isomorphism
between Σ and Σ′, so we only need to prove that it preserves the root multiplicities. We also
know from the proof of Proposition 3.1.7 that sW(Σ)s−1 = W(Σ′) and W(Σ) ·Λ = Σ. Let
α ∈ Σ be any root. Take w ∈ W(Σ) such that w(α) ∈ Λ, and write w′ = sws−1 ∈ W(Σ′).
We have:

s(α) = sw−1(w(α)) = w′−1s(w(α)).

Since mult(s(w(α))) = mult(w(α)) and elements of the Weyl group preserve root multi-
plicities, we get mult(s(α)) = mult(α), so s is a weight-preserving root system isomor-
phism.

Since both W(Σ) and Autw(DD) are contained in Autw(Σ) and W(Σ) acts transitively
on the set of Weyl chambers, we immediately get the following weighted analog of
Proposition 3.1.7(c):

Corollary 3.2.7. Autw(Σ) = W(Σ)⋊ Autw(DD).

To recapitulate, we know that a weighted-isomorphism class of restricted root systems
yields a weighted-isomorphism class of Dynkin diagrams, and it is determined by that
class. Similarly, an isomorphism class of real semisimple Lie algebras yields a weighted-
isomorphism class of restricted root systems. It cannot be determined by that class
though, since adding a compact semisimple summand to the Lie algebra does not change
the restricted root system. But it turns out that this is the only obstacle: if g has no
nonzero compact ideals, it is determined up to isomorphism by its (weighted) restricted
root system—and thus by its (weighted) Dynkin diagram. The standard proof of this fact,
however, is rather roundabout. One usually first classifies real semisimple Lie algebras—
compact or not—by some other means like Satake or Vogan diagrams, and then computes
explicitly the restricted root system of every Lie algebra in the classification list. It turns
out that non-isomorphic real semisimple Lie algebras (without nonzero compact ideals)
have non-weighted-isomorphic restricted root systems.

The list of all noncompact simple Lie algebras together with their weighted restricted
root systems can be found in [BCO16, pp. 336-340]. Note that it is given there in the
equivalent context of irreducible symmetric spaces of noncompact type (we will discuss
this equivalence more in Section 3.3).

Example 3.2.8. The restricted root system of su(r, r+n), n ≥ 1, is isomorphic to (BC)r,
and its Dynkin diagram looks like this:

2 2 2 2 (2n,1)
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3.2. Real semisimple Lie algebras and their restricted root systems

Here the number above a vertex is its weight. As we pointed out earlier, keeping track
of vertex weights is crucial: the Lie algebra sp(r, r + n), n ≥ 1, also has (BC)r as its
restricted root system, but the multiplicities are different. �

Let us look at the homomorphism Ω : NAut(g)θ(a) → Autw(Σ) through the lens of the
semidirect product decomposition Autw(Σ) = W(Σ)⋊ Autw(DD). We know two things:

Ker(Ω) = ZAut(g)θ(a), Ω(NInn(g)θ(a)) = W(Σ).

In particular, NInn(g)θ(a)/ZInn(g)θ(a) ∼= W(Σ).

Observation 3.2.9. It follows from Proposition 2.4.9(e) that the Lie algebra of ZAut(g)θ(a)
is also k0, so it is actually an open subgroup of NAut(g)θ(a). By (3.2.2), ZAut(g)θ(a) preserves
gα for each α ∈ Σ. As a result, every restricted root space gα becomes an orthogonal
representation of ZAut(g)θ(a). These representations are going to be of great importance
later in the thesis.

Consider another normalizer subgroup of Aut(g)θ given by NAut(g)θ(n). Any element
k ∈ NAut(g)θ(n) commutes with θ and thus preserves θn. Since k is orthogonal with respect
to Bθ, it must preserve g⊖(n⊕θn) = g0 = k0⊕a. But k0 ⊆ k, whereas a ⊆ p, so k preserves
both k0 and a. We conclude that NAut(g)θ(n) ⊆ NAut(g)θ(a). Since k(gα) = gΩ(k)(α), and
Autw(DD) consists precisely of those weight-preserving automorphisms of Σ that preserve
the set of positive roots, it follows that NAut(g)θ(n) = Ω−1(Autw(DD)). In view of
Observation 3.2.9, this subgroup contains the kernel ZAut(g)θ(a) of Ω. We can draw the
following commutative diagram:

NAut(g)θ(n)

ZInn(g)θ(a) NAut(g)θ(a)

NInn(g)θ(a)

This is actually a pullback diagram, i.e., NInn(g)θ(n) = ZInn(g)θ(a). Indeed, for every
φ ∈ NInn(g)θ(n), Ω(φ) is an element of the Weyl group that preserves the positive Weyl
chamber, hence it is trivial.

3.2.2. The lifting theorem

Now we are in a position to prove the main result of this chapter.

Theorem 3.2.10. Let g be a real semisimple Lie algebra with θ, a, and Σ+ fixed. Then:

(a) Ω(NAut(g)θ(n)) = Autw(DD), and hence Ω is surjective.

(b) If g is simple, then Autw(DD) = Aut(DD), and hence Autw(Σ) = Aut(Σ).

Informally, (a) means that every weight-preserving automorphism of Σ can be lifted to an
automorphism of g. Also note that (b) might fail in case g is not simple. For instance,
if g = su(r, r + n)⊕ sp(r, r + n), n ≥ 1, then Σ = (BC)r ⊔ (BC)r, so Aut(DD) = Z/2Z.
But the two connected components of DD are not weighted-isomorphic, which means that
Autw(DD) is trivial. Partial versions of Theorem 3.2.10 appeared in the literature without
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proofs or references (see, e.g., [BT03, p. 11] or [Mur52, p. 111]).

We will prove Theorem 3.2.10 by first reducing it to the simple case and then (mostly) to
the theory of complex semisimple Lie algebras. We need to take account of two things:
first, g might have compact ideals, which make no contribution to the restricted root
system, and second, g might have isomorphic noncompact simple ideals.

We start by writing g as g = gc ⊕ g1 ⊕ · · · ⊕ gk, where gc is the sum of all compact ideals
and each gi is a noncompact simple ideal. As we observed earlier in Observation 2.1.117,
the Cartan involution θ respects this decomposition and is trivial on gc, so we can write
θ = (Idgc , θ1, . . . , θk). Here θi is a Cartan involution of gi. All the objects related to the
restricted root system necessarily decompose accordingly:

• k = gc ⊕ k1 ⊕ · · · ⊕ kk, where ki = k ∩ gi.

• p = p1 ⊕ · · · ⊕ pk, where pi = p ∩ gi.

• a = a1 ⊕ · · · ⊕ ak, where ai = a ∩ pi is maximal abelian in pi.

• a∗ = a∗1 ⊕ · · · ⊕ a∗k.

• All these decompositions are orthogonal with respect to B and Bθ (or the induced
inner product on a∗).

• B = Bc +B1 + · · ·+Bk, where Bc is the Killing form of gc and Bi is that of gi.

• Bθ = −Bc +B1
θ1
+ · · ·+Bk

θk
.

• Σ = Σ1 ⊔ · · · ⊔ Σk, where Σi = Σ ∩ a∗i is the restricted root system of gi.

Before going further, we need to figure out when the restricted root system is irreducible.
If g has more than one noncompact simple ideal, then Σ is reducible—as follows from the
discussion above. The converse is also true:

Lemma 3.2.11. Let g be a real semisimple Lie algebra, and assume that its restricted root
system Σ is reducible. Then g can be written as a direct sum of two noncompact ideals.

Proof. Let a∗ = V1 ⊕⊥ V2 such that Σ = Σ1 ⊔ Σ2, where Σi = Σ ∩ Vi, and either of
Σi is nonempty. Let ai ⊆ a correspond to Vi under a −→∼ a∗. Consider the subspaces
pi = ai ⊕

⊕
α∈Σ+i

pα. By (2.4.2), p = p1 ⊕ p2, and it follows from Proposition 2.4.9 that

[p1, p2] = {0}. If we let ki = [pi, pi] ⊆ k, then the intersection k1 ∩ k2 must be trivial.
Indeed, we have [k1, p2] = [k2, p1] = {0}, so the intersection k1 ∩ k2 must act trivially on p
and hence on [p, p] ⊕ p. But the latter is an ideal of g and thus itself a semisimple Lie
algebra. Being contained in its center, k1 ∩ k2 is trivial. Now, define gi = ki ⊕ pi. We
already know that g1 and g2 commute and intersect trivially. If they do not span g, then
we replace g1 with g′1 = g⊥2 = g1⊕ ([p, p]⊕ p)⊥, where the orthogonal complement is taken
with respect to the Killing form. In the end, we obtain g = g′1 ⊕ g2, which is the desired
decomposition.

Corollary 3.2.12. Let g be a real semisimple Lie algebra and Σ its restricted root system.
Then Σ is irreducible if and only if g has at most one noncompact simple ideal. In
particular, if g has no nonzero compact ideals, then Σ is irreducible if and only if g is
simple.

Now we can return to our decompositions:
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• Each Σi is irreducible, and Σ = Σ1 ⊔ . . . ⊔ Σk is the decomposition of Σ into its
irreducible components.

• Σ+ = Σ+
1 ⊔ . . . ⊔ Σ+

k , where Σ
+
i = Σ+ ∩ Σi.

• Λ = Λ1 ⊔ . . . ⊔Λk, where Λi = Λ ∩ Σ+
i .

• D = D1 × · · · ×Dk, where Di = D ∩ a∗i .

• DD = DD1 ⊔ · · · ⊔DDk, where DDi is the Dynkin diagram of gi arising from Λi.

Next, we need to understand how these decompositions lift to the level of automorphisms.
Similarly to what we did in Proposition 2.1.60, define a finite group1

S∼
k =

{
σ ∈ Sk | gi ≃ gσ(i) ∀ i = 1, . . . , k

}
,

For each i, j ∈ {1, . . . , k} such that gi ≃ gj, we pick an isomorphism fij : gi −→∼ gj such
that the following conditions are satisfied:

(a) fij ◦ θi = θj ◦ fij (hence fij(ki) = kj, fij(pi) = pj).

(b) fij(ai) = aj.

(c) Whenever gi ≃ gj ≃ gl, we have fjl ◦ fij = fil.

Such a choice is possible by virtue of Propositions 2.1.73 and 2.4.8. For each fij, consider
the induced weight-preserving isomorphism Fij = (fij

∣∣
ai

∗
)−1 between Σi and Σj. We

obtain embeddings

S∼k ↪→ Aut(g),σ 7→ fσ, where

fσ(X0, X1, . . . , Xk) = (X0, fσ(1)1(Xσ(1)), . . . , fσ(k)k(Xσ(k))),

and

S∼k ↪→ Autw(Σ),σ 7→ Fσ, where

Fσ(v1, . . . , vk) = (Fσ(1)1(vσ(1)), . . . , Fσ(k)k(vσ(k))).

(to be precise, these are injective group anti-homomorphisms). Owing to our choice of
fij’s, the image of the former embedding actually lies in the subgroup NAut(g)θ(a). We
also have obvious subgroups Aut(gc)×Aut(g1)× · · ·×Aut(gk) ⊆ Aut(g) and Autw(Σ1)×
· · · × Autw(Σk) ⊆ Autw(Σ).

Proposition 3.2.13. (a) The group Aut(g) decomposes as a semidirect product

Aut(g) = [Aut(gc)× Aut(g1)× · · · × Aut(gk)]⋊ S∼k .

In particular, we have Inn(g) = Inn(gc)× Inn(g1)× · · · × Inn(gk).

(b) The group Aut(g)θ decomposes as a semidirect product

Aut(g)θ =
[
Aut(gc)× Aut(g1)

θ1 × · · · × Aut(gk)
θk
]
⋊ S∼k .

1The notational difference between S∼
k defined here and S≃

k defined before Proposition 2.1.60 will
become clear in Section 3.3.
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In particular, we have Inn(g)θ = Inn(gc)× Inn(g1)
θ1 × · · · × Inn(gk)

θk .

(c) The group NAut(g)θ(a) decomposes as a semidirect product

NAut(g)θ(a) =
[
Aut(gc)×NAut(g1)θ1 (a1)× · · · ×NAut(gk)

θk (ak)
]
⋊ S∼k .

In particular, we have NInn(g)θ(a) = Inn(gc)×NInn(g1)θ1 (a1)× · · · ×NInn(gk)
θk (ak).

(d) The group NAut(g)θ(n) decomposes as a semidirect product

NAut(g)θ(n) =
[
Aut(gc)×NAut(g1)θ1 (n1)× · · · ×NAut(gk)

θk (nk)
]
⋊ S∼k .

(e) The group Autw(Σ) decomposes as a semidirect product

Autw(Σ) = [Autw(Σ1)× · · · × Autw(Σk)]⋊ S∼k .

(f) The group W(Σ) decomposes as a product

W(Σ) = W(Σ1)× · · · ×W(Σk).

(g) The group Autw(DD) decomposes as a semidirect product

Autw(DD) = [Autw(DD1)× · · · × Autw(DDk)]⋊ S∼k .

(h) With respect to the decompositions (c) and (e), the homomorphism Ω : NAut(g)θ(a) →
Autw(Σ) decomposes as

Ω =
(
E,Ω1, . . . ,Ωk, IdS∼

k

)
,

where E is the trivial homomorphism Aut(gc) →{e}, Ωi : NAut(gi)θi
(ai) → Autw(Σi),

and the last component IdS∼
k
formally means that the following diagram commutes:

NAut(g)θ(a)

S∼k

Autw(Σ)

Ω

We omit the proof, as it is similar to that of Proposition 2.1.60, except it is much easier
because any automorphism of g must obviously preserve gc and permute the remaining
noncompact simple ideals, and the same is true for weight-preserving automorphisms of
Σ = Σ1 ⊔ . . . ⊔ Σk.

Part (h) of Proposition 3.2.13 implies that if Ωi(NAut(gi)θi
(ni)) = Autw(DDi) for each

i, then Ω(NAut(g)θ(n)) = Autw(DD). Consequently, in order to prove Theorem 3.2.10,
we may restrict to the case when g is simple and noncompact. We will actually show
that Ω(NAut(g)θ(n)) = Aut(DD) in this case, thus proving both parts (a) and (b) of the
theorem.
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We will consider three different scenarios. To begin with, we can immediately cast aside
all those simple Lie algebras where Aut(DD) (and hence Autw(DD)) is trivial. This leaves
us with those Lie algebras where Σ = An (n ≥ 2), Dn (n ≥ 4), or E6.

Each complex semisimple Lie algebra g gives rise to at least two noncompact real ones:
the realification and the split real form of g. These are going to be our first two scenarios.
As a matter of fact, here we do not require the Lie algebra to be simple, and we will only
use this assumption in the third scenario. Let g be a complex semisimple Lie algebra,
and let h,∆,Λ, and {hi, ei, fi}ri=1 be as on page 105. It follows from the Isomorphism
Theorem that there exists a unique automorphism θ of g as of a real Lie algebra that is
C-antilinear and satisfies

θ(hi) = −hi, θ(ei) = −fi, θ(fi) = −ei. (3.2.3)

This automorphism is involutive and is in fact a compact real structure and a Cartan
involution1 (hence the notation). In particular, p = ik. Every Cartan involution on g is of
this form for some choice of h,Λ, and canonical generators. We can introduce two more
involutive automorphisms of g: the Weyl involution ω and the split real structure τ. The
Weyl involution is given on the canonical generators by the same formula (3.2.3) but is
C-linear, whereas the split real form fixes all the canonical generators but is C-antilinear.
Once again, the existence and uniqueness of both of these automorphisms follow from
the Isomorphism Theorem. Clearly, the three automorphisms commute pairwise and the
product of any two of them equals the third one. The fixed point (real) subalgebra gτ is
the split real form of g, and every split real form is of this form for some choice of h,Λ,
and canonical generators.

Scenario 1: the realification. Here we assume that our real semisimple Lie algebra
is the realification of a complex one and use the notation established in the previous
paragraph. In particular, the Cartan involution θ is given on the canonical generators
by (3.2.3). Write g = k ⊕ p for the corresponding Cartan decomposition. Since θ is
C-antilinear and θ(hi) = −hi for each i, we have h ∩ p = h(R), h ∩ k = ih(R). We claim
that h(R) is a maximal abelian subspace of p. Indeed, let b ⊂ p be an abelian subspace
containing h(R). If we think of g as a real Euclidean vector space (with respect to the inner
product Bθ), then all operators of the form ad(X), X ∈ p, are self-adjoint, as is evident
from the proof of Proposition 2.1.71. Since such operators are C-linear, they are also
self-adjoint with respect to the Hermitian inner product ⟨X |Y ⟩ = Bθ(X, Y ) + iBθ(X, iY )
and hence diagonalizable over C. It follows that bC = ib ⊕ b (here ib ⊆ ip = k) is an
abelian complex subalgebra of g consisting of semisimple elements and containing h, so
we must have bC = h and thus b = h(R). As a result, we can write a = h(R). In this
case, a∗ = h∗(R), and the root system ∆ of g as of a complex semisimple Lie algebra
coincides with the restricted root system Σ of g as of a real semisimple Lie algebra (for
our specific choice of θ and a). Moreover, the root space decomposition and the restricted
root space decomposition coincide as well. Note that g0 = h = ia⊕ a and k0 = ia. Each
restricted root space gα,α ∈ Σ, thus has real dimension 2, i.e., all of the root multiplicities
equal 2. As we know from Subsection 3.1.2, every (not necessarily weight-preserving)
automorphism s ∈ Aut(DD) can be lifted to a (complex) automorphism ŝ of g given by
the rule ŝ(hi) = hs(i), ŝ(ei) = es(i), ŝ(fi) = fs(i). This automorphism satisfies ŝ(a) = a and

1On a complex semisimple Lie algebra, a compact real form is the same as a Cartan involution (see
[Oni04, Sec. 5]).
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Ψ(ŝ) = (ŝ
∣∣
a

∗
)−1 = s. It is easily seen on the canonical generators that ŝ commutes with θ

and preserves n. Consequently, ŝ ∈ NAut(g)θ(n) and Ω(ŝ) = Ψ(ŝ) = s, which finishes the
proof in this scenario.

Scenario 2: the split real form. Now suppose that our real semisimple Lie algebra
is split. We denote its complexification by g and use the same notation as above. Then
our real semisimple Lie algebra can be described as gτ. One can easily see that gτ is the
real Lie subalgebra of g generated by ei, fi, and hi, 1 ≤ i ≤ r. The automorphism θ of g
clearly preserves gτ. Since gτ is a real form of g, the Killing form B of g is the C-bilinear
extension of the Killing form Bτ of gτ. This implies that the restriction of θ to gτ is a
Cartan involution on gτ. Moreover, if we write the corresponding Cartan decomposition
as gτ = k ⊕ p, then h(R) lies in p and is a maximal abelian subspace of it. Indeed, for
each X ∈ p, the operator adgτ(X) is diagonalizable over R, hence its C-linear extension
adg(X) is diagonalizable over C as an operator on g. Therefore, in the same fashion as
above, the existence of a larger abelian subspace of p would lead to a toral subalgebra
of g larger than h, hence a contradiction. Once again, we can take a = h(R), in which
case a∗ = h∗(R) and the restricted root system Σ of gτ coincides with ∆. Just as before,
every diagram automorphism s ∈ Aut(DD) can be lifted to the complex automorphism
ŝ ∈ NAut(g)(h) of g such that Ψ(ŝ) = s, and it can be seen from the defining formula for ŝ
that it commutes with both θ and τ. In particular, it preserves gτ and the restriction ŝ

∣∣
gτ

lies in NAut(g)θ(n). We have Ω(ŝ
∣∣
gτ
) = Ψ(ŝ) = s, which finishes the proof in scenario 2.

Scenario 3: the rest. Now we go back to our assumption that g is simple and Aut(DD)
is nontrivial. An examination of the list of all real simple noncompact Lie algebras ([BCO16,
pp. 336-340]) reveals that if g is neither split nor complex, it has to be isomorphic to either
sl(n,H) (n ≥ 3) or e−266 . The restricted root systems of these Lie algebras are An−1 and A2,
respectively. In both cases, Aut(DD) ∼= Z/2Z, and there is only one nontrivial diagram
automorphism that we want to lift to NAut(g)θ(n). Recall that we have a distinguished
automorphism θ of g fixed. Plainly, θ ∈ NAut(g)θ(a) and Ω(θ) = − Ida∗ . The weight-
preserving root system automorphism − Ida∗ can be decomposed as − Ida∗ = w0s, where
w0 ∈ W(Σ) and s ∈ Autw(DD). Here s(D) = D and − Ida∗(D) = −D, so w0(D) = −D.
This uniquely determines w0 and also shows that it is the longest element of W(Σ) with
respect to the system of generators sα1 , . . . , sαr . The diagram automorphism s = −w0

may or may not be trivial, depending on Σ. Note that this construction does not really
rely on g, nor does it use root multiplicities, so it can be carried out for any root system
(V,∆): pick ∆+ and decompose − IdV ∈ Aut(∆) as − IdV = w0s with respect to the
semidirect product decomposition Aut(∆) = W(∆)⋊ Aut(DD). It was shown in [Oni04,
§4, Prop. 4] that, provided that ∆ is irreducible, s is a nontrivial diagram automorphism
precisely when ∆ = An (n ≥ 2), D2n+1(n ≥ 2), or E6. This covers both of our cases
g = sl(n,H) (n ≥ 3) and g = e−266 . Now, since w0 is an element of the Weyl group, it is the
image of some φ ∈ NInn(g)θ(a) under Ω. We have φθ ∈ NAut(g)θ(n) and Ω(φθ) = w2

0s = s.
In other words, the only nontrivial element of Aut(DD) lies in the image of Ω and so
Ω(NAut(g)θ(n)) = Aut(DD), which concludes the proof of Theorem 3.2.10.

Remark 3.2.14. Part (b) of Theorem 3.2.10 can also be proven on a case by case
basis by examining the classification of simple noncompact Lie algebras and the list of
their weighted Dynkin diagrams. Indeed, for any such diagram, if there are two vertices
that differ by a (not necessarily weight-preserving) diagram automorphism, then they
happen to have the same multiplicity, which means that every diagram automorphism is
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weight-preserving.

Corollary 3.2.15. Let g be a real semisimple Lie algebra. Then we have:

NAut(g)θ(a)/ZAut(g)θ(a) ∼= Autw(Σ),

NAut(g)θ(n)/ZAut(g)θ(a) ∼= Autw(DD).

Note that, unlike in the complex semisimple case, we do not in general have an isomorphism
between Out(g) = Aut(g)/ Inn(g) and Autw(DD). For instance, Out(so(4, 4)) ≃ S4

([Gün10, Prop. 2.14]), but the restricted root system Σ ≃ D4 of so(4, 4) has Autw(DD) =
Aut(DD) ≃ S3. Still, at least in the simple case, the short exact sequence Inn(g) ↪→
Aut(g)↠ Out(g) splits, so we have Aut(g) ≃ Inn(g)⋊Out(g) (see [Gün10]).

Corollary 3.2.16. Let g, g′ be real semisimple Lie algebras with θ, θ′, a, a′,Σ+, and Σ′+

fixed.

(a) Every weight-preserving isomorphism f : a −→∼ a∗ between Σ and Σ′ is an isometry.
In particular, Autw(Σ) ⊆ O(a∗).

(b) Now assume that neither g nor g′ have nonzero compact ideals. Then for every
weight-preserving isomorphism f : a∗ −→∼ a′∗ between Σ and Σ′, there exists a Lie
algebra isomorphism F : g −→∼ g′ such that F ◦ θ = θ′ ◦F , F (a) = a′, and the induced
weight-preserving isomorphism a∗ −→∼ a′∗ between Σ and Σ′ coincides with f . In
particular, for every weight-preserving diagram isomorphism s : Λ −→∼ Λ′ between
DD and DD′, there exists such F : g −→∼ g′ that the induced diagram isomorphism
f
∣∣
Λ
: Λ −→∼ Λ′ coincides with s.

Proof. For part (b), we know from Subsection 3.2.1 that there exists some Lie algebra

isomorphism F̃ : g −→∼ g′. As explained in the proof of Proposition 3.2.3, we may assume
F̃ ◦ θ = θ′ ◦ F̃ and F̃ (a) = a′. Let f̃ : a∗ −→∼ a′∗ be the induced weight-preserving

isomorphism between Σ and Σ′. Then f ◦ f̃−1 ∈ Autw(Σ′). According to Theorem 3.2.10,

there exists φ′ ∈ NAut(g′)θ′ (a
′) such that Ω′(φ′) = f ◦ f̃−1. Then the weight-preserving

root system isomorphism between Σ and Σ′ induced by F = φ′ ◦ F̃ is Ω′(φ′) ◦ f̃ = f .
For part (a), write g = gc ⊕ gnc, where gc is the maximal compact ideal and gnc is the
complementary noncompact ideal, and do the same for g′: g′ = g′c ⊕ g′nc. The restricted
root systems of g and g′ coincide with those of gnc and g′nc, respectively, so every weight-
preserving isomorphism between them is an isometry by part (b) and the observation
after Definition 3.2.1.

3.3. Applications to symmetric spaces of noncompact

type

The results of the previous section have a useful interpretation in terms of the theory of
symmetric spaces of noncompact type and allow to deepen the link between such spaces
and noncompact real semisimple Lie algebras.

Suppose M is a symmetric space of noncompact type, and let (G,K) be its canonical

Riemannian symmetric pair at some point o. Define G̃ = I(M) and K̃ = G̃o. We know

that K is a maximal compact subgroup of G. But K̃ is compact, and G̃/K̃ ∼= M is
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contractible, so K̃ is a maximal compact subgroup of G̃ ([Ant12]). In particular, K is the

identity component of K̃.

Let M = M1×· · ·×Mk be the de Rham decomposition of M . If we write o = (o1, . . . , ok),

then we can introduce the same groups as above for Mi at its point oi: we get G̃i, Gi, K̃i,
and Ki. According to Corollary 2.1.61, G = G1 × · · · ×Gk, and hence g = g1 ⊕ · · · ⊕ gk.
Let λ1, . . . , λk be the normalizing constants of M corresponding to this decomposition.
The geodesic symmetry so splits as (so1 , . . . , sok), where soi is the geodesic symmetry of Mi

at oi. Therefore, the involution Θ splits as (Θ1, . . . ,Θk), and thus the Cartan involution
θ = Ad(so) on g splits as (θ1, . . . ,θk), where θi = Ad(soi). From this, we see that the
Cartan decomposition and all the other objects related to the restricted root system Σ of
g decompose in agreement with the de Rham decomposition, as on page 112 (we will use
the notation from there). As we know, each gi is noncompact.

Recall that two Riemannian manifolds (N, h) and (N ′, h′) are called homothetic—denoted
as N ∼ N ′—if there exists a diffeomorphism φ : N −→∼ N ′ such that φ∗h′ = ah for some
a > 0. In other words, N and N ′ are conformally equivalent with a constant conformal
factor.

Proposition 3.3.1. Given 1 ≤ i, j ≤ k, consider the following conditions:

(i) Mi is isometric to Mj.

(ii) Mi is homothetic to Mj.

(iii) gi ≃ gj.

Then (i) ⇒ (ii) ⇔ (iii). Moreover, (ii) ⇒ (i) if and only if λi = λj.

Proof. Clearly, (i) ⇒ (ii) and, since rescaling the Riemannian metric does not change the
isometry Lie algebra, (ii) ⇒ (iii). To show (iii) ⇒ (ii), recall that Mi can be recovered

from gi up to isometry by taking a Riemannian symmetric pair (Ĝi, K̂i) associated with

(gi, θi) with Ĝi simply connected and endowing Ĝi/K̂i with a (unique up to rescaling)

Ĝi-invariant metric. If gi ≃ gj, we can always find an isomorphism F : Ĝi −→∼ Ĝj such

that F (K̂i) = K̂j, which induces a homothety Mi → Mj. The equivalence (ii) ⇔ (iii)
essentially follows from (2.4.1).

The proof of the last assertion is very similar to the last bit of the proof of Proposi-
tion 2.1.111, except now we are proving the converse. Assume (ii) and start with any
homothety φ : Mi → Mj . By composing it with a suitable isometry of Mj , we can replace
φ with a homothety φ′ : Mi → Mj mapping oi to oj. Note that φ′ is an isometry if and
only if φ is. We have an isomorphism F : Gi −→∼ Gj,ψ 7→ φ′ ◦ g ◦φ′−1, mapping soi to soj .

If we write φ = F∗ : gi −→∼ gj, then f(pi) = pj, and the following diagram commutes:

pi pj

ToiMi TojMj

∼

f
∼

∼

dφ′
oi

∼

The top arrow is an isometry with respect to the inner products ⟨−|−⟩Bi
and ⟨−|−⟩Bj

.
Consequently, the bottom arrow is an isometry (that is, φ′ is an isometry) with respect
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3.3. Applications to symmetric spaces of noncompact type

to (gi)oi = λi⟨−|−⟩Bi
on ToiMi and (gj)oj = λj⟨−|−⟩Bj

on TojMj if and only if λi = λj,
which completes the proof.

As we know from the previous section, condition (iii) in Proposition 3.3.1 is also equivalent
to Σi and Σj (or DDi and DDj) being weighted-isomorphic. Thus, the symmetric space M
is fully determined up to isometry by the (weighted) Dynkin diagram DD of g together with
the normalizing constants λ1, . . . , λk (which we could assign as weights to the connected
components DD1, . . . ,DDk of DD). Recall that we have finite groups

S≃k =
{
σ ∈ Sk | Mi ≃ Mσ(i) ∀ i = 1, . . . , k

}
,

S∼k =
{
σ ∈ Sk | gi ≃ gσ(i) ∀ i = 1, . . . , k

}
,

such that, according to Propositions 2.1.60 and 3.2.13,

G̃ ≃ [G̃1 × · · · × G̃k]⋊ S≃k ,

Aut(g) ≃ [Aut(g1)× · · · × Aut(gk)]⋊ S∼k .

In view of Proposition 3.3.1, the group S∼k can be alternatively described as

S∼k =
{
σ ∈ Sk | Mi ∼ Mσ(i) ∀ i = 1, . . . , k

}
,

which justifies the notation. Proposition 3.3.1 also implies that S≃k ⊆ S∼k , and we have
the following immediate

Corollary 3.3.2. The following conditions are equivalent:

(i) λi = λj whenever Mi ∼ Mj.

(ii) S≃k = S∼k .

If these conditions are satisfied, we call the Riemannian metric g on M almost Killing.

Plainly, the Killing metric is almost Killing. Note that the Riemannian metric on M is
automatically almost Killing if M is irreducible. More generally, if no two distinct de
Rham factors of M are homothetic, then its Riemannian metric is almost Killing.

Remark 3.3.3. Since the isometry group is not affected by constant rescaling of the
metric, Proposition 2.1.60 tells us that by rescaling the normalizing constants, we might
gain or lose some connected components of G̃, whereas G always stays the same. From
this perspective, the almost Killing condition on the Riemannian metric ensures precisely
that the isometry group is as large as possible, namely G̃ ≃ [G̃1 × · · · × G̃k]⋊ S∼k .

Since S≃k is a subgroup of S∼k , we have an open subgroup1

Aut(g)M = [Aut(g1)× · · · × Aut(gk)]⋊ S≃k
⊆ [Aut(g1)× · · · × Aut(gk)]⋊ S∼k = Aut(g).

By construction, these groups coincide if and only if the metric is almost Killing. Note
that the definition of Aut(g)M does not depend on the choice of fij’s used to construct
the embedding S∼k ↪→ Aut(g), although the embedding itself surely does. By passing

1It may be preferable to write Aut(g)(M,g) to avoid ambiguity, especially in the presence of another
metric g̃ obtained from g by rescaling the normalizing constants.
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from Aut(g) to Aut(g)M , we prohibit those automorphisms of g that permute isomorphic
simple ideals whose corresponding normalizing constants do not coincide.

We are now in a position to prove the following result, which relates the isometry group
of M with the automorphism group of g:

Proposition 3.3.4. Let M be a symmetric space of noncompact type. The adjoint map
Ad: G̃ → Aut(g) is an open embedding of Lie groups with image Aut(g)M . Moreover,
Ad is an isomorphism if and only if the Riemannian metric of M is almost Killing. In
particular, we always have Ad: G −→∼ Inn(g).

Proof. To begin with, observe that Ad is a local isomorphism. Indeed, its induced
morphism of Lie algebras is ad: g −→∼ Der(g) = Lie(Aut(g)).

Next we prove that Ad is injective. Assume that φ ∈ Ker(Ad). We first show that
φ(o) = o. We have (Cφ)∗ = Idg, i.e., Cφ

∣∣
G
= IdG, which is the same as to say that φ

commutes with every element of G. In particular, it commutes with every element of K,
which implies that K stabilizes φ(o). Suppose φ(o) ̸= o. Since the exponential map of M
at a point is a diffeomorphism, K must fix every point of a geodesic γ emanating from
o and passing through φ(o). Let v = γ̇(0) ∈ ToM . We see that v is an invariant of the
restricted isotropy representation of M at o. But M does not have a flat local factor by
Proposition 2.1.95, so the only such invariant is 0. We deduce that φ ∈ K. But then
dφo = Ad(φ)

∣∣
p
= Idp, so φ = e by Proposition 2.1.1(c). This, together with the previous

paragraph, implies that Ad embeds G̃ into Aut(g) as an open subgroup.

We are left to prove that Im(Ad) = Aut(g)M . Fix o ∈ M and consider the subgroup
Aut(g)θ ⊆ Aut(g), where θ = Ad(so). We want to show that Aut(g)θ intersects every
connected component of Aut(g). Take any η ∈ Aut(g). The automorphism ηθη−1 is also
a Cartan involution. Since all Cartan involutions are conjugate by inner automorphisms,
there exists δ ∈ Inn(g) = Aut0(g) such that δηθη−1δ−1 = θ, i.e., δη ∈ Aut(g)θ. As δη
and η lie in the same connected component of Aut(g), we are done.

It then suffices to show that Im(Ad) contains

Aut(g)θM = Aut(g)θ ∩ Aut(g)M .

Take any element η of this subgroup. It preserves the Cartan decomposition g = k⊕ p, so
we can write T = η

∣∣
p
∈ GL(p) ∼= GL(ToM). We claim that T lies in the linear isotropy

subgroup at o. Thanks to Proposition 2.1.68, it suffices to show that it is orthogonal and
preserves the curvature tensor. As an automorphism of g, η is orthogonal with respect to
B, so T is orthogonal with respect to ⟨−|−⟩B. By construction, for every i ∈ {1, . . . , k},
if we write T (pi) = pj, then λi = λj, so T

∣∣
pi
: pi −→∼ pj is an isometry with respect to the

inner products (gi)oi and (gj)oj , which implies that T is orthogonal with respect to go as
well. The fact that T preserves the curvature tensor at o follows immediately from (2.1.5).

We deduce that there exists k ∈ K̃ such that Ad(k) and η coincide on p. Since they are
both Lie algebra automorphisms, they have to also coincide on [p, p] ⊆ k and thus on the
whole g by Proposition 2.1.97(c).

Looking at the above proof, we derive the following isotropy version of Proposition 3.3.4:
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Corollary 3.3.5. In the notation of Proposition 3.3.4, the map AdG̃ : K̃ ↪→ Aut(g)θ is
an open embedding of Lie groups with image Aut(g)θM . Moreover, its image is the whole
Aut(g)θ if and only if the Riemannian metric is almost Killing. In particular, we always

have AdG̃ : K −→∼ Inn(g)θ and K̃ = G̃Θ.

Proof. We need only prove the very last assertion. We compute:

AdG̃(G̃
Θ) = Ad(G̃)θ (AdG̃ ◦Θ = Cθ ◦ AdG̃)

= Aut(g)M ∩ Aut(g)θ (by Proposition 3.3.4)

= Aut(g)θM

= AdG̃(K̃) (by the first assertion),

so G̃Θ = K̃.

We can use Proposition 3.3.4 to prove the following simple result, which tells how one can
recover M from its isometry Lie algebra g in an invariant fashion. Define C ⊆ Aut(g) to
be the set of Cartan involutions on g. It is an immersed submanifold of Aut(g), as it is
an orbit of the adjoint action of Aut(g) on itself (one can easily check it is a closed orbit).

Proposition 3.3.6. The map Ξ : M → Aut(g), p 7→ Ad(sp), establishes a diffeomorphism
between M and C.

This proposition essentially means that for noncompact symmetric spaces, choosing a
base point o ∈ M is the same as fixing a Cartan decomposition of g. Note that we do not
assume the Riemannian metric to be almost Killing here.

Proof. We know that each Ad(sp) is indeed a Cartan involution. If we identify G̃ with a

subgroup of Aut(g) by means of Ad, Ξ is easily seen to be G̃-equivariant. As both M and

C are smooth homogeneous G̃-spaces, Ξ is smooth and surjective. Since we already know
that Ad is injective, it suffices to show that the map M → G̃, p 7→ sp, is injective. This
follows from the fact that expp : TpM → M is a diffeomorphism and thus p is the only1

fixed point of the geodesic symmetry sp.

Corollary 3.3.7. Let g be a real semisimple Lie algebra. For any Cartan involution θ on
g, Aut(g)θ is a maximal compact subgroup of Aut(g).

Proof. The group Aut(g) acts transitively on the space C of Cartan involutions by conju-
gations, and Aut(g)θ is precisely the stabilizer of θ under this action. By Proposition 3.3.6,
C is diffeomorphic to a symmetric space of noncompact type (represented by (g, θ)) and
hence contractible. The group Aut(g)θ is compact as a closed subgroup of OBθ

(g). The
assertion then follows from [Ant12].

Eventually, we can reformulate the results of Section 3.2 in the language of symmetric
spaces. We let M be any symmetric space of noncompact type and use the notation

1As we mentioned in Example 2.2.27, this property does not hold at all for symmetric spaces of
compact type.
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established at the beginning of this section. In a similar fashion to Aut(g)M , we can
define:

Autw(Σ)M :=
k∏

i=1

Aut(Σi)⋊ S≃k ⊆
k∏

i=1

Aut(Σi)⋊ S∼k ≃ Autw(Σ),

Autw(DD)M :=
k∏

i=1

Aut(DDi)⋊ S≃k ⊆
k∏

i=1

Aut(DDi)⋊ S∼k ≃ Autw(DD).

We are implicitly using Theorem 3.2.10(b) here by writing Aut(Σi) and Aut(DDi) instead
of Autw(Σi) and Autw(DDi), respectively.

Just as Aut(g)M can be described as Im(AdG̃) thanks to Proposition 3.3.4, the groups
Autw(Σ)M and Autw(DD)M allow a neat alternative description as well. Indeed, note that
we could endow a∗ with an alternative inner product by considering go

∣∣
a×a and carrying it

to a∗ along the induced isomorphism a −→∼ a∗. Let us denote the corresponding orthogonal
group by Ogo(a

∗). It follows by a straightforward computation that:

Autw(Σ)M = Autw(Σ) ∩Ogo(a
∗),

Autw(DD)M = Autw(DD) ∩Ogo(a
∗).

Theorem 3.2.10 together with Proposition 3.2.13 imply that:

W(Σ) ⊆ Autw(Σ)M ,

Autw(Σ)M = W(Σ)⋊ Autw(DD)M ,

Ω(NAut(g)θM
(a)) = Autw(Σ)M ,

Ω(NAut(g)θM
(n)) = Autw(DD)M .

Consider the adjoint representation of K̃ on g and the normalizer NK̃(a) together with
its subgroups NK(a) and NK̃(n). It easily follows from Corollary 3.3.5 that:

Ad(NK̃(a)) = NAut(g)θM
(a),

Ad(NK(a)) = NInn(g)θ(a), (3.3.1)

Ad(NK̃(n)) = NAut(g)θM
(n).

We arrive at the following result, which can be regarded as the geometric version of
Theorem 3.2.10(a):

Corollary 3.3.8. Let M be a symmetric space of noncompact type. For every f ∈
Autw(Σ)M , there exists an isometry k ∈ NK̃(a) such that Ad(k)

∣∣
a

∗
= f . If f ∈

Autw(DD)M , then k necessarily lies in NK̃(n), and if f ∈ W(Σ), k can be chosen in
NK(a).

We finish off with the following application. Corollary 3.3.8 proves especially useful when
studying the congruence problem on symmetric spaces of noncompact type. Among other
things, it can be applied to boundary components—a class of submanifolds of particular
salience in this thesis.

Proposition 3.3.9. Let M be a symmetric space of noncompact type. Let Φ1,Φ2 ⊆ Λ,
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3.3. Applications to symmetric spaces of noncompact type

and assume that there exists s ∈ Autw(DD)M such that s(Φ1) = Φ2. Then the boundary
components BΦ1 and BΦ2 are congruent.

Proof. According to Corollary 3.3.8, there exists some k ∈ NK̃(n) such that Ω(Ad(k)) =
(Ad(k)

∣∣
a

∗
)−1 = s. Since Ad(k)(gα) = gΩ(Ad(k))(α) = gs(α), we must have Ad(k)(gΦ1) = gΦ2 ,

which implies kGΦ1k
−1 = GΦ2 and thus k(BΦ1) = BΦ2 . This completes the proof.
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Chapter 4

HOMOGENEOUS CODIMENSION-ONE

FOLIATIONS ON REDUCIBLE NONCOMPACT

SYMMETRIC SPACES

By their very definition, homogeneous hypersurfaces are intimately related to isometric
cohomogeneity-one actions (see Proposition 2.3.41 for a precise statement). This means
that, for the most part, the objective of this thesis reduces to studying cohomogeneity-one
actions on symmetric spaces and classifying them up to orbit-equivalence. Among those,
there is a special subclass consisting of actions without singular orbits, which are essentially
the same as homogeneous codimension-one foliations. Recall that every such foliation
on a symmetric space is hyperpolar and, in particular, polar (see Corollary 2.3.37 and
Remark 2.3.38). It is known that irreducible symmetric spaces of compact type admit
no such nontrivial foliations (see, e.g., [PT99, Lem. 1A.2]), so we confine our attention to
symmetric spaces of noncompact type.

