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Abstract—This paper proposes a novel scheme – based on 
power-shaping control (PSC) – that can endow flexible-joint 
robots with both tracking, and interactional, capabilities. In 
virtue of relying upon the PSC method, this approach entails 
modest modelling requirements restricted to computation of the 
gravitational torque vector, and motor-side dynamics terms 
(typically available in manufacturer datasheets). Hence, it 
distinguishes itself by obviating the need for calculation of 
computationally cumbersome link-side dynamics elements, such 
as the Coriolis and link inertia matrices. In contrast to analogous 
schemes, the highest-order term required by the proposed design 
is the third derivative of the motor position vector; it therefore 
avoids the usage of link-jerk feedback that can be detrimental to 
interactional performance. Moreover, the propounded 
framework enables utilisation of non-collocated feedback for 
enhanced tracking accuracy, as well as variable impedance 
control (VIC) for interactional performance augmentation. The 
aforesaid features are effectuated without any reliance on 
coordinate transformations; thus, the original dynamical 
model’s structure remains immutable throughout. Also, the 
proposed design’s complexity is dependent solely on the 
gravitational torque vector’s dimension (i.e. not on the link 
inertia or Coriolis terms). Experimental results involving a 
flexible-joint robot, namely the Rethink Robotics Baxter, 
corroborate the theoretical analyses, in addition to 
demonstrating that interactional performance improvements 
can be achieved via the proposed methodology.  

I. INTRODUCTION 

UE to the ever-increasing demand for safe coexistence of 
humans and robots, within human-inhabited 
environments, the topic of physical human-robot 

interaction (pHRI) has gained considerable popularity. pHRI 
methodologies are typically divided into two main categories, 
namely those that pertain to hardware design, and those 
relating to software development. In terms of the latter 
category, indirect force control techniques – including several 
permutations of impedance control methods which are 
described in detail in [1] – seem to prevail among roboticists, 
as compared to direct force controllers. This may in part be 
attributed to the implementational complexity of direct force 
controllers, which typically rely on environmental modelling, 
and/or direct usage of force feedback. Contrariwise, 
impedance control (originally introduced in [2]), qua indirect 
force control, relies on a contact-model-free approach, which, 
however, also offers the user a degree of tractability over the 
dynamical interactions between the robot and its environment 
[3]. Examining the existing literature on this subject allows 
one to conclude that there is an array of works pertaining to 
impedance control—earlier treatises introduced its theoretical 
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foundations [2][3], while subsequent research efforts have 
been directed towards experimental corroboration [4][5]. 
 It is posited that interactional performance can be further 
improved through online modulation of a robot’s active 
impedance gains – a methodology that is typically referred to 
as variable impedance control (VIC) [6][7]. As a matter of 
fact, some works [8] even postulate that the superior 
interactional, and locomotion, performance exhibited by 
biological machines is a direct result of the level of 
sophistication of their immanent VIC mechanisms (i.e. 
muscular activity).   

In contrast to software-related techniques, robotic 
hardware design research attempts to effectuate interactional 
performance enhancement through direct incorporation of 
passive elastic elements into a robot’s mechanical 
composition [9][10]. This design category can be further 
divided into two subcategories: flexible-joint [9] and flexible-
link [10] robots. There is a contemporary tendency to refer to 
these former devices as articulated soft robots (ASRs) [11]. 
The category of ASRs comprises those that are powered by 
Series Elastic Actuators (SEAs) [9][12], as well as those 
containing harmonic drives [13]. In spite of their improved 
interactional robustness, owing to the force attenuation 
capability of their physical springs, SEA-powered robots are 
unable to alter their passive stiffnesses in a real-time fashion; 
a shortcoming that may be bypassed through employment of 
Variable Stiffness Actuators (VSAs) [14][15]. Even though 
VSAs can enhance interactional robustness and performance, 
their design and usage typically imply increased dimensional 
requirements, control complexity, and design cost.  

As a result, numerous works [11][15] revolve around the 
unification of physical, and software-induced, flexibility, via 
practical implementation of impedance controllers on ASRs, 
to augment their interactional performance.  

Set-point regulation control of ASRs is a deeply 
investigated research topic, boasting several well-established 
methodologies [16][17]. In spite of these works, strong 
stability results are more difficult to acquire when dealing 
with the challenging problem of trajectory-tracking control of 
ASRs [13][18][19][20][21]. Existing treatises on the latter 
subject propound heavily model-based solutions necessitating 
high-order derivatives of dynamics matrices, as well as of 
position variables. To this end, a more recent work proposes 
a near-model-free technique (as it still requires a spring 
stiffness model) for the control of compliant joint robots with 
linear stiffness joints [22], while another propounds a model-
based controller relying upon simplified dynamical models 
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that intentionally neglect the motor dynamics [23]. However, 
modelling only the motor dynamics can be deemed 
preferable, since rotor inertia and (sometimes) damping 
parameters are typically contained within motor manufacturer 
datasheets (or provided upon request); also, the motor 
dynamics models of ASRs are often deemed linear, e.g. 
[11][15][18][24][33]. An additional complication arises from 
the fact that most of the existing, ASR tracking controllers are 
exclusively applicable to linear stiffness robots [18]. 
However, [18][20][24] propose schemes for nonlinear 
stiffness robots, while [19][20][25] also consider time-
varying, active impedance parameters (VIC). Some works 
[26]-[29] even report on the usage of VIC methods on 
flexible-joint, bipedal robots. Despite VIC’s ability to yield 
improved tracking and interactional performance [30], one 
must exercise caution when increasing a system’s active 
stiffness gain values (in real-time), as these can be detrimental 
to closed-loop stability/passivity [31]. To this end, [31] 
introduces a tank-based controller to ensure passivity, via 
suppression of the energy injections induced during the 
stiffness-increasing phases. [30] demonstrates that through 
the creation of a novel Lyapunov function, it is possible to 
derive gain modulation rate conditions whose satisfaction 
guarantees closed-loop stability; [32] enhances this 
framework by considering variable damping gains. Further, 
[33] extends the applicability of tank-based schemes to 
redundant robots. However, the forenamed methods are 
tailored to rigid-joint robots, and this precludes direct 
transferability to ASRs. To bridge this gap, [19][20][25]-[27] 
propose various schemes – based on the Power-Shaping Control 
(PSC) design concept – that can guarantee stability/passivity for 
VIC of: ASRs [19][20]; floating-base robots with contacts [34]; 
floating-base ASRs with contacts [26][27].  

The PSC design idea exploited herein employs a direct 
solution to underactuation, influenced by the approaches 
described in [19][20][25]-[27], thereby addressing the issues 
that have been outlined throughout this section. Thus, the 
controllers proposed in this work inherit all the features of the 
schemes delineated in [19][20][25]-[27], namely: 
 Stability-guaranteed, unrestrained gain modulation 

during VIC. 
 Applicability to nonlinear stiffness robots. 
 Usage of collocated and non-collocated state feedback. 

The remainder of this article commences with Section II, 
which synopsises a number of related works to highlight the 
proposed method’s contributions; Section III introduces the 
nonlinear impedance, flexible-joint robot model, while 
Section IV provides an overview of the control design aims 
and proposed controller architecture; Section V describes the 
extensions required to ensure stable VIC, applicability to 
nonlinear-stiffness-joint robots, and saturation prevention 
(energy efficiency); Section VI presents the experimental 
results; Section VII offers the conclusion. 

