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Abstract

Estimated age from brain MRI data has emerged as a promising biomarker of neuro-

logical health. However, the absence of large, diverse, and clinically representative

training datasets, along with the complexity of managing heterogeneous MRI data,

presents significant barriers to the development of accurate and generalisable models

appropriate for clinical use. Here, we present a deep learning framework trained on

routine clinical data (N up to 18,890, age range 18–96 years). We trained five sepa-

rate models for accurate brain age prediction (all with mean absolute error

≤4.0 years, R2 ≥ .86) across five different MRI sequences (T2-weighted, T2-FLAIR, T1-

weighted, diffusion-weighted, and gradient-recalled echo T2*-weighted). Our trained

models offer dual functionality. First, they have the potential to be directly employed

on clinical data. Second, they can be used as foundation models for further refine-

ment to accommodate a range of other MRI sequences (and therefore a range of clin-

ical scenarios which employ such sequences). This adaptation process, enabled by

transfer learning, proved effective in our study across a range of MRI sequences and

scan orientations, including those which differed considerably from the original train-

ing datasets. Crucially, our findings suggest that this approach remains viable even

with limited data availability (as low as N = 25 for fine-tuning), thus broadening the

application of brain age estimation to more diverse clinical contexts and patient

populations. By making these models publicly available, we aim to provide the scien-

tific community with a versatile toolkit, promoting further research in brain age pre-

diction and related areas.
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1 | INTRODUCTION

Brain age estimation uses neuroimaging data to determine an individ-

ual's biological age and has shown potential as a biomarker of neuro-

logical health (Cole & Franke, 2017). The underlying assumption is

that typical brain development and ageing processes follow predict-

able trajectories and that divergences from these patterns can signal

neurodegenerative processes or accentuate age-related brain health

issues. Such deviations are quantified in individuals by comparing their

estimated brain age with their chronological age, resulting in a brain-

predicted age difference (brain-PAD) (Cole et al., 2017; Smith

et al., 2019). A positive brain-PAD, indicating an older-appearing brain

compared to actual chronological age, has been associated with

numerous neurological and psychiatric conditions (Franke &

Gaser, 2019) and future health outcomes (Biondo et al., 2022; Elliot

et al., 2021; Popescu et al., 2020). These findings underscore the pos-

sible value of brain age estimation as a non-invasive tool for

early diagnosis, patient stratification, and monitoring of disease

progression.

A key goal of brain age research is to ultimately benefit patients

(Kelly et al., 2019). However, realising this goal will involve overcom-

ing several challenges. One challenge is the lack of representativeness

of research datasets (Agarwal et al., 2023; Agarwal & Wood et al.,

2023; Din et al., 2023), particularly public datasets commonly used for

training brain age models. This applies not only to the demographics

of the study participants, but also to the nature of the MRI data

(e.g. sequences and acquisition parameters) and to the data quality.

Another related challenge is training sample size, whereby smaller

samples are less likely to be representative of downstream test sets,

hence limiting generalisability. One option to overcome this would be

to train models from scratch using local data that are more represen-

tative of the target population. However, this is not possible in many

circumstances, where local data suitable for training are not routinely

acquired, budgets for large-scale data collection are limited, or dis-

eases have a low prevalence.

A promising avenue for making machine learning models more

representative and generalisable is transfer learning. Put simply, the

idea is to transfer what is learned from one machine learning task to

another task (Chelliah et al., 2024; Zhuang et al., 2020). This type of

‘domain adaptation’ typically involves ‘fine-tuning’ the original model

using a subset of labelled data from the second task. Using a pre-

trained model in this way aims to benefit downstream model training

speed (i.e. the time to convergence) and performance compared to

training a new model from scratch, where the network weights and

biases are initialised randomly. Transfer learning is an established

technique in natural language processing (Devlin et al., 2018;

Howard & Ruder, 2018) and computer vision (Yosinski et al., 2014)

and is becoming increasingly popular in neuroimaging (Agarwal

et al., 2021; Ardalan & Subbian, 2022). Transfer learning has already

been applied with some success in the context of brain age (Chen

et al., 2020; Jonsson et al., 2019; Leonardsen et al., 2022), showing

how using pre-trained models can improve downstream prediction in,

for example, specific disease groups. However, these studies all used

research cohorts with high-quality MRI and only focused on a single

modality (T1-weighted or diffusion-weighted).

Here, we aimed to use transfer learning to overcome some of the

limitations of previous brain age studies, building on our previous

work showing how convolutional neural network (CNN) models of

brain age can be trained to predict age from various clinical-grade

(i.e. non-volumetric) MRI modalities (Wood et al., 2022a). We trained,

at scale, different brain age models for different modalities, using data

from a large and clinically representative dataset, with the goal of gen-

erating a framework for transferring knowledge (i.e. pre-trained

models) to a breadth of possible scenarios.