As a motivation, consider the real hyperbolic plane RH2. There are two obvious examples of
homogeneous codimensions-one foliations on RH2: by a family of geodesics all asymptotic
to each other, and by horocycles all perpendicular to the same fixed geodesic. In the
upper half-plane model, they can be given as the foliations by vertical and horizontal
lines, respectively. If I0(RH2) = KAN stands for an Iwasawa decomposition, then these
foliations can be described as the orbit foliations of A and N , respectively. It is relatively
straightforward to generalize this construction to any hyperbolic space M = FHn: if
I0(M) = KAN is an Iwasawa decomposition, then the orbits of N form a homogeneous
codimension-one foliation by horospheres. As for the other foliation, write n = gα ⊕ g2α
and let ℓα ⊆ gα be any one-dimensional subspace. Then sα = s ⊖ ℓα is a subalgebra of
s = a⊕n, and its corresponding Lie subgroup Sα gives rise to a homogeneous codimension-
one foliation on M , which does not depend on the choice of ℓα up to congruence.

In [BT03], Berndt and Tamaru studied homogeneous codimension-one foliations on
symmetric spaces of noncompact type. It follows from their work that, up to congruence,
the only two such foliations on a hyperbolic space FHn are the orbit foliations of N and
Sα. But they actually did much more: for every noncompact symmetric space M , they
construct a homogeneous codimension-one foliation for every line ℓ ⊆ a, and one for every
simple root αi ∈ Λ—these are denoted as Fℓ and Fαi

, respectively. For M irreducible,
they showed that these foliations exhaust the list of all homogeneous codimension-one
foliations on M up to congruence. Moreover, they proved that two foliations Fℓ,Fℓ′ (resp.,
Fαi

,Fαj
) are congruent if and only if ℓ and ℓ′ (resp., αi and αj) differ by an automorphism
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4.1. Homogeneous hyperpolar and C1-foliations

of the Dynkin diagram of M , whereas Fℓ and Fαi
are never mutually congruent. (Recall

from Chapter 3 that Autw(DD) acts naturally on a∗ and thus on a.)

Building on that work, Berndt, Tamaru, and Dı́az-Ramos obtained a classification result for
the much wider class of homogeneous hyperpolar foliations on all noncompact symmetric
spaces in [BDRT10]. When applied to the codimension-one case, their findings imply that
the first part of the above classification holds true for M reducible: P(a) ⊔ Λ is still a
parameter space for all homogeneous codimension-one foliations on M . In the previous
chapter, we learned that the group responsible for the diagram-induced congruence on
M is Autw(DD)M . It is then natural to ask whether the moduli space of homogeneous
codimension-one foliations on M is given by (P(a) ⊔Λ)/Autw(DD)M . The main result
of this chapter is Theorem 3, in which we verify this hypothesis in case the Riemannian
metric on M is almost Killing. The chapter, which is based on the author’s preprint
[Sol21], is structured as follows:

• In Section 4.1, we introduce the works of Berndt, Tamaru, and Dı́az-Ramos on
codimension-one and hyperpolar homogeneous foliations. We adopt a slightly more
abstract approach in order to formulate the results in the true moduli space spirit.

• In Section 4.2, we prove the main theorem.

4.1. Homogeneous hyperpolar and C1-foliations

Chronologically, the classification of homogeneous C1-foliations ([BT03]) precedes and
underpins that of homogeneous hyperpolar foliations ([BDRT10]). However, we are going
to present these results in an anachronistic manner, as it makes the exposition clearer.
In [BDRT10], the authors devised a method for constructing homogeneous hyperpolar
foliations on an arbitrary symmetric space of noncompact type from those on Euclidean
and hyperbolic spaces. The starting point of their construction is a special type of
boundary component that splits as a product of hyperbolic spaces. Let M be a symmetric
space of noncompact type represented by its canonical Riemannian symmetric pair (G,K).
Writing θ for the Cartan involution of g at o ∈ M , let a ⊂ p be a maximal abelian
subspace and Σ ⊂ a∗ the restricted root system. Pick a Weyl chamber D and let Λ be
the set of simple roots.

Definition 4.1.1. A subset Φ ⊆ Λ is called orthogonal if all roots in it are pairwise
orthogonal or, in other words, no two roots in Φ are connected by an edge in the Dynkin
diagram DD.

Fix an orthogonal subset Φ ⊆ Λ. For any α,β ∈ Φ,α ̸= β, and any k, l ̸= 0, we have
gkα+lβ = {0} and hence [gkα, glβ] = {0}. Since g′Φ is generated by

⊕
α∈ΣΦ gα, we have a

direct sum decomposition

g′Φ =
⊕
α∈Φ

g′{α}.

Consequently, the multiplication map
∏
α∈Φ G̃{α} ↠ G̃Φ is a local isomorphism, and it

passes to a Riemannian covering
∏
α∈ΦB{α} ↠ BΦ. But BΦ is simply connected, so we

get an isometric decomposition

BΦ ∼=
∏
α∈Φ

B{α}.
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Each B{α} is a symmetric space of noncompact type and rank 1 and is thus isometric to a
hyperbolic space over R,C,H, or O. Recall that we have a horospherical decomposition

M ∼= BΦ × AΦ ×NΦ
∼=

(∏
α∈Φ

B{α}

)
× AΦ ×NΦ. (4.1.1)

Every nontrivial homogeneous hyperpolar1 foliation on B{α} is of codimension one by
Corollary 2.3.29. As B{α} is irreducible, the classification of homogeneous codimension-one
foliations obtained in [BT03] (to be formulated below, see Theorem 4.1.14) tells us that
there are exactly two such foliations on this space up to congruence: one of them is a
foliation by horospheres all congruent to each other, while the other, whose congruence
class we denote by

[
F{α}

]
, has a unique minimal leaf. On the other hand, the orbit AΦ · o

is a flat of dimension r − rΦ, so it is isometric to Er−rΦ . We can also think of it as the
Euclidean space aΦ endowed with the inner product go

∣∣
aΦ×aΦ

or the abelian group AΦ
endowed with the left-invariant metric corresponding to this inner product on aΦ. We
have the isometries expAΦ

: aΦ −→∼ AΦ and AΦ −→∼ AΦ · o, g 7→ g · o. Every homogeneous
hyperpolar foliation on aΦ (which is the same as polar in this case) is a foliation by affine
subspaces parallel to a fixed linear subspace V ⊆ aΦ: FV =

{
x+ V | x ∈ V ⊥ ⊆ aΦ

}
. We

denote the corresponding foliation on AΦ (or AΦ · o) by the same symbol FV .

Going back to the horospherical decomposition (4.1.1), pick a representative F{α} in each
class

[
F{α}

]
and consider the product foliation(∏

α∈Φ

F{α}

)
×FV ×NΦ (4.1.2)

on M , where the last factor is simply the trivial foliation on NΦ consisting of just one
leaf. It is not hard to show that the congruence class of this foliation does not depend on
the choice of representatives in the classes

[
F{α}

]
. We will denote the congruence class of

(4.1.2) by [FΦ,V ]. The main result of [BDRT10] is:

Theorem 4.1.2. Let M be a symmetric space of noncompact type whose Riemannian
metric is Killing. Then:

(a) For every orthogonal subset Φ ⊆ Λ and linear subspace V ⊆ aΦ, FΦ,V is a homoge-
neous hyperpolar foliation on M .

(b) Every homogeneous hyperpolar foliation on M lies in [FΦ,V ] for some choice of
o ∈ M, a ⊂ p,Σ+ ⊂ Σ, an orthogonal subset Φ ⊆ Λ, and a linear subspace V ⊆ aΦ.

Before we build a Lie subgroup of G whose orbit foliation represents [FΦ,V ], it is useful to
introduce the following general construction. Let h ⊆ s = a⊕ n be any Lie subalgebra,
and let H ⊆ AN be the corresponding connected Lie subgroup. (Here the Riemannian
symmetric pair (G,K) is allowed to be almost effective, although this does not add
any generality.) As we mentioned in Subsection 2.4.2, the exponential map of AN is a
diffeomorphism. It means that this map identifies h and H, and hence H is a closed
subgroup. This argument shows that every connected Lie subgroup of AN is closed.
The action of H on M does not have singular orbits. Indeed, under the diffeomorphism

1Recall that we defined polar actions to be proper by default, so a homogeneous polar foliation has
all its leaves properly embedded.
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AN −→∼ M , the orbits of H in M simply become its right cosets in AN . As a result,
the orbits of H in M form a homogeneous foliation with properly embedded leaves. By
Proposition 2.3.17, every orbit is principal. This type of foliations plays a significant role
in the theory of symmetric spaces of noncompact type, so it deserves a special name.

Definition 4.1.3. Let M be a symmetric space of noncompact type. A foliation on M
is called standard if it is the orbit foliation of some connected Lie subgroup of AN for
some choice of o ∈ M , a ⊆ p, and Σ+ ⊆ Σ. If such Lie subgroup H ⊆ AN is set, the leaf
H · o is called a base leaf.

By design, a standard foliation is homogeneous, has all its leaves properly embedded, and
is the orbit foliation of a solvable group of isometries. Notice that for a given standard
foliation, there might be more than one choice of o, a, and Σ+ in Definition 4.1.3. In
particular, a base leaf might not be unique.

Now we can return to Theorem 4.1.2. Pick an rΦ-dimensional linear subspace ℓΦ ⊆ g
(recall that rΦ stands for |Φ|) such that dim(ℓΦ ∩ gα) = 1 for each α ∈ Φ and consider
the subspace

sΦ,V = (aΦ ⊕ V )⊕ (n⊖ ℓΦ) ⊆ a⊕ n = s. (4.1.3)

One can easily check that this is a Lie subalgebra. The corresponding connected closed
Lie subgroup SΦ,V ⊂ G induces a standard foliation on M . This foliation turns out to be
hyperpolar and lies in [FΦ,V ]. For this reason, we will denote the orbit foliation of SΦ,V

by FΦ,V . In this notation, the choice of ℓΦ is implicit, but it is also not really important1:
a different choice would lead to a subgroup congruent to SΦ,V by an inner isometry and
thus to a strongly congruent foliation (we will essentially show this as part of Lemma 4.1.9
below). This argument shows that [FΦ,V ] can be represented by a standard foliation.
Below we will see that the property of being standard is preserved by congruence, so every
foliation in [FΦ,V ] is standard.

We will now show that the assumption on the Riemannian metric in Theorem 4.1.2 can
be removed. The proof is rather straightforward but does require one to keep track of
notation, which makes it a bit cumbersome.

Proposition 4.1.4. The Killing assumption on the Riemannian metric in Theorem 4.1.2
is redundant.

Proof. Let M be a symmetric space of noncompact type whose metric g is not neces-
sarily Killing. First, we verify that part (a) of Theorem 4.1.2 holds true for (M, g) by
showing that rescaling the normalizing constants does not change the set of homogeneous
hyperpolar foliations on M . Let g′ be a metric obtained from g by some rescaling of
the normalizing constants. As we know from Proposition 3.3.4, I(M, g) and I(M, g′) are
both naturally open subgroups of Aut(g). In particular, they share the same identity
component G = I0(M) ∼= Inn(g). Let H ⊆ I(M, g) be a closed connected subgroup
inducing a homogeneous hyperpolar foliation F on (M, g). As H ⊆ I(M, g′), F is also a
homogeneous foliation on (M, g′). Rescaling the normalizing constants does not change
the exponential map and hence the set of totally geodesic submanifolds. Moreover, it
does not change the set of maximal flats either, since every maximal flat in (M, g) is the
product of those in its de Rham factors. Altogether, we deduce that the set of flats is

1In a situation like this, it is common not to distinguish notationally between a congruence class of
foliations and its specific representatives.
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the same for (M, g) and (M, g′), which implies that sections of F in (M, g) are also its
sections in (M, g′), and vice versa. We see that F is a homogeneous hyperpolar foliation
on (M, g′). As we can apply this argument to the case in which g′ is Killing and F = FΦ,V ,
part (a) readily follows.

To prove part (b), we temporarily refine the notation established above. This time, let g′

be the Killing metric on M . We define two sets:

C =
{
(o, a,Σ+,Φ, V, ℓΦ) | o ∈ M,

a ⊂ p a maximal abelian subspace,

Σ+ ⊂ Σ a set of positive roots,

Φ ⊆ Λ ⊆ Σ+ an orthogonal subset,

V ⊆ aΦ a linear subspace,

ℓΦ ⊂ g s. th. dim(ℓΦ) = rΦ and dim(ℓΦ ∩ gα) = 1 ∀ α ∈ Φ} ,

D =
{
(o, a,Σ+, h) | o ∈ M,

a ⊂ p a maximal abelian subspace,

Σ+ ⊂ Σ a set of positive roots,

h ⊆ s a subalgebra } .

Here p is determined by o as the (−1)-eigenspace of the Cartan involution Ad(so). Similarly,
the root system Σ is fully determined as soon as we fix a. Let us write L for the set of
homogeneous foliations on M with properly embedded leaves, and let Lh be its subset of
homogeneous hyperpolar foliations. As we know from the first part of the proof, the sets
L and Lh do not depend on the choice of normalizing constants. The same is true for C
and D.

We have two maps C ι−−→ D ϑ−−→ L defined as:

ι : (o, a,Σ+,Φ, V, ℓΦ) 7→ (o, a,Σ+, (aΦ ⊕ V )⊕ (n⊖ ℓΦ)),

ϑ : (o, a,Σ+, h) 7→ Fh .

Here Fh is the orbit foliation of the connected Lie subgroup H ⊆ AN corresponding to h.
As we know, the composition ϑ ◦ ι takes values in the subset Lh of L. Let us denote this
map by ϑh : C → Lh. The group I(M, g′) ∼= Aut(g) acts on L in the obvious way, and this
action preserves Lh.

Lemma 4.1.5. There exist natural actions of I(M, g′) on C and D with respect to which
the maps ι, ϑ, and ϑh are I(M, g′)-equivariant.

Proof of the lemma. Take any φ ∈ I(M, g′) and (o, a,Σ+,Φ, V, ℓΦ) ∈ C. It is easy to
see that Ad(φ)(p) is the (−1)-eigenspace of the Cartan involution Ad(sφ(o)). Moreover,
Ad(φ)(a) is a maximal abelian subspace of Ad(φ)(p), hence we have the induced restricted
root system in Ad(φ)(a)∗. Consider the restriction Ad(φ)

∣∣
a
: a −→∼ Ad(φ)(a) and write

φa = (Ad(φ)
∣∣
a

∗
)−1 : a∗ −→∼ Ad(φ)(a)∗. A straightforward computation shows that the

restricted root system in Ad(φ)(a)∗ coincides with φa(Σ). By (3.2.1), we have

Ad(φ)(gα) = gφa(α) for each α ∈ Σ. (4.1.4)
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Plainly, φa(Σ
+) is a choice of positive roots for φa(Σ), and the corresponding set of simple

roots is nothing but φa(Λ). Furthermore, φa(Φ) is an orthogonal subset of φa(Λ). One
can check that Ad(φ)(a)φa(Φ) coincides with Ad(φ)(aΦ). Finally, it follows from (4.1.4)
that

Ad(φ)(ℓΦ) ∩ gφa(α) = Ad(φ)(ℓΦ) ∩ Ad(gα) = Ad(ℓΦ ∩ gα).

We can thus define

φ · (o, a,Σ+,Φ, V, ℓΦ) = (φ(o),Ad(φ)(a),φa(Σ
+),φa(Φ),Ad(φ)(V ),Ad(φ)(ℓΦ)).

It is easy to check that this formula defines an action of I(M, g′) on C. Its action on D
is defined in a similar fashion. If we write n =

⊕
α∈Σ+ gα and n′ =

⊕
α∈φa(Σ+) gα, then

Ad(φ)(n) = n′ by virtue of (4.1.4). If h is a subalgebra of s, then Ad(φ)(h) is a subalgebra
of Ad(φ)(s) = Ad(φ)(a)⊕ n′. The formula

φ · (o, a,Σ+, h) = (φ(o),Ad(φ)(a),φa(Σ
+),Ad(φ)(h))

defines an action of I(M, g′) on D. Given (o, a,Σ+,Φ, V, ℓΦ), we denote (a
Φ⊕V )⊕(n⊖ℓΦ)

temporarily as s(o, a,Σ+,Φ, V, ℓΦ). To show that ι is I(M, g′)-equivariant, it suffices to
verify that

Ad(φ)(s(o, a,Σ+,Φ, V, ℓΦ)) = s(φ · (o, a,Σ+,Φ, V, ℓΦ)). (4.1.5)

This follows from (4.1.4) and two simple facts. First, Ad(φ)(a)φa(Φ) = Ad(φ)(aΦ).
Second, Ad(φ) is an isometry between (g, Bθ) and (g, Bθ′), where θ

′ = Ad(sφ(o)) =
Ad(φ)θAd(φ)−1. Now, we show that ϑ is equivariant. Given (o, a,Σ+, h), the foliation
ϑ(φ ·(o, a,Σ+, h)) is the orbit foliation of the connected Lie subgroup of G with Lie algebra
Ad(φ)(h). On the other hand, φ(Fh) is the orbit foliation of the group φ · expG(h) ·φ−1,
which is also the connected Lie subgroup of G with Lie algebra Ad(φ)(h). The equivariance
of ϑh follows from those of ι and ϑ. This concludes the proof of the lemma.

The fact that ϑh is I(M, g′)-equivariant means that it induces a map C/I(M, g′) →
Lh/I(M, g′). Part (b) of Theorem 4.1.2 asserts that this map is surjective. But then—
again, by equivariance—ϑh must be surjective itself. If we now restrict the actions on C and
Lh to the subgroup I(M, g) ⊆ I(M, g′), then the induced map C/I(M, g) → Lh/I(M, g)
has to be surjective as well, because so is ϑh. This means exactly that part (b) of
Theorem 4.1.2 holds true for (M, g), which completes the proof.

Corollary 4.1.6. Let M be a symmetric space of noncompact type.

(a) For every orthogonal subset Φ ⊆ Λ and linear subspace V ⊆ aΦ, FΦ,V is a homoge-
neous hyperpolar foliation on M .

(b) Every homogeneous hyperpolar foliation on M is congruent to FΦ,V for some choice
of o ∈ M, a ⊂ p,Σ+ ⊂ Σ, an orthogonal subset Φ ⊆ Λ, and a linear subspace
V ⊆ aΦ.

Observation 4.1.7. The subset of L consisting of standard foliations is precisely the
image of ϑ : D → L. Since ϑ is I(M, g′)-equivariant, its image is preserved by I(M, g′). In
other words, if some foliation is congruent to a standard foliation, then it is itself standard.
As a consequence, every homogeneous hyperpolar foliation on M is standard.
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The main advantage of the formalism established in the proof of Proposition 4.1.4 is
that it gives a useful moduli space perspective on homogeneous hyperpolar foliations. In
order to give a less clumsy description of the moduli space Lh/I(M, g), we first show that
the foliation FΦ,V does not depend on the choice of o, a, and Σ+ up to congruence. Fix

o ∈ M, a ⊂ p, and Σ+ ⊂ Σ. Form now on, we write G̃ for I(M) and K̃ for its isotropy
subgroup at o. Consider the subset Co,a,Σ+ of C consisting of those 6-tuples whose first
three components are o, a, and Σ+, respectively. Although this subset is not preserved
under the action G̃ ↷ C, it is preserved by the subgroup NK̃(n) ⊂ G̃. In fact, NK̃(n)

consists precisely of those elements of G̃ that preserve Co,a,Σ+ .

Lemma 4.1.8. The map Co,a,Σ+/NK̃(n) → C/G̃ induced by the inclusion Co,a,Σ+ ↪→ C is a
bijection.

Proof. This can be seen by consecutively applying the facts that G acts transitively on M ,
K acts transitively on the set of maximal abelian subspaces of p (Proposition 2.4.8, Corol-
lary 3.3.5), and NK(a) acts transitively on the set of Weyl chambers of Σ (Corollary 2.4.12,
(3.3.1)).

Now we can dispense with the need to choose ℓΦ. Define

C ′o,a,Σ+ = {(Φ, V ) | Φ ⊆ Λ orthogonal subset, V ⊆ aΦ linear subspace} ,

and let Co,a,Σ+ ↠ C ′o,a,Σ+ be the projection map. Recall that we have an open normal
subgroup ZK̃(a) ⊴ NK̃(n) that acts trivially on a and preserves each restricted root space
gα. The projection map is clearly constant on the orbits of the action ZK̃(a) ↷ Co,a,Σ+ .

Lemma 4.1.9. The map Co,a,Σ+/ZK̃(a)↠ C ′o,a,Σ+ is a bijection.

Proof. Recall that the boundary component BΦ can be represented by an almost effective
Riemannian symmetric pair (G′Φ, K

Φ), where we temporarily denote KΦ = G′Φ ∩K. We
have a local isomorphism G′Φ ↠ I0(BΦ) with finite kernel. The Cartan decomposition of
g′Φ is given by g′Φ = [bΦ, bΦ]⊕ bΦ. Moreover, aΦ is a maximal abelian subspace of bΦ, so
we can consider the normalizer NKΦ(aΦ) and its identity component N0

KΦ(a
Φ) = Z0

KΦ(a
Φ).

As we established at the beginning of the section, g′Φ =
⊕

α∈Φ g′{α}, and the multiplication

map
∏
α∈ΦG′{α} ↠ G′Φ is a local isomorphism. Each boundary component B{α} can be

represented by an almost effective Riemannian symmetric pair (G′{α}, K
{α}). It is easy

to see that the multiplication map
∏
α∈ΦK{α} ↠ KΦ is a local isomorphism, and so is∏

α∈Φ Z0
K{α}(a

{α})↠ Z0
KΦ(a

Φ). Let ℓΦ, ℓ
′
Φ ⊆ g be of dimension rΦ such that both ℓΦ ∩ gα

and ℓ′Φ ∩ gα are 1-dimensional for each α ∈ Φ. As it will be shown in Lemma 4.2.5 below,
the adjoint action of Z0

K{α}(a
{α}) on gα is of cohomogeneity one for each α ∈ Φ. It means

that for every α ∈ Φ, there exists kα ∈ Z0
K{α}(a

{α}) such that Ad(kα)(ℓΦ ∩ gα) = ℓ′Φ ∩ gα.

What is more, since [g{α}, g{β}] = {0} for α,β ∈ Φ,α ̸= β, the action of Z0
K{α}(a

{α}) on

gβ is trivial. We deduce that the image of (kα)α∈Φ under
∏
α∈Φ Z0

K{α}(a
{α})↠ Z0

KΦ(a
Φ)

sends ℓΦ onto ℓ′Φ. But this means exactly that two points of Co,a,Σ+ lying in the same fiber
over C ′o,a,Σ+ must differ by some element of Z0

KΦ(a
Φ). It remains to prove that Z0

KΦ(a
Φ) is

a subgroup of ZK̃(a). Since the former is connected, it suffices to show that this holds on
the level of Lie algebras. But we know from Subsection 2.4.3 that those are k0 ∩ g′Φ and
k0, respectively. This completes the proof of the lemma.
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Note that we have shown incidentally that ZK̃(a) has the same orbits on Co,a,Σ+ as
its identity component Z0

K̃
(a). From Lemma 4.1.9 and the fact that NK̃(n)/ZK̃(a)

∼=
Autw(DD)M (Corollary 3.2.15, (3.3.1)), it easily follows that we have an induced map
Co,a,Σ+/NK̃(n)↠ C ′o,a,Σ+/Aut

w(DD)M , and it is a bijection. Combining all of the above,
we arrive at:

C ′o,a,Σ+/Autw(DD)M ∼= Co,a,Σ+/NK̃(n) −→∼ C/G̃ ↠ Lh/G̃.

We sum up the above discussion in a separate

Corollary 4.1.10. Let M be a symmetric space of noncompact type. Pick o ∈ M, a ⊆ p,
and Σ+ ⊆ Σ. Then the map

C ′o,a,Σ+/Autw(DD)M ↠ Lh/G̃, [(Φ, V )] 7→ [FΦ,V ] (4.1.6)

is well-defined and surjective.

In other words, the moduli space Lh/G̃ of homogeneous hyperpolar foliations on M is a
certain quotient of C ′o,a,Σ+/Aut

w(DD)M . Here C ′o,a,Σ+ is a disjoint union of Grassmannians
of various dimensions, and Autw(DD)M is a finite group acting smoothly on it. Given an
automorphism s ∈ Autw(DD)M ⊂ Autw(Σ)M , its action on C ′o,a,Σ+ is given by

s · (Φ, V ) = (s(Φ), (s∗)−1(V )).

Unfortunately, Corollary 4.1.10 does not give a complete classification of homogeneous
hyperpolar foliations, as it does not tell whether the map C ′o,a,Σ+/Aut

w(DD)M ↠ Lh/G̃
is bijective. In other words, the foliation FΦ,V might in theory be congruent to FΦ′,V ′

even if (Φ, V ) and (Φ′, V ′) lie in different orbits of the action of Autw(DD)M on C ′o,a,Σ+ .
However, there are no such known examples, which naturally leads to the following

Conjecture 4.1.11. For any symmetric space M of noncompact type, the map (4.1.6) is
a bijection.

Remark 4.1.12. We can also restrict the notion of equivalence to strong congruence. It
is clear from the above discussion that we have a surjective map C ′o,a,Σ+ ↠ Lh/G given by
the same formula as in (4.1.6). We can then ask whether this map is bijective, which is
similar but not directly equivalent to Conjecture 4.1.11.

In general, Conjecture 4.1.11 seems far from being resolved. All the progress toward its
resolution has so far been confined to proving that (4.1.6) is bijective over some specific

parts of the moduli space Lh/G̃. For example, as part of their study of isoparametric
hypersurfaces in [DVSL23], Domı́nguez-Vázquez and Sanmartin-López investigated the
subset of C ′o,a,Σ+ consisting of pairs (∅, V ), V ⊆ a. They obtained the following partial
result: if two such pairs (∅, V ) and (∅, V ′) give rise to congruent foliations, then V and

V ′ differ by some Autw(Σ)M . In this chapter, we are interested in the part of Lh/G̃
consisting of proper homogeneous C1-foliations.

Agreement. For the rest of the chapter all homogeneous C1-foliations are assumed proper
by default.

Recall that such foliations are hyperpolar by Corollary 2.3.37. The codimension of the
model foliation FΦ,V can be easily calculated from its construction: codim(FΦ,V ) =
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|Φ|+ codimaΦ(V ). Therefore, there are two types of proper homogeneous C1-foliations:

(a) Φ = ∅, V = a⊖ ℓ, where ℓ ⊆ a is a one-dimensional linear subspace1. In this case,
we write F ℓ instead of FΦ,V for simplicity.

(b) Φ = {αi} , V = aΦ. In this case, we denote2 FΦ,V by Fαi
.

The subalgebra sΦ,V (resp., subgroup SΦ,V ) in this case will be denoted simply by sℓ
(resp., Sℓ) or sαi

(resp., Sαi
). Note that sℓ = (a⊖ ℓ)⊕ n and sαi

= a⊕ (n⊖ ℓi), where
ℓi ⊆ gαi

is a line. Berndt and Tamaru gave a detailed geometric description of these
foliations in [BT03]. The foliation Fℓ has all its leaves congruent to each other3. If ℓ lies in
the closure of the positive Weyl chamber, the leaves of Fℓ are horospheres (see [DVSLT21,
Rem. 5.4]). The foliation Fαi

has a unique minimal leaf, namely the base leaf Sαi
· o. In

particular, Fℓ is never congruent to Fαi
. What is more, there exists a congruence of Fαi

with itself that preserves the base leaf and, for each t > 0, interchanges the two leaves
at distance t from Sαi

· o. Any two distinct leaves of Fαi
have different (constant) mean

curvatures, except for the case when they are at the same distance from Sαi
· o.

Corollary 4.1.10 yields the following immediate

Corollary 4.1.13. Let M be a symmetric space of noncompact type with a fixed choice
of o ∈ M, a ⊂ p, and Σ+ ⊂ Σ.

(a) For every one-dimensional subspace ℓ ⊆ a and simple root αi ∈ Λ, the foliations Fℓ

and Fαi
are homogeneous and have codimension one.

(b) Every homogeneous codimension-one foliation on M is congruent to either Fℓ (for
some ℓ ∈ Pa) or Fαi

(for some αi ∈ Λ).

(c) If ℓ, ℓ′ ∈ Pa (resp., αi,αj ∈ Λ) differ by some s ∈ Autw(DD)M , then the foliations
Fℓ and Fℓ′ (resp., Fαi

and Fαj
) are congruent.

Notice that the action of Autw(DD)M on the set of foliations Fℓ, ℓ ∈ Pa, is via its
representation on a (dual to the one on a∗). In the irreducible case, the above result
was originally obtained in [BT03]. They also showed the converse to part (c), thereby
completing the classification of homogeneous C1-foliations for irreducible spaces:

Theorem 4.1.14. Let M be an irreducible symmetric space of noncompact type, and
assume that the foliations Fℓ and Fℓ′ (resp., Fαi

and Fαj
) are congruent. Then there

exists s ∈ Aut(DD) mapping ℓ onto ℓ′ (resp., αi to αj). Consequently, the moduli space
of proper homogeneous codimension-one foliations on M is isomorphic to

(RP r−1 ⊔{1, . . . , r})/Aut(DD).

Here we are writing Aut(DD) because in the irreducible case every metric is almost Killing
and every Dynkin diagram automorphism is weight-preserving, hence Autw(DD)M =
Aut(DD). This also explains why the Killing assumption on the Riemannian metric in
[BT03] is not essential and can be dropped.

1The orthogonal complement V = a⊖ ℓ is taken with respect to ⟨−|−⟩B = B
∣∣
p×p

, not go.
2This foliation is denoted by Fi in [BT03], but our notation will prove less ambiguous in the reducible

case, so we stick with it.
3This is an example of a standard foliation whose base leaf is not unique. As a matter of fact, every

leaf of Fℓ is a base leaf.
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4.2. The congruence theorem

In this section we prove the following result, which extends Theorem 4.1.14 to the reducible
case:

Theorem 4.2.1. Let M be a symmetric space of noncompact type whose metric is almost
Killing, and assume that the foliations Fℓ and Fℓ′ (resp., Fαi

and Fαj
) are congruent.

Then there exists s ∈ Autw(DD) mapping ℓ onto ℓ′ (resp., αi to αj). Consequently, the
moduli space of proper homogeneous codimension-one foliations on M is isomorphic to

(RP r−1 ⊔{1, . . . , r})/Autw(DD).

First, we deal with the discrete part of the moduli space. In this case, we actually do not
need the assumption on the Riemannian metric.

Proposition 4.2.2. Let M be a symmetric space of noncompact type. Suppose the folia-
tions Fαi

and Fαj
are congruent for some αi,αj ∈ Λ. Then there exists s ∈ Autw(DD)M

mapping αi to αj.

Proof. Let M = M1×· · ·×Mk be the de Rham decomposition of M . We use the notation
established at the beginning Section 3.3. In this section, we will denote the solvable
group AN in the Iwasawa decomposition by S. The Lie algebra s splits as s1 ⊕ · · · ⊕ sk,
hence we also have S = S1 × · · · × Sk. To keep track of the de Rham factors, let us write
Λl = {α1

l , . . . ,α
rl
l }. To comply with this notation, we write αp

i and αq
j instead of αi and

αj. Pick some lines ℓpi ⊆ gαp
i
and ℓqj ⊆ gαq

j
. The foliations [Fαp

i
] and [Fαq

j
] are the orbit

foliations of the groups Sαp
i
and Sαq

j
, respectively. Observe that

Sαp
i
= S1 × · · · × Si,αp

i
× · · · × Sk, so

Sαp
i
· o = M1 × · · · × (Si,αp

i
· o)× · · · ×Mk, (4.2.1)

where Si,αp
i
is the connected Lie subgroup of Gi with Lie algebra si,αp

i
= si ⊖ ℓpi . The

same is true for Sαq
j
and its orbit Sαq

j
· o. Let g ∈ G̃ be a congruence identifying the orbit

foliations of Sαp
i
and Sαq

j
and thus their minimal leaves Sαp

i
· o and Sαq

j
· o. Without loss of

generality, we may assume that g fixes o. Looking at (4.2.1) and Proposition 2.1.60, we see
that g must send Mi,o = Gi · o onto Mj,o = Gj · o and thus provide a congruence between
the orbit foliations of Si,αp

i
on Mi,o

∼= Mi and Sj,αq
j
on Mj,o

∼= Mj (in particular, Mi and

Mj are isometric). It easily follows from Theorem 4.1.14 that there exists an isomorphism
s between the Dynkin diagrams DDi and DDj sending α

p
i to αq

j . Since Mi and Mj are
irreducible, every isomorphism between their Dynkin diagrams is automatically weight-
preserving by Theorem 3.2.10. These two Dynkin diagrams can be regarded as connected
components of DD. Therefore, we can extend s to a weight-preserving automorphism s̃ of
DD by letting it be s−1 on DDj and the identity on all the components other than DDi and
DDj . This gives an element of Autw(DD) sending αp

i to α
q
j . As Mi ≃ Mj , the normalizing

constants λi and λj coincide, so s̃ actually lies in the subgroup Autw(DD)M ⊆ Autw(DD),
which completes the proof.

The congruence problem for Fℓ’s is more subtle in the reducible case, and a similar
approach would not work, for ℓ does not have to be positioned nicely with respect to the

133



4.2. The congruence theorem

de Rham decomposition. More precisely, if we write a = a1 ⊕ · · · ⊕ ak, then ℓ does not
have to be contained in any of the summands. Nonetheless, we have:

Proposition 4.2.3. Let M be a symmetric space of noncompact type whose Riemannian
metric is almost Killing. Suppose the foliations Fℓ and Fℓ′ are congruent for some ℓ, ℓ′ ∈ a.
Then there exists s ∈ Autw(DD) mapping ℓ to ℓ′.

Combining the above two propositions with Corollary 4.1.10 yields a proof of Theorem 4.2.1.
So we are only left to prove Proposition 4.2.3. Let us first discuss why this problem is
more subtle and how it was tackled in [BT03].

Let k ∈ G̃ be a congruence between Fℓ and Fℓ′ . Without loss of generality, we may assume
that k preserves o and hence lies in K̃. The primary difficulty is that k may not preserve
a, let alone n, so it does not produce an element of Autw(DD) ∼= NK̃(n)/ZK̃(a) to begin
with. In their original proof in the irreducible case, Berndt and Tamaru bypassed this
problem by establishing an isomorphism sℓ −→∼ sℓ′ that respects certain natural gradings
on these Lie algebras. The main hindrance in their approach is that this isomorphism
does not in general extend to an automorphism of g and thus does not directly produce
an automorphism of DD. Yet, the authors managed to prove—purely algebraically—that
the existence of such an isomorphism implies that ℓ and ℓ′ differ by Aut(DD) (see [BT03,
pp. 9-20]). The proof is quite complicated and involves a case-by-case consideration of all
possible irreducible root systems from Ar to G2 and (BC)r. We will use their ideas and
extend their approach to the reducible case.

Given ℓ ⊆ a, note that the solvable Lie algebra sℓ inherits the grading (2.4.3) from s:

sℓ =
m⊕
i=0

siℓ, where s0ℓ = aℓ = a⊖ ℓ, siℓ = ni =
⊕

ht(α)=i

gα.

In particular, s1ℓ = n1 =
⊕

α∈Λ gα. If we denote Lk =
⊕m

i=k s
i
ℓ, it follows from Propo-

sition 2.4.9(d) that [sℓ, sℓ] = L1 = n and [L1, Lk] = Lk+1 for k ≥ 0. Note that sℓ is
completely solvable1, i.e., ad(sℓ) ⊂ gl(sℓ) consists of upper-triangular matrices in a suit-
able basis for sℓ. Indeed, first take a basis for smℓ , then for sm−1ℓ , and so on, and then
combine all these bases together. We refer to [BT03] for more details.

Proof of Proposition 4.2.3. We will be using the notation established in the proof of
Proposition 4.2.2. Let ℓ and ℓ′ be one-dimensional subspaces of a such that the foliations
Fℓ and Fℓ′ are congruent by some k ∈ G̃. Since all the leaves of Fℓ are congruent to each
other, we may assume that k ∈ K̃. First, suppose that ℓ ⊆ ai for some i. In this case, the
leaf Sℓ · o contains Ml,o for all l ≠ i. By Proposition 2.1.60, k(Mi,o) = Mj,o for some j, and
thus the leaf Sℓ′ · o = k(Sℓ · o) has to contain Ml,o for all l ̸= j. In particular, we must have
ℓ′ ⊆ aj and Mi ≃ Mj . Arguing in a similar vein as in the proof of Proposition 4.2.2, we see
that there is a weight-preserving isomorphism DDi −→∼ DDj that extends to s ∈ Autw(DD)
sending ℓ onto ℓ′. Therefore, we may assume that ℓ (and hence ℓ′) does not lie in any of
the ai’s.

In this case, one can show that aℓ and aℓ′ are Cartan subalgebras of sℓ and sℓ′ , respectively
(see [BT03, Lem. 3.3]). Recall that both Sℓ and Sℓ′ are connected and completely solvable
(this just means that their Lie algebras are completely solvable). By means of the

1For complex Lie algebras, the notions of solvability and complete solvability coincide by Lie’s theorem.
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congruence k, we can regard both of these groups as Lie subgroups of I(Sℓ · o). It follows
from [Ale71] that any two connected completely solvable transitive Lie groups of isometries
of a connected Riemannian manifold are conjugate in the isometry group of that manifold.
Therefore, Sℓ and Sℓ′ are isomorphic, and so are sℓ and sℓ′ . Let F : sℓ −→∼ sℓ′ be an
isomorphism.

The first step is to adjust F to make it into a graded isomorphism. Observe that F (aℓ)
is a Cartan subalgebra of sℓ′ . Every two Cartan subalgebras of a solvable Lie algebra
are conjugate by an inner automorphism, so we may assume F (aℓ) = aℓ′ . Note also that
n = [sℓ, sℓ] = [sℓ′ , sℓ′ ], so F (n) = n. Writing X i for the i-th graded component of a vector
X, define a map sℓ → sℓ′ , X 7→

∑m
i=0(F (X i))i. It is easy to check that this map is a

graded Lie algebra isomorphism (see [BT03, Th. 3.4] for an argument). We continue to
denote it by F .

The main idea of the proof is to use the Lie bracket relations between aℓ (or aℓ′) and n
to show that F must permute the restricted root spaces in n in a way that induces a
weight-preserving automorphism of DD. For each pair α,β ∈ Λ,α ̸= β, let Lαβ stand
for the hyperplane in a consisting of such vectors Z that the eigenvalue of ad(Z) on gα
coincides with that on gβ. If we write Z =

∑
γ∈Λ ZγH

γ, then Lαβ = {Z ∈ a | Zα = Zβ} =
a⊖ R(Hα −Hβ).

First, we consider the generic choice of ℓ such that aℓ ̸= Lαβ for any pair α,β ∈ Λ. In this
case,

⋃
α,β∈Λ
α̸=β

(aℓ ∩ Lαβ) is the union of finitely many hyperplanes in aℓ, so its complement

a◦ℓ is open and dense in aℓ. Pick any Z ∈ a◦ℓ . By design, all the coordinates Zγ of Z with
respect to the basis (Hγ)γ∈Λ of a are pairwise distinct. Since Zγ is the eigenvalue of ad(Z)
on gγ, ad(Z) has the maximal possible number (= r) of distinct eigenvalues on n1 among
all vectors in a. Now, given X in a simple root space gγ, one has

[F (Z), F (X)] = F [Z,X] = F (ZγX) = ZγF (X),

which means that F maps the eigenspaces of ad(Z) in n1 onto the eigenspaces of ad(F (Z))
in n1 corresponding to the same eigenvalues. Since there are r such eigenvalues, F must
permute the root spaces in n1. Formally, there exists a bijection s : Λ −→∼ Λ such that

F (gγ) = gs(γ) (∀ γ ∈ Λ) and F (Z) =
∑
γ∈Λ

ZγH
s(γ).

We see that ℓ is generic in the sense explained above if and only if ℓ′ is, and we also
have F (a◦ℓ) = a◦ℓ′ . Since it is a permutation of a basis of a∗, s extends uniquely to
a linear operator on a∗, which we denote by the same letter. Assume for a moment
that s ∈ Autw(DD). In this case, the induced operator (s∗)−1 on a sends Hγ to Hs(γ).
Therefore, we have (s∗)−1(Z) =

∑
γ∈Λ ZγH

s(γ). We conclude that the restrictions of (s∗)−1

and F to a◦ℓ coincide. Since a◦ℓ is dense in aℓ, these two operators coincide on the whole
aℓ. But our assumption implies that s is orthogonal with respect to the inner product
on a∗ induced by B, hence (s∗)−1 is orthogonal with respect to B

∣∣
a×a. This means that

(s∗)−1 sends ℓ = a⊖ aℓ onto a⊖ (s∗)−1(aℓ) = a⊖ aℓ′ = ℓ′, which was to be proved. So we
are left to show that s does indeed lie in Autw(DD).

