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ABSTRACT

In this thesis, we study the geometry and congruence of homogeneous hypersur-
faces in Riemannian symmetric spaces of compact and noncompact type and
obtain a number of classification results.

Firstly, we prove that every multiplicity-preserving automorphism of the re-
stricted root system of a real semisimple Lie algebra admits a natural lift to an
automorphism of that Lie algebra and show when it can be further lifted to an
isometry of an associated noncompact symmetric space.

Next, we extend the classification of homogeneous codimension-one foliations
on irreducible Riemannian symmetric spaces of noncompact type obtained by
Berndt and Tamaru to the reducible case, thus completing it for all noncompact
symmetric spaces.

After that, we obtain a complete and explicit classification, up to orbit-
equivalence, of cohomogeneity-one actions (and thus homogeneous hypersur-
faces) on a number of irreducible noncompact Riemannian symmetric spaces
of rank 2, namely on SL(3,H)/Sp(3), SO(5,C)/SO(5), and Gr*(2,C"**) =
SU(n+2,2)/S(U(n+2)U(2)), n > 1.

Finally, we study homogeneous complex hypersurfaces in irreducible Hermitian
symmetric spaces. In the compact case, we make some progress on classification
of such hypersurfaces up to congruence by using Konno’s work on codimension-
one embeddings of complex flag manifolds with b, = 1. In the noncompact
case, we obtain a partial classification result: given an irreducible noncompact
Hermitian symmetric space M realized as a simply connected solvable Lie group,
we classify those complex hypersurfaces that are also Lie subgroups of M.
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CHAPTER 1

INTRODUCTION

THE overarching theme of this thesis is the geometry, congruence, and ultimate classifi-
cation of homogeneous hypersurfaces in Riemannian symmetric spaces. A homogeneous
submanifold in a Riemannian manifold M is an orbit of an isometric Lie group action on
M. A Riemannian symmetric space is a Riemannian manifold, each of whose points is an
isolated fixed point of an involutive isometry, called the geodesic symmetry at that point.

Riemannian symmetric spaces, or simply symmetric spaces, are perhaps one of the most
well-studied classes of Riemannian manifolds due to their exceptionally high degree of
symmetry. Every symmetric space is a Riemannian homogeneous space, so it can be
represented as a quotient of Lie groups and studied by means of Lie theory. But much
more is true: the existence of geodesic symmetries enables one to translate most of the
geometric properties of a symmetric space M = G/ K into statements about the Lie group
G and its Lie algebra g. Various geometric quantities of M such as the curvature—be it
the curvature endomorphism, the Ricci curvature, or the sectional curvatures—can be
expressed in terms of the algebraic structure of g. As a result, many questions about the
geometry of symmetric spaces can be rendered algebraic and thus greatly simplified. This
puts symmetric spaces at the epicenter of a lot of quests in differential geometry (and
especially differential geometry with symmetries) in the past century. To name a few:

e Riemannian manifolds with positive sectional curvature. There are very few known
compact examples of such manifolds that are not homogeneous or cohomogeneity-one.
Homogeneous positively-curved manifolds were essentially classified around 50 years
ago by Bérard-Bergery, Wallach, etc. (see [WZ18] for a modern exposition). Those
of cohomogeneity one were handled more recently (see a general survey [Zil14]). In
either case, compact symmetric spaces of rank one (see! Definition 2.1.8) play a
central role.

e Homogeneous Einstein manifolds. Irreducible symmetric spaces provide one of the
most elementary—yet abundant—examples of homogeneous Einstein manifolds.
They also serve as a guiding model for other such manifolds. For instance, every
symmetric space of noncompact type (Definition 2.1.77)—which is Einstein when
the metric is suitably normalized—can be realized as a simply connected solvable
Lie group with a left-invariant Riemannian metric. In light of the recently resolved
Alekseevskii conjecture ([BL23]), every homogeneous Einstein manifold of negative

IPrecise definitions of many of the terms used in this introduction can be found in Chapter 2 and will
be referenced when relevant.
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scalar curvature is also of this form. We refer to the survey [Jab21] for further
discussion.

e Quaternion-Kdhler manifolds. These are Riemannian manifolds with holonomy
contained in Sp(n)Sp(1)—one of the seven possible holonomy groups of non-locally-
symmetric manifolds that appear in Berger’s classification of Riemannian holonomy
groups. In a certain sense, they are a generalization of hyperkédhler manifolds,
although these two types of spaces do not share so much in common. Each compact
simple Lie group gives rise to a quaternion-Kahler symmetric space of positive
Ricci curvature, known as a Wolf space. Remarkably, there are no known examples
of compact quaternion-Kéhler manifolds that are not locally symmetric space (or
hyperkéhler); this makes Sp(n)Sp(1) the only special holonomy group without such
examples. We refer to [Bes08, Chap. 14] for a detailed discussion of these spaces and
further references.

e [sometric polar actions. A proper isometric Lie group action on a complete Rieman-
nian manifold M is called polar if there exists a complete submanifold of M that
intersects all the orbits and does so orthogonally. For many spaces, including all
simply connected irreducible symmetric spaces, such actions are a generalization of
the more well-known notion of cohomogeneity-one action. They are also related to
isoparametric submanifolds (see, e.g., [PT87]). In [Dad85], Dadok proved that linear
polar actions on Euclidean spaces have the same orbits as the restricted isotropy
representations of semisimple symmetric spaces (to be defined in Proposition 2.1.95).
(A more precise notion of orbit-equivalence will be introduced in Definition 2.3.18.)
Polar actions on irreducible symmetric spaces of compact type were classified by Koll-
ross, Lytchak, Podesta, Thorbergsson, and Gorodski ([Kol02, KL13, PT99, GK16];
see also a survey in [BCO16, Chap. 12]).

The close affinity of symmetric spaces with Lie groups and Lie algebras is also what
ultimately led to their classification. Every symmetric space is covered by a simply
connected symmetric space, which, in turn, decomposes as a product of a Euclidean
space and a number of irreducible symmetric spaces. For simply connected irreducible
symmetric spaces, the classification boils down to classifying either real simple Lie algebras
or involutive automorphisms of compact real simple Lie algebras. This was carried out by
Cartan—who was the first to study symmetric spaces systematically—almost a century
ago in [Car26, Car27].

The other half of the focus in this thesis is on homogeneous hypersurfaces. Those are
intimately related to isometric cohomogeneity-one actions: every such hypersurface can be
realized as a nonsingular orbit of an isometric cohomogeneity-one action; and conversely,
every nonsingular orbit of a such an action is a homogeneous hypersurface. Cohomogeneity-
one actions have been in the limelight because they can be used to construct Riemannian
metrics with special properties: for instance, Einstein metrics, metrics with special
holonomy, or metrics of positive sectional curvature ([BB82, BS89, GWZ08]). Since
most geometric structures on manifolds are governed by systems of partial differential
equations, one can take advantage of the following principle: if a system of PDEs is
invariant under a cohomogeneity-one action, it can be reduced to ODEs. Somewhat in
a similar spirit, one can start with an isometric cohomogeneity-one action G ~ M and
alter the existing metric g along the orbits of G to produce a new G-invariant metric,
which might retain some properties of g or even gain new ones—this method has been
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used to construct special metrics explicitly. Coming back to homogeneous hypersurfaces,
one of their prominent features is that they have constant principal curvatures, and they
also provide the chief example of what is known as isoparametric hypersurfaces. These
hypersurfaces of Riemannian manifolds can be defined as regular level sets of certain
functions, called isoparametric functions. They were introduced at the beginning of the
twentieth century, motivated by questions in geometrical optics: they were conceived
as a model for wavefronts traveling with constant uniform velocity at each moment of
time. In space forms, they are the same as complete hypersurfaces with constant principal
curvatures, but these two classes diverge in more complex Riemannian manifolds. One
of the biggest—and still unresolved—conundrums in this area of research in the recent
decades has been the classification of isoparametric hypersurfaces in spheres (see [BCO16,
Sect. 2.9.6] for a short survey). As any other homogeneous submanifold, homogeneous
hypersurfaces carry information about the geometry of the ambient manifold, as well as
the structure of its isometry group.

There are several good reasons to study homogeneous hypersurfaces—and more generally,
homogeneous submanifolds—specifically in the context of symmetric spaces. In general,
studying and classifying homogeneous submanifolds is a grueling and perhaps unfeasible
task, not least because the isometry group of a generic Riemannian homogeneous (let
alone cohomogeneity-one) manifold is poorly understood. On the other hand, for a
semisimple symmetric space M (which includes all irreducible symmetric spaces), the
identity component I°(M) of the isometry group is semisimple, and M is the quotient
of I°(M) by a compact subgroup of a very special type, called a symmetric subgroup
(see Definition 2.1.20). This allows one to implement the extensive body of theory
about subgroups of semisimple Lie groups (some seminal works® include [Dyn52b, Dyn52a,
Mos61])) to study and ultimately classify various homogeneous objects in symmetric spaces,
including homogeneous submanifolds and cohomogeneity-one actions. This approach is
especially fruitful in the case of symmetric spaces of compact type, which led to the
aforementioned classification of polar and cohomogeneity-one actions on such spaces—
this is also the primary reason why this thesis focuses predominantly on symmetric
spaces of noncompact type. Another reason why homogeneous submanifolds are usually
considered within the framework of symmetric spaces is that they inherit some of the
symmetry of the ambient space and often possess extra properties and special structures,
which makes the theory richer and more intricate. Finally, the class of homogeneous
submanifolds encompasses many other types of submanifolds commonly studied in the
theory of symmetric spaces, such as totally geodesic submanifolds, reflective submanifolds,
symmetric submanifolds, etc.

Returning to the opening sentence of this introduction, we must explain what we mean
by classifying homogeneous hypersurfaces. Since we are chiefly interested in submanifold
geometry, we do not wish to distinguish between two submanifolds of the same manifold
M if there is an isometry of M mapping one onto the other. If this is the case, we say that
these two submanifolds are congruent. Throughout the thesis, the problem of determining
whether two submanifolds are congruent is referred to as the problem of congruence, or
the congruence problem. The questions at the heart of this thesis are then,

!The two papers of Dynkin are ubiquitously available online, but they are in Russian. Both were
translated by the AMS [Dyn57b, Dyn57a], but these versions are behind a harsher paywall and harder to
come by.
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What are the congruence classes of homogeneous hypersurfaces in a given
symmetric space? In which ways do noncongruent homogeneous hypersurfaces
differ geometrically?

These questions are considered in Chapters 4, 5, and 6 of the thesis. They are preceded
by Chapter 3, where we establish certain results that underpin the problem of congruence
on symmetric spaces of noncompact type.

* % %k

In Chapter 3, we lay some groundwork for the study of the congruence problem in the
later chapters. Since our main object of interest is symmetric spaces of noncompact type,
it is worth paying special attention to the congruence problem in this context. Symmetric
spaces of noncompact type are intimately related to noncompact real semisimple Lie
algebras. For this reason, they are frequently studied with tools taken from the theory of
such Lie algebras: the restricted root space decomposition, the Iwasawa decomposition, the
theory of parabolic subalgebras, etc. The first of these is arguably of highest importance,
as it underpins most of the other tools and constructions. The relation between a real
semisimple Lie algebra and its restricted root system bears a strong resemblance to its
complex analog—the classical correspondence between complex semisimple Lie algebras
and reduced root systems. Still, there are some notable differences: first, the restricted
root system is only effective for examining noncompact semisimple Lie algebras; second,
it may not be reduced; but most importantly, the dimension of a restricted root space,
known as the multiplicity of the corresponding root, does not have to be equal to 1. In
the complex case, the [somorphism Theorem proves to be a very powerful tool; it asserts
that an isomorphism between complex semisimple Lie algebras can be defined merely on
the so-called canonical generators, provided that the Cartan matrix is preserved. Among
other things, it allows to lift, in a certain sense, every symmetry of the Dynkin diagram
of g (or, more generally, every automorphism of the root system) to an automorphism of
g. For real semisimple Lie algebras, this instrument is not available—there is no analog of
canonical generators to begin with.

The central idea of Chapter 3 is to treat the restricted root multiplicities as a feature, not
a bug, and incorporate them into the restricted root system itself. This leads naturally
to the notions of a weighted root system and a weighted Dynkin diagram. It turns out
that the noncompact part of a semisimple Lie algebra is completely determined by its
weighted restricted root system (or, equivalently, its weighted Dynkin diagram). It would
then be sensible to consider only those automorphisms of the restricted root system
and the Dynkin diagram that preserve the root weights—we call them weight-preserving
automorphisms. The main result of the chapter is the following

Theorem 1. FEvery weight-preserving automorphism of the restricted root system of a
real semisimple Lie algebra admits a lift to an automorphism of that Lie algebra.

We will define exactly what we mean by a lift in Subsection 3.2.1. The proof of the
theorem goes as follows. First, we show that it suffices to construct lifts only for the
weight-preserving automorphisms of the Dynkin diagram. Next, we reduce the problem
to simple noncompact Lie algebras (which correspond to irreducible root systems). After
that, we handle the cases when g is a complex simple Lie algebra or a split real form; here,
the statement can be deduced from the Isomorphism Theorem. In the remaining cases,

10
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there is at most one nontrivial weight-preserving automorphism of the Dynkin diagram.
Using some general theory of root systems and the classification of symmetric spaces, we
show that this nontrivial automorphism equals the negative of the longest element in the
Weyl group, whose lift is easy to construct explicitly. Some authors have stated partial
versions of this theorem without references (see, e.g., [BT03, p.11] or [Mur52, p. 111]).

We close the chapter with a reformulation of Theorem 1 in the language of symmetric
spaces of noncompact type. Every such space M admits a natural Riemannian metric,
called the Killing metric, and every other symmetric metric differs from the Killing one
by rescaling by some positive real numbers along the de Rham factors of M. These
numbers are called the normalizing constants. The isometry group of M embeds into
the automorphism group of its isometry Lie algebra g as an open subgroup. In general,
the image of this embedding is a proper subgroup, but for some (generic) choices of
normalizing constants it is the whole Aut(g); if this is the case, we call the metric almost
Killing. In the geometric reformulation of Theorem 1, we work out explicitly which
weight-preserving automorphisms of the restricted root system of g admit a lift to an
isometry of M. The general statement is a bit involved (see Corollary 3.3.8), so we only
give a simplified version here:

Theorem 2. Let M be a symmetric space of noncompact type, and assume its metric is
almost Killing. Then every weight-preserving automorphism of the restricted root system
of the isometry Lie algebra of M admits a lift to an isometry of M.

Let us illustrate how this result can be used in practice. Many geometric objects on
symmetric spaces of noncompact type are constructed within the framework of the
restricted root space decomposition and thus rely on the root data. For instance, to
every subset of the set A of simple roots, one can associate a particular totally geodesic
submanifold of M, called a boundary component, which will be of paramount importance
to us throughout the thesis. It might happen that two subsets of A differ by a weight-
preserving automorphism of the Dynkin diagram. As we will see in Proposition 3.3.9, the
resulting boundary components will then be congruent, essentially due to Theorem 2.

X 3k %

In Chapter 4, we study the congruence problem in the context of homogeneous codimension-
one foliations on reducible symmetric spaces of noncompact type. A homogeneous foliation
on a Riemannian manifold M is the orbit foliation of a Lie group acting on M isomet-
rically and without singular orbits. If M is a symmetric space of noncompact type,
an isometric cohomogeneity-one action on M can have at most one singular orbit (see
Proposition 2.3.43), so such actions split naturally into two categories: those that do and
those that do not have a singular orbit. Every action in the first category gives rise to a
homogeneous codimension-one foliation. On irreducible symmetric spaces of noncompact
type, such foliations were classified by Berndt and Tamaru in [BT03]. They used the
Iwasawa and restricted root space decompositions (we discuss both in Subsection 2.4.2)
to build two different types of homogeneous codimension-one foliations. Let us briefly
introduce their constructions.

Let M be a symmetric space of noncompact type, G = I°(M), and g = Lie(G). Pick any
point 0 € M and let s, be the geodesic symmetry of M at o. Then 8 = Ad(s,) is a Cartan
involution on g (to be defined in Definition 2.1.69). If we write B for the Killing form
of g, the form By(X,Y) = —B(X,0Y) becomes an inner product on g. We decompose

11
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g = €@ p into the +1- and —1-eigenspaces of 0 and pick a maximal abelian subspace a in
p. The restricted root system X of g lives in a*; we denote its Dynkin diagram by DD.
Any choice of positive roots in L gives rise to an Iwasawa decomposition g =€ @ a & n,
where n is a nilpotent subalgebra defined as the sum of all positive root spaces.

For any subalgebra of the solvable Lie algebra s = a @ n, the corresponding Lie subgroup
induces a homogeneous foliation on M; we call any foliation that can be constructed
in this way a standard foliation, and we refer to its leaf through o as the base leaf. For
example, if we take any one-dimensional subspace ¢ C a, its orthogonal complement s,
in 5 is a subalgebra, and it gives rise to a standard codimension-one foliation, denoted
by Fp. Similarly, if o is a simple root, removal of a one-dimensional subspace (does not
matter which one) from the restricted root space g4, produces a subalgebra of s, whose
corresponding standard foliation F,, also has codimension 1. The notion of congruence
easily extends to this context: two foliations of M are called congruent if there exists an
isometry of M identifying their leaves (see Definition 2.3.18 for a precise formulation).
For instance, the foliations F, and F, are never congruent to each other: the leaves of F;
are all pairwise congruent, whereas F,, has a unique minimal leaf (the base leaf). Now
suppose M is irreducible. The main results of [BT03] are as follows:

(a) The foliations F;, and F,, exhaust the list of all homogeneous codimension-one
foliations on M up to congruence.

(b) Given two lines ¢, ¢’ C a (resp., two simple roots o, «;), the foliations F, and F
(resp., Fo, and Fy;) are congruent if and only if £ and ¢ (resp, &; and «;) differ by
a weight-preserving automorphism of DD.

In (b), we tacitly use the fact that every weight-preserving automorphism of DD naturally
extends to a linear operator on a. The authors used these results in their subsequent
article [BDRT10] with Diaz-Ramos to obtain a classification result for the more general
class of homogeneous hyperpolar foliations on all (possibly reducible) symmetric spaces of
noncompact type. A homogeneous foliation on M is called hyperpolar if there exists a flat
submanifold of M, called a section, that intersects all the leaves and does so orthogonally.
Every homogeneous codimension-one foliation on M is hyperpolar: a section can be
constructed by launching a geodesic from any point orthogonally to its leaf; it can be
shown that such a geodesic will actually cross all the leaves orthogonally. When applied to
codimension-one foliations, the main result of [BDRT10] ensures that every homogeneous
codimension-one foliation on M is congruent to either some F; or some JF,,—except this
time the space is allowed to be reducible. To complete the classification, one needs to tell
when two foliations of the form F, (or Fy,) are mutually congruent. We achieve this by
utilizing the notion of a weight-preserving automorphism conceived in Chapter 3:

Theorem 3. Let M be a symmetric space of noncompact type whose Riemannian metric
is almost Killing. Two homogeneous codimension-one foliations Fy, Fy (resp., Fo,, Fu,)
on M are congruent if and only if € and ¢’ (resp., &; and «;) differ by a weight-preserving
automorphism of the Dynkin diagram of M.

If M is irreducible, every automorphism of its Dynkin diagram is automatically weight-
preserving (Theorem 3.2.10(2)), so Theorem 3 is a direct generalization of statement (b)
above. Our proof combines geometric and algebraic methods and is an extension of Berndt
and Tamaru’s original proof of (b) in [BT03]. It is based on a painstaking analysis of the
Lie bracket relations between the subalgebras a and n, and it also relies on the fact that a

12
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symmetric space of noncompact type is determined by its weighted Dynkin diagram.
* * *

In Chapter 5, we obtain an explicit classification of proper isometric cohomogeneity-
one actions (and thus homogeneous hypersurfaces) on a number of irreducible rank-two
symmetric spaces of noncompact type, namely on SL(3,H)/Sp(3), SO(5,C)/SO(5), and
Gr*(2,C"™), n > 1.

Compared to the compact case, the theory of cohomogeneity-one actions on symmetric
spaces of noncompact type is substantially more convoluted, which is why the saga
of classification of these actions has been ongoing for over two decades. Let H ~ M
be such an action. Without loss of generality, we may assume that H is a connected
closed subgroup of I°(M). As we mentioned earlier, H can have at most one singular
orbit. If there is no singular orbit, the orbits form a homogeneous codimension-one
foliation, the classification of which is discussed in Chapter 4. If the action has a singular
orbit, there are two things that can happen. Let H' C I°(M) be a maximal proper
connected Lie subgroup containing H. In [Mos61], Mostow showed that such a maximal
subgroup is either reductive or the identity component of a parabolic subgroup of G (see
Subsection 2.4.3 for a discussion of parabolic subalgebras and subgroups). In the first
case, Berndt and Tamaru showed in [BT13] that H and H' have the same orbits, and the
singular orbit must be totally geodesic. For irreducible spaces, cohomogeneity-one actions
with a totally geodesic singular orbit were classified by the authors in [BT04]. They
showed that, apart from five exceptional actions, the singular orbit must be a reflective
submanifold (Definition 2.2.26). By relying on Leung’s classification of such submanifolds
in irreducible symmetric spaces of compact type ([Leu75, Leu79al), they figured out which
reflective submanifolds arise as singular orbits of cohomogeneity-one actions, which let
them complete the classification. If H lies in a parabolic subgroup of G, its singular orbit
may not be totally geodesic. A novel approach was needed to generate such actions.

In [BT13], the authors invented two new ways of constructing cohomogeneity-one actions
on noncompact symmetric spaces. The first one is called the canonical extension, and
it is a procedure that takes isometric actions on the boundary components of M and
naturally extends them to global actions on M. The second one is known as the nilpotent
construction, and it is arguably the more intricate of the two. This method concerns
representations of certain reductive subgroups of GG; we do not attempt to lay it out here
and refer to Subsection 5.1.1 for details. The main result of [BT13] asserts that any
cohomogeneity-one action on M with a non-totally-geodesic singular orbit arises via one
of these two constructions.

In a recent paper [DRDVO23], Diaz-Ramos, Dominguez-Vézquez, and Otero managed to
dispense with the irreducibility assumption on M altogether. In the above step where
one takes a maximal proper subgroup of G, they used a result of Dynkin (Th.15.1 in
[Dyn52b] or [Dyn57b]) that states that every maximal proper subalgebra of a semisimple
Lie algebra @le g; (here g; are simple) has to be of one of two forms: h; &€D,; g;, where
bi C gi, or b ; ® D, ; 81, where g; ~ g; and b; ; C g; D g; is a diagonal subalgebra. They
also showed, roughly speaking, that the composition of a nilpotent construction with a
canonical extension is a nilpotent construction, whereas Berndt and Tamaru showed in
[BT13] that the composition of two canonical extensions is again a canonical extension. As
a result of all these works, the search for cohomogeneity-one actions on a given symmetric
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space of noncompact type reduces to a problem in the representation theory of reductive
Lie groups. The complexity and obscurity of that problem depends on the space in
question but generally tends to grow along with the rank of a space. As of today, the
nilpotent construction has only yielded two new actions on spaces of rank > 1 that do not
arise via any other methods (both described in [BT13]). The primary result of Chapter 5
is the following

Theorem 4. Every proper isometric cohomogeneity-one action with a non-totally-geodesic
singular orbit on the symmetric spaces

SL(3,H)/Sp(3), SO(5,C)/SO(5), Gr*(2,C"™), n>1,

arises via the canonical extension.