We hypothesised that we could train accurate age prediction

‘baseline’ models from clinical-grade scans of five different MRI

sequences (T2-weighted, T2-FLAIR, T1-weighted, diffusion-weighted

(DWI), and gradient-recalled echo (GRE) T2*-weighted) and that the

most accurate performance could be achieved by combining predic-

tions with an ensemble of all five models. We further hypothesised

that transfer learning could be used to improve generalisability in a

variety of downstream scenarios, namely out-of-sample testing on

(i) data with equivalent acquisition parameters acquired at a different

site, (ii) data with the same modality but a different primary acquisi-

tion plane, or (iii) data of a different modality from the baseline pre-

trained model. This was done by comparing prediction performance of

baseline models with no fine-tuning versus fine-tuned models or

when training on the new data from scratch (i.e. no transfer learning).

Finally, we explored the necessary sample sizes required to achieve

improved performance during fine-tuning.

2 | MATERIALS AND METHODS

2.1 | Datasets

All data were de-identified. The UK National Health Research Author-

ity and Research Ethics Committee approved this retrospective study

(IRAS ID 235,658, REC ID 18/YH/0458).

2.1.1 | Head MRI clinical datasets for brain age
model development

The dataset used in this study was the same as that used in previous

brain age modelling work (Wood et al., 2022a). Briefly, all 81,936 adult

(≥18 years old) head MRI examinations performed in the UK at Guy's

and St Thomas' NHS Foundation Trust (GSTT) and King's College Hos-

pital NHS Foundation Trust (KCH) between 2008 and 2019 were col-

lected retrospectively. The MRI scans were performed using Ingenia

1.5 T (Philips Healthcare, Eindhoven, Netherlands), Aera 1.5 T

(Siemens, Erlangen, Germany), Signa 1.5 T HDX (General Electric

Healthcare, Chicago, USA), or Skyra 3 T (Siemens, Erlangen, Germany)

scanners. The corresponding free-text radiology reports produced by

17 expert neuroradiologists were extracted from the Computerised

Radiology Information System (CRIS) (Healthcare Software Systems,
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Mansfield, UK). These reports were predominantly unstructured, typi-

cally consisting of 5–10 sentences describing the image interpretation,

along with comments regarding the patient's clinical history and

recommended actions for the referring physician.

The number of MRI sequences acquired during each examination

in this dataset ranged from 1 to 8 (Figure A1 in Appendix A). The most

frequently acquired sequence and orientation combinations were axial

T2-weighted, axial DWI, coronal T2-FLAIR, sagittal T1-weighted, and

axial GRE T2*-weighted images, performed in 97.2%, 78.5%, 66.1%,

43.8%, and 43.7% of examinations, respectively. We elected to

develop individual ‘baseline’ brain age models for these five common

sequences and explore transfer learning using public datasets (IXI,

OASIS-3, ADNI—described in detail below) to facilitate brain age

modelling for scans that appeared with lower frequency in our study

dataset (e.g. susceptibility-weighted and proton density-weighted

images). Our baseline brain age models therefore serve a dual pur-

pose. First, they can be directly used to predict brain age using the

specific MRI sequence they were trained on. Second, they serve as

foundation models for transfer learning, allowing further tuning on

new, possibly smaller datasets, to improve generalisability perfor-

mance or to adapt to a range of other MRI sequences not seen during

the initial training.

A subset of ‘radiologically normal for age’ examinations was iden-

tified using a dedicated transformer-based neuroradiology report clas-

sifier (Wood et al., 2020, 2021; Wood et al., 2022b). This model was

trained using a large dataset of neuroradiology reports from KCH

(N = 5000) which had been annotated by a team of five expert neuro-

radiologists (UK consultant grade; US attending equivalent) as either

‘radiologically normal for age’ or ‘radiologically abnormal for age’
based on well-defined criteria (Benger et al., 2023; Wood et al., 2020;

Wood et al., 2022b). Briefly, findings that could lead to a subsequent

clinical intervention were labelled as ‘abnormal’ (a referral for case

discussion at a multidisciplinary team meeting was considered the

minimal intervention). Importantly, the abnormal category included

findings deemed ‘excessive for age’ (e.g. excessive volume loss and

extensive small vessel disease observed on T2-weighted images).

In this previous work, the classifier demonstrated near-perfect accu-

racy (area under the receiver operating characteristic curve

[AUC] = 0.991) on a testing dataset of 500 radiology reports from

KCH and generalised to an external testing dataset of 500 reports

from GSTT (AUC = 0.990).

In the current study, a total of 22,302 examinations from the

larger dataset were identified as ‘radiologically normal for age’ and

included for baseline brain age model development (male/

female = 9299/14,003, mean age = 43.6 ± 15.3 years, age

range = 18–96 years). Validation (N = 1500) and testing (N = 2000)

datasets were created by randomly selecting 3500 examinations

(N unique patients = 3500) from the subset that included all five MRI

sequences (Figure 1). We removed any overlapping instances of

patients that were present in the testing or validation datasets from

the remaining pool of examinations, resulting in a training dataset of

18,890 examinations comprising different numbers of each type

of MRI sequence (Table 1). This method of dividing the data ensured

that (i) all baseline brain age models were tested on a dataset of the

same size using the same examinations and (ii) there was no ‘data
leakage’ (i.e. patients in the training set did not appear in the valida-

tion or testing sets).