II. RELATED WORKS 

One of the main difficulties with the existing ASR tracking 
controllers (those that offer stability guarantees) is that they 
typically rely upon heavily model-based solutions. This fact 

renders them relatively complex in terms of implementation, as 
they require computation of the link inertia and Coriolis terms, 
which may be more difficult to derive than the gravitational 
torque vector, and certainly more so than the motor dynamics. 
Lagrangian dynamics (symbolic) formulations are intractable 
for systems comprising 𝑛 ≥ 7 joints, and this then necessitates 
usage of recursive algorithms [35], whose inertia matrix 
calculations are of 𝑂(𝑛 ) algorithmic complexity. Contrarily, 
gravitational torque vector calculations are of markedly lower 
complexity. Most importantly, the presence of higher-order 
position derivatives, and, in particular, the link acceleration and 
jerk variables, can have a detrimental effect on interactional 
performance [21][36]. To mitigate the effect of these link jerk 
signals contained in the controllers, [21] proposes the use of 
“dirty” derivatives, while [36] introduces a damping design 
method based on dynamic extensions. As compared to the 
methods presented in [19][20][25]-[27], and to other, existing 
ASR trajectory-tracking control designs, the controllers 
proposed in this work make the following contributions:  
 Stability-guaranteed (global asymptotical) tracking 

control of ASRs is achieved, for the first time, in the 
absence of the link inertia and Coriolis matrices, i.e. 
using uncomplicated model-based signals (lower 
modelling requirements); thus, these PSC controllers are 
considerably simpler to implement compared to other 
relevant designs in the literature that offer stability 
guarantees [13][18][19][20][21][25]. Also, [13] is not 
specifically designed for interactional tasks, it relies on a 
complex control law (as stated in [13]), and has only been 
verified via simulation. On the other hand, [21] induces 
semiglobal asymptotical stability.  

 Significantly improved interactional performance, due to 
the absence of link inertia and Coriolis terms (and 
therefore of their derivatives) from the controller, as well 
as of higher-order, link position derivatives (acceleration, 
jerk) [21][36]. These terms are predisposed to saturating 
the controller when the robot is subjected to impacts. 

 In contrast to the aforementioned works, the proposed 
PSC schemes enable the robot to modulate its gains 
(while offering stability guarantees) through VIC, 
thereby possessing the ability to further improve 
interactional performance, as described in [6][8]. 

III. VISCO-ELASTIC-JOINT ROBOT MODELLING 

A. Visco-Elastic-Joint Robot Model 

Robotic systems that are powered by actuators of non-
negligible elasticity are typically termed flexible-joint robots, 
or ASRs. Following [37]’s paradigm, one may model an 𝑛-
joint robot comprising linear stiffness and damping joints, 
powered by 𝑛 actuators, in the following manner:  
 
𝐌(𝒒)�̈� + 𝐂�̇� + 𝐃 �̇� − �̇� + 𝐊(𝒒 − 𝜽) + 𝝉𝒈(𝒒) = 𝝉𝒆,   (1) 

                    𝐉�̈� + 𝐃 �̇� − �̇� + 𝐊(𝜽 − 𝒒) = 𝝉𝒎,                  (2) 
 
where 𝒒 ∈ ℝ  and 𝜽 ∈ ℝ  denote the link and motor 
positions, while 𝐌(𝒒), 𝐂 ∈ ℝ ×  signify the symmetric 
inertia, and skew-symmetric Coriolis, matrices, respectively. 



 

 

 

Moreover, 𝝉𝒈(𝒒) ∈ ℝ , 𝝉𝒆 ∈ ℝ ,  and 𝝉𝒎 ∈ ℝ  represent the 
gravitational, external, and input torque vectors, respectively. 
Finally, 𝐊, 𝐉, and 𝐃 ∈ ℝ ×  denote the diagonal, positive 
definite stiffness, motor inertia, and joint damping matrices. 
If 𝐂 is represented via Christoffel symbols, then the 
�̇�𝑻 �̇� − 2𝐂 �̇� = 𝟎 property holds true, as described in [38]. 

B. Non-Linear Visco-Elastic Elements 

By following [37]’s approach, an 𝑛-DoF, nonlinear visco-
elastic-joint robot can be modelled as follows: 
 
  𝐌�̈� + 𝐂�̇� + 𝐃(𝑡) �̇� − �̇� + 𝐊(𝑡)(𝒒 − 𝜽) + 𝝉𝒈𝒒 = 𝝉𝒆,   (3) 

                𝐉�̈� + 𝐃(𝑡) �̇� − �̇� + 𝐊(𝑡)(𝜽 − 𝒒) = 𝝉𝒎,             (4) 
 
where 𝝉𝒈𝒒 = 𝝉𝒈(𝒒), and 𝐊(𝑡), 𝐃(𝑡) ∈ ℝ ×  denote diagonal, 
positive definite, time-varying stiffness and viscous damping 
matrices, i.e. nonlinear stiffness/damping phenomena.  

IV. AN UNCOMPLICATED MODEL-BASED SCHEME 

A. PSC Method Mechanics: A General Summary 

The schemes proposed in this work rely upon utilisation of the 
PSC design method [19][20][25][26][27][34], for the purpose 
of attaining global asymptotical stability. At its core, PSC 
functions by means of directly cancelling out any terms 
present in the Lyapunov function’s derivative (a power 
function) – which may otherwise be ineliminable using 
conventional methods – thereby ensuring stability. To this 
end, a power-shaping torque is included within the overall 
control law used on the robot, which is typically of the form:  
 
                                       𝝉 = �̇� 𝑰 𝑝 ,                                      

 
where �̇� = 𝑑𝑖𝑎𝑔(�̇� ) ∈ ℝ × , the rank-normalised, all-

ones vector, 𝑰 = [1 … 1 ] ∙ 𝑟𝑎𝑛𝑘 �̇� ∈ ℝ , with 𝒒 ∈

ℝ  denoting a vector of generalised coordinates typically – 
but not necessarily – pertaining to the underactuated states. 
The user may then design 𝑝  in such a way as to ensure that 
all the undesirable terms are eliminated from the Lyapunov 
function’s derivative. Thus, 𝑝  contains a number of scalar, 
“power” terms, whose signs are inverted w.r.t those present in 
the Lyapunov function’s derivative (to cancel them out). 

B. PSC via First-Order Link-Side Dynamics: Requirements 

Although regulation control of ASRs is a well-established 
topic [16][17], tracking control constitutes a significantly 
more complex task [13][18]-[20][21][24]. Asymptotically 
stabilising designs typically necessitate an array of model-
based terms, in addition to time derivatives of dynamics 
matrices and generalised coordinates (up to the fifth order). 
Therefore, at this initial stage, the aim is to produce a design 
capable of yielding a globally asymptotically stable (GAS), 
closed-loop tracking system, using terms of the lowest order 
possible, while excluding link jerk feedback, which can be 
detrimental to interactional control performance [21][36]. 
Moreover, to endow the scheme with interactional 
capabilities, impedance control terms are also required. 
Hence, the following PSC-based scheme is proposed: 

𝝉𝒎 = 𝐊𝐏𝐌
𝜽𝑬 + 𝐊𝐃𝐌

�̇�𝑬 + 𝐊𝐏𝐉
𝒒𝑬𝑺

 

                     +𝑎 𝐊𝐃𝐉
�̇�𝑬 + 𝝉𝑴𝑫 + 𝑎 𝝉𝑪𝟎 + 𝝉𝑷𝑺𝑺,                (5) 

 
where 𝐊𝐏𝐌

, 𝐊𝐃𝐌
, 𝐊𝐏𝐉

, and 𝐊𝐃𝐉
∈ ℝ ×  denote diagonal, 

positive definite, motor and link, active stiffness and damping 
matrices. Moreover, the motor and link position error vectors 
are denoted as 𝜽𝑬 = 𝜽𝒅 − 𝜽, 𝒒𝑬 = 𝒒𝒅 − 𝒒, and 𝒒𝑬𝑺

=

𝑎 𝒒𝒅 − 𝒒; 𝑎  and 𝑎  are scalar terms activated (i.e. equal 
to 1) when �̇�𝑬 = 𝟎, and �̇�𝑬 ≠ 𝟎, respectively, and are 
otherwise deactivated (Appendix B). In an analogous manner, 
𝑎  is nullified only when �̇�𝑬 = 𝟎, �̇� ≠ 𝟎, and is defined as: 
 