In other words, the nilpotent construction produces no new actions on these spaces. We
consider the three of them individually in Sections 5.2 to 5.4, and the methods we use in the
proofs are space-specific. For each of the spaces, we first give an explicit description of the
actions with a totally geodesic singular orbit, as well as those arising by canonical extension,
and then proceed to deal with the nilpotent construction—which, as we said before, is
basically a problem in the representation theory of reductive groups. For SL(3,H)/Sp(3),
it involves the standard representation of Sp(2)Sp(1) on H?, which we handle by using
the notion of quaternion-Kéahler angle and the theory developed in [DRDVRV21]. For
SO(5,C)/SO(5), we utilize some techniques established in [BDV15] specifically for the
purposes of solving the nilpotent construction problem. Lastly, in the case of noncompact
complex Grassmannians of two-planes, we first use some ad-hoc arguments to simplify the
nilpotent construction, but then opt for a rather head-on approach. Here, the problem
of congruence is particularly interesting because of the unique geometric characteristics
of the space. Together with its compact dual (the duality for symmetric spaces will be
discussed in Subsection 2.1.5), the noncompact complex Grassmannian of two-planes is
the only semisimple symmetric space that is both Hermitian and quaternion-Kéhler (see
Subsection 2.5.1). The interplay between these two structures provides some rather fine
tools for distinguishing between various submanifolds of M; we will use this to deduce
that certain actions on M are not mutually congruent.

Xk ok

Finally, in Chapter 6, we examine the topic of the thesis through the lens of complex
geometry. That is to say, we study homogeneous complex hypersurfaces in Hermitian
symmetric spaces (which are simply symmetric spaces that are also Kéhler manifolds).
The property of being of real codimension 2 sets complex hypersurfaces quite far apart
from their real counterparts.

Historically, one of the first results that motivated the study of homogeneous com-
plex hypersurfaces is perhaps their classification in complex space forms by Smyth
and Nomizu in [Smy68, NS68|: they proved that, up to congruence, the submanifolds
Cv 1t cCr,CH"! c CH", and CP" !, Q" ! c CP" exhaust the list of homogeneous
complex hypersurfaces in simply connected complex space forms. Here Q™! is the stan-
dard nonsingular complex projective quadric. Another immediate example of such a
hypersurface is a totally geodesic Q"' C Q™. Further progress in this direction was
made by a group of Japanese mathematicians: first, Sakane and Kimura discovered
two more examples in [Sak85] and [Kim79], namely Sp(n)/Sp(n — 2)U(2) C Gr(2,C*")
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and Fy/Spin(7)U(1) C Eg/Spin(10)U(1); shortly afterwords, Konno used methods from
algebraic geometry to show that the above five examples (excluding C*~' C C" and
CH" ! ¢ CH") exhaust the list of all homogeneous complex hypersurfaces in complex
flag manifolds with by = 1 ([Kon88]). These spaces include all irreducible Hermitian
symmetric spaces of compact type, and they can all be represented as a quotient of a
complex simple Lie group by a parabolic subgroup. It follows a posteriori from Konno’s
result that if such a space admits a homogeneous complex hypersurface, then it is a
Hermitian symmetric space. The only shortcoming of Konno’s classification (for us) is
that it is not up to congruence—he only shows when a complex flag manifold can be
embedded into another such manifold with b, = 1 as a complex hypersurface. We refine
his result in the case of homogeneous complex hypersurfaces in Q" and show that they are
all congruent to the standard totally geodesic Q"' C Q™. We also set up the congruence
problem for the remaining two spaces Gr(2, C*") and Fg/Spin(10)U(1) and reformulate it
in the language of representation theory.

Homogeneous complex hypersurfaces in Hermitian symmetric spaces of compact type are
an interesting object of study from several geometric perspectives. To begin with, every
such hypersurface can be realized as a singular orbit of an isometric cohomogeneity-one
action on the ambient space. What is more, the principal orbits of these actions are what
is known as contact hypersurfaces. In particular, the maximal holomorphic distribution of
each such orbit is a contact structure. We discuss this briefly at the end of Subsection 6.2.4.
Eventually, for those homogeneous complex hypersurfaces S C M that are not totally
geodesic, the other singular orbit S’ of the corresponding cohomogeneity-one action (also
known as the focal manifold of S) is a projective space over a normed real division algebra.
The ambient space M can be described as the complezification of S’. We discuss this in
Subsection 6.2.5.

In the second half of the chapter, we turn our attention toward homogeneous complex
hypersurfaces in Hermitian symmetric spaces of noncompact type. This topic does not
seem to have been studied to any notable degree. Similarly to the compact case, we
have totally geodesic (and hence homogeneous) complex hypersurfaces CH"™! ¢ CH"
and Gr*(2,R""!) C Gr*(2,R"*?), n > 3. Using the notion of index of a symmetric space
(discussed in Subsection 6.2.2), one can show that these are the only complete connected
totally geodesic complex hypersurfaces in irreducible Hermitian symmetric spaces of
noncompact type. By virtue of the canonical extension procedure from Chapter 5, one
can use these two examples to generate more homogeneous complex hypersurfaces on any
Hermitian symmetric space of noncompact type, provided it admits a complex boundary
component isometric to CH™ or Gr*(2, R"™?); we show that such a boundary component
always exists. Finally, we study homogeneous complex hypersurfaces within the framework
of the Iwasawa and restricted root space decompositions. If h C s is a subalgebra, it
might happen that the o-orbit of its corresponding Lie subgroup is a complex hypersurface.
In Subsection 6.3.2, we classify all such subalgebras. Equivalently, in the language of
Chapter 4, we classify those homogeneous complex hypersurfaces that arise as the base
leaf of a standard foliation on M. As it turns out, those are very scarce, and they are
also closely related to the totally geodesic complex hypersurfaces above via the canonical
extension:

Theorem 5. Let M be an irreducible Hermitian symmetric space of noncompact type with
restricted root system L. The number of congruence classes of standard codimension-2
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foliations on M with a complez base leaf is 2 if L ~ C, and 1 if £ ~ (BC),. The base leaf
of every such foliation can be obtained by canonical extension of a totally geodesic complex
hypersurface in a boundary component of M isometric to CH™ or Gr*(2,R"*2), n > 3.

The proof of this theorem is fleshed out in Subsections 6.3.2 and 6.3.3. To that end, we
had to devise some novel techniques to study Hermitian symmetric spaces of noncompact
type. The two key results underpinning the proof are:

(a) A relation between the almost complex structure of M and the restricted root space
decomposition of its isometry Lie algebra (Theorem 6.3.12);

(b) A relation between the lift of the almost complex structure of M to the solvable Lie
algebra s and the Lie-algebraic structure of § (Lemma 6.3.15).

We close the chapter with some conjectures and ideas for possible generalizations of
Theorem 5.
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CHAPTER 2

SYMMETRIC SPACES AND ISOMETRIC
ACTIONS

THIS chapter serves as a collection of preliminaries for the rest of the thesis. We have
opted for a more detailed and thorough exposition for a number of reasons. Firstly,
this was driven by a desire to make the thesis more self-sustained and avoid excessive
referencing. Second, in this chapter we establish the bulk of the notation and definitions
that will be required later on. We also provide numerous examples to aid understanding.
Finally, even though most of the material of this chapter can be found elsewhere in the
literature, it appears to be scattered among many textbooks and papers. Some of the
results discussed here do not seem to appear in other sources—at least according to
our knowledge; most notably, this is Proposition 2.1.52 on holonomy-induced foliations
on symmetric spaces, (a rigorous proof of) Proposition 2.1.60 on the isometry group of
certain Riemannian products, and the property of having compact Euclidean part and its
equivalent characterizations (Proposition 2.1.97). This chapter contains many references,
but three sources really stand out:

o [Hel01] is our go-to reference for the general theory of symmetric spaces.

o [Kna02] covers most of the theory of Lie groups and Lie algebras underpinning this
thesis. With its in-depth discussion of noncompact semisimple Lie algebras, it is
also an excellent reference for the theory of symmetric spaces of noncompact type.

o [KN96a, KN96b] fully cover our needs when it comes to holonomy and homoge-
neous spaces. They also contain a thorough discussion of symmetric spaces, often
complementary to [HelO1].

Since they are so ubiquitous, we will generally omit references to these textbooks in this
chapter. Due to the preparatory nature of the chapter, we only give sporadic proofs and
rely on references most of the time. The layout of the chapter is as follows:

e In Section 2.1, we go through the basics of symmetric space, paying special attention
to Riemannian symmetric pairs and orthogonal symmetric Lie algebras, types of
symmetric spaces, holonomy, and irreducibility.

e In Section 2.2, we review various types of submanifolds in symmetric spaces and dis-
cuss their properties. We also work out a handy formula for the second fundamental
form of a homogeneous submanifold.

e In Section 2.3, we turn our attention to the theory of proper isometric actions and
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homogeneous foliations, with a focus on polar, hyperpolar, and cohomogeneity-one
actions.

e In Section 2.4, we home in on the primary object of interest in this thesis: symmetric
spaces of noncompact type. After establishing their relation to noncompact real
semisimple Lie algebras, we recall some basic tools used to study such Lie algebras:
the restricted root space and Iwasawa decompositions as well as the theory of
parabolic subalgebras and subgroups.

e Lastly, in Section 2.5, we discuss symmetric spaces endowed with extra geometric
structures. The two types of spaces we are going to be interested in are Hermitian
and quaternion-Kahler symmetric spaces.

2.1. Symmetric spaces

The first (and largest) section of this chapter is dedicated to the general theory of
symmetric spaces. We go through the apparatus of Riemannian symmetric pairs and
orthogonal symmetric Lie algebras and discuss various aspects of the theory such as type,
rank, holonomy, irreducibility, duality, and eventually the classification. The primary
reference for this section is [HelO1].

2.1.1. Symmetric and locally symmetric spaces

The bridge between Riemannian geometry and Lie theory—which is an indispensable
component of the theory of symmetric spaces—begins with the isometry group of a
Riemannian manifold. In the following proposition, we coalesce some elementary results
about the isometry group and its Lie algebra. This is largely proven in [KN96a, Th.VI1.3.4]
and [DROS]*.

Proposition 2.1.1. Let M be a Riemannian manifold with |mto(M)| < oo, and let 1(M)
be its isometry group.

(a) When endowed with the compact-open topology, I(M) is a Lie group, and its action
on M is smooth. An isometric action of a Lie group G on M is smooth if and only
if the corresponding morphism G — I(M) is smooth.

(b) Write i(M) for Lie(I(M)). Given X € i(M), let X € X(M) be its corresponding
fundamental vector field:

X, = % exp(tX) - p=d(m,).(X),
=0
where m,: I(M) — M, g+~ g-p. Then X lies in the Lie subalgebra K(M)C X(M)
of Killing vector fields, and the map? i(M) — K(M),X — X, is an injective
anti-homomorphism of Lie algebras. Moreover, if M is complete, this map is an
anti-isomorphism.

I'Note that the assumption on completeness of M in this paper is redundant.
2This is also known as the infinitesimal generator of the action I(M) ~ M.
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(c) Suppose M is connected and let f, f' € I(M) be such that f(p) = f'(p) and df, = df]
for some p € M. Then f = f'. In particular, if an isometry [ fizes some point p
and df, = Idr,, then f = Idy.

(d) Let H C I(M) be a Lie subgroup. The action H ~ M ‘is proper if and only if H is
a closed subgroup. In particular, the actions of I(M) and I°(M) on M are proper
and the stabilizers I(M), and I°(M), of any point p are compact (thus 1o(1(M)) is
also finite).

(e) If M is compact, then so is I(M).
We will call the elements of I°(M) inner isometries.

Let M be a connected Riemannian manifold and p € M. Take 0 < r < inj(p), where the
latter is the injectivity radius of M at p. The exponential map exp,,: T,M — M restricts
to a diffeomorphism between B,(0) C T,M and B,(p) C M. The linear isometry v — —v
of B,(0) exponentiates to a diffeomorphism exp(tv) — exp(—tv) of B,(p), called a local
geodesic symmetry of M at p.

Definition 2.1.2. A connected Riemannian manifold is called a (Riemannian) locally
symmetric space if it satisfies the following equivalent conditions:

(i) For every p € M, there exists 0 < r < inj(p) such that the local geodesic symmetry
of B,(p) is an isometry.

(ii) The curvature tensor of M is parallel: VR = 0.

Definition 2.1.3. A connected Riemannian manifold M is called a (Riemannian)
symmetric space if for every p € M there exists s, € I(M) that fixes p and satisfies the
following equivalent conditions:

(i) s, is involutive and p is its isolated fixed point.
(11) d(Sp)p = — IdTpM-

(iii) s, reverses geodesics through p: if y,(t) = exp(tv), then s, oy, = y_, for every
vel,M.

If exists, such s, is unique and it is called the (global) geodesic symmetry of M at p.

Some immediate examples of symmetric spaces include the Euclidean space [E", the sphere
S™, and the real hyperbolic space RH™. We will see plenty more examples below (see
Examples 2.1.35 to 2.1.38). Using the geodesic symmetries, one can show that

Proposition 2.1.4. A symmetric space is a Riemannian homogeneous space. In particular,
it 1s complete.

If we already know that M is homogeneous, it suffices to check the existence of geodesic
symmetries at just one point:

Proposition 2.1.5. Let M be a connected Riemannian homogeneous space. Assume that
M admits a geodesic symmetry at some point p. Then M s a symmetric space.

If a Riemannian manifold (M, g) is symmetric (resp., homogeneous), we will sometimes
express iy by saying that its metric g is symmetric (resp., homogeneous). Clearly, a
symmetric space is locally symmetric, but the converse is not necessarily true. For example,
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a compact oriented surface M of genus g > 2 endowed with a metric of constant curvature
is locally symmetric because it is locally isometric to RH? (of some radius). But the
isometry group I(M) is finite, so M is not homogeneous, let alone symmetric. Nonetheless,
we have the following result, which says, roughly speaking, that locally symmetric spaces
are not far from being symmetric:

Proposition 2.1.6. Let M be a locally symmetric space.

(a) For every point p € M, there exists a neighborhood U and a symmetric space N
such that U is isometric to some open subspace of N.

(b) If M is complete, its universal Riemannian covering space is a symmetric space. In
particular, if M 1s also simply connected, then it is symmetric.

Part (a) of the proposition justifies the term locally symmetric space. The property of
being symmetric withstands some basic geometric constructions:

Proposition 2.1.7. Let M be a Riemannian manifold.

(a) If M = My x - -+ X My, is a Riemannian product, then M is a symmetric space if
and only if each M; is.

(b) If M is a symmetric space, then so is any Riemannian covering space of M.

The most basic geometric invariant of a symmetric space, besides the dimension, is its
rank.

Definition 2.1.8. The rank of a symmetric space M, denoted by rk(M), is the maximal
dimension of a flat totally geodesic submanifold of M.

Agreement. Throughout the thesis, all submanifolds in smooth manifolds are assumed to
be smooth and immersed, and all actions on smooth manifolds (resp., representations) are
assumed to be smooth actions by (resp., representations of) Lie groups, unless otherwise
stated.

We will discuss the definition of the rank in more detail in Subsection 2.2.1 (see Corol-
lary 2.2.24). Here we just mention a few of its basic properties.

Proposition 2.1.9. Let M be a symmetric space.
(a) If M = My x --- x M, is a Riemannian product, then rk(M) = S rk(M;).
(b) If M'" is a Riemannian covering space of M, then rk(M') = rk(M).

Digression: compact Lie algebras

Before we go further, we need to briefly discuss some relevant parts of Lie theory; we
refer to [Kna02] for proofs and details. Let g be a Lie algebra. (All Lie algebras, vector
spaces, and representations in this thesis are going to be finite-dimensional over R by
default). We will usually denote the Cartan-Killing form by B (or B? if there is a chance
of ambiguity). We will write Inn(g) for the (possibly nonclosed) connected Lie subgroup
of Aut(g) corresponding to the subalgebra ad(g) of Der(g) = Lie(Aut(g)). If G is any
connected Lie algebra with Lie(G) = g, then Inn(g) = Ad(G).

Definition 2.1.10. A real Lie algebra g is called compact if the group Inn(g) is compact.
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Proposition 2.1.11. The following conditions on a Lie algebra g are equivalent:
(i) g is compact.
(ii) There exists a compact Lie group G with Lie(G) ~ g.
(iii) g is reductive and its semisimple part gss = [g, 9] is compact.
(iv) g admits an invariant inner product.
(v) g is isomorphic to a Lie subalgebra of so(n) for some n.
If these conditions are satisfied, then the Killing form B is negative semi-definite.
Corollary 2.1.12. Every subalgebra and quotient of a compact Lie algebra is also compact.
Proposition 2.1.13. The following conditions on a Lie algebra g are equivalent:
(i) g is compact semisimple.
(ii) Every connected Lie group G with Lie(G) ~ g is compact.
(iii) g is a direct sum of compact simple Lie algebras.
(iv) B is negative-definite.

Let g be any Lie algebra and £ C g a subalgebra. We write Inng () for the connected Lie
subgroup of Inn(g) corresponding the subalgebra ady(t) of ad(g). If G is any Lie group
with Lie(G) = g and K C G is the connected Lie subgroup corresponding to £, then
Inng(¢) = Adg(K).

Definition 2.1.14. A subalgebra £ of a Lie algebra g is called compactly embedded if
the group Inng(€) is compact.

Remark 2.1.15. In Definition 2.1.14, it does not matter whether we treat Inny(£) as a
Lie subgroup of Inn(g) or of Aut(g), because the resulting topology and smooth structure
are the same.

Proposition 2.1.16. Let g be a Lie algebra and € C g a subalgebra. Consider the following
conditions:

(i) € is compactly embedded in g.

(ii) There exists a Lie group G with Lie(G) ~ g such that the connected Lie subgroup
K C G corresponding to € is compact.

(ili) g admits a E-invariant inner product.

(iv) The restriction of B9 to t is negative semi-definite and its kernel coincides with
3(g) NE.

(v) s compact.

Then (i) < (ii) = (iii) = (iv),(v).

2.1.2. Riemannian symmetric pairs and orthogonal symmetric
Lie algebras

Here, we lay out how symmetric spaces can be studied effectively by means of Lie theory.
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Definition 2.1.17. A Z/27Z-grading on g is a direct sum decomposition g = go @ g1
such that [g;, g;] C gi+; (indices taken mod 2). In other words, it means that

[90,80] € g0, [91,01] € g0, [go,81) C g1
In particular, gg is a subalgebra of g.

Observation 2.1.18. If g = gy @ g is a Z/2Z-grading, the summands gy and g; are
orthogonal with respect to B.

Proposition 2.1.19. The following pieces of data for g are equivalent:
(i) A Z/2Z-grading g = go © 91-
(ii) An involutive automorphism T € Aut(g).
Under this correspondence, go and g1 are the (+1)- and (—1)-eigenspaces of T, respectively.

Definition 2.1.20. A pair (G, K) consisting of a connected Lie group G and a closed
subgroup K C G is called a Riemannian symmetric pair if it satisfies the following
two conditions:

(a) The subgroup Adg(K) of Inn(g) is compact. (Here g = Lie(G).)

(b) K is a symmetric subgroup of G: there exists an involutive Lie group automorphism
© of G such that (G®)? C K C G, or in other words, K is an open subgroup of G®
(the subgroup of fixed points of ©).

Two Riemannian symmetric pairs (G, K) and (G', K') are called isomorphic if there
exists an isomorphism G = G’ sending K onto K'.

Let g = Lie(G), ¢t = Lie(K), and 6 = ©,. Plainly, 0 is an involutive automorphism of
g. Condition (b) in Definition 2.1.20 simply means that £ coincides with the fixed point
subalgebra of 0. The following is an infinitesimal version of Definition 2.1.20:

Definition 2.1.21. A pair (g,0) consisting of a real Lie algebra g and its involutive
automorphism 0 is called an orthogonal symmetric Lie algebra if the fixed point
subalgebra € of 0 is compactly embedded in g. Two orthogonal symmetric Lie algebras
(g,0) and (g’, 0’) are called isomorphic if there exists a Lie algebra isomorphism ¢ : g — ¢’
such that 6o @ = @ 0 6.

In essence, Riemannian symmetric pairs are a Lie-theoretic tool that allows to study
symmetric spaces and their geometry globally, whereas orthogonal symmetric Lie algebras
are designed for local investigation of symmetric spaces.

Let (G, K) be a Riemannian symmetric pair with a fixed involution © as in Definition 2.1.20.
If we write g = Lie(G) and 0 = ©,, then (g, 0) is clearly an orthogonal symmetric Lie
algebra, and it does not depend on the choice of ©® (with K fixed) up to isomorphism.
What is more, we will see in Proposition 2.1.25 that, under a mild assumption, © is
unique. For this reason, we routinely omit the step of choosing 0, allowing it to be any,
and call (g,0) the orthogonal symmetric Lie algebra of (G, K). If (g,0) is an orthogonal
symmetric Lie algebra, it is customary to denote the Z/2Z-grading of 6 by g = ¢ @ p,
which we are going to do from now on.

Notation. Suppose (g,0) an orthogonal symmetric Lie algebra. Given a vector X € g,
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we are going to write X = $(X +0X) € t and X, = (X — 0X) € p for its components
with respect to the decomposition g = €@ p. We will sometimes refer to these components

as the E-part and p-part of X. Likewise, given a subspace V C g, we will write
Vi={Xe | XeV}and V, ={X, | X e V}.

Let (G, K) be a Riemannian symmetric pair and M = G/K the corresponding homoge-
neous space. We will see shortly that any G-invariant Riemannian metric makes M into a
symmetric space. To begin with, note that we have a Lie algebra anti-homomorphism
g — X(M) that sends X to its corresponding fundamental vector field X. Let o = e K € M
and write t: G — M, g — g - o, for the orbit map of the action G ~ M at o. It gives rise
to a linear map R

dm.: g - T,M, X — X,,

which has € as its kernel. If we have O fixed, then d, restricts to an isomorphism between
p and T, M. Throughout the thesis, we are going to tacitly identify p with T, M by means
of this isomorphism. The adjoint action of K on g preserves £ and p, which implies:

Corollary 2.1.22. The splitting g = €Bp is a reductive decomposition for the homogeneous
space M = G/K. The map p = T,M is an isomorphism between the adjoint representation
of K on p and its isotropy representation on T,M .