Henceforth, we refer to these datasets as the ‘internal clinical
datasets’, to distinguish them from the ‘out-of-sample testing datasets’
presented in Section 2.1.2.

2.1.2 | External ‘out-of-sample testing’ datasets

To determine whether there is an improvement in baseline model

generalisability following fine-tuning with transfer learning, images

from three publicly accessible datasets were utilised. These datasets

included equivalent MRI sequences present in the internal clinical

datasets used for baseline brain age model development

(Section 2.1.1), along with MRI sequences not typically acquired dur-

ing routine clinical examinations.

All axial T2-weighted (N = 560), axial DWI (N = 389), and volu-

metric T1-weighted (N = 563) scans from the Information eXtraction

from Images (IXI) healthy subject dataset were obtained (Table 2).

These scans were acquired at three different UK institutions between

2005 and 2008 (Hammersmith Hospital, using a Phillips 3 T system;

Guy's Hospital, using a Phillips 1.5 T system; and the Institute of Psy-

chiatry, Psychology and Neuroscience, using a GE 1.5 T system) and

can be downloaded from https://brain-development.org/ixi-dataset/.

Similarly, all axial susceptibility-weighted images (SWI) (N = 453) and

axial T2-FLAIR images (N = 381) for the subset of first-visit, cogni-

tively normal participants from the Open Access Series of Imaging

Studies (OASIS-3) dataset were obtained. These scans were acquired

at the Washington University Knight Alzheimer Disease Research

Center using three different Siemens scanners (Vision 1.5 T, TIM Trio

3 T, and BioGraph mMR PET-MR 3 T) and can be downloaded from

https://www.oasis-brains.org/. Finally, all axial proton density (PD)-

weighted (N = 773), volumetric DWI (N = 101), and volumetric

T2-FLAIR (N = 503) images for the subset of normal participants only

from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) data-

set were obtained. The scans were performed across 49 sites in the

United States (see https://adni.loni.usc.edu/about/centers-cores/

study-sites/), using 1.5 T Siemens, 1.5 T GE, and 1.5 T Philips

scanners and can be downloaded from https://adni.loni.usc.edu/data-

samples/access-data/. Figure 2 provides an overview of all the differ-

ent types of head MRI scans used in this study.

2.2 | Neuroimaging processing

We performed minimal pre-processing of raw head MRI scans. Specif-

ically, axial T2-weighted, axial DWI, coronal T2-FLAIR, sagittal T1-

weighted, axial GRE T2*-weighted, axial SWI, axial PD-weighted, and

volumetric T1-weighted images with arbitrary resolution and dimen-

sions, stored as Digital Imaging and Communications in Medicine

(DICOM) files, were converted into NIfTI format, resampled to
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common voxel sizes and dimensions (1.4 mm3), and then cropped or

padded to achieve a uniform image size (182 mm � 182 mm � 182

mm, corresponding to a 3D array, or ‘tensor’, with dimensions

130 � 130 � 130). Each image's intensity was normalised by sub-

tracting the mean and dividing by the standard deviation. Spatial reg-

istration, bias field correction, and skull-stripping were not performed.

All pre-processing was carried out using open-source software:

dcm2niix (Li et al., 2016) for DICOM-to-NIfTI conversion, NiBabel

(Brett et al., 2020) for loading and manipulating NIfTI files, and Project

MONAI (Cardoso et al., 2022) for resampling and resizing images.

To explore the application of transfer learning to allow our base-

line models to generalise to research datasets which often contain

All adult (   18 years) head MRI examinations performed at GSTT and KCH between 2008 and 2019

Exclue examinations which do not contain any of i) axial T2-weighted; ii) axial DWI; 

iii) coronal T2-FLAIR; iv) sagittal T1-weighted; or v) axial GRE T2*-weighted images

Exclude 'radiologically abnormal' examinations

15,553 12,228

57,252

79,642

81,936

7363

23,302

Validation set

1500

Testing set

2000

Randomly sample examinations which contain all five MRI sequences (unique patients only)  

3500

Examinations to be classi fied as either 'radiologically normal' 

or 'radiologically abnormal' using NLP model

'Radiologically normal' examinations for brain age model development

Exclude examination because patient appears in the 

validation or testing sets

912

Ax. T2-weighted

18,890 7306

Ax. DWI Cor. T2-FLAIR Sag. T1-weighted Ax. GRE T2*-weighted

Internal clinical training sets Internal clinical validation and testing sets

2294

F IGURE 1 Flow chart depicting the process of creating the internal clinical datasets used in this study. To capture the diversity of
examinations seen in clinical practice, we did not exclude any reported examinations on the basis of image quality.

TABLE 1 Radiologically normal for age ‘internal clinical datasets’ used for training and testing our baseline brain age models.