               𝑎 = (1 − 𝑎 + 𝑎 )(1 − 𝑎 + 𝑎 ) ,              (6) 
 
where 𝑎  signifies a scalar that is set to 1 when �̇� ≠ 𝟎, and 
to 0 otherwise. 𝝉𝑷𝑺𝑺 symbolises the power-shaping torque that 
cancels out the otherwise-ineliminable terms appearing in the 
Lyapunov derivative function, while 𝝉𝑪𝟎 signifies a torque 
input used to eliminate any residual elements existing when 
�̇�𝑬 = 𝟎, and can be constructed through the equation: 
 
                       𝝉𝑪𝟎 = 𝐊(𝜽𝒆 − 𝒒𝒆) + 𝐉�̈�𝒆 − 𝐃�̇�𝒆,                     (7) 
 
where 𝜽𝒆 = 𝜽 − 𝜽𝒅 and 𝒒𝒆 = 𝒒 − 𝒒𝒅. The motor-dynamics-
based torque, 𝝉𝑴𝑫, whose expression is provided below: 
 
              𝝉𝑴𝑫 = 𝐉�̈�𝒅 + 𝐃 �̇�𝒅 − �̇�𝒅 + 𝐊(𝜽𝒅 − 𝒒𝒅),             (8) 
 
is employed to obtain motor-error dynamics. It now needs to 
be highlighted that to preserve the scheme’s reduced reliance 
upon link-side dynamics terms, one must ensure that link-to-
motor position conversions can be achieved through a simple 
relationship, such as the following: 
 
                                   𝝉𝒈𝒅 = 𝐊(𝜽𝒅 − 𝒒𝒅),                                 (9) 
 
where 𝝉𝒈𝒅 = 𝝉𝒈(𝒒𝒅). One means of enabling usage of such 
an equation for higher order conversions is by “forcing” �̇� to 
𝟎, when �̇�𝑬 = 𝟎. As will be subsequently revealed, ensuring 
that �̇� = 𝟎 when �̇�𝑬 = 𝟎 guarantees that no uncompensated 
terms remain in the Lyapunov function’s derivative; this is not 
achieved in either [20] or [26], which, unlike this work, 
require computation of the link inertia and Coriolis matrices. 
 
Lemma 1: Setting �̇�𝑬 = 𝟎 and �̇� ≠ 𝟎 in the closed-loop 
system comprising equations (3)-(5), yields: 
 
                                        𝐊𝐏𝐌

𝜽𝑬 = 𝐊𝐏𝐉
𝒒,                                 (10) 

 
with 𝐊𝐏𝐉

 denoting an invertible, symmetric, positive definite 

matrix, which therefore conduces to: 
 
                                       𝒒 = 𝐊𝐏𝐉

𝟏𝐊𝐏𝐌
𝜽𝑬.                                (11) 

 
Inasmuch as 𝜽𝑬 = 𝑐𝑜𝑛𝑠𝑡., owing to �̇�𝑬 = 𝟎, it can then be 
concluded that 𝒒 = 𝑐𝑜𝑛𝑠𝑡., and that �̇� = 𝟎, provided that 𝐊𝐏𝐌

 



 

 

 

and 𝐊𝐏𝐉
 are kept constant at that instant. However, if the 

system is already at the �̇�𝑬 = 𝟎, �̇� = 𝟎 state, then: 
 
                       𝒒𝑬 = −𝐊𝐏𝐉

𝟏𝐊𝐏𝐌
𝜽𝑬 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,                   (12) 

 
and �̇�𝑬 = 𝟎. This implies elimination of all undesirable, 
Lyapunov derivative terms, as will be subsequently revealed.  

C. PSC plus Partial Link-Side Dynamics: Stability Analysis 

Theorem 1: The closed-loop system comprising equations 
(3)-(5) possesses a GAS equilibrium point at 𝒒𝒆𝒒 =

�̇�𝑻 �̇�𝑬
𝑻 𝒒𝑬𝑺

𝑻 𝜽𝑬
𝑻 = 𝟎, when 𝝉𝒆 = 𝟎, provided that 

�̇�𝐏𝐌
= �̇�𝐏𝐉

= 𝟎 when �̇�𝑬 = 𝟎. 

 
Proof 1: The closed-loop system stability analysis revolves 
around the following Lyapunov function: 
 

         𝑉 = �̇�𝑭𝑻

𝑻 𝐌𝐓�̇�𝑭𝑻
+ 𝜽𝑬

𝑻𝐊𝐏𝐌
𝜽𝑬 + 𝒒𝑬𝑺

𝑻 𝐊𝐏𝐉
𝒒𝑬𝑺

,      (13)  

 
where 𝐌𝐓 = 𝑑𝑖𝑎𝑔(𝐌, 𝐉), and 𝒒𝑭𝑻

= [𝒒𝑻 𝜽𝒆
𝑻]𝑻. The above 

function is nullified solely at the origin, 𝒒𝒆𝒒 = 𝟎 (Appendix 
A), and is positive elsewhere, while its time derivative is1: 
  

�̇� = �̇�𝑭𝑻

𝑻

⎝

⎜
⎛

�̇�𝐓�̇�𝑭𝑻 − 𝐂𝐓�̇�𝑭𝑻
−

𝝉𝒈𝒒 − 𝐃�̇� − 𝐊𝜽

−𝐃�̇�𝒆 − 𝐊𝒒𝒆

− 𝚿�̇�𝑭𝑻
−

𝐊𝐓𝒒𝑭𝑻
+

𝟎
𝐊𝐏𝐌

𝜽𝑬 + 𝐊𝐏𝐉
𝒒𝑬𝑺

+ 𝐊𝐃𝐉
�̇�𝑬 + 𝝉𝑷𝑺𝑺 ⎠

⎟
⎞

  

                              +�̇�𝑬
𝑻𝐊𝐏𝐌

𝜽𝑬 + �̇�𝑬𝑺

𝑻 𝐊𝐏𝐉
𝒒𝑬𝑺

,                        (14) 

 
where 𝚿 = 𝑑𝑖𝑎𝑔 𝐃, 𝐃 + 𝐊𝐃𝐌

, 𝐂𝐓 = 𝑑𝑖𝑎𝑔(𝐂, 𝟎), and 𝐊𝐓 =

𝑑𝑖𝑎𝑔(𝐊, 𝐊). Further simplifications – relying on the �̇�𝑻 �̇� −

2𝐂 �̇� = 𝟎 property – produce: 
 

�̇� = −�̇�𝑻𝝉𝒈𝒒 + �̇�𝑻𝐃�̇� + �̇�𝑻𝐊𝜽 + �̇�𝒆
𝑻𝐊𝒒𝒆 + �̇�𝒆

𝑻𝐃�̇�𝒆 −

�̇�𝑭𝑻

𝑻 𝚿�̇�𝑭𝑻
− �̇�𝑭𝑻

𝑻 𝐊𝐓𝒒𝑭𝑻
+ �̇�𝒆

𝑻𝐊𝐏𝐌
𝜽𝑬 + �̇�𝒆

𝑻𝐊𝐏𝐉
𝒒𝑬𝑺

+

         �̇�𝒆
𝑻𝐊𝐃𝐉

�̇�𝑬 + �̇�𝒆
𝑻𝝉𝑷𝑺𝑺 + �̇�𝑬

𝑻𝐊𝐏𝐌
𝜽𝑬 + �̇�𝑬𝑺

𝑻 𝐊𝐏𝐉
𝒒𝑬𝑺

.       (15)  

   
According to Lemma 1, all the �̇� terms vanish when �̇�𝑬 =
�̇� = 𝟎. Although some of the above terms cancel out with one 
another, others ought to be expunged independently. Hence, 
the power-shaping torque is of the following form: 
 
                                    𝝉𝑷𝑺𝑺 = �̇�𝐏𝑰𝑹𝑝 ,                                   (16) 

 

where �̇�𝐏 = 𝑑𝑖𝑎𝑔 �̇�𝒆 ∈ ℝ × , and the rank-normalised, 

all-ones vector, 𝑰𝑹 = [1 … 1 ]𝑻 ∙ 𝑟𝑎𝑛𝑘 �̇�𝐏 ∈ ℝ . Also, the 
PSS is designed in the following manner:  
 

  𝑝 = �̇�𝑻𝝉𝒈𝒒 + �̇�𝑭𝑻

𝑻 𝐊𝐓𝒒𝑭𝑻
− �̇�𝒆

𝑻𝐊𝐏𝐉
𝒒𝑬𝑺

− �̇�𝑬𝑺

𝑻 𝐊𝐏𝐉
𝒒𝑬𝑺

−

             �̇�𝒆
𝑻𝐊𝐃𝐉

�̇�𝑬 − �̇�𝑻 𝐃�̇� + 𝐊𝜽 − �̇�𝒆
𝑻(𝐃�̇�𝒆 + 𝐊𝒒𝒆).    (17)  

 
1The upper row of the expression between brackets is based on the original 

link dynamics (equation (1) or (3)), hence why it is possible to avoid 
utilisation of link inertia and Coriolis/centrifugal elements in the control law. 