Let us write I C G for the ineffectiveness kernel of the action G ~ M i.e., the subgroup of
elements that act trivially on M. Clearly, I C K, and one can show that [ is the maximal
normal subgroup of G contained in K. In particular, Z N K C I, where Z = Z(G).
Thanks to Proposition 2.1.1(c), I can be alternatively described as the kernel of the
isotropy representation K — GL(T,M). If (g,0) is an orthogonal symmetric Lie algebra,
we write i for the kernel of the adjoint representation £ — gl(p). Similarly, this is the
maximal ideal of g contained in £. If (g,0) comes from (G, K), we have i = Lie(I). To
single out some better-behaving Riemannian symmetric pairs and orthogonal symmetric
Lie algebras, we introduce the following

Definition 2.1.23. Let (g,0) be an orthogonal symmetric Lie algebra. We call it
e effective if i = {0};
e weakly effective if 3(g) N € ={0}.

If (G, K) is a Riemannian symmetric pair, we call it infinitesimally (weakly) effective
if its corresponding orthogonal Lie algebra is (weakly) effective (this clearly does not
depend on the choice of ®). We call (G, K) effective if I = {e}.

If (G, K) is an infinitesimally effective Riemannian symmetric pair, then I is a discrete
normal subgroup of G, so it must be central. Since Z N K C I C K, we deduce that
Z N K =1 in this case.

Observation 2.1.24. Any Riemannian symmetric pair (G, K) (resp., orthogonal symmet-
ric Lie algebra (g, 0)) gives rise to an effective one, namely (G/I, K/I) (resp., (g/i,0)).

Proposition 2.1.25. If (g,0) is a weakly effective orthogonal symmetric Lie algebra,
then © is uniquely determined by €. Consequently, if (G, K) is an infinitesimally weakly
effective Riemannian symmetric pair, then © in Definition 2.1.20 is unique.

Proof. We know that p C £+, where the orthogonal complement is taken with respect to
B. By Proposition 2.1.16, the kernel of B‘EX? equals 3(g) N € and hence is trivial. In other
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words, EN €L = {0}, so p = &+ is determined by €. ]
Definition 2.1.26 (Isotropy). Let M be a connected Riemannian manifold and p € M
any point.

e The isotropy group of M at p is the stabilizer K = I(M),.
e The restricted isotropy group of M at p is the identity component KO,

e The (restricted) isotropy representation of M at p is the representation K <
O(T,M) (resp., K° — SO(T,M)), k > dk,.

o The (restricted) linear isotropy group of M at p is the image K C O(T,M)
(resp., K° C SO(T,M)) of the (restricted) isotropy representation at p.

e If (G, K) is a Riemannian symmetric pair, its (restricted) isotropy representa-
tion is the representation K — GL(T,M) (resp., K — GL(T,M)), k — dk,, where
M =G/K and o = eK.

e If M is a manifold, H ~ M is an action, and p € M, we will often call the stabilizer
H, the isotropy subgroup of H at p.

If M is a connected Riemannian homogeneous space, its isotropy groups at different points
are conjugate, so we will sometimes drop the reference to a point and just say isotropy
group of M if there is no ambiguity.

Take a Riemannian symmetric pair (G, K') and consider the homogeneous space M = G/ K.
We make the following simple but vital

Observation 2.1.27. The following pieces of data are in a natural 1-to-1 correspondence:
(i) A G-invariant inner product on M.
(ii) A K-invariant inner product on T, M.
(i) A K-invariant inner product on p.
If K is connected (e.g., if M is simply connected), these are the same as:
(iv) A t-invariant inner product on p.

By Definition 2.1.20, there exists' a K-invariant inner product on p, hence there exist
G-invariant metrics on M. Picking such a metric turns M into a Riemannian homogeneous
G-space. What is more, if we fix © on G as in Definition 2.1.20, it passes through the
quotient 7t: G — M to a involutive isometry s, of M: s,(gK) = ©(g)K or, in other words,
s, o1 = mo @. This isometry has o as its isolated fixed point and hence is a geodesic
symmetry at o. By Proposition 2.1.5, M a symmetric space. By Proposition 2.1.1(c), any
other choice of ® leads to the same s,. We conclude:

Corollary 2.1.28. If (G, K) is a Riemannian symmetric pair, then there exist G-invariant
metrics on M = G/K, and any of them makes M into a symmetric space. The geodesic
symmetries of M do not depend on the choice of an invariant metric.

! Actually, Definition 2.1.20 ensures that there exists a K-invariant inner product on the whole g
such that € | p. This translates to a left-invariant metric on G that is K-bi-invariant. The projection
7: G - M becomes a Riemannian submersion, which can prove useful in certain situations.
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Definition 2.1.29. Let (G, K) be a Riemannian symmetric pair. We say that it is
associated with an orthogonal symmetric Lie algebra (g, 0) if there is an isomorphism
between (g,0) and the orthogonal symmetric Lie algebra of (G, K). We say that (G, K)
represents a symmetric space M if there exists a G-invariant metric on G/K that makes
it isometric to M. Lastly, we say that an orthogonal symmetric Lie algebra represents a
symmetric space M if it is associated with a Riemannian symmetric pair representing M.

Normally, when we say that (G, K) is associated with (g, 0), we implicitly assume an
isomorphism as in the above definition has been fixed. Similarly, if (G, K) represents M,
we assume a G-invariant metric on G/K and an isometry G/K ~ M have been fixed. In
particular, this entails fixing a base point 0 = eK in M.

Agreement. For concrete symmetric spaces, instead of writing “let M be represented
by a Riemannian symmetric pair (G, K)”, it is customary to simply write M = G/K. In
fact, this is how most symmetric spaces are defined. We are going to use this shorthand
as well.

Every symmetric space is represented by some Riemannian symmetric pair. Indeed, if
we start with just M, take G = I°(M) and K = G,, where 0o € M is any. Define an
involutive automorphism @ of G to be the conjugation Cs,: O(g) = $,9S,. Then K is an
open subgroup of G® and hence (G, K) is an effective Riemannian symmetric pair. The
corresponding orthogonal symmetric Lie algebra is given by (i(M), Ad(s,)). The choice
of the base point o is irrelevant:

Lemma 2.1.30. Let M be a symmetric space, 0,0 € M any two points, G = I°(M),
and K = G,,K' = G,. Then the Riemannian symmetric pairs (G,K) and (G,K")
are isomorphic. Therefore, the corresponding orthogonal symmetric Lie algebras are
1somorphic as well.

Proof. If g € G is any isometry mapping o to o/, gKg~' = K’, so the conjugation C,
provides an isomorphism between (G, K) and (G, K'). O

Remark 2.1.31. Note that the same choice G = I°(M), K = G, allows to represent any
connected Riemannian homogeneous space M by a pair (G, K) that satisfies condition
(a) of Definition 2.1.20. It is condition (b) that distinguishes symmetric spaces as a very
special subclass of Riemannian homogeneous spaces.

Definition 2.1.32. Let M be any symmetric space. Given any o € M, we call
(I°(M), I°(M),) and (i(M),Ad(s,)) the canonical Riemannian symmetric pair and
orthogonal symmetric Lie algebra of M, respectively.

Observation 2.1.33. Let M be a symmetric space represented by a Riemannian sym-
metric pair (G, K). Write (G, K) for the canonical Riemannian symmetric pair of M (at
0). Then we have a morphism G — G. Write G’ for the image of this morphism and
K' = G'N K for the image of K. One can show that G’ is a closed subgroup of G (in par-
ticular, K’ is compact). Clearly, G' = G/I, K’ = K/I. As we saw in Observation 2.1.24,
any © on G as in Definition 2.1.20 passes to an involution ® on G’, thus showing that
(G', K') is an effective Riemannian symmetric pair. At the same time, the involution
®© = C,, on G preserves G’ and coincides with @ on (. Essentially, this means that every
Riemannian symmetric pair representing M factors through a “subpair” of the canonical

one. If (¢',0') is the orthogonal symmetric Lie algebra of (G, K’) and (g, 0) is that of
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(G, K), then 0 preserves g’ and coincides with @’ on it, hence we have & C €, p’ C p. But
both dim(p’) and dim(p) equal dim(M), so we deduce that p’ = p.

Every orthogonal symmetric Lie algebra is associated with some Riemannian symmetric
pair. Indeed, starting - with (g,0), take G to be a snnply connected Lie group with Lie
algebra g and define © as the (unique) lift of 6 to G. For any open subgroup K C G®
(G K ) is a Riemannian symmetric pair, and its associated orthogonal Lie algebra (with
©) already defined) is (g,8). Note that if we take K = (@@)0, the corresponding space
M=3G / K is going to be simply connected.

Proposition 2.1.34. Let (g,e) be an orthogonal symmetric Lie algebra representing
some symmetmc space M. Let (G K) be a Riemannian symmetric pair associated with
(g,0) with G szmply connected and K connected. Then, equipped with a suitable (uniquely
determined) G-invariant metric, G / K is the universal Riemannian covering space of M .

Informally, Proposition 2.1.34 says that an orthogonal symmetric Lie algebra represents a
unique symmetric space up to Riemannian covering and a choice of an invariant metric.
This encapsulates the idea that orthogonal symmetric Lie algebras are an infinitesimal
version of symmetric spaces, designed to study their local properties.

Now we discuss some examples of symmetric spaces, most of which we will meet in
profusion throughout the thesis. Things like type and duality will be defined later in the
section.

Example 2.1.35 (Euclidean space). The Euclidean space E" is a symmetric space of
Euclidean type and rank n. Its isometry group is isomorphic to O(n) x R™, so its canonical
symmetric pair is (SO(n) x R™, SO(n)). But E™ can also be represented by a much smaller
effective Riemannian symmetric pair (R™, {pt}). We will see in Proposition 2.1.97 that
this behavior is rather pathological and does not occur for “most” symmetric spaces. //

Example 2.1.36 (Rank-one symmetric spaces). Let! n € N, and let F € {R,C,H, Q}>.
If F =R, we require n > 2, and if F = O, we require n = 2. The projective space FP" is
an irreducible symmetric space of compact type and rank 1. Unless F is R, it is simply
connected. The real projective space RP™ has fundamental group Z/27Z, and its universal
Riemannian covering space is the round sphere S"”. The dual of FP™ (or S if F = R) is
the hyperbolic space FH", which is an irreducible symmetric space of noncompact type
and rank 1. In this thesis, whenever we say projective (resp., hyperbolic) space, we refer
to any of FP™ (resp., FH™). These space are represented by the following almost effective
(see Definition 2.4.7) Riemannian symmetric pairs:

RP" = SO(n +1)/S(0(n)O(1)),

S" = SO(n + 1)/S0(n), RH" = SO°(n,1)/S0(n),
CP" = SU(n + 1)/S(U(m)U(1)),  CH" = SU(n,1)/S(U(n)U(1)),
HP" = Sp(n + 1)/Sp(n)Sp(1), HH" = Sp(n,1)/Sp(n)Sp(1),

OP? = F,/Spin(9), OH? = F;*°/Spin(9).

The case of octonions needs to be handled with extra care. Due to the nonassociativity of

n this thesis, N starts with 1, and we write Ng = NU{0}.
2These are the only finite-dimensional real division algebras that admit a multiplicative norm. (Many
authors include multiplicativity of the norm in the definition of a normed division algebra.)
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0, the spaces OP? and OH? cannot be defined in terms of “octonionic lines” in Q3 there
is no such concept to begin with. Instead, the Cayley projective plane is normally defined
as the set of rank-1 projectors in the exceptional Jordan algebra of Hermitian octonionic
3 x 3 matrices. (We will talk about this in more detail in Subsection 6.2.5.) The Cayley
hyperbolic plane can then be defined as the dual of @P?. One conceptual reason why the
only projective space over the octonions is a projective plane is that projective spaces
of dimension > 3 have to be Desarguesian, whereas the non-associativity of O causes
this property to fail already for QP2 (see [Bae02, AB03, VY65]). For more on QP?, the
octonions in general, as well as their relation to exceptional Lie groups, see [Bae02].

Together with R and S!, the above spaces exhaust the list of symmetric spaces of rank 1.
When lumped together with the Euclidean spaces, they admit a number of alternative
geometric characterizations. A connected Riemannian manifold M is called two-point
homogeneous if for every p1, qi,p2, g2 € M such that dist(p;, ¢1) = dist(ps, ¢2), there exists
an isometry mapping p; to po and ¢; to go. A connected Riemannian homogeneous space is
called isotropic if its isotropy representation is transitive on the unit sphere (if dim(M) > 1,
this is the same as to say that the isotropy representation is of cohomogeneity one, see
Definition 2.3.6). One can show that a Riemannian manifold is two-point homogeneous
< it is an isotropic Riemannian homogeneous space < it is a Euclidean space or a rank-1
symmetric space (see [Wolll, Sect.8.12]). Compact symmetric spaces of rank 1 are also
characterized by the fact that all their geodesics are periodic, simple, and of the same

length. /

Example 2.1.37 (Grassmannians). Generalizing on the previous example, let k,n > 1,
and F € {R,C,H}!. If F is R, we require n > 2. The Grassmannian Gr(k, F"™*) is an
irreducible? symmetric space of compact type and rank min{k,n}. Unless F is R, it
is simply connected. In case F = R, the Grassmannian Gr(k, R"**) has fundamental
group Z /27, and its universal Riemannian covering space is the Grassmannian of oriented
k-planes Grt(k,R"**). The dual of Gr(k,F"**) (or Gr*(k,R"™*) if F = R) is the
noncompact Grassmannian Gr*(k, F***)  defined as the set of k-dimensional F-subspaces
in F"** on which the restriction of the standard symmetric bilinear (resp., Hermitian
C-sesquilinear or g-Hermitian H-sesquilinear) form of signature (n, k) is negative-definite.
It is an irreducible (except for kK = n = 2) symmetric space of noncompact type and rank
min{k,n}. Whenever we say Grassmannian (resp., noncompact Grassmannian), we refer
to any of Gr(k, F"™) or Gr*(k, R"™*) (resp., Gr*(k,F"**)). These spaces are represented
by the following almost effective Riemannian symmetric pairs:

Gr(k, R"™™) = SO(n + k)/S(0(n)O(k)),

Grt (k, R™*) = SO(n + k)/SO(n)SO(K),  Gr*(k, R™*) = SO°(n, k)/SO(n)SO(k),
Gr(k,C"™™*) = SU(n + k)/S(UM)U(k)),  Gr*(k,C"™) = SU(n, k) /S(U(n)U(K)),
Gr(k, H'™*) = Sp(n + k) /Sp(n)Sp(k), o (k,H"**) = Sp(n, k) /Sp(n)Sp(k).

Example 2.1.38 (Compact Lie groups). Let G be a compact connected Lie group.
By Proposition 2.1.11, g = Lie(G) is compact and thus admits an Ad(G)-invariant inner
product. This translates to a bi-invariant Riemannian metric on G, which clearly makes

IThese are the only finite-dimensional associative real division algebras.
2The only exception is Gr(2,R*), which is reducible. Its universal Riemannian covering space
GrT(2,R?) is isometric to S? x S?. The same goes for Gr*(2,R?) = RH? x RH2.
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G into a Riemannian homogeneous space. The following fact is standard:

Proposition 2.1.39. The Lie exponential map exp: g — G coincides with its Riemannian
exponential map at e. In particular, it is surjective.

It follows from Proposition 2.1.39 that s.: g + ¢! is a geodesic symmetry of G at e. By

Proposition 2.1.5, GG is a symmetric space. In the literature, such spaces are occasionally
said to be of group type. There is a natural choice of a Riemannian symmetric pair
representing G. Indeed, observe that G' x G acts isometrically on G by (g,h) - f = gfh™L.
The isotropy subgroup of this action at e is the diagonal Ag = {(g,9) | ¢ € G}. What is
more, Ag is the fixed point subgroup of the involutive automorphism © = Cs,,0(g,h) =
(h, g). This implies that (G X G, Ag) is a Riemannian symmetric pair representing GG. Note
that it does not have to be effective (even infinitesimally), as I = Ay = A¢cN(Z x Z), where
Z = Z(@G). For example, if G is abelian (i.e., a torus), then I = Ag and (G x G)/I ~ G.
In any case, the corresponding orthogonal symmetric Lie algebra is given by (g @ g,0)
with 8(X,Y) = (Y, X), hence £ = Ay and p = {(X,—X) | X € g}. Observe that Ag
is trivially isomorphic to G, and we can also identify p with g as (X, —X) <> X. The
following observation is elementary but extremely important:

Proposition 2.1.40. Under the identifications Ag ~ G and p =~ g, the isotropy represen-
tation of (G x G,Aq) is equivalent to the adjoint representation of G.

By representing G with (g @ g, 0) and using things like Proposition 2.1.40 and (2.1.5), one
can derive many formulas and results that are specific to symmetric spaces of group type.
We are not going to focus on that now but will see some examples later. /

Symmetric spaces as reductive homogeneous spaces

Now we discuss how various geometric properties and quantities of a symmetric space
M can be described in the language of Riemannian symmetric pairs and orthogonal
symmetric Lie algebras. We will see that many geometric objects associated to M do
not actually depend on the choice of an invariant metric. To achieve this, we start with
reductive homogeneous spaces and then see how symmetric spaces fit into the picture.
We refer to [KN96a, Ch.II, Sect. 11] and [KN96b, Ch. X, Sect. 1-2] for details.

Let M be a reductive homogeneous space of a connected Lie group G. Pick 0o € M
and write K C G for the isotropy group of o and £ C g for its Lie algebra. Let us fix a
reductive decomposition g = £&p. As before, we have an isomorphism of K-representations
p = T,M, X — X,. Observe that the orbit map m=m,: G - M, g — g-o, is a principal
K-bundle, and its associated vector bundle G X g p — M is naturally isomorphic to the
tangent bundle TM — M. The left-invariant distribution on G determined by p is a
unique G-invariant connection on the K-bundle G — M that coincides with p at e € G.
It is called a canonical connection on G — M. The induced complete G-invariant
affine connection V on the associated bundle TM — M is called a canonical affine
connection on M. If we pick another base point g- o, we automatically get a reductive
decomposition g = Ad(g)(¢¥) @ Ad(g)(p) and thus a canonical connection on the principal
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Cy(K) = K bundle 7ty,: G — M. The commutative diagram

G-, q

lﬁo Tlg-0

M 25 M

provides an isomorphism of K-bundles and identifies the two canonical connections. We
see that a canonical (affine) connection does not depend on the choice of a base point up
to isomorphism. It does, however, depend on the choice of p, so whenever we say reductive
homogeneous space, we always assume a reductive decomposition (at some base point)
has been fixed. Many properties of V can be described in terms of G and g.

e To begin with, one can write down an explicit formula for V thought of as a covariant
derivative: given X € p and any Y € X(M), one has

VyY = [X,Y],, (2.1.1)

where X € X(M) is, as usual, the fundamental vector field corresponding to X.

e Given X € p, consider the curve y(t) = expg(tX)- o in M and its horizontal
lift exp(tX) in G. For every ty € R, the parallel transport in G — M from
1 (v(0)) = K to 7w (y(toX)) along 7y is given by Lexp,,(tox)- Therefore, the parallel
transport in T'M — M of Ty0)M to Ty, x)M along y coincides with d(expg(toX))o.
In particular, the velocity vector field of y is parallel, so y is a geodesic. We see
that all geodesics of V emanating from o are of the form exp,(tX) -0, X € p. We
summarize this in the following commutative diagram®:

p ——— T,M
expes lexpM (2.1.2)
G —"— M
We immediately get the following:

Corollary 2.1.41. For any geodesic vy of V, there exists a unique one-parameter
subgroup g(t) of G with the following property: for every to,t; € R,

(a) y(to +t1) = g(t1) - v(to),
(b) The parallel transport in G — M from y(ty) to y(to + t1) along vy is given by
dg(tl)Y(to)'

For every t € R, we call g(t) € G a geodesic translation along y. The one-
parameter subgroup ¢(t) is called the one-parameter subgroup of geodesic
translations along 7.

e Since parallelness of a tensor field can be checked only along geodesics, we arrive at
the following

!This property lies in the heart of the definition of naturally reductive spaces—a class of Riemannian
homogeneous spaces that generalizes symmetric spaces. See [BTV95, Ch. 2] for a precise definition and
their relation to other classes of Riemannian homogeneous spaces.
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Corollary 2.1.42. Any tensor field on M invariant under geodesic translations is
parallel with respect to the canonical affine connection. In particular, any G-invariant
tensor field is parallel.

e Since V is G-invariant, so are its torsion and curvature. By Corollary 2.1.42; we
have:

Corollary 2.1.43. The torsion and curvature of V are parallel with respect to V.

e Both torsion T" and curvature R of V admit simple expressions in terms of the
reductive decomposition of g. For any X,Y, Z € p, we have:
R,(X,Y)Z = —[[X, Y], Z],
T,(X,Y)=—[X,Y],.

Using (2.1.4), we arrive at the following conclusion:

Corollary 2.1.44. The following are equivalent for a reductive homogeneous space
M=G/K:

(i) The canonical affine connection on M is torsion-free'.

(ii) [p,p] C &

Now we can apply all this to symmetric spaces. Let (G, K) be a Riemannian symmetric
pair. As we noted in Corollary 2.1.22, g = £ @ p is a reductive decomposition. Endow
M = G/K with any G-invariant metric. Combining Corollaries 2.1.42 and 2.1.44 leads to
the following:

Corollary 2.1.45. The Levi-Civita connection of the symmetric space M coincides with
the canonical affine connection and thus does not depend on the choice of a G-invariant
metric. Consequently, the exponential map, parallel transport, curvature endomorphism,
and Ricci curvature of M do not depend on that choice either.

Using this corollary and what we know about the canonical connection, we can work out
a handy Lie-algebraic expression for every type of curvature of a symmetric space.

e [t follows from (2.1.3) that the curvature endomorphism of M at o is given by
Ro(va)Z:_[[va]az]v (X,}/,ZGP) (215)

Observe that the right-hand side does indeed lie in p. Another way to state (2.1.5)

is that the curvature operator R(X,Y) is given by —ad[X, Y] ‘p.

e One can use (2.1.5) to deduce that the Ricci curvature of M is in fact a multiple of
the Killing form of g (see [Bes08, Th. 7.73]):

Ric(X,Y) = —%B(X, Y) (X,Y €p). (2.1.6)

e The curvature tensor and sectional curvatures of M do of course depend on the

IEvery reductive homogeneous G-space admits a unique G-invariant torsion-free affine connection
V' whose geodesics coincide with those of V. Condition (i) means that V¥ = V.
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choice of an invariant metric. Thanks to (2.1.5), they have the following expressions'
at o:

Rmo(X,Y, Z,W) = —([[X,Y]. Z]|W) (X,Y,Z,W €p),
KXY)==([X,YLY][X) (XY ep X[ =[Y][=1LX 1Y)

2.1.3. Holonomy and isometries

This part serves as a digression into a topic that underpins a lot of questions and results
in the theory of symmetric spaces: Riemannian holonomy and its relation to isometries.
First, we discuss the restricted holonomy representation of a Riemannian manifold and
how its decomposition into irreducible subrepresentations yields local and global geometric
decompositions of the manifold itself. Next, we prove an important and rather folklore
structure result on the isometry group of Riemannian products that behave like the de
Rham decomposition. Finally, we discuss a special type of isometries, called transvections,
that respect the holonomy and parallel transport in a certain sense. Our general reference
for this part is [KN96a].