Suppose that α,β ∈ Λ are connected by an edge in DD, i.e., the angle between them is
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greater than π
2
. This is equivalent to asking that gα+β = [gα, gβ] ̸= {0}. We compute:

gs(α)+s(β) = [gs(α), gs(β)] = [F (gα), F (gβ)] = F ([gα, gβ]) = F (gα+β) ̸= {0} , (4.2.2)

which means that s(α) and s(β) are also connected by an edge in the Dynkin diagram.
Applying the same argument to s−1, we see that s preserves adjacency between the vertices.
Consequently, s permutes the connected components of DD: there exists σ ∈ Sk such that
s(DDi) = DDσ(i) for each i ∈ {1, . . . , k}. Note that we then have F (n1i ) = n1σ(i) and, since

n1i generates ni for each i, F (ni) = nσ(i). We will now show that s provides an isomorphism
between DDi and DDσ(i).

To start with, note that DDi and DDσ(i) must have the same number of vertices. Also, s
preserves the degrees and multiplicities of the vertices. Next, it is a standard fact from the
theory of root spaces that any positive root η can be expressed as γl1+γl2+ · · ·+γls , where
each summand is a simple root and each partial sum γl1 + · · ·+ γlt , t ∈ {2, . . . , t− 1}, is
also a root. This, together with a computation similar to (4.2.2), implies that a linear
combination

∑ri
j=1 njα

j
i is a root in Σ+

i if and only if
∑ri

j=1 njs(α
j
i ) is a root in Σ+

σ(i).

Among other things, this implies that |Σi| = |Σσ(i)| and that Σi is reduced if and only
if Σσ(i) is. By looking at the list of the Dynkin diagrams of all possible irreducible
symmetric spaces of noncompact type ([BCO16, pp. 336-340]), one deduces that DDi

and DDσ(i) must be weighted-isomorphic, and one such weight-preserving isomorphism is
provided by s. By Proposition 3.3.1, as well as our assumption that the metric is almost
Killing, DDi ≃ DDσ(i) is equivalent to Mi and Mσ(i) being isometric. We deduce that
s ∈ Autw(DD), which completes the proof for the generic choice of ℓ.

Remark 4.2.4. To tell the diagrams Br and Cr apart, one might need to use the fact
that, if we denote the two adjacent vertices of nonequal lengths by αr−1 and αr, the sum
αr−1 + 2αr is a root for Br but not for Cr.

We are left to consider the situation when aℓ = Lαβ for some α,β ∈ Λ,α ̸= β, which
simply means that ℓ is spanned by Hα−Hβ. Since we assume that ℓ does not lie in any of
the al’s, the roots α and β must lie in different components of DD: α ∈ Λi,β ∈ Λj, i ̸= j.
In this case, each Lα′β′ with (α′,β′) ̸= (α,β) intersects aℓ by a hyperplane. Let a◦ℓ ⊆ aℓ
stand for the complement to the union of all such hyperplanes (for all (α′,β′) ̸= (α,β)).
For every Z ∈ a◦ℓ , ad(Z) has r − 1 distinct eigenvalues on n1. The only two restricted
root spaces in n1 with the same eigenvalue (equal to Zα = Zβ) are gα and gβ. As we
have already seen, ad(F (Z)) must have the same eigenvalues on n1, and F must send the
eigenspaces of ad(Z) onto the corresponding eigenspaces of ad(F (Z)). This implies that
there exist some α′,β′ ∈ Λ such that aℓ′ = Lα′β′ and thus ℓ′ is spanned by Hα′−Hβ′ . Since
ℓ′ cannot lie in any of the al’s, we have α

′ ∈ Λi′ ,β
′ ∈ Λj′ , i

′ ̸= j′. Arguing in a similar spirit
to what we did in the proof of Proposition 4.2.2, note that Sℓ·o = (

∏
l ̸=i,j Ml)×(Si×Sj)ℓ·o

and Sℓ′ · o = (
∏

l ̸=i′,j′ Ml) × (Si′ × Sj′)ℓ′ · o. Here we write (Si × Sj)ℓ for the connected
Lie subgroup of Gi ×Gj corresponding to the Lie subalgebra (si ⊕ sj)⊖ ℓ, and the same
for (Si′ × Sj′)ℓ′ . In view of Proposition 2.1.60, we see that the congruence k between
Fℓ and Fℓ′ must send Mi,o onto either Mi′,o or Mj′,o and Mj,o onto the other of the two.
Consequently—and slightly informally—the unordered pair (Mi,Mj) is isometric to the
pair (Mi′ ,Mj′). This means that there exists an weight-preserving isomorphism of Dynkin
diagrams DDi ⊔DDj −→∼ DDi′ ⊔DDj′ , which extends easily—just like we did at the end of
the proof of Proposition 4.2.2—to some s ∈ Autw(DD). We will prove that all four of the
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spaces Mi,Mj,Mi′ ,Mj′ have rank 1. If this is the case, then s sends Λi ⊔ Λj = {α,β}
onto Λi′ ⊔Λj′ = {α′,β′} and thus Hα−Hβ ∈ ℓ to ±(Hα′ −Hβ′) ∈ ℓ′, which will complete
the proof.

It follows from our argument involving the eigenspaces of ad(Z) and ad(F (Z)) that F
establishes a bijection

{gα1 , . . . , ĝα, . . . , ĝβ, . . . , gαr , gα ⊕ gβ} −→∼ {gα1 , . . . , ĝα′ , . . . , ĝβ′ , . . . , gαr , gα′ ⊕ gβ′}

and sends the subspaces on the left isomorphically onto the corresponding subspaces on
the right (here a hat over a subspace means that it is omitted from the list). Before we
proceed further, we prove two Lie-theoretic lemmas of separate interest.

Recall from Observation 3.2.9 that we have an orthogonal representation of the compact Lie
group ZK̃(a) on each restricted root space gα in g. The identity component Z0

K̃
(a) = Z0

K(a)
is the connected Lie subgroup of G with Lie algebra k0, so we denote it by K0.

Lemma 4.2.5. For every µ ∈ Σ of multiplicity greater than one, the adjoint representation
K0 → SO(gα) is of cohomogeneity 1. In other words, K0 (and thus ZK̃(a)) acts transitively
on the unit sphere in gµ.

Proof. Note that this statement admits a purely algebraic reformulation: under the
assumption on µ, we need to show that the representation of Z0

Inn(g)θ(a) on gα has
cohomogeneity 1. If µ is a simple root or the double of a simple root, this is the content of
[Hel08, Ch. III, Pr. D.2] (see p. 585 for a solution). But it is a well-known fact that every
root in a root system is either a simple root or the double of one under a suitable choice
of a Weyl chamber.

Lemma 4.2.6. Let µ,ν ∈ Σ be any two roots such that µ+ ν is also a root (e.g., they
can be simple roots connected by an edge in the Dynkin diagram). Then the pairing
gµ × gν → gµ+ν given by the Lie bracket is nondegenerate1. In other words, for every
X ∈ gµ (resp., Y ∈ gν), there exists Y ∈ gν (resp., X ∈ gµ) such that [X, Y ] ̸= 0.

Proof. Assume the converse: there exists X ∈ gµ such that [X, gν] = {0}. For each
k ∈ K0, we have [Ad(k)X, gν] = [Ad(k)X,Ad(k)(gν)] = Ad(k)[X, gν] = {0}. But,
according to Lemma 4.2.5, every vector in gµ is a multiple of Ad(k)X for a suitable choice
of k ∈ K0. Therefore, [gµ, gν] = {0}, which contradicts the fact that [gµ, gν] = gµ+ν ̸= {0}
(Proposition 2.4.9(d)).

For an alternative proof using the representation theory of sl(2,C), see [Kna02, Lem, 7.75].
Now we can go back to the proof of the theorem. We have to consider two cases.

Case 1: F (gα ⊕ gβ) = gγ for some γ ̸= α′,β′. Suppose there is γ′ ∈ Λ connected to γ by
an edge in DD. Note that F−1(gγ′) must lie within a single restricted root space, which
we denote by gγ′′ ,γ

′′ ∈ Λ. By Lemma 4.2.6, for any nonzero X ∈ gα, there exists Y ∈ gγ′

with [F (X), Y ] ̸= 0, which implies that [X,F−1(Y )] ̸= 0, hence γ′′ must be connected to
α in DD. But we can apply this argument to a nonzero X ∈ gβ to deduce that γ′′ must
be connected to β as well. Since α and β lie in different connected components of DD,

1An analogous result in the complex semisimple case is well known and is just a reformulation of the
fact that [gµ, gν] = gµ+ν, for all the root spaces are one-dimensional over C.
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we arrive at a contradiction. Consequently, the connected component of DD containing γ
consists of nothing but γ. But then the same must hold for α and β: Λi = {α} ,Λj = {β}.
Indeed, otherwise we would have γ′ connected to, say, α, meaning that [gα, gγ′ ] ̸= {0},
whereas F ([gα, gγ′ ]) = [F (gα), F (gγ′)] ⊆ [gγ, F (gγ′)] = {0}. We conclude that Λi and Λj

are singletons, i.e., Mi and Mj have rank 1. The same considerations can be applied to
F−1 to deduce that Mi′ and Mj′ are also of rank 1. This finishes the proof in Case 1.

Case 2: F (gα ⊕ gβ) = gα′ ⊕ gβ′ . It suffices to show that F (gα) is one of the subspaces
gα′ , gβ′ , while F (gβ) is the other one. Indeed, if this is the case, then we get a permutation
s of Λ, which—as we have already seen in the proof for a generic choice of ℓ—must be
an element of Autw(DD) mapping ℓ onto ℓ′. Arguing by contradiction, we may assume,
without loss of generality, that the projections of F (gα) to both gα′ and gβ′ are nonzero.
We also do not lose generality if we let the projection of F (gβ) to gβ′ be nonzero. By
invoking Lemma 4.2.6, we see, just as we did for γ in Case 1, that Λj′ = {β′}. There
might be two possibilities.

Subcase 2.1: F (gβ) ⊆ gβ′ . In this case, we can write gα = U ⊕V , where F (U) = gα′ and
F (V )⊕ F (gβ) = gβ′ . Mimicking the argument from the proof in Case 1, we immediately
see that Λj = {β}. If there exists γ ∈ Λ connected to α in DD, then, by Lemma 4.2.6, for
any nonzero X ∈ V , there exists Y ∈ gγ such that [X, Y ] ̸= 0. But then [F (X), gβ′ ] ̸= {0},
which implies that F (gγ) must be a root space whose corresponding root is connected
to β, which is a contradiction. Therefore, Λi = {α}. Arguing in the same fashion, we
deduce that Λi′ = {α′}, so all four of Mi,Mj,Mi′ ,Mj′ are of rank 1, and we are done.

Subcase 2.2: The projection of F (gβ) to gα′ is nonzero. Just like we did for Λj′ , we see
that Λi′ = {α′}. Arguing in a similar manner, we deduce that Λi = {α} and Λj = {β}.
Once again, all four of Mi,Mj,Mi′ ,Mj′ are of rank 1. This completes the proof of Subcase
2.2 and thus Proposition 4.2.3.
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Chapter 5

CLASSIFICATION OF HOMOGENEOUS

HYPERSURFACES IN SOME NONCOMPACT

SYMMETRIC SPACES OF RANK TWO

Having dealt with the classification of homogeneous codimension-one foliations in Chap-
ter 4, we can now proceed to those isometric cohomogeneity-one actions that have a
singular orbit. Once again we focus on noncompact symmetric spaces, as an explicit classi-
fication of such actions on irreducible compact symmetric spaces was obtained by Kollross
in [Kol02]. By a cruel twist of fate, classifying homogeneous objects on noncompact sym-
metric spaces is often much harder than in the compact case: this is because, informally
speaking, noncompact semisimple Lie groups admit way more subgroups than compact
ones. There does exist a general classification scheme for cohomogeneity-one actions on
irreducible symmetric spaces of noncompact type due to Berndt and Tamaru; recently, it
has been extended to the general reducible case by Dı́az-Ramos, Domı́nguez-Vázquez, and
Otero. We will talk about it in detail in Section 5.1. Sadly, unlike the result of Kollross,
this classification does not give an explicit list of actions on such spaces—rather, it reduces
the search for cohomogeneity-one actions on a given space to a certain intricate problem
in the representation theory of reductive Lie groups. In order to take a glimpse into the
complexity of that problem, let us first describe it in an abstract setting and then see
what it looks like for complex hyperbolic spaces.

Let G be a reductive Lie group, K ⊆ G a maximal compact subgroup, and g = k⊕ p a
Z/2Z-grading such that k = Lie(K). Suppose V is a real representation of G. We are
looking for subspaces v ⊆ V such that a) the projection of Ng(v) to p along k is onto, and
b) NK(v) acts on v with cohomogeneity one. For example, for the space CHn+1, we have
G = K = U(n), and V = Cn is the tautological representation. Notice how special this
situation is: the representation is particularly simple, the group G is compact, and, as a
consequence, condition (a) holds vacuously for any subspace v. Yet, the corresponding
problem leads to some nontrivial geometry. A real subspace v ⊆ Cn is said to have
constant Kähler angle if, given a nonzero v ∈ v, the Euclidean angle between Iv and v
does not depend on the choice of v; in that case, that angle is called the Kähler angle of v.
In [BB01], Berndt and Brück proved that a real subspace v of Cn satisfies condition (b)
above if and only if it has constant Kähler angle; they found out that such a subspace is
determined by its Kähler angle and dimension up to the action of U(n), but such subspaces
exist for every Kähler angle φ ∈ [0, π

2
]. For any space M of rank greater than 1, the

corresponding representation problem has G noncompact (hence condition (a) becomes
nontrivial), and the representation V becomes much more complicated. In general, the
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complexity of the representation grows along with the rank of a space. To make the
matters worse, there are virtually no general results on this problem that would not be
case-specific. (Perhaps, the only exception is [BDV15, Prop. 3.4].)

As it stands, classifying cohomogeneity-one actions on noncompact symmetric spaces in
bulk is rarely a feasible task. In most cases, one has to consider individual spaces, usually of
low rank. In this chapter, we classify cohomogeneity-one actions—and thus homogeneous
hypersurfaces—in the rank-2 symmetric spaces SL(3,H)/Sp(3), SO(5,C)/SO(5), and
Gr∗(2,Cn+4), n ≥ 1. In particular, we prove Theorem 4. The exposition is based on the
author’s article [Sol23], and the layout is as follows:

• In Section 5.1, we present the classification scheme for cohomogeneity-one actions
on noncompact symmetric spaces and discuss the key steps of the proof.

• In Sections 5.2 to 5.4, we classify cohomogeneity-one actions on the aforementioned
symmetric spaces.

5.1. Cohomogeneity-one actions on noncompact sym-

metric spaces

In this section, we present the 6 types of isometric cohomogeneity-one actions on symmetric
spaces of noncompact type. Among them, we introduce two important procedures allowing
one to build new cohomogeneity-one actions either by extending them from lower-rank
spaces, or by means of representation theory: the canonical extension and the nilpotent
construction. Then we formulate the main classification result and discuss how it yields
a classification of homogeneous hypersurfaces in these spaces. After that, we suggest a
representation-theoretic generalization of the nilpotent construction method. Finally, we
prove a technical result pertaining to cohomogeneity-one actions on hyperbolic spaces that
will allow us to formulate the primary results of the chapter more neatly. The exposition
here is built upon [BT13, DRDVO23, BT04, BDV15], and we refer to these papers for
proofs and further details.

5.1.1. Classes of cohomogeneity-one actions

Here we describe the 6 different types of isometric C1-actions that appear in the classifi-
cation scheme.

Agreement. All actions in this chapter are assumed to be isometric and by a connected
Lie group by default. Recall also that we agreed in Section 2.3 that whenever we mention
cohomogeneity, the action in question is assumed to be proper.

Let M = G/K be a symmetric space of noncompact type. Pick a maximal abelian
subspace a ⊂ p and a Weyl chamber D for the restricted root system Σ ⊂ a∗, and write
Λ = {α1, . . . ,αr} ⊆ Σ+ ⊂ Σ for the corresponding set of simple roots. Recall from
Proposition 2.3.43 that a C1-action on M can have either 0 or 1 singular orbit. The first
two types of C1-actions are those without singular orbits. By virtue of Observation 2.3.16,
the orbits of such an action form a proper homogeneous C1-foliation, the classification of
which was discussed in the previous chapter.
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Foliations of horospherical type

By a foliation of horospherical type we mean the foliation Fℓ (for some line ℓ ⊆ a)
introduced in Chapter 4. This name was coined in [DRDVO23] and comes from the fact
that for some choices of ℓ, the leaves of Fℓ are horospheres (see the discussion before
Theorem 4.1.14). Let us do a quick recap.

Let ℓ ⊆ a be a one-dimensional subspace. The connected Lie subgroup Sℓ of G with
Lie algebra sℓ = (a⊖ ℓ)⊕ n is closed, and its action on M has cohomogeneity one and
no singular orbits. In other words, its orbits form a proper homogeneous C1-foliation.
Moreover, all of its orbits are congruent to each other. If s ∈ Autw(DD)M , then the
actions of Sℓ and Ss(ℓ) are orbit-equivalent. If the metric on M is almost Killing, the
converse is true: if ℓ and ℓ′ are one-dimensional subspaces of a such that the actions of Sℓ

and Sℓ′ are orbit-equivalent, then there exists s ∈ Autw(DD)M mapping ℓ onto ℓ′.

Foliations of solvable type

By a foliation of solvable type we mean the foliation Fαi
(for some αi ∈ Λ) introduced

in Chapter 4. This term also comes from [DRDVO23], although it is not particularly
descriptive: as we know from Chapter 4, every proper homogeneous C1-foliation on M
is the orbit foliation of a solvable group of isometries. Here is a brief summary of the
construction and classification of these foliations.

Let αi ∈ Λ be any simple root and ℓαi
⊆ gαi

a one-dimensional subspace. The connected
Lie subgroup Sαi

of G with Lie algebra sαi
= a⊕ (n⊖ℓαi

) is closed and its action on M has
cohomogeneity one and no singular orbits, so the orbits form a proper homogeneous C1-
foliation. This foliation has a unique minimal leaf—the one passing through o. Moreover,
for every t > 0, the two leaves at the distance t from the minimal one are congruent to
each other and to no other leaf. Were we to choose another line ℓ′αi

in gαi
, the resulting

action would be strongly orbit-equivalent to that for ℓ. Given two simple roots αi and αj ,
the actions of Sαj

and Sαj
are orbit-equivalent if and only if there exists s ∈ Autw(DDM)

sending αi to αj.

Remark 5.1.1. Since we are discussing the classification of C1-actions up to orbit-
equivalence, we might occasionally say things like “an action orbit-equivalent to a foliation
of horospherical or solvable type”.

Totally geodesic singular orbit

Here we describe the C1-actions that have a totally geodesic singular orbit. More
specifically, we present two special types of such actions: one is when M is irreducible,
and the other is when M is reducible of rank 2 and its de Rham factors are homothetic.
It turns out that any C1-action with a totally geodesic singular orbit arises from these
two by means of the canonical extension procedure, to be defined below. The primary
reason behind this fact lies in Mostow’s description of maximal subalgebras of semisimple
Lie algebras ([Mos61]).

First things first, a totally geodesic orbit of a C1-action is automatically singular, with
one exception: when M = RHn and the orbit is a totally geodesic hypersurface (see
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Example 2.2.15). In this exceptional case, the action is orbit-equivalent to the (unique)
foliation of solvable type on RHn.

Now, suppose M is irreducible. In this case, C1-actions on M with a totally geodesic
singular orbit are intimately related to reflective submanifolds of M (see Subsection 2.2.1).
Let F ⊆ M be a reflective submanifold and consider its orthogonal complement F⊥ (see
Observation 2.2.36). It was shown in [BT04] that F is a singular orbit of some C1-action
on M if and only if F⊥ has rank 1. The proof is geometric in nature, and the idea
behind it is rather simple: if F is given as an orbit of a C1-action H ↷ M , the slice
representation of H at a point of F has cohomogeneity 1 by Proposition 2.3.14(b), which
easily implies that the isotropy representation of F⊥ has cohomogeneity 1, and so the
rank1 of F⊥ is 1. Conversely, if F⊥ has rank 1, let V = ToF be the Lie triple system of F
(we may assume o ∈ F ), and consider the orthogonal symmetric Lie algebra (Nk(V )⊕V, θ)
representing F (see Remark 2.2.14). It is easy to show that the connected Lie subgroup of
G corresponding to Nk(V )⊕V is closed and its slice representation at o has cohomogeneity
1. This means that this group acts on M with cohomogeneity 1.

Now let H ↷ M be any C1-action with a totally geodesic singular orbit F . In [BT04],
Berndt and Tamaru showed that F has to be reflective—apart from 5 exceptions (up to
orbit-equivalence). Somewhat mysteriously, each of those 5 exceptions is related to the
exceptional Lie group G2 (see [BT04, Th. 4.2]). We see that the classification of C1-actions
with a totally geodesic singular orbit reduces to that of reflective submanifolds with
orthogonal complement of rank 1. Note that such an action is defined by its singular orbit,
as the other orbits have to be the tubes around the singular one (see Proposition 2.3.41).
What is more, the congruence class of a reflective submanifold is determined by its isometry
class (see [Leu79a]):

Proposition 5.1.2. If two reflective submanifolds in a simply connected irreducible
symmetric space are isometric, then they are congruent.

Leung classified reflective submanifolds in simply connected irreducible symmetric spaces
of compact type ([Leu75, Leu79a]). Using duality (Remark 2.2.38), Berndt and Tamaru
translated that into a classification of reflective submanifolds in irreducible symmetric
spaces of noncompact type and calculated which of those have rank-1 orthogonal comple-
ments (see [BT04, Th. 3.1, 3.3]). This concludes the classification of C1-actions with a
totally geodesic singular orbit in the irreducible case.

The second type of such actions was introduced in [DRDVO23], and it appears when the
space is reducible but of a very specific form. Suppose M has only two de Rham factors,
M = M1×M2, and write G = G1×G2 and g = g1⊕g2. Assume, in addition, that M1 and
M2 are homothetic, which, as we know from Proposition 3.3.1, is equivalent to g1 and g2
being isomorphic. Pick an isomorphism φ : g1 −→∼ g2 and consider the diagonal subalgebra
gφ = {X +φ(X) | X ∈ g1}. Let Gφ ⊆ G1 × G2 be the corresponding connected Lie
subgroup. Then Gφ is closed and acts on M hyperpolarly with cohomogeneity equal to
rk(Mi). What is more, it has a unique singular orbit, which is reflective (hence totally
geodesic) and homothetic to Mi. Finally, the action of Gφ does not depend on the choice
of φ up to orbit-equivalence. If Mi are of rank 1—and thus homothetic to a hyperbolic
space over R,C,H, or O,—then this construction yields a C1-action with a totally geodesic

1One has to rule out the possibility that F⊥ is flat of dimension > 1. This can be easily done, for
instance, by using the restricted root space decomposition and Proposition 2.2.43.
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singular orbit. We call this a diagonal C1-action on M1 ×M2.

The canonical extension

The canonical extension construction was introduced in [BT13, Sect. 4.1], and it is not so
much a type of C1-actions but a general procedure that allows one to extend homogeneous
objects defined on the boundary components of M to the whole M .

Fix a subset Φ ⊆ Λ. Recall that we have a boundary component BΦ, which is a
totally geodesic submanifold of M and itself a symmetric space of noncompact type
and rank rΦ = |Φ|. It is represented by an almost effective Riemannian symmetric pair
(G′Φ, G

′
Φ ∩ K). In particular, the isometry Lie algebra of BΦ is naturally isometric to

g′Φ (see Subsection 2.4.3 for more detail). Suppose we have a proper isometric action
HΦ ↷ BΦ. By Observation 2.3.20, we may assume HΦ is a closed connected subgroup of
G′Φ. Let hΦ ⊆ g′Φ be its Lie algebra. We know that g′Φ ⊆ mΦ and G′Φ ⊆ MΦ. Recall that
we have the Langlands decompositions qΦ = mΦ ⊕ aΦ + nΦ and QΦ = MΦ × AΦ ⋉NΦ.
Therefore, we can form a new subalgebra and its corresponding connected Lie subgroup:

hΛΦ = hΦ ⊕ aΦ + nΦ ⊆ qΦ ⇝ HΛ
Φ = HΦ × AΦ ⋉NΦ ⊆ QΦ.

The subgroup HΛ
Φ is closed and thus acts properly on M . This action is called the

canonical extension of HΦ ↷ BΦ. We also refer to the Lie algebra hΛΦ and Lie group
HΛ
Φ as the canonical extensions of hΦ and HΦ, respectively. We list some elementary

properties of this construction. Recall that we have the horospherical decomposition
M = BΦ × AΦ ×NΦ.

(a) If S ⊆ BΦ is an orbit of HΦ, then S×AΦ×NΦ ⊆ M is an orbit of HΛ
Φ. This follows

directly from (2.4.3). We refer to the latter orbit as the orbit extended from S.

(b) The codimension of any orbit S ⊆ BΦ of HΦ is equal to the codimension of the orbit
of HΛ

Φ in M extended from S. In particular, the former is singular if and only if the
latter is.

(c) The cohomogeneity of HΦ ↷ BΦ is equal to that of HΛ
Φ ↷ M .

(d) Let S ⊆ BΦ be an orbit of HΦ and b ∈ S any point. Consider any point of the form
(b, a, n) on the orbit of HΛ

Φ in M extended from S. The isotropy subgroup of HΦ

at b is the same as that of HΛ
Φ at (b, a, n). Similarly, the normal space to S at b

coincides with the normal space to the extended orbit at (b, a, n). Consequently, the
slice representations of HΦ at b and of HΛ

Φ at (b, a, n) coincide.

(e) HΦ ↷ BΦ is (hyper)polar if and only if HΛ
Φ ↷ M is.

(f) If H ′Φ ↷ BΦ is another proper isometric action that is strongly orbit-equivalent
to HΦ ↷ BΦ, then the canonical extensions of these two actions are (strongly)
orbit-equivalent. This follows from (2.4.3) and the fact that any inner isometry of
BΦ comes from G′Φ ⊆ G.

(g) The canonical extension construction does not depend on the choice of initial data:
for any other o′ ∈ M, a′ ⊂ p′,Λ′ ⊂ Σ′, and Φ′ ⊆ Λ′, the canonical extension of any
action on the boundary component BΦ′ is strongly orbit-equivalent to the canonical
extension of an action on BΦ for some subset Φ ⊆ Λ.
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(h) The canonical extensions construction can be carried out inductively: if we have
two subsets Ψ ⊂ Φ ⊂ Λ and HΨ ⊆ G′Ψ, then (HΦ

Ψ )
Λ = HΛ

Ψ . Consequently, for any
action on BΨ, if we first canonically extend it to an action on BΦ and then to one
on M , the result is going to be orbit-equivalent to the canonical extension directly
from BΨ to M .

In (f), the assumption that the orbit-equivalence is strong is essential: if the actions of
HΦ and H ′Φ on BΦ are merely orbit-equivalent, their canonical extensions may fail to be
orbit-equivalent (see the example on p. 139 in [BT13]).

Observation 5.1.3. The canonical extension construction in not limited to just actions: it
can be applied to other homogeneous objects on a boundary component like homogeneous
foliations or homogeneous hypersurfaces. In order to do that, one first passes from such
an object to a suitable group action on BΦ and then canonically extends that action. For
example, any foliation of solvable type on M is the canonical extension of a homogeneous
foliation (also of solvable type) on some rank-1 boundary component. Many of the above
properties can be adapted to these other contexts.

Remark 5.1.4. It can be seen from our discussion in Subsection 2.4.3 that mΦ splits as
Zk0(bΦ)⊕ g′Φ. The first summand is precisely the kernel of the representation of mΦ on bΦ.
This means that, in the canonical extension construction, we can take the Lie algebra hΛΦ
to be not hΦ⊕ aΦ+ nΦ but ĥΦ⊕ aΦ+ nΦ, where ĥΦ ⊆ mΦ is any Lie subalgebra satisfying
the following two properties:

(a) The image of the projection of ĥΦ to g′Φ along Zk0(bΦ) is hΦ.

(b) The connected Lie subgroup of MΦ corresponding to g′Φ is closed.

For instance, we can take ĥΦ = Zk0(bΦ)⊕ hΦ. The resulting action on M will still have
the same orbits as that of HΛ

Φ. This observation will let us describe canonically extended
actions later in the chapter more neatly.

The nilpotent construction

The sixth and final type of C1-actions arises from a construction rooted in the represen-
tation theory of reductive Lie groups, known as the nilpotent construction. It was
conceived in [BT13] and further studied in [DRDVO23, BDV15]; we refer to these papers
for a more detailed exposition and proofs.

Once again, fix Φ ⊆ Λ. The nilpotent Lie algebra nΦ is graded:

nΦ =
k⊕
ν=1

nνΦ, nνΦ =
⊕

α(HΦ)=ν

gα, k = δ(HΦ), HΦ =
∑

αi∈Λ Φ

H i,

where δ ∈ Σ+ is the highest root. Note that, unless DDΦ is a union of some connected
components of DD, this grading is not the one inherited from n. The adjoint action
of LΦ on nΦ respects this grading. Let v ⊆ n1Φ be a linear subspace of dimension at
least 2. One can easily see that nΦ,v = nΦ ⊖ v is a Lie subalgebra. Its corresponding
connected Lie subgroup of NΦ is closed and will be denoted by NΦ,v. We also have
NlΦ(nΦ,v) = NmΦ

(nΦ,v)⊕ aΦ, which implies NLΦ
(nΦ,v) = NMΦ

(nΦ,v)× AΦ. Furthermore,
NlΦ(nΦ,v) = θNlΦ(v) and thus N0

LΦ
(nΦ,v) = ΘN0

LΦ
(v), and the same remains true if lΦ
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and LΦ are replaced with mΦ and MΦ, respectively. Define a Lie subalgebra and its
corresponding connected Lie subgroup:

hΦ,v = NlΦ(nΦ,v) + nΦ,v ⊆ lΦ + nΦ = qΦ,

HΦ,v = N0
LΦ

(nΦ,v)⋉NΦ,v ⊆ LΦ ⋉NΦ = QΦ.

Since both factors in its semidirect product decomposition are closed, HΦ,v is a closed
subgroup. It was shown in [BDV15] and [BT13] that the following assumptions are
equivalent:

(i) FΦ ⊆ HΦ,v · o.

(ii) N0
LΦ

(nΦ,v) acts transitively on FΦ.

(iii) N0
MΦ

(nΦ,v) acts transitively on BΦ.

(iv) The image of the projection of NlΦ(v) to p along k equals bΦ ⊕ aΦ.

(v) The image of the projection of NmΦ
(v) to p along k equals bΦ.

If v is chosen randomly, there is no reason for the action of HΦ,v to be of cohomogeneity 1.
This means that special subspaces of n1Φ have to be singled out. If v satisfies the following
two assumptions, we call it admissible and protohomogeneous, respectively:

(a) admissible: The image of the projection of NmΦ
(v) to p along k equals bΦ;

(b) protohomogeneous: NKΦ
(nΦ,v) = NKΦ

(v) acts transitively on the unit sphere in
v.

The main virtue of the nilpotent construction is the following

Proposition 5.1.5. Suppose v ⊆ n1Φ is a protohomogenenous and admissible subspace
of dimension ≥ 2. Then, the subgroup HΦ,v acts on M with cohomogeneity one, and its
orbit though o is singular of codimension equal to dim v. If v1, v2 ⊆ n1Φ are two subspace
of dimension ≥ 2 that differ by Ad(k) for some k ∈ KΦ, then:

(a) v1 is protohomogenenous or admissible if and only if v2 is.

(b) If vi are both protohomogeneous and admissible, then Ad(k)(hΦ,v1) = hΦ,v2, and thus
the actions of HΦ,v and HΦ,v′ on M are strongly orbit-equivalent by means of k.

As was the case with the canonical extension, the nilpotent construction does not depend
on the choice of initial data (namely, on o, a, and Λ) up to strong orbit-equivalence.

Remark 5.1.6. As we will see below, the nilpotent construction is only relevant for
maximal proper parabolic subgroups, i.e., when Φ is of the form Φj = Λ {αj}. In this
case—just like we agreed in Example 2.4.26—we will simplify the notation by replacing
Φj with j in all subscripts and superscripts.

5.1.2. The classification

Now we formulate the main classification result for C1-actions on symmetric spaces of
noncompact type. In the present form, this result was established in [DRDVO23], although
that paper is largely underpinned by [BT13].
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Theorem 5.1.7. Let M = G/K be a symmetric space of noncompact type and rank r. Let
H be a connected Lie group acting properly and isometrically on M with cohomogeneity
one. Then one of the following statements holds:

(a) The orbits of H form a Riemannian foliation, and the action of H is orbit-equivalent
to exactly one of the following:

(1) The action of Hℓ for some one-dimensional linear subspace ℓ ∈ Pa/Autw(DD)M .
If the metric on M is almost Killing, such ℓ is unique.

(2) The action of Hαi
for a unique αi ∈ Λ/Autw(DD)M .

(b) There exists exactly one singular orbit, and the action of H is orbit-equivalent to
one of the following:

(1) The canonical extension of a C1-action with a totally geodesic singular orbit on
an irreducible boundary component BΦ of M .

(2) The canonical extension of a diagonal C1-action on a reducible rank-2 boundary
component BΦ of M whose de Rham factors are homothetic.

(3) The action of Hj,v for some j ∈ {1, . . . , r} obtained by nilpotent construction
applied to some protohomogeneous admissible subspace v ⊆ n1j with dim v ≥ 2.

Notice that we do not make any restrictions on the normalizing constants of M (see
[DRDVO23, Rem. 2.5]). Also, if we weaken parts (a)-(1) and (a)-(2) and allow ℓ (resp.,
αi) to be just some (not necessarily unique) element of Pa (resp., Λ), then we can insist
that the orbit equivalence in the theorem is a strong orbit equivalence (see [DRDVO23,
Rem. 2.3, 2.4]).

Comments on the classification

Issues with the canonical extension. As we mentioned earlier, two orbit-equivalent
actions on a boundary component can give rise to non-orbit-equivalent canonical extensions,
unless they are strongly orbit-equivalent to begin with. At the same time, the classifications
of C1-actions with a totally geodesic singular orbit on irreducible spaces (in [BT04]) and
of diagonal C1-actions on products of hyperbolic spaces (in [DRDVO23]) are up to just
orbit-equivalence. Let us go through these two situations separately.

Let M1 and M2 be homothetic symmetric space of noncompact type and rank 1, and
let φ,φ′ : g1 −→∼ g2 be two isomorphisms. It was proven in [DRDVO23] that the actions
of Gφ and Gφ′ on M1 × M2 are in fact strongly orbit-equivalent if the automorphism
φ′ ◦φ−1 is inner. The group Aut(gi)—which is isomorphic to the isometry group of the
hyperbolic space Mi by Proposition 3.3.4—has at most two connected components and
is trivial if Mi ∼ HP n (n > 1) or OP 2 (see [Gün10]). This means that there are at most
two strong orbit-equivalence classes of diagonal C1-actions on M1 ×M2, and thus (b)-(2)
can produce at most two orbit-equivalence classes of C1-actions on M for each such BΦ.

The situation in (b)-(1) is grimmer. Let M be irreducible and H ↷ M a proper isometric
action with a totally geodesic singular orbit. We know that the action H ↷ M is
orbit-equivalent to one of the actions described in [BT04, Th. 3.1, 3.3, 4.2] (or rather,
the singular orbit of H is congruent to one of the submanifolds described there, but
the action is fully determined by it up to orbit-equivalence). The component group
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I(M)/I0(M) is a finite group, and a very small one, in fact. It is S4 if M = Gr∗(4,R8),
D4 if M = Gr∗(2r,R4r) (r > 2), and in all the other cases it is Z/2Z × Z/2Z, Z/2Z, or
trivial. In any case, this means that the orbit-equivalence class of H ↷ M can split into
a small number of strong orbit-equivalence classes. The problem here is that those classes
have not been identified. To resolve this issue, one needs to refine Leung’s classification of
reflective submanifolds and make it up to strong congruence. Until then, each such action
on a boundary component in (b)-(1) can potentially give rise to several orbit-equivalence
classes of C1-actions on M . The only cases when we know for sure this does not happen
are when I(BΦ) is connected or when M is irreducible and BΦ = M (in which case, no
canonical extension is needed).

The problem of congruence. Any action H ↷ M arising from (b)-(1) or (b)-(3) has
the following property: the H-orbit of every p ∈ M contains the p-leaf of all but one de
Rham foliations on M . In (b)-(2), this is the case if and only if both roots in Φ lie in
the same component of the Dynkin diagram DD. If Φ does not satisfy this property, the
resulting action H ↷ M cannot be orbit-equivalent to any action arising from (b)-(1)
or (b)-(3). As far as we are aware, this is the only known general result on congruence
of the three types of C1-actions with a singular orbit. For instance, an action arising
from the nilpotent construction may happen to have a totally geodesic singular orbit (for
M irreducible, that action would also come from (b)-(1) when Φ = Λ). In a nutshell,
this means that Theorem 5.1.7 is an existence but not uniqueness result and it leaves the
congruence problem wide open.

Classifying C1-actions in practice. Given a concrete symmetric space M of noncom-
pact type, Theorem 5.1.7 reduces the problem of classification of C1-actions on M to the
following:

(1) Compute all actions arising from (b)-(1) and (b)-(2) and check which of them are
orbit-equivalent.

(2) Compute all actions arising by nilpotent construction for each j ∈ {1, . . . , r} and
check which of them are orbit-equivalent.

(3) Find out if any of the actions in (1) are orbit-equivalent to those in (2).

Since the nilpotent construction is so cumbersome, it might be easier to compute all
possible C1-actions arising by canonical extension first—even when the singular orbit
of the action on a boundary component is not totally geodesic—and then investigate
whether the nilpotent construction produces any actions not yet accounted for. This is
the approach we are going to adopt in the chapter. Again, note that if two actions on
a boundary component are not strongly orbit-equivalent, one will have to check if their
canonical extensions are orbit-equivalent.

Making use of symmetries of the Dynkin diagram. If the group Autw(DD)M
is not trivial, it can alleviate the classification of C1-actions on M . Indeed, suppose
Φ,Φ′ ⊆ Λ differ by some element of Autw(DD)M . Owing to Proposition 3.3.9, the
boundary components BΦ and BΦ′ are congruent by means of some k ∈ NK̃(n). One can
easily show that the actions arising from BΦ by canonical extension via (b)-(1) or (b)-(2)
are congruent to those arising from BΦ′ , and the congruence can be given by k. The same
is true for the nilpotent construction: if αi,αj ∈ Λ differ by some element of Autw(DD)M ,
it suffices to deal with either i or j in (b)-(3).
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Congruence in the nilpotent construction. In the context of the nilpotent construc-
tion, it is usually fairly straightforward to compute what the Lie algebras mj (or lj) and
kj and hence the groups M0

j (or L0
j) and K0

j look like. It may be harder, however, to do
so for the full groups Mj (or Lj) and Kj. In practical terms, it means that it may be
easier to find all protohomogeneous and admissible subspaces v ⊆ n1j up to K0

j -congruence
but not Kj-congruence. To make things worse, even if two subspaces v, v′ ⊆ n1j are not
Kj-congruent, they might, in theory, produce orbit-equivalent actions, so we may end
up with a larger list of actions and have to discard some of them. However, this hardly
poses an actual problem: in reality, whenever the nilpotent construction produces an
action, chances are it is orbit-equivalent to an already known C1-action on M . In fact, for
irreducible symmetric spaces of noncompact type and rank > 1, there are only two actions
known so far that were obtained by the nilpotent construction and not any other method
(see [BT13]). Once again, both of them are related to the exceptional Lie group G2.

The rank-one case. Finally, if M has rank 1, then Λ = {α1} and the only proper
boundary component is a point. For this reason, the canonical extension method does not
produce any C1-actions. Moreover, every v ⊆ n11 is admissible. Historically, the rank-1
case had mostly been dealt with before the advent of the canonical extension and nilpotent
construction methods (see [BB01, BT07]), although the case of HHn stayed unresolved
until recently (see [DRDVRV21]).

The classification of homogeneous hypersurfaces

Thanks to Proposition 2.3.41, Theorem 5.1.7 yields a classification result for connected
homogeneous properly embedded hypersurfaces in symmetric spaces of noncompact type.
Namely, every such hypersurface S in M is a principal orbit of a C1-action on M , and the
orbit-equivalence class of the action is determined by S. Each Hℓ (ℓ ∈ Pa/Autw(DD)M)
in (a)-(1) gives rise to precisely one congruence class of such hypersurfaces, each Hαi

(αi ∈ Λ/Autw(DD)M) in (a)-(2) yields a one-parameter family of congruence classes
parametrized by t ≥ 0, and each action with a singular orbit gives a one-parameter family
parametrized by t > 0.

Discussion of the proof

Before going further, we would like to discuss some key steps in the proof of Theorem 5.1.7.
The actions in the theorem all have cohomogeneity one, so one only needs to prove that
they exhaust the list of C1-actions up to orbit-equivalence. To this end, we need to
introduce a structure result of Mostow concerning maximal subalgebras of semisimple Lie
algebras. We begin with some brief preliminaries, most of which can be found in [OV94]
and [Che55, Ch. 5, §4].