In virtue of the introduced elements, the following 
simplification takes place in the �̇� function: 
 

  �̇�𝒆
𝑻 ∙ 𝑑𝑖𝑎𝑔 �̇�𝒆 ∙ [1 … 1 ]𝑻 ∙ 𝑟𝑎𝑛𝑘 �̇�𝐏 = 𝑛

𝑛⁄ = 1,   (18) 
 

and then using the proposed 𝑝  results in: 
 
                                      �̇� = −�̇�

𝑭𝑻

𝑻 𝚿�̇�
𝑭𝑻

.                                   (19)  

 
The analysis performed thus far has only treated the case 
where �̇�𝐏 has full rank. If �̇�𝐏 loses rank, then one obtains: 
 

                      �̇� = −�̇�𝑭𝑻

𝑻 𝚿�̇�𝑭𝑻
+ 𝑠 + ∙ 𝑝 ,                    (20)  

 
where 𝑠  contains all the terms in (15) excluding �̇�𝑭𝑻

𝑻 𝚿�̇�𝑭𝑻
 

and �̇�𝒆
𝑻𝝉𝑷𝑺𝑺. When 𝑟𝑎𝑛𝑘 �̇�𝐏 = 0, �̇� vanishes, while the 

control law remains numerically sound, since 𝑟𝑎𝑛𝑘 �̇�𝐏 =

0 = 0. Thus, (19) holds in all (non-static) cases, and this 
reveals convergence to �̇�𝑭𝑻

= 𝟎. However, since the system 
is non-autonomous, owing to 𝜽𝒅(𝑡) and 𝒒𝒅(𝑡), this precludes 
direct applicability of LaSalle’s Invariance Principle (LP). 
Despite this, the new Invariance Principle (NIP) [39] 
circumvents the said issue and simply requires that: 
 
                           �̇� = −�̇�𝑭𝑻

𝑻 𝚿�̇�𝑭𝑻
≤ 𝑊 ≤ 0,                         (21)  

 
where 𝑊 = −�̇�𝑭𝑻

𝑻 𝚽�̇�𝑭𝑻
, with 𝟎 < 𝚽 ≤ 𝚿. Obtaining 𝑊’s 

time derivative subsequently yields: 
   
                                  �̇� = −2�̈�𝑭𝑻

𝑻 𝚽�̇�𝑭𝑻
,                                 (22)  

 
which merely reveals that �̇� = 0, when �̇�𝑭𝑻

= 𝟎. By 
differentiating once more, however, it is observed that: 
 
                      �̈� = −2�⃛�𝑭𝑻

𝑻 𝚽�̇�𝑭𝑻
− 2�̈�𝑭𝑻

𝑻 𝚽�̈�𝑭𝑻
.                    (23)  

 
Thus, �̈� = 0 only when �̇�𝑭𝑻

= 𝟎, thereby leading to the 
conclusion that 𝑊 ≡ 0, and �̇�𝑭𝑻

≡ 𝟎. It is known that the 
system’s states/trajectories are bounded, given that �̇� ≤ 0 and 
𝑉 > 0 [39]. Inserting �̇�𝑭𝑻

= �̈�𝑭𝑻
= 𝟎 into (3)-(5) yields: 

 
                         𝐊(𝒒 − 𝜽) + 𝝉𝒈𝒒 − 𝐃�̇� = 𝟎,                          (24) 
                               𝐊𝐏𝐌

𝜽𝑬 + 𝐊𝐏𝐉
𝒒𝑬 = 𝟎.                               (25) 

 
To ensure the existence of a unique equilibrium point, one 
could utilise the following, link-to-motor position conversion: 
 
          𝑎 𝝉𝒈𝒅 + 𝑎 𝝉𝒈𝒒 − 𝐃�̇� − 𝐊(𝜽𝒅 − 𝒒𝒅) = 𝟎.        (26)  
 
The explicit forms of 𝑎 , 𝑎 , and 𝑎  are provided in 
Appendix B. When �̇�𝑭𝑻

= �̈�𝑭𝑻
= 𝟎 (𝑎 = 1), one obtains:  



 

 

 

                       𝝉𝒈𝒒 − 𝐃�̇� − 𝐊(𝜽𝒅 − 𝒒𝒅) = 𝟎,                       (27) 
 
since 𝑎 = 1 − 𝑎 ; thus, 𝑎 = 1 when �̇�𝑭𝑻

= �̈�𝑭𝑻
= 𝟎. 

Subtracting the above from the reduced link dynamics yields: 
 
                                     𝐊𝒒𝑬 − 𝐊𝜽𝑬 = 𝟎.                                 (28) 
 
Hence, one finally acquires:  
 

                   𝐓𝐌

𝒒𝑬

𝜽𝑬
=

𝐊 −𝐊
𝐊𝐏𝐉

𝐊𝐏𝐌

𝒒𝑬

𝜽𝑬
= 𝟎,                     (29) 

 
which possesses the trivial solution, 𝒒𝑬 = 𝜽𝑬 = 𝟎, if 

𝐓𝐌 + 𝐓𝐌
𝐓 > 𝟎, thus proving GAS of 𝒒𝒆𝒒. When 𝐊 is 

constant (linear stiffness joints), there is no risk of violating 
Lemma 1; thus, to increase the gain range for linear stiffness 
robots, one may use 𝝉𝑪𝟎 = 𝐉�̈�𝒆 − 𝐃�̇�𝒆 − 𝐊𝒒𝒆 and 
 
                          𝜽𝒅 = 𝒒𝒅 + 𝐊 𝟏 𝝉𝒈𝒒 − 𝐃�̇� ,                        (30) 
 
which collectively yield: 
 

               𝐓𝐌𝐋

𝒒𝑬

𝜽𝑬
=

𝐊 −𝐊
𝐊𝐏𝐉

𝐊𝐏𝐌
+ 𝐊

𝒒𝑬

𝜽𝑬
= 𝟎.               (31) 

 
The trivial solution is also the unique solution of this equation, 

provided that 𝐓𝐌𝐋 + 𝐓𝐌𝐋
𝐓 > 𝟎, which is satisfiable even 

when employing exceedingly low gain values. 