Dataset N scans

Age, years (mean ± standard

deviation)

Age, years

range

Unique

patients Male/female

Axial T2-weighted (training) 18,890 43.7 ± 15.4 18–96 14,507 7685/11,205

Axial DWI (training) 15,553 44.1 ± 15.1 18–96 12,402 6114/9439

Coronal T2-FLAIR (training) 12,228 42.4 ± 14.7 18–94 10,113 4774/7454

Sagittal T1-weighted (training) 7263 42.8 ± 14.4 18–94 6485 2515/4748

Axial GRE T2*-weighted (training) 7306 45.4 ± 15.7 18–94 6295 3141/4165

Validation (all sequences) 1500 42.9 ± 14.7 18–94 1500 574/926

Testing (all sequences) 2000 43.1 ± 14.3 18–94 2000 744/1256

Note: The datasets are clinically representative, containing patients of diverse ethnicity (40% non-white) covering the full adult lifespan (18–96 years).

4 of 16 WOOD ET AL.
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high-resolution images that have been skull-stripped and spatially reg-

istered, a separate processed dataset was created. We removed non-

brain tissue from all 560 axial T2-weighted scans in the IXI dataset

using HD-BET (Isensee et al., 2019), a publicly available deep learning-

based skull-stripping tool accessible at https://github.com/MIC-

DKFZ/HD-BET. The images were then resampled to a uniform voxel

size (1 mm3) and aligned, via non-linear registration, to the MNI152

template using ANTsPy (Tustison et al., 2021). The final images mea-

sured 182 mm � 218 mm � 182 mm; the corresponding tensors had

dimensions 182 � 218 � 182.

2.3 | Brain age modelling

Each baseline brain age model was based on the ‘DenseNet201’
architecture (Huang et al., 2017), with modifications to accommodate

3D neuroimaging data. Our network (Figure 3) consists of an initial

block of 64 convolutional filters and a ‘max pooling’ layer, followed

by four ‘densely connected’ convolutional blocks. Each dense block

comprises alternating pointwise and volumetric convolutions which

are repeated 6, 12, 48, and 32 times across the four blocks, respec-

tively. Between each dense block are ‘transition layers’ which consist

of a point convolution and an average pooling layer. Global average

pooling is applied to the output of the final dense block, resulting in a

1920-dimensional feature vector which is converted by a fully con-

nected layer into a prediction for the patient's age.

We elected to use a standard, pre-existing network, rather than

design a custom architecture, to ensure reproducibility and transpar-

ency of our framework. The incorporation of a global average pooling

layer in DenseNet201 made it an attractive choice as it allows for the

handling of images of different sizes to those encountered during

training.

The brain age models used in this study were adapted from the

Project MONAI DenseNet201 implementation. All experiments were

conducted using PyTorch 1.7.1 (Paszke et al., 2019) with two NVIDIA

RTX 2080 graphics processing units (GPUs). Each baseline model was

trained by minimising the L1 loss (i.e. absolute error loss) between

chronological age and predicted age, with the Adam optimiser

(Kingma & Ba, 2014) used to update CNN weights. The batch size

was set to 14 as this was the maximum possible size using two 12-GB

GPUs. The learning rate for baseline model training was initially set to

10�4 and then reduced by a factor of 2 after every five epochs with-

out improvement on the validation set. In total, each model was

trained for 100 epochs; however, checkpoints were saved after each

epoch, and the model configuration with the lowest validation set loss

was used for testing. In other words, early stopping was employed.

The mean absolute error (MAE), Pearson's correlation (r), and the

coefficient of determination (R2) were used to quantify baseline model

performance in the internal clinical test sets. Pearson's correlation was

also used to quantify the pair-wise agreement between brain age pre-

dictions produced by separate baseline models for patients in the

internal clinical test sets. Paired Student's t tests were used to test

the statistical significance of differences in performance between the

baseline models.

We also explored the use of ensemble methods to enhance the

accuracy of brain age prediction in our internal clinical test sets. Two

different aggregation strategies were applied to combine the predic-

tions of individual baseline models into a single examination-level pre-

diction of brain age. The first strategy involved a simple mean

aggregation approach, whereby the predicted age was obtained by

averaging the predictions from each baseline model (i.e. predicted

age = [axial T2-weighted prediction + coronal T2-FLAIR prediction

+ sagittal T1-weighted prediction + axial DWI prediction + axial GRE

T2*-weighted prediction]/5). The second strategy utilised a weighted

aggregation approach, whereby the predicted age was determined by

combining the predictions of each baseline model using different

weights (i.e. predicted age = αT2 * axial T2-weighted prediction

+ αFLAIR * coronal T2-FLAIR prediction + αT1 * sagittal T1-weighted

prediction + αDWI * axial DWI prediction + αGRE * axial GRE T2*-

weighted prediction). We determined the optimal weights (i.e. αT2,

αFLAIR, αT1, αDWI, and αGRE) by fitting a 5-parameter linear regression

model with no intercept term using predictions obtained for the vali-

dation set. Regression modelling was performed using scikit-learn

0.24.0 (Pedregosa et al., 2011), and all hyperparameters were set to

the default values.

We evaluated the performance of our pre-trained baseline

models with out-of-sample test set images in three distinct ways.

First, we examined model performance without any additional fine-

TABLE 2 External, publicly accessible ‘out-of-sample testing datasets’ utilised for transfer learning experiments.