Holonomy decompositions

Let M be a Riemannian manifold and p € M any point. Recall that the holonomy
group Hol(M, p) C O(T,M) is defined as the group of parallel transports from p to itself
along all piecewise-smooth loops based at p. Restricting this to only those loops that are
contractible yields a subgroup Hol® (M, p) C Hol(M, p). It is well-known that Hol(M, p)
is a (possibly non-closed) Lie subgroup of O(7,M), Hol’(M, p) is its identity component,
and Hol"(M, p) is actually a closed subgroup of SO(T,M) (see [KN96a, Th.11.4.2, IV.5.5]).

Definition 2.1.46. Let M be Riemannian manifold and p € M any point. We call
Hol’(M, p) the restricted holonomy group of M (at p). We call its representation
on T,M the restricted holonomy representation of M (at p). If M is connected,
we say that it is reducible if so is its restricted holonomy representation at some point.
We say that M is irreducible if it is not reducible and not flat.

Remark 2.1.47. If M is connected and p,q € M are any two points, then the holonomy
groups at p and ¢ are isomorphic by means of parallel transport along any piecewise smooth
curve from p to ¢; with respect to any such isomorphism, the holonomy representations at
p and ¢ become equivalent. Consequently, if M is irreducible, then its restricted holonomy
representation at any point is irreducible. When there is no ambiguity, we will sometimes
write Hol(M) or Hol’(M) without reference to any specific point. Note that M being flat
is equivalent to Hol”(M) being trivial. The non-flatness assumption in the definition of
irreducibility rules out precisely the cases where M is one-dimensional.

Observation 2.1.48. Let M be connected and 7t: M — M its universal Riemannian
covering. Take p € M and any p eM lying over p. Note that HolO( ,D) = Hol( ,D).
We have an isomorphism dr;: T; M = T, M, which induces an isomorphism Hol(M, p) =
Hol®(M, p). This is due to the fact that the contractible loops at p are precisely those
whose lift with initial point p ends also at p. We deduce that the restricted holonomy

!Throughout the thesis, we usually denote Riemannian metrics and inner products by (—|—), unless
otherwise stated.
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representation of M is naturally equivalent to the holonomy representation of M. This
means that local results using the full holonomy group work in the not simply connected
setting if one passes to the restricted holonomy group. More generally, the restricted
holonomy representation (and hence irreducibility) is preserved under Riemannian covering
maps.

Let VP C T,M be a subrepresentation of Hol’(M, p). Fix a (relatively) simply connected
neighborhood W of p. Given any ¢ € W, carry V' to T,M by means of parallel transport
along any piecewise-smooth curve from p to ¢ lying in W. By design, the resulting
subspace V¢ C T, M does not depend on the curve chosen. This gives a distribution
V= quw V4 on W. If M is simply connected, we can take W = M and thus obtain a
global distribution. The following is proven in [KN96a, Prop.IV.5.1]:

Proposition 2.1.49. The distribution V' is smooth and parallel (meaning, VxY € T'(V)
forany X € X(M),Y € (V). In particular, V' is involutive. The corresponding foliation
has all its leaves totally geodesic.

We need to introduce one more vital, albeit technical notion, taken from [KN96a, Sect.
IV.5].

Definition 2.1.50. Let M be a Riemannian manifold and p € M any point. A direct

sum decomposition T,M = V5 ® VP @ --- @ VP is called a canonical decomposition of
T,M if:

(a) The summands V0 < i < k, are mutually orthogonal,
(b) V& is the subspace of Hol’(M, p)-invariants in 7, M, and

(c) Each of the summands V;?, 1 <4 < k, is an irreducible Hol’(M, p)-subrepresentation
of T,M.

It is easy to show inductively that canonical decompositions exist.

Proposition 2.1.51 (Holonomy decompositions). Let M be a Riemannian manifold
and p € M any point.

a) There is a unique canonical decomposition T,M = VXSV ®--- @V up to reorderin
p 0 1 k g
of the irreducible summands.

(b) The restricted holonomy group decomposes as a product Hol’(M,p) = G1 x -+ x Gy,
of its closed connected normal subgroups such that G; acts irreducibly on V¥ and
trivially on every other V', j # i.

Fix a (relatively) simply connected open neighborhood W of p and write Vo, Vi, ..., V}. for
the autoparallel distributions on W determined by Vi, VI, ..., V}\.

(c) The leaves of Vi are flat.

(d) For every 0 < i < k, there exists an open neighborhood U; of p in the leaf of V;
through p such that the embedding Uy UU, U - - - U U, — M extends to an isometry
of the Riemannian product Uy x Uy X --- X U onto an open neighborhood U of p
(here each U; embeds into Uy x Uy X -+ X Uy in the obvious way as a slice with a
constant coordinate p in all the other factors).

(e) (de Rham decomposition) If M is complete and simply connected, we can take
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W = M and each U; to be the whole leaf M; of V; through p, in which case U = M
and we have an isometry M = My x My X --- M. Moreover, here:

(1) My is isometric to a Fuclidean space.
(2) M; is a complete, simply connected, and irreducible for 1 <i < p.
(3) G; is naturally isomorphic to Hol(M;, p).

For a proof of Proposition 2.1.51, see [KN96a, Sect.IV.5]. It is worth pointing out that
the authors define a canonical decomposition with respect to the full holonomy group and
prove some of these results only in the case when M is simply connected, but the proofs
remains valid here due to Observation 2.1.48. For symmetric spaces, Proposition 2.1.51
admits a refinement.

Proposition 2.1.52. Let M be a symmetric space and and T,M =V &V & --- @V}
the canonical decomposition at any p € M.

(a) For each i, the parallel transport of VI to any other point of M does not depend
on the choice of a curve, and thus V' extends uniquely to a smooth global parallel
distribution V;. Consequently, we have TM = Vo & Vi & --- ® V. The distributions
V; are pairwise orthogonal.

(b) Each V; is involutive, and the leaves of the corresponding foliation F; are totally
geodesic and properly embedded (hence complete). If U; stands for the leaf of F;
through p, then G; in Proposition 2.1.51(b) is naturally isomorphic to Hol°(U;, p).

(c) Each foliation F; is homogeneous (see Definition 2.3.15) and the action of I°(M)
on M interchanges its leaves. In particular, all the leaves of F; are congruent to one
another (see Definition 2.3.18).

(d) The leaves of every F; are symmetric spaces in the induced metric. For i =0, they
are flat, whereas for 1 <1 < k, they are irreducible.

(e) If M is simply connected, M = Mgy x My X -+ X My is its de Rham decomposition,
and T is the projection of M onto M;, then Vo = mi5(TMy) and (up to permutation)
Vi =2 (T M;). For any i, the leaves of V; are isometric to M; by means of .

Definition 2.1.53. Let M by any symmetric space. The distributions V; (resp., foliations
Fi) as in Proposition 2.1.52 are called de Rham distributions (resp., foliations) of M.
Both V; and Fj are called Euclidean (or flat), and any leaf of Fj is called the Euclidean
(or flat) part of M. For each i =1,...,k, V; and F; are said to be irreducible and any
leaf of F; is called an irreducible part of M.

Example 2.1.54. Let G be a compact connected Lie group endowed with a bi-invariant
metric. Since g is compact, it splits as g = 3(g) @ gss, Where gss = [g, 8] is compact
semisimple. Let g = g1 @ - - - @ gx be the decomposition of gs into the sum of its simple
compact ideals. Then g = 3(g) ® g1 ® - - - @ g is the canonical decomposition of G at e.
The flat part of G is Z(G)?, whereas the irreducible parts are the compact topologically
simple subgroups corresponding to g;. /

With Proposition 2.1.51, we can give the following geometric description of irreducibility:

Proposition 2.1.55. Let M be a connected Riemannian manifold.
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(a) If M is reducible, it is isometric to a nontrivial Riemannian product in a neighborhood
of each of its points.

(b) If M is complete, it is reducible if and only if its universal Riemannian covering
space is isometric to a nontrivial Riemannian product.

(c) Suppose the metric on M is real-analytic (e.g., M a Riemannian homogeneous space).
If M s irreducible, no open subset of M 1is isometric to a nontrivial Riemannian
product.

Part (c) here can be deduced from [KN96a, Th.I1.10.8].

Definition 2.1.56. A connected Riemannian is said to have (resp., not have) a flat
local factor if its restricted holonomy representation has (resp., does not have) nontrivial
invariants.

Proposition 2.1.57. Let M be a connected Riemannian manifold.

(a) If M has a flat local factor, it is locally (around each of its points) isometric to a
Riemannian product with a nontrivial flat factor.

(b) If M is complete, it has a flat local factor if and only if its universal Riemannian
covering space s isometric to a Riemannian product with a nontrivial flat factor.

(c) If the metric on M is analytic and M does not have a flat local factor, no open
subset of M is isometric to a Riemannian product with a nontrivial flat factor.

Obviously, a symmetric space does not have a flat local factor if and only if its Euclidean
part is trivial.

The isometry group of a Riemannian product

Here we prove a result known colloquially as “an isometry of a Riemannian product must
permute its isometric factors”. Even though it is fairly simple and intuitively clear, this
result will prove of great importance to us in Chapters 3 and 4.

Definition 2.1.58. Let M be a connected Riemannian manifold. A Riemannian product
decomposition M = My x M7 X --- x M, is called de Rham-like if

(a) M, is flat, and
(b) M; is irreducible for 1 <i < k.

Example 2.1.59. The de Rham decomposition of a simply connected complete Rieman-
nian manifold is de Rham-like (hence the name). /

Let M = My x M; X --- x M, be a de Rham-like decomposition. We have an obvious
embedding of Lie groups I(My) x I(My) x --- x I(My) < I(M). This does not have to
be an isomorphism though, as some of the factors might be isometric, so there might
be additional isometries that interchange those. Let Sy be the symmetric group on k
elements, and let us introduce its subgroup

F={oeS | Mi~MyyVi=1,... k},
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where ~ means isometric. For any pair of indices ¢,j € {1,...,k} such that M; ~ M,
pick an isometry @;;: M; = M; in such a way that if we have M; ~ M; ~ M;, then
@ji © @ij = @;. This gives an embedding

Sp = I(M),0— @4, where
©s(D15 - oK) = (Po)1(Po1)), - - - Po(i)e(Poi)))

(to be precise, this is an injective group anti-homomorphism). Surely, this embedding
depends on the choice of ¢;;’s.

Proposition 2.1.60 (Isometry group of a Riemannian product). Let M = M, X
M X -+ X My, be a de Rham-like decomposition. Then the isometry group I(M) decomposes
as a semidirect product

I(M) = [I(Mo) x I(My) x -+ x I(My)] x S (2.1.7)

In particular, I(Mg) x I(My) x -+ x I(My) is an open normal subgroup of I(M). The
corresponding action of Si7 on it is given by o - (go, (9s)) = (90, (@o(s)s © Jo(s) © (pg_(ls)s)).

Proof. The subgroups I(My) x I(M;) x ---x I(My) and S; clearly do not intersect inside
I(M), so we need only show that their product is the whole isometry group.

Pick any point p = (po, p1,...,pr) € M. Then
T,M = Ty, My @ Ty, My @ - -- @ T, M,

is a canonical decomposition of T,M (see Definition 2.1.50). This follows from the fact
that the restricted holonomy group at p splits naturally as Hol’(M, p) = Hol®(My, p;) x
-+ x Hol”(My, pi), where the action of Hol’(M;, p;) on T,,M; is trivial if ¢ # j and is
simply the restricted holonomy representation of M; at p; if i = j (this agrees with
Proposition 2.1.51(b)).

Let g € I(M) be any isometry and write g(p) = ¢ = (qo,41,---,qx). Since isometries
commute with parallel transport, one can show that the differential dg,: T,M = T, M
must send the canonical decomposition of 7,M to that of T,M. In other words, due
to Proposition 2.1.51(a), dg,(T,,Mo) = T,, Mo, and for every i € {1,...,k}, there exists
i' € {1,...,k} such that dg,(T,,M;) = Ty, My. Write o € S for the permutation
sending ¢ to its corresponding i'. Let us write M, for My x {(p1,...,px)} and M;, for
{(po,p1s- - pi—1) } X My x{(piz1,...,px)} forany i = 1,...,k (and the same at ¢). These
are totally geodesic submanifolds of M, and we have obvious isometries M, = M, =
My 4, M;,, = M; = M, ,. Since isometries commute with the exponential map, g must

send My, onto My, and M;,, onto Mg 4. This implies that M; ~ Mg, so 0 actually
lies in the subgroup S of Sy,. We also have the isometries My = My, 2 My, = M, and
M; = M;, EN Moy, = Mgy, 1 <@ < k, which we denote by gy and g;, respectively. By
construction, the isometry

(90790—1(1) © QPro-1(1)s---rY90-1(k) © (pkzo—l(k)) oo !

lies in the product of I(My) x I(M;) x --- x I(My) and S} and coincides with g on
Mo, U, <i<k Mip. But then the differentials of these two isometries at p must coincide
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as well. Since an isometry of a connected Riemannian manifold is uniquely determined by
its value at a point and its differential at that point, the constructed isometry coincides
with g, which finishes the proof. O

Corollary 2.1.61. Let M = My x My x --- X M}, be a de Rham-like decomposition. Then
I°(M) = I°(My) x I°(My) x -+ x I°(My,).

Remark 2.1.62. Proposition 2.1.60 allows a slightly different reformulation if we group
the isometric factors together. Namely, let M = M x M{l X - X M,i’“ be a de Rham-like
decomposition where M; % M; for i« # j and MZZ simply means the product of [; copies of
M;. Then each @;; used in the construction of S;° < I(M) would have to be an isometry
between two copies of M for some s € {1,...,k}, so we can take it to be the identity.
The group Si (here | = Y2 | ;) then consists of those permutations that shuffle the first
[ elements with each other, the next [, elements with each other, and so on. Hence,
>S5, X ---xS;,. The embedding S;* < (M) then looks like

G<p07p17 s 7pl) = (pﬁ)pc(l)a s )pd(l)>7

and decomposition (2.1.7) becomes
I(M) = [I(Mo) x I(Mp)" x -+ x I(My)"*] x S

Remark 2.1.63. The argument used in the proof of Proposition 2.1.60 can also be used
to prove the uniqueness property of the decomposition M = My x My x - - - x M. Namely,
assume we have another de Rham-like decomposition M = M x Mj x --- x M.. Then
k = s and there exist a permutation o € Sy, an isometry @q: My = M{, and a collection
of isometries @;: M; = M/ _, (i) such that the resulting isometry

Mg x My X -+ X My = My x M] x -+ x M|
is of the form

(Pos 15 - -, 0k) = (©0(P0); Po1)(Po(1))s - - - » o) (Dok)))-

As a special case, we get the well-known uniqueness property of the de Rham decomposition.

The relation between holonomy and isometries

In symmetric spaces, there is a remarkable interplay between parallel transport and
isometries. Since the former only uses the connection and not the metric, we need to
broaden the scope of our consideration temporarily. If M is a Riemannian manifold, we
can treat it as an affine manifold—endowed with the Levi-Civita connection. Its group of
isometries then becomes a subgroup of an a priori larger group of affine transformations.

More generally, let M be a connected smooth manifold with an affine connection V. The
group A(M) of affine transformations of M is a Lie group in the compact-open topology
(see [KN96a, Th.VI.1.5]). Let P stand for the frame bundle of M. Then P is foliated by
the holonomy bundles of V: given u € P, its leaf P(u) consists of all points of P reachable
from u by a piecewise-smooth horizontal curve. The affine group A(M) acts naturally on
P and permutes the leaves.
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Definition 2.1.64. An affine transformation f of (M, V) is called a transvection if it
preserves some (< every) holonomy bundle P(u) C P. The group of all transvections
of (M, V) is denoted by Tr(M). An affine space (M, V) is called affine reductive if
Tr(M) acts transitively on some (&< every) holonomy bundle P(u).

Clearly, Tr(M) is a normal subgroup of A(M). An affine transformation f is a transvection
if for some (& every) p € M, there exists a piecewise-smooth curve y from p to f(p)
such that df,: T,M = Tty M coincides with the parallel transport along y. For example,
in a reductive homogeneous space G/H equipped with the canonical connection, every
geodesic translation is a transvection. On the other hand, M is an affine reductive space
if and only if for every p,q € M and every piecewise-smooth curve y from p to ¢, there
exists a transvection f mapping p to ¢ such that df,, coincides with the parallel transport
along .

It is proven in [Kow79] that an affine space (M, V) is affine reductive if and only if M
can be expressed as a reductive homogeneous space G/K so that V coincides with the
canonical affine connection (hence the name). Using Corollary 2.1.45 and the results of
[KowT79], one can show the following:

Proposition 2.1.65. Any symmetric space M is affine reductive. If we write (G, K) for
its canonical Riemannian symmetric pair, then Tr(M) is contained in G and is in fact a
connected closed normal Lie subgroup of G. Its corresponding ideal of g is [p,p] & p. In
particular, Tr(M) acts transitively on M, contains all one-parameter subgroups of geodesic
translations, and is in fact generated by geodesic translations.

Remark 2.1.66. Let M be a symmetric space, (G, K) its canonical Riemannian symmetric
pair, and X € p. Then the geodesic translation exp.,(tX) can be expressed as the
composition of two geodesic symmetries, namely s.., (tx)© So. Consequently, Tr(M) is
contained in the subgroup of I(M) generated by all the geodesic symmetries.

We can use Proposition 2.1.65 to draw some conclusions about the holonomy group of a
symmetric space. For a general Riemannian manifold M, the only relation that always
exists between its isometries and holonomy is that the holonomy groups are preserved
under isometries: given f € I(M) and p € M, df, induces an isomorphism between
O(T,M) and O(T¢)M) under which Hol(M, p) gets identified with Hol(M, f(p)). In

particular, the full linear isotropy group K at p normalizes Hol(M, p). For symmetric
spaces, however, more is true, as implied by Proposition 2.1.65:

Proposition 2.1.67. Let M be a symmetric space, o € M any point, and let K C O(T,M)
be the full linear isometry group. Then Hol(M, o) C K is a normal subgroup. If (g,0) is
the canonical orthogonal symmetric Lie algebra of M at o, then the holonomy Lie algebra
at o is given by hol(M, o) = [p,p] C €.

The last statement of Proposition 2.1.67 follows from Proposition 2.1.65 and the Ambrose-
Singer theorem (and is true for any affine reductive space). Later we will see that
a stronger version of this result holds for a special subclass of symmetric spaces (see
Proposition 2.1.97). If M is represented by an arbitrary orthogonal symmetric Lie algebra
(g,0), the holonomy Lie algebra representation at o is given (modulo the kernel) by the
restriction of the adjoint representation £ — so(p) to [p, p].

Before we go further, we mention one more crucial result that gives a somewhat intrinsic
description of the linear isotropy group of a simply connected symmetric space. Recall

37



2.1. SYMMETRIC SPACES

that if we have a vector space V', the representation of GL(V') (resp., gl(V')) on V extends
uniquely to one on the full tensor algebra TV = @n >0 T®9V by algebra automorphisms
(resp., derivations) such that, on V*, it coincides with the dual representation. This
extension preserves the bi-degree and commutes with all contractions. The following is
proven in [HelO1, p. 227, Ex. A6] (see p. 564 for the solution):

Proposition 2.1.68. Let M be a simply connected symmetric space and o € M any point.
The full linear isotropy group K at o (resp., its Lie algebra €) consists precisely of those
elements of GL(T,M) (resp., gi(T,M)) that preserve the inner product' g, € T2T,M
and the curvature endomorphism R, € TM3T, M.

Essentially, Proposition 2.1.68 allows one to extend an operator on a tangent space to
M to a global isometry of M if certain conditions are satisfied. We will use it repeatedly
throughout the thesis.

2.1.4. Types of symmetric spaces

Now, we introduce the three types of symmetric spaces and discuss how they are the
building blocks for all symmetric spaces.

Let g be a real semisimple Lie algebra. The Killing form B of g is nondegenerate, but it
can be of mixed signature.

Definition 2.1.69. Let 0 be an involutive automorphism of g and g = € & p the
corresponding 7Z/27Z-grading. We call 6 a Cartan involution and g = ¢ @ p its Cartan
decomposition if B is negative-definite on £ and positive-definite on p.

Let g be a real semisimple Lie algebra with a fixed Cartan involution 8 and the corre-
sponding Cartan decomposition g = €@ p. Consider a symmetric bilinear form on g
given by Be(X,Y) = —B(X,0Y). One can readily see that By coincides with B on p
and equals —B on £. In particular, By is positive-definite. The property of Bg being
positive-definite can be taken as an alternative definition of a Cartan involution.

Example 2.1.70. Let g be a transpose-invariant semisimple subalgebra of sl(n, R). Then
0(X) = — X" is a Cartan involution on g. /

Example 2.1.70 essentially exhausts all examples of Cartan involutions:

Proposition 2.1.71. Let g be a real semisimple Lie algebra with a Cartan involution 0.
Then g is isomorphic to a transpose-invariant subalgebra of s{(n,R) such that © becomes
X — —X*t

Proof. Since we have an inner product By on g, every A € gl(g) has an adjoint operator
A*. Define an operator f4 on gl(g) by To(X) = —X*. One can readily see that fq is an
involutive automorphism of gl(g). Moreover, it preserves ad(g) = Der(g) C sl(g), and the
isomorphism ad: g = ad(g) identifies © with {,, i.e., ad(0X) = ad(X)*. After choosing
an orthonormal basis for g, f5 becomes the negative transpose of a matrix. O]

Cartan involutions are designed to study noncompact Lie algebras due to the following

!This condition cuts out precisely O(T,M) (resp., so(T,M)).
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Proposition 2.1.72. The following conditions on a real semisimple Lie algebra g are
equivalent:

(i) g is compact.
(ii) Idy is a Cartan involution.
In this case, 1dy is the only Cartan involution on g.
Proposition 2.1.73 (Cartan involutions). Let g be a real semisimple Lie algebras.
(a) There exists a Cartan involution on g.
(b) Any two Cartan involutions on g are conjugate via Inn(g).

An important property of a Cartan involution is that it makes g into an orthogonal
symmetric Lie algebra:

Proposition 2.1.74. If 0 is a Cartan involution on g, then € is a compactly embedded
subalgebra of g. In particular, (g,0) is an orthogonal symmetric Lie algebra.

In fact, £ is a maximal compactly embedded subalgebra of g, as can be shown from
Proposition 2.4.1(d). We are now ready to define the types of symmetric spaces. We start
on the level of Lie algebras.

Let g be a compact semisimple Lie algebra and 6 € Aut(g) any nontrivial involution.
Then (g,0) is an orthogonal symmetric Lie algebra. Indeed, if we take G to be a simply
connected Lie group with Lie algebra g, then G is compact by Proposition 2.1.13. If we
lift © to an involution ® on G, G® will be a closed subgroup of G' and hence compact. By
Proposition 2.1.16, ¢ is compactly embedded. We call (g,0) an orthogonal symmetric Lie
algebra of compact type. Note that it is automatically weakly effective.

Let g be a noncompact real semisimple Lie algebra with a Cartan involution 6. By
Proposition 2.1.74, (g, 0) is an orthogonal symmetric Lie algebra, and we say that it is of
noncompact type. It is also automatically weakly effective.