D. Higher-Order Terms based on Partial Knowledge of the 
Link-Side Dynamics Model  

Based on the previously provided, link-to-motor position 
conversion equation, it is possible to compute the higher-
order, desired motor velocity and acceleration variables via: 
 
                                  �̇�𝒅 = �̇�𝒅 + 𝐊 𝟏�̇�𝒈𝒅,                               (32) 

                                  �̈�𝒅 = �̈�𝒅 + 𝐊 𝟏�̈�𝒈𝒅.                               (33) 
 
Since the above equations are applicable when �̇�𝒆 ≠ 𝟎, one 
should also consider the more general form of equation (26), 
based on which the following expressions can be derived: 
 

           �̇�𝒅 = �̇�𝒅 + 𝐊 𝟏 𝑎 �̇�𝒈𝒅 + 𝑎 �̇�𝒈𝒒 − 𝐃�̈� ,        (34) 

           �̈�𝒅 = �̈�𝒅 + 𝐊 𝟏 𝑎 �̈�𝒈𝒅 + 𝑎 �̈�𝒈𝒒 − 𝐃𝜽 .        (35) 

 
If 𝐃 and 𝐊 are time-varying, then their derivatives are also 
required; a full derivation is provided in Appendix C. This 
constitutes one of the main advantages of the proposed PSC 
approach compared to existing methods, i.e. the fact that it 
obviates the need for computation of the most cumbersome 
link dynamics terms, namely 𝐌 and 𝐂, as well as their higher-
order derivatives. Moreover, from a practical viewpoint, the 
absence of link jerk signals from (5), (34), and (35) renders 
the proposed scheme safe and efficacious for usage in pHRI 
applications [36]. This desirable feature materialises in virtue 
of the PSC approach’s ability to rely on Lyapunov functions 

that depend upon �̇�𝑭𝑻
= [�̇�𝑻 �̇�𝒆

𝑻]𝑻, as opposed to �̇�𝑭𝑬
=

[�̇�𝑬
𝑻 �̇�𝑬

𝑻]𝑻; vectors similar to the latter are ubiquitous in 
tracking control of ASRs, as evinced by [13], [18]-[21], [24]. 
It is worth noting that if the user prefers to avoid 
activating/deactivating signals using 𝑎  and 𝑎 , then it is 
entirely possible to employ equation (30) at all times.  

E. PSC plus Partial Link-Side Dynamics: Passivity Analysis 

Conducting a passivity analysis is crucial, given that the 
proposed scheme is aimed at tracking, and interaction, 
control. Repeating the steps adumbrated in Proof 1, while 
assuming that 𝝉𝒆 ≠ 𝟎, yields the relationship:  
 
                    �̇� = �̇� = −�̇�

𝑭𝑻

𝑻 𝚿�̇�
𝑭𝑻

+ �̇�𝑻𝝉𝒆 ≤ �̇�𝑻𝝉𝒆,              (36)  

 
thereby leading to satisfaction of a passivity condition [40], 
which proves that the system interacts stably with any 
passive, unknown environment [33]. It is worth noting that 
this condition holds even if 𝑎  is permanently replaced by 
𝑎 , since the additional step of inserting �̇�𝑭𝑻

≡ 𝟎 into the 
closed-loop dynamics becomes unnecessary in this case.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Block diagram of the UMVIC scheme. 
 

As an added benefit, one can produce a passive, closed-loop 
system by using solely the simplified, link-to-motor variable 
conversions described by equations (32) and (33) – this is 
deemed a highly desirable feature since 𝝉𝒈𝒅 is the most 
straightforwardly computable, link dynamics term (excluding 
the coupled 𝐊 and 𝐃 elements). 

V. AN UNCOMPLICATED MODEL-BASED SCHEME FOR VIC 

OF NONLINEAR STIFFNESS SYSTEMS  

A. Stable VIC via Partial Knowledge of Link-Side Dynamics  

The controllers, and analysis, described thus far have relied 
upon the assumption that the 𝐊𝐏𝐌

 and 𝐊𝐏𝐉
 gains remain 

constant at all times. However, VIC offers numerous benefits 
in terms of both tracking, and interactional, performance 
[6][8][30]. In general, PSC enables stable VIC, although this 
necessitates an iota of modifications w.r.t to the scheme 
presented in the previous section. Firstly, when using 𝐊𝐏𝐌𝐭

=

𝐊𝐏𝐌
(𝑡), and 𝐊𝐏𝐉𝐭

= 𝐊𝐏𝐉
(𝑡), Lemma 1 is valid only if 

impedance modulations are momentarily suspended (�̇�𝐏𝐌
=

�̇�𝐏𝐉
= 𝟎) when �̇�𝑬 = 𝟎. The PSS also requires some 

amendment, since residual terms appear in �̇� due to VIC.  
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Theorem 2: The closed-loop system comprising equations 
(3)-(5), with 𝐊𝐏𝐌

(𝑡) and 𝐊𝐏𝐉
(𝑡), possesses a GAS 

equilibrium point at 𝒒𝒆𝒒 = �̇�𝑻 �̇�𝑬
𝑻 𝒒𝑬𝑺

𝑻 𝜽𝑬
𝑻 = 𝟎, when 

𝝉𝒆 = 𝟎, provided that �̇�𝐏𝐌
= �̇�𝐏𝐉

= 𝟎 when �̇�𝑬 = 𝟎. 

 
Proof 2: Considering the same Lyapunov function as before, 
and computing its time derivative – followed by similar 
simplifications – yields the result: 
 

             �̇� = −�̇�
𝑭𝑻

𝑻 𝚿�̇�
𝑭𝑻

+
1

2
𝜽𝑬

𝑻�̇�𝐏𝐌
𝜽𝑬 +

1

2
𝒒

𝑬𝑺

𝑻 �̇�𝐏𝐉
𝒒

𝑬𝑺
.      (37)  

 
Hence, in order to eliminate the new terms appearing on the 
RHS, one ought to define the following PSS: 
 

                        𝑝 = 𝑝 −
𝜽𝑬

𝑻�̇�𝐏𝐌
𝜽𝑬

−
𝒒𝑬𝑺

𝑻 �̇�𝐏𝐉
𝒒𝑬𝑺 ,                (38)  

 
which would again result in �̇� = −�̇�

𝑭𝑻

𝑻 𝚿�̇�
𝑭𝑻

. This adapted 

controller is dubbed the uncomplicated-model-based VIC 
(UMVIC) scheme (Fig. 1). It is worth reemphasising that 
impedance increases are to be momentarily suspended when 
�̇�𝑬 = 𝟎; a condition that guarantees applicability of Proof 1’s 
(and Lemma 1’s) conclusions to this scenario. 

B. VIC based on Partial Knowledge of the Link-Side 
Dynamical Model & Nonlinear Stiffnesses 

Using the proposed PSC approach, it is possible to stably 
perform VIC on nonlinear stiffness robots [18][20][24]. As a 
matter of fact, the only alteration that is required, as regards 
the schemes presented thus far, is replacement of 𝐊 with 
𝐊(𝑡)—analogous modifications should also be carried out to 
the motor-to-link conversion equations. To expand the 
impedance value range when using 𝐊(𝑡), one can introduce a 
new switching variable, 𝑎  (Appendix B), that is activated 
when �̇�𝑬 = 𝟎 (or �̇�𝑬 ≠ 𝟎) and �̇�𝑭𝑻

≢ 𝟎, and is deactivated 

only when �̇�𝑬 = 𝟎 and �̇�𝑭𝑻
≡ 𝟎. Thus, one could use: 

 
                   𝝉𝑪𝟎 = 𝐉�̈�𝒆 − 𝐃�̇�𝒆 + 𝐊(𝑎 𝜽𝒆 − 𝒒𝒆).                (39) 
 
Omitting a painstaking analysis for the sake of brevity, this 
combination of signals yields (31), and therefore 𝜽𝑬 = 𝒒𝑬 =
𝟎. In theory, this enables usage of exceedingly low gains. 
Equation (39) does not represent the full control signal, but 
merely a portion of it; the full control input signal is 
represented via equation (5), where 𝝉𝑪𝟎 is just one of 
numerous components – the purpose of 𝝉𝑪𝟎 is to guarantee 
stability by eliminating any residual elements appearing when 
�̇�𝑬 = 𝟎. The overall control system’s block diagram is 
illustrated in Fig. 1. Many of the matrices and calculations 
required to produce 𝝉  have been omitted for clarity, as 
these are assumed to be contained within the PSS block. 

