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A B S T R A C T   

Adolescence is a crucial period for physical and psychological development. The impact of negative life events 
represents a risk factor for the onset of neuropsychiatric disorders. This study aims to investigate the relationship 
between negative life events and structural brain connectivity, considering both graph theory and connectivity 
strength. A group (n = 487) of adolescents from the IMAGEN Consortium was divided into Low and High Stress 
groups. Brain networks were extracted at an individual level, based on morphological similarity between grey 
matter regions with regions defined using an atlas-based region of interest (ROI) approach. Between-group 
comparisons were performed with global and local graph theory measures in a range of sparsity levels. The 
analysis was also performed in a larger sample of adolescents (n = 976) to examine linear correlations between 
stress level and network measures. Connectivity strength differences were investigated with network-based 
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statistics. Negative life events were not found to be a factor influencing global network measures at any sparsity 
level. At local network level, between-group differences were found in centrality measures of the left somato- 
motor network (a decrease of betweenness centrality was seen at sparsity 5%), of the bilateral central visual 
and the left dorsal attention network (increase of degree at sparsity 10% at sparsity 30% respectively). Network- 
based statistics analysis showed an increase in connectivity strength in the High stress group in edges connecting 
the dorsal attention, limbic and salience networks. This study suggests negative life events alone do not alter 
structural connectivity globally, but they are associated to connectivity properties in areas involved in emotion 
and attention.   

1. Introduction 

Adolescence is defined as a transitional period between childhood 
and adulthood, with physical, emotional and physiological changes. It 
begins with puberty until the attainment of sexual maturity and neu
robehavioral characteristics associated with the adulthood (Holmbeck, 
2002). Throughout adolescence, brain changes occur in both grey (GM) 
and white matter (WM), reflected in the structural re-organization of 
affective and cognitive systems (Juraska and Markham, 2004; Scherf 
et al., 2013). 

Giedd and colleagues described how GM volume changes follow an 
inverted U shape from childhood to adulthood (Giedd et al., 1999), 
reaching its peak during adolescence. In particular, the frontal and pa
rietal lobes reach the peak sooner than the temporal lobe (Gogtay et al., 
2004). Evans described connectivity covariance of morphological met
rics based on structural imaging throughout life (Evans, 2013), exam
ining the development of brain networks from childhood to adolescence. 
They showed that local efficiency of neural communication among brain 
regions increased until late adolescence, while global efficiency showed 
the opposite trend. When they explored region-specific changes, they 
found within- and between-connectivity increases in limbic and asso
ciation regions during the later ages of adolescence (Khundrakpam 
et al., 2013). 

The high level of plasticity characterizing adolescence makes the 
brain sensitive to stress following negative events, which may influence 
the typical developmental pathway. The term “stress” was coined by 
Hans Selye in 1936 to indicate “the non-specific response of the body to 
any demand for change” (Szabo et al., 2012), whereas the event trig
gering such response was defined “stressor”. There are many studies 
showing an association between stress and neural network interactions, 
and there has been a particular attention on amygdala connectivity 
(Etkin et al., 2011; Hakamata et al., 2017; Mehta et al., 2018) which are 
linked to alterations in hypothalamic-pituitary-adrenal (HPA) axis 
function (Urry, na; Gee et al., 2013). Such alterations can affect the ef
ficiency of information flow among brain regions, especially in limbic 
areas associated to decision making, emotion and reward systems 
(Eiland and Romeo, 2013). Previously it has been shown that the 
severity and nature of negative events affects different areas of the 
adolescent brain: adverse early-life events were associated with de
creases of grey matter volume in the anterior prefrontal areas, whereas 
socially stressful events were related to changes in orbitofrontal cortex, 
amygdala and other subcortical regions (Tyborowska et al., 2018). 

The impact of adverse early-life events on the brain has been asso
ciated to mnemonic and emotional processes of the limbic system 
(Khundrakpam et al., 2013). One study investigating the relationship 
between perceived stress and emotional-related brain networks showed 
how the amygdala and the ventromedial prefrontal cortex interaction 
changes at different stages of adolescence, suggesting a different 
emotional reaction to stress over time. They found a positive relation
ship between perceived stress and amygdalar-ventromedial prefrontal 
connectivity in adolescence, whereas young adults showed the opposite 
pattern (Wu et al., 2018). Other studies showed connectivity alterations 
in adolescents who suffered maltreatment (Ohashi et al., 2017), PTSD 
(Suo et al., 2015) and MDD (Xu et al., 2018), especially in the salience, 
default-mode (DMN) and frontolimbic networks (McEwen, 2012); 

disrupted connectivity associated to adverse events can affect aspects of 
self-awareness and introspection crucial during this life stage. Regarding 
the brain regions more affected by stressful events, those found to be 
altered were the middle temporal gyrus, dorsolateral prefrontal, poste
rior cingulate and occipital cortices, when compared to healthy controls 
(Viard et al., 2019). 