From Proposition 2.1.73, we immediately get:

Corollary 2.1.75. An orthogonal symmetric Lie algebra of noncompact type is completely
determined by its underlying Lie algebra up to isomorphism.

Finally, let p be a finite-dimensional real vector space and ¢ C gl(p) the Lie algebra of
some compact subgroup of GL(p). Then we can treat p as an abelian Lie algebra and form
a semidirect sum g = €@ p. It is easy to see that this is a Z/2Z-grading on g, hence by
Proposition 2.1.19 it yields an involution 6 € Aut(g). By design, £ is compactly embedded
in g, and thus (g, 0) is an effective orthogonal symmetric Lie algebra. Note that p is an
abelian ideal in g. Inspired by this example, we say that a weakly effective orthogonal
symmetric Lie algebra (g, 0) is of Euclidean type if p is an abelian ideal in g (it suffices
to ask that p is a subalgebra).

Observation 2.1.76. The notion of type of an orthogonal symmetric Lie algebra is
clearly respected by isomorphisms.

Definition 2.1.77. A Riemannian symmetric pair (G, K) is said to be of compact,
noncompact, or Euclidean type if so is its orthogonal symmetric Lie algebra (g,0). A

39



2.1. SYMMETRIC SPACES

symmetric space M is said to be of compact, noncompact, or Euclidean type if so is
its canonical Riemannian symmetric pair.

Remark 2.1.78. In the literature on the subject, it is common to refer to symmetric
spaces of (non)compact type simply as (non)compact symmetric spaces. We will also
sometimes do this if there is no chance of ambiguity.

Observation 2.1.79. The notion of type of a Riemannian symmetric pair is also respected
by isomorphisms. Therefore, the notion of type of a symmetric space is well defined (by
Lemma 2.1.30) and respected by isometries.

Proposition 2.1.80. Let X stand for “compact”, “noncompact”, or “Euclidean”.

(a) If a Riemannian symmetric pair is of type X, then so is its corresponding symmetric
space G/ K for any choice of a G-invariant metric. In other words, if M is repre-
sented by an orthogonal symmetric Lie algebra (g,0) of type X, then M is of type
X.

(b) Conversely, if a symmetric space M is of type X, then so is every infinitesimally
weakly effective Riemannian symmetric pair and weakly effective orthogonal sym-
metric Lie algebra that represents M.

Definition 2.1.77 together with Proposition 2.1.13 immediately implies the following

Corollary 2.1.81. Let (G, K) be a Riemannian symmetric pair. If it is of compact (resp.,
noncompact) type, then G is compact (resp., noncompact) semisimple.

Example 2.1.82. Recall from Example 2.1.38 that a compact connected Lie group G
endowed with a bi-invariant metric is a symmetric space. Now, G is represented by a
Riemannian symmetric pair (G x G, Ag), so if G is compact semisimple, it is a symmetric
space of compact type. /

Example 2.1.83. The Cartan involution 8(X) = —X" on sl(n,R) admits a lift to an
involution ®(A) = (A")~! on SL(n,R). This gives rise to a Riemannian symmetric pair
(SL(n,R), SO(n)) and thus a symmetric space SL(n,R)/SO(n) of noncompact type. This
space is special due to the following fact: every symmetric space M of noncompact type
can be realized as a totally geodesic submanifold of SL(n,R)/SO(n) for some n. This can
be deduced relatively easily from Proposition 2.1.71 and Proposition 2.2.12.

Now we discuss why symmetric spaces of the above three types are the building blocks for
all symmetric spaces.

Proposition 2.1.84. Let (g,0) be a weakly effective orthogonal symmetric Lie algebra.
Then there exist ideals go, gc, One 1N § Such that:

(a) 8=009 g D Gne-
(b) Each of the three ideals is invariant under 0. In particular, we have © = (0, O¢, Ope)-

(
d

)
)

¢) (go,00) is an orthogonal symmetric Lie algebra of Fuclidean type.
) (8¢, 0¢) is an orthogonal symmetric Lie algebra of compact type.
)

(€) (@ne, One) s an orthogonal symmetric Lie algebra of noncompact type.
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The corresponding subspaces Po, Pe, Pue Of p are uniquely determined and do not depend
on the choice of go, 8c, and gne- If (g,0) is effective, then go,gc, and gne are uniquely
determined.

Definition 2.1.85. If (g, 0) is an effective orthogonal symmetric Lie algebra, the ideals
90, Uc, One are called its Euclidean, compact, and noncompact part, respectively.

A proof of Proposition 2.1.84 can be found in [HelO1, Th.V.1.1]. Let us now discuss the
geometric equivalent of Proposition 2.1.84. Given a symmetric space M, let Vi, Vi, ..., V;
and Fy, Fi, ..., Fy be its de Rham distributions and foliations, respectively. Let V¢ (resp.,
Vie) be the sum of all V; whose corresponding irreducible part (leaf of F;) is of compact
(resp., noncompact) type.

Proposition 2.1.86. (a) The distributions V. and V,. are parallel (hence involutive),
and we have an orthogonal decomposition T'M = Vo @ V. & V.

(b) Let F. and Fy. stand for the foliations corresponding to V. and Vi, respectively.
Fach of these two foliations has properly embedded totally geodesic leaves that are all
congruent to each other by means of the action of I°(M). The leaves of F. (resp.,
Fuc) are symmetric spaces of compact (resp., noncompact) type.

(c) Suppose M is represented by a weakly effective orthogonal symmetric Lie algebra
(g,0) and g = go @ ge D Gne as in Proposition 2.1.84. Then po = (V)o, Pe = (Ve)o,
and pne = (Vae)o. Moreover, (go,00), (ge, 0¢), and (gne, Onc) naturally represent the
leaves of Fo, Fe, and Fy., respectively.

(d) If M is simply connected, it naturally decomposes as a Riemannian product M =
My X M. X My.. In terms of the de Rham decomposition of M, M. (resp., My.) is
the product of all the irreducible de Rham factors of compact (resp., noncompact)

type.

We call V. and F. (resp, Vae and Fy.) the compact (resp., noncompact) distribution
and foliation of M, respectively. Any leaf of F. (resp., Fuc) is called the compact (resp.,
noncompact) part of M.

Example 2.1.87 (The unitary group). Consider the group U(n) (n > 2) endowed
with a bi-invariant metric. Its Euclidean part if isometric to the circle and coincides
with the center Z(U(n)) = {e™E | A € R}. The compact part is irreducible and given
by SU(n) C U(n), and the noncompact part is trivial. Note that U(n) does not split as
the product of its Euclidean and compact parts because they intersect at n points (the
intersection is the subgroup of n-th roots of unity inside Z(U(n))). /

It turns out that the noncompact part of a symmetric space always splits off as a
Riemannian factor:

Proposition 2.1.88. Any symmetric space M decomposes as a Riemannian product of
its noncompact part M,. and a symmetric space M' with a trivial noncompact part'.

Conceptually, Proposition 2.1.88 owes to the fact that a symmetric space of noncompact
type is Hadamard (Proposition 2.1.92) and its group of inner isometries is centerless

'In other words, the universal Riemannian covering space of M’ is the Riemannian product of a
Euclidean space with a symmetric space of compact type.
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(Corollary 2.4.5). Using expression (2.1.5), one can relate the type of a symmetric spaces
to its curvature:

Proposition 2.1.89 (Type vs curvature). Let M be a symmetric space.
(a) M is of Euclidean type < M is flat.

(b) M s of compact type < M does not have a flat local factor and is of nonnegative
sectional curvature.

(¢) M is of noncompact type < M does not have a flat local factor and is of nonpositive
sectional curvature.

Corollary 2.1.90. A symmetric space is of type X if and only if its universal Riemannian
covering space s of type X.

Using Proposition 2.1.89, one can derive some basic geometric properties of the three
types of symmetric spaces.

Proposition 2.1.91. A symmetric space of Fuclidean type is a Riemannian product of a
Fuclidean space and a flat torus.

Regarding symmetric spaces of noncompact type, one can prove that they are always
simply connected (see Proposition 2.4.1). Since they are also of nonpositive sectional
curvature, we have:

Proposition 2.1.92. A symmetric space M of noncompact type is a Hadamard manifold.
In particular, M is diffeomorphic to a Fuclidean space. In fact, for every p € M,
exp,: T,M — M is a diffeomorphism.

Finally, a symmetric space of compact type is a quotient of a compact connected semisimple
Lie group by a compact subgroup. Using the long exact sequence of homotopy groups,
one obtains:

Proposition 2.1.93. A symmetric space of compact type is compact and has a finite
fundamental group.

Remark 2.1.94. Symmetric spaces of compact type have positive Ricci curvature by
Proposition 2.1.89(b). The assertion of Proposition 2.1.93 then also follows from Myers’s
theorem.

The following proposition singles out a special class of symmetric spaces:

Proposition 2.1.95 (Semisimplicity criteria). Let M be a symmetric space. The
following are equivalent:

(a) M does not have a flat local factor.
(b) The Fuclidean part of M is trivial.

)
(¢) M is a Riemannian product of symmetric spaces of compact and noncompact type.
(d) The isometry group I(M) is semisimple!.

)

(e) For some (< any) infinitesimally weakly effective Riemannian symmetric pair (G, K)
representing M, G is semisimple.

We do not require semisimple Lie groups to be connected in general.

42



2.1. SYMMETRIC SPACES

(f) For some (& any) weakly effective orthogonal symmetric Lie algebra (g,0) repre-
senting M, g is semisimple.

Definition 2.1.96 (Semisimplicity). A symmetric space is called semisimple if it
satisfies the conditions in Proposition 2.1.95. A Riemannian symmetric pair (G, K)
(resp., an orthogonal symmetric Lie algebra (g,0)) is called semisimple if G (resp., g) is
semisimple.

Suppose a symmetric space M is represented by an orthogonal symmetric Lie algebra
(g,0) (resp., a Riemannian symmetric pair (G, K)). If the latter is semisimple, then
so is M. The converse is not true: provided M is semisimple, (g,0) (resp., (G, K)) is
semisimple if and only if it is (infinitesimally) weakly effective.

Agreement. Whenever a semisimple symmetric space is represented by an orthogonal
symmetric Lie algebra (or a Riemannian symmetric pair), we are going to assume by
default that the latter is semisimple, unless otherwise stated.

Together with compact connected Lie groups, semisimple symmetric spaces belong to a
larger class of better-behaving symmetric spaces that admits a number of characterizations.

Proposition 2.1.97. The following are equivalent for a symmetric space M :
(a) The Euclidean part of M is compact.

(b) M is a Riemannian product of a compact symmetric space with a symmetric space
of noncompact type.

(c) The canonical orthogonal symmetric Lie algebra (g,0) of M has [p,p] = &.

(d) For every Riemannian symmetric pair (G, K) representing M, the morphism G —
I°(M) is surjective. In other words, G/I = I°(M).

(e) For some (& every) p € M, Hol’(M,p) coincides with the restricted linear isotropy
group I_(O at p. In other words, Hol(M,p) is an open subgroup of the linear isotropy
group K.

(f) Te(M) = I°(M).

If these conditions are satisfied, we say that M has compact Euclidean part. In this
case, there is a unique effective Riemannian symmetric pair (resp., orthogonal symmetric
Lie algebra) representing M up to isomorphism—the canonical one.

Sketch of the proof. To begin with, (c) is equivalent to (e) by Proposition 2.1.67, to (f)
by Proposition 2.1.65, and implies (d) by Observation 2.1.33. For any symmetric space
M, (Tr(M), Tr(M),) is a Riemannian symmetric pair representing M, so (d) implies (f).
Next, (a) is equivalent to (b) by Proposition 2.1.88. The equivalence of (a) and (c) can be
shown by passing to the universal Riemannian covering space. One of the main steps is
to show that if (g, 0) is an effective semisimple orthogonal symmetric Lie algebra, then
[p, p] = €. In the noncompact case, this is the content of problems 22-25 in [Kna02, Sect.
V1] (see p. 558 for a solution). In general, this follows from the proof of Proposition 2.1.84
in [HelO1, Th.V.1.1]. O

Example 2.1.98. By Proposition 2.1.95(b), any semisimple symmetric space has compact
Euclidean part. /
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Example 2.1.99. A compact connected Lie group G with a bi-invariant metric has
compact Euclidean part, which follows trivially by Proposition 2.1.97(b). As we saw in
Example 2.1.38, G can be represented by the Riemannian symmetric pair (G x G, Ag),
whose inefficiency kernel is given by I = Ay. It then follows from Proposition 2.1.97(d)

that I°(G) = (G x G)/Az. /

Remark 2.1.100. Part (e) of Proposition 2.1.97 means that for a symmetric space M
with compact Euclidean part, the restricted holonomy and isotropy representations are
the same thing. If M is represented by a Riemannian symmetric pair (G, K), they are
both given by the adjoint representation of K° on p (modulo the kernel).

2.1.5. Irreducibility, duality, and the classification

In this final part of the section, we discuss the classification of symmetric spaces. To that
end, we first need to talk about two more crucial ingredients in this theory: irreducibility
and duality. Once again, the primary reference here is [Hel01].

Irreducibility

The property of being irreducible has a number of useful reformulations for symmetric
spaces.

Proposition 2.1.101 (Irreducibility criteria). The following are equivalent for a
symmetric space M :

(a) M is irreducible.
(b) M is not flat and its restricted isotropy representation is irreducible.

(c) For some (& any) Riemannian symmetric pair (G, K) representing M, (G, K) is
not of Euclidean type, and its restricted isotropy representation is irreducible.

(d) For some (< any) orthogonal symmetric Lie algebra (g,0) representing M, (g,0) is
not of Fuclidean type, and the adjoint representation ¥ — so(p) is irreducible.

Definition 2.1.102. A Riemannian symmetric pair (G, K) is called irreducible if it is
not of Euclidean type and the representation of K° on p is irreducible. An orthogonal
symmetric Lie algebra is called irreducible if it is not of Euclidean type and the
representation of £ on p is irreducible.

Proposition 2.1.101 essentially means that the three notions of irreducibility agree: if
(g,0) is an orthogonal symmetric Lie algebra associated with a Riemannian symmetric
pair (G, K), and they represent a symmetric space M, then (g, 0) is irreducible < (G, K)
is irreducible < M is irreducible. From Proposition 2.1.84, we also have:

Corollary 2.1.103. An irreducible symmetric space (or a weakly effective orthogonal
symmetric Lie algebra, or an infinitesimally weakly effective Riemannian symmetric pair)
1s semisimple and in fact of either compact or noncompact type.

In compliance with our agreement on page 43, if M s an wrreducible symmetric space,
any orthogonal symmetric Lie algebra (or Riemannian symmetric pair) representing it is
assumed to be (infinitesimally) weakly effective by default.
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Proposition 2.1.104. An orthogonal symmetric Lie algebra (g,0) is irreducible if and
only if € is a maximal proper subalgebra of g. A Riemannian symmetric pair (G, K) is
irreducible if and only if K° is a maximal proper connected Lie subgroup of G.

Proof. We need only prove the first statement. If € C h C g is a larger proper subalgebra,
then h Np C p is a nontrivial proper subrepresentation of €. Conversely, if V' C p is such
a subrepresentation, consider the subalgebra h =t @ V. O

Orthogonal symmetric Lie algebras can be decomposed into irreducible parts, which can
be regarded as the infinitesimal version of the de Rham decomposition for symmetric
spaces:

Proposition 2.1.105. Let (g,0) be a weakly effective orthogonal symmetric Lie algebra.
There exist ideals g;,0 < i < k, such that:

(a) g=0g0D g1 S D -

(b) © preserves g; for every 0 <i < k. In particular, ® can be written (89,01,...,0%).
(¢) Each (g;,0;) is a weakly effective orthogonal symmetric Lie algebra.

(d) (go,00) is of Fuclidean type, and (g;,0;) is irreducible for 1 <i < k.

If we write g; = €; @ p;, then p;’s are uniquely determined and do not depend on the choice
of g;’s. Moreover, if (g,0) is effective, the ideals g; are unique.

Remark 2.1.106. Let (g, 0) be an effective orthogonal symmetric Lie algebra decomposed
asg=goD g DD gr as in Proposition 2.1.105. Then the Euclidean part of g is go,
while its compact (resp., noncompact) part is the sum of all g; such that (g;,0;) is of
compact (resp., noncompact) type.

Proposition 2.1.105 is closely related to the de Rham distributions:

Proposition 2.1.107. Let M be a symmetric space represented by a weakly effective
orthogonal symmetric Lie algebra (g,0), and let g = go ® g1 @ -+ - D gx be as in Proposi-
tion 2.1.105. Then p =po @ p1 ® - -+ B Py is the canonical decomposition of p = T,M (in
particular, its summands are pairwise orthogonal). If we let Fo, F1, ..., Fi stand for the
corresponding de Rham foliations, then (g;,0;) represents any leaf of F;.

The normalizing constants

Having discussed irreducibility, we can now talk about the degree of freedom one has when
choosing an invariant metric on a symmetric space and what role this choice plays. Before
doing that, we need to say a few words about Schur’s lemma and its validity over R.

The easy part of Schur’s lemma works trivially over any field: any nonzero morphism
between two irreducible representations of a group is an isomorphism. The “hard” part—
which asserts that the space of such morphisms is at most one-dimensional—is only
applicable over algebraically closed fields. Nevertheless, there is a substitute if the ground
field is R. Indeed, let V' be a real irreducible representation of a group G. Thanks to the
easy part of Schur’s lemma, the space Endg(V) is a finite-dimensional associative unital
division algebra over R. By the Frobenius theorem, it must be isomorphic to R, C, or H.
In the latter two cases, there exists an invariant complex (resp., quaternionic) structure

45



2.1. SYMMETRIC SPACES

on V. Fix such a structure; in case of H, pick a basis .Ji, Jo, J3 of the quaternionic
structure and thus turn V' into a left H-module (see Subsection 2.5.2 for all the necessary
definitions). Now assume that G is a compact Lie group and the representation is smooth.
By a standard averaging argument, V' admits an invariant Euclidean, Hermitian, or
quaternion-Hermitian (depending on the dimension of Endg(V')) inner product h. The
real part g of h is an invariant symmetric R-bilinear form on V. The space Bilg(V') of
invariant R-bilinear forms on V' is canonically isomorphic to Homg(V, V*), hence it has
the same dimension as Endg (V). It is easy to see that

g if Endg(V) ~ R,
Bilg(V) is spanned by < g, w if Endg(V) ~ C,
g, w1, Wy, w3 if Endg(V) ~ H

Y

where w(v, w) = g({v,w), I is the complex structure on V| and w;(v,w) = g(J;v,w). As
the forms w and w; are skew-symmetric, we see that the space of invariant symmetric
R-bilinear forms on V' is 1-dimensional and spanned by g. We deduce:

Corollary 2.1.108. Let V' be an irreducible real representation of a compact Lie group
G. There exists a unique—up to rescaling by a positive constant—G-invariant Fuclidean
inner product on V.

Corollary 2.1.109. If (G, K) is an irreducible Riemannian symmetric pair, then there
is a unique G-invariant Riemannian metric on M = G /K up to rescaling by a positive
constant.

Now, let (g,0) be a weakly effective irreducible orthogonal symmetric Lie algebra. There
is a natural €-invariant inner product on p:

-B if (g, 0) is of compact type,

(—|-)p = { - (8,) peet b (2.1.8)

B‘ Be| if (g, 0) is of noncompact type.

pxp pxp

Owing to Corollary 2.1.108, any other €-invariant inner product on p is proportional to
(—|—)p- More generally, let (g,0) be a weakly effective orthogonal symmetric Lie algebra,
and let g =go P g1 & --- P gx be as in Proposition 2.1.105. The restriction of B to p has
kernel pg, the other summands p; are pairwise orthogonal with respect to it, and we have
B’ = Bl| 4+ 4 Bk| . Combining these arguments with Proposition 2.1.107,

pxp T pxpr T gy,
we arrive at the following important

Corollary 2.1.110. Let (g,0) be a weakly effective orthogonal symmetric Lie algebra,
and let g = go D g1 B --- B gr be as in Proposition 2.1.105. For any t-invariant inner

product (—|—) on p, the summands p; are pairwise orthogonal, and we have
(=[=)=(=I=)o+Al=[=)p +  +M(=|=)p,, (2.1.9)
where (—|—), is a Ey-invariant inner product on py, and A; > 0. The constants A; do not

depend on the choice of such a decomposition of (g,0).

In particular, if M is a symmetric space, one can represent it by some weakly effective
orthogonal symmetric Lie algebra (g,0) and decompose g, as in (2.1.9). It turns out that
the resulting constants A; are invariants of M.
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Proposition 2.1.111. Let M be a symmetric space represented by a weakly effective
orthogonal symmetric Lie algebra (g,0). Decompose the t-invariant inner product g, on
p as in (2.1.9) and let Ay, ..., Ax > 0 be the resulting constants. These constants depend
neither on the choice of a weakly effective orthogonal symmetric Lie algebra representing
M, nor on the choice of a base point. If M’ is another space isometric to M, it has the
same constants up to reordering.

A general proof of this result is complicated by the fact that M may not be simply
connected. To deal with this, one has to prove some structure results on the deck
transformation group of the universal Riemannian covering of M. We will prove this
statement in the special case when M is simply connected and semisimple.

Proof. Let M be a simply connected semisimple symmetric space represented by a weakly
effective orthogonal symmetric Lie algebra (g,0). By Proposition 2.1.95, g is semisimple,
so it splits as a sum of two ideals i@ g’, where i is the ineffectiveness kernel. The involution
0 respects this decomposition and is trivial on i. The Killing form of g’ is the restriction
of that of g. This means that we can replace the initial orthogonal symmetric Lie algebra
with an effective one, which, by Proposition 2.1.97, is simply the canonical one. So we
take G = I°(M) and K = G,. Let M = M, x --- X M} be the de Rham decomposition.
By Corollary 2.1.61, G = Gy x -+ X G}, where G; = I°(M;). The isometry Lie algebra
splits accordingly as g = g1 @ - - - © gx, and we have g, = A (—|—)p, + -+ A (= | =) 5,
We need to prove that if M’ is a space isomorphic to M with analogous decompositions
at some o', then A; and A} coincide up to reordering.

Let f: M = M’ be an isometry. We may assume it maps o to o’. The uniqueness of de
Rham decomposition (Remark 2.1.63) implies that M’ has the same number of de Rham
factors (say, M’ = M{x---x M}), and f is of the form (p;)¥_; — (fo-1(5)(Po-1()) )iy, Where
o € S and fi: M; = M, is an isometry. Let F;: G; = G, stand for g+ fiogo it
and @;: g; = g,,; for (F}).. We have the following commutative diagram:

fi
pi — = Poq)

| |
d((Pi)oi

T, M; ——— T, M.
K o(7) 0-(7’)

The top arrow is an isometry with respect to the inner products (—|—)p and (—|—) 5 o
whereas the bottom one is an isometry with respect to (g;)o, = Ai(—|—) 5, and (gi;))or, "
;(i)<— | —) Bl This implies that A; = ?\’U(i), which concludes the proof. H

Definition 2.1.112. The constants Ay, ..., A; defined above are called the normalizing
constants of M. If M is semisimple and all the normalizing constants are equal to 1, the
metric on M is called Killing.