Let V be a real or complex vector space and h ⊆ gl(V ) a Lie subalgebra. We say that h is
a reductive subalgebra if its radical consists of semisimple endomorphisms (or equivalently,
of semisimple elements of gl(V )). This is equivalent to asking that the trace-form of gl(V )
is nondegenerate on h. One has to tread carefully: a reductive subalgebra is necessarily
reductive as a Lie algebra, but the converse is not generally true (see [Kol11, Sect. 3]). We
say that h is algebraic if it is the Lie algebra of some algebraic subgroup of GL(V ). Assume
that h is algebraic. The unipotent radical of h, denoted by radu(h), is the largest ideal
of h consisting of nilpotent endomorphisms (or equivalently nilpotent elements of gl(V )).
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One can show that radu(h) is well-defined and coincides with the set of all elements of
rad(h) that are nilpotent in gl(V ). It follows from Engel’s theorem that the unipotent
radical is nilpotent and thus contained in the nilradical n(h) of h. One should be careful1

with these definitions because the nilradical admits a description dangerously similar to
that of radu(h): it is the set of all nilpotent elements of rad(h) (that is, nilpotent in the
Lie algebra rad(h)). The unipotent radical of h is trivial if and only if h is a reductive
subalgebra. The idea behind this last statement is actually rather simple: the radical
of h is always algebraic, so it contains the semisimple and nilpotent parts of each of its
elements ([Che51, Ch. 2, §14]).

All these notions make sense in the semisimple setting. Let g be any real or complex
semisimple Lie algebra. We can identify g with a subalgebra of gl(g) by means of the
adjoint representation. We say that a subalgebra h ⊆ g is algebraic if so is adg(h) ⊂ gl(g).
Assuming h is algebraic, its unipotent radical radu(h) is its largest ideal consisting of
nilpotent elements of g, or equivalently the set of all nilpotent elements of g lying in
rad(h). With all this in mind, reductive subalgebras now allow a number of equivalent
definitions:

Proposition 5.1.8 (Characterization of reductive subalgebras). Let g be a real
or complex semisimple Lie algebra and h ⊆ g a subalgebra. The following conditions are
equivalent:

(i) The radical of h consists of semisimple elements of g.

(ii) The unipotent radical of h is trivial.

(iii) The restriction of Bg to h is nondegenerate.

If these conditions are satisfied, we say that h is a reductive subalgebra of g (or simply
that it is reductive in g). If g is complex, the above conditions are also equivalent to the
following:

(iv) The adjoint representation of h on g is completely reducible.

If g is real, then h is reductive in g if and only if h(C) is such in g(C).

The significance of reductive subalgebras becomes evident in light of the generalized
Mostow-Karpelevich theorem ([OV94, Ch.VI, Th. 3.6]), which asserts that an algebraic
subalgebra h of a real semisimple Lie algebra g is reductive in g if and only if it is θ-stable
with respect to some Cartan involution θ on g.

We are now ready to formulate Mostow’s result. Let g be a real semisimple Lie algebra
and h ⊂ g a maximal proper subalgebra. One can show that h must be an algebraic
subalgebra (e.g., it follows from [OV94, Ch. I, Th. 6.2]). In [Mos61, Th. 3.1, 3.2], Mostow
proved that there are two possibilities:

1To make the matter even worse, there is another ideal called the nilpotent radical and denoted by
radn(h), which can be defined for any Lie algebra h as the intersection of the kernels of all irreducible
representations of h, or equivalently as rad(h) ∩ [h, h]. This radical is contained in n(h) and, in case
h ⊆ gl(V ) is algebraic, contains radu(h). Since the term nilpotent radical is already taken, we had no
choice but call radu(h) the unipotent radical. If the base field is complex and H ⊆ GL(V ) is the connected
algebraic subgroup corresponding to h, then the unipotent radical Radu(H) of H (the largest normal
subgroup consisting of unipotent endomorphisms) has Lie algebra radu(h).
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(a) h is unimodular ⇒ its unipotent radical is trivial1.

(b) h is not unimodular ⇒ it is parabolic.

In the former case, h is reductive in g by virtue of Proposition 5.1.8. Combining this
with the generalized Mostow-Karpelevich theorem and Proposition 2.4.25, we obtain the
following2

Corollary 5.1.9. Let g be a real semisimple Lie algebra and h ⊂ g a maximal proper
subalgebra. Then h is algebraic, and there exists a Cartan involution θ on g such that
exactly one of the following is satisfied:

(a) h is a θ-stable reductive subalgebra.

(b) h is a parabolic subalgebra, and it coincides with qj for some choices of a ⊂ p,Λ ⊂ Σ,
and αj ∈ Λ.

Now we can go back to discussing the proof of Theorem 5.1.7. Suppose M = G/K is a
symmetric space of noncompact type, and let H ↷ M be an isometric C1-action. If H
has no singular orbits, it is bound to be orbit-equivalent to one of the actions described in
part (a) of Theorem 5.1.7 in view of Corollary 4.1.13. We may thus assume that H has
a singular orbit, which is unique by Proposition 2.3.43. Since we are only interested in
classification up to orbit-equivalence, we do not lose generality by assuming that H ⊂ G,
thanks to Observation 2.3.20. According to our agreement, H is connected; it is also a
closed subgroup because its action is proper. Let F be a maximal proper connected Lie
subgroup of G containing H; its Lie algebra f is then a maximal proper subalgebra of g
containing h. One can show F is a closed subgroup. There are two possibilities: either F
acts with cohomogeneity one and thus has the same orbits as H, or its action is transitive.
We write M = M1 × · · · ×Mk for the de Rham decomposition and adopt the notation
established on p. 112. By a result of Dynkin (Th. 15.1 in3 [Dyn52b] or [Dyn57b]), f must
be of the following form:

f = fi ⊕
⊕
j ̸=i

gj for some i, or f = fi,j,φ ⊕
⊕
l ̸=i,j

gl for some i ̸= j.

Here fi ⊂ gi and fi,j,φ = {X +φ(X) | X ∈ gi} for some isomorphism φ : gi −→∼ gj. In the
latter case, F = Fi,j,φ ×

∏
l ̸=i,j Gl, where Fi,j,φ ⊂ Gi ×Gj is the connected Lie subgroup

corresponding to fi,j,φ. The action of F can thus be described as the product of the
transitive actions Gl ↷ Ml, l ̸= i, j, and the diagonal action Fi,j,φ ↷ Mi ×Mj (already
introduced in Subsection 5.1.1). In particular, it cannot be transitive, so it has the same

1Mostow also showed that the radical of h is compactly embedded in g (⇔ in h) in this case, but we
do not need that.

2In [BT13], Berndt and Tamaru arrived at the same conclusion (see Theorem 3.2 there), also relying
on Mostow’s result, but their argument is incorrect. First, they apparently mistook the unipotent radical
for the nilradical and thought that Mostow had proved that the nilradical of a unimodular maximal proper
subalgebra vanishes. This would imply that the radical vanishes as well and the subalgebra is semisimple,
which of course does not have to be the case—consider, for instance, the maximal proper subalgebra
s(u(n− k)⊕ u(k, 1)) of su(n, 1). Second, they applied the Mostow-Karpelevich theorem to an algebraic
subalgebra that happens to be reductive as a Lie algebra. As we explained above, this latter condition is
generally weaker than being reductive as a subalgebra, which is necessary for the Mostow-Karpelevich
theorem to work. In any case, Corollary 5.1.9 still holds, so no other results in [BT13] are affected by
this issue.

3In these papers, the author works over C, but the proof of Theorem 15.1 applies verbatim over R.
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5.1. Cohomogeneity-one actions on noncompact symmetric spaces

orbits as the original action of H. Since Mi ×Mj is a boundary component of M , this
action can also be described as the canonical extension of Fi,j,φ ↷ Mi × Mj, which is
accounted for in part (b)-(2) of Theorem 5.1.7.

Now, assume f = fi ⊕
⊕

j ̸=i gj. Thanks to Corollary 5.1.9, f is either θ-stable for some
Cartan involution θ on g, or else a parabolic subalgebra. Let us first deal with the
former. By Proposition 2.2.12, the orbit F · o is totally geodesic. Since [p, p] = k
(Proposition 2.1.97(c)), this orbit cannot be the whole M , for that would contradict the
fact that f is a proper subalgebra. We see that F must act with cohomogeneity one and
thus have the same orbits as H. Since F has the form Fi ×

∏
j ̸=i Gj, the action of H can

be described as the canonical extension of a C1-action with a totally geodesic singular
orbit on the (irreducible) boundary component Mi of M (namely, of Fi ↷ Mi). This
action was taken into account in part (b)-(1) of Theorem 5.1.7.

Finally, suppose f is a parabolic subalgebra of g, and thus the actions F ↷ M is transitive.
We may assume F = Qj for some 1 ≤ j ≤ r. In [BT13, Th. 5.8], Berndt and Tamaru
proved that the action H ↷ M is then orbit-equivalent to either a nilpotent construction
action of Hj,v for some v ⊆ n1j , or else to the canonical extension of some C1-action on the
boundary component Bj. The former was accounted for in part (b)-(3) of Theorem 5.1.7,
so we are only left to deal with the canonical extension. Recall that the canonical extension
is an inductive procedure (see (h) on p. 144). If the action on Bj itself arises via canonical
extension from some boundary component of Bj, we can replace Bj with that boundary
component. By performing this procedure a sufficient number of times, we end up with a
C1-action of H ′ ⊂ G′Φ on some boundary component BΦ that does not arise via further
canonical extension, and whose canonical extension H ′ΛΦ ↷ M is orbit-equivalent to the
original action H ↷ M . By repeating the above argument involving a maximal proper
subalgebra, we see that there are three possibilities:

(a) The boundary component BΦ is irreducible, and the action H ′ ↷ BΦ has a totally
geodesic singular orbit. Then the action of H is described in part (b)-(1) of
Theorem 5.1.7.

(b) The boundary component BΦ is reducible of rank 2, and the action H ′ ↷ BΦ is
diagonal. In this case, the action of H is taken into account in part (b)-(2) of the
theorem.

(c) Finally, it might happen that the action H ′ ↷ BΦ arises via nilpotent construction.
Formally, it is strongly orbit-equivalent to the action of HΦ,j,v ⊆ G′Φ for some
αj ∈ Φ and v ⊆ (g′Φ∩n)1j . It was shown in [DRDVO23, Lem. 4.3] that the canonical
extension of such an action arises via nilpotent construction performed directly on
M : it has the same orbits as the action Hj,v ↷ M (among other things, this means
that v ⊆ n1j). Therefore, this case is described in part (b)-(3) of the theorem.

5.1.3. Generalizing the nilpotent construction problem.

Due to its complexity, the nilpotent construction is arguably one of the two big conundrums
in the quest for a complete and explicit classification of C1-actions on symmetric spaces
of noncompact type (the other one being the problem of congruence). For this reason, it
is worth looking at this construction from a slightly more general perspective.

Let G be a reductive Lie group with Lie algebra g, a maximal compact subgroup K ⊆ G,
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and a Cartan decomposition g = k⊕p (we are using the notation from [Kna02, Sect.VII.2]).
Let V be a finite-dimensional real representation of G, and let v ⊆ V be a subspace with
dim v ≥ 2. Inspired by the nilpotent construction, we call v admissible if the projection of
Ng(v) to p along k is onto, i.e., its image equals the whole p. We call v protohomogeneous
if there exists a subgroup of K preserving v and acting on v with cohomogeneity one1.
The problem, which we call the generalized nilpotent construction problem, is to
classify subspaces of V that are both protohomogeneous and admissible up to the action
of K. One readily sees how this generalizes the nilpotent construction problem by taking
G = Mj (or Lj), K = Kj, g = mj = kj ⊕ bj (or lj = kj ⊕ (bj ⊕ aj)), and V = n1j (in
this case, we are going to drop the word generalized). Note that every subspace of V is
automatically admissible if G is compact.

This problem has been solved for a few representations. For instance, Berndt and Brück
handled the cases (G, V ) = (SO(n),Rn), (U(n),Cn), (Spin(7),R8

spin) in [BB01], while Dı́az-
Ramos et al. dealt with (G, V ) = (Sp(n)Sp(1),Hn) in [DRDVRV21]. See also [BT13] and
[BDV15] for some examples with G noncompact. The latter of these two papers contains
also a general result on the nilpotent construction problem that facilitates the search for
admissible and protohomogeneous subspaces for certain noncompact symmetric spaces
and choices of j (see Proposition 5 there). It may, in theory, be possible to extend that
result to the generalized nilpotent construction problem. When dealing with the nilpotent
construction on some rank-2 spaces later in the chapter, we will solve this problem for a
few more representations. We want to stress, however, that almost all attempts to solve
the problem have so far been ad-hoc, and it does not seem feasible to proceed with this
approach in the future—the more complex the representation of G on V is, the more
difficult the problem becomes. For instance, it took the authors of [DRDVRV21] an entire
paper to solve the problem for just one representation Sp(n)Sp(1) ↷ Hn. We believe
that a more holistic and general approach is required to solve the nilpotent construction
problem for all symmetric spaces of noncompact type.

5.1.4. The rank-one case

Here we prove a small technical result concerning C1-actions on rank-1 noncompact
symmetric spaces, i.e., on hyperbolic spaces over R,C,H, or O. It will allow us to describe
actions on rank-2 spaces canonically extended from their boundary components in a
relatively nice and uniform way. The idea is that whenever we represent a C1-action
on M by a Lie subalgebra h ⊆ g, we want h to be positioned nicely with respect to the
Iwasawa decomposition of g: h = hk ⊕ ha ⊕ hn, where hk = h ∩ k, and so on. If this is the
case, we call the subalgebra h Iwasawa-adapted2. Notice that if the rank of M is 1, we
have Λ = {α1} and m1 = k1 = k0, so the subgroup M1 is compact, and every subspace of
n11 is automatically admissible.

Proposition 5.1.10. Let M be a symmetric space of noncompact type and rank 1.
Every C1-action on M is orbit-equivalent to the action of a closed connected subgroup
H ⊆ G whose Lie algebra h is Iwasawa-adapted. Moreover, we can take H such that
hk = Nk(h

a⊕hn) (in this case, we have a semidirect sum decomposition h = hk+(ha⊕hn)),

1We can always pick a K-invariant inner product on V , in which case this condition is equivalent to
asking that NK(v) acts transitively on the unit sphere in v.

2This is somewhat akin to how we presented congruence classes of homogeneous hyperpolar foliations
on M by standard foliations in Chapter 4.
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except when H has a totally geodesic singular orbit F given by

F =


RHn if M = CHn,

CHn if M = HHn,

HH2 if M = OH2.

(5.1.1)

In (5.1.1), the first two embeddings are standard, whereas the last one comes from an
embedding Sp(2, 1) ↪→ F−204 by means of duality (see [Yok09, Sect. 2.11]).

Proof. The proof relies on the classification of C1-actions on symmetric spaces of noncom-
pact type and rank 1 ([BB01, BT07, DRDVRV21]). Every C1-action on M falls into one
of the following three categories: it induces a homogeneous foliation, or it has a totally
geodesic singular orbit, or it arises via nilpotent construction. Moreover, the only actions
with a totally geodesic singular orbit that do not arise via nilpotent construction are
those with a fixed point, as well as those in (5.1.1). Let us go through these three cases
separately.

If an action has no singular orbits, we know it is orbit-equivalent to the action of Hα1 or
Ha = N . In both cases, the Lie algebra is Iwasawa-adapted. If we replace hα1 (resp., n)
with a larger Lie algebra Nk(hα1)⊕ hα1 (resp., Nk(n)⊕ n), the resulting action will have
cohomogeneity at most 1 but the same orbit through o, so it has to have the same orbits.

Next, if an action on M arises by nilpotent construction, the corresponding Lie algebra is
of the form h1,v = Nk0(n1,v)⊕ a⊕ n1,v. Since the representation of k0 on a is trivial, h1,v is
contained in the Lie algebra Nk(a⊕ n1,v)⊕ a⊕ n1,v. Again, the corresponding connected
Lie group acts with cohomogeneity at most 1 but has the same orbit through o, so it must
have the same orbits as H1,v.

Finally, assume we have an action with a totally geodesic singular orbit F that is either
a point or as given in (5.1.1). If F is a point, then the action can be realized by the
restricted isotropy group at that point. Without loss of generality, we can take the point
to be o, in which case we have the action K ↷ M . The Lie algebra k of K is obviously
Iwasawa-adapted, and we also have Nk(h

a ⊕ hn) = Nk(0) = k. The problem with the
actions whose totally geodesic singular orbit is given in (5.1.1) is that they cannot be
realized by a subgroup of the form N0

K(H)H, where H is a connected Lie subgroup of
AN . The first part of the proposition still works though. To see this, observe that—up to
orbit-equivalence—these actions can be given by

G′ =


SO0(n, 1) ⊆ SU(n, 1) if F = RHn ⊆ CHn,

U(n, 1) ⊆ Sp(n, 1) if F = CHn ⊆ HHn,

Sp(2, 1)× SU(2) ⊆ F−204 if F = HH2 ⊆ OH2.

In each of these cases, the embedding G′ ⊂ G is the standard one (see [BB01, Th. 1]).
The subgroup G′ is Θ-stable and, what is more, its Iwasawa decomposition is induced by
that of G: G′ = K ′A′N ′, where K ′ ⊆ K,A′ ⊆ A, and N ′ ⊆ N . This means that the Lie
algebra g′ of G′ is Iwasawa-adapted, which concludes the proof.

Remark 5.1.11. In the last part of the proof above, we can change g′ to a larger
subalgebra g′′ = Nk(p

′) ⊕ p′, which induces a C1-action with the same orbits. This
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subalgebra g′′ is also Iwasawa-adapted: g′′ = Nk(p
′)⊕ a′ ⊕ n′.

5.2. Classification of cohomogeneity-one actions on

SL(3,H)/Sp(3)

In this section we classify, up to orbit-equivalence, cohomogeneity-one actions on the
symmetric space SL(3,H)/Sp(3).

The symmetric space M = SL(3,H)/Sp(3) is irreducible and of noncompact type; it has
rank 2 and dimension 14, and its restricted root system is A2. It is the quaternionic analog
of the A2-type spaces SL(3,R)/SO(3) and SL(3,C)/SU(3), an explicit classification of
cohomogeneity-one actions on which has already been obtained in [BT13, BDV15]. Write
Λ = {α1,α2}. Then Σ+ = {α1,α2,α1 + α2}, and all the roots have multiplicity 4. The
Lie subalgebra k0 is isomorphic to sp(1)⊕3.

Theorem 5.2.1. Let H be a connected Lie group acting properly and isometrically on
M = SL(3,H)/Sp(3) with cohomogeneity 1. Then its action is orbit-equivalent to exactly
one of the following:

(a) The action of the connected Lie subgroup Hℓ of G with Lie algebra

hℓ = (a⊖ ℓ)⊕ n,

where ℓ is a one-dimensional linear subspace of a determined uniquely up to the
action of Aut(DD) ∼= Z/2Z on a. The orbits of Hℓ are all congruent to each other
and form a Riemannian foliation on M .

(b) The action of the connected Lie subgroup Hα1 of G with Lie algebra

hα1 = a⊕ (n⊖ ℓα1),

where ℓα1 is any one-dimensional linear subspace of gα1. Its orbits form a Riemannian
foliation on M , and there is exactly one minimal orbit.

(c) The action of the subgroup L1 = L0
1 of G. It has a 6-dimensional totally geodesic

singular orbit F1 ≃ RH5 × E.

(d) The action of the subgroup SL(3,C) of G embedded in a standard way. It has an
8-dimensional totally geodesic singular orbit isometric to SL(3,C)/SU(3).

(e) The action of the connected Lie subgroup HΛ
1,k, k ∈ {0, 1, 2, 3}, of G with Lie algebra

hΛ1,k = Nk1(w)⊕w⊕ a1 ⊕ n1,

where w is a k-dimensional subspace of a1 ⊕ gα2 containing a1 (unless k = 0). Here
Nk1(w) ≃ sp(1) ⊕ so(5 − k) ⊕ so(k), where the first summand is Zk0(b1) and the
rest is the normalizer of w in the Lie algebra g′1 ∩ k ≃ so(5) of the isotropy group of
the boundary component B1 ≃ RH5. This action has a minimal 1 singular orbit of
codimension 5− k and can be obtained by canonical extension of the cohomogeneity-
one action on B1 with RHk as a totally geodesic singular orbit.

1By Proposition 2.2.41.
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Proof. We consider the different cases of Theorem 5.1.7. If the orbits of H form a foliation,
we get the actions in (a) and (b). No boundary component of M is reducible, so part
(b)-(2) of Theorem 5.1.7 is not applicable. The actions in (c) and (d) are the only ones
that have a totally geodesic singular orbit according to [BT04]. Here we need to check
that the slice representations of L1 and SL(3,C) are transitive on spheres to make sure
that these two groups do indeed act on M with cohomogeneity one. It is not hard to
show that K1 ≃ Sp(2)× Sp(1) (hence L1 is connected) and that the slice representation
of L1 at o is equivalent to the standard representation of Sp(2)× Sp(1) on H2, which is
transitive on the unit sphere. Modulo Z/2Z, this is the isotropy representation of the
quaternionic hyperbolic plane, which should not be surprising because F⊥1 ≃ HH2. As for
SL(3,C), its stabilizer at o is SU(3), and its slice representation at o is easily seen to be
of cohomogeneity 1. In fact, it is isomorphic to the tautological representation of SU(3)
on C3, which indicates that (SL(3,C) · o)⊥ ≃ CH3.

Now we determine the actions induced by canonical extension. Since the root system
of M is A2, the boundary components B1 and B2 are congruent by Proposition 3.3.9,
so it suffices to consider only actions arising from B1. The boundary component is
isometric to SL(2,H)/Sp(2) ≃ SO0(5, 1)/SO(5) ∼= RH5. There are, up to strong orbit-
equivalence, exactly 4 cohomogeneity-one actions with a singular orbit on RH5. According
to Proposition 5.1.10 and Remark 5.1.4, the actions in (e) are the canonical extensions of
these 4 actions on B1. None of them are congruent to the actions in (c) and (d) because
their singular orbits have different dimensions.

We are left to investigate the actions arising from the nilpotent construction. Again, we
need only consider one of the indices {1, 2}, but this time we choose j = 2 (to render the
congruence problem a little less burdensome later on). Recall that for g = sl(3,H) with
θ(X) = −X∗, the standard choice of a is the subspace of real diagonal traceless matrices.
If we write εi : a → R, X 7→ Xii, then Σ = {εi − εj | i ̸= j} and gεi−εj = HEij ≃ H. We
also choose Σ+ = {εi − εj | i < j}, in which case α1 = ε1 − ε2 and α2 = ε2 − ε3. We have
n2 = n12 = gα2 ⊕ gα1+α2 ≃ H2 and K2 ≃ Sp(2)× Sp(1). The representation of K2 on n2 is
equivalent to the standard representation of Sp(2)× Sp(1) on H2:

(A, q) ·

x
y

 = A

xq−1
yq−1

 ,

where A is a quaternion-unitary 2× 2 matrix.

We first filter out those subspaces of n2 that are not protohomogeneous. This problem
was recently solved in greater generality for the standard action of Sp(n)Sp(1) on Hn by
Dı́az-Ramos, Domı́nguez-Vázquez, and Rodŕıguez-Vázquez in [DRDVRV21] (they also
coined the term protohomogeneous). The authors explicitly classified protohomogeneous
subspaces of Hn up to the action of Sp(n)Sp(1) in terms of their quaternionic Kähler
angle—the quaternionic analog of the Kähler angle of a real subspace of a Hilbert space
first introduced by Berndt and Brück in [BB01]. We recall its definition via the following
lemma, which was essentially proven in [BB01]:

Lemma 5.2.2. Let V be a vector space endowed with a quaternionic structure H and a
q-Hermitian Euclidean inner product. Let v ⊆ V be a real subspace and v ∈ v be a nonzero
vector. There exists a canonical basis (J1, J2, J3) of the quaternionic structure H and a
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uniquely defined triple (φ1,φ2,φ3) ∈ [0, π
2
]3 such that:

(a) φi is the Kähler angle of v with respect to Ji (that is, the angle between Jiv and v)
for each i ∈ {1, 2, 3},

(b) ⟨prv ◦Ji(v) |prv ◦Jj(v)⟩ = 0 for each i ̸= j, where prv is the orthogonal projector
onto v in V ,

(c) φ1 ≤ φ2 ≤ φ3,

(d) φ1 is minimal and φ3 is maximal among the Kähler angles of v with respect to all
elements of S2

H.

In fact, (J1, J2, J3) is an orthonormal basis for J that diagonalizes the symmetric bilinear
form

J × J → R, (J, J ′) 7→ ⟨prv ◦J(v) |prv ◦J ′(v)⟩

with cos2(φi)||v||2, i ∈ {1, 2, 3} , on the diagonal.

Definition 5.2.3. Let V be a vector space endowed with a quaternionic structure H and
a q-Hermitian Euclidean inner product. Let v ⊆ V be a real subspace and v ∈ v be a
nonzero vector. The triple (φ1,φ2,φ3) as in Lemma 5.2.2 is called the quaternionic
Kähler angle of v with respect to v.

As with everything quaternionic, we are going to say q-Kähler angle for the sake of brevity.
The q-Kähler angle of v in general depends on v. However, we have the following fact
(see [DRDVRV21, Lem. 2.4] for a proof):

Lemma 5.2.4. If v is a protohomogeneous subspace of Hn, then it has constant q-Kähler
angle, i.e., the angle does not depend on the choice of v ∈ v {0}. In this case, we call
(φ1,φ2,φ3) simply the quaternionic Kähler angle of v and denote it by ∠∠∠q(v).

Example 5.2.5 (Q-Kähler angles of subspaces). Let V be a vector space endowed
with a quaternionic structure H and a q-Hermitian Euclidean inner product, and let
v ⊆ V be a real subspace. Then:

(a) v is quaternionic ⇔ it is protohomogeneous1 of q-Kähler angle (0, 0, 0).

(b) v is totally complex ⇔ it is protohomogeneous of q-Kähler angle (0, π
2
, π
2
).

(c) v is totally real ⇔ it is protohomogeneous of q-Kähler angle (π
2
, π
2
, π
2
). �

The classification of protohomogeneous subspaces of Hn obtained in [DRDVRV21, Th.
A] shows that a k-dimensional protohomogeneous subspace v ⊆ Hn is “almost always”
determined by its q-Kähler angle up to Sp(n)Sp(1): the only exception is when k ≤ n
is equal to 3 or congruent to 0 (mod 4), in which case there may be (at most) two
Sp(n)Sp(1)-noncongruent protohomogeneous subspaces of dimension k with the same
q-Kähler angle. Since in our case n = 2, this uncertainty does not concern us. Using this
classification, we see that there are the following possibilities for v ⊆ n2:

• Case 1: dim v = 2 and the q-Kähler angle of v is (φ, π
2
, π
2
) for some φ ∈ [0, π

2
].

1Here protohomogeneity is understood with respect to the representation of Sp(V ) · S3H on V .
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• Case 2: dim v = 3 and the q-Kähler angle of v is (φ,φ, π
2
) for some φ ∈

{
0, π

3

}
.

• Case 3: dim v = 4 and the q-Kähler angle of v is (0,φ,φ) for some φ ∈ [0, π
2
].

We start our investigation with

Case 1: dim v = 2, ∠q(v) = (φ, π
2
, π
2
), φ ∈ [0, π

2
]. First, assume that φ = 0. In that

case, v is a totally complex subspace of n2 and we can take it to be CjE23 so that
n2,v = gα1+α2 ⊕ CE23. Now we need to check whether v is admissible. To this end, we
have to compute Nm2(v) and see if its projection to p is the whole b2 or a proper subspace
of it. Observe that

m2 =



p11 p12 0

p21 p22 0

0 0 q


∣∣∣∣∣∣∣∣ Re(p11) + Re(p22) = 0, Re(q) = 0

 ≃ sl(2,H)⊕ sp(1).

By commuting such matrices with jE23 and kE23, one readily sees that

Nm2(v) =



p11 0 0

p21 p22 0

0 0 q


∣∣∣∣∣∣∣∣ Re(p11) + Re(p22) = 0, p22 ∈ C, q ∈ Ri

 .

The projection of this to p is clearly equal to b2, so v = CjE23 ⊆ n2 produces a
cohomogeneity-one action. The corresponding Lie algebra is

h2,v = (RiE11 ⊕ Im(H)E22 ⊕ RiE33)⊕ a⊕ gα1 ⊕ CE23 ⊕ gα1+α2 , (5.2.1)

where the first summand in the parentheses is h2,v ∩ k = h2,v ∩ k0. We claim that this
action is orbit-equivalent to the canonical extension of a cohomogeneity-one action on B1

with a singular orbit of codimension 2. Indeed, in the notation of (e), we take k = 3 and
w = a1 ⊕ CE23. Then we have:

hΛ1,3 = Nk1(w)⊕ a⊕ gα1 ⊕ CE23 ⊕ gα1+α2 . (5.2.2)

Observe that h2,v and hΛ1,3 are Lie subalgebras of the parabolic subalgebra q1, and they
both sit nicely within the Langlands decomposition q1 = m1⊕ a1⊕n1: h2,v = (h2,v∩m1)⊕
(h2,v ∩ a1)⊕ (h2,v ∩ n1), and the same for hΛ1,3. It follows that, in terms of the horospherical
decomposition M = B1 × A1 × N1, the singular orbits of the actions of H2,v and HΛ

1,3

are ((H2,v ∩M1) · o) × A1 × N1 and ((HΛ
1,3 ∩M1) · o) × A1 × N1, respectively. The first

factors here are the singular orbits of the cohomogeneity-one actions of H2,v ∩M1 and
HΛ

1,3∩M1 on B1, respectively. Looking at the decompositions (5.2.1) and (5.2.2), it is clear
that these singular orbits coincide, since they both correspond to the Lie triple system
a1 ⊕

{
λE23 + λ̄E32 | λ ∈ C

}
. Since the singular orbits of H2,v and HΛ

1,3 coincide, these
groups have the same orbits, for all the other orbits are just equidistant tubes around the
singular one.

Next, assume that φ = π
2
. Then v is a totally real subspace of n2, so, acting by K2

if necessary, we may assume v = RE13 ⊕ RE23. Simple computations reveal that a
matrix X ∈ m2 normalizing v must have p12, p21 ∈ R, which means that the image of the
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projection of Nm2(v) to p will be a proper subspace of b2, so such v is not an admissible
subspace.

We are left to consider the case φ ∈ (0, π
2
). Here v is a subspace of constant Kähler angle

φ inside a totally complex subspace of n2 of real dimension 4. Without loss of generality,
we choose the latter to be CE13 ⊕ CE23. Then we can take v to be the real span of E23

and i cosφE23 + i sinφE13 (see [BB01, Prop. 7]). By commuting elements of m2 with
these two vectors and solving simple systems of linear equations, one gets, among other
things, that Re(p12) = 0 and Re(p21) = 2Re(p11) cotφ. It implies that the image of the
projection of Nm2(v) to p is contained in b2 ∩{Re(p11) cotφ− Re(p12) = 0}, which is a
linear hyperplane in b2. Therefore, this v is not admissible either.

Case 2: dim v = 3, ∠q(v) = (φ,φ, π
2
), φ ∈

{
0, π

3

}
. First, suppose φ = 0. Such v can be

described as Im(H)v for some nonzero v ∈ n2. We may assume without loss of generality
that v = E23. One then easily computes:

Nm2(v) =



p11 0 0

p21 p22 0

0 0 q


∣∣∣∣∣∣∣∣ Re(p11) + Re(p22) = 0, q = Im(p22)

 .

The image of the projection of that to p is the whole of b2, so this v is admissible. We
have:

h2,v = (Im(H)E11 ⊕ Im(H)(E22 + E33))⊕ a⊕ gα1 ⊕ RE23 ⊕ gα1+α2 ,

where the first summand in the parentheses is h2,v ∩ k = h2,v ∩ k0 ≃ sp(1)⊕ sp(1). In a
similar vein to what we did in case 1 with φ = 0, one can show that the orbits of H2,v

coincide with the orbits of HΛ
1,2 if we take w = a1 ⊕ RE23. Therefore, this v does not

produce a new action.

Now let v be of q-Kähler angle (π
3
, π
3
, π
2
). It follows from [DRDVRV21, Prop. 5.3, Rem. 5.4]

that v = span
{
E23, iE23 + i

√
3E13, jE23 − j

√
3E13

}
does the trick. Simple calculations

reveal that an element of m2 normalizing v must have Re(p11) = Re(p22) = 0, so the
image of the projection of Nm2(v) to p will be a proper subspace of b2, hence this v is not
admissible.

Case 3: dim v = 4, ∠q(v) = (0,φ,φ), φ ∈ [0, π
2
]. First, let φ = 0, that is, let v be a

quaternionic line in m2. Without loss of generality, we choose v = HE23 = gα2 . One
immediately sees that Nm2(v) = m2 ⊖ gα1 , whose projection to p is the whole b2, so this v
is admissible. We have:

h2,v = g0 ⊕ gα1 ⊕ gα1+α2 .

But this Lie subalgebra coincides with hΛ1,1 if we take w = a1. Consequently, v does not
give a new action.

Now let the q-Kähler angle of v be (0, π
2
, π
2
). Then v is a totally complex subspace, hence

we may assume v = CE13 ⊕ CE23. Any element of m2 normalizing such a subspace must
have p12, p21 ∈ C, so the image of the projection of Nm2(v) to p is smaller than b2 and v
is not admissible.

Finally, let v be of q-Kähler angle (0,φ,φ),φ ∈ (0, π
2
). According to [BB01] (see the

discussion before Theorem 5 there), we can take v to be spanned by E23, iE23, j cosφE23+
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j sinφE13, and k cosφE23 + k sinφE13. In a similar fashion to what we had in case 1, by
solving the system of linear equations defining Nm2(v), one gets—among other things—the
same two linear dependencies Re(p12) = 0 and Re(p21) = 2Re(p11) cotφ. Therefore, the
projection of Nm2(v) to p is yet again contained in b2 ∩ {Re(p11) cotφ− Re(p12) = 0}
and v fails to be admissible. This shows that the nilpotent construction yields no new
actions for M and finishes the proof of Theorem 5.2.1.

5.3. Classification of cohomogeneity-one actions on

SO(5,C)/SO(5)
In this section we classify, up to orbit-equivalence, cohomogeneity-one actions on the
noncompact dual of the compact Lie group Spin(5).

The symmetric space M = SO(5,C)/SO(5) is irreducible and of noncompact type; it has
rank 2 and dimension 10, and its restricted root system is B2. As we noticed in scenario 1
in the proof of Theorem 3.2.10, the restricted root system (resp., root space decomposition)
of so(5,C) coincides with the root system (resp., root space decomposition) of so(5,C) con-
sidered as a complex simple Lie algebra. As a result, all the root multiplicities are equal to
2. Write Λ = {α1,α2}, where α1 is the long root. Then Σ+ = {α1,α2,α1 + α2,α1 + 2α2}.
We also have k0 = ia = RiHα1 ⊕⊥ RiH2 = RiH1 ⊕⊥ RiHα2 ≃ u(1) ⊕ u(1), where i the
complex structure of so(5,C). The fact that α1 and α2 have different lengths implies
that the corresponding boundary components B1 ≃ RH3 and B2 ≃ RH3 have different
sectional curvatures (−||α1||2 and −||α2||2, respectively) and thus are not congruent
(which reflects the asymmetry of the Dynkin diagram B2).

Theorem 5.3.1. Let H be a connected Lie group acting properly and isometrically on
M = SO(5,C)/SO(5) with cohomogeneity 1. Then its action is orbit-equivalent to exactly
one of the following:

(a) The action of the connected Lie subgroup Hℓ of G with Lie algebra

hℓ = (a⊖ ℓ)⊕ n,

where ℓ is a one-dimensional linear subspace of a. The orbits of Hℓ are all congruent
to each other and form a Riemannian foliation on M .

(b) The action of the connected Lie subgroup Hαi
, i ∈ {1, 2} , of G with Lie algebra

hαi
= a⊕ (n⊖ ℓαi

),

where ℓαi
is any one-dimensional linear subspace of gαi

. Its orbits form a Riemannian
foliation on M and there is exactly one minimal orbit.

(c) The action of the subgroup SO(4,C) of G embedded in a standard way. It has
a 6-dimensional totally geodesic singular orbit isometric to SO(4,C)/SO(4) ≃
SL(2,C)/SU(2)× SL(2,C)/SU(2) ≃ RH3 × RH3.

(d) The action of the connected Lie subgroup HΛ
j,0, j ∈ {1, 2}, of G with Lie algebra

hΛj,0 = kj ⊕ aj ⊕ nj.
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This action has a minimal singular orbit of codimension 3 and can be obtained by
canonical extension of the cohomogeneity-one action on Bj with a single point as a
singular orbit.

(e) The action of the connected Lie subgroup HΛ
j,1, j ∈ {1, 2}, of G with Lie algebra

hΛj,1 = k0 ⊕ a⊕ nj,

This action has a minimal singular orbit of codimension 2 and can be obtained by
canonical extension of the cohomogeneity-one action on Bj with a geodesic as a
singular orbit.

Proof. We consider the different cases of Theorem 5.1.7. If the orbits of H form a
foliation, we get the actions in (a) and (b). As M is irreducible of rank 2, part (b)-(2)
of Theorem 5.1.7 does not apply. The action in (c) is the only one that has a totally
geodesic singular orbit according to [BT04]. The stabilizer of SO(4,C) at o is SO(4),
whose slice representation at o is equivalent to the tautological one (which reflects the fact
that (SO(4,C) · o)⊥ ≃ RH4), hence SO(4,C) does indeed act with cohomogeneity one. It
is also worth noting that we can take

so(4,C) = g0 ⊕
⊕
α∈Σ

long root

gα.

The long roots in B2 form a root subsystem isomorphic to A1 ⊔ A1, whose irreducible
components A1 correspond to the two de Rham factors RH3 of SO(4,C)/SO(4). As a
consequence, these two hyperbolic spaces have the same curvature.

Now we determine the actions arising via the canonical extension method. Each boundary
component Bj is isometric to the real hyperbolic space RH3 (with different curvatures
depending on j), which has precisely two cohomogeneity-one actions with a singular orbit
up to strong orbit-equivalence. One of them is the action of the restricted isotropy group of
RH3, which has a single point as a singular orbit and whose canonical extension is described
in (d). The other one has a geodesic as a singular orbit and, in view of Proposition 5.1.10,
is given by the connected Lie subgroup corresponding to Nkj (a

j)⊕ aj = (kj)0⊕ aj . Thanks
to Remark 5.1.4, its canonical extension is given in (e). Observe that the actions in (d)
and (e) are not orbit-equivalent to each other because the normal spaces of their singular
orbits are tangent to the corresponding boundary components and thus have different
sectional curvatures.

Now we proceed to the main part, namely the nilpotent construction. Since the Dynkin
diagram B2 is asymmetric, we have to consider two cases.

Nilpotent construction with j = 2. In this case, we have:

n12 = gα2 ⊕ gα1+α2 ≃ C2,

l2 = g−α1 ⊕ g0 ⊕ gα1 = g2 ⊕ z2 ⊕ a2 ≃ sl(2,C)⊕ u(1)⊕ u(1) ≃ gl(2,C),
k2 = k0 ⊕ kα1 = (g2 ∩ k)⊕ z2 ≃ su(2)⊕ u(1) ≃ u(2).

The adjoint representation of g2 on n12 is a nontrivial complex representation, hence it is
equivalent to the irreducible representation of sl(2,C) on C2. The adjoint representation
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of a2 ⊕ z2 = CH2 on n12 is the standard complex representation by scalars because H2 acts
on n12 as multiplication by ⟨α2 , H

2 ⟩ = 1. It follows that the adjoint representation of l2
(resp., k2) on n12 is equivalent to the tautological representation of gl(2,C) (resp., u(2))
on C2. Since l2 is a θ-stable Lie subalgebra of g, we may assume θ corresponds to the
standard Cartan involution on gl(2,C). Therefore, the problem of finding admissible and
protohomogeneous subspaces of the L0

2-module n12 is equivalent to the analogous problem
for the tautological representation of GL(2,C).

Let v ⊆ n12 be a linear subspace of dimension at least 2. According to [BB01, Lem.
1, Prop. 7], v is protohomogeneous if and only if it has constant Kähler angle. In
particular, it must be even-dimensional. If v = n12, then it is trivially admissible and
we have h2,v = l2 ⊕ gα1+2α2 = so(4,C) ⊖ g−α1−2α2 . Since we know that H2,v acts with
cohomogeneity one, it follows that it has the same orbits as SO(4,C), so its action has
already been accounted for (c). Now suppose v has real dimension 2. It was shown in
[BDV15, Th. 6] that such a subspace is admissible if and only if its Kähler angle is zero,
i.e., if it is a complex subspace. Up to the action of K0

2 ≃ U(2), we may assume v = gα2 .
We have

h2,v = l2 ⊕ gα1+α2 ⊕ gα1+2α2 = g−α1 ⊕ g0 ⊕ n1.

If we look back at (e), we see that hΛ1,1 is a Lie subalgebra of h2,v. Since HΛ
1,1 acts with

cohomogeneity one, its orbits coincide with the orbits of H2,v. Altogether, we see that the
nilpotent construction method with j = 2 does not give rise to any new actions.