MRI sequence Dataset N scans

Age, years (mean ± standard

deviation)

Age range,

years Male/female

Axial T2-weighted IXI 560 48.6 ± 16.5 20–86 247/313

Volumetric T1-weighted IXI 563 48.7 ± 16.5 20–86 250/313

Axial DWI IXI 389 52.3 ± 15.8 20–86 175/214

Axial SWI OASIS-3 453 66.0 ± 8.8 42–95 175/278

Axial T2-FLAIR OASIS-3 381 68.2 ± 9.1 42–92 156/225

Axial PD-weighted ADNI-3 773 77.2 ± 5.3 61–93 368/405

Volumetric T2-FLAIR ADNI-3 503 71.9 ± 8.3 51–95 199/304

Volumetric DWI ADNI-3 101 74.2 ± 7.5 55–90 41/60

Note: These scans were also used to generate a test set of skull-stripped, spatially normalised images (Section 2.2).
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tuning, which we refer to as ‘out-of-sample testing without transfer

learning’. Second, we applied transfer learning, using 80% of the out-

of-sample test set data for fine-tuning and reserving 20% for testing,

a process we term ‘out-of-sample testing with transfer learning’. Finally,
we compared these results with those obtained from architecturally

identical models that were trained entirely from scratch using the

external, publicly available datasets exclusively (i.e. without any trans-

fer learning); we refer to this as ‘de novo out-of-sample training with-

out transfer learning’. Confidence intervals for the transfer learning

and de novo testing approaches were generated using a fivefold

F IGURE 2 Overview of the different types of head MRI scans used for brain age modelling in this study. A transfer learning experiment using
skull-stripped data is described in Section 2.2.
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cross-validation procedure, ensuring that each image was only tested

once. For model fine-tuning, the initial learning rate was set to 10�5

and then reduced by a factor of 2 after every five epochs without

improvement on the out-of-sample validation set. All other hyperpara-

meters (i.e. optimiser and mini-batch size) were identical to those used

during the original baseline model training.

A summary of our out-of-sample testing approaches is provided

in Figure 4.

The impact of our transfer learning approach was assessed in

three scenarios: (i) using out-of-sample MRI sequences and orienta-

tions which matched those used to train the corresponding baseline

models (e.g. fine-tuning the axial T2-weighted baseline model with

out-of-sample axial T2-weighted images); (ii) using closely related

sequences and orientations (e.g. fine-tuning the sagittal T1-weighted

model with out-of-sample volumetric T1-weighted images); and

(iii) using markedly different sequences and orientations (e.g. fine-

tuning the axial T2-weighted model with out-of-sample axial

susceptibility-weighted, PD-weighted images, or even skull-stripped

axial T2-weighted images). An overview of these three transfer learn-

ing scenarios is provided in Figure B1 in Appendix B.

To explore the influence of sample size on the baseline model

fine-tuning process, we conducted sample size control experiments.

We separately applied transfer learning to baseline models with vary-

ing numbers of out-of-sample scans serving as the fine-tuning training

dataset (specifically 10, 25, 50, 100, 150, 200, 250, 300, and

350 scans). For each sample size, we used a consistent test set

(N = 135) and generated confidence intervals by repeating the train-

ing and testing process using five separate training datasets randomly

sampled from the remaining scans.

Scripts to enable readers to run and fine-tune our trained baseline

models using their own MRI scans are available at https://github.

com/MIDIconsortium/BrainAge.

F IGURE 3 DenseNet201 3D convolutional neural network architecture used in this study. Also shown are the output sizes at each internal
layer of the network for an input image of size 182 mm � 182 mm � 182 mm, corresponding to an image tensor of shape 130 � 130 � 130.
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F IGURE 4 Overview of the three out-of-sample testing procedures used in this study. ‘Out-of-sample testing without transfer learning’ (left)
involves the direct application of baseline models to out-of-sample (i.e. IXI, OASIS-3, or ADNI) data without any further fine-tuning. ‘Out-of-
sample testing with transfer learning’ (middle) involves fine-tuning the baseline models, with a subset of the out-of-sample data serving as an
additional training set and the remaining out-of-sample data used for testing. ‘De novo out-of-sample training and testing without transfer
learning’ (right) involves training architecturally identical DenseNet201 models from scratch (i.e. without transfer learning), with out-of-sample
data serving as the training and testing sets.

F IGURE 5 Scatter plots of predicted age versus chronological age in the internal clinical testing sets for each baseline model. Accurate age
estimation was achieved for all five models (MAE ≤ 4.0 years, r ≥ .93), with the highest accuracy observed using the axial T2-weighted model
(MAE = 2.85 years, r = =.97).
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3 | RESULTS

3.1 | Brain age prediction using baseline models

All baseline models, representing the five commonest sequences and

orientations in study dataset, predicted chronological age with high

accuracy in the internal clinical testing datasets (MAE ≤ 4.0 years,

Pearson's correlation, r ≥ .93). The axial T2-weighted model achieved

the best test set performance (MAE = 2.85 years, r = .97), followed

by the coronal T2-FLAIR (MAE = 3.25 years, r = .96), sagittal T1-

TABLE 3 Brain age prediction results for the five baseline models
considered in this study using the internal clinical testing datasets.