It is important to point out that if we have a symmetric space M represented by a
Riemannian symmetric pair (G, K), and g, is decomposed as in (2.1.9), we can rescale the
normalizing constants however we want, and the resulting inner product will still be K-
invariant, so it would give rise to another G-invariant metric on M. Roughly speaking, this
procedure amounts to dilating the initial metric g by some positive constants along each of
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the irreducible de Rham foliations Fi, ..., Fr. We shall call this procedure rescaling the
normalizing constants of M. One can show that the rescaled metric has the same group
of inner isometries (although the full isometry group might change). On a semisimple
symmetric space, the Killing metric is unique by Proposition 2.1.111. In a sense, it is
the canonical metric defined purely algebraically, and the normalizing constants tell how
much the Riemannian metric of M differs from the Killing one.

Another thing we can do in the semisimple case is to extend the Killing metric to an
invariant inner product on the whole isometry Lie algebra. Let (g,0) be a semisimple
orthogonal symmetric Lie algebra, and let g = g, & - - - @ g be as in Proposition 2.1.105.
Then we can define an inner product (—|—)p. on each g;:

—B; if (g,0) is of compact type,
(=1=)p = { (2.1.10)

(B;)e, 1if (g,0) is of noncompact type.

Note that this agrees with (2.1.8). Adding these up and letting the ideals g; be mutually
orthogonal leads to a €-invariant inner product! (—|—)p = (—=|—)p, +---+(—|—)p, on
g. It is not hard to show that (—|—)z does not depend on the choice of a decomposition
of g as above. This inner product proves especially useful in the noncompact type (where
it can be written simply as By). If there is no ambiguity, we will sometimes drop the
subscript B and write this inner product simply as (—|—).

Warning. Suppose a semisimple orthogonal symmetric Lie algebra (g, 0) represents a
symmetric space M. Then, there are two a priori distinct inner products on p: (—|—) g ‘pxp
and g,. By definition, they coincide precisely when the metric is Killing. In the presence of
M, we will normally write g, as (—|—), or just (—|—), so one cannot drop the subscript
of (—|—)p in this case.

Remark 2.1.113. When we have a specific symmetric space M represented by a Rieman-
nian symmetric pair (G, K'), we never impose any restrictions on the choice of a G-invariant
metric on M, unless otherwise stated. If M is irreducible, such a metric is unique up
to a constant by Corollary 2.1.109, but in general, there exists a host of such metrics.
For example, the Grassmannian Gr(2, R*) = SO(4)/S(0(2)0(2)) admits a 2-dimensional
family of SO(4)-invariant symmetric metrics. So when we say that another symmetric
space M, is isometric to M, we mean isometric with respect to some G-invariant metric.
One needs to be cautious when given yet another space My “isometric to M”: unless the
isometries M7 ~ M and My ~ M are with respect to the same metric on M, M; and M,
may not be mutually isometric. (In the irreducible case, they would be homothetic.)

Recall from (2.1.6) that the Ricci curvature of a symmetric space is given by Ric, =
—%B‘pxp. The normalizing constants can thus be used to formulate when a symmetric
space is Einstein:

Proposition 2.1.114 (Einsteinness criterion). A symmetric space M is Finstein if
and only if it is of Euclidean (Ric = 0), compact (Ric > 0), or noncompact (Ric < 0)
type, and in the latter two cases its normalizing constants need to be all equal to each
other (so the metric has to be proportional to the Killing one). In particular, irreducible
symmetric spaces are Einstein.

!This notation might be a little ambiguous as it does not capture the dependence of (—|—) 5 on 6.
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Duality

There is a 1-to-1 correspondence between (simply connected) symmetric spaces of compact
and noncompact type. This remarkable feature is called the duality. A symmetric space
M and its dual M* share a lot in common, including rank, irreducibility, holonomy, the
set of totally geodesic submanifolds, etc. As we will witness repeatedly throughout the
thesis, results obtained for M often carry over essentially for free to M*.

Let (g,0) be an orthogonal symmetric Lie algebra. Inside the complexification gc,
consider the subspace g* = €@ ip. It is straightforward to verify that this is a Z/2Z-graded
subalgebra of g¢. Let us denote the resulting involutive automorphism (X +iY — X —iY)
by 0*.

Proposition 2.1.115. Let (g,0) be an orthogonal symmetric Lie algebra.
(a) (g*,0%) is an orthogonal symmetric Lie algebra. It is called the dual of (g,90).
(b) If (g,0) and (¢',0") are isomorphic, then so are (g*,0*) and (g™, 0™).
(c) If (g,0) is of compact type, then (g*,0%) is of noncompact type, and vice versa.

Now we carry the dualization construction over to symmetric spaces. Since the Euclidean
case is of little interest, we confine our attention to semisimple symmetric spaces. Let M
be a simply connected semisimple symmetric space. Take any orthogonal symmetric Lie
algebra (g, 0) representing M and consider its dual (g*, 0*). Take a simply connected Lie
group G* with Lie algebra g*, lift 8* to an involutive automorphism ©* of G*, and take
K* = (G*®")° to be the connected Lie subgroup of G* corresponding to € C g*. If (—|—),
stands for the Riemannian metric of M at o, then define an inner product on ip by the
formula (XY )* = (X|Y),. It is clearly K*-invariant, so it makes M* = G*/K* into a
simply connected semisimple symmetric space, which we call the dual of M. Let us denote
the base point e K* of M* by o*. Note that we have a natural isometric isomorphism
T,M = p =ip =T, M*. The following are some basic properties of duality:

Proposition 2.1.116 (Properties of duality). Let M be a simply connected semisimple
symmetric space.

(a) M* does not depend on the choice of o € M up to isometry.
(b) M*™* ~ M.

(c) If N is another simply connected semisimple symmetric space isometric to M, then!
N* ~ M*.

(d) dim(M*) = dim(M).
(e) rk(M*) =rk(M).

(f) If M = M, x---x My, is the de Rham decomposition of M, then M* = My x - -+ x M}
s the de Rham decomposition of M*. In particular, M is irreducible if and only if
M* is.

(g) Under the identification T,M = T,. M*, the linear isotropy groups K C O(T,M) and

1One can say that the duality is an involutive functor from the groupoid of simply connected semisimple
symmetric spaces to itself.
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K* C O(T,-M*) coincide', and hence so do the holonomy groups Hol(M, o) and
Hol(M*, 0*).

(h) Under the identification T,M = Ty M*, the curvatures of M and M*—be it R, Rm,
Ric, S, or K—are of opposite signs.

(i) If M of compact type, then M* is of noncompact type, and vice versa.

The classification of symmetric spaces

In this final part of the section, we discuss how the introduction of Lie theory to the
theory of symmetric spaces ultimately leads to their classification. The first step is to
observe how irreducibility of a symmetric space is related to whether its isometry Lie
algebra is simple.

Observation 2.1.117. Let g be a semisimple Lie algebra with a Cartan involution 0,
and let g = @ﬁzl g ® P,_,.1 gv be its decomposition into simple ideals, where the
first k ideals are compact (whose sum we call the compact part of g) and the rest are
noncompact (whose sum we call the noncompact part? of g). Then, by Proposition 2.1.72,
0 respects this decomposition and is the identity on the compact ideals. Consequently, an
orthogonal symmetric Lie algebra (g,0) of noncompact type is effective if and only if g
has no nontrivial compact ideals. In particular, the isometry Lie algebra of a symmetric
space of noncompact type has no nontrivial compact ideals.

Combining Observation 2.1.117 with Proposition 2.1.107, we obtain:

Proposition 2.1.118. An effective orthogonal symmetric Lie algebra (g,0) of noncompact
type is irreducible if and only if g is simple. Consequently, a symmetric space of noncompact
type is irreducible if and only if the Lie group I°(M) is topologically simple (< the isometry
Lie algebra i(M) is simple).

Later, we will see that for M irreducible of noncompact type, I°(M) is actually simple
in the group-theoretic sense (see Corollary 2.4.5). However, this is no longer true in the
compact type, even on the level of Lie algebras. For example, a compact topologically
simple Lie group G with a bi-invariant metric is an irreducible compact symmetric space,
but its isometry Lie algebra g @ g is a sum of two simple ideals. Fortunately, this is the
only thing that can happen, as the following proposition shows. Recall that a complex
Lie algebra that is simple over C is also simple over R ([Kna02, Prop.6.95]). In this case,
we are going to say that it is simple without specifying the ground field.

Proposition 2.1.119. Let (g,0) be an effective irreducible orthogonal symmetric Lie
algebra. Then exactly one of the following holds:

(I) g is compact simple.

(IT) g is compact and it splits as a sum of two isomorphic simple ideals interchanged by

0.

(ITI) g is noncompact simple and it does not admit a complex structure making it into a
complex Lie algebra < g is noncompact and gc is simple.

!Note that this follows directly from Proposition 2.1.68
2If (g, ) is an effective semisimple orthogonal symmetric Lie algebra, then the compact and noncompact
parts of g as defined here coincide with those defined in Proposition 2.1.84.
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(IV) g is noncompact simple and it admits a complex structure making it into a complex
Lie algebra < g is noncompact and gc splits (over C) as a sum of two isomorphic
simple ideals.

Depending on the case, we are going to say that (g,0) is of type I, II, III, or IV,
respectively.

Definition 2.1.120. Let (G, K) be an infinitesimally effective irreducible Riemannian
symmetric pair. We say that (G, K) is of type is of type I, II, III, or IV if so is its
orthogonal symmetric Lie algebra. An irreducible symmetric space M is said to be of
type I, IT, IT1, or IV if so is some (< any) infinitesimally effective Riemannian symmetric
pair representing it.

The four types behave well with respect to duality:

Proposition 2.1.121. Let (g,0) be an effective irreducible orthogonal symmetric Lie
algebra. Then:

e (g,0) is of type I < (g*,0%) is of type III.
e (g,0) is of type Il & (g*,0%) is of type IV.
The same is true for simply connected irreducible symmetric spaces and their duals.

Example 2.1.122. Recall from Example 2.1.82 that a compact connected semisimple Lie
group G endowed with a bi-invariant metric is a symmetric space of compact type. From
Proposition 2.1.40 we see that G is irreducible if and only if it is topologically simple. In
this case, it is clearly of type II. /

It is clear that the simply connected irreducible symmetric spaces of type II are exhausted
by simply connected compact topologically simple Lie groups. But can such a group have
a symmetric quotient that is no longer a Lie group? This possibility is ruled out by the
following (see [Hel01, Prop. X.1.2]):

Proposition 2.1.123 (Type II). Any irreducible symmetric space of type Il is isometric
to a compact topologically simple Lie group with a bi-invariant metric.

With this in mind, we have the following global description of types I-IV:

Proposition 2.1.124. Let M be an irreducible symmetric space represented by an in-
finitesimally effective Riemannian symmetric pair (G, K).

(I) M s of type I precisely when G is a compact topologically simple Lie group.

(IT) M s of type II precisely when it is a compact topologically simple Lie group with a
bi-invariant metric.

(IIT) M s of type 111 precisely when G is a noncomplex noncompact topologically simple
Lie group.

(IV) M s of type 1V precisely when G is a complex topologically simple Lie group.
In (III) and (1V), G can be chosen simple.

Up to the question of coverings, the classification of symmetric spaces boils down to the
classification of irreducible simply connected symmetric spaces—thanks to the de Rham
decomposition. This is equivalent to classifying effective irreducible orthogonal symmetric
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Lie algebras. By duality, it suffices to focus on the noncompact or compact type only. For
type IV, this is simply the matter of classifying complex simple Lie algebras—which is
classically done by means of root systems and Dynkin diagrams. This is also equivalent
to classifying compact simple Lie algebras (type II). To deal with type III, one needs
to classify all real simple (non-complex) Lie algebras—that is, classify real forms of
all complex simple Lie algebras (see, e.g., [Kna02, Th.6.105]). Equivalently, to settle
type I, one needs to classify involutions of all compact simple Lie algebras. Thanks to
Proposition 2.1.104, the classification of irreducible symmetric spaces can also be derived
from Dynkin’s classification of maximal subalgebras of semisimple Lie algebras ([Dyn52b]).
For the full list of irreducible simply connected symmetric spaces, see [Hel01, Ch. X, Sect.
6] or [BCO16, pp.414-417]. For the noncompact ones, see also [BCO16, pp. 336-340].

Definition 2.1.125. Irreducible symmetric spaces can be divided into two categories:
M is called classical (resp., exceptional) if I°(M) is a classical (resp., exceptional) Lie
group—or a product thereof.

For a background on exceptional Lie groups (including various embeddings between them),
see [Yok09]. Here are some examples of exceptional symmetric spaces:

e Exceptional simply connected symmetric spaces of type II: Eg, E7, Eg, Fy, Gs.

e Exceptional irreducible symmetric spaces of type IV:
Es(C)/Es, E-(C)/E7, Es(C)/Es, F4(C)/Fy, G2(C)/Gs.

e The Cayley projective and hyperbolic planes OP? = F;/Spin(9) and OH? =
F; % /Spin(9).

2.2. Submanifold theory in symmetric spaces

In this section, we discuss some aspects of the submanifold theory in the context of
symmetric spaces. We are mainly pursuing two goals: first, we will look at various classes
of submanifolds in symmetric spaces and go through some of their properties; second,
we will derive a convenient formula for the second fundamental form of a homogeneous
submanifold that will prove useful later in the thesis. Our main reference for this part is
[BCO16].

2.2.1. Types of submanifolds in symmetric spaces

Most types of submanifolds we are interested in follow a common pattern: they can be
defined in more general Riemannian manifolds that are not necessarily symmetric, but
they possess nice additional properties when the ambient space is symmetric. Perhaps,
the most important such property that most of them acquire in the presence of symmetry
is being homogeneous.

Homogeneous submanifolds

Definition 2.2.1. Let M be a Riemannian manifold. A complete submanifold S C M is
called
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(a) (extrinsically) homogeneous if it is an orbit of an isometric Lie group action on
M,

(b) intrinsically homogeneous if it is a Riemannian homogeneous space in the induced
metric.

Remark 2.2.2. We will usually refer to extrinsically homogeneous submanifolds as just
homogeneous. This notion is clearly stronger than being intrinsically homogeneous. Both
of these types of submanifolds are automatically complete.

If S C M is a homogeneous submanifold, its second fundamental forms at different points
are essentially the same. In particular, if S is a hypersurface, it has constant principal
curvatures and constant mean curvature.

Lemma 2.2.3. Let M be a Riemannian manifold with my(M) finite, and let S C M be a
properly embedded submanifold. Assume that for every p,q € S, there exists an isometry
of M that preserves S and maps p to q. Then S is a homogeneous submanifold. If, in
addition, S is connected, then it is an orbit of an isometric action on M by a connected
Lie group.

Proof. Define
I(M,S) ={f € I(M) | f(5)=5}.

Since S is closed, I(M,S) is a closed (= Lie) subgroup of I(M). By assumption, it has S
as one of its orbits. If S is connected, then the identity component I°(M,S) of I(M,S)
still acts transitively on S. m

In symmetric spaces, homogeneous submanifolds are one of the most natural types of
submanifolds to study, since they retain some of the symmetry of the ambient space
and can be studied by means of Lie theory. We make a useful observation regarding
homogeneous submanifolds that we will be using repeatedly in the sequel.

Proposition 2.2.4. Let M be a symmetric space represented by a Riemannian symmetric
pair (G, K) and H C G a Lie subgroup. Write h = Lie(H) C g and S = H - 0. Then,
under the identification T,M ~p, T,S = pr,(b).

Proof. R
1,8 ={X, | X €b} ={X, | X € b} = pr,(h).

Totally geodesic submanifolds

Totally geodesic submanifolds are one of the most fundamental and well-known classes of
Riemannian submanifolds. A generic Riemannian manifold admits no totally geodesic
submanifolds of dimension greater than one—not even locally (see [MW19]). Things
begin to change when the ambient space acquires a sufficient degree of symmetry. The
extreme case of this is, of course, symmetric spaces, which do indeed admit an abundance
of higher-dimensional totally geodesic submanifolds. At the same time, in a symmetric
space, such a submanifold can be fully reduced to a (deceptively) simple piece of algebraic
data, called a Lie triple system. In low rank, that data is manageable enough to allow a
classification of totally geodesic submanifolds. But let us start from the beginning.

23



2.2. SUBMANIFOLD THEORY IN SYMMETRIC SPACES

Observation 2.2.5. If M is a Riemannian manifold and S C M is a complete connected
totally geodesic submanifold, then for any p € S, we have S = exp(7},S). This observation,
however trivial, will prove highly useful as we go along.

Lemma 2.2.6. Let M be a symmetric space and S C M a complete connected submanifold.
The following are equivalent:

(i) S is totally geodesic.
(ii) For everyp € S, 5,(S) =S.

Proof. (i) = (ii). According to Observation 2.2.5, given any p € S, S = exp(7,5). As
the geodesic symmetry at a point reverses geodesics through that point, s, preserves S.
(ii) = (i). We need to show that the second fundamental form II of S vanishes. Take an
arbitrary p € S and any X,Y € 7,S. We compute:

—I(X,Y) =d(s,)(I(X,Y)) = H(d(sp)(X),d(sp)(Y)) =1U(—-X,-Y)=1I(X,Y),

hence IT = 0. O

Corollary 2.2.7. A complete connected totally geodesic submanifold of a symmetric space
18 a symmetric space in its own right in the induced metric.

Proof. Indeed, for every p € S, s, restricts to a geodesic symmetry of S at p. O

We will now see how all totally geodesic submanifolds of a symmetric space can be
constructed solely in terms of Lie-theoretic data.

Definition 2.2.8. Let M be a Riemannian manifold and p € M any point. A subspace
V C T,M is called curvature-invariant if R(V, V)V C V.

Example 2.2.9. Let S C M be a totally geodesic submanifold. Then for any p € S, T),S
is a curvature-invariant subspace of T,,M. This follows from the Gauss formula. /

Definition 2.2.10. Let (g,0) be an orthogonal symmetric Lie algebra. A subset V' C p
is called a Lie triple system if [V, V], V] C V.

Thanks to the curvature formula (2.1.5) for symmetric spaces, we have the following:

Corollary 2.2.11. Let M be a symmetric space represented by an orthogonal symmetric
Lie algebra (g,0). Under the identification p = T,M, Lie triple systems in p correspond
precisely to curvature-invariant subspaces of T,M .

It is not true for general Riemannian manifolds that every curvature-invariant subspace is
the tangent space of a totally geodesic submanifold (see [BCO16, Th. 10.3.3]). However,
we are about to see that this is the case for symmetric spaces.

Let (g,0) be an orthogonal symmetric Lie algebra. A subalgebra h of g is called 8-stable
if it is preserved by 0, or equivalently if h = (h N €) & (h N p). The importance of B-stable
subalgebras stems from their intimate relationship with totally geodesic submanifolds.
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Proposition 2.2.12. Let M be a symmetric space represented by a Riemannian symmetric
pair (G, K), h C g a 0-stable subalgebra, and H C G the connected Lie subgroup corre-
sponding to h. Then the orbit H - 0 is a complete connected totally geodesic submanifold
of M whose tangent space at o is h N p.

Proof. Being a homogeneous submanifold, S = H - o is complete. According to Propo-
sition 2.2.4, T,S = pr,(h) = h N p, so we need only prove that S is totally geodesic.
It suffices to show its second fundamental form II vanishes at o. Take any nonzero
X € hnp and observe that exp,(tX) is a one-parameter subgroup in H. Therefore, the
curve exps(tX) - o lies in S. But according to (2.1.2), this curve is a geodesic in M. In
particular, I, vanishes on X and thus I, = 0. O

It turns out that essentially every totally geodesic submanifold arises in this way. Indeed,
let (g,0) be an orthogonal symmetric Lie algebra and V' C p a Lie triple system. It follows
from the definition of a Lie triple system that h = [V, V] & V is a Lie subalgebra of g.
Proposition 2.2.12 then implies:

Corollary 2.2.13. Let M be a symmetric space.

(a) Every curvature-invariant subspace V- C T,M is the tangent space of a unique
complete connected totally geodesic submanifold of M, namely of exp(V).

(b) Every connected totally geodesic submanifold of M is an open part of a (unique)
complete connected totally geodesic submanifold.

(c) Every complete connected totally geodesic submanifold of M is a homogeneous
submanifold.

We can summarize the discussion so far with the following commutative diagram:

ToS+ S

[ ) ‘
S complete connected

Lie triple Vs [VV]eV 0-stable b H-o )

. — ——» < t.g. submanifolds of M
systems in p subalgebras of g .

passing through o

t V= expy (V) j\

Remark 2.2.14. Let M be a symmetric space represented by a Riemannian symmetric
pair (G,K). Let V' C p be a Lie triple system and S = exp,,(V) its corresponding
complete totally geodesic submanifold. As we know from Corollary 2.2.7, S is a symmetric
space in its own right. Consider the normalizer N¢(V'). By design, [V, V] C N¢(V) and
Ne(V) @V is a O-stable subalgebra of g. It is not hard to show that (N¢(V) @ V,0) is an
orthogonal symmetric Lie algebra representing S.

Example 2.2.15 (T. g. submanifolds of S"). One can show that every subspace
V of a tangent space to S" is curvature-invariant. If dim(V) = k, the corresponding
complete totally geodesic submanifold is congruent (Definition 2.3.18) to the equatorial
sphere S¥ C S™. An analogous statement is true for RP*, RH", and symmetric spaces of
Fuclidean type. These are the only symmetric spaces exhibiting such a property. By a
result of Iwahori, they can also be characterized as the only symmetric spaces with one
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de Rham factor admitting totally geodesic hypersurfaces (see [Iwa66] or else [BCO16, Th.
11.1.6]), as well as the only symmetric spaces of constant sectional curvature. /

Example 2.2.16 (T. g. submanifolds of compact Lie groups). Let G be a compact
connected Lie group equipped with a bi-invariant metric, and let H C G be a connected
Lie subgroup. Then H is a complete totally geodesic submanifold. Indeed, it is plainly a
homogeneous submanifold, and it is preserved by the geodesic symmetric s.(g) = g~* at
e. This easily implies that H is preserved by the geodesic symmetry at any of its points,
so it is totally geodesic by Lemma 2.2.6. If we write h = Lie(H), then b becomes the Lie
triple system of H C GG under the standard identification p = g, (X, —X) <> X. /

Totally geodesic subspaces behave well with respect to duality. Let M be a simply
connected semisimple symmetric space represented by an orthogonal symmetric Lie
algebra (g,0). Then the dual M* is represented by (g*,0%), g* = € @ ip, and we have an
obvious isomorphism between p and p* = p.

Proposition 2.2.17 (Duality for t. g. submanifolds). Let M be a simply connected
semisimple symmetric space and M* its dual.

(a) Under the isomorphism p = p*, the Lie triple systems in p correspond precisely to
those in ip.