C. Partial Link-Side Dynamical Modelling, Nonlinear 
Stiffness, VIC Passivity 

In contrast to the stability analysis results, passivity is ensured 
even when the reduced link-to-motor variable conversions are 
permanently used. However, for the passivity results to hold, 

one must again ensure that impedance increases are 
momentarily suspended when �̇�𝑬 = 𝟎, otherwise the sign of: 
 

 �̇� = −�̇�𝑻𝚿𝟏𝟏�̇� +
𝜽𝑬

𝑻�̇�𝐏𝐌
𝜽𝑬

2
+

𝒒𝑬𝑺
𝑻 �̇�𝐏𝐉

𝒒𝑬𝑺

2
+ �̇�𝑻𝝉𝒆 ≤ �̇�𝑻𝝉𝒆, (40)  

 
will be indeterminate; 𝚿𝟏𝟏 is the upper left block of 𝚿. If, 
however, �̇�𝑬 = 𝟎 and 𝒒𝑬𝑺

= 𝜽𝑬 = 𝟎, then even impedance 
increases are permitted. In general, designing a passivating 
controller is a simpler task, since it obviates usage of the NIP. 

D. Gain-Independent Saturation Prevention Method 

To avoid imposing undesirable gain modulations, and thus 
limiting the user’s ability to realise a predetermined 
impedance profile, the following PSS is proposed: 
 
             𝑝 = 𝑝 − 𝜓 �̈�𝑭𝑻

𝑻 �̇�𝑭𝑻
− �̇� ∙ 𝜓 ∙ �̇�𝑭𝑻

𝑻 �̇�𝑭𝑻
,             (41) 

 
where 𝜓 denotes a user-modulated scalar. The following, 
adapted Lyapunov function can then be considered: 
 

       𝑉 =
�̇�𝑭𝑻

𝑻 𝐌𝐓�̇�𝑭𝑻 +
𝜽𝑬

𝑻𝐊𝐏𝐌
𝜽𝑬

+
𝒒𝑬𝑺

𝑻 𝐊𝐏𝐉
𝒒𝑬𝑺 +

�̇�𝑭𝑻
𝑻 �̇�𝑭𝑻 .      (42)  

 
Additional details are omitted, since similar saturation 
prevention methods can be applied to all PSC-based schemes, 
as delineated in [20][26][27]. Impedance modulations may be 
performed unrestrainedly, without impinging on stability. 

VI. EXPERIMENTS INVOLVING A FLEXIBLE-JOINT ROBOT: 
TRACKING, PHRI, & A BUTTON-PRESSING TASK 

A. Experimental Setup 

The Rethink Robotics Baxter is a bimanual robot that stands 
at a height of approximately 1.83 m, and weighs 138.8 kg, 
when mounted on its custom pedestal. Further, it is a flexible-
joint robot (ASR), given that its arms are powered through a 
combination of DC motors and SEAs. Baxter’s 
shoulder/elbow, and wrist, joints possess flexure stiffness 
values of 843, and 250 Nm/rad, respectively [40]. The 
experimental setup comprises an Intel Core i7-10700 @ 2.9 
GHz desktop PC, running Robot Operating System (ROS) 
Melodic, via Ubuntu 18.04.5 LTS (Bionic Beaver). The 
Baxter’s low-level joint controller executes at a rate of 1ms, 
while the Python script used to implement the UMVIC 
scheme runs at a rate of approximately 0.5ms, thus being 
suitable for real-time implementation. 

 
Figure 2. Trajectory-tracking control using link position references. 

B. Flexible-Joint Arm Tracking during Free Motion 

The tracking experiments (Fig. 2) entail controlling the Baxter 
robot’s left arm via the UMVIC scheme, which is supplied 
with two different, sinusoidal, link-position trajectories: a 
slow one (Figs. 3-4), and a faster one (Figs. 5-6). Figs. 3 and 
5 reveal that the arm’s links (𝒒) are able to accurately track 
the commanded references (𝒒𝒅). It is worth noting that s , 𝑒 , 



 

 

 

and 𝑤  denote the sagittal shoulder, elbow, and wrist link 
positions (𝒒), respectively, while s , e , w , and w  signify 
the remaining roll/yaw joints. Figure 4 shows that after 
moving to a homing position, the arm’s proportional gains 
(𝐊𝐏𝐉

) are increased and remain constant throughout (the same 

impedance profile is used for the “faster” experiment). Fig. 6 
also demonstrates that the PSS is confined to evolving within 
user-defined bounds (𝑝 ). Fig. 7 compares the tracking 
performance of the UMVIC scheme to that of a controller 
based on a full model of the system; the scheme introduced in 
[20] is employed for this comparative analysis, as it is the only 
one reported in literature suited to VIC of ASRs. Identical 
gains were used in both cases, with the only difference being 
the superimposition of the link dynamics terms (link-to-motor 
position conversions), and some auxiliary signals, in the case 
of the controller described in [20]. Fig. 7 reveals that these 
schemes perform almost identically in terms of position 
control accuracy, despite the increased complexity of [20]. 
C. pHRI Experiments Involving a Flexible-Joint Robot Arm 

The first pHRI experiment, which is depicted in Fig. 8, attempts 
to showcase that – when controlled using the proposed scheme – 
the Baxter robot’s left arm is capable of tracking a sinusoidal, 
joint-space position trajectory, while physically interacting with 
a human user. Figs. 9-13 reveal that once the robot’s arm comes 
into contact with the user, and a predefined threshold is exceeded, 
the wrist and elbow position gains decrease abruptly, thereby 
increasing the position error momentarily. However, tracking 
performance is recovered once the effects of the external impacts 
have subsided, thus demonstrating that the proposed controller 
enables the arm to simultaneously track trajectories, and interact 
with its environment. The predefined threshold is triggered by 
the real-time value of the external contact force vector’s norm 
and is set to a magnitude that exceeds the wrench feedback’s 
noise levels (despite being smoothed using a 60-sample 
averaging filter). The physical experiment during which this data 
was recorded can be viewed in the video attachment. The gain 
values (𝐊𝐏𝐉

) pertaining to Figs. 9 and 12 are contained in Figs. 

10 and 13, respectively. Also, Fig. 11 plots the contact wrenches 
measured during low-speed tracking, Fig. 14 displays the 
 
 
 
 
 
 
 
Figure 3. Tracking a “slow” reference: 𝑒  and s  track sinusoidal, joint 
position references, while 𝑤  is ramped to a constant position reference. 

 
 
 
 
 
 
 
Figure 4. Tracking a “slow” reference: the 𝑒  and 𝑤  gains are increased, 
while the 𝑠  gains remain constant. 
 
accompanying power-shaping torque values, and Fig. 15 shows 
the 𝜓 variable’s evolution. It is noteworthy that all experiments 

involve usage of identical, referential link-position trajectories, 
and vertical, blue dotted lines are used to denote the moments 
of impact between the Baxter and the environment. 
 
 
 
 
 
 
 
 
Figure 5. Tracking a “faster” reference: 𝑒  and s  track sinusoidal, link 
position references, while 𝑤  is ramped to a constant position reference. 
 
 
 
 
 

Figure 6. Tracking a “faster” reference: the power-shaping torques pertaining 
to the 𝑤 , 𝑒 , and s  joints are bounded within user-defined limits. 
 
 
 
 
 
 

Figure 7. Link position errors corresponding to 𝑤 , 𝑒 , and s  joints when 
using UMVIC versus using the model-based controller described in [20]. 

 

 
Figure 8. pHRI experiment (upper row: arm moving downwards while 
interacting with the user; lower row: arm moving upwards in “free motion”). 
 
 
 
 
 
 
 
Figure 9. UMVIC “Low Speed” pHRI: 𝑒  and s  track sinusoidal, link 
position references, while also interacting with a human user. 
 
 
 
 
 
 
 
 
Figure 10. UMVIC “Low Speed” pHRI: the 𝑒  and 𝑤  gains are decreased 
once the robot’s arm comes into contact with a human user. 
 
 
 
 
 
 
 
 
Figure 11. UMVIC “Low Speed” pHRI: contact wrench values during pHRI. 
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Figure 12. UMVIC “Higher Speed” pHRI: 𝑒  and s  track sinusoidal, link 
position references, while also interacting with a human user. 
 