Baseline model

MAE

(years)

Pearson's

correlation (r)

Coefficient of

determination (R2)

Axial T2-weighted 2.85 .97 .94

Coronal T2-FLAIR 3.25 .96 .92

Sagittal T1-weighted 3.38 .95 .90

Axial DWI 3.55 .95 .90

Axial GRE T2*-weighted 4.00 .93 .86

F IGURE 6 Pair-wise scatter plots comparing brain age predictions for patients in the internal clinical testing sets using different baseline
models. Strong correlation (r ≥ .92) between predictions was seen for all pairs of models. To avoid redundancy, no duplicate graphs are shown
(the underlying correlation matrix is symmetric with unit diagonal as shown in Figure C1 in Appendix C).

WOOD ET AL. 9 of 16

 10970193, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26625 by T
est, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



weighted (MAE = 3.38 years, r = .95), axial DWI (MAE = 3.55 years,

r = .95), and axial GRE T2*-weighted (MAE = 4.00 years, r = .93)

models (Figure 5; Table 3).

When comparing the five different baseline models with one

another, highly correlated pairwise predictions were seen (r ≥ .92)

(Figure 6).

3.2 | Ensemble models for enhanced brain age
prediction

An ensemble model which combined the predictions of each baseline

model through a simple mean aggregation strategy outperformed all

baseline models individually using the same internal clinical testing

dataset (p < .0001) (MAE = 2.51 years, r = .97) (Figure 7; Table 4).

Prediction accuracy was further improved using a weighted aggrega-

tion strategy (p = .00013) (MAE = 2.44 years, r = .98). The optimal

weights were found to be αT2 = 0.47, αT1 = 0.17, αDWI = 0.17,

αFLAIR = 0.11, and αGRE = 0.09.

3.3 | Generalisability to out-of-sample testing data

Baseline models, tested on out-of-sample images with the equivalent

sequences and orientations as the corresponding internal clinical

training datasets, accurately predicted chronological age without any

additional fine-tuning. In other words, strong out-of-sample generali-

sability was observed. The axial T2-weighted model accurately pre-

dicted chronological age using axial T2-weighted scans from the IXI

dataset (MAE = 4.21 years, r = .96); likewise, the axial DWI model

accurately predicted chronological age using axial DWI images, also

from IXI (MAE = 4.43 years, r = .94) (Figure 8; Figure D1 in Appendix

D). Applying transfer learning to these models resulted in improved

brain age prediction in the IXI external dataset (axial T2-weighted:

MAE = 3.08 years, r = .97, p < .0001; axial DWI: MAE = 3.87 years,

r = .95, p < .0001). For both IXI MRI sequences, baseline models with

and without transfer learning outperformed de novo out-of-sample

training using architecturally identical models (axial T2-weighted:

MAE = 4.83 years, r = .93, p < .0001; axial DWI: MAE = 9.05 years,

r = .75, p < .0001) (Table 5).

Baseline models tested on out-of-sample images with sequences

and orientations that were closely related to the corresponding

internal clinical training datasets demonstrated a reduction in generali-

sability when there had been no additional fine-tuning. The sagittal

T1-weighted model predicted chronological age using volumetric

T1-weighted scans from the IXI dataset with moderate accuracy

(MAE = 7.86 years, r = .84). The coronal T2-FLAIR model predicted

chronological age using axial T2-FLAIR scans from the OASIS-3 data-

set with moderate accuracy (MAE = 9.87 years, r = .79); likewise, the

coronal T2-FLAIR model predicted chronological age using volumetric

T2-FLAIR scans from the ADNI-3 dataset with moderate accuracy

F IGURE 7 Brain age estimation using ensemble models. Employing mean aggregation to merge individual baseline model predictions resulted
in more accurate estimates of brain age compared with using individual baseline models alone (left) (MAE = 2.51 years, r = .97). A further
improvement in accuracy was achieved by adopting a weighted aggregation approach (right) (MAE = 2.44 years, r = .98), with the optimal
weights found to be αT2 = 0.47, αT1 = 0.17, αDWI = 0.17, αFLAIR = 0.11, and αGRE = 0.09.

TABLE 4 Brain age prediction results for the two ensemble
strategies considered in this study: mean aggregation and weighted
aggregation.

Ensemble model
MAE
(years)

Pearson's
correlation (r)

Coefficient of
determination (R2)

Mean aggregation 2.51 .97 .95

Weighted

aggregation

3.44 .98 .96
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(MAE = 8.49 years, r = .76). Finally, the axial DWI model predicted

chronological age using volumetric DWI scans from the ADNI-3 data-

set with moderate accuracy (MAE = 6.94 years, r = .73). Applying

transfer learning with these models resulted in substantial improve-

ments (volumetric T1-weighted: MAE = 4.12 years, r = .95, p < .0001;

axial T2-FLAIR: MAE = 3.88 years, r = .86, p < .0001; volumetric T2-

FLAIR: MAE = 3.78 years, r = 0.83, p < .001; volumetric DWI:

MAE = 3.69 years, r = .79, p < .001). In all cases, transfer learning

outperformed de novo out-of-sample training and testing using

architecturally identical models (volumetric T1-weighted: MAE = 5.66

years, r = .90, p < .0001; axial T2-FLAIR: MAE = 4.80 years, r = .76,

p < .0001; volumetric T2-FLAIR: MAE = 4.34 years, r = .76, p < .001;

volumetric DWI: MAE = 6.20 years, r = .42, p < .001) (Figure 8;

Figure D2 in Appendix D; Table 5).