(b) There is a natural 1-to-1 correspondence between the set of complete connected totally
geodesic submanifolds in M passing through o and the set of those in M* passing
through o*, namely exp, (V') <> exp,.(iV).

(c) The correspondence in (b) induces a 1-to-1 correspondence between the set of con-
gruence classes of complete connected totally geodesic submanifolds in M and the
set of those in M*.

The latter statement in Proposition 2.2.17 can be deduced using Proposition 2.1.116.

Definition 2.2.18. If M is a simply connected semisimple symmetric space and S C M
a connected complete totally geodesic submanifold, we denote the corresponding complete
connected totally geodesic submanifold of M* by S* and call it the dual® of S.

One of the big long-standing problems in the theory of symmetric spaces has been
classification of totally geodesic submanifolds. Since each such submanifold is itself a
symmetric space of rank not greater than that of the ambient space by Corollary 2.2.7, a
sort of inductive procedure is possible, so it is reasonable to confine oneself to classifying
maximal proper totally geodesic submanifolds first. Moreover, by duality, it suffices
to restrict to either compact ot noncompact type. Still, finding all maximal Lie triple
systems for a given symmetric space is a very complicated algebraic problem, so totally
geodesic submanifolds have only been classified in symmetric space that are relatively
simple in one way or another: in rank one due to Wolf ([Wol63]); in the irreducible spaces
of rank two due to Chen, Nagano, and Klein ([CN77, CN78|, [Klel0], as well as the
previous 3 articles of Klein mentioned in the latter); in products or rank-one spaces due
to Rodriguez-Vézquez ([RV22]); there is a classification of maximal nonsemisimple totally
geodesic submanifolds due to Berndt and Olmos ([BO16]); finally, there is a classification

Tt might happen that S, being a symmetric space, is itself simply connected semisimple, in which case
there is possible ambiguity between its dual as of a totally geodesic submanifold and as of a symmetric
space. The difference is insignificant though, as the latter is always going to be the universal Riemannian
covering space of the former. In such a situation, we will always mean the former, unless otherwise stated.
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of maximal totally geodesic submanifolds in exceptional symmetric spaces due to Kollross
and Rodriguez-Véazquez ([KRV23]). See also the discussion on the index of a symmetric
space at the beginning of Subsection 6.2.2.

We are not going to delve into the details and methods of the above papers but will prove
one important result pertaining to maximal totally geodesic submanifolds. First of all, it
is not hard to show that the following are equivalent for a symmetric space M:

(i) The Euclidean part of M is simply connected.
(ii) The Euclidean part of M is isometric to a Euclidean space.
(iii) The fundamental group of M is finite.

Recall that even in a symmetric space, a totally geodesic submanifold does not have to be
embedded; for instance, in any symmetric space of compact type and rank greater than 1,
one could take a dense geodesic in a maximal flat (see Definition 2.2.20). With the above
equivalent conditions in mind, we can prove the following

Proposition 2.2.19. Let M be a symmetric space whose Fuclidean part is simply con-
nected. Then every maximal connected proper totally geodesic submanifold of M s
automatically properly embedded.

Proof. Let M be represented by an effective Riemannian symmetric pair (G, K). Let
S C M be a maximal (= complete) connected proper totally geodesic submanifold and
V =T,S C p the corresponding Lie triple system. As we noticed in Remark 2.2.14, S is
represented by (b, 0), where h = N¢(V)) & V. We claim that b is self-normalizing. Indeed,
if X € Ny(h) and Y € b, then

[0X,Y] = 0[X,0Y] € 8([X,b]) C 6(h) = b,

so Ny(h) is itself O-stable. The intersection of Ny(h) with p is a Lie triple system containing
V', so by maximality it must be either V' or the whole p. First, consider the former case.
The intersection of Ny(h) with € then has to be N¢(V') and thus N4(h) = h. Let H be
the connected Lie subgroup of GG corresponding to h. This is a closed subgroup because
H = NZ(h), and its orbit through o is S by Proposition 2.2.12. As we will discuss in
Remark 2.3.3, closed subgroups of G' have properly embedded orbits. Let now Ny(h) N¢€
be p. In this case, for any one-dimensional subspace ¢ C p not lying in V', the sum
V @ 0 is a larger Lie triple system, which implies that V' must be a hyperplane in p.
But then S is a totally geodesic hypersurface in M. If we write g=go B g1 B --- P gk
as in Proposition 2.1.105, then, by maximality, we must have V =V, & @#i p; with
V; C p; for some 0 < ¢ < k. We can thus assume M is irreducible or flat. As we
mentioned in Example 2.2.15—and with our assumption on M in mind—AM must be
isometric to S",RP™",RH", or E". But then S has to be a great hypersphere or a
projective/hyperbolic/affine hyperplane, respectively; in each of these cases, S is clearly
properly embedded. O

Flats

Flats are a special type of totally geodesic submanifolds in symmetric spaces that are
intimately related to the notion of rank.
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Definition 2.2.20. Let M be a symmetric space. A flat in M is a complete connected
flat totally geodesic submanifold. A maximal flat is a flat that is not contained in any
larger flat.

Lemma 2.2.21. Let M be a symmetric space represented by an orthogonal symmetric Lie
algebra (g,0). A complete connected totally geodesic submanifold S C M passing through
o s flat if and only if its corresponding Lie triple system V = T,S is an abelian subspace

of p.

Proof. If p is abelian, the curvature of S is zero due to (2.1.5). Conversely, if S is
flat, then it is a symmetric space of Euclidean type as follows from Corollary 2.2.7 and
Proposition 2.1.89. But as we saw in Remark 2.2.14, S is represented by the orthogonal
symmetric Lie algebra (Ny(V) @ V,0). Now, thanks to Proposition 2.1.80, (N¢(V) &V, 0)
is also of Euclidean type, which means that V' is abelian. O

We can thus draw a flat version of diagram on page 55:

abelian Vi expy (V) flats in M
subspaces in p TS S passing through o

Suppose M is represented by a Riemannian symmetric pair (G, K). If V' is an abelian
subspace of p, it is a subalgebra and its corresponding connected abelian Lie subgroup of
G is H = exps(V). As we know from Proposition 2.2.12; the corresponding flat is the
orbit H - o.

Let us turn attention to maximal flats now. Can two maximal flats have different
dimensions? The following proposition rules out this possibility:

Proposition 2.2.22. Let M be a symmetric space represented by a Riemannian symmetric

pair (G, K).

(a) G acts transitively on the set of pointed mazimal flats in M, i.e., for any two
mazximal flats S, 8" C M and any p € S,p’ € S, there exists g € G mapping S onto
S" and p to p'.

(b) K° acts transitively on the set of maximal abelian subspaces in .
(c) Every tangent vector to M is tangent to some mazimal flat.

(d) Every mazimal flat in M is properly embedded.

Proof. To begin with, (a) immediately follows from (b) and the fact that G acts transitively
on M. Also, (c) is trivial because every vector in p lies in some maximal abelian subspace
of p. So we only need to prove (b) and (d). For (d), let S C M be a maximal flat. We
may assume it passes through o; let a C p correspond to 7,5 C T,M, and let A be the
connected Lie subgroup of G with Lie algebra a. This subgroup is abelian and ©@-stable,
and the restriction of © to it is just the inverse map. The same must then be true for the
closure A. In other words, the Lie algebra @ of A is abelian and contained in p. Since it
also contains a, we must have a = @, which implies that A is closed. Being an orbit of A,
S has to be properly embedded by Remark 2.3.3.
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We now proceed to prove (b), which is essentially a problem in Lie theory. It is proven
in [HelO1, Lem.V.6.3] in case M is of compact or noncompact type, so we only show
how to reduce the general case to that. First of all, quotienting by I, we may assume
(G, K) is effective. Let g = go @ gc @ gne be the decomposition of g into its Euclidean
and compact/ noncompact parts as in Prop081t10n 2.1.84. Let G be the universal covering
Lie group of G and O the lift of 0 to G. Take K = (Ge) Then we need to prove that
K acts transitively on the set of maximal abelian subspaces of p, as this action factors
through the actlon of K° But G splits as GO X G X Gnc, and we have © = (@0, @C, @nc)
hence K = KO X K X Knc At the same time, every maximal abelian subspace a of
P = Po DB Pe B Py is trivially of the form py & a. & a,e, where a. is maximal abelian in p.
and a, is such in p,.. It then suffices to show that [A(C (resp., fA(nJ acts transitively on
the set of maximal abelian subspaces of p. (resp., p,.). But (@c, I?c) and (@nc, [/(\’nc) are
of compact and noncompact type, respectively, so we are done. O

Remark 2.2.23. In the setting of the proof of Proposition 2.2.22 we can go further and
decompose (g, 0) into its irreducible parts as in Proposition 2.1.105: g = go @ g1 D - - D g
Then every maximal abelian subspace a of p = py & p; & - - - @ pr, must be of the form
Poda; @ --- P ag, where a; is maximal abelian in p;.

Corollary 2.2.24. All the maximal flats in a symmetric space M have the same dimension.
If M is represented by an orthogonal symmetric Lie algebra (g,0), then tk(M) coincides
with the dimension of any maximal abelian subspace of p.

Example 2.2.25 (Flats in compact Lie groups). Let G be a compact connected Lie
group equipped with a bi-invariant metric. It follows from (2.1.5) that G is flat if and
only if it is abelian. In particular, a connected Lie subgroup H C G is a flat if and only if
it is abelian. It turns out that every flat in G passing through o arises in this way. Indeed,
let h C g be any subspace. Let us write V' C p for the subspace corresponding to h under
g = p. Then V is abelian if and only if

[Vv V] = span{([X, Y]7 [X7 Y]) ‘ X,Y e h} = {O}a

which happens precisely when b is an abelian subalgebra of g. In this case, the flat
corresponding to V is the connected abelian Lie subgroup corresponding to g. As a
consequence, maximal flats in G passing through e are nothing but maximal tori. In
particular, the rank of G as a symmetric space coincides with its rank as a Lie group. /

Reflective submanifolds

Reflective submanifolds are another special subclass of totally geodesic submanifolds
that, as the name implies, are related to reflections. They were studied in depth by
Leung, who obtained the classification of reflective submanifolds in simply connected
irreducible symmetric spaces of compact type ([Leu75, Leu79a]). By duality, that result
also yields their classification in irreducible symmetric spaces of noncompact type (see
Remark 2.2.38).

Definition 2.2.26. Let M be a Riemannian manifold. A connected submanifold S C M
is called reflective if there exists an involutive isometry o of M such that S is a connected
component of the fixed point set M°.
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Example 2.2.27. Let M be a symmetric space and o € M any point. Then s, is an
involutive isometry. The connected components of M?® other than o are called polars
of M. In the compact type case, they carry deep information about the geometry and
topology of M (see, e.g., [Nag88| and the following papers in that series). /

Proposition 2.2.28. Let M be a Riemannian manifold and S C M a reflective submani-
fold.

(a) S is properly embedded.
(b) S is totally geodesic.

(¢) The involution o in Definition 2.2.26 is unique, provided M is connected.

Proof. Let us prove that every connected component of M? is a properly embedded
submanifold. Indeed, given p € M°, T,M =V, & V_, where V. is a £-eigenspace of do,.
Hence, in a normal neighborhood of p, M? is given by exp(Vy N B,(0)), where B,(0) is a
small enough ball in 7, M. This proves that the connected component of M° containing p
is embedded and totally geodesic. It is properly embedded because M?° is closed. Note
that the other connected components may have different dimensions. We are left to show
(¢). Given p € S, do, must be! E on 7,,S and —F on? N,,S, so do, is uniquely determined.
Now everything follows from Proposition 2.1.1(c). ]

Proposition 2.2.28 suggests that there should be an intrinsic way to describe the involution
o in terms of S. For simplicity, we do it under the assumption that M is complete. We
first define the notion of reflection in a submanifold.

Lemma 2.2.29. Let M be a complete connected Riemannian manifold and S C M a
properly embedded submanifold. Then for every p € M, there exists a closest point ¢ € S
to p, i.e., dist(p, q) = dist(p, S). Moreover, any minimizing geodesic segment from p to q
intersects S orthogonally at q.

Definition 2.2.30. Let M be a complete Riemannian manifold and S C M a properly
embedded connected submanifold. Take any p € M and let ¢ be a closest point to ¢ in
S (see Lemma 2.2.29). Take a geodesic y with initial point ¢ such that y(7') = p for
some T' > 0 and Y‘[O,T] is minimizing. Consider the point y(—T7) € M. If yv(—=T) does
not depend on the choice of a closest point ¢, then we say that p is reflectable in S and
denote y(—=T') by rs(p). If every point of M is reflectable in S, we call rg: M — M the
geodesic reflection of M in S and say that rg is well-defined.

The following essentially sums up what we have discussed so far:

Corollary 2.2.31. Let M be a complete Riemannian manifold and S C M a connected
properly embedded submanifold. The following are equivalent:

(i) S is reflective.

(ii) The geodesic reflection of M in S is well defined and is an isometry.

!Throughout the thesis, we often denote the identity operator on a vector space and the identity
element of a linear Lie group by E.

2Here and elsewhere in the thesis, if S is a submanifold, N'S stands for its normal bundle and N,S
for the normal space at p € S.
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If the above conditions are satisfied, then o in Definition 2.2.26 coincides with rg. In
particular, S is a connected component of M"S. Also, S is complete.

Before we move to the case when the ambient space is symmetric, we mention one more
important property of reflective submanifolds in general.

Definition 2.2.32. Let M be a Riemannian manifold and p € M any point. A subspace
V C T,M is called strongly curvature-invariant if both V and V* are curvature-
invariant. A submanifold S C M is called (strongly) curvature-invariant if 7,5 is
(strongly) curvature-invariant for every p € S.

Example 2.2.33. As we saw in Example 2.2.9, totally geodesic submanifolds are curvature-
invariant. The converse, however, does not always hold (see [Nai00]). /

Proposition 2.2.34. Let S be a reflective submanifold in a Riemannian manifold M.
Then S is strongly curvature-invariant.

Proof. Thanks to Proposition 2.2.28 and Example 2.2.33, we need only show that the
normal spaces to S are curvature-invariant. Let X,Y, Z € N,5. We compute:

do,(R(X,Y)Z) = R(do,(X),do,(Y))do,(Z) = R(—X,-Y)(—-Z) = —R(X,Y)Z,
hence R(X,Y)Z € N,S. O

In symmetric spaces, reflective submanifolds enjoy a special extra property: they always
come in pairs. Let M be a symmetric space and S C M a reflective submanifold. Take any
p € S. As we showed in Proposition 2.2.34, N,,S is curvature-invariant. Hence, according
to Corollary 2.2.13, Szf = exp(N,,S) is a complete connected totally geodesic submanifold
of M.

Proposition 2.2.35. The submanifold Spl 1s reflective.

Proof. Consider the composition 0 = s, o rg. This is an isometry of M such that' do,, is
E on N,S and —FE on T,S. Since do, is involutive, so is o itself (by Proposition 2.1.1(c)).
Using an argument similar to the one we used in the proof of Proposition 2.2.28, it is easy
to see that Spl is one of the connected components of M°. m

Observation 2.2.36. Let S C M be reflective and p,q € S any two points. Thanks to
Corollary 2.2.7, S is itself a symmetric spaces, hence it is a homogeneous submanifold.
Take f € I(M,S) that maps p to . We then have f(S,) = S;-. So the congruence class
of SpL in M does not depend on p. We will refer to it as the orthogonal complement of
S and denote it simply by S+ if there is no ambiguity.

We finish our discussion of reflective submanifolds with one more important result. Observe
that curvature-invariant subspaces can be regarded as the infinitesimal version of totally
geodesic submanifolds, and, in a similar spirit, strongly curvature-invariant subspaces can
be regarded as the infinitesimal version of reflective submanifolds. Now, in a symmetric

LA submanifold S such that for every p € S there exists an isometry of M that preserves S and whose
differential at p satisfies these two properties is called symmetric. Symmetric submanifolds are symmetric
spaces in their own right. In symmetric spaces, reflective submanifolds are symmetric, although in general
this is not true. A complete connected totally geodesic submanifold of a symmetric space is symmetric if
and only if it is reflective.
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space, as we know from Corollary 2.2.13, every curvature-invariant subspace comes from
a totally geodesic submanifold. Is the analogous statement true for strongly curvature-
invariant subspaces? It turns out, the answer is affirmative!, at least in the simply
connected case.

Proposition 2.2.37. Let M be a simply connected symmetric space, o € M, andV C T,M
a strongly curvature-invariant subspace. Then there exists a (unique) reflective submanifold
S C M passing through o such that T,S =V, namely S = exp(V').

Proof. Let M be represented by an orthogonal symmetric Lie algebra (g, 0). We need to
show that there exists f € I(M) that fixes o such that df, is £ on V and —E on V. When
thought of as subspaces of p, both V and V= are Lie triple systems by assumption. Let
T € GL(p) be an operator that is £ on V and —F on V+. Thanks to Proposition 2.1.68,
it suffices to show that T preserves the inner product and curvature tensor at o. The
former is obvious. For the latter, take X,Y,Z € p. By (2.1.5), we need to show that

T[X,Y),Z] = [TX,TY], TZ). (2.2.1)

By linearity, we may assume each of X, Y, Z lies either in V or V+. If X, Y, Z all lie in V,
so does [[X, Y], Z], so both sides of (2.2.1) equal [[X,Y], Z]. Similarly, if X,Y,Z € V1,
both sides of (2.2.1) equal —[[X, Y], Z]. Let us consider the less trivial case when X,Y € V
but Z € V. Then [[TX,TY],TZ] = —[[X,Y], Z], so we need to show that [[X,Y], Z]
lies in V+—i.e., that ad[X,Y] preserves Vt—for (2.2.1) to hold. The inner product
on p is E-invariant, which means that the adjoint representation of £ on p is by skew-
symmetric operators. One such operator is ad[X,Y], as [X,Y] € €. Since ad[X,Y]
preserves V, it must also preserve V1. Now assume X, Z € V,Y € V1. Then we need
to have [[X,Y], Z] € V! for (2.2.1) to hold. In other words, for every W € V, we want
([[X,Y],Z]|W) = 0. But

([X,Y],Z]|W) = —Rm(X,Y,Z,W) = —Rm(Z, W, X,Y) = {[[Z, W], X]| V),

which is zero because [[Z, W], X] € V. The other cases can be proven in a similar way
using the symmetries of the curvature tensor. O]

Remark 2.2.38. Since reflective submanifolds are totally geodesic, they can be dualized
(see Proposition 2.2.17). Let M be a simply connected semisimple symmetric space and
M* its dual. Let S C M be a complete connected totally geodesic submanifold and
S* C M* its dual in M*. Then, thanks to Proposition 2.2.34, Proposition 2.2.17(a), and
Proposition 2.2.37, S is reflective if and only if S* is.

Austere submanifolds

The last class in our list is that of austere submanifolds, which, in a sense, occupy the
middle ground between totally geodesic and minimal submanifolds. They are the only
submanifolds in the list that are not automatically homogeneous.

Definition 2.2.39. A submanifold S of a Riemannian manifold M is called austere
if for every p € S and & € N,S, the spectrum of the shape operator A;—when taken

LA proof of this statement can be found in [Leu73], but we believe it is incomplete, as the author
seems to omit the case when the submanifold lies diagonally within the de Rham decomposition.
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with multiplicities—is invariant under multiplication by —1. In other words, if A is an
eigenvalue of Ag of multiplicity m, then so is —A.

Observation 2.2.40 (Austerity vs minimality). Another way to express the definition
of austerity is that A; and —Ag have the same spectrum when counted with multiplicities.
If S is austere, its shape operators are clearly trace-free. If H stands for the mean
curvature vector field of S, then (H,|&) = tr(Ag) = 0, so austere submanifolds are
minimal. For surfaces in M, the notions of austerity and minimality coincide. But for
higher-dimensional submanifolds, austerity is a stronger notion in general.

Note that if S is austere and odd-dimensional, its shape operators must have nontrivial
kernels. We are not going to study austere submanifolds in detail but will discuss two
related results that will be relevant in the sequel. The first one concerns cohomogeneity-one
actions, which will be discussed in more detail in Section 2.3 (see Definition 2.3.6 and
Subsection 2.3.3).

Proposition 2.2.41. Let M be a Riemannian manifold and H ~ M a proper isometric
action of cohomogeneity 1 by some Lie group H. Then the singular orbits of H are austere.

Proof. Let S be a singular orbit of H. Take any p € S and & € N,S. The action of H,
on N,S is of cohomogeneity 1 by Proposition 2.3.14, so there exists h € H), such that
dh,(&) = —&. Since h is an isometry that preserves S and p, we have, on 7,,S:

dhp O Ag = Adhp(i) @) dhp = A—E, (o] dhp

This implies that Az and A_; have the same spectrum when counted with multiplicities.
But A_ = —A;, so S is austere. ]

The second result pertains to austere submanifolds in the complex setting.

Proposition 2.2.42. Let M be a Kahler manifold and S C M a complex submanifold.
Then S is austere.

Proof. Since the almost complex structure I is parallel, the Levi-Civita connection on
M, thought of as a map V: X(M) x X(M) — X(M), is C-linear in the second argument.
Therefore, if S C M is a complex submanifold, its second fundamental form II(X,Y") =
(V X}N/)l is also C-linear in the second argument. Since II is symmetric, it is C-bilinear.
But then the shape operators are C-antilinear. Indeed, given & € N,S and X,Y € 7,5,
we have

(A (IX)|Y) = (II(IX,Y)]E)
= (II(X,IY)|&) (I is C-bilinear)
= (A (X) 1Y)
= (—1A:(X)|Y), (I is skew-symmetric)

so Agol = —Io A on T,S. Consequently, if X is an eigenvector of A; with eigenvalue A,
then 7X is an eigenvector with eigenvalue —A. This implies that S is austere. O
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2.2.2. The second fundamental form of a homogeneous subman-
ifold

Here we derive a relatively simple Lie algebraic formula for the second fundamental
form and shape operators of an arbitrary (extrinsically) homogeneous submanifold of a
symmetric space.

Let M be a Riemannian symmetric space represented by a Riemannian symmetric pair
(G,K). Let S C M is a homogeneous submanifold (we may assume o € S). Let H C G
be a Lie subgroup having S as one of its orbits. We write h C g for the Lie algebra of H.

Proposition 2.2.43. The second fundamental form of S at o is given by
I(X,Y) = pry,s([X{. Y]), (2.2.2)

where X,Y € T,S and X" € b is any vector whose p-part is X (and Xf 15 its €-part as
usual). For any Z € N,S, we have

(AzX|Y) = (I(X,Y)|Z) = ([X},Y]| Z), (2.2.3)
where Az is the shape operator of S at o corresponding to Z.

Implicit in this proposition is the fact that the right hand sides of (2.2.2) and (2.2.3) do
not depend on the choice of X ”N—which can also be easily verified directly: given another
lift XY € b, X,? — X;’ = X" - X"ecphnt, so [X;’ — XE,Y} € T,S. There are various ways
to prove this proposition, some of them shorter than the proof we are giving here (see, e.g.,
Remark 2.2.45). We have opted for this proof to highlight that this is a rather elementary
result that requires only basic techniques and computations.