Nilpotent construction with j = 1. In this case we have:

n11 = n1 = gα1 ⊕ gα1+α2 ⊕ gα1+2α2 ≃ C3,

l1 = g−α2 ⊕ g0 ⊕ gα2 = g1 ⊕ z1 ⊕ a1 ≃ sl(2,C)⊕ u(1)⊕ u(1) ≃ gl(2,C),
k2 = k0 ⊕ kα2 = (g1 ∩ k)⊕ z1 ≃ su(2)⊕ u(1) ≃ u(2).

We fix an isomorphism between sl(2,C) and g1 by sending the standard basis e, f, h of the
former to X, θX, hα2 ∈ g1, where X ∈ gα2 , θX ∈ g−α2 , and hα2 =

2
||α2||2Hα2 . Observe that

n1 is an α2-string, so it is an irreducible complex representation of g1 ≃ sl(2,C). Since it
is 3-dimensional, it is isomorphic to the adjoint representation of sl(2,C). Now, sl(2,C)
is simple over C and hence over R, which means that the representation of g1 on n1 is
irreducible as a real representation. An alternative description of this representation is
the second symmetric power of the tautological representation of sl(2,C). The adjoint
representation of a1 ⊕ z1 = CH1 on n11 is the standard complex representation by scalars
because H1 acts on n1 as multiplication by ⟨α1 , H

1 ⟩ = 1. Consequently, we can describe
the adjoint representation of l1 ≃ sl(2,C)⊕C (resp., k1 ≃ su(2)⊕u(1)) on n1 as the exterior
tensor product ρ3⊗σ, where ρ3 is the irreducible 3-dimensional complex representation of
sl(2,C) (resp., of su(2)) and σ is the tautological representation of C (resp., u(1)) on C.

Now we need to determine—up to K0
1 ≃ U(2)—all subspaces v of n1 that are both

protohomogeneous and admissible. We begin by borrowing an argument from [BDV15,
Prop. 6]. The case v = n1 can be excluded straight away, since U(2) cannot act transitively
on the 5-sphere. According to [BDV15, Prop. 5], we may assume that Nm1(v) = θNm1(n1,v)
is contained in (g1 ∩ (g0 ⊕ n)) ⊕ z1 = k0 ⊕ a1 ⊕ gα2 . In this case, Nk1(v) is contained in
k0 ≃ u(1)⊕ u(1). But then v must be 2-dimensional, for K0 ≃ U(1)× U(1) cannot act
transitively on any sphere of dimension greater than one. We will show that—under the
assumption Nm1(v) ⊆ k0 ⊕ a1 ⊕ gα2—the only option for v is gα1+2α2 .
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Take nonzero vectors ej ∈ gα1+jα2 , j ∈ {0, 1, 2} , such that ej = ad(X)ej−1. Let v =∑2
j=0 zjej ∈ v be a nonzero vector. An arbitrary element of k0 ⊕ a1 ⊕ gα2 can be written

as
Y = (a+ ib)X + chα2 + i(dhα2 + eH1),

where a, b, c, d, and e are some real numbers. If v lies in gα1 ⊕ gα1+α2 , then a and b
must be zero for Y to normalize v, which means that the projection of Nm1(v) to p
will be smaller than b1 in that case. Hence, we may assume that z2 ̸= 0 and, for
the sake of contradiction, that either z0 or z1 is also nonzero. Observe that ad(hα2)
acts diagonally on n1 = gα1 ⊕ gα1+α2 ⊕ gα1+2α2 with eigenvalues −2, 0, and 2, whereas
ad(H1) acts as the identity on the whole n1. Consequently, i(dhα2 + eH1) acts on n1
diagonally with eigenvalues i(e − 2d), ie, i(e + 2d). It implies that Nk1(v) ⊆ k0 must
be one-dimensional (otherwise it would be the whole k0 and v would have to be of
dimension at least 3). In this situation, Nk1(v) is spanned by some i(d0hα2 + e0H

1) and
v = Rv ⊕ R ad(i(d0hα2 + e0H

1))v. In order for ad(Y ) to normalize v, ad(Y )v must be
a linear combination of v and ad(i(d0hα2 + e0H

1))v, which boils down to the following
system of equations:

(−2c+ i(e− 2d))z1 = λz1 + iµ(e0 − 2d0)z1,

(a+ ib)z1 + iez2 = λz2 + iµe0z2,

(a+ ib)z2 + (2c+ i(e+ 2d))z3 = λz3 + iµ(e0 + 2d0)z3.

First assume that z1 ̸= 0. The first equation then implies λ = −2c, which, when substituted
into the second one, gives

a+ ib =
z2
z1
(−2c+ i(µe0 − e)).

By writing
z2
z1

= f + ig, we obtain

{
a = −2fc− g(µe0 − e),

b = −2gc+ f(µe0 − e).

Whatever f and g are, we get a linear dependency on a, b, e, which means that v cannot
be admissible. In case z1 = 0 but z2 ̸= 0, the second equation of our system implies λ = 0,
which transforms the third equation into

a+ ib =
z3
z2
(−2c+ i(µ(e0 + 2d0)− e− 2d)).

In a similar way, we get a linear dependency on a, b, e.

The upshot of the above argument is that, up to K0
1 , v must be equal to gα1+2α2 . Observe

that this is indeed an admissible and protohomogeneous subspace. Since the representation
of SU(2) ⊆ K0

1 on n1 is equivalent to the 3-dimensional complex irreducible representation
of SU(2), there exists an element of K0

1 that maps gα1+2α2 onto gα1 (in terms of the
representation on the space of quadratic polynomials, we can take the special unitary
matrix [ 0 −11 0 ], which induces y2 7→ x2). We have:

n1,gα1
= gα1+α2 ⊕ gα1+2α2 ,
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Nm1(n1,gα1
) = θNm1(gα1) = k0 ⊕ a1 ⊕ gα2 ,

h1,gα1
= Nm1(n1,gα1

)⊕ a1 ⊕ n1,gα1
= g0 ⊕ gα2 ⊕ gα1+α2 ⊕ gα1+2α2 = g0 ⊕ n2.

But looking at the actions given in (e), one sees that h1,gα1
= hΛ2,1, which means that

the actions of HΛ
2,1 and H1,gα1

have the same orbits. We conclude that the nilpotent
construction method does not give any new actions for M , which completes the proof.

5.4. Classification of cohomogeneity-one actions on

the noncompact complex two-plane Grassmanni-

ans

In this section we classify, up to orbit-equivalence, cohomogeneity-one actions on the
noncompact complex Grassmannians Gr∗(2,Cn+4) = SU(n+2, 2)/S(U(n+2)U(2)), n ≥ 1.

The symmetric space M = SU(n+2, 2)/S(U(n+2)U(2)) is irreducible and of noncompact
type; it has rank 2 and dimension 4n+ 8, and its restricted root system is (BC)2. We
have added the restriction n ≥ 1 because Gr∗(2,C4) ≃ Gr∗(2,R6) and Gr∗(2,C3) = CH2,
both of which are spaces of different type. The space M is the complex analog of the
symmetric space Gr∗(2,Rn+4) = SO0(n+2, 2)/SO(n+2)SO(2) of type B2, a classification
of cohomogeneity-one actions on which was obtained by Berndt and Domı́nguez-Vázquez
in [BDV15]. If we choose simple roots α1 and α2 so that 2α2 is also a root, we have
Σ+ = {α1,α2,α1 + α2, 2α2,α1 + 2α2, 2α1 + 2α2}, where α1 and α1+2α2 have multiplicity
2, α2 and α1 + α2 have multiplicity 2n, and 2α2 and 2α1 + 2α2 have multiplicity 1. The
Lie algebra k0 is isomorphic to u(n)⊕ u(1). As we mentioned in Subsection 2.5.2, M is
the only symmetric space of noncompact type that is both Hermitian and q-Kähler. The
interplay between these two structures will aid us to deal with the congruence problem.
The boundary components B1 and B2 are isometric to CHn+1 and RH3, respectively.
Therefore, for the first time, we are encountering a rank-2 symmetric space of noncompact
type containing a boundary component not isometric to the real hyperbolic space. The
reason why this is special is because, unlike real hyperbolic spaces, complex hyperbolic
spaces have a nondiscrete moduli space of C1-actions with a singular orbit, so the canonical
extension method, when applied to B1, will produce a one-parameter family of C1-actions
on M .

In order to formulate the theorem, we need to know what the almost complex structure I
on M looks like in terms of the restricted root space decomposition of g. With respect to
Io, pα2 and pα1+α2 are complex subspaces of p. Moreover, Io swaps pα1 and pα1+2α2 , so each
of them is a totally real subspace. Finally, Io sends RHα2 to p2α2 and RH1 to p2α1+2α2 . (In
the next chapter, we will prove a generalization of this relation to all Hermitian symmetric
spaces, see Theorem 6.3.12.) We pull the complex structure Io back to a⊕ n along the
isomorphism a⊕ n −→∼ p. Note that B1 is a complex submanifold of M , whereas B2 is a
totally real.

Theorem 5.4.1. Let H be a connected Lie group acting properly and isometrically on
M = SU(n + 2, 2)/S(U(n + 2)U(2)) with cohomogeneity 1. Then its action is orbit-
equivalent to exactly one of the following:
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(a) The action of the connected Lie subgroup Hℓ of G with Lie algebra

hℓ = (a⊖ ℓ)⊕ n,

where ℓ is a one-dimensional linear subspace of a. The orbits of Hℓ are all isometri-
cally congruent to each other and form a Riemannian foliation on M .

(b) The action of the connected Lie subgroup Hαi
, i ∈ {1, 2} , of G with Lie algebra

hαi
= a⊕ (n⊖ ℓαi

),

where ℓαi
is any one-dimensional linear subspace of gαi

. Its orbits form a Riemannian
foliation on M and there is exactly one minimal orbit.

(c) The action of the subgroup SU(n+ 1, 2) of G embedded in a standard way. It has a
totally geodesic singular orbit of codimension 4 isometric to Gr∗(2,Cn+3). This orbit
is a complex (resp., quaternionic) submanifold with respect to the complex (resp.,
quaternion-Kähler) structures of M .

(d) The action of the subgroup SU(n+ 2, 1) of G embedded in a standard way. It has a
totally geodesic singular orbit of dimension 2n+ 4 isometric to CHn+2. This orbit
is a complex (resp., totally complex) submanifold with respect to the complex (resp.,
quaternion-Kähler) structures of M .

(e) In case n = 2m, the action of the subgroup Sp(m+1, 1) of G embedded in a standard
way. It has a totally geodesic singular orbit of dimension 2n+4 isometric to HHm+1.
This orbit is a totally real (resp., quaternionic) submanifold with respect to the
complex (resp., quaternion-Kähler) structures of M .

(f) The action of the connected Lie subgroup HΛ
2,k, k ∈ {0, 1}, of G with Lie algebra

hΛ2,0 = k2 ⊕ a2 ⊕ n2, hΛ2,1 = k0 ⊕ a⊕ n2.

This action has a minimal singular orbit of codimension 3− k and can be obtained
by canonical extension of the cohomogeneity-one action on B2 ≃ RH3 with a single
point (k = 0) or geodesic (k = 1) as a singular orbit.

(g) The action of the connected Lie subgroup HΛ
1,(φ,k) of G with Lie algebra

hΛ1,(φ,k) = Nk1(w)⊕w⊕ a1 ⊕ n1,

where w ⊆ a1 ⊕ gα2 ⊕ g2α2 is the orthogonal complement of a subspace w⊥ ⊆ gα2 of
dimension k and constant Kähler angle φ ∈ [0, π

2
] such that:

(1) φ = 0 ⇒ k ∈ {2, 4, . . . , 2n};

(2) φ ∈ (0, π
2
) ⇒ k ∈

{
2, 4, . . . , 2

⌊
n
2

⌋}
;

(3) φ = π
2
⇒ k ∈ {2, 3, . . . , n}.

This action has a minimal singular orbit of codimension k and can be obtained by
canonical extension of a cohomogeneity-one action on B1 ≃ CHn+1 with a singular
orbit.
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(g’) The actions of the connected Lie subgroups HΛ
1,(0,2n+2) and HΛ

1,(π
2
,n+1) of G with Lie

algebras

hΛ1,(0,2n+2) = k1 ⊕ a1 ⊕ n1 and hΛ1,(π
2
,n+1) = Nk1(wp)⊕w⊕ a1 ⊕ n1,

where w is a (k+1)-dimensional totally real subspace of a1⊕gα2 ⊕g2α2 containing a1.
This action has a minimal singular orbit of codimension 2n+2 (resp., n+1) and can
be obtained by canonical extension of a cohomogeneity-one action on B1 ≃ CHn+1

with a single point (resp., totally geodesic RHn+1) as a singular orbit.

Proof. We consider the different cases of Theorem 5.1.7. If the orbits of H form a
foliation, we get the actions in (a) and (b). As in the previous two sections, part (b)-(2)
of Theorem 5.1.7 is irrelevant here.

The actions in (c), (d), and (e) are the only ones with a totally geodesic singular orbit
according to [BT04]. Let us describe these three orbits in a bit more detail. Recall from
Example 2.1.37 that M can be thought of as the set of 2-dimensional complex subspaces
of Cn+4 on which the restriction of the standard indefinite Hermitian form of signature
(n+ 2, 2) is negative definite. The group G = SU(n+ 2, 2) acts transitively on this set
and the stabilizer of o = ⟨en+3, en+4⟩C is precisely K = S(U(n+ 2)U(2)).

Consider the subset Sc of M consisting of those 2-dimensional subspaces that lie in
the complex hyperplane ⟨e2, . . . , en+4⟩C. This subset can be described as Gr∗(2,Cn+3)
embedded totally geodesically into M . The subgroup SU(n+ 1, 2) ⊂ G of elements fixing
the first basis vector e1 preserves Sc and acts transitively on it. Its isotropy subgroup at o
is S(U(n+ 1)U(2)), whose subgroup U(2) acts transitively on the unit sphere in NoSc, so
SU(n + 1, 2) does indeed act on M with cohomogeneity one and has Sc as its singular
orbit. Observe that we have S⊥c ≃ CH2.

Similarly, define Sd to be the subset of M consisting of those 2-dimensional subspaces
of Cn+4 that contain the last basis vector en+4. These are in bijective correspondence
with the complex lines in the hyperplane ⟨e1, . . . , en+3⟩C on which the restriction of the
standard indefinite Hermitian form of signature (n+ 2, 1) is negative definite, so Sd can
be identified with Gr∗(1,Cn+3) = CHn+2 embedded totally geodesically into M . The
subgroup SU(n+2, 1) ⊂ G of elements fixing en+4 preserves Sd and acts transitively on it.
Its isotropy subgroup at o is S(U(n+2)U(1)), and its slice representation at o is equivalent
to the tautological representation U(n+ 2) ↷ Cn+2, also known as the restricted isotropy
representation of CHn+2. This is a reflection of the fact that S⊥d ≃ CHn+2. But now
observe that (S⊥d )

⊥ = Sd is of rank 1, so, according to Subsection 5.1.1, S⊥d is also a totally
geodesic singular orbit of some C1-action. We claim that this action is orbit-equivalent
to the action of SU(n+ 2, 1), i.e., that Sd and S⊥d are isometrically congruent. Indeed,
Sd is easily seen to be a totally complex submanifold of M . Take J ∈ S2

p such that
J(ToSd) = NoSd. As follows from the discussion preceding Proposition 2.5.26, J = dko for
some k ∈ K. This k provides a congruence between Sd and (Sd)

⊥
o . Note that the geodesic

reflection in Sd is an involutive holomorphic isometry. The submanifold Sd is called a
complex form of M (see [Wol05]).

Finally, if n = 2m, consider the standard indefinite q-Hermitian form H on Hm+2 of
signature (m+ 1, 1) and identify Hm+2 with C2m+4 in a standard way. Note that if we
write H = h − ωj, where h, ω : Hm+2 × Hm+2 → C, then h is precisely our indefinite
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Hermitian form on Cn+4. Consider the subset Se of M consisting of quaternionic lines in
Cn+4, the restriction of H to which is negative definite. This subset can be described as
Gr∗(1,Hm+2) = HHm+1 embedded totally geodesically into M . The group Sp(m+ 1, 1)
sits naturally inside G and preserves Se. Its isotropy subgroup at o is Sp(m+ 1)Sp(1),
whose slice representation at o is isomorphic to the standard representation on Hm+1.
Just like before, we have S⊥e ≃ HHm+1 ≃ Se, and these two submanifolds are in fact
isometrically congruent. Their tangent spaces at o are mapped to each other by Io because
Se is totally real. By Proposition 2.5.11, Io = dko for some k ∈ K, so k is the desired
congruence. The geodesic reflection in Se is an antiholomorphic involutive isometry, for
which reason Se is called a real form of M (see [Jaf75, Leu79b]).

Now we proceed to the canonical extension method. There are two strong orbit-equivalence
classes of cohomogeneity-one actions on B2 ≃ RH3 with a singular orbit, whose extensions
are described in (f).

The situation with B1 ≃ CHn+1 is much more interesting. Let us recapitulate the
classification of C1-actions on complex hyperbolic spaces. As we already mentioned in
the proof of Proposition 5.1.10, every C1-action on CHn+1 with a singular orbit other
than {pt} and a totally geodesic RHn+1 arises via the nilpotent construction. The
corresponding representation is equivalent to the tautological representation U(n) ↷ Cn.
We know that if two protohomogeneous subspaces of gα2 ≃ Cn are U(n)-congruent, they
produce strongly orbit-equivalent C1-actions on CHn+1. It was shown in [BT07, Th.
4.1(ii)] that the converse is true:

Proposition 5.4.2. Suppose M = CHn+1 and let v, v′ ⊆ gα be two protohomogeneous
subspaces. The following conditions are equivalent:

(i) The C1-actions on CHn+1 arising from v and v′ are orbit-equivalent.

(ii) The C1-actions on CHn+1 arising from v and v′ are strongly orbit-equivalent.

(iii) v and v′ are K0-congruent
1.

So the classification of C1-actions on CHn+1 boils down to the classification of protohomo-
geneous subspaces of Cn ↶ U(n) up to U(n)-congruence. This was carried out by Berndt
and Brück in [BB01]. They showed that a subspace of Cn is protohomogeneous if and only
if it has constant Kähler angle, and two such subspaces are U(n)-congruent if and only if
they have the same dimension and Kähler angle. This, together with Proposition 5.1.10
and Remark 5.1.4, shows that the actions in parts (g) and (g’) of Theorem 5.4.1 exhaust
the list of C1-actions on M with a singular orbit arising from B1 via canonical extension.
To simplify the notation, we split off the canonical extensions of the two actions on B1

that do not arise via the nilpotent construction into a separate group. No two actions in
(g) and (g’) are mutually orbit-equivalent by design: the normal spaces of their singular
orbits differ in either dimension or (constant) Kähler angle. Here we use the fact that
every isometry of M is either holomorphic or anti-holomorphic (Corollary 2.5.15), so it
preserves the Kähler angles of tangent subspaces.

There is one action in (f) that may, in theory, have a totally geodesic singular orbit,
namely the action of HΛ

1,(0,4). Its orbit S = HΛ
1,(0,4) · o is a complex submanifold of M

of codimension 4. But so is the singular orbit of the action of SU(n + 1, 2) ⊂ G given

1Recall that M0
1 = K0

1 = K0 for rank-1 spaces.
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in (c). To show that these two actions are not orbit-equivalent, we prove that S is not
totally geodesic. Since S is a homogeneous submanifold, we can use Proposition 2.2.43 to
compute its second fundamental form. Observe that

ToS = wp ⊕ a1 ⊕ n1, NoS = w⊥p .

The subspace w⊥ is contained in gα2 if n > 1 and coincides with a1 ⊕ gα2 ⊕ g2α2 if
n = 1. Since [gα1+α2 , g−α1 ] = gα2 , we can find X ∈ gα1+α2 and Y ∈ g−α1 such that
[X, Y ] ∈ gα2 w. By construction, X − θX and Y − θY lie in ToS. By virtue of
Proposition 2.2.43, II(X − θX, Y − θY ) = prNoS([Z, Y − θY ]), where Z ∈ k is any vector
such that X − θX + Z ∈ hΛ1,(0,4). We pick Z = X + θX, which gives

IIS(X − θX, Y − θY ) = prNoS([X + θX, Y − θY ]) = prNoS([X, Y ]− θ[X, Y ]) ̸= 0,

which implies that the fundamental form of S is nonzero at o and S is not totally geodesic.

Before we proceed to the nilpotent construction, we need to prove that the actions in
(f) and (g) (or (g’)) are mutually nonequivalent. We are going to show that, given an
action from (f) with a singular orbit S and one from (g) with a singular orbit S ′ of the
same dimension as S, the normal spaces to S and S ′ have either different Kähler angles
or vectors of different holomorphic sectional curvatures. Computing all such sectional
curvatures by hand would be a daunting task, so we will employ a different strategy
and leverage the abundance of geometric structures on M . In [Ber97], Berndt studied
the complex Grassmannian of two-planes Gr(2,Cn+4), which is the compact dual of our
symmetric space M , so we denote it by M∗. By Corollaries 2.5.10 and 2.5.27, M∗ is
also a Hermitian and q-Kähler symmetric space. Write I∗ and J ∗ for its corresponding
almost complex structure and rank-3 subbundle of so(T (M∗)). It turns out that these
two geometric structures can be used to detect the global extrema of the holomorphic
sectional curvature function of M∗ (see [Ber97, Prop. 19]):

Proposition 5.4.3. Let M∗ = Gr(2,Cn+4), p ∈ M∗ any point, and X ∈ TpM
∗ a nonzero

vector. The following conditions are equivalent:

(i) X is singular.

(ii) X is a global extremum point of the holomorphic sectional curvature function of M∗.

(iii) I∗pX ⊥ J ∗p X or I∗pX ∈ J ∗p X.

Moreover, K∗hol attains its minimum (resp., maximum) value on X if and only if I∗pX ⊥
J ∗p X (resp., I∗pX ∈ J ∗p X).

In essence, this result allows to split singular tangent vectors to M∗—and thus M—into
two types. Bearing in mind that the curvatures of M and M∗ are of opposite signs
(Proposition 2.1.116(h)), we can introduce the following

Definition 5.4.4. Given any p ∈ M = Gr∗(2,Cn+4), a nonzero singular vector X ∈ TpM
is said to be

• of type A if Khol attains its maximum on X ⇔ I∗pX ⊥ J ∗p X;

• of type B if Khol attains its minimum on X ⇔ I∗pX ∈ J ∗p X.
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Recall that the set of singular vectors is preserved under isometries (Proposition 2.4.30).
What makes the notion of type useful is the fact that the type of a singular vector is
preserved under isometries as well. Indeed, any isometry of M is either holomorphic or
anti-holomorphic by Corollary 2.5.15, so it preserves holomorphic sectional curvatures
and hence the type of a singular vector.

In order to apply this knowledge to beat the congruence problem for C1-actions on M ,
we need to know explicitly what the I and J look like. We already know how I behaves
with respect to the restricted root space decomposition (see the discussion preceding
Theorem 5.4.1), so now we need to describe J . We have g = su(n+ 2, 2), and its Cartan
decomposition looks like:

k =




u(n+ 2) 0

0 u(2)



∣∣∣∣∣∣∣∣∣∣∣
tr = 0


, p =




0 B

B∗ 0




,

where B runs through Mat((n+2)×2,C). The isotropy representation of the Riemannian
symmetric pair (SU(n+ 2, 2), S(U(n+ 2)U(2))) is given by the adjoint representation of
K = S(U(n+ 2)U(2)) on p. Note that there is a normal subgroup SU(2) ⊴ K isomorphic
to Sp(1). Moreover, its intersection with Z(SU(n + 2, 2)) = {λE | λn+4 = 1} is trivial,
which implies that SU(2) descends to an Sp(1)-isomorphic subgroup of the isotropy
group of M . In view of Proposition 2.5.26, the representation of SU(2) ⊆ K induces
a quaternionic structure on ToM that makes M into a q-Kähler manifold—this is how
one shows that M is q-Kähler in the first place. We will, however, benefit from a more
detailed description of this representation. Let us introduce the following notation:

ρn = the tautological representation of U(n) on Cn,

χn = the standard representation of Sp(1) on Hn.

If we identify p with Cn+2 ⊕ Cn+2 ∼= Cn+2 ⊗ C2 in the obvious way, the isotropy represen-
tation becomes isomorphic to the restriction of the external tensor product representation
ρn+2 ⊗ ρ2 of U(n+ 2)× U(2) to K. On the subgroup SU(2) ⊴ K, this representation is
just 1⊗ ρ2. Observe that we can identify SU(2) with Sp(1) and C2 with H in such a way
that ρ2

∣∣
SU(2)

becomes the same as χ1. Altogether, there is a normal subgroup Sp(1) ⊴ K

whose representation on p is given by:

Cn ⊗C H

Sp(1)

Hn

∼

1⊗χ1

χn

This shows explicitly how SU(2) ↪→ SO(ToM) is equivalent to χn. The induced Lie algebra
representation su(2) ↪→ so(ToM) provides the action of imaginary quaternions on ToM ,
so its image is precisely Jo. Now we can easily identify which singular vectors in p are of
type A and which are of type B.
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Let us take a = R(En+2,n+3 + En+3,n+2) ⊕ R(En+1,n+4 + En+4,n+1). The restricted root
space decomposition of g with respect to such a choice of a is explicitly described in
Knapp ([Kna02, p. 371, Ex. 2]). Using that, as well as our description of the q-Kähler
structure, it is straightforward to compute how Jo ⊆ so(p) acts on different root vectors.
Notice that the almost complex structure on M at o is given simply by

Io :

 0 B

B∗ 0

 7→

 0 iB

−iB∗ 0

 .

Finally, observe that su(n+ 2, 2) is a real form of sl(n+ 4,C), so the Killing form B of g
is just the restriction of the Killing form of sl(n+ 4,C), which is (2n+ 8) tr. This allows
to compute the inner product Bθ on g. The search for singular vectors of types A and B
in p is now a very straightforward process. For instance, one can compute that Jo sends
p2α2 onto RHα2 ⊕C(En+1,n+3 +En+3,n+1), while Io sends it onto RHα2 , so we deduce that
p2α2 consists entirely (apart from zero) of singular vectors of type B. In a similar fashion,
one calculates that

• pα1 and pα1+2α2 consist of singular vectors of type A, while

• pα2 , pα1+α2 , p2α2 , p2α1+2α2 ,RH1, and RHα2 all consist of singular vectors of type B.

Having done all that, we can eventually tackle the congruence problem. Consider the
action of HΛ

2,1. The normal space of its singular orbit at o is pα1 , which is a totally real
subspace of p. The only action in (g) or (g’) whose singular orbit has totally real normal
spaces of dimension 2 is the action of HΛ

1,(π/2,2). Whatever n is, w⊥ has a nontrivial

intersection with gα2 . As a consequence, No(H
Λ
1,(π/2,2) · o) = w⊥p contains a singular vector

of type B, whereas No(H
Λ
2,1 · o) = pα1 consists entirely of singular vectors of type A.

Therefore, there cannot exist an orbit-equivalence between these two actions. Now take
the action of HΛ

2,0. The normal space of its singular orbit at o is ToB2 = RHα1 ⊕pα1 , which
is totally real. Again, the only action in (g) or (g’) whose singular orbit has totally real
normal spaces of dimension 3 is the action of HΛ

1,(π/2,3) (n ≥ 2). Regardless of the value of

n, dim(w⊥ ∩ gα2) ≥ 2, so No(H
Λ
1,(π/2,3) · o) = w⊥p contains a 2-dimensional subspace L of

singular vectors of type B, while No(H
Λ
2,0 · o) contains pα1 , a 2-dimensional subspace of

singular vectors of type A. If there was an orbit-equivalence between these two actions,
there would be one fixing o, which would have to send L onto a plane in No(H

Λ
2,0 · o)

overlapping with pα1 , which would lead to a contradiction. Consequently, no action in (f)
is orbit-equivalent to an action in (g) or (g’).

At last, we proceed to the nilpotent construction method. To distinguish between the
Euclidean and Hermitian inner products on a⊕ n, we will add the letter H when talking
about the latter. For example, v ⊥H w means orthogonality with respect to the Hermitian
inner product.

Nilpotent construction with j = 2. In this case we have:

n12 = gα2 ⊕ gα1+α2 ≃ Cn ⊕ Cn ∼= Cn ⊗ C2,

m2 = z2 ⊕ g2 = u(n)⊕ so(3, 1) ≃ u(n)⊕ sl(2,C),
k2 = u(n)⊕ su(2).
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It is not hard to show that the representation of m2 on n12 is equivalent to the external tensor
product representation of u(n)⊕ sl(2,C) on Cn ⊗C2. Consequently, the representation of
K0

2 ≃ U(n)× SU(2) ≃ S(U(n)U(2)) on n12 is equivalent to the restricted isotropy represen-
tation of Gr∗(2,Cn+2) = SU(n, 2)/S(U(n)U(2)). Pick some Hermitian-orthonormal bases
e1, . . . , en ∈ Cn and f1, f2 ∈ C2. When we think of K0

2 ↷ n12 as the restricted isotropy
representation of Gr∗(2,Cn+2), the two-dimensional subspace R(e1 ⊗ f1) ⊕ R(e2 ⊗ f2)
corresponds to a maximal flat. This observation will prove useful later on. Now, let
v ⊆ n12 be an admissible and protohomogeneous subspace and pick any v = v1 + v2 ∈ v
with v1 ∈ gα2 , v2 ∈ gα1+α2 . First, mimicking the proof of [BDV15, Th. 8], we prove the
following

Lemma 5.4.5. Let T = [ 0 −11 0 ] ∈ so(2) ⊆ su(2) ⊆ m2. If [T, v1] ⊥H v2, then either v1 = 0
or v2 = 0.

Proof of the lemma. Under the assumption [T, v1] ⊥H v2, we do not lose generality by
taking v1 = re1 ⊗ f1 and v2 = se2 ⊗ f2 for some r, s ∈ R. By protohomogeneity of v, we
have:

v = R(re1 ⊗ f1 + se2 ⊗ f2)⊕⊥ Nk2(v)(re1 ⊗ f1 + se2 ⊗ f2).

Note that our assumption implies that the second summand here is actually Euclidean-
orthogonal to both e1 ⊗ f1 and e2 ⊗ f2. Now let S + A ∈ Nm2(v), where S ∈ u(n), A =
[ x y
z −x ] ∈ sl(2,C). We compute:

(S + A)(re1 ⊗ f1 + se2 ⊗ f2) =

= rSe1 ⊗ f1 + sSe2 ⊗ f2 + re1 ⊗ (xf1 + zf2) + se2 ⊗ (yf1 − xf2)

= rRe(x)e1 ⊗ f1 − sRe(x)e2 ⊗ f2 + (terms in (re1 ⊗ f1 + se2 ⊗ f2)
⊥).

We see that rRe(x)e1 ⊗ f1 − sRe(x)e2 ⊗ f2 must lie in R(re1 ⊗ f1 + se2 ⊗ f2), which is
only possible when either r or s is zero.

Since R(e1 ⊗ f1)⊕ R(e2 ⊗ f2) corresponds to a maximal flat in Gr∗(2,Cn+2), it intersects
the isotropy orbit of each vector, i.e., there exists some k ∈ K0

2 such that Ad(k)v ∈
R(e1 ⊗ f1)⊕R(e2 ⊗ f2). It then follows from Lemma 5.4.5 that Ad(k)v is proportional to
either e1 ⊗ f1 or e2 ⊗ f2. Applying T ∈ K0

2 if needed, we may assume the former and thus
simply write e1 ⊗ f1 ∈ v.

Since v is protohomogeneous, we have v ⊆ span{K0
2 · (e1 ⊗ f1)} = gα2 ⊕ C(e1 ⊗ f2). We

decompose su(2) as a vector space into two pieces:

ℓ =


ia 0

0 −ia

∣∣∣∣∣∣ a ∈ R

 , ℓ⊥ =


0 −z

z 0

∣∣∣∣∣∣ z ∈ C

 ,

so su(2) = ℓ⊕ ℓ⊥. Clearly, v ⊆ gα2 ⇔ Nk2(v) ⊆ u(n)⊕ ℓ. One can easily see that every
subspace v of gα2 is automatically admissible. We can regard such v as lying in the isometry
Lie algebra g1 = g′1 of B1 ≃ CHn+1; and v is protohomogeneous in n12 ↶ M2 if and only if
it is such in gα2 ↶ U(n) (which just means that it has constant Kähler angle). If this is the
case, the canonical extension of the resulting C1-action on B1 has the same orbits as the
action obtained from v by nilpotent construction performed on M . So such v’s produce
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no new actions and we may assume v does not lie in gα2 and thus Nk2(v) has a nonzero
projection to ℓ⊥. Let S + A ∈ Nk2(v), S = (sij)

n
i,j=1 ∈ u(n), A =

[
ia −z
z −ia

]
∈ su(2), z ̸= 0.

We compute:

(S + A)(e1 ⊗ f1) = (ia+ s11)e1 ⊗ f1 +
n∑

i=2

si1ei ⊗ f1 + ze1 ⊗ f2,

(S + A)2(e1 ⊗ f1) = (terms in gα2 ⊕ C(e1 ⊗ f2)) +
n∑

i=2

2zsi1ei ⊗ f2.

In order for this to lie in v ⊆ gα2 ⊕ C(e1 ⊗ f2), we must have si1 = 0 for 2 ≤ i ≤ n,
which means that (ia + s11)e1 ⊗ f1 + ze1 ⊗ f2 ∈ v. But this forces Nk2(v) to lie inside
u(1) ⊕ su(2) ⊆ u(n) ⊕ su(2), for otherwise we would have some S + A ∈ Nk2(v), S ∈
u(n) u(1), moving (ia + s11)e1 ⊗ f1 + ze1 ⊗ f2 out of gα2 ⊕ C(e1 ⊗ f2). The upshot of
all this is that v ⊆ C(e1 ⊗ f1) ⊕ C(e1 ⊗ f2) and Nm2(v) ⊆ u(1) ⊕ sl(2,C) (and we are
still assuming e1 ⊗ f1 ∈ v). So we have reduced our problem to looking for admissible
and protohomogeneous subspaces of C2 with respect to the tautological representation
of gl(2,C). As we already know, protohomogeneity singles out precisely subspaces of
constant Kähler angle φ. We consider three cases:

Case 1: φ = 0. Since we assume v ⊈ gα2 , we must have v = C(e1⊗ f1)⊕C(e1⊗ f2). But
then we get a C1-action with a totally geodesic singular orbit isometric to Gr∗(2,Cn+3),
see (c).

Case 2: φ = π
2
. Without loss of generality, we pick v = R(e1 ⊗ f1)⊕ R(e1 ⊗ f2). In this

case, Ngl(2,C)(v) = gl(2,R), so v fails to be admissible.

Case 3: φ ∈ (0, π
2
). According to [BB01, Prop. 7], we can take v to be the span of (1, 0)

and (i cosφ, i sinφ). If we write the coordinates on C2 as z1 and z2, then v is cut out
by the equations Re(z2) = 0 and Im(z2) = Im(z1) tanφ. We need to check whether the
projection of Nsl(2,C)(v) to the space of Hermitian traceless matrices is onto. A matrix
[ x y
z −x ] ∈ sl(2,C) normalizing v is subject to the following equations:

Re(z) = 0,

Im(z) = Im(x) tanφ,

−Im(z) cosφ+ Im(x) sinφ = 0,

Re(z) cosφ− Re(x) sinφ = (Re(x) cosφ+ Re(y) sinφ) tanφ.

The second and third equations are the same, so, simplifying, we are left with:
Re(z) = 0,

Im(z) = Im(x) tanφ,

Re(x) = −Re(y)
tanφ

2
.

These equations cut out a 3-dimensional subspace inside sl(2,C). Its projection to the
space of Hermitian traceless matrices is onto precisely when it does not intersect su(2).
But these equations have a nontrivial solution in su(2), namely

[
i −i tanφ

i tanφ −i
]
, so v is

not admissible. We conclude that the nilpotent construction with j = 2 produces no new
actions.
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Nilpotent construction with j = 1. In this case, we have:

n11 = gα1 ⊕ gα1+α2 ⊕ gα1+2α2 ≃ Cn+2,

m1 = g1 ⊕ z1 = su(n+ 1, 1)⊕ u(1) ≃ u(n+ 1, 1),

k1 = s(u(n+ 1)⊕ u(1))⊕ u(1) ≃ u(n+ 1)⊕ u(1).

The representation of m1 on n11 can be shown to be equivalent to the tautological rep-
resentation of u(n + 1, 1). We write Cn+2 = Cn+1 ⊕ C and notice that k1 preserves the
two summands. Consequently, a protohomogeneous subspace v ⊆ Cn+2 intersecting
nontrivially with Cn+1 (which is always the case when dim v ≥ 3) must lie there entirely,
in which case admissibility cannot be achieved. So we only need to consider 2-dimensional
subspaces transversal to Cn+1. Take any such v. We can apply the same argument to its
intersection with C ⊂ Cn+2, so it must be trivial as well. In other words, the projection
prCn+1(v) is two-dimensional. Observe that this projection is protohomogeneous in Cn+1

with respect to U(n + 1) and thus has constant Kähler angle φ. Again, according to
[BB01, Prop. 7], we may assume

v = ⟨v1, v2⟩R = ⟨e1 + aen+2, i cosφe1 + i sinφe2 + ben+2⟩R, a, b ̸= 0.

Moreover, acting by U(1) in the last coordinate, we can take a > 0. Finally, since K0
1 acts

transitively on the unit circle in v, we must have |b| = a. Consequently, we can confine
ourselves to working in Ce1 ⊕ Ce2 ⊕ Cen+2. Let us denote the corresponding coordinates
by x, y, and z, respectively. Note that Im(b) ̸= 0, for otherwise we would have a nontrivial
intersection v ∩ Cn+1. We see that v is cut out by the equations

Re(y) = 0,

Im(x) sinφ = Im(y) cosφ,

Im(b)Im(x) = Im(z) cosφ,

aRe(x) = Re(z)− Re(c)

Im(c)
Im(z).

(5.4.1)

The subspace v is admissible if and only if for each w ∈ Cn+1, there exists

S =


A w

w∗ c

 ∈ u(n+ 1, 1)

preserving v. The fact that S lies in u(n+ 1, 1) means that A ∈ u(n+ 1) and Re(c) = 0.
Applying S to (1, 0, . . . , a) and (i cosφ, i sinφ, 0, . . . , b), we get vectors

a11 + aw1

a21 + aw2

· · ·
w1 + iac

 and


ia11 cosφ+ ia12 sinφ+ w1b

ia21 cosφ+ ia22 sinφ+ w2b

· · ·
iw1 cosφ+ iw2 sinφ+ ibc

 .

Note that a12 = a21 and Re(a11) = Re(a22) = 0. In order to lie in v, both S(v1) and
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S(v2) must satisfy equations (5.4.1) (and all their other coordinates should be 0, but
we do not care about that), which altogether gives a system of 8 equations, and we are
left with a rather daunting and tedious task of solving it. We are not going to write all
these equations here; instead, let us label them (1) through (8), where equations (1) to
(4) are for S(v1) substituted into (5.4.1) and (5) to (8) are for S(v2) substituted there.
Fortunately, there is no need to solve the entire system. Indeed, provided that φ ̸= 0,
use (1) to express Re(a21) in terms of Re(w2) and plug the result into (5) to get a linear
dependency on the real and imaginary parts of w1 and w2. Therefore, such v cannot be
admissible.

Now let φ = 0, which just means that prCn+1(v) is a complex line. The first two equations
in (5.4.1) then simply mean that y = 0. Assume first that Re(b) ̸= 0. Use equations
(3) and (4) to express a11 and c in terms of w1. Equation (7) reveals that aIm(b) = 1.
Inserting all that into (8) yields a linear dependency on Re(w1) and Im(w1), which implies
that the coefficients in this dependency must be zero. But one can easily compute that the
coefficient of Im(w1) is (a− 1

a
)2 + Re(b)2, which cannot be zero. So we end up with the

case Re(b) = 0. Equation (4) yields a = 1 and thus b = i, so v becomes the complex line
spanned inside Cn+2 by e1 + en+2. It is not hard to verify that this subspace is admissible
and protohomogeneous. Now we want to see what this v looks like with respect to the
restricted root space decomposition. To this end, we need to have an explicit identification
between m1 and u(n+ 1, 1) and also between n11 and Cn+2. We have:

m1 =





A 0 0 u

0

0

u∗

ib

ib

ia



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A ∈ u(n+ 1), u ∈ Cn+1, a, b ∈ R, tr = 0


,

where u and u∗ are regarded as column and row vectors, respectively. Similarly,

n11 =





0 −v v 0

v∗

v∗

0

0 0 −w

0 0 −w

−w w 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
v ∈ Cn+1, w ∈ C


,

where the top left zero block is of the size (n + 1) × (n + 1) and ±v and v∗ are again
regarded as column and row vectors. Now, sending the matrix in the definition of m1 to A− ibE u

u∗ i(a+ b)
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gives a Lie algebra isomorphism m1 −→∼ u(n+ 1, 1). Similarly, sending the matrix in the
definition of n11 to (v, w) (here v is a row vector) gives an R-linear isomorphism n11 −→∼ Cn+2.
Moreover, under these isomorphisms, the adjoint representation of m1 on n11 becomes
the tautological representation of u(n + 1, 1). However, the isomorphism n11 −→∼ Cn+2

is not C-linear with respect to the complex structure on n11 induced from a ⊕ n ! It is
C-linear in v but C-antilinear in w. This subtlety is important if we want to transfer the
subspace v from Cn+2 to n11: while it is a complex line in Cn+2, it will become a totally
real 2-dimensional subspace in n11. In fact, if we modify v slightly by an element from
U(n+ 1, 1) to make it a complex line spanned by (0, . . . , 0, 1, 1), then the subspace of n11
it corresponds to is precisely gα1 , which can be easily seen from our description of the
isomorphism above. We thus have a C1-action given by the Lie subgroup H1,gα1

, whose
Lie algebra is

h1,gα1
= Nm1(n1 ⊖ gα1)⊕ a1 ⊕ (n1 ⊖ gα1)

= (k0 ⊕ a1 ⊕ gα2 ⊕ g2α2)⊕ a1 ⊕ (n1 ⊖ gα1)

= k0 ⊕ a⊕ n2 = hΛ2,1.