 
 
 
 
 
 
 
Figure 13. UMVIC “Higher Speed” pHRI: the 𝑒  and 𝑤  gains are decreased 
once the robot’s arm comes into contact with a human user. 
 
 
 
 
 
 
 
Figure 14. UMVIC “Higher Speed” pHRI: the power-shaping torques 
pertaining to the 𝑤 , 𝑒 , and s  joints are bounded within user-defined limits. 
 
 
 
 
 
 
 
 

Figure 15. UMVIC “Higher Speed” pHRI: evolution of the 𝜓 variable. 

 
Figure 16. Illustration of the aim of the experiment. 

 
Figure 17. IC1 Experiment: the arm gets “stuck” underneath the bar. 

 
Figure 18. IC2 Experiment: the arm brushes past the bar, although it is unable 
to produce the force required to press the button. 

 
Figure 19. IC3 Experiment: the arm brushes past the bar and is also able to 
produce the force required to press the button. 

D. Interacting with a Horizontal Bar & Pressing a Button 

For the second set of physical interaction experiments, 
illustrated via Figs. 16-19, the robot is assigned a specific task 

that it needs to execute via the UMVIC scheme: the aim is for 
the robotic arm to move upwards towards a horizontal bar, 
sense the contact, activate VIC to negotiate the obstacle, and 
once the wrist has moved to a Cartesian position above the 
bar, activate a new trajectory to move the wrist towards an 
emergency button. Figs. 20-21 pertain to trials conducted 
using a fixed-gain version of UMVIC, namely IC1; Figs. 22-
23 relate to trials performed using the UMVIC scheme with 
an exceedingly sensitive force trigger, namely IC2; Figs. 24-
25 are extracted during trials preformed when using the 
UMVIC scheme with a less sensitive trigger, namely IC3. 
When employing IC1, it is evident from Fig. 20 that the 
robot’s arm is unable to move past the horizontal bar, owing 
to the constant, high 𝐊𝐏𝐉

 gains (Fig. 21). The second physical 

interaction experiment – involving IC2 – reveals that the 
robot’s arm is capable of brushing past the horizontal bar, 
albeit being incapable of pressing the button, since the gains 
are decreased before the required force is generated by the 
wrist/arm – a clearer illustration is provided in the video.  
 

 
 
 
 
 
 
 

Figure 20. IC1 Experiment: 𝑤 , 𝑒  and s  are unable to continue following 
the relevant references after coming into contact with the horizontal bar. 

 
 
 
 
 
 
 
 

Figure 21. IC1 Experiment: the 𝑤  and 𝑒  link position gains (𝐊𝐏𝐉
) are 

ramped to a set of constant values. 
 

 
 
 
 
 
 
Figure 22. IC2 Experiment: 𝑤 , 𝑒  and s  deviate from their reference values 
momentarily, once they come into contact with the horizontal bar and button. 
 
 
 
 
 
 
 
Figure 23. IC2 Experiment: the 𝑤  and 𝑒  link position gain values decrease 
upon impact with the horizonal bar, as well as with the emergency button. 
 
Finally, the third experiment – pertaining to IC3 – 
demonstrates that the robot is capable of brushing past the bar 
and pressing the emergency button (which coincidentally 
deactivates its power supply), as shown in the accompanying 
video. Comparing Figs. 20, 22, and 24 to one another reveals 
that when using IC1, the robot has no control over the 
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interaction between itself and the environment. Although IC2 
does endow the robot with an indirect force control capability, 
its impedance switching settings preclude applying the right 
amount of force onto the button. Contrarily, IC3 demonstrates 
that by using a less sensitive impedance switching trigger, the 
robot can brush past the horizontal bar, as well as apply the 
“correct” amount of force required to press the button, as 
demonstrated via the accompanying video file. It is worth 
clarifying that for all the experiments, i.e. IC1-IC3, the exact 
same, predetermined, link-position trajectories are employed, 
and these are not modified at any phase during the robot’s operation. 
 
 
 
 
 

Figure 24. IC3 Experiment: 𝑤 , 𝑒  and s  only deviate from their reference 
values momentarily, once they come into contact with the horizontal bar. 
 
 
 
 
 
 
 
 
Figure 25. IC3 Experiment: the 𝑤  and 𝑒  link position gains decrease upon 
impact with the horizonal bar and remain constant while pressing the button. 

E. Interacting with a Horizontal Bar at Different Speeds: 
Effect of Including & Excluding Link Jerk Feedback  

Four sets of experiments (HBI1-HBI4) were conducted to 
demonstrate the benefit/s of using the proposed UMVIC 
scheme, which excludes link-jerk feedback, over existing 
trajectory-tracking controllers for flexible-joint robots that 
require usage of link jerk feedback. Since the experiments 
involved VIC, the controller used for comparative purposes is 
that introduced in [20], which enables stable VIC.  
 
 
 
 
 
 
 
Figure 26. HBI1 Experiment: Link position responses recorded when 
brushing past a horizontal bar at “low” speed using the UMVIC scheme. 
 
 
 
 
 
 
 
 
Figure 27. HBI1 Experiment: Control torque inputs recorded when brushing 
past a horizontal bar at “low” speed using the UMVIC scheme. 
 
The rationale is that comparing the UMVIC scheme to a 
trajectory-tracking controller for flexible-joint robots that 
does not offer VIC stability guarantees, would be a 
technically unsound choice. These experiments revolve 
around execution of the same sinusoidal trajectory as that 

used for the tracking experiments in VI. B, while relying on 
VIC to brush past the horizontal bar; no button-pressing is 
involved in this case. HBI1 and HBI2 entail execution of link 
position trajectories using the UMVIC scheme, while HBI3 
and HBI4 involve execution of the same trajectories using the 
controller proposed in [20], which requires link-jerk 
feedback. Further, HBI1 and HBI3 involve usage of “slow” 
trajectories (Figs. 26 & 30), while HBI2 and HBI4 revolve 
around faster trajectories (Figs. 28 & 32). Figs. 26-29 reveal 
that the proposed UMVIC scheme remains unaffected by 
trajectory speed increases, even during impact. Contrariwise, 
Figs. 30-33 demonstrate that using the link-jerk feedback 
scheme introduced in [20] induces input torque spikes, and 
saturation, when the trajectory speed is increased, and the 
robot interacts with the environment. 
 
 
 
 
 
 
 
 
Figure 28. HBI2 Experiment: Link position responses recorded when 
brushing past a horizontal bar at higher speed using the UMVIC scheme. 
 
 
 
 
 
 
 
 
Figure 29. HBI2 Experiment: Control torque inputs recorded when brushing 
past a horizontal bar at higher speed using the UMVIC scheme. 
 
 
 
 
 
 
 
 
Figure 30. HBI3 Experiment: Link position responses when brushing past a 
horizontal bar at “low” speed using a link-jerk-feedback scheme. 
 
 
 
 
 
 
 
 
Figure 31. HBI3 Experiment: Control torque inputs recorded when brushing 
past a horizontal bar at “low” speed using a link-jerk-feedback scheme. 
 
 
 
 
 
 
 
 
Figure 32. HBI4 Experiment: Link position responses when brushing past a 
horizontal bar at higher speed using a link-jerk-feedback scheme. 
 
This effect is epitomised by Fig. 33, which displays an input 
torque spike at the moment of impact between the Baxter’s 
arm and the horizontal bar – this torque spike far exceeds the 
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joint torque limits of the wrist joint, w1.  Fig. 32 reveals that 
the system is unable to damp out the post-impact oscillations, 
resulting in frequent saturation of the wrist joint torque input, 
in contrast to the results contained in Figs. 26, 28, and 30. 
 
 
 
 
 
 
 
 
Figure 33. HBI4 Experiment: Control torque inputs recorded when brushing 
past a horizontal bar at higher speed using a link-jerk-feedback scheme. 
 
The wrist joint stuttering/chattering arising from torque input 
saturation is clearly showcased in the video attachment. 