Baseline models tested on out-of-sample images with sequences

that were markedly different to the corresponding internal clinical

training datasets demonstrated a large reduction in generalisability

when there had been no additional fine-tuning. The best individual
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F IGURE 8 Boxplots showing baseline model generalisability for out-of-sample scans. Models were tested (i) without additional training,
which we refer to as ‘out-of-sample testing without transfer learning’ (dotted red lines), and (ii) after applying transfer learning with a subset of
the out-of-sample data serving as an additional fine-tuning training dataset, which we refer to as ‘out-of-sample testing with transfer learning’
(green boxes). Comparison was made with additional, architecturally identical models trained ‘from scratch’ (i.e. without transfer learning) using
out-of-sample data exclusively, which we refer to as ‘de novo out-of-sample training without transfer learning’ (blue boxes). In all cases, applying
transfer learning outperformed de novo out-of-sample training.

TABLE 5 Generalisability of our baseline models to out-of-sample images with sequences and orientations that were equivalent or closely
related to the corresponding internal clinical training datasets.

Baseline model
Out-of-sample test
scans

Testing without transfer
learning Testing with transfer learning De novo out-of-sample training

MAE
(years)

Pearson's
correlation (r)

MAE
(years)

Pearson's
correlation (r)

MAE
(years)

Pearson's
correlation (r)

Axial T2-weighted Axial T2-weighted (IXI) 4.21 .96 3.08 .97 4.83 .93

Axial DWI Axial DWI (IXI) 4.43 .94 3.87 .95 9.05 .75

Volumetric DWI

(ADNI-3)

6.94 .73 3.69 .79 6.20 .42

Coronal T2-FLAIR Axial T2-FLAIR

(OASIS-3)

9.87 .79 3.88 .86 4.80 .76

Volumetric T2-FLAIR

(ADNI-3)

8.49 .76 3.78 .83 4.34 .76

Sagittal T1-weighted Volumetric T1-

weighted (IXI)

7.86 .84 4.12 .95 5.66 .90
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baseline model (axial T2-weighted) failed to predict chronological age

accurately (axial SWI scans: MAE = 20.94 years; axial PD-weighted

scans: MAE = 26.54 years; axial T2-weighted scans with 1 mm3 vox-

els, brain tissue removed and spatially registered: MAE = 11.34 years).

However, applying transfer learning with this baseline model resulted

in substantial improvements (axial SWI scans: MAE = 4.65 years; axial

PD-weighted scans: MAE = 3.92 years; axial T2-weighted scans with

1 mm3 voxels, brain tissue removed and spatially registered:

MAE = 4.21 years). Again, transfer learning outperformed de novo

out-of-sample training with architecturally identical models (axial SWI

scans: MAE = 6.50 years, p < .0001; axial PD-weighted scans:

MAE = 7.78 years, p < .0001; axial T2-weighted scans with 1 mm3

voxels, brain tissue removed and spatially registered: MAE = 4.51

years, p = .023) (Figure 9).

3.4 | Dataset size control analysis

By applying transfer learning using different fine-tuning training sam-

ple sizes, we observed that substantial improvements in age estima-

tion can be achieved with only modest quantities of out-of-sample

scans. In all three scenarios (i.e. when applied to scans matching, or

similar to, or markedly different from those in the corresponding inter-

nal clinical training datasets), baseline model performance rapidly

improved with as little as 25–100 out-of-sample scans and plateaued

with dataset sizes greater than 200 (Figure 10).

4 | DISCUSSION

In this study, we have presented an accurate, robust, and generalisa-

ble deep learning framework for brain age prediction using a variety

of common MRI sequences. Our results emphasise the value of train-

ing at scale using large and diverse training datasets and underscore

the importance of ensemble methods and transfer learning in improv-

ing accuracy and generalisability.

Several key elements distinguish our study. First, the use of a

cutting-edge, transformer-based neuroradiology report classifier

enabled us to generate a large, clinically representative training data-

set (Wood et al., 2020, 2021, 2022). This step successfully overcame

a significant obstacle often faced in brain age model development

(i.e. identifying radiological normal scans in a large hospital dataset),

resulting in a diverse and realistic set of training data that accurately

represents clinical populations (Agarwal et al., 2023; Booth et al.,

2023; Din et al., 2023). The diversity of our data, encompassing a

range of scanner vendors, acquisition protocols, patient ethnicities,

and a wide age span (18–96 years), added robustness to our models.

As a result, our baseline models demonstrated strong generalisation

with out-of-sample data and formed an effective basis for further

enhancements through ensemble methods and transfer learning.