Proof. Equations (2.2.2) and (2.2.3) are clearly equivalent, so it suffices to prove the latter.
The first equality in (2.2.3) is essentially the definition of Az, hence we need only prove
the second one. The idea is to extend X,Y and Z to vector fields in a clever way and
then use the Koszul formula. The extensions of X and Z can be arbitrary, so we just take
them to be the corresponding Killing vector fields X and Z. We could have taken the
extension of Y to be the Killing vector field Y, but it is not in general tangent to S over
S (unless S is totally geodesic). Instead, pick Y'Y in b whose p-component is Y and write
Y, for its t-component as usual. Observe that (Y"), = d(7,).(Y?) =Y, and Y is the
infinitesimal generator of the flow W;(p) = exps(tY") - p, so it is everywhere tangent to
the orbits of H and in particular to .S. We have:

(I(X,Y)|Z) = ((V¥Y")*|Z) = (VYY" | 2)

=2 (x("12) +¥(21%) -

b5 (~(XI, 21+ (V12 fm HZIX9,)).

\_/

where in the last equality we apply the Koszul formula. Let us denote the contents of the
parentheses above by (%) and (xx), respectively.

We first deal with (#x) since it is much easier. Recall that sending an element of g to its
corresponding Killing vector field on M is an antihomomorphism of Lie algebras, so we
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have

—

() = (X| Y1, Z],) — (YV|[Z,X],) — (Z|[X, Y7],).

Since the value of a Killing vector field at o is just the projection of the corresponding

—

element of g to p, we see that [Z, X] = 0 and

(**) = <X|prp[yh,Z}> - <Z|p1"p[X, Yh})
= (X[, 2]) = (Z|[X,Y{"])
= (XYY, 2)) + (¥, X]| Z) =0,

where for the last equality we use the fact that the adjoint representation of £ on p is
orthogonal. Now we proceed to computing (). We will need the following technical

Lemma 2.2.44. Let U, V,W € g. Then one has
Up(VIW) = =([Up, W] | Wp) — (V| [Uy, Wi]).

Proof of the lemma. We begin by computing the function <f/| W} At a point g -0 €
M, g € G, we have:

(VIW)(g-0) = (d(1ty.0)V | d(7t5.0).W )
= (d(g7)g0 0 d(7g0)e (V) |d(g™") g0 © d(Tg0)e(W)),

where 7,.,: G — M is the orbit map at g - 0. The second equality follows from the fact
that ¢g~! is an isometry. Observe that

(g7 )go 0 d(Tg0)e = d(g7" © Ty0)e = d(T, 0 Cyr)e = d(m,)e 0 Ad(g7"),
where C,-1 is the conjugation of G by g~'. We deduce:
(VIW)(g-0) = (pry(Ad(g~")(V)) [ pr,(Ad(g~")(W))).
Define a smooth function fy on G by the same formula:
fvw(g) = (pry(Ad(g) (V) [pr,(Ad(g~)(W))).
Plainly, fyw is the lift of the function (V|W) to G along 7t,: G — M. For this reason,

NN d
U (VIW)=Ufyw = 7 fvw (expe(tU)).

t=o0

Now,

fvw (expg(tU)) = (pr,(Ad(expg(—tU))(V))|pr,(Ad(exps(—tU))(W)))
= (pr, (e OV |pr, (e W)

But pr, (e~ #V) = pr, (V — t[U, V] + O(t?)) =V, — t([Us, V;] + [U,, Vi]) + O(#?), and
the same is true for W. It follows that

fvw (expg(tU)) = (Vo | Wy)
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— t((Val [Ue, W] + [Uyp, Wa]) + ([Ue, Vi + [Uy, ]I W3)) + O(£7),
and, differentiating at ¢ = 0, we obtain:

UV W) = 5| frav(expgltt)
= (V| [Ues Whl) = (Vo D0 W) = {0 il [ Wo) = (U VA W)
= = {[U VI Wp) = (Val D0 W) = ([0 41 [ Wi ) + (51 U 3)))

= —([Up, V]| W) = (V| [Uy, WA)),

which was to be proved. O

Now we can apply Lemma 2.2.44 to compute (x):

hence

Putting it all together, we arrive at:
1
(I(X,Y)|Z) = 5((x) + (3)) = (v, X]|2).

Since the second fundamental form is symmetric, this coincides with the desired expression
([X{, Y]] Z). O

Remark 2.2.45. There is an alternative, shorter way to prove Lemma 2.2.44. Recall
from (2.1.1) (see also [Zil10, Prop. 6.34(a)]) that, given X € p and Y € X(M), one has
(V4Y), = [X,Y],. Going back to the setting of Lemma 2.2.44, using this formula, we
compute:

[ﬁP’V]O‘Wo> + <‘A/;)‘ [[7137W]0>
—([Up, VIp [ Wy) = (Vo[ [Up, W)
—([Up, Vil |Wy) = (Vo[ [Uy, WA]).

(
= (Vg VIW)o +{(V|Vg W),
< .

Remark 2.2.46. If S is given as an orbit of some isometric Lie group action H ~ M

and H does not lie in G a priori, we can always assume H is connected and replace it
with its image in IY(M). We can then take G = I°(M) and K = G,
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2.3. Polar and cohomogeneity-one actions

In this section, we discuss some aspects of the theory of isometric actions on general
Riemannian manifolds as well as on symmetric spaces. After some brief recap, we focus
on our main object of interest: polar and cohomogeneity-one actions. Our main references
for this section are [Mic08, Ch.VI] and [BCO16, Sect. 2.1-2.3].

2.3.1. Proper actions

We will be working almost exclusively with proper actions—as they are generally better
behaved. Before we begin, let us mention the most basic property of such actions (see
[Leel3, Prop. 21.7, 21.8]):

Proposition 2.3.1. If H is a Lie group acting properly on a smooth manifold M, then
all its orbits are properly embedded submanifolds of M, all its stabilizers are compact
subgroups, and the orbit space M /H is Hausdorff*.

Example 2.3.2 (Linear actions). A linear action of a Lie group on a vector space is
the same as a representation on that vector space. Such an action is proper if and only if
the group is compact. /

Remark 2.3.3. Virtually all the properties of proper actions discussed below (incl.
Propositions 2.3.5 and 2.3.14) are satisfied by a larger class of actions H ~ M, namely
such that H/I ~ M is proper, where I is the ineffectiveness kernel. For example, if (G, K)
is a Riemannian symmetric pair, the action G ~ M = G /K does not have to be proper:
consider, for instance, the real hyperbolic plane RH? = SL(2,R)/SO(2) represented
as SL(2,R)/K, where SL(2,R) is the universal covering group of SL(2,R) and K is a
subgroup of it isomorphic to R. In fact, the action G ~ M proper if and only if K is
compact. However, this action factors through G/I, whose action on M is proper by
Observation 2.1.33 and Proposition 2.1.1(d). Moreover, the action of any closed subgroup
H C G on M becomes proper when factored through H/(H N I). In particular, such H
has all its orbits properly embedded.

Let H be a Lie group acting properly on a smooth manifold M. Given an orbit S of
H, the set {H, | p € S} forms precisely one conjugacy class of subgroups of H, called
the isotropy type of S. At the same time, the set of conjugacy classes of subgroups
of H is partially ordered by reverse inclusion: [Kj] < [K3| <& 3K, € [K;] such that
K} C K;. This induces a preorder on the orbit space M/H: H-p < H-q < H, is
conjugate to a subgroup of H,. In particular, this gives rise to an equivalence relation
on M/H: H-p~H-q& H-p<H-qand H-q< H-p< H, is conjugate to H,. We
denote the equivalence class of H - p by [H - p] and call it its (orbit) type. Let O stand
for the set of all orbit types of the action. The preorder < induces a partial order on O:
[H -p] < [H - q] & H, is conjugate to a subgroup of H,,.

Definition 2.3.4. An orbit H - p is called principal if it is locally a maximal element of
M/H: there exists a neighborhood U of p such that H, is conjugate to a subgroup of H,
for any ¢ € U. A point p € M is called principal if its orbit is principal. If M is a vector
space and the action is linear, we also say “principal vector”. The sets of principal orbits
and principal points are denoted by (M/H ), € M/H and M,e; C M, respectively.

1One can even show that M/H is completely regular in this case (see [Mic08, Cor. 6.29]).
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Proposition 2.3.5. Let H be a Lie group acting properly on a smooth manifold M. Then:

(a) Every p € M has a neighborhood U such that [H - p] < [H - q| for every g € U. In
other words, the orbit type is locally non-decreasing.

(b) (M/H)ieq (resp., Mieg) is an open dense subset of M/H (resp., M ). In particular,
principal orbits exist. The orbit type is locally constant on (M/H )yeg.

(c) Suppose the orbit space M/H is connected (e.g., M is connected). Then (M/H ) eq
and M,eg are connected. Consequently, all principal orbits have the same type and
thus the same dimension. The principal orbit type is the mazimal element of O.

(d) If M is compact, then O is finite.
Thanks to part (c¢) of this proposition, we can introduce the following

Definition 2.3.6. Let H be a Lie group acting properly on a smooth manifold M in
such a way that M/H is connected. The cohomogeneity of H ~ M is the codimension
of a principal orbit. An orbit is called singular if its dimension is less than that of a
principal orbit. An orbit is called exceptional if it is neither singular nor principal. A
point (or vector—if M is a vector space and the action is linear) p € M is called singular
or exceptional if so is its orbit.

It is customary to refer to actions of cohomogeneity one simply as Cl-actions. We will
also use this shorthand when we work with cohomogeneity-two actions and refer to them
as C2-actions. Similarly, we will refer to foliations of codimension one or two as C1- or
C2-foliations.

Example 2.3.7 (Actions of cohomogeneity 0). An action H ~ M is of cohomogeneity
0 if and only if it has an open orbit. If it is proper and M/H is connected, then it has to
be transitive. In general, however, this does not have to be the case. For example, the
standard representation of GL(n,R) on A*(R™)* is of cohomogeneity 0 but of course not
transitive. /

The nonsingular points are precisely those whose stabilizers have the lowest dimension
possible. Among them, the principal points are those whose stabilizers have the lowest
number of connected components possible. Note that parts (a) and (b) of Proposition 2.3.5
imply that the sets of singular and exceptional orbits (or points) are both closed and
nowhere dense.

Agreement. Whenever we talk about principal, singular, or exceptional orbits or coho-
mogeneity, the action in question is tacitly assumed to be proper with connected orbit
space.

We will be working with proper actions in the context of Riemannian geometry, i.e., with
proper isometric actions on Riemannian manifolds. It is worth pointing out that this does
not lead to any loss of generality:

Proposition 2.3.8. Suppose we have a proper action of a Lie group H on a smooth
manifold M. Then M admits a H-invariant Riemannian metric.

Remark 2.3.9. For isometric actions, the assumption of being proper is essentially
equivalent to an assumption that the orbits are properly embedded. Indeed, given an
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action H ~ M with such orbits, the closure of the image of H in I(M) acts properly and
has the same orbits ([DROS8, Th.5]).

Example 2.3.10 (Orthogonal representations). A special case of an isometric action
is an orthogonal representation of a Lie group on a Euclidean space. /

Remark 2.3.11. An orbit of an isometric Lie group action on a Riemannian manifold is
by definition the same as a homogeneous submanifold (see Definition 2.2.1). What is more,
an orbit of a proper isometric action is the same as a properly embedded homogeneous
submanifold (see the proof of Lemma 2.2.3 and Proposition 2.1.1(d)).

One immediate property of proper isometric actions is that their orbits are equidistant.
Indeed, let H ~ M be such on action with M complete and connected, and let S,S" C M
be two orbits. Given any p,q € S, we claim that dist(p, S") = dist(q, S’). Indeed, let p’ be
a closest point to p on S’. Using the action, one can show that p is a closest point to p’
on S. Let v be a minimizing geodesic segment between p and p’. We have

L(y) = dist(p, p') = dist(p, ") = dist(p', S).

By Lemma 2.2.29, vy intersects both S and S’ orthogonally. Now, if ¢ € H maps p to g,
then ¢’ = g(p') is a closest point to ¢ on S’ and g oy is a minimizing geodesic segment
between ¢ and ¢’, hence

dist(q, ") = dist(q,q') = L(g oy) = L(y) = dist(p, 5').

One of the very important tools in the theory of proper isometric actions is the special
version of the tubular neighborhood theorem adapted to homogeneous submanifolds:

Proposition 2.3.12. Let S be a properly embedded homogeneous submanifold of a Rieman-
nian manifold M. Then there exists € > 0 small enough such that the normal exponential
map of S is defined on N°S ={v € NS | |[v|| < €} and is a diffeomorphism from N¢S
onto a neighborhood U*(S).

Whenever S C M is as in Proposition 2.3.12 and we write NS or U¢(S), we always
assume ¢ is small enough to satisfy the assertion of the proposition. Assume S is an orbit
of a proper isometric action H ~ M. Given p € S, the submanifold S; = exp(NV;5),
where NS = N¢S N N,S, is a so-called slice of the action H ~ M at p. It is preserved
by H,, and the action H, ~ S, in a sense, encapsulates all information about the action
of H in an invariant neighborhood (U¢(S)) of S. We are not going to discuss slices and
define them in general and refer to [Mic08, Th. 6.26] instead. We will, however, define
their linear version.

Let H ~ M be a proper isometric action. Given p € M, note that H, acts linearly
and orthogonally on T,M by g — dg, (this is often called the isotropy representation of
H ~ M at p). The tangent space T,(H - p) to the orbit H - p is a subrepresentation of
T,M and thus so is the normal space N,(H - p).

Definition 2.3.13. The representation of H, on N,(H - p) is called the slice represen-
tation of the action H ~ M (or simply of H) at p.

The slice representation encodes the action of H in a neighborhood of the orbit and helps
to detect orbit type.
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Proposition 2.3.14. Suppose we have a proper isometric action H ~ M and let p € M.
(a) The map exp: N;S = S} is Hp-equivariant.

(b) The cohomogeneity of the slice representation at p coincides with the cohomogeneity
of H ~ M.

(c) The orbit H - p is principal if and only if the slice representation at p is trivial.
We need to discuss the special case of isometric actions when there are no singular orbits.

Definition 2.3.15. A foliation F on a Riemannian manifold M is said to be homoge-
neous if there exists an isometric Lie group action H ~ M whose orbits are precisely
the leaves of F. If H is specified, F is also called the orbit foliation' of H. The

codimension of a foliation F is the codimension of its leaves.

Note that H in Definition 2.3.15 can be taken connected. If the leaves of F are properly
embedded, we can also assume the action of H is proper (using the same ideas as in the
proof of Lemma 2.2.3). In this thesis, we will occasionally use the following shorthand: a
foliation is called proper if all of its leaves are properly embedded.

Observation 2.3.16. Let H be a connected Lie group acting isometrically on a Rieman-
nian manifold M. Then the orbits of H form a homogeneous foliation if and only if there
are no singular orbits.

The following result will prove useful in Chapter 4 when we study homogeneous foliations
on symmetric spaces of noncompact type (see [BDRT10, Prop. 2.1] for a proof):

Proposition 2.3.17. Let M be a Hadamard manifold and H a connected Lie group
acting properly, isometrically, and without singular orbits on M. Then every orbit of H is
principal (i.e., there are no exceptional orbit).

We now introduce a suitable notion of equivalence for all the homogeneous objects we
have seen so far.

Definition 2.3.18. Two isometric actions H; ~ M; and Hy ~ M, are called orbit-
equivalent if there exists an isometry f: M; = M, such that f(H; - p) = Hy - f(p) for
every p € My. If Hy ~ M, and Hy ~ M, are orthogonal representations, we additionally
require f to be linear. Two submanifolds S; and Sy (resp., foliations F; and F3) of
Riemannian manifolds M; and My, respectively, are called (isometrically) congruent
if there exists an isometry f: M; = M such that f(S;) = Sy (resp., f(5) is a leaf of
F; for every leaf S of F;). Two isometric actions on (resp., submanifolds or foliations
of) a Riemannian manifold M are called strongly orbit-equivalent (resp., strongly
(isometrically) congruent) if f as above can be chosen in I°(M).

If there is no ambiguity and the Riemannian context is clear, we will drop the word “isomet-
ric” and simply say congruent. Note that orbit-equivalence preserves the cohomogeneity of
an action and the sets of principal, exceptional, and singular orbits, whereas congruence of
submanifolds preserves the property of being (intrinsically or extrinsically) homogeneous.
Similarly, congruence of foliations preserves the property of being homogeneous. The
question of whether two given submanifolds of M (resp., isometric actions on M) are

!Some authors use this term even when the orbits do not form a foliation by extending the notion of
a foliation and allowing it to be singular. For the general framework of singular Riemannian foliations,
see, for example, [Mol88] or [Lyt10].
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congruent (resp., orbit-equivalent) can often be highly nontrivial and features prominently
in this thesis. We will often refer to this questions as the congruence problem.

Remark 2.3.19. Suppose we have a homogeneous foliation J; on M given as the orbit
foliation of an isometric action H; ~ M for ¢ = 1,2. Then a congruence between F; and
F5 is the same as an orbit-equivalence between H;y ~ M and Hy ~ M.

Observation 2.3.20. Suppose M is a symmetric space represented by a Riemannian
symmetric pair (G, K) such that G — I°(M) is surjective (this is always the case if M
has compact Euclidean part). We claim that any isometric action on M by a connected
Lie group is orbit-equivalent to an action of a connected Lie subgroup of G. Indeed, given
H ~ M, consider the image of H in [°(M) and let H' C G be the preimage of that under
G — I°(M). Clearly, H' is a Lie subgroup of G and it has the same orbits as H, hence so
does (H')°. Moreover, if H ~ M is proper, then (H')? is closed.

2.3.2. Polar and hyperpolar actions

Now, we proceed to a subclass of proper isometric actions with special geometric properties,
called polar actions.

Definition 2.3.21. Suppose we have a proper! isometric action of a Lie group H on a
complete Riemannian manifold M. A complete connected submanifold £ C M is called a
section of the action H ~ M if it intersects all the orbits and does so orthogonally?:

(a) ZN(H -p) # @ forall p e M.
(b) T,X and T,(H - p) are orthogonal subspaces of T,,M for all p € X.

The action H ~ M is called polar if it admits a section. An orthogonal representation of
a Lie group H on a Euclidean space V' is called polar if it is polar as an action H ~ V.

When working with polar actions, one usually restricts to connected groups, due to the
following fact, which can be easily deduced from Lemma 2.2.29:

Proposition 2.3.22. Let H be a Lie group acting properly and isometrically on a complete
Riemannian manifold M in such a way that M/H is connected. Then H acts polarly if
and only if H® does.

We list some basic properties of polar actions:

Proposition 2.3.23 (Properties of polar actions). Let H be a Lie group, M a
complete Riemannian manifold, and H ~ M a polar action.

(a) The dimension of any section of H ~ M equals the cohomogeneity of the action.
(b) For every p € M, there exists a section passing through it.

(c) If p € M is a nonsingular point of the action and X C M is a section passing through
it, then T,X = N,(H - p).

(d) Ewvery section of H ~ M ‘is a totally geodesic submanifold of M.

L Although we add properness as an assumption, in many cases it is automatically satisfied (see [Lyt10,
Cor. 1.3]).

2Some authors also add the assumption that £ is embedded or even properly embedded. We will not
assume this by default and mention it whenever required.
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(e) If p € M is a nonsingular point of the action, then there exists a unique section
passing through it, and it is given by exp(N,(H - p)).

(f) All sections of H ~ M are mutually congruent via H. Namely, let £ and L' be two
sections, p € L any nonsingular point of the action, ¢ € X' N (H - p), and g € H any
element mapping p to q. Then g(X) =X'.

(g) For any p € M, the slice representation H, ~ N,(H - p) is polar. A subspace
V' C Ny(H - p) is a section of the slice representation at p if and only if it is the
tangent space of a section of H ~ M passing through p.

(h) If M is simply connected, then there are no exceptional orbits.

Proofs of most of these statements can be found in [Mic08, Ch.VI]. Most available proofs
of part (d) are incomplete, see [LNS22] for details. For (h), see [Lyt10, Cor. 1.3].

Given a complete connected Riemannian manifold M, a proper isometric action H ~ M,
and a principal point p, one can show that the set exp(N,(H - p)) intersects all the
orbits. So what makes polar actions special is that this set is a submanifold and it always
intersects the orbits orthogonally.

Corollary 2.3.24. All sections of a polar representation H — O(V') are linear subspaces
of V.

Proof. By Proposition 2.3.23(d), any section has to be totally geodesic, hence an affine
subspace in V. By definition, it has to pass through 0. O

Example 2.3.25 (Polar actions on S"). Since I(S") = O(n + 1) C I(R""!), an
isometric cohomogeneity-k action of a Lie group G on S™ is the same as its orthogonal
representation of cohomogeneity k + 1 on R™*. What is more, such an action G ~ S™ is
polar if and only if the corresponding representation G' ~ R™™! is. A section of the latter
is simply the affine cone over a section of the former. /

Part (g) of Proposition 2.3.23 asserts that all slice representations of a polar action are
polar. The converse is not true in general, which leads to another, more general class of
actions.

Definition 2.3.26. A proper isometric action of a Lie group G on a complete Riemannian
manifold M is called infinitesimally polar if all of its slice representations are polar.

Example 2.3.27 (Cohomogeneity-2 actions). Let G ~ M be an isometric action of
cohomogeneity two and p € M any point. By Proposition 2.3.14(b), the slice representation
of the action at p has cohomogeneity two. As we observed in Example 2.3.25, that
representation induces a cohomogeneity-one action on the unit sphere. In the next
subsection, we will see that cohomogeneity-one actions on symmetric spaces are polar. But
then the slice representation itself is polar. We deduce that isometric cohomogeneity-two
actions are infinitesimally polar. /

The importance of infinitesimally polar actions comes from the following result of Lytchak
and Thorbergsson ([LT10]): a proper isometric action G ~ M is infinitesimally polar if
and only if the orbit space M /G, with its quotient metric space structure, is a Riemannian
orbifold. Now we go in the opposite direction and define a special subclass of polar actions.
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Definition 2.3.28. A polar action is called hyperpolar! if its sections are flat.

We do not define hyperpolar representations as that would be redundant: being a linear
subspace, every section of a polar representation is automatically flat. On symmetric
spaces, there is an obvious upper bound on the cohomogeneity of a hyperpolar action.
Indeed, we know from Proposition 2.3.23(a) that it coincides with the dimension of a
section. But a section of a hyperpolar action is a flat totally geodesic submanifold. From
the very definition of rank, we get:

Corollary 2.3.29. Let M be a symmetric space and H ~ M a hyperpolar action (resp., F
a hyperpolar foliation on M ). Then the cohomogeneity of H ~ M (resp., the codimension
of F) cannot exceed rk(M).

Here is an crucial example of a hyperpolar action and a polar representation.

Example 2.3.30. Let M be a semisimple Riemannian symmetric space represented by a
Riemannian symmetric pair (G, K). Then the action K° ~ M is hyperpolar and thus
the restricted isotropy representation K° — SO(T, M) is 