We see that H1,gα1
= HΛ

2,1, so this action was taken into account in (f). All in all, we
conclude that the nilpotent construction does not yield any new actions for M , which
completes the proof of Theorem 5.4.1.
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Chapter 6

HOMOGENEOUS COMPLEX HYPERSURFACES

In this final chapter, we make a slight change of perspective and study a natural analog of
the topic of the thesis within the framework of complex geometry: homogeneous complex
hypersurfaces in Hermitian symmetric spaces of compact and noncompact type. Such a
hypersurface does not have to be an orbit of a cohomogeneity-one action, which means
that we can no longer shift the study solely to such actions—although, admittedly, they
will still play a big role. Homogeneous complex hypersurfaces in complex space forms
and, more generally, complex flag manifolds received certain attention between the 1960s
and 1980s. This was brought to a climax when Konno obtained a classification result for
such hypersurfaces in complex flag manifolds with b2 = 1 ([Kon88]), which includes all
irreducible Hermitian symmetric spaces of compact type. We discuss Konno’s findings in
Section 6.2 and add a few refinements in line with the purposes of the thesis. After that, by
marrying Konno’s result with the classification of cohomogeneity-one actions on irreducible
compact symmetric spaces ([Kol02]), we investigate whether every homogeneous complex
hypersurface can be realized as a singular orbit of such an action. When it can, the
other orbits of the action possess remarkable geometric properties—we discuss this in
Subsections 6.2.4 and 6.2.5.

On the other hand, little to none is known about homogeneous complex hypersurfaces in
Hermitian symmetric spaces of noncompact type. Perhaps, the only exception is the special
case of totally geodesic complex hypersurfaces; those are exhausted by CHn−1 ⊂ CHn

and Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2), n ≥ 3, which can be shown using the notion of index
of a symmetric space. In this chapter, we make the next logical step and consider
those complex hypersurfaces that fit as a leaf into a homogeneous codimension-two
foliation. In Chapter 4, we saw that standard foliations are the archetype of many types
of homogeneous foliations on noncompact symmetric spaces. That lets us crystallize a
research goal: classify all complex hypersurfaces that appear as base leaves of standard
foliations. In Subsection 6.3.2, we accomplish this goal in the irreducible case. We then
proceed to show that every such hypersurface arises from one of the totally geodesic
complex hypersurfaces mentioned above via canonical extension. Among other things,
we will see that, in contrast to the compact case, every Hermitian symmetric spaces of
noncompact type admits a homogeneous complex hypersurface. Here is the layout of the
chapter:

• In Section 6.1, we go through some motivation for studying homogeneous complex
hypersurfaces and review the original result of Smyth and Nomizu that classifies
such hypersurfaces in simply connected complex spaces forms. We also formulate
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some objectives that will guide us throughout the chapter.

• In Section 6.2, we take a deep dive into Konno’s classification result for homoge-
neous complex hypersurfaces in complex flag manifolds with b2 = 1. We link the
hypersurfaces in his classification to cohomogeneity-one actions and discuss some
arising geometric phenomena.

• In Section 6.3, we study the topic of the chapter in the context of noncompact Her-
mitian symmetric spaces. We examine how the restricted root spaces decomposition
of such a space interacts with the complex structure and obtain several structure
results. We then employ that to prove Theorem 5. In the end, we propose a few
ideas for how one could use Theorem 5 as a foothold for further developments in
this direction.

6.1. Motivation and central questions

The starting point of the study of homogeneous complex hypersurfaces in Kähler manifolds
that sparks special interest to such submanifolds is their classification in complex space
forms obtained by Smyth and Nomizu ([Smy68, NS68, Smy67]):

Theorem 6.1.1. Let M be a simply connected complex space form and S ⊆ M a complete
connected complex hypersurface. The following conditions are equivalent:

(a) S is homogeneous.

(b) S is intrinsically homogeneous.

(c) S is Einstein.

(d) S has parallel Ricci curvature.

(e) S is (strongly) isometrically congruent to one of the following complex hypersurfaces
(embedded into M in a standard way):

Cn−1 if M = Cn,

CHn−1 if M = CHn,

CP n−1 or Qn−1 if M = CP n.

Here and throughout the chapter, Qn−1 ⊂ CP n stands for the standard smooth projective
quadric given as the zero locus of the quadratic form

∑n
i=0 z

2
i . With its induced metric, it

is a Hermitian symmetric space of compact type isometric to Gr+(2,Rn+1). Note that a
generic smooth quadric in CP n is not a homogeneous submanifold. With regard to the
above theorem, observe that an Einstein manifold always has parallel Ricci curvature; the
converse is true provided that the manifold is irreducible, but may be false in general.
Note that Qn−1 ⊂ CP n is the only hypersurface in (e) that is not totally geodesic.

This theorem suggests that the property of being homogeneous is very restrictive for
complex hypersurfaces in Kähler manifolds, as well as potentially related to other geometric
properties like being Einstein. It is important to point out that complex space forms are
very special types of Kähler manifolds, and the connection between homogeneity and
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Einsteinness may not be as straightforward when the ambient space is more complex1.
The dominant theme in this chapter is going to be the scarcity of homogeneous complex
hypersurfaces, which is still present in a much wider class of ambient spaces. It is
worthwhile to draw a parallel between complex and real hypersurfaces. First of all,
as we saw in Chapters 4 and 5, homogeneous real hypersurfaces are fairly abundant:
every isometric C1-action produces a 1-parameter family of those, and for many actions,
no two distinct hypersurfaces in such a family are congruent. Also, in the context of
real hypersurfaces, the link between being Einstein and homogeneous persists—to some
degree—in spaces with higher level of complexity. For example, it was recently shown
that complete connected real Einstein hypersurfaces in irreducible symmetric spaces are
always homogeneous (see [NP23]).

Agreement. Throughout this chapter all submanifolds are assumed to be connected and
properly embedded by default.

The ultimate objective in the study of homogeneous complex hypersurfaces would of
course be to obtain their full classification.

Open problem 6.A. Given a Kähler manifold M , classify all homogeneous complex
hypersurfaces in M up to isometric congruence.

Unsurprisingly, when posed in such a general form, the problem is out of reach and requires
additional assumptions on the ambient space or hypersurfaces in question. If a connected
Kähler manifold M admits a homogeneous complex hypersurface, the isometry group
I(M) acts on M with cohomogeneity at most 2. It is therefore reasonable to restrict the
problem to homogeneous Kähler manifolds. One special class of such manifolds consists
of compact simply connected homogeneous Kähler manifolds, also known as complex flag
manifolds ; these include Hermitian symmetric spaces of compact type and can be studied
very effectively by means of Lie theory. In the noncompact case, the situation is more
convoluted, and it seems sensible to restrict right away to the more well-behaved class
of Hermitian symmetric spaces of noncompact type. We formulate a humbler and more
down-to-earth version of the above problem.

Open problem 6.B. Given an irreducible Hermitian symmetric space M , classify all
homogeneous complex hypersurfaces in M up to isometric congruence.

As we know from Corollary 2.5.15, every isometry of an irreducible Hermitian symmetric
space is either holomorphic or anti-holomorphic. Therefore, if one reaches an answer
to Open problem 6.B, it should be fairly easy to refine it and obtain a (perhaps more
natural) classification of homogeneous complex hypersurfaces in M up to congruence via
a holomorphic isometry. Notice that if two such hypersurfaces are strongly congruent,
then they are of course congruent via a holomorphic isometry.

By design, a homogeneous complex hypersurface can always be realized as an orbit of
an isometric action of cohomogeneity 1 or 2. As we will see below (Remark 6.2.15), for
some hypersurfaces, both of these scenarios are possible. However, as of today, there is no
known example of such a hypersurface that cannot be realized as an orbit of a C1-action.
This leads us to the following

Conjecture 6.C. If M is an irreducible Hermitian symmetric space and S ⊆ M is a
homogeneous complex hypersurface, S can be realized as a singular orbit of an isometric

1Pun not intended.
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C1-action on M .

In the following sections, we will address Open problem 6.B and Conjecture 6.C. As we
have witnessed numerous times throughout the thesis, there is often a stark contrast
between symmetric spaces of compact and noncompact type. It turns out that the case of
homogeneous complex hypersurfaces is no exception. For this reason, we treat these two
settings separately.

6.2. The compact case

The bulk of this section is dedicated to the classification result of Konno ([Kon88])
concerning homogeneous complex hypersurfaces in complex flag manifolds with b2 = 1.
After recalling the rudiments of the theory of homogeneous Kähler manifolds, we introduce
the result and reformulate it a differential-geometric spirit, making minor refinements along
the way. We then marry it with the classification of C1-actions on compact symmetric
spaces obtained by Kollross in [Kol02]. As a result of all this, we arrive at partial answers
to Open problem 6.B and Conjecture 6.C.

6.2.1. Complex flag manifolds with b2 = 1

We begin with a brief introduction to the type of spaces involved in Konno’s classification.
For an in-depth exposition and proofs, see [Bes08, Ch. 8].

By a homogeneous Kähler manifold we mean a Kähler manifold that is also a Riemannian
homogeneous space. Let M be a connected compact homogeneous Kähler manifold.
Such a space always decomposes as a de Rham-like (recall Definition 2.1.58) product
M = M0 ×M1 × · · · ×Mk, where each factor is homogeneous Kähler and the irreducible
factors M1, . . . ,Mk are simply connected. Roughly speaking, this means that the entire
fundamental group of M is concentrated in the flat factor M0, which is just a complex
torus. In particular, M is simply connected if and only if it does not have a flat factor.
Such spaces are intimately related to compact semisimple Lie algebras. Let G be a
connected compact semisimple Lie group. Every orbit F ⊂ g of the adjoint representation
of G is simply connected and has a natural G-invariant almost complex structure that is
also integrable. Moreover, F admits a unique (up to a positive constant factor) G-invariant
Kähler-Einstein metric, and that metric has positive scalar curvature. Every other Kähler-
Einstein metric on F is homogeneous and isometric to a G-invariant Kähler-Einstein
metric via a biholomorphism1 of F (and thus also has positive scalar curvature). What is
more, every simply connected compact homogeneous Kähler manifold M is biholomorhic
to an adjoint orbit of some compact connected semisimple Lie group G (we can actually
take G to be I0(M)). With this in mind, we introduce the following

Definition 6.2.1. A compact simply connected complex manifold M is called a complex
flag manifold if it satisfies the following equivalent conditions:

(a) M admits a homogeneous Kähler metric.

1By a result of Matsushima, the group I0(M) is a compact real form of the semisimple group of inner
biholomorphisms of M (see [Mat57], [Kob95, Ch. III, Th. 5.1]), and every two such compact real forms
are conjugate.
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(b) M is biholomorphic to an adjoint orbit of some compact connected semisimple Lie
group G (equipped with its natural G-invariant complex structure).

Remark 6.2.2. This definition is not universally agreed upon. Some authors call this a
generalized complex flag manifold and reserve the term complex flag manifold for principal
adjoint orbits. In earlier literature on the subject, complex flag manifolds are also called
C-spaces or Kähler C-spaces.

Notice that a complex flag manifold M may in general admit many nonequivalent homo-
geneous Kähler metrics. Among those, there is the special subclass of Kähler-Einstein
metrics, which are automatically homogeneous and of positive scalar curvature, and which
are all homothetic to each other via biholomorphisms of M .

Another assumption we are going to impose is a restriction on the second Betti number.
Let us relinquish homogeneity for a moment, and let M be any simply connected compact
Kähler manifold with b2 = 1. By the Künneth formula, M has to be irreducible. Since
M is simply connected, we have H1(M,OM) ≃ H0,1(M) = 0, where OM is the structure
sheaf of holomorphic functions. Since b2 = 1 and M is compact Kähler, we get h1,1 =
1, h2,0 = h0,2 = 0, which implies H2(M,OM) ≃ H0,2(M) = 0. With this in mind, the
exponential sequence for M yields

· · · �������
H1(M,OM) Pic(M) H2(M,Z) �������

H2(M,OM) · · ·∼
c1

This means that the Picard group of M is isomorphic to Z. There are two ways to choose
this isomorphism though. Observe that that H2(M,R) = H1,1(M,R) is one-dimensional.
The Kähler cone KM is an open ray in H1,1(M,R). We also have the integral lattice
H2(M,Z) ⊂ H2(M,R) = H1,1(M,R). We identify H2(M,Z) with Z by sending its
unique generator lying in KM to 1; this lets us naturally view the first Chern class as an
isomorphism c1 : Pic(M) −→∼ Z. We call this the degree of a line bundle (or a divisor).
Given k ∈ Z, we denote the line bundle1 over M of degree k by OM(k). By construction,
OM (k) is positive if and only if k > 0. By the Kodaira embedding theorem, these are the
same as ample line bundles. In particular, they exist, so M is projective. If S ⊂ M is a
(properly embedded) complex hypersurface, we can think of it as a divisor and thus talk
about its degree. Given k < 0, one can show that OM(k) has no nonzero sections—by
using the fact that OM (−k) is ample. In particular, the degree of a complex hypersurface
has to be positive. If M is, in addition, a complex flag manifold, one can show that OM (1)
is not just ample but very ample.

One reason why imposing the restriction b2 = 1 on a complex flag manifold is useful is the
effect it has on the homogeneous Kähler metrics. Suppose M is a complex flag manifold
with b2 = 1, and suppose we have fixed an identification of M with an adjoint orbit of
some compact semisimple Lie group G (G can be chosen simple due to the irreducibility of
M). One can show that M admits a unique G-invariant Kähler metric up to rescaling by
a positive constant (see [Bes08, 8.84]); that metric is then necessarily Einstein of positive
scalar curvature.

Corollary 6.2.3. Let M be a complex flag manifold with b2 = 1.

(a) Any homogeneous Kähler metric on M is Einstein of positive scalar curvature.

1As is the tradition, we often do not distinguish notationally between elements of the Picard group
and their specific representatives.
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(b) Any two homogeneous Kähler metrics on M are homothetic via a biholomorphism
of M .

Example 6.2.4. Every Hermitian symmetric space of compact type is a complex flag
manifold. It has b2 = 1 if and only if it is irreducible. As complex flag manifolds,
compact Hermitian symmetric spaces have the following property: every homogeneous
Kähler metric on M is symmetric and differs from the existing one by some rescaling of
the normalizing constants. It then makes sense to say that a complex flag manifold is
Hermitian symmetric even if a homogeneous Kähler metric has not been specified. �

Another favorable property of the complex flag manifolds singled out by the condition
b2 = 1 is that they admit a neat description in terms of complex simple Lie groups.
Let G be a simply connected complex simple Lie group and g its Lie algebra. Pick a
Cartan subalgebra h ⊂ g and a set of simple roots Λ = {α1, . . . ,αr} ⊂ ∆. Choose any
j ∈ {1, . . . , r} and let qj be the maximal proper parabolic subalgebra1 of g corresponding
to the subset Φj = Λ {αj} of Λ. Write Qj for the connected complex Lie subgroup of
G corresponding to qj; it is automatically a closed subgroup. With its induced complex
structure, the homogeneous space M = G/Qj, is a complex flag manifold with b2 = 1.
Indeed, for a suitable compact real form G0 ⊂ G, one has G0/(G0 ∩Qj) ∼= G/Qj. Here
G0 ∩ Qj is the isotropy group of some X ∈ g0 = Lie(G0) with respect to the adjoint
representation of G0, so the quotient G0/(G0 ∩Qj) is the adjoint orbit G0 ·X. One can
show that the resulting identification G0 ·X ∼= M is a biholomorphism. The space M is
fully determined by the irreducible reduced root system ∆ of g and the removed simple
root αj, so it is common to denote this space as (∆,αj). Every complex flag manifold
with b2 = 1 arises via this construction. Note that if two simple roots αi,αj ∈ ∆ differ
by an automorphism of the Dynkin diagram, the resulting complex flag manifolds are
isomorphic. But even when two pairs (∆,α), (∆′,α′) have ∆ ̸≃ ∆′, they may give rise to
isomorphic complex flag manifolds.

Example 6.2.5. Here are some complex flag manifolds with b2 = 1 and pairs that
represent them:

(a) CP n : (An,α1).

(b) Gr(r,Cn) : (An−1,αr).

(c) Qn (n ̸= 2): (so(n+ 2,C),α1). Here we write the complex simple Lie algebra itself
rather than its root system because the latter depends on the parity of n: it is Dn

2
+1

if n is even, Bn+1
2

if n ≥ 3 is odd, and A1 if n = 1. �

Here we adopt the same root labeling as in Konno’s paper [Kon88]. It is not hard to
compute which of the pairs (∆,α) give rise to Hermitian symmetric spaces, see [Kon88,
Tab. 1]. The ample generator OM(1) of the Picard group can be described in terms of
the root system ∆ and the parabolic subalgebra qj. Similarly to the real semisimple
case, the Lie algebra qj decomposes as a semidirect sum gj + nj of its reductive and
nilpotent subalgebras. Here the summand gj contains the Cartan subalgebra h. From
this, it is easy to see that nj must be the nilpotent nilradical of qj (see p. 149). Let P
stand for the weight lattice of ∆; and let ω1, . . . ,ωr ∈ P be the fundamental weights
associated with Λ. The subset P+

j = {λ ∈ P | ⟨λ |αi ⟩ ≥ 0 ∀ i ̸= j} is the set of highest

1The theory of parabolic subalgebras of complex semisimple Lie algebras is quite similar to its real
counterpart (see Subsection 2.4.3), except it is arguably less complicated. See [Kna02, Sec.V.7].
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weights of all irreducible representations of gj. One particular element of this set is the
fundamental weight ωj. The dual of the irreducible representation of gj with highest
weight ωj can also be described as the irreducible representation with lowest weight −ωj ;
we are going to denote it by (V−ωj

, ρ−ωj
). Since nj is the nilpotent radical of qj, every

irreducible representation of qj vanishes on nj. Essentially, this means that irreducible
representations of qj are the same as those of gj. We extend ρ−ωj

to qj by letting it
be zero on nj; we keep using the same notation for the extension. One can also show
that ρ−ωj

: qj → gl(V−ωj
) lifts (uniquely) to ρ̃−ωj

: Qj → GL(V−ωj
), so we obtain an

irreducible holomorphic representation (V−ωj
, ρ̃−ωj

) of Qj. Since G↠M is a principal
Qj-bundle, we can construct the holomorphic vector bundle G×ρ̃−ωj

V−ωj
associated to

(V−ωj
, ρ̃−ωj

). It turns out that this is actually a line bundle of degree 1, i.e., the ample
generator OM (1) of Pic(M). Note that G acts on G×ρ̃−ωj

V−ωj
in a way that agrees with

its action on the base M . This induces a holomorphic representation of G on the space of
sections H0(M,OM(1)). The generalized Borel-Weil theorem (see [Kos61]) ensures that
this is an irreducible representation of G with lowest weight −ωj.

6.2.2. The classification of homogeneous complex hypersurfaces

Now we are ready to discuss Konno’s classification of homogeneous complex hypersurfaces.
Before we do that though, let us look at the special case of totally geodesic hypersurfaces.
We restrict to symmetric spaces because, in them, (complete connected) totally geodesic
submanifolds are automatically homogeneous (Corollary 2.2.13(c)), but also because the
study of totally geodesic submanifolds is in general more promising in symmetric spaces.

As we know from Example 2.2.15, the only symmetric spaces admitting a totally geodesic
(real) hypersurface are those of constant sectional curvature. In general, having a totally
geodesic submanifold of low codimension is a rather restrictive condition on a symmetric
space. This is governed by the notion of index, first introduced and studied by Onishchik
in [Oni80]. The index of a symmetric space M , denoted by i(M) is the lowest possible
codimension of a proper totally geodesic submanifold of M . If M is irreducible, its index
is bounded below by its rank: rk(M) ≤ i(M) (see [BO18]). In particular, if M is an
irreducible Hermitian symmetric space admitting a totally geodesic complex hypersurface,
its rank must be 1 or 2. With the only exceptions of G2/SO(4) and its dual G2

2/SO(4),
every irreducible symmetric space contains a reflective submanifold of codimension equal
to i(M). (Until resolved in [BO21], this was known as the index conjecture.) Together
with Leung’s classification of reflective submanifolds (see Subsection 2.2.1), this result
allows to compute the index of every irreducible symmetric space. For low-rank spaces, it
is a relatively feasible task to find all (complete connected) totally geodesic submanifolds
whose codimension equals the index of the ambient space. From [BCO16, Tab. 11.1],
where this is done in rank 1 and 2, we deduce:

Proposition 6.2.6. Let M be an irreducible Hermitian symmetric space and S ⊂ M a
complete connected totally geodesic complex hypersurface. Then M is isometric to either
CP n or Qn (n ≥ 3) (or their duals CHn, Gr∗(2,Rn+2)), S is reflective, and

S is (strongly) isometrically congruent to


CP n−1 if M = CP n,

CHn−1 if M = CHn,

Qn−1 if M = Qn,

Gr∗(2,Rn+1) if M = Gr∗(2,Rn+2).
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Here all four hypersurfaces are embedded into the corresponding M in a standard way.
Together with Theorem 6.1.1, this proposition provides three examples of homogeneous
complex hypersurfaces in complex flag manifolds with b2 = 1, and all of them actually
occur in irreducible Hermitian symmetric spaces: CP n−1 ⊂ CP n, Qn−1 ⊂ CP n, and
Qn−1 ⊂ Qn. In [Kon88], Konno proved that there are just two more examples—but he
did so in the complex category, essentially forgetting about any Kähler metrics. This
alone does not pose a serious problem thanks to Corollary 6.2.3. What is more important
though, the notion of equivalence in his classification is weaker than congruence: he
considers two hypersurfaces S ⊂ M and S ′ ⊂ M ′ equivalent if M and S are biholomorphic
to M ′ and S ′, respectively; but the map S −→∼ S ′ does not have to be the restriction of
M −→∼ M ′. For the sake of brevity, we shall say that the pairs (M,S) and (M ′, S ′) are
biholomorphic and denote it by (M,S) ≃ (M ′, S ′).

Theorem 6.2.7. Let M be a complex flag manifold with b2 = 1 and S ⊂ M a connected
properly embedded (nonsingular) complex hypersurface admitting a homogeneous Kähler
metric (e.g., S is an intrinsically homogeneous submanifold with respect to some Kähler
metric on M). Then:

(a) M is Hermitian symmetric.

(b) S is a complex flag manifold. Unless (M,S) ≃ (CP 3, Q2) or (Q3, Q2), S has b2 = 1.

(c) The pair (M,S) is biholomorphic to one of the following (here d is the degree of S):

M S d restrictions

CP n (An,α1) CP n−1 (An−1,α1) 1 n ≥ 1

CP n (An,α1) Qn−1 [if n ̸= 3] (so(n+ 1,C),α1) 2 n ≥ 2

Qn (so(n+ 2,C),α1) Qn−1 [if n ̸= 3] (so(n+ 1,C),α1) 1 n ≥ 3

Gr(2,C2n) (A2n−1,α2) Sp(n)/Sp(n− 2)U(2) (Cn,α2) 1 n ≥ 3

E6/Spin(10)U(1) (E6,α1) F4/Spin(7)U(1) (F4,α4) 1

Table 6.1. Homogeneous complex hypersurfaces in complex flag manifolds with b2 = 1

In this table, for both M and S (unless S ≃ Q2), we list their corresponding pairs (∆,α),
where ∆ is an irreducible reduced root (or a complex simple Lie algebra) and α is a
simple root. Implicit in the theorem is the assertion that for each pair (M,S) as in the
table, a holomorphic embedding S ↪→ M actually exists. For the first three rows, this
is elementary. For the last two, this was shown in [Sak85] and [Kim79], respectively. In
the fourth row of the table, we could have allowed n = 2, but then Gr(2,C4) ≃ Q4 and
Sp(2)/U(2) ≃ Q3, so that possibility was already accounted for in the third row. Owing
to the uniqueness property of homogeneous Kähler metrics on complex flag manifolds
with b2 = 1 (Corollary 6.2.3(2)), Theorem 6.2.7 readily implies the following classification
result, which partially answers Open problem 6.B in the compact case:

Corollary 6.2.8. Let M be a complex flag manifold with b2 = 1 endowed with a homoge-
neous Kähler metric, and let S ⊂ M a connected properly embedded homogeneous complex
hypersurface. Then:

(a) M is an irreducible Hermitian symmetric space of compact type.

(b) S is a complex flag manifold. Unless (M,S) ≃ (CP 3, Q2) or (Q3, Q2), S has b2 = 1.
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(c) M and S are holomorphically isometric to one of the pairs listed in Table 6.1.

Strictly speaking, there are two pairs (M,S) in Table 6.1 where the hypersurface has
b2 ̸= 1, namely (CP 3, Q2) and (Q3, Q2). In these cases, Corollary 6.2.3 is not applicable.
Still, the standard metric on Q2 ≃ CP 1 × CP 1 is Hermitian symmetric, hence so is every
homogeneous Kähler metric on it (see Example 6.2.4). Consequently, the hypersurfaces
S in these pairs will be holomorphically isometric to Q2, possibly with nonmatching
normalizing constants on its two de Rham factors. But S is actually congruent to the
standard Q2 inside CP 3 or Q3, which is Einstein and thus has equal normalizing constants
thanks to Proposition 2.1.114. For CP 3, this follows from Theorem 6.1.1, and for Q3, we
will show it in Proposition 6.2.12 below.

Let us briefly discuss the methods used in the proof of Theorem 6.2.7 given in [Kon88].
The key idea is to study cohomological invariants of the line bundles OX(k), as well as the
twisted vector bundles TX(k) = TX ⊗OX(k) and Ω

1
X(k) = Ω1

X ⊗OX(k), of a complex
flag manifold X with b2 = 1 by means of the representation theory of complex simple Lie
algebras and their parabolic subalgebras. One can then use the existence of an embedding
S ↪→ M to draw certain conclusions about those cohomology groups and obtain strong
restrictions on what M and S could be. We break down the proof in several steps:

(a) For an arbitrary complex flag manifold X with b2 = 1, show the following:

(1) H0(X,Ω1
X(1)) ̸= 0 unless X is (Cm,αj), (F4,α4), or an irreducible Hermitian

symmetric space of compact type.

(2) Provided X ̸≃ CP n, H1(X,TX(−d)) = 0 for any d ≥ 1 unless

X ≃


Qn (n ≥ 3) and d = 2,

(Cm,α2) (n ≥ 3) and d = 1,

(F4,α4) and d = 1.

(b) Let M be a complex flag manifold with b2 = 1 and S ⊂ M a (nonsingular) complex
hypersurface of degree d. If M ≃ CP n or Qn (and S is intrinsically homogeneous),
the assertion of Theorem 6.2.7 is a well-known fact; for this reason, we assume
M ̸≃ CP n, Qn from now on. In particular, this ensures that n = dimC(M) ≥ 5.

(c) It follows from a sufficiently general version of the Lefschetz hyperplane theorem
(see, e.g., [Fuj80]) that S is also simply connected and has b2 = 1. As a result, its
Picard group is isomorphic to Z and has a unique ample generator—according to
our discussion on p. 179.

(d) Show that H1(S, TS(−d)) ̸= 0. This is the crux of Konno’s argument.

(e) Show that S and M are related by the following equations:

(1) k(M) = k(S) + d, where k is the degree of the anticanonical bundle.

(2) Provided that M is an irreducible Hermitian symmetric space of compact type,

h0(OM(1)) = h0(OS(1)) +

{
0 if d ≥ 2

1 if d = 1.
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(f) Now suppose S admits a homogeneous Kähler metric—and hence is a complex
flag manifold with b2 = 1. Show that H0(M,Ω1

M(1)) must vanish whenever S is
(Cm,αj), (F4,α4), or an irreducible Hermitian symmetric space of compact type.

(g) Combining (d) with (a)-(1), we see that there are 4 options for S:

S ≃


CP n,

Qn (n ≥ 3) and d = 2,

(Cm,α2) (n ≥ 3) and d = 1,

(F4,α4) and d = 1.

(h) Combining (g), (f), and (a)-(1), we deduce that M has to be (Cm,αj), (F4,α4), or
an irreducible Hermitian symmetric space of compact type.

(i) Calculate the numbers k(X) and h0(OX(1)) for every complex flag manifold with
b2 = 1 (see [Kon88, Tab. 2]). Then use that in combination with (e), (g), and (h) to
deduce Theorem 6.2.7.

6.2.3. The problem of congruence

As is evident from the above description, Konno’s method could not possibly produce a
classification of homogeneous complex hypersurfaces up to congruence. Essentially, it only
tells when a complex flag manifold admits a holomorphic codimension-one embedding into
another such manifold with b2 = 1. Consequently, Corollary 6.2.8 does not fully resolve
the classification problem for homogeneous complex hypersurfaces in irreducible compact
Hermitian symmetric spaces—the way we posed it in Open problem 6.B. Here we try to
address this issue.

The case of hypersurfaces in CP n is taken care of by Theorem 6.1.1. It is important to
point out that in their proof of the equivalence between (a) and (b) in Theorem 6.1.1,
Smyth and Nomizu relied heavily on the fact that the ambient space is a complex space
form. They proved that an intrinsically homogeneous complex hypersurface in a simply
connected complex space form is holomorphically isometric to one of the hypersurfaces in
(e), and then they invoked Calabi’s rigidity theorem (see [Cal53] and [NS68, Th. 1]):

Proposition 6.2.9 (Calabi’s Rigidity Theorem). Suppose M is a simply connected
complex space form and S a connected Kähler manifold with two Kähler immersions
F1,2 : S → M . Then there exists a holomorphic isometry g of M such that F2 = g ◦ F1.

There is little hope a similar result would hold in Hermitian symmetric spaces of noncon-
stant holomorphic sectional curvature, let alone arbitrary homogeneous Kähler manifolds.

The ambient space in the remaining three rows in Table 6.1 is no longer CP n, which
makes the matters more complicated. On the other hand, the degree of the hypersurface
is always one, which allows us to represent it as a hyperplane section. Let M be a complex
flag manifold with b2 = 1. As we mentioned earlier, the line bundle OM(1) is very ample,
so its complete linear system determines a holomorphic embedding φ : M ↪→ |OM(1)| =
P(H0(M,OM(1))∗). For instance, for M = Qn, this gives its standard embedding into
CP n+1, whereas for M = Gr(2,C2n), this is the Plücker embedding (see [Sak85]). We
can represent M by a complex simple Lie algebra g with a fixed simple root αj ∈ Λ.
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Then M = G/Qj, where G is the simply connected complex Lie group with Lie algebra
g, and Qj ⊂ G is the connected Lie subgroup corresponding to the parabolic subalgebra
qj ⊂ g. Recall that G acts on the total space of OM(1) in a way that agrees with its
action on the base. As a result, it has a representation on V = H0(M,OM(1)), and that
representation is irreducible with lowest weight −ωj . This is equivalent to saying that the
dual representation V ∗ is irreducible with highest weight ωj. This latter representation
induces a holomorphic action of G on P(V ∗). This action agrees1 with the one on M :

Proposition 6.2.10. The embedding φ : M ↪→ P(V ∗) is G-equivariant.

Proof. Recall that each p ∈ M gives rise to a linear map evp : V ↠ OM(1)p,σ 7→ σ(p);
and φ(p) = Ann(Ker(evp)), the annihilator of the hyperplane Ker(evp) ⊂ V , which is a
line in V ∗. The action of G on V is given by g · σ = g ◦ σ ◦ g−1 (where the left g acts on
the total space of OM(1) and the right g−1 acts on M). From this, we can see that the
diagram

V OM(1)p

V OM(1)g(p)

evp

∼ g ∼ g

evg(p)

is commutative for every g ∈ G. We can now compute:

g ·φ(p) = g(Ann(Ker(evp))) = Ann(g(Ker(evp))) = Ann(Ker(evg(p))) = φ(g(p)),

which completes the proof.

The restriction of the line bundle OP(V ∗)(1) to M ⊆ P(V ∗) is naturally isomorphic to
OM(1), hence we have a linear map

H0(P(V ∗),OP(V ∗)(1)) → V. (6.2.1)

But the space of sections H0(P(V ∗),OP(V ∗)(1)) is naturally isomorphic to V , and it
is easy to show that (6.2.1) is an isomorphism. What we really care about is that it
is surjective2, which implies that any (nonsingular) degree-1 hypersurface in M is a
(transverse) hyperplane section of M inside P(V ∗).

Now we are ready to deal with the third row in Table 6.1. Consider the quadric Qn ⊂
CP n+1, n ≥ 3. By definition, it is the projective zero locus of q =

∑n+1
i=0 z2i , and the

affine cone Q̃n ⊂ Cn+2 over Qn is the affine zero locus of q. Clearly, Q̃n (and thus Qn) is
left invariant by any linear transformation of Cn+2 that preserves the symmetric bilinear
form corresponding to q (we denote it by the same letter). Therefore, the subgroup

SU(n + 2) ∩ O(n + 2,C) = SO(n + 2) of SU(n + 2) preserves Q̃n and Qn. Conversely,
if g ∈ SU(n + 2) leaves Qn invariant, then the quadratic forms q and g · q = q ◦ g−1

have the same zero locus and thus must be proportional: g · q = αq, where α ∈ C×.
This means that α−1g ∈ U(n + 2) ∩ O(n + 2,C) = O(n + 2). We deduce that the
identity component of the subgroup of elements in SU(n + 2) leaving Qn invariant
has the same image in I0(Qn) as SO(n + 2); this image is the whole of I0(Qn) since

1Proposition 6.2.10—and this whole passage for that matter—is part of the setting for the generalized
Borel-Weil theorem, see [Kos61] for more details.

2A projective variety satisfying this property is called linearly normal.
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Qn ≃ Gr+(2,Rn+2) = SO(n + 2)/SO(n)SO(2). As we know by now, every nonsingular
degree-1 hypersurface in Qn is cut out by a (unique) hyperplane H ⊂ CP n+1 (intersecting

Qn transversely). Let H̃ ⊂ Cn+2 stand for the affine cone over H, which is just a
hyperplane in Cn+2.

Lemma 6.2.11. A nonsingular hyperplane section H ∩Qn is a homogeneous submanifold
of Qn if and only if the orthogonal complements H̃⊥h and H̃⊥q with respect to h and q,
respectively, coincide.

Proof. It is easy to see that the intersection H ∩Qn is transverse (⇔ nonsingular) if and

only if the restriction of q to H̃ is nondegenerate. According to the above discussion, the
hyperplane section H ∩Qn is homogeneous in Qn if and only if the subgroup of elements of
SO(n+ 2) preserving it acts transitively on it. First, assume the orthogonal complements

of H̃ with respect to h and q do not coincide. Then they span a 2-dimensional complex
subspace of Cn+2, which has to intersect H̃ by some complex line ℓ. If g ∈ SO(n + 2)

leaves H̃ invariant, then it must preserve both H̃⊥h and H̃⊥q , hence it also preserves ℓ.
As a result, the subgroup of elements in SO(n+ 2) preserving H̃ cannot act transitively
on H ∩Qn. Conversely, suppose the orthogonal complements coincide. Then we can find
a vector vn+1 in this complement such that ||vn+1||2 = q(vn+1) = 1. Take any two complex

lines L,L′ ⊂ H̃ ∩ Q̃n. We can find two bases (vi)
n
i=0 and (v′i)

n
i=0 for H̃ orthonormal with

respect to both h and q such that v0+ iv1 ∈ L and v′0+ iv′1 ∈ L′. The linear transformation
g of Cn+2 sending v0, . . . , vn, vn+1 to v

′
0, . . . , v

′
n, vn+1 lies in U(n+2)∩O(n+2,C) = O(n+2)

and preserves H̃; by changing its value on vn+1 to −vn+1 if necessary, we can make sure g
lies in SO(n+ 2). This shows that H ∩Qn is a homogeneous submanifold of Qn.

We can now prove the following result, which settles Open problem 6.B for M = Qn.

Proposition 6.2.12. Any connected properly embedded homogeneous complex hypersurface
in Qn is (strongly) isometrically congruent to Qn−1. In particular, it is totally geodesic.

Proof. Let S be a homogeneous complex hypersurface in Qn. For the purposes of this
proof, we may assume n ≥ 3. In light of Corollary 6.2.8, S is a nonsingular section of Qn

by some projective hyperplane H ⊂ CP n+1. By Lemma 6.2.11, the affine cone H̃ ⊂ Cn+2

satisfies H̃⊥h = H̃⊥q . This allows us to find a basis (vi)
n+1
i=0 for Cn+2 orthonormal with

respect to both h and q such that vn+1 ⊥ H̃. The linear transformation g of Cn+2 sending
v0, . . . , vn+1 to the standard basis e0, . . . , en+1 lies in U(n+ 2) ∩O(n+ 2,C) = O(n+ 2);
by changing its value on vn+1 to −en+1 if necessary, we can make sure g lies in SO(n+ 2).
The induced transformation of CP n+1 preserves Qn and provides a (strong) isometric
congruence between S and the standard subquadric Qn−1 ⊂ Qn.

The situation in the last two rows of Table 6.1 is more convoluted and we do not
attempt to solve the corresponding congruence problems here. It was proven in [Sak85]
that every nonsingular degree-1 hypersurface in Gr(2,C2n) is holomorphically congruent
to the standard embedding Sp(n)/Sp(n − 2)U(2) ↪→ Gr(2,C2n), i.e., congruent via a
biholomorphism g ∈ SL(2n,C) of the Grassmannian. (The same is clearly true for degree-2
hypersurfaces in CP n and can also be shown for degree-1 hypersurfaces in Qn.) Now,
among all these hypersurfaces, there are those that are homogeneous, and we know that
they are holomorphically isometric to the standard Sp(n)/Sp(n− 2)U(2). The question is
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whether they are isometrically congruent to it. The same can be asked about degree-1
hypersurfaces in E6/Spin(10)U(1). We can formulate the following

Conjecture 6.2.13. (a) Every homogeneous complex hypersurface in Gr(2,C2n), n ≥ 3,
is isometrically congruent to the standard Sp(n)/Sp(n− 2)U(2).

(b) Every homogeneous complex hypersurface in E6/Spin(10)U(1) is isometrically con-
gruent to the standard F4/Spin(7)U(1).

A positive answer to this conjecture would settle the compact case of Open problem 6.B.
According to the discussion above, either of Gr(2,C2n) and E6/Spin(10)U(1) embeds
G-equivariantly into P(H0(M,OM(1))∗), where G = SL(2n,C) or E6(C), respectively.
With respect to this embedding, the nonsingular degree-1 hypersurfaces in M are the same
as its transverse hyperplane sections. So the above conjecture boils down to showing that
the action of SU(2n) or E6 on P(H0(M,OM(1))∗) is transitive on the set of hyperplanes
intersecting M transversely along a homogeneous hypersurface. Since we know exactly
what the representation of G on H0(M,OM(1)) looks like, this problem might allow a
solution by means of representation theory: one needs to show that two vectors in this
representation giving rise to transverse homogeneous hyperplane sections lie in the same
orbit of G up to a scalar multiple.

6.2.4. Homogeneous complex hypersurfaces and cohomogeneity-
one actions

In this part, we look at the homogeneous complex hypersurfaces in Table 6.1 through the
lens of Conjecture 6.C and try to answer which of them come from cohomogeneity-one
actions. Fortunately, this is no daunting task—because C1-actions on irreducible symmetric
spaces are fully classified (see [Kol02, Th.B]). As we know from Proposition 2.3.35, an
isometric C1-action on a simply connected symmetric space of compact type (by a
connected Lie group) must have precisely two singular orbits, and the principal orbits are
the tubes of varying radii around any of the singular orbits. If the ambient space M is
Hermitian, in order to figure out when a singular orbit is a complex hypersurface, one
needs to compute its codimension and verify whether its tangent spaces are preserved
by the complex structure of M . The former is a reasonably straightforward process—at
least in case of classical symmetric spaces (see Example 6.2.17). There are only two
exceptional irreducible Hermitian symmetric spaces of compact type (see Table 6.4 below);
and only one of them admits an isometric C1-action (unique up to congruence), namely
F4 ↷ E6/Spin(10)U(1). One of the singular orbits of this action is a homogeneous
hypersurface F4/Spin(7)U(1); this was shown in [Kim79]. It turns out that the list of
homogeneous complex hypersurfaces arising from isometric C1-actions coincides with the
one in Table 6.1.

Proposition 6.2.14. Let M be an irreducible Hermitian symmetric space of compact type
and H a connected Lie group acting properly and isometrically on M with cohomogeneity
one. If one of the singular orbits of H is a complex hypersurface, then the action of H is
orbit-equivalent to one of the actions given in Table 6.2 below.