VII. DISCUSSION OF CONTROLLER LIMITATIONS 

Although the UMVIC scheme is less dependent on model-
based terms, as compared to other, existing trajectory-
tracking controller designs for flexible-joint robots (with 
stability guarantees), it still falls short of solving the tracking 
problem in a model-free manner while offering stability 
guarantees, e.g. global asymptotical stability. Moreover, 
obtaining a highly accurate motor dynamics model might be 
challenging, especially if the robot exhibits manifold 
nonlinear stiffness, damping, friction, and backlash 
phenomena that may be time- and temperature-dependent; 
this requirement is ultimately determined by the nature of the 
robotic hardware. At any rate, the accuracy of the motor 
dynamics model will inevitably dictate the performance of the 
UMVIC scheme, especially since nonlinear impedances give 
rise to a need for first and second derivatives of the 𝐊 and 𝐃 
matrices. Another means of improving tracking (but not 
interactional) performance is via usage of integral action on 
the link position; however, this exceeds the current work’s 
scope and will therefore constitute the topic of future study. 
Although the proposed method offers stability guarantees 
when using impedance gains modulated at arbitrary rates, 
whilst also avoiding usage of link jerk signals, it does not 
explicitly deal with how these gains should be selected – this 
topic is addressed extensively in [28][29][41][42][43].  

VIII. CONCLUSION 

This work presents a novel control scheme, namely UMVIC, 
that is capable of endowing ASRs – comprising both linear 
and nonlinear passive stiffness elements – with the ability to 
simultaneously track trajectories, and safely interact with 
their environments; this is achieved, for the first time, in the 
absence of the link inertia and Coriolis matrices. In addition 
to enabling unconstrained VIC (with stability guarantees) for 
improved interaction, the proposed UMVIC scheme permits 
usage of non-collocated state feedback elements for enhanced 
tracking performance. Most importantly, however, the 
aforementioned features are effectuated by means of a simple 
control scheme that relies on partial knowledge of the link-
side dynamics model, given that it obviates the need for 
computation of the link inertia matrices, Coriolis/centrifugal 
terms, and any variables exceeding the third-order derivative 
of the motor position vector; this stands in stark contrast to 

analogous schemes. Experimental data extracted from the 
Baxter robot demonstrates the usefulness of VIC in practical 
applications requiring both interaction and tracking control. 
Moreover, the experiments corroborate this work’s theoretical 
results, by means of demonstrating stable execution of all the 
relevant, practical tasks. 

APPENDIX A 

Inserting 𝒒𝒆𝒒 = �̇�𝑻 �̇�𝑬
𝑻 𝒒𝑬𝑺

𝑻 𝜽𝑬
𝑻 = 𝟎 into the system 

comprising equations (3)-(5) and (27) yields: 
 
                                          𝐌(𝒒)�̈� = 𝟎,                                     (43) 
                                𝟎 = 𝐊𝐏𝐌𝐭

𝜽𝑬 + 𝐊𝐏𝐉𝐭
𝒒𝑬.                            (44) 

 
Acknowledging the fact that 𝐌(𝒒) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, owing to 
�̇� = 𝟎, then by virtue of 𝐌’s invertibility, �̈� = 𝟎. Since the 
dynamics vanishes at this point, then it corresponds to the 
system’s origin; this can also be cross verified by inserting 
𝒒𝒆𝒒 = 𝟎 into 𝑉, which yields 𝑉 = 0. In fact, this is the only 
point at which 𝑉 = 0. An interesting case arises when �̇� ≠ 𝟎, 
𝜽𝑬 = 𝟎, and �̇�𝒆 = 𝟎 (Lemma 1), since the controller 
instantaneously enforces 𝒒 = 𝑐𝑜𝑛𝑠𝑡., and �̇� = 𝟎, due to 
𝑎 = 0. Plugging these values into 𝑉 yields: 
 

                                      𝑉 = 𝒒𝑻𝐊𝐏𝐉
𝒒,                                     (45)  

                                       �̇� = �̇�𝑻𝐊𝐏𝐉
𝒒.                                       (46) 

 
�̇� always vanishes since �̇� = 𝟎, although 𝑉 only vanishes if 
𝒒 = 𝟎. However, this again corresponds to the origin given 
that 𝒒𝒆𝒒 = �̇�𝑻 �̇�𝑬

𝑻 𝒒𝑬𝑺

𝑻 𝜽𝑬
𝑻 = [�̇�𝑻 �̇�𝑬

𝑻 −𝒒𝑻 𝜽𝑬
𝑻] =

𝟎, when 𝑎 = 0, thereby producing: 
 
               −𝐃�̇� − 𝐊𝜽 = 𝝉𝒈𝒒 − 𝐃�̇� − 𝐊(𝜽𝒅 − 𝒒𝒅),             (47) 

 
which – given that 𝝉𝒈𝒒(𝟎) = 𝟎 – reduces to:  

 
                                            𝐊𝒒𝒅 = 𝟎,                                        (48) 
 
This merely confirms that 𝒒 = 𝟎 when 𝒒𝒅 = 𝟎 (and vice 
versa); in other words, that 𝒒𝑬 = 𝟎. 

APPENDIX B 

The scalar term, 𝑎 , is constructed as follows: 
 
                                         𝑎 = �̇�𝒆

𝑻�̇�𝐏𝑰𝑹,                                 (49) 
 
while 𝑎 = 1 − 𝑎 . Additionally, the 𝑎  scalar is given as: 
 
                                      𝑎 = �̇�𝑻𝐐𝐕𝐀

𝑰𝑽𝑨
,                                (50) 

 
where 𝐐𝐕𝐀

= 𝑑𝑖𝑎𝑔(�̇�) ∈ ℝ × , and 𝑰𝑽𝑨
= [1 … 1 ]𝑻 ∙

𝑟𝑎𝑛𝑘 𝐐𝐕𝐀
. Hence, 𝑎 = 1 when �̇� ≠ 𝟎, and 𝑎 = 0 

when �̇� = 𝟎. Moreover, the scalar 𝑎 = (𝑎 − 1 −
𝑎 )(𝑎 − 1 − 𝑎 ) , where: 
 
                            𝑎 = �̈�𝑭𝑻

𝑻 �̇�𝑭𝑻

𝑻 ∙ 𝐐𝐅𝐓
𝑰𝑭𝑻

,                      (51) 
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with 𝐐𝐅𝐓
= 𝑑𝑖𝑎𝑔 �̈�𝑭𝑻

, �̇�𝑭𝑻
, 𝑰𝑭𝑻

= [1 … 1 ]𝑻 ∙ 𝑟𝑎𝑛𝑘 𝐐𝐅𝐓
. 

APPENDIX C 

If 𝐊 and 𝐃 contain time-varying elements, then: 
 
                �̇� = �̇� + 𝐊 𝑎 �̇� + 𝑎 �̇� − 𝑎 �̇��̇�

− 𝑎 𝐃�̈� − �̇�𝜽 + �̇�𝒒 ,                     (52) 
 

       �̈� = �̈� + 𝐊 𝑎 �̈� + 𝑎 �̈�𝒈𝒒 − �̈��̇� − 2�̇��̈� − 𝐃𝜽

− �̈�𝜽 − 2�̇��̇� + �̈�𝒒 + 2�̇��̇� ,       (53) 
 

in view of the fact that 𝑎  and 𝑎  switch between binary 
values (0 and 1 only) instantaneously, and their derivatives 
are therefore assumed to be zero. Even without making this 
assumption, it is still possible to compute �̇�  and �̈�  via the 
above expressions, as they are user-defined terms that do not 
violate any of the conditions stipulated by the NIP. If the user 
opts for 𝜽𝒅 = 𝒒𝒅 + 𝐊 𝝉 − 𝐃�̇�  instead (equation (30)), 
while 𝐊 and 𝐃 are time-varying, then it is possible to use 
expressions (52), (53) after inserting 𝑎 = 0, 𝑎 = 1. 
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