Other studies have focused on the effect of stress on the functional 
connectivity in resting state networks, for example it has been found that 
adolescents that experienced childhood abuse had lower functional 
connectivity between the left prefrontal cortex to other regions within 
the frontal-parietal network (FPN) during performance of a demanding 
attentional task compared to healthy subjects (Hart et al., 2017). 
Another study that examined the same brain network, found that psy
chosocial stress was correlated to impaired attentional control and a 
decrease in functional connectivity within the FPN (Liston et al., 2009). 
The results related to the FPN are consistent with the idea that stress are 
associated with decreases in functional connectivity within the FPN, as 
well as decrease performance during attentional tasks mediated by the 
FPN network. 

Beyond the FPN network, there have been cross-sectional studies 
examining the impact of early adversities have found changes in fMRI 
resting state networks in the default mode network (DMN), salience 
network (SN), dorsal attentional network (DAN) (Herzberg et al., 2021; 
Fan et al., 2017; Wang et al., 2014). The effect of stress, quantified using 
graph analysis, have found differences based on resting state data in the 
context of childhood abuse (Wozniak et al., 2013), maternal separation 
(Herzberg et al., 2021), and prenatal alcohol exposure (Long et al., 
2019). In addition, a longitudinal study of adolescents that were exposed 
to childhood maltreatment, found maltreatment to be associated with 
increased between-network connectivity (Rakesh et al., 2021). Another 
longitudinal study, including adolescents from ages 9 to 19, found 
altered developmental network plasticity (SAN, DMN, FPN) as a func
tion of deprivation, neglect, and unpredictability, with widespread brain 
changes in response to deprivation but the effects of unpredictability 
localised to the SAN (Chahal et al., 2022). The cross-sectional and lon
gitudinal studies show that psychosocial stress impacts the develop
mental pathway of the brain although there are inconsistencies across 
studies that may be related to differences in recruited groups, mea
surements differences (of stress) across studies, as well as differences in 
neuroimaging analysis stategies. 

In addition to functional connectivity, structural connectivity mea
sures have been shown to be a valid biomarker to investigate stress ef
fects on the adolescent brain (Khundrakpam et al., 2016). Graph theory 
can be used to calculate connectivity measures (Sporns, 2013) that 
quantify structural network properties of centrality, segregation and 
integration between different “nodes” (brain regions) connected by 
“edges” (structural connections between nodes) (Bullmore and Sporns, 
2009; van den Heuvel and Sporns, 2013). 

The objective of this study is to explore differences in structural 
connectivity strength and brain network properties in a population of 
healthy adolescents with adverse life events. In the first analysis, we 
examined if there were differences in structural connectivity between 
two groups of adolescents that reported different levels of perceived 
early-stress life events. In a second analysis we examined if there was a 
linear association between the number of stressful events and changes in 
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structural connectivity. 

2. Methods and materials 

2.1. IMAGEN population 

Participants were from the IMAGEN study (Schumann et al., 2010), a 
longitudinal study on adolescent brain development and behavior, with 
data being collected from eight different centers across Europe (in 
Germany, UK, France and Ireland). The IMAGEN cohort has more than 
2200 adolescents who underwent a series of behavioral, neuropsycho
logical assessments, genetic screening and neuroimaging. Parents gave 
informed written consent and adolescents gave written assent to the 
study procedure prior to inclusion. All procedures were approved by 
each local institutional ethics committee. Further descriptions of the 
study design, sample, and recruitment procedure, including data storage 
and safety can be found elsewhere (Schumann et al., 2010). Tables 1 and 
2 describe the demographic information of the sample used for each 
analysis, represented by participants who passed the MRI quality check 
and had all the covariates included in the analysis. The Pubertal 
Development Scale (PDS) is a commonly used self-report questionnaire 
designed to assess the stage of pubertal development in adolescents. The 
Socio-Economic-Status (SES) scores describe the occupational status and 
educational attainment of the participants’ parents; the total SES score is 
obtained by summing the numerical values assigned to each category of 
parental occupation and education. The SES is considered to be an 
important factor influencing psychological outcomes and provides a 
measure of the participant’s access to economic resources and social 
position in relation to others. To assess for the potential presence of 
mental health disorder, the participants were assessed with the Devel
opment and Well-Being Assessment (DAWBA) questionnaire (Goodman 
et al., 2000), which is designed to generate DSV-IV and ICD-10 psychi
atric diagnosis – in our sample the mean probability of diagnosis of 
depression, general anxiety or post-traumatic stress disorder were very 
low (see Table 1). 