In this table, n is subject to the same restrictions as in Table 6.1, so we do not repeat
them. All five of these actions arise from a natural (local) embedding H ↪→ I0(M). Note
that even with Corollary 6.2.8, this proposition does not imply that every homogeneous

187



6.2. The compact case

M H the complex singular orbit the other singular orbit

CP n S(U(n)× U(1)) CP n−1 {pt}

CP n SO(n+ 1) Qn−1 RP n

Qn SO(n+ 1) Qn−1 Sn

Gr(2,C2n) Sp(n) Sp(n)/Sp(n− 2)U(2) HP n−1

E6/Spin(10)U(1) F4 F4/Spin(7)U(1) OP 2

Table 6.2. Cohomogeneity-one actions on irreducible Hermitian symmetric spaces of compact type with
a complex codimension-2 singular orbit

complex hypersurface in an irreducible Hermitian symmetric space of compact type arises
as a singular orbit of an isometric C1-action; to guarantee this, we still need to show that
any two such hypersurfaces lying in the same space are isometrically congruent, provided
they have the same degree. Thanks to Theorem 6.1.1 and Proposition 6.2.12, this is true
for CP n and Qn, but the case of Gr(2,C2n) and E6/Spin(10)U(1) is still open. In other
words, Conjecture 6.C is contingent on the answer to Conjecture 6.2.13.

Remark 6.2.15. In certain cases, a homogeneous complex hypersurface can be realized
as an orbit of both a C1- and a C2-action. For example CP n−1 is a singular orbit of a
C1-action H = S(U(n)×U(1)) ↷ CP n. But if we remove the U(1)-factor from H—which
is responsible for a circle action in the slice representation at a point on CP n−1—then we
get SU(n) ↷ CP n. This action has cohomogeneity 2 but still has CP n−1 as an orbit (this
time, a nonsingular orbit).

There is a link between the actions in Table 6.2 and contact geometry. Let M be a Kähler
manifold and S ⊂ M a real hypersurface. The almost complex structure I of M allows
to define a hyperplane distribution TS ∩ I(TS) = TS ⊖ I(NS) on S. This distribution
is called the maximal holomorphic subbundle of TS, and it may or may not determine a
contact structure on S. Assume for simplicity that the normal bundle of S is trivial, and
let ζ ∈ Γ(NM) be a unit normal vector field. The vector field ξ = −Iζ ∈ X(S) is called
the Reeb (or sometimes Hopf) vector field on S. We can define a 1-form, a skew-symmetric
(1,1)-tensor field, and a closed 2-form on S by the formulas

η = ξ♭, ϕ = I − η⊗ ζ, ω(X, Y ) = ⟨ϕ(X)|Y ⟩.

One can check ϕ does indeed take values in TS. It is called the structure tensor field on S;
and ω is called the fundamental 2-form on S. We say that S is a contact hypersurface if
there exists a non-vanishing function f ∈ C∞(M) such that dη = 2fω (if dimC(M) > 2, f
will automatically be a constant function). Roughly speaking, this means dη is proportional
to ω at every point, except they both have zeroes because the dimension of S is odd. If S
is a contact hypersurface, the maximal holomorphic subbundle of TS determines a contact
structure on S (with η as a contact 1-form). As a consequence, no complex hypersurface
of M can lie in S—otherwise, it would have to be an integral submanifold of the maximal
holomorphic subbundle of TS. The principal orbits of every action in Table 6.2 are contact
hypersurfaces (see [BS22, Th. 3.6.6, Sect. 8.3]). Moreover, it is conjectured that these are
the only complete connected contact hypersurfaces in irreducible Hermitian symmetric
spaces of compact type and dimC ≥ 3 (up to isometric congruence).
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Corollary 6.2.16. Let M be an irreducible Hermitian symmetric space of compact type
and S ⊂ M a homogeneous complex hypersurface. Suppose that S can be realized as a
singular orbit of an isometric C1-action on M . Then there does not exist a complex
hypersurface in M (complete ot not) equidistant to S.

Before moving on, we use the example of Sp(n) ↷ Gr(2,C2n) to show how one can find
the singular orbits of a C1-action on an irreducible symmetric space of classical type. This
becomes a fairly simply task once we find a suitable geometric representation of the space.

Example 6.2.17. Let M = Gr(2,C2n), n ≥ 3. Identify C2n with Hn by picking i ∈
H to be a distinguished complex structure in Hn and taking a C-basis for Hn to be
e1, je1, . . . , en, jen. This gives an orthogonal representation of H = Sp(n) on C2n and
thus an isometric action on M . One obvious orbit of H in M is the set of quaternionic
lines in Hn, thought of as complex 2-planes. It is easy to see that this is indeed a single
orbit, and it is isometric to Sp(n)/Sp(n − 1)Sp(1) ≃ HP n−1. Its (real) codimension
equals 4n− 4 ≥ 8, so it is a singular orbit. Now, consider the set S of totally complex
subspaces of Hn of real dimension 4 that are preserved by i. In other words, S is the
subset of M consisting of 2-planes L such that jL ⊥ L (⇒ kL ⊥ L). Since H acts on Hn

orthogonally and commutes with both i and j, the subset S is easily seen to be its orbit.
Consider the point L = spanC{en−1, en} ∈ S. Its isotropy subgroup HL preserves the
subspace spanH{en−1, en} and its orthogonal complement HL = spanH{e1, . . . , en−2}, so
HL ⊆ Sp(n−2)Sp(2). But HL also preserves the complex subspace L of HL, which implies
that the bottom right 2× 2 corner of any matrix in HL has to consist of complex numbers.
From this, one can easily see that HL = Sp(n−2)U(2) and thus S = Sp(n)/Sp(n−2)U(2).
The (real) codimension of S is 2, so it is the other singular orbit. It is not hard to see that
S is in fact a complex submanifold and thus a homogeneous complex hypersurface. �

6.2.5. The complexification of projective spaces

Let us look at those actions in Table 6.2 whose complex orbit is not totally geodesic. For
convenience, we put them together in a separate table:

M H the complex singular orbit the other singular orbit

CP n SO(n+ 1) Qn−1 RP n

Gr(2,C2n+2) Sp(n+ 1) Sp(n+ 1)/Sp(n− 1)U(2) HP n

E6/Spin(10)U(1) F4 F4/Spin(7)U(1) OP 2

Table 6.3. Cohomogeneity-one actions on irreducible Hermitian symmetric spaces of compact type with
a non-totally-geodesic complex codimension-2 singular orbit

In pursue of symmetry, we raised n in the second row by 1, so now the restriction on it in
that row is n ≥ 2. There is an obvious pattern in this table: the non-complex singular
orbit is always isometric to a projective space. What is more, it is a real form of M (in
the sense of [Jaf75, Leu79b]), and M is what is known as the complexification of that
projective space. In this subsection we explain how to construct the complexification of
a projective space and discuss some of its properties. The exposition here is based on
[AB03], where this construction was carried out for projective planes. Note that every
compact homogeneous space G/K can be complexified as G(C)/K(C) (see, for instance,
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[Kul78, §5]), but the main merit of the present construction for projective spaces is that
it produces a compact complexification.

Let M = FP n be a projective space over F ∈ {R,C,H,O}, where n ≥ 2 for F = R,C,H,
and n = 2 for F = O. (The case of OP 2 has to be handled separately due to the
nonassociativity of the octonions, see Remark 6.2.18 below. The discussion prior to that
remark applies only to the cases F = R,C,H, but everything after that works for F = O,
too.) Being the projectivization of the vector space Fn+1, the space M admits a natural

transitive action of a noncompact semisimple Lie group G̃n with a maximal compact
subgroup Gn, where

G̃n =


SL(n+ 1,R), if F = R,
SL(n+ 1,C), if F = C,
SL(n+ 1,H), if F = H,

E−266 , if F = O,

Gn =


SO(n+ 1), if F = R,
SU(n+ 1), if F = C,
Sp(n+ 1), if F = H,

F4, if F = O.

The subgroup Gn acts on M transitively and by isometries. As we know from Ex-
ample 2.1.36, up to finite covering, Gn coincides with I0(M). The key step of the
complexification construction—and, coincidentally, what makes the construction so ad-hoc
and hard to generalize—is to embed M into a space of matrices. Consider the (real)
vector space Hn+1 of Hermitian matrices over F:

Hn+1 = {A ∈ Mat(n+ 1,F) | A = A∗} ,

where A∗ = At. The trace of every matrix in Hn+1 is real, so we can consider the affine
hyperplane Hn+1(1) ⊂ Hn+1 of matrices of trace 1. The space M admits a natural
embedding into Hn+1:

i : M ↪→ Hn+1(1), ℓ 7→ prℓ,

where prℓ is the F-linear operator of orthogonal projection of Fn+1 onto the F-line ℓ. Let
Pn stand for the (real) projective space over Hn+1. In other words, Pn is the projective
completion of Hn+1(1). Since M ⊂ Hn+1(1), we have M ⊂ Pn. We will denote the

“infinity” Pn Hn+1(1) via M∞. The group G̃n acts on Hn+1 by X ·A = XAX∗. Under this

action, Gn preserves M , Hn+1(1), and M∞. The action of G̃n on Hn+1 preserves neither

M nor Hn+1(1), but the induced action G̃n ↷ Pn does preserve M ⊂ Pn.

Remark 6.2.18. The Cayley projective plane cannot be defined as the set of “lines” in
O3 due to the fact that O is not associative. Instead, it is normally defined as already
sitting inside H3(1) ⊂ Mat(3,O) (see, e.g., [Bae02]). The groups E−266 and F4 (and hence
their action on OP 2) can also be defined in terms of Hermitian 3 × 3 matrices over O
(see [Yok09]).

The actual complexification starts on the level of Lie groups and projective spaces. Let
G̃n(C) stand for the complexification of G̃n:

G̃n(C) =


SL(n+ 1,C), if F = R,
SL(n+ 1,C)× SL(n+ 1,C), if F = C,
SL(2n+ 2,C), if F = H,

E6(C), if F = O.
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We also write Pn(C) for the complexification of Pn, i.e., the complex projective space

P(Hn+1 ⊗ C). The action G̃n ↷ Pn naturally extends to G̃n(C) ↷ Pn(C). Since M was

an orbit of G̃n in Pn, we define M(C) to be the corresponding orbit of G̃n(C) in Pn(C)
and call it the complexification of M :

M(C) = G̃n(C) ·M = G̃n(C) · p ⊂ Pn(C) (for any p ∈ M).

The following can be shown essentially by computing the isotropy subgroup of G̃n(C) at a
suitable point of M(C) (and we refer to [AB03] for a more detailed discussion):

Proposition 6.2.19. The complexification M(C) ⊆ Pn(C) is a nonsingular complex
projective variety and a Hermitian symmetric space. It can be described as

M(C) ∼=


CP n, if M = RP n,

CP n × CP n, if M = CP n,

Gr(2,C2n+2), if M = HP n,

E6/Spin(10)U(1), if M = OP 2.

In particular, M(C) is irreducible unless M = CP n. The submanifold M is a real form
of M(C) (the fixed point set of an antiholomorphic involutive isometry).

If we restrict the action G̃n(C) ↷ M(C) to Gn, we obtain an isometric C1-action. One of
its singular orbits is M , while the other is a homogeneous complex hypersurface. So this
complex hypersurface can be described as the focal manifold of M inside M(C).

Note that the homogeneous complex hypersurface focal to CP n in its complexification
CP n × CP n was not included in Table 6.1. This is simply because in Corollary 6.2.8, we
restricted to complex flag manifolds with b2 = 1, which are irreducible. The fact that
CP n is already complex itself forces its complexification to be just a product of two copies
of CP n (notice that CP n embeds into its complexification as the diagonal). As a complex
homogeneous SU(n+ 1)-space, the singular orbit of SU(n+ 1) in CP n × CP n other than
CP n can be described as the projectivized bundle P(TCPn(−1)).

6.3. The noncompact case

In this section, we initiate a study of complex homogeneous hypersurfaces in Hermitian
symmetric spaces of noncompact type. Historically, these have scarcely received any
attention whatsoever—primarily because the algebraic methods that prevail in the com-
pact case are not available for noncompact spaces. The only notable exception is the
classification result Theorem 6.1.1 of Smyth and Nomizu, which implies that the totally
geodesic CHn−1 is the only homogeneous complex hypersurface in CHn up to isometric
congruence. Notice the difference with the compact case: apart from CP n−1, there is
another, non-totally-geodesic homogeneous hypersurface in CP n, namely the quadric
Qn−1.

In Proposition 6.2.6, we observed that, up to (strong) isometric congruence, there are
precisely two totally geodesic complex hypersurfaces in irreducible Hermitian symmetric
spaces of noncompact type: the complex hyperbolic hyperplane CHn−1 ⊂ CHn, and the
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complex hyperbolic subquadric Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2), , n ≥ 3. The indisputable
advantage that Hermitian symmetric spaces of noncompact type have is the canonical
extension construction (first introduced in Subsection 5.1.1), which allows to extend
homogeneous objects from a boundary component of M to the whole M . In Hermitian
symmetric spaces of noncompact type, it can be applied to complex boundary components
to produce new homogeneous complex hypersurfaces in higher-rank spaces. In particular,
one can use the two totally geodesic complex hypersurfaces to generate examples of
homogeneous complex hypersurfaces on every Hermitian symmetric space of noncompact
type. We will prove a non-existence result, which puts these examples forward as candidates
for the only homogeneous complex hypersurfaces in irreducible Hermitian symmetric spaces
of noncompact type. Our main tool, which will serve as a substitute for the algebraic
methods used in compact case, is going to be the restricted root space decomposition.

6.3.1. Hermitian symmetric spaces of noncompact type

In this preparatory subsection, we establish a number of results concerning Hermitian
symmetric spaces of noncompact type. We begin with writing down the complete list of
irreducible Hermitian symmetric spaces. In the following table, M is a space of noncompact
type, DD is its Dynkin diagram, and M∗ is its compact dual.

M M∗ restrictions rk dimC DD

Gr∗(r,C2r+n) Gr(r,C2r+n) r, n ≥ 1 r (n+ r)r (BC)r : (2, . . . , 2, (2n, 1))

Gr∗(r,C2r) Gr(r,C2r) r ̸= 2 r r2 Cr : (2, . . . , 2, 1)

Gr∗(2,Rn+2) Gr+(2,Rn+2) n ≥ 3 2 n C2 : (n− 2, 1)

SO(n,H)/U(n) SO(2n)/U(n) n ≥ 5
⌊n
2

⌋ n(n− 1)

2

[n = 2k] Ck : (4, . . . , 4, 1)
[n = 2k + 1] (BC)k : (4, . . . , 4, (4, 1))

Sp(2n,R)/U(n) Sp(n)/U(n) n ≥ 3 n
n(n− 1)

2
Cn : (1, . . . , 1, 1)

E−146 /Spin(10)U(1) E6/Spin(10)U(1) 2 16 (BC)2 : (6, (8, 1))

E−257 /E6U(1) E7/E6U(1) 3 27 C3 : (8, 8, 1)

Table 6.4. Irreducible Hermitian symmetric spaces

Let us discuss the spaces in this table in a little more detail. First of all, the complex
hyperbolic and projective spaces are all included in the first row as those Grassmannians
where r = 1. The compact space Gr+(2,Rn+2) in the third row is isometric to the smooth
complex projective quadric Qn ⊂ CP n+1. For this reason, we sometimes refer to its dual
Gr∗(2,Rn+2) as the complex hyperbolic quadric. Its root system C2 can also be described
as B2. In fact, it is more commonly written as B2 because this space fits in the larger series
of real Grassmannians Gr∗(r,Rn+r) with root system Br—which is no longer isomorphic
to Cr. There is a good reason why the root system of the complex hyperbolic quadric
belongs to the Cr-family (see the discussion following Theorem 6.3.12), so we are going to
stick with writing C2, not B2. The restrictions on r and n in the table were imposed due
to the following exceptional isomorphisms in low dimensions (stated for spaces of compact
type only due to duality):

• Gr(2,C4) ≃ Gr+(2,R6) = Q4;

• Gr+(2,R3) ≃ CP 1, Gr+(2,R4) ≃ CP 1 × CP 1;
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• SO(4)/U(2) ≃ CP 1, SO(6)/U(3) ≃ CP 3, SO(8)/U(4) ≃ Gr+(2,R8) = Q6;

• Sp(1)/U(1) ≃ CP 1, Sp(2)/U(2) ≃ Gr+(2,R5) = Q3.

The other half of exceptional isomorphisms (for the noncompact type) can be obtained
by duality. As is evident from Table 6.4, the root system of an irreducible Hermitian
symmetric space of noncompact type is always isomorphic to either Cr or (BC)r. We are
going to uncover the geometric reason behind this fact. Before we do that though, we
need two little results that establish a deeper relation between a root system and its Weyl
group.

Proposition 6.3.1. Let (V,∆) be an irreducible root system and W(∆) its Weyl group.

(a) The tautological representation of W(∆) on V is irreducible.

(b) W(∆) acts transitively on the set of roots of the same length1. Consequently, the
orbit space ∆/W(∆) is naturally bijective to the set of root lengths in ∆.

In the special case of reduced root systems, these statements can be found in [Hum72]
(see Lemmas B and C in Section 10.4); the general case follows easily from the reducible
one. We still include a proof in the general case for the sake of greater completeness.

Proof. For part (a), suppose there is a nontrivial subrepresentation U ⊊ V . By irreducibil-
ity of ∆, there has to be a root α lying in neither U nor U⊥. But then the reflection sα
cannot preserve U , which leads to a contradiction.

Let us now prove part (b). For rank-2 systems, this can be shown by hand just by looking
at their pictures. In general, we invoke Lemma 3.1.2: for any α,β ∈ ∆, there exists a chain
of roots λ0, λ1, . . . , λs ∈ ∆ with λ0 = α, λs = β, such that ⟨λi−1 |λi ⟩ ̸= 0 for 1 ≤ i ≤ s.
Let us call such a sequence of roots a chain from α to β; we also say that s is its length.
Take any two non-proportional roots α,β ∈ ∆ of the same length and suppose they lie in
different orbits of the Weyl group. Let λ0, λ1, . . . , λs be the shortest chain from α to β
(it does not have to be unique). Acting by W(∆) if necessary, we may assume α is the
closest to β among members of its orbit—that is, for any γ ∈ W(∆) · α, every chain from
γ to β has length ≥ s.

We claim that s = 1 or, in other words, α ̸⊥ β. Assume for a moment that this is the
case and write U = span{α,β}. Then (U,U ∩ ∆) is a root system of rank 2. Moreover,
by our assumption, U ∩ ∆ is irreducible. Consequently, there exists an element W(U ∩ ∆)
mapping α to β. But every element of W(U ∩ ∆) is trivially a restriction of an element
of W(∆) preserving U . We are left to prove that s = 1. For the sake of contradiction,
assume s > 1. Since we picked the shortest chain, α = λ0 is orthogonal to every λj, j > 1.
Denote W = span{α, λ1} and consider the rank-2 root system (W,W ∩ ∆). By the same
argument as above, it is irreducible, which implies that there exists α′ ∈ W ∩ ∆ of the
same length as α but not proportional to it. On the one hand, we already know that
α′ lies in the same orbit as α. On the other hand, it can be written as aα + bλ1 with
b ≠ 0. Now, ⟨α′ |λ2 ⟩ = ⟨λ1 |λ2 ⟩ ̸= 0. Therefore, α′, λ2, . . . , λs is a chain of length s − 1
from α′ ∈ W(∆) · α to β, which is a contradiction.

1Observe that the full automorphism group Aut(∆) has the same orbits in ∆ as its subgroup W(∆),
as follows from Corollary 3.1.4.
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Among other things, part (b) of the above proposition implies the following fact: if ∆
is a root system with a fixed choice of simple roots, then every possible root length in
Σ is realized by some simple root. If Σ is the restricted root system of a simple Lie
algebra (necessarily irreducible by Corollary 3.2.12), we know from Section 3.2 that
W(Σ) ⊆ Autw(Σ). With this in mind, Proposition 6.3.1 yields an immediate

Corollary 6.3.2. Suppose g is a real simple Lie algebra and Σ is its restricted root system.
If two roots α,β ∈ Σ have the same length, then they have the same multiplicity as well.

We are now prepared to give an intrinsic characterization to Cr and (BC)r among all
irreducible root systems. Let (V,∆) be such a system. Observe that the number of distinct
root lengths in ∆ is

• 1 if ∆ ≃ Ar, Dr, E6, E7, E8;

• 2 if ∆ ≃ Br, Cr, F4, G2, (BC)1;

• 3 if ∆ ≃ (BC)r, r ≥ 2.

Definition 6.3.3. Let (V,∆) be an irreducible root system with roots of nonequal lengths.
We call a root α ∈ ∆

• long if it of the maximum length;

• medium if it is not long and 2α is not a root;

• short if 2α is a root.

The subsets of long, medium, and short roots are denoted by ∆L,∆M, and ∆S, respectively.

Trivially, a root system containing roots of nonequal lengths is reduced if and only if there
are no short roots. In view of Proposition 6.3.1(b), the long roots are all congruent to
each other via the Weyl group; the same holds for the medium and short roots.

Warning. In the context of reduced root systems—for example, in the theory of complex
semisimple Lie algebras—if there are two roots of different lengths, it is customary to call
them simply short and long. This clearly conflicts with our Definition 6.3.3: according
to it, we would use the terms medium and long instead and reserve the word short for
(BC)r. This nuance should be kept in mind throughout the chapter.

Example 6.3.4 (Root lengths in Cr and (BC)r). Let e1, . . . , er be the standard
basis for Rr. Recall that the root systems Cr and (BC)r are defined as:

Cr = {±ei ± ej | 1 ≤ i < j ≤ r} ∪{±2ei | 1 ≤ i ≤ r} ,
(BC)r = {±ei ± ej | 1 ≤ i < j ≤ r} ∪{±ei | 1 ≤ i ≤ r} ∪{±2ei | 1 ≤ i ≤ r} .

Here the medium roots are ±ei ± ej, the long roots are ±2ei, and the short ones are ±ei.
As a result, in these root systems one has:

||long root||
||medium root||

=
||medium root||
||short root||

=
√
2.

�

If (V,∆) is an irreducible root system with roots of more than one length, the long roots
span V thanks to Proposition 6.3.1(a). It might happen, however, that there are “too
many” long roots. For example, in Br (r ≥ 3), F4, and G2, the long roots are linearly
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dependent, even after we restrict to positive roots only. Looking at Example 6.3.4, we
arrive at the following

Proposition 6.3.5 (Characterization of Cr and (BC)r). Let (V,∆) be an irreducible
root system containing roots of nonequal lengths. Then (V,∆) is isomorphic to Cr or
(BC)r if and only if its positive long roots—with respect to some (⇔ any) choice of a
Weyl chamber—form a basis for V .

Since our primary object of interest in this chapter is Hermitian symmetric spaces, we are
going to confine our attention to the root systems Cr and (BC)r from now on. The first
basic property of these two systems is how their roots of the same length are positioned
with respect to each other.

Observation 6.3.6. Let (V,∆) be a root system isomorphic to either Cr or (BC)r. If
α,β ∈ ∆ are two non-proportional roots of the same length, then they are orthogonal.
Moreover, if α and β are long, then their sum is not a root. As a result, the positive long
roots (with respect to any choice of a Weyl chamber) form an orthogonal basis of V . These
claims follow from the explicit description of Cr and (BC)r in Example 6.3.4, the fact that
any isomorphism between irreducible root systems is a homothety (see Proposition 3.1.3),
and Proposition 6.3.5. Because of the last assertion, it is often more convenient to work
with positive long roots, and not simple roots, as a set basis for V .

For future references, we recall the standard choice of positive and simple roots for these
two systems:

Cr : ∆+ = {ei ± ej | 1 ≤ i < j ≤ r} ∪{2ei | 1 ≤ i ≤ r} , (6.3.1)

Λ = {e1 − e2, . . . , er−1 − er, 2er} ,
(BC)r : ∆+ = {ei ± ej | 1 ≤ i < j ≤ r} ∪{ei | 1 ≤ i ≤ r} ∪{2ei | 1 ≤ i ≤ r} ,

Λ = {e1 − e2, . . . , er−1 − er, er} .

Another property of these root systems that is going to be of great importance to us is
that their medium roots come in pairs.

Definition 6.3.7. Let (V,∆) be a root system isomorphic to either Cr or (BC)r, and let
∆+ ⊆ ∆ be any choice of positive roots. We are going to say that two positive medium
roots α,β ∈ ∆+ are neighbors if their sum is a long root.

A quick look at (6.3.1) reveals that every positive medium root has a unique neighbor: in
either Cr or (BC)r, the neighbor of ei±ej is ei∓ej . In (BC)r, one could extend the notion
of neighbor verbatim to positive short roots; plainly, ei is its own unique neighbor. We
will use the notation ∆+

L = ∆L ∩ ∆+; the same goes for ∆+
M and ∆+

S . Suppose α,β ∈ ∆+
M

are two neighbor roots. Just like their sum, their difference is also a long root. The
easiest way to see this is via an explicit description: if α = ei ± ej and β = ei ∓ ej, then
α− β = ±2ej ∈ ∆L. In particular, one of their two possible differences is a positive long
root, while the other one is negative. This means that in any pair of positive medium
neighbor roots, one of them can be written as the sum of the other one with a positive
long root. As a result, such a root has a strictly greater height than its neighbor. It is
only natural to introduce the following convenient

Definition 6.3.8. Let (V,∆) be a root system isomorphic to either Cr or (BC)r, and
let ∆+ ⊆ ∆ be any choice of positive roots. Given two neighbors α,β ∈ ∆+

M, the one of
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greater height is called an upstairs neighbor, while the other one is called a downstairs
neighbor.

Remark 6.3.9. Up to a sign, the notion of a neighbor medium root does not depend
on the choice of a Weyl chamber. But which of the neighbors is upstairs and which is
downstairs does of course depend on that choice.

Now we are finally ready to proceed to Hermitian symmetric spaces. First of all, we
establish a couple of restricted root space identities that will prove very useful in the sequel.
Let g be a real semisimple Lie algebra with a fixed restricted root space decomposition.
For any α,β ∈ Σ, the following holds:

[kα, kβ] ⊆ kα+β ⊕ kα−β, [kα, pβ] ⊆ pα+β ⊕ pα−β, [pα, pβ] ⊆ kα+β ⊕ kα−β, (6.3.2)

[k0, kα] ⊆ kα, [k0, pα] ⊆ pα, [a, kα] ⊆ pα, [a, pα] ⊆ kα.

Verifying these identities is fairly straightforward: for instance, take any X ∈ gα, Y ∈ gβ
and compute:

[X + θX, Y + θY ] = [X, Y ] + [X, θY ] + [θX, Y ] + [θX, θY ] (6.3.3)

= ([X, Y ] + θ[X, Y ]) + ([X, θY ] + θ[X, θY ]) ,

which lies in kα+β ⊕ kα−β by Proposition 2.4.9. The rest is similar. Next, we have the
following vital

Proposition 6.3.10. Suppose M is an irreducible Hermitian symmetric space of non-
compact type and rank r represented by an orthogonal symmetric Lie algebra (g, θ), and
let Σ be the restricted root system of g.

(a) All long roots in Σ have multiplicity 1.

(b) If α,β ∈ ΣL are such that α ̸= −β, then [gα, gβ] = {0}.

(c) If Σ+ ⊆ Σ is a choice of positive roots, then the sum
⊕

α∈Σ+L
gα, as well as its

p-projection
⊕

α∈Σ+L
pα, is an r-dimensional abelian subspace of g.

Proof. There are various ways to prove these assertions, but most of them rely on the
explicit description of Cr and (BC)r to some degree. Fix some choice of positive roots
Σ+ ⊆ Σ. For (a), note that the unique simple long root has multiplicity 1 according to
Table 6.4. By Proposition 6.3.1, all long roots Σ are of multiplicity 1. Alternatively, one
can use the fact that every root of Σ is simple for some choice of a Weyl chamber, and all
the Weyl chambers are congruent by W(Σ) ⊆ Autw(Σ). To show part (b), just recall that
[gα, gβ] ⊆ gα+β (Proposition 2.4.9(d)) and α + β /∈ Σ0 (Observation 6.3.6). Eventually,
there are precisely r positive long roots due to Proposition 6.3.5, so part (c) follows from
(b) and (6.3.2). Note also that part (a) can be proven via (c) without reliance on the
knowledge of simple root multiplicities: the sum

⊕
α∈Σ+L

pα is an abelian subspace of p of

dimension ≥ r, so it has to be a maximal abelian subspace and each of the r summands
must be 1-dimensional.

Corollary 6.3.11. In the notation of Proposition 6.3.10, the subspace
⊕

α∈Σ+L
pα is tangent

to a maximal flat in M . That flat can be realized as an orbit of the connected abelian Lie
subgroup of AN ⊂ G corresponding to the abelian subalgebra

⊕
α∈Σ+L

gα.
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The main result of this subsection is a precise relation between the complex structure
of a Hermitian symmetric space M of noncompact type and the restricted root space
decomposition of its isometry Lie algebra. It turns out that root length plays a key
role in this relation. In Section 5.4, we saw that the complex structure of Gr∗(2,Cn+4)
interchanges the subspaces pα1 and pα1+2α2 (which correspond to the two positive medium
roots in (BC)2) but preserves pα2 and pα1+α2 (corresponding to the two positive short
roots). Remarkably, the same pattern holds for all irreducible Hermitian symmetric spaces
of noncompact type.

Theorem 6.3.12. Let M be an irreducible Hermitian symmetric space of noncompact
type represented by an orthogonal symmetric Lie algebra (g, θ). Pick a maximal abelian
subspace a ⊂ p and a Weyl chamber D for Σ; and write I for the almost complex structure
of M at o.

(a) For every α ∈ Σ+
L , I(RHα) = pα (and thus I(pα) = RHα).

(b) For every α ∈ Σ+
M, I(pα) = pβ, where β ∈ Σ+

M is the neighbor of α.

(c) For every α ∈ Σ+
S (if any), I(pα) = pα. In other words, pα is a complex subspace of

p.

Before embarking on the proof of this theorem, let us go through some immediate
corollaries. First of all, part (a) implies that I(a) =

⊕
α∈Σ+L

pα, which is another evidence

that this sum is maximal abelian in p. In some sense, this observation justifies why the
root system of an irreducible Hermitian symmetric space of noncompact type can only be
Cr or (BC)r: if there were more long roots, like in F4, G2, or Br (r ≥ 3), I(a) would be
a proper subspace of

⊕
α∈Σ+L

pα. This explains why the hyperbolic quadric Gr∗(2,Rn+2),

whose root system is B2 ≃ C2, is Hermitian, but the higher-rank noncompact Grassmann
manifolds Gr∗(r,Rn+r), r ≥ 3, with Σ ≃ Br ̸≃ Cr, are not.

As we noticed in Subsection 2.4.2, given a semisimple Lie algebra g and its restricted root
system Σ, the decomposition p = a ⊕

⊕
α∈Σ+ pα is orthogonal with respect to ⟨−|−⟩B

and thus—thanks to Corollary 2.1.110—with respect to any k-invariant inner product.
Together with Theorem 6.3.12, Proposition 2.2.22, and Lemma 2.2.21, this implies:

Corollary 6.3.13. Let M be an irreducible Hermitian symmetric space of noncompact
type represented by an orthogonal symmetric Lie algebra (g, θ). Pick a ⊂ p and Σ+ ⊆ Σ.

(a) For each α ∈ Σ+
M ∪ Σ+

L , pα is a totally real subspace of p; the same is true for a.

(b) Any abelian subspace of p is totally real.

(c) Any flat in M is a totally real submanifold.

Proof of Theorem 6.3.12. We may assume (g, θ) is effective. Let (G,K) be an almost
effective Riemannian symmetric pair representing M and associated with (g, θ). Pick
a basis e1, . . . , er for a∗ so that Σ and Σ+ become as in Example 6.3.4 and (6.3.1). As
per our discussion in Subsection 2.5.1, the center z(k) is 1-dimensional, and there exists
Z ∈ z(k) such that ad(Z)

∣∣
p
= I. Moreover, the element exp(π

2
Z) ∈ Z(K)0 ≃ T also acts

on p as I. In fact, the action Z(K)0 ↷ p is simply the multiplication by unitary complex
numbers. This action commutes with the representation of K on p.

Proof of part (a). As we already know that the long roots in Σ have multiplicity 1,
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it suffices to show that I(H2ei) ∈ p2ei for every 1 ≤ i ≤ r. In most cases, we can use a
shrewd trick to impose some immediate restrictions on what I can do to the root spaces.
We separate the proof into two cases accordingly.

Case 1: g is not split. Recall from Proposition 2.4.16 that this is equivalent to saying
that not all root multiplicities are 1. Looking at Table 6.4, we see that this case includes
all spaces except for the series Sp(2n,R)/U(n), n ≥ 2 (and also the hyperbolic quadric
Gr∗(2,R5), but is isometric to Sp(4,R)/Sp(2)). We also see that the long roots are
the only roots with multiplicity 1 in this case. Recall that the adjoint action of the
compact group K0 = Z0

K(a) on g is orthogonal and preserves each restricted root space
and thus every pα. By design, it fixes each element of a, but it also fixes each vector in
p2ei , i = 1, . . . , r, because such pα is 1-dimensional. So the sum a⊕

⊕r
i=1 p2ei is contained

in the subspace of invariants pK0 . On the other hand, we know from Lemma 4.2.5 that
K0 acts with cohomogeneity 1 on each pα. As a consequence, its action on pα is nontrivial
provided α is not long. Therefore, the subspace of K0-invariants is precisely a⊕

⊕r
i=1 p2ei .

But this implies that the action T ↷ p (and, in particular, I) preserves this subspace:
this action is by endomorphisms of p as a K-representation and hence it must preserve
pK0 = a⊕

⊕r
i=1 p2ei .

As a next step, we want to show that each λ ∈ T permutes the subspaces RH2ei ⊕ p2ei of
pK0 . Given X ∈ pK0 , let us write ZpK0 (X) =

{
Y ∈ pK0 | [Y,X] = 0

}
. For example,

ZpK0 (H2ei) = a⊕
⊕
j ̸=i

p2ej , ZpK0 (p2ei) = (a⊖ RH2ei)⊕
r⊕

i=1

p2ej ,

because the long roots 2e1, . . . , 2er are pairwise orthogonal. More generally, given X ∈ pK0 ,
decompose it as X =

∑r
i=1 Xi, where Xi ∈ RH2ei ⊕ p2ei . Then

ZpK0 (X) =
⊕
1≤i≤r
Xi ̸=0

RXi ⊕
⊕
1≤i≤r
Xi=0

(RH2ei ⊕ p2ei).

Note that the codimension of ZpK0 (X) in pK0 equals the number of nonzero Xi’s. In
particular, this codimension is 1 if and only if X lies in RH2ei ⊕ p2ei for some i. Now,
the representation of Z(K)0 ≃ T on g is by Lie algebra automorphisms. Hence, for any
λ ∈ T and any X ∈ pK0 , λZpK0 (X) = ZpK0 (λX). We deduce that for every i = 1, . . . , r,
λH2ei ∈ RH2ej ⊕ p2ej for some j ∈ {1, . . . , r}, and thus λ must send

ZpK0 (H2ei) = pK0 ⊖ p2ei onto ZpK0 (λH2ei) = pK0 ⊖ ℓ,

where ℓ is the line in RH2ej ⊕ p2ej orthogonal to λH2ei . Since the multiplication by λ
is an orthogonal transformation, it must send p2ei onto ℓ. We conclude that λ sends
RH2ei ⊕ p2ei onto RH2ej ⊕ p2ej .

We now know that each λ ∈ T permutes the subspaces RH2ei ⊕ p2ei of p
K0 . By continuity,

the whole circle group T must preserve each RH2ei ⊕ p2ei . Now simply notice that I is a
skew-symmetric operator, so ⟨H2ei |IH2ei ⟩ = 0, which means IH2ei ∈ p2ei .

Case 2: g is split. In this case, according to Proposition 2.4.16, k0 = {0}. Then
k =

⊕
α∈Σ+ kα, so Z ∈ z(k) can be decomposed accordingly as Z =

∑
α∈Σ+ Zα. We claim

that Zα = 0 unless α is a long root. Indeed, consider any root α ∈ Σ+ that is not long.
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Then it has to be medium because the only split space in Table 6.4 is Sp(2n,R)/U(n),
whose root system is Cn. Let β the neighbor of α. The difference γ = β − α is a long
root. The bracket between any two nonzero vectors in gα and gγ, respectively, is a nonzero
vector in gβ because the pairing gα × gγ ↠ gβ is nondegenerate (Lemma 4.2.6). It then
easily follows from (6.3.2) and a computation similar to (6.3.3) that the bracket between
kα and kγ is a nondegenerate pairing kα × kγ ↠ kβ. Take any nonzero Y ∈ kγ and consider
[Z, Y ] ∈ k =

⊕
λ∈Σ+ kλ. The kβ-component of [Z, Y ] is easily seen to be [Zα, Y ]. But

Z ∈ z(k), so [Z, Y ] = 0. Therefore, Zα has to be zero. As α was an arbitrary medium
root, we deduce that Z ∈

⊕r
i=1 k2ei . But now simply take any 1 ≤ i ≤ r and compute:

I(H2ei) = [Z,H2ei ] =
r∑

i=1

[Z2ej , H2ei ] = −
r∑

i=1

⟨2ej , H2ei ⟩Z2ej = −4||ei||2Z2ei ∈ p2ei ,

where the last equality follows from the fact that the positive long roots are pairwise
orthogonal. This completes the proof of part (a). This is actually the bulk of the proof;
and the other two parts will rely on (a).

Proof of part (b). We know by now that I preserves a⊕
⊕r

i=1 p2ei . By orthogonality, it
must also preserve

⊕
α∈Σ+M∪Σ

+
S
pα. Let us show that I(pei−ej ) ⊆ pei+ej for any 1 ≤ i < j ≤ r.

Since ei − ej and ei + ej have the same multiplicity (Corollary 6.3.2), this will do the trick.
Take any X ∈ pei−ej . Recall that I coincides with Ad(k)

∣∣
p
, where k = exp(π

2
Z). Note

that Ad(k) is the identity on k. We can then compute:

[I(H2ej), I(X)] =
[
Ad(k)(H2ej),Ad(k)(X)

]
= Ad(k)[H2ej , X] = [H2ej , X] ∈ kei−ej ,

On the other hand, we know that I(H2ej) lies in p2ej . If we decompose I(X) as∑
k<l(I(X)ek+el + I(X)ek−el) +

∑r
k=1 I(X)ek , where I(X)ek+el ∈ pek+el , etc. (the last

sum is empty if the root system is reduced), then [I(H2ej), I(X)] can be written as

r∑
k=1

[
I(H2ej), I(X)ek

]
+
∑
k<l

[
I(H2ej), I(X)ek+el

]
+
∑
k<l

[
I(H2ej), I(X)ek−el)

]
.

Owing to (6.3.2), the only summand here that can have a nonzero component in kei−ej is
[I(H2ej), I(X)ei+ej ], which means that all the other summands are zero. But since p2ej
is 1-dimensional, we can apply the same argument as in case 2 of part (a) to deduce
that ad(I(H2ej)) : pβ −→∼ kβ+2ej is an isomorphism whenever β and β+ 2ej are both roots.
This implies that every component of I(X) other than I(X)ei+ej is zero. In other words,
I(X) ∈ pei+ej .

Proof of part (c). This last bit is very similar to (b). From the previous two parts,
we know that I has to preserve

⊕r
i=1 pei . Given X ∈ pei , [I(H2ei), I(X)] = [H2ei , X] ∈ kei .

On the other hand, this bracket can be written as
∑r

i=1[I(H2ei), I(X)ej ]. By (6.3.2), all
the components I(X)ej other than I(X)ei must vanish, hence I(X) ∈ pei . This concludes
the proof of Theorem 6.3.12.
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6.3.2. Classification of standard C2-foliations with a complex
base leaf

In this part, armed with Theorem 6.3.12, we prove the main result of the section and
make a considerable step toward a classification of homogeneous complex hypersurfaces
in irreducible Hermitian symmetric spaces of noncompact type. Namely, we classify those
hypersurfaces that arise as a base leaf of a standard C2-foliation.

Let M = G/K be an irreducible Hermitian symmetric space of noncompact type, and let
(g, θ) be the corresponding orthogonal symmetric Lie algebra. Since M is irreducible, its
Riemannian metric has to be proportional to the Killing metric. To simplify the notation,
we will assume that the metric is Killing, i.e., go = Bθ

∣∣
p×p = B

∣∣
p×p. All the results of this

subsection remain valid if the normalizing constant of M is arbitrary. As usual, we pick
a maximal abelian subspace a ⊂ p and a Weyl chamber D for Σ. Recall that we have a
linear isomorphism Π : s = a⊕ n −→∼ p given by the projection to p along k. It is important
to point out that Π is not an isometry with respect to the inner product Bθ, but it is
very close to being one: it respects the orthogonal decompositions s = a⊕

⊕
α∈Σ+ gα and

p = a⊕
⊕

α∈Σ+ pα (being the identity on a and sending gα onto pα); it is an isometry on

a; and it shrinks the distances by a factor of
√
2 on

⊕
α∈Σ+ gα. We pull Bθ

∣∣
p×p back along

Π and denote the resulting inner product on s by ⟨−|−⟩s. For reasons that will become
obvious in a moment, this is going to be our default inner product on s. In particular,
whenever we take orthogonal complements within s, it is with respect to ⟨−|−⟩s. The
decomposition s = a⊕

⊕
α∈Σ+ gα is orthogonal with respect to ⟨−|−⟩s; this property is

going to prove crucial later on.