Ensemble methods are another key component of our study.

These methods integrate the strengths of multiple distinct models,

thereby enhancing prediction performance and reducing individual

model biases. In the context of multi-sequence brain age prediction,

ensemble methods offer a unique advantage. They allow predictions

from models trained on diverse MRI sequences to be combined, effec-

tively harnessing complementary information from different

sequences that may capture different aspects of brain ageing. In our

study, we implemented two ensemble aggregation strategies: mean

and weighted. Both strategies outperformed all individual baseline

models, clearly demonstrating the value of information integration.

Notably, our weighted aggregation strategy indicated that different

MRI sequences contribute to prediction accuracy to varying degrees.

This insight, which may reflect the differential sensitivity of various
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F IGURE 9 Boxplots showing
the impact of transfer learning
when applied to images markedly
different from those in the
corresponding internal clinical
datasets used for baseline model
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weighted baseline model was
fine-tuned to predict brain age in

out-of-sample axial SWI, axial PD-
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weighted images. Comparison is
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training. In all cases, transfer
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sequences to certain aspects of brain ageing, could inform future

research by guiding the selection of the most informative sequences

or those that provide complementary information (Cole et al., 2020;

Wood et al., 2019).

The successful application of transfer learning was another key

aspect of our study. Transfer learning, the technique of using knowl-

edge gained from one task to improve performance on a related but

different task, has been shown to be well suited for brain age predic-

tion (Chen et al., 2020; Jonsson et al., 2019; Leonardsen et al., 2022).

The inherent diversity of MRI data (either within the clinic or research

settings), such as differences in resolution, field strength, sequence

weighting, and orientations, can make it challenging to develop gener-

alisable models.

Unlike much existing work that predominantly relies on models

pre-trained on unrelated tasks, such as ImageNet for image recogni-

tion (Bashyam et al., 2020; Jiang et al., 2019; Lin et al., 2021), our

study uniquely capitalises on pre-trained brain age models for fine-

tuning. By doing so, we highlight the potential benefits of domain-

specific pre-training, which likely provides an advantage in model

adaptation with knowledge directly relevant to the current task. This

approach allows our models to leverage domain-specific features and

patterns, improving their performance on brain age prediction.
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F IGURE 10 Transfer learning dataset size control analysis. Shown is the testing set MAE as a function of out-of-sample fine-tuning training
dataset size for axial T2-weighted (top left), axial DWI (top right), volumetric T1-weighted (bottom left), and axial SWI images from the IXI and
OASIS-3 datasets, using the axial T2-weighted, axial DWI, sagittal T1-weighted, and axial T2-weighted baseline models, respectively. In all cases,
rapid improvement (i.e. decreased MAE) was observed using as few as 25–100 scans, with improvements plateauing using fine-tuning training
datasets larger than 200 scans.
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In our study, transfer learning played two key roles. It improved the

generalisability of our models to out-of-sample scans that closely

matched the training data, and importantly, it enabled model

adaptation for use with scans underrepresented in the training data. Fur-

thermore, our dataset size control analysis indicated that effective fine-

tuning could be achieved with a very small number of scans, in some

cases as low as N = 25, thus supporting the potential utility of transfer

learning for brain age prediction, even in settings with very limited data.

The ability to fine-tune our models to fit various clinical scenarios

and MRI sequences suggests a potential for wider application of brain

age estimation. Such fine-tuned models could be used across a broad

range of neurological and psychiatric disorders, as well as in health-

care settings with diverse MRI technologies and practices. Further-

more, the fact that this fine-tuning can be accomplished with limited

datasets indicates the potential for extending brain age estimation to

a variety of patient groups, potentially with varying demographics and

varying MRI sequences.

Our study has some limitations. While our models exhibited

strong generalisability across different MRI sequences, we did not

evaluate their performance on more specialised sequences

(e.g. perfusion imaging) or in specific clinical scenarios (e.g. for a given

diagnosis). Future investigations should focus on evaluating the per-

formance of the models in these specialised scenarios to validate their

applicability. Additionally, the level of improvement gained through

transfer learning may vary depending on the degree of similarity

between the original and new tasks. Further investigation is needed

to understand the extent to which transfer learning can enhance per-

formance in different scenarios. Furthermore, the varying sizes of our

baseline model training datasets might have influenced the derived

weights in the ensemble model, potentially biasing the contribution of

each sequence. Therefore, caution should be exercised when inter-

preting the weights obtained from the ensemble models, and future

studies should explore methods to mitigate this potential bias if it

proves to be relevant.

In conclusion, our study presents a flexible and effective approach

for brain age prediction using MRI data. By demonstrating the power

of ensemble methods and transfer learning, we aim to inspire further

exploration in this area and potentially others within the field of neu-

roradiology. Future studies should address the limitations mentioned

and further validate the performance and applicability of the proposed

framework in specialised clinical contexts.

By making our pre-trained models openly accessible, we hope to

provide the scientific community with a versatile toolkit that can be

used directly or further fine-tuned to suit the specific requirements of

different clinical scenarios and MRI sequences.
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