2.2. Participants for between-group comparison 

There were 487 participants (age mean=14.45 ± 0.55) divided into 
Low Stress and High Stress groups (see Table 1 for demographic data). In 
a previous study, participants were defined to have high levels of stress 

when they experienced NLEs ≥ 4, which was shown to be a statistically 
significant exposure to stress in 15% of the population (Galinowski et al., 
2015) (Caspi et al., 2003). The number of NLEs and the cumulative 
negative score were used as cut-off value to divide participants into Low 
and High stress groups. In this study, adolescents who experienced from 
none to 5 NLEs with a total score from − 5 to 0 were categorized as Low 
Stress, while those who had 6 or more NLEs and total score from − 20 to 
− 11 were defined as High Stress. Both groups were gender balanced (p 
= 0.16). 

2.3. Negative life events assessment 

The perceived stress levels due to negative life events were measured 
with the Life Event Questionnaire (LEQ) (Newcomb et al., 1981), - a 
39-item questionnaire – which was used to assess the level of stress in 
participants, with each question describing a life event, and participants 
were asked to indicate if such event ever happened in their lifetime. The 
questions from the LEQ used in this study are based on those chosen in a 
previous study by Galinowski (Galinowski et al., 2015) plus two more, i. 
e., “changed school” and “got poor grades at school”. The scoring scale 
for each question had a range from − 2 (very negative) to + 2 (very 
positive), indicating the event desirability. The number of total NLEs 
was calculated by adding up every event rated as negative by the 
participant. 

2.4. Imaging 

The magnetic resonance imaging (MRI) scans were acquired at eight 
IMAGEN sites with all centers using 3 T MRI systems. High-resolution 
T1-weighted images were obtained from different manufacturers 
(Siemens: five sites, Philips: two sites, General Electric: one site). Briefly, 
T1-weighted anatomical images were acquired using 3D MPRAGE se
quences (resolution = 1.1 ×1.1 ×1.1 mm; TR = 2300 ms; TE = 2.9 ms). 
Functional images were acquired with GE-EPI sequences (resolution =
3.4 × 3.4 mm; slice thickness = 2.4 mm; TR = 2200 ms; TE = 30 ms). 
MRI acquisition protocols and quality checks have been described 
elsewhere (Schumann et al., 2010), based on the ADNI protocol 
(http://www.loni.ucla.edu/ADNI/Cores/in-dex.shtml), which allowed 
comparable data to be acquired from all sites despite these scanner 
differences. More details are available on the IMAGEN github page: 
https://github.com/imagen2/imagen_mri. 

2.5. MRI Analysis 

2.5.1. Preprocessing and Extraction of Brain Networks 
Images were pre-processed in SPM8, and segmented into grey matter 

(GM), white matter (WM) and cerebro-spinal fluid (CSF). Brain networks 
were extracted using a method previously published (Tijms et al., 2012). 
Briefly described, the technique divides the gray matter segmentation of 
an individual’s brain from the first nonempty voxel into cubes with di
mensions of 3x3x3 voxels (6x6x6 mm3). Morphological similarity be
tween all cube pairs (ROIs) was calculated based on linear correlation 
(Tijms et al., 2013), rotating each cube relative to the other one to find 

Table 1 
Demographic information of the sub-sample considered in this study. Abbrevi
ations: NLEs = negative life events; LEQ= life event questionnaire; PDS= pu
bertal development scale; SES= socio-economic status.  