Notation. Since we will be working with the Lie algebra s throughout this subsection,
we adhere to the following notation: if X ∈ s, we denote its components with respect to
the decomposition s = a⊕

⊕
α∈Σ+ gα as X0 ∈ a and Xα ∈ gα.

We pull the complex structure I on p back along Π; this defines a complex structure on s
that we are going to denote by Î. By construction, given X ∈ s, we have (ÎX)p = IXp.

It follows immediately from Theorem 6.3.12 that Î interchanges RHα and gα for α ∈ Σ+
L ,

interchanges gα and gβ whenever α,β ∈ Σ+
M are neighbors, and preserves gα if α ∈ Σ+

S .

By design, the complex structure Î is orthogonal with respect to ⟨−|−⟩s.

A word of caution is in order. The subspace p is preserved by the isotropy group K; and
the complex structure I on p can be given as ad(Z)

∣∣
p
or Ad(k)

∣∣
p
, where Z ∈ z(k) and

k = exp(π
2
Z) ∈ Z(K)0. In particular, I is K-invariant. On the other hand, s is preserved

by neither ad(Z) nor Ad(k) (let alone K), so Î cannot be described via these operators.

The single most important consequence of this fact is that the complex structure Î
does not make s into a complex Lie algebra. There is still some good news though: we
know that there is a smaller compact subgroup ZK(a) whose representation on g leaves
invariant each restricted root space and thus preserves s. As a result, the isomorphism Π

is ZK(a)-equivariant, and hence Î is ZK(a)-invariant on s.

Suppose h ⊆ s is a subalgebra and F its corresponding standard foliation on M . Let
S denote the leaf of F through o. Recall that G acts on M via holomorphic isometries
(Corollary 2.5.5). In particular, if ToS is a complex subspace of ToM , then the whole S is

a homogeneous complex submanifold. Thanks to Proposition 2.2.4, and our definition of Î,
this is the case precisely when h is a complex subspace of s. This means that classification
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of standard foliations on M with a complex base leaf boils down to classification of Lie
subalgebras of s that are also complex subspaces. With the next theorem, we accomplish
this in complex codimension 1. It turns out that such subalgebras are very scarce, which
stands in stark contrast with subalgebras of real codimension 1 (see Chapter 4).

Theorem 6.3.14. Let M be an irreducible Hermitian symmetric space of noncompact
type represented by an orthogonal symmetric Lie algebra (g, θ). Pick a maximal abelian
subspace a ⊂ p and a Weyl chamber D for Σ; and take a basis e1, . . . , er for a∗ so that Σ
and Σ+ become as in Example 6.3.4 and (6.3.1). Suppose h ⊂ s is a subalgebra that is
also a complex hyperplane, and write ℓ = s⊖ h. Then there are three possibilities:

(a) Σ ≃ Cr and ℓ is

(1) CH2er = RH2er ⊕ g2er , or

(2) CX, where X ∈ ger−1−er is any nonzero vector.

(b) Σ ≃ (BC)r and ℓ = CX, where X ∈ ger is any nonzero vector.

Conversely, for every choice of ℓ as in (a) or (b), h = s⊖ ℓ is a subalgebra and a complex
hyperplane in s.

To tackle this theorem, we first prove the following technical lemma, which establishes a
connection between the complex structure Î and the Lie algebra structure of s.

Lemma 6.3.15. Let X ∈ s be a nonzero vector. Then [X, ÎX] is a nonzero vector in⊕
α∈Σ+L

gα in each of the following cases:

(a) X ∈ a⊕
⊕

α∈Σ+L
gα;

(b) X ∈ gα ⊕ gβ, where α,β ∈ Σ+
M are neighbors.

(c) X ∈ gα, where α ∈ Σ+
S .

The motivation for this lemma comes from the properties of the complex structure I on p:
if X ∈ p is any nonzero vector, then [X, IX] is a nonzero vector in k. Indeed, otherwise
CX would be an abelian subspace of p, which would go against Corollary 6.3.13.

Proof of the lemma. To simplify the notation we will write Hi = H2ei and Ei = ÎHi ∈
g2ei . Notice that [Hi, Ei] = 4||ei||2Ei, and [Hi, Ej] = 0 if i ≠ j. Part (a) is rather
straightforward: decompose X as

∑r
i=1 λiHi =

∑r
i=1(aiHi + biEi), where λi = ai + ibi.

Then ÎX =
∑r

i=1(−biHi + aiEi), so we can compute:

[X, ÎX] =

[
r∑

i=1

(aiHi + biEi),
r∑

i=1

(−biHi + aiEi)

]

=
r∑

i=1

(a2i [Hi, Ei]− b2i [Ei, Hi]) =
r∑

i=1

4|λi|2||ei||2Ei ̸= 0.

Now we proceed to part (b). Let α be upstairs and β downstairs, so we can write

α = ei + ej,β = ei − ej. First, assume X ∈ gei+ej and hence ÎX ∈ gei−ej . We need to

show that [X, ÎX] is a nonzero element of g2ei . Assume the converse: [X, ÎX] = 0. As we
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mentioned above, [Xp, (ÎX)p] = [Xp, IXp] ̸= 0. But

[Xp, (ÎX)p] =
1

4

[
X − θX, ÎX − θ(ÎX)

]
=

1

4

(
[X, ÎX] + θ[X, ÎX]

)
− 1

4

(
[X, θ(ÎX)] + θ[X, θ(ÎX)]

)
= −1

4

(
[X, θ(ÎX)] + θ[X, θ(ÎX)]

)
,

which implies that [X, θ(ÎX)] ̸= 0. Note that this vector lies in gα−β = g2ej . Consider the

element of g given by [X, [ÎX, θ(ÎX)]]. On the one hand, we have Proposition 2.4.9(g),
which implies:

[X, [ÎX, θ(ÎX)]] = [X,−||ÎX||2BHei−ej ] = ||ÎX||2B⟨ei + ej , Hei−ej ⟩X = 0.

On the other hand, by our assumption and the Jacobi identity:

[X, [ÎX, θ(ÎX)]] = [ÎX, [X, θ(ÎX)]]. (6.3.4)

Since [X, θ(ÎX)] is nonzero and the pairing gei−ej × g2ej ↠ gei+ej is nondegenerate (by

Lemma 4.2.6), the map ad([X, θ(ÎX)]) provides an isomorphism between gei−ej and gei+ej .
This means that (6.3.4) cannot be zero, which is a contradiction.

We claim that the element [X, ÎX] ∈ g2ei does not depend on the choice of a nonzero X in
gei+ej up to multiplication by a positive constant. Indeed, given another such Y ∈ gei+ej ,
there exists k ∈ K0 such that Y = cAd(k)X for some c ̸= 0 (see Lemma 4.2.5). Since the
action of K0 on s is C-linear and preserves the restricted root spaces, we have:

[Y, ÎY ] = c2
[
Ad(k)X, Î(Ad(k)X)

]
= c2Ad(k)[X, ÎX] = c2[X, ÎX],

where the last equality follows from the fact that g2ei is 1-dimensional and thus the action
of K0 on it is trivial. Finally, if Z ∈ gei+ej ⊕ gei−ej is arbitrary, decompose it as X + Y
and observe that

[X + Y, ÎY + ÎX] = [X, ÎX] + [Y, ÎY ] = [X, ÎX] + c2[X, ÎX] = (1 + c2)[X, ÎX] ̸= 0.

It remains to prove part (c) (in case the root system is (BC)r). Here Î(X) also lies in gα,

so we want [X, ÎX] to be a nonzero element of g2α. Here, too, we have

0 ̸= [Xp, (ÎX)p] =
1

4

(
[X, ÎX] + θ[X, ÎX]

)
− 1

4

(
[X, θ(ÎX)] + θ[X, θ(ÎX)]

)
. (6.3.5)

Since θ(ÎX) ∈ g−α, we have [X, θ(ÎX)] ∈ a thanks to Proposition 2.4.9(g). This implies
that the expression inside the second pair of parentheses in (6.3.5) vanishes. Consequently,

[X, ÎX] has to be nonzero. This completes the proof of the lemma.

Remark 6.3.16. In many cases, stronger versions of parts (b) and (c) of the above

lemma hold true: not only is [X, ÎX] a nonzero element in g2ei (where 2ei is α+ β or 2α,
respectively), but in fact it is a positive multiple of Ei. This is true and easy to verify
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computationally in low-rank examples like1 M = CHn or Gr∗(2,R5). If M is arbitrary
and ei is a positive short root, the subalgebra of g generated by gei and g−ei is isomorphic

to i(CHn) ≃ su(n, 1). Using this, one can show that [X, ÎX] is a positive multiple of
Ei for any nonzero X ∈ gei . So this stronger version of (c) in fact holds for all spaces.
If M is split and ei + ej, ei − ej ∈ Σ+

M are neighbors, the subalgebra of g generated by
gei−ej , g2ej , g−ei+ej , and g−2ej is isomorphic to i(Gr∗(2,R5)) ≃ so(3, 2). Similarly, one can
use this to deduce the stronger version of (b) for M . We have all reasons to believe that
it is true for all irreducible Hermitian symmetric spaces of noncompact type.

Our next step is to examine how h in Theorem 6.3.14 can intersect with a. In theory,
h∩ a can have codimension 0, 1, or 2 in a. It turns out that the last option is not possible.

Lemma 6.3.17. If h ⊂ s is a subalgebra and a complex hyperplane, then h ∩ a is either a
(real) hyperplane in a or the whole a.

Proof. For every pair 1 ≤ i < j ≤ r, the intersection of h with CHi ⊕ CHj is nontrivial
for dimensional reasons. If X is any nonzero vector in that intersection, then the element
[X, ÎX] ∈ h∩(REi⊕REj) is nonzero by Lemma 6.3.15(a). Applying Î to that, we see that
h has a nonzero intersection with every coordinate 2-plane RHi ⊕ RHj in a. Elementary
induction on dim(a) shows that h ∩ a must then be of codimension at most 1.

The next proposition tells that h has to be positioned nicely with respect to the restricted
root space decomposition; and it is the crux of the proof of Theorem 6.3.14.

Proposition 6.3.18. Let h ⊂ s be a subalgebra and a complex hyperplane. Then

h = (h ∩ a)⊕
⊕
α∈Σ+

(h ∩ gα).

Proof. We first handle the easy case when h contains a. Notice that it then also contains
Î(a) =

⊕
α∈Σ+L

gα. So we need to prove the following:

X =
∑
i<j

(Xei+ej +Xei−ej) +
r∑

i=1

Xei ∈ h ∩
⊕

α∈Σ+M∪Σ
+
S

gα ⇒ Xei±ej , Xei ∈ h.

The main idea in this proof is that we can use the adjoint representation of h on itself
to get rid of undesired components of a vector. To make calculations less cumbersome,
we will use the notation v ∼ w to indicate that two nonzero vectors are proportional.
Observe that [Hi, [Hj, X]] ∼ Xei+ej −Xei−ej ∈ h. By further applying ad(Hi +Hj), we
get Xei+ej ∈ h and thus Xei−ej ∈ h. This shows that

∑r
i=1Xei ∈ h. By applying ad(Hi)

to that, we have Xei ∈ h.

Now we come to the main part of the proof. Assume that h ∩ a is a hyperplane in a
and denote it by h0. Note that Î(h0) = h ∩

⊕
α∈Σ+L

gα is a hyperplane in
⊕

α∈Σ+L
gα. We

will prove by induction that g2ei ⊂ h for all i = 1, . . . , r − 1. Fix any i in this range and
assume that g2ej ⊂ h for every 1 ≤ j < i (if any); we will show that g2ei ⊂ h as well. We

1For CHn, part (b) is vacuous because there are no medium roots. On the other hand, Gr∗(2,R5) has
root system C2, so only (b) is relevant for this space. Note that this hyperbolic quadric is the smallest
split space in Table 6.4.
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divide the proof into two scenarios based on whether M is split or not—the same way we
did in the proof of Theorem 6.3.12.

First, assume that M is not split. This means that the medium root multiplicity is at
least 2. Therefore, gei+ei+1

⊕ gei−ei+1
is a complex subspace of s of dimension ≥ 2. Its

intersection with h has to be nontrivial, so we can take a nonzero vector X there. In view
of Lemma 6.3.15(b), [X, ÎX] ∈ h is a nonzero vector in g2ei , which proves the claim.

Now, let M be split. We claim that there exists X ∈ h with Xei−ei+1
̸= 0. Indeed,

otherwise h is orthogonal to gei−ei+1
and hence to gei+ei+1

= Î(gei−ei+1
), which implies that

ℓ = s⊖ h = gei−ei+1
⊕ gei+ei+1

; in this case, the induction statement (and the statement
of the proposition, for that matter) is satisfied. We fix such X. Next, the intersection
h∩ (REi⊕REi+1) must be nontrivial, so we take a nonzero Y = yiEi+ yi+1Ei+1 in it. We
may assume yi+1 ̸= 0. We first deal with a “generic” case when h0 ̸= a⊖ R(Hi −Hi+1).
This means that there exists H =

∑r
i=1 aiHi ∈ h0 with ai ̸= ai+1. If we replace X with

[H,X], this new element of h still has a nonzero component gei−ei+1
, but now its component

in a is zero. We keep denoting this vector by X. Consider the vector Z = [X, Y ] ∈ h.
In view of Proposition 2.4.9(d), Z can have nonzero components only in gej+ei (j < i)
and gej+ei+1

(j < i+ 1). Since ad(yi+1Ei+1) provides an isomorphism between gei−ei+1
and

gei+ei+1
, Zei+ei+1

̸= 0. The element [Z, ÎZ] ∈ h can have nonzero components only in

g2e1 , . . . , g2ei . Moreover, its component in g2ei is [Zei+ei+1
, Î(Zei+ei+1

)], which is guaranteed
to be nonzero by Lemma 6.3.15(b). By the induction hypothesis, the components of

[Z, ÎZ] in g2e1 , . . . , g2ei−1
lie in h, hence so does the one in g2ei .

We are left to consider the case when h0 = a⊖ R(Hi −Hi+1). In this scenario, we cannot
eliminate the a-component of X while keeping Xei−ei+1

̸= 0. We can, however, get rid of
most of the other unwanted components. To that end, first observe that yi and yi+1 have
to coincide, so we may as well assume Y = Ei+Ei+1. This time, the vector Z = [X, Y ] ∈ h
can be written as

Z =
i−1∑
j=1

(Zej+ei + Zej+ei+1
) + Zei+ei+1

+ Z2ei + Z2ei+1
(6.3.6)

with Zei+ei+1
̸= 0. For any j = 1, . . . , i − 1, consider the element Hj −Hi −Hi+1 ∈ h0.

Applying ad(Hj − Hi − Hi+1) to Z eliminates the j-th summand in (6.3.6), keeps the
(ei+ei+1)-component nonzero, and yields a vector still lying in h. Therefore, by successively
applying ad(H1 −Hi −Hi+1), . . . , ad(Hi−1 −Hi −Hi+1) to Z, we obtain a vector

h ∋ Z ′ = Z ′ei+ei+1
+ aEi + bEi+1

with Z ′ei+ei+1
≠ 0 and a, b ∈ R. By adding a suitable multiple of Y to Z ′, we can achieve

b = 0; we continue to denote this new vector by Z ′. Consider the following bracket in h:[
Z ′, ÎZ ′ +

a

2
(Hi +Hi+1)

]
=
[
Z ′ei+ei+1

+ aEi, Î(Z
′
ei+ei+1

)− a

2
(Hi −Hi+1)

]
= [Z ′ei+ei+1

, Î(Z ′ei+ei+1
)]− a2

2
[Ei, Hi]

= [Z ′ei+ei+1
, Î(Z ′ei+ei+1

)] + 2a2||ei||2Ei.

This is an element of g2ei ∩ h, and it is nonzero by Remark 6.3.16, which proves the claim.
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Notice that we did not have to rely on the induction hypothesis in this case.

Now that we know that g2ei ⊂ h for all 1 ≤ i ≤ r − 1, we have
⊕r−1

i=1 RHi ⊆ h0. Since we
are assuming h0 is a hyperplane in a, it must coincide with

⊕r−1
i=1 RHi. Let us first show

that this is not possible if the root system is (BC)r. Indeed, for dimensional reasons, the
intersection of h with RHr⊕ger has to be nontrivial. Take a nonzero vector U = urHr+Uer

in this intersection. We can calculate:

[U, ÎU ] =
[
urHr + Uer , urEr + Î(Uer)

]
= 4u2

r||er||2Er + 2ur||er||2Î(Uer) + [Uer , Î(Uer)]

= 2ur||er||2(urEr + Î(Uer)) + 2u2
r||er||2Er + [Uer , Î(Uer)]

= 2ur||er||2ÎU + 2u2
r||er||2Er + [Uer , Î(Uer)].

In the last row, the first summand lies in h, hence so does the sum of the other two. But
this sum is a nonzero element of g2er due to Remark 6.3.16. We deduce that g2er ⊂ h and
thus Hr ∈ h, which is a contradiction.

From now on, we assume that the root system of M is Cr. We are going to use the same
approach as at the beginning of the proof. Take any X ∈ h. By subtracting vectors from
h0 ⊕ Î(h0) if necessary, we may assume X = xrHr + x′rEr +

∑
i<j(Xei+ej +Xei−ej). For

j < r, we can take the consecutive brackets of X with Hi, Hj and Hi ±Hj (just like we
did at the beginning) to show that Xei±ej ∈ h; we assume these components are zero from
now on. Next, we deal with Xei±er , 1 ≤ i ≤ r − 1. First, we commute X with Hi to get
[Hi, X] ∼ Xei+er +Xei−er = V ∈ h. If ℓ = s⊖ h = CHr, the assertion of the lemma holds
true, so we can rule out this case. Then, there exists W ∈ h with W0 a nonzero multiple
of Hr. Multiplying by a suitable complex number, we can ensure W0 = Hr and W2er = 0.
As we know by now, the components Wej±ek , j < k < r, lie in h, so we can subtract them

and assume W = Hr +
∑r−1

j=1(Wej+er +Wej−er) ∈ h. Let us look at [W,V ] ∈ h:

[W,V ] =
[
Hr +

r−1∑
j=1

(Wej+er +Wej−er), Xei+er +Xei−er

]
= 2||er||2(Xei+er −Xei−er) + [Wei+er , Xei−er ] + [Wei−er , Xei+er ].

In the second row, the last two summands lie in g2ei ⊂ h, which implies Xei+er−Xei−er ∈ h.
Overall, this means that both Xei+er and Xei+er lie in h. By subtracting them from the
original X for each i = 1, . . . , r − 1, we are only left with xrHr + x′rEr. If either xr or
x′r is nonzero, we can multiply this sum by a suitable complex number to get Hr ∈ h,
which is a contradiction. We conclude that xr = x′r = 0, which completes the proof of the
lemma.

With Proposition 6.3.18 under our belt, the theorem now follows rather easily from
Theorem 6.3.12.

Proof of Theorem 6.3.14. Thanks to Proposition 6.3.18, h is the sum of its intersections
with a and the restricted root spaces gα. The same then must be true for ℓ = s ⊖ h:
ℓ = (ℓ ∩ a)⊕

⊕
α∈Σ+(ℓ ∩ gα). Since ℓ is a complex line, there are two possibilities.

Case 1: ℓ is contained in a single gα or a. According to Theorem 6.3.12, a and
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gα, α ∈ Σ+
L ∪ Σ+

M, are totally real subspaces of s, so ℓ cannot be contained in them. The
only option left is ℓ ⊆ gα, where α is a positive short root. In particular Σ must be
isomorphic to (BC)r for this to be possible. The root α must be simple. Indeed, otherwise
we would have α = β+ γ for some β,γ ∈ Σ+. Since [gβ, gγ] = gα (Proposition 2.4.9(d)),
h cannot be a subalgebra in that case. Among the short roots e1, . . . , er, only er is simple.
This leads us to part (b) of the theorem.

Case 2: ℓ = ℓ′ ⊕ ℓ′′, where either of ℓ′ and ℓ′′ is a real line contained in a single gα or
a. It follows from Theorem 6.3.12 that there are two options: either ℓ′ = RH2ei and

ℓ′′ = RÎH2ei = g2ei (the order between ℓ′ and ℓ′′ obviously does not matter), or ℓ′ ⊆ gα
and ℓ′′ ⊆ gβ, where α and β ∈ Σ+

M are neighbors. In the first situation, g2ei has to be a
simple root space—for the same reason as in case 1. This is only possible if i = r and
the root system is reduced, which is exactly (a)-(1). In the second case, we may assume
without loss of generality that α is upstairs and β is downstairs. If β is not simple, we
end up with the same problem and h cannot be a subalgebra. The only simple medium
root is er−1 − er, so we must have β = er−1 − er,α = er−1 + er. We claim that the root
system has to be reduced in this case. Indeed, otherwise we have ger−1 , ger ⊆ h, but
[ger−1 , ger ] = ger−1+er ⊊ h, which is a contradiction. We see that ℓ has to be as in (a)-(2),
which concludes the proof.

Note that we still need to verify that the three options for h in Theorem 6.3.14 are indeed
Lie subalgebras of s. For (a)-(1) and (b), this is trivial, because we are only meddling
with a and simple root spaces there. In (a)-(2), however, if we have X ∈ ger−1−er , then

CX = RX ⊕ RÎX, and the latter summand lies in the root space ger−1+er , which is not
simple. Since er−1 + er = er−1 − er + 2er is the sum of two simple roots, we need to check
only one thing:[

g2er , ger−1−er ⊖ RX
]
needs to be contained in ger−1+er ⊖ RÎX. (6.3.7)

Recall that ad(Hr) establishes an isomorphism ger−1−er −→∼ ger−1+er . It is easy to see that
(6.3.7) holds for every nonzero X in ger−1−er precisely when the restrictions of ad(Hr)

and Î to ger−1−er , thought of as operators from ger−1−er to ger−1+er , are proportional.
Luckily, there is no need to do this directly—it can be verified using some slick arguments
involving the canonical extension procedure. We will do this in the next subsection (see
Proposition 6.3.22). For now, using our discussion in Chapter 4, we reformulate the
statement of Theorem 6.3.14 in the language of standard foliations. Recall that the group
ZK(a) acts on s by unitary transformations and preserves each root space; and its action
on each root space is of cohomogeneity 1. Consequently, if X,X ′ ∈ ger−1−er are any two
nonzero vectors as in Theorem 6.3.14(a)-(2), then there exists an element k ∈ ZK(a) such
that Ad(k)(s⊖ CX) = s⊖ CX ′. The same holds for the choice of X in part (b) of the
theorem. We deduce:

Corollary 6.3.19. Let M be an irreducible Hermitian symmetric space of noncompact
type represented by an orthogonal symmetric Lie algebra (g, θ). Pick a maximal abelian
subspace a ⊂ p and a Weyl chamber D for Σ; and take a basis e1, . . . , er for a∗ so that Σ
and Σ+ become as in Example 6.3.4 and (6.3.1). Every standard codimension-2 foliation
on M with a complex base leaf is (strongly) isometrically congruent to the orbit foliation
of the connected Lie subgroup of AN ⊂ G with Lie algebra h ⊂ s, where h is one of the
following:
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(a) If Σ ≃ Cr:

(1) (a⊖ RH2er)⊕ (n⊖ g2er), or

(2) a⊕ (n⊖ CX), where X ∈ ger−1−er is any nonzero vector.

(b) If Σ ≃ (BC)r: a⊕ (n⊖ CX), where X ∈ ger is any nonzero vector.

Conversely, every choice of h as in (a) or (b) induces a standard codimension-2 foliation
on M with a complex base leaf. Moreover, different choices of X in (a)-(2) and (b) lead
to (strongly) isometrically congruent foliations.

Consequently, the moduli space of standard C2-foliations on M with a complex base leaf
consists of 2 points if Σ ≃ Cr and just one point if Σ ≃ (BC)r. Since the restricted root
system of an irreducible noncompact Hermitian symmetric space is always either Cr or
(BC)r, we arrive at the following:

Corollary 6.3.20. Every Hermitian symmetric space of noncompact type admits a
homogeneous complex hypersurface.

This stands in stark contrast to the the compact case: as we know from the previous section,
most irreducible compact Hermitian symmetric spaces do not have any homogeneous
complex hypersurfaces.

6.3.3. Homogeneous complex hypersurfaces in irreducible Her-
mitian symmetric spaces of noncompact type

In this final part of the section, we put together what is known about homogeneous
complex hypersurfaces in irreducible Hermitian symmetric spaces of noncompact type,
taking into account the results we have obtained earlier in the section.

First of all, let us examine how homogeneous complex hypersurfaces can be built in
higher-rank spaces by means of the canonical extension. Let M be a Hermitian symmetric
space of noncompact type. Suppose some boundary component BΦ of M is a complex
submanifold. Thanks to Proposition 2.5.1, BΦ is itself a Hermitian symmetric space of
noncompact type. Let SΦ ⊂ BΦ be a homogeneous submanifold. Its canonical extension

SΛΦ = SΦ × AΦ ×NΦ ⊂ BΦ × AΦ ×NΦ
∼= M

is a homogeneous submanifold of M . Indeed, if SΦ is an orbit of a Lie subgroup HΦ ⊆ G′Φ,
then SΛΦ is an orbit of HΛ

Φ.

Proposition 6.3.21. Let M be a Hermitian symmetric space of noncompact type, BΦ ⊆ M
a complex boundary component, and SΦ ⊆ BΦ a homogeneous submanifold.

(a) SΦ is a complex submanifold of BΦ if and only if SΛΦ is a complex submanifold of
M . In particular, SΦ is a homogeneous complex hypersurface in BΦ if and only if
SΛΦ is such in M .

(b) Suppose SΦ is a homogeneous complex hypersurface in BΦ, and assume it satisfies
any of the following properties:

(1) SΦ is an orbit of an isometric C1-action on BΦ.

(2) SΦ is an orbit of an isometric C2-action on BΦ.
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(3) SΦ is a leaf of a homogeneous C2-foliation on BΦ.

(4) SΦ is the base leaf of a standard C2-foliation on BΦ.

Then SΛΦ satisfies an analogous property in M .

Proof. It mostly follows from our discussion of the canonical extension procedure in
Subsection 5.1.1. If (b, a, n) ∈ SΛΦ, then

N(b,a,n)S
Λ
Φ = NbSΦ ⊆ TbBΦ ⊆ TbBΦ ⊕ TaAΦ ⊕ TnNΦ.

Plainly, SΛΦ is complex if and only if this normal space is complex. But the same is true
for SΦ, which proves (1). According to our discussion on standard foliations in Chapter 4,
if SΦ is the base leaf of a standard foliation on BΦ, we can find a subalgebra hΦ in the
solvable part aΦ⊕

⊕
α∈Σ+Φ

gα of the Iwasawa decomposition of g′Φ (induced from that of g)

such that the standard foliation in question is induced by hΦ. But then hΛΦ = hΦ⊕aΦ⊕nΦ
is contained in s = a ⊕ n, so its corresponding connected Lie subgroup HΛ

Φ yields a
standard foliation on M . The base leaf of that foliation is SΛΦ. The other assertions of the
proposition are trivial.

Recall from Proposition 6.2.6 that the only two totally geodesic complex hypersurfaces in
irreducible Hermitian symmetric spaces of noncompact type (up to isometric congruence)
are the standardly embedded CHn−1 ⊂ CHn and Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2), n ≥ 3.
Since the complex hyperbolic space and hyperbolic quadric have low ranks (1 and 2,
respectively), they have a higher chance of appearing in other Hermitian symmetric spaces
of noncompact type as boundary components. Whenever they do, we can extend their
totally geodesic complex hypersurfaces to the ambient space via the canonical extension.
Since any two totally geodesic complex hypersurfaces in CHn (resp., Gr∗(2,Rn+2)) are
strongly isometrically congruent, the canonical extension will produce a unique homoge-
neous complex hypersurface up to isometric congruence. The restricted root systems of
CHn and Gr∗(2,Rn+2) are (BC)1 (or C1 = A1 in case n = 1) and C2, respectively. A quick
glance at Table 6.4 reveals that these are the only noncompact Hermitian symmetric spaces
with such root systems. So given a space M with root system Σ, we want to find Φ ⊆ Λ
such that BΦ is complex and ΣΦ is isomorphic to (BC)1, A1, or C2. The next proposition
tells that this is always possible and the resulting canonically extended homogeneous
complex hypersurfaces are going to be precisely those we obtained in Corollary 6.3.19.

Proposition 6.3.22. Let M be an irreducible Hermitian symmetric space of noncompact
type represented by an orthogonal symmetric Lie algebra (g, θ). Pick a maximal abelian
subspace a ⊂ p and make a choice of positive roots Σ+ ⊂ Σ; and take a basis e1, . . . , er for
a∗ so that Σ and Σ+ become as in Example 6.3.4 and (6.3.1).

(a) If Σ ≃ Cr, then:

(1) The only complex boundary component BΦ isometric to CHn is the one with
Φ = {2er}; in this case, BΦ ≃ CH1. The canonical extension of {pt} ⊂ BΦ
is a homogeneous complex hypersurface and the base leaf of the standard C2-
foliation on M induced by h = (a⊖ RH2er)⊕ (n⊖ g2er).

(2) The only complex boundary component BΦ isometric to Gr∗(2,Rn+2) is the
one with Φ = {er−1 − er, 2er}. The canonical extension of a totally geodesic
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Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2) ≃ BΦ is a homogeneous complex hypersurface and
the base leaf of the standard C2-foliation on M induced by h = s⊖ CX, where
X ∈ ger−1−er is a nonzero vector.

(b) If Σ ≃ (BCr):

(1) The only complex boundary component BΦ isometric to CHn is the one with
Φ = {er}. The canonical extension of a totally geodesic CHn−1 ⊂ CHn ≃ BΦ
is a homogeneous complex hypersurface and the base leaf of the standard C2-
foliation on M induced by h = s⊖ CX, where X ∈ ger is a nonzero vector.

(2) There are no complex boundary components in M isometric to Gr∗(2,Rn+2).

Each of these homogeneous complex hypersurfaces in M can be realized as a singular orbit
of an isometric C1-action.

Proof. In view of Corollary 6.3.19 and Proposition 6.3.21, we only need to prove that the
totally geodesic complex hypersurfaces CHn−1 ⊂ CHn and Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2)
arise as base leaves of standard C2-foliations as described in the proposition.

For M = CH1 = SU(1, 1)/S(U(1)U(1)) and its (totally geodesic) submanifold {pt}, the
statement is trivial. Now let M = CHn = SU(n, 1)/S(U(n)U(1)). The totally geodesic
CHn−1 can be described as the orbit of SU(n−1, 1) embedded into SU(n, 1) in a standard
way. A quick look at this embedding reveals that h = su(n− 1, 1) is a θ-stable subalgebra
of g = su(n, 1). We can pick a to be the fixed maximal abelian subspace of h ∩ p; in this
case, the restricted root systems of h and g coincide. Moreover, if we write Σ+ = {α, 2α}
according to Example 2.4.14, then h2α = g2α, while hα is a complex hyperplane in gα.
Note that CHn−1 is also an orbit of the solvable part of the Iwasawa decomposition of
SU(n− 1, 1), whose Lie algebra is

a⊕ (h ∩ n) = a⊕ hα ⊕ h2α = s⊖ ℓ,

where ℓ = gα ⊖ hα. This settles the case of CHn−1 ⊂ CHn. The argument for
Gr∗(2,Rn+1) ⊂ Gr∗(2,Rn+2) is similar.

To round off, we would like to make some remarks about potential generalizations of
Theorem 6.3.14 and Proposition 6.3.22 and suggest a possible route toward a classification
of homogeneous complex hypersurfaces in noncompact Hermitian symmetric spaces.
Having dealt with standard foliations, the next logical step is to try to classify all
homogeneous C2-foliations with a complex leaf. LetM = G/K be an irreducible Hermitian
symmetric space of noncompact type, and assume that H ⊂ G is a closed connected
subgroup inducing a homogeneous C2-foliation F on M . In a setting far more general that
ours, Berndt, Tamaru, and Dı́az-Ramos showed in [BDRT10, Prop. 2.2] that there exists
a closed connected solvable subgroup F of H that has the same orbits. Let l be a Borel
subalgebra of g containing f = Lie(F ). It follows from the works of Mostow ([Mos61]) that
l has the form c⊕ n0, where c is a Cartan subalgebra of g and n0 is a specific nilpotent
subalgebra. There exists a Cartan involution θ on g such that c = t0⊕ a0, where t0 = c∩ k
and a0 = c ∩ p (see, e.g., [Kna02, Prop. 6.59]). In this notation, n0 can be described as
the sum of all positive eigenspaces of ad(H) for some H ∈ a0. If F were hyperpolar, the
Cartan subalgebra c would have to be maximally noncompact, which means that a0 would
have to be a maximal abelian subspace of p. This was shown as part of the classification of
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homogeneous hyperpolar foliations in [BDRT10] (see Proposition 5.1 there). In our case,
however, as soon as F has a complex leaf, it has no chance of being hyperpolar. This is
because its section would also have to be a complex submanifold, which would contradict
Corollary 6.3.13(c). This leaves us with two possibilities: either one can still prove that f is
contained in a maximally noncompact Borel subalgebra (perhaps by utilizing some results
of this section like Theorem 6.3.12 or Lemma 6.3.15), or else no such Borel subalgebra
exists—which could lead to new homogeneous complex hypersurfaces. Since every known
example of such a hypersurface appears in Corollary 6.3.19, we formulate the following

Conjecture 6.3.23. If M = G/K is an irreducible Hermitian symmetric space of
noncompact type, then every homogeneous C2-foliation on M with a complex leaf is
induced by a Lie subgroup of some maximally noncompact Borel subgroup of G.

In fact, it is not hard to show that Conjecture 6.3.23 is true for spaces of type (BC)r.
However, for Cr-spaces, it might happen in theory that a0 = a⊖RH2er and n0 = n⊖ g2er .
We do not know whether f can have a nonzero projection to t0 in that case.

A quick glance at Table 6.4 reveals that there exists precisely one family of irreducible
noncompact Hermitian symmetric spaces that are split: Sp(2n,R)/U(n), n ≥ 1. As
we mentioned in Proposition 2.4.16, such a space has k0 = {0}, which implies that all
maximally noncompact Borel subalgebras of g are conjugate to a⊕n. Therefore, if Conjec-
ture 6.3.23 holds, every homogeneous C2-foliation with a complex leaf on Sp(2n,R)/U(n)
will be standard. In that case, to complete the classification of such foliations for this
series of spaces, one would only be left to investigate if a standard C2-foliation with a
complex leaf can have its base leaf non-complex.

For other spaces, the situation is more convoluted. Assuming Conjecture 6.3.23 holds,
every homogeneous C2-foliation with a complex leaf is induced by some subalgebra h
of t ⊕ a ⊕ n, where t is a maximal abelian subspace of k0. Again, if the foliation were
hyperpolar, the projection of h to s along t would be a subalgebra and induce the same
foliation as h ([BDRT10]). Since we know for a fact that F cannot be hyperpolar, one
needs to come up with new approaches to tackle this problem.

Another logical continuation of this chapter would be to try to find all homogeneous
complex hypersurfaces in M that arise as singular orbits of C1-actions. This problem
should of course be investigated within the framework of Theorem 5.1.7. Using the results
of this section as well as [BCO16, Tab. 11.1], one can show that no new homogeneous
complex hypersurfaces inM can arise from parts (b)-(1) and (b)-(2) of Theorem 5.1.7. This
means that one only needs to deal with the nilpotent construction. Take j ∈ {1, . . . , r}
and consider the representation of Lj on n1j . In order to obtain a C1-action with a complex
hypersurface as a singular orbit via the nilpotent construction, one has to sift through
subspaces v of n1j of real dimension 2 that also happen to be complex in s. Plainly, no
such v exists if n1j is a totally real subspace. Owing to Theorem 6.3.12, it is not hard to
see that:

• If M of type Cr, n
1
j is complex for j < r and totally real for j = r.

• If M of type (BC)r, n
1
j is complex for every j.

If we disregard the case j = r for M of type Cr, the problem can be formulated as follows:

(a) Find all (up to K1
j ) complex one-dimensional subspaces v ⊆ n1j that are both
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protohomogeneous and admissible.

(b) Check which of the corresponding homogeneous complex hypersurfaces are isometri-
cally congruent to those listed in Proposition 6.3.22.

As we can see, the nilpotent construction problem confined to this setting becomes a
problem in the complex representation theory of reductive groups. As before, we do not
expect to see any new homogeneous complex hypersurfaces arising in this way:

Conjecture 6.3.24. Let M be an irreducible noncompact Hermitian symmetric space and
S is homogeneous complex hypersurface. If S is an orbit of some isometric C1-action on M ,
then it is isometrically congruent to one of the hypersurfaces listed in Proposition 6.3.22.

The only remaining case is homogeneous complex hypersurfaces that arise neither as
singular orbits of C1-actions nor as leaves of homogeneous C2-foliations. Such a hyper-
surface has no choice but to be a nonsingular orbit of a C2-action with singular orbits.
As we formulated in Conjecture 6.C, we do not expect that such complex hypersurfaces
exist. However, with the current state of research on isometric actions on noncompact
symmetric spaces, that conjecture is out of reach as it stands. As we mentioned in
Example 2.3.27, every C2-action is infinitesimally polar. But even polar C2-actions on
noncompact symmetric spaces are far from being fully classified. The only general result
in this direction seems to be the recent classification of homogeneous polar C2-foliations
by Dı́az-Ramos and Lorenzo-Naveiro in [DRLN23]. As we explained above, the case
of homogeneous foliations is more promising due to the existence of general structural
results. Until such results are obtained for isometric actions with singular orbits and of
cohomogeneity greater than 1, Open problem 6.B and Conjecture 6.C are likely to remain
open.
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the theory of singular Riemannian foliations, Differential Geom. Appl.
31 no. 2 (2013), 248–267. MR 3032647. https://doi.org/10.1016/j.
difgeo.2013.01.004.

[Ant12] S. A. Antonyan, Characterizing maximal compact subgroups, Arch.
Math. (Basel) 98 no. 6 (2012), 555–560. MR 2935661. https://doi.org/
10.1007/s00013-012-0389-8.

[AB03] M. Atiyah and J. Berndt, Projective planes, Severi varieties and spheres,
in Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), Surv.
Differ. Geom. 8, Int. Press, Somerville, MA, 2003, pp. 1–27. MR 2039984.
https://doi.org/10.4310/SDG.2003.v8.n1.a1.

[Bae02] J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 no. 2 (2002),
145–205, Errata: Bull. Amer. Math. Soc. (N.S.) 42 no. 2 (2005), 213.
MR 1886087. https://doi.org/10.1090/S0273-0979-01-00934-X.

[BB82] L. Bérard-Bergery, Sur de nouvelles variétés riemanniennes d’Einstein,
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8. MR 571356.

[Kul78] R. S. Kulkarni, On complexifications of differentiable manifolds, Invent.
Math. 44 no. 1 (1978), 46–64. MR 460731. https://doi.org/10.1007/
BF01389901.

[Lee13] J. M. Lee, Introduction to smooth manifolds, second ed., Graduate Texts
in Mathematics 218, Springer, New York, 2013. MR 2954043.

[Leu73] D. S. P. Leung, The reflection principle for minimal submanifolds of
Riemannian symmetric spaces, J. Differential Geometry 8 (1973), 153–
160. MR 367872. Available at http://projecteuclid.org/euclid.jdg/
1214431489.

[Leu75] D. S. P. Leung, On the classification of reflective submanifolds of Rie-
mannian symmetric spaces, Indiana Univ. Math. J. 24 (1974/75), 327–339,
Errata: Indiana Univ. Math. J. 24 (1975), no. 12, 1199. MR 367873.
https://doi.org/10.1512/iumj.1974.24.24029.

[Leu79a] D. S. P. Leung, Reflective submanifolds. III. Congruency of isometric
reflective submanifolds and corrigenda to the classification of reflective sub-
manifolds, J. Differential Geometry 14 no. 2 (1979), 167–177. MR 587545.
Available at http://projecteuclid.org/euclid.jdg/1214434966.

[Leu79b] D. S. P. Leung, Reflective submanifolds. IV. Classification of real forms
of Hermitian symmetric spaces, J. Differential Geometry 14 no. 2 (1979),
179–185. MR 587546. Available at http://projecteuclid.org/euclid.
jdg/1214434967.

[LNS22] J. M. Lorenzo-Naveiro and I. Solonenko, Sections of polar actions,
2022. Available at https://arxiv.org/abs/2111.05280.

[Lyt10] A. Lytchak, Geometric resolution of singular Riemannian foliations,
Geom. Dedicata 149 (2010), 379–395. MR 2737699. https://doi.org/10.
1007/s10711-010-9488-5.

[Lyt14] A. Lytchak, Polar foliations of symmetric spaces, Geom. Funct. Anal.
24 no. 4 (2014), 1298–1315. MR 3248486. https://doi.org/10.1007/
s00039-014-0279-2.

[LT07] A. Lytchak and G. Thorbergsson, Variationally complete actions on
nonnegatively curved manifolds, Illinois J. Math. 51 no. 2 (2007), 605–
615. MR 2342678. Available at http://projecteuclid.org/euclid.ijm/
1258138433.

[LT10] A. Lytchak and G. Thorbergsson, Curvature explosion in quo-
tients and applications, J. Differential Geom. 85 no. 1 (2010), 117–
139. MR 2719410. Available at http://projecteuclid.org/euclid.jdg/
1284557927.

[Mat57] Y. Matsushima, Sur la structure du groupe d’homéomorphismes ana-
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