N = 487 Low Stress High Stress p-value 

Group 
size 

360 127  

Gender Female 178 
(49.4%) 

Female 72 
(56.7%) 

p =
0.160 

Male 182 
(50.6%) 

Male 55 
(43.3%)  

Age 14.44 ± 0.56 14.47 ± 0.547 p =
0.527 

Nr of 
NLEs 

2.71 ± 1.22 8.96 ± 1.41 p <
0.001 

LEQ 
scores 

-3.36 ± 1.419 -14.18 ± 2.389 p <
0.001 

PDS 15.89 ± 2.830 16.68 ± 2.439 p = 0.99 
SES 6.76 ± 3.215 8.5 ± 3.172 p <

0.001 
DAWBA Depression 0.32 ±

0.65 
0.61 ± 0.88 p <

0.001 
Anxiety 0.29 ±

0.67 
0.78 ± 1.06 p <

0.001 
Post-traumatic 
stress 

0.01 ±
0.10 

0.08 ± 0.34 p <
0.001  

Table 2 
Demographic information of the sample considered in the partial correlation 
analysis. Abbreviations: NLEs = negative life events; LEQ= life event ques
tionnaire; PDS= pubertal development scale.  

N ¼ 976 

Gender Male 452 (46%) 
Female 524 (54%) 

Age 14.45 ± 0.453 
Nr of NLEs 5.09 ± 2.465 
LEQ score -7.199 ± 3.9 
PDS 16.29 ± 2.72  
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the maximum linear correlation between them (this was the final cor
relation coefficient value considered for each voxel pair). The utilization 
of these cubes preserves the 3D integrity of the cortex, leveraging spatial 
details from the MRI scan alongside the gray matter voxel values. This 
preservation of spatial information within the cubes yields a parameter 
that mirrors the local thickness and folding pattern of the cortex (Tijms 
et al., 2013). Previously, structural connectivity calculated from cortical 
thickness was used to describe the modular architecture of the brain 
based on the morphological connections between different regions 
(Chen et al., 2008). Such approach has been used for group-averaged 
network analysis, while the focus of this study was to investigate con
nectivity differences on a single-subject level (for more information 
about brain morphology: (Madan, 2017)). 

2.5.2. Matrix resizing 
The atlas used for the voxel-based analysis was developed by 

Schaefer and colleagues, organized into 400 ROIs and 17 networks 
(Schaefer et al., 2017). Table 3 describes the 17 networks and the brain 
areas that are part of each network. A complete list of the 400 parcels 
belonging to the 17 networks is found in the Supplementary Methods 
and in Figs. S1 and S2. 

The atlas was non-linearly registered to individual MRIs using 
DARTEL in SPM8 (Klein et al., 2009) to adjust for the different brain 
shape across participants. The linear correlation coefficient between 
each pair of voxels was allocated to the respective 400 ROIs in the atlas. 
All the linear correlation values belonging to the same ROI were then 
averaged, obtaining a matrix of 400 × 400 for each participant – we 
defined this process matrix resizing. To create a symmetric matrix, the 
transpose of the upper triangle was calculated. A graphical representa
tion of the correlation matrices resizing is included in the Supplemen
tary Material (Fig. S3). 

2.5.3. Thresholding levels 
Fisher’s r-to-z transformation was applied to the correlation 

matrices. Seven different sparsity levels (from 0.05 to 0.35 with in
crements of 0.05) were chosen to investigate whether different thresh
olds affected the network analysis between groups. Sparsity is defined as 

connectivity density in brain networks, i.e., the percentage of existing 
connections compared to the maximum number of possible connections 
in the network (Sporns, 2013). For example, with a sparsity level of 0.2, 
only the highest 20% of all the connections was retained to calculate the 
graph measures. Finally, all the correlation matrices were binarized to 
create unweighted and undirected networks (see Fig. 1). 

Graph theory measures were quantified using Brain Connectivity 
Toolbox (Rubinov and Sporns, 2010). The global graph theory measures 
calculated were mean cluster coefficient (CP), mean degree centrality 
(DC), characteristic path length (LP), small-worldness (SW) and global 
efficiency. The local graph theory measures were nodal betweenness 
centrality (BC), nodal degree and nodal clustering coefficient. Cluster 
coefficient (CP) describes the number of connections among a node’s 
topological neighbors (Sporns, 2013), and it can provide insights into 
the local efficiency and organization of neural connections. Character
istic path length (LP) indicates the global average of the shortest paths in 
the network (Rubinov and Sporns, 2010) and it is linked to global effi
ciency of information processing, that is the average of the inverse of all 
the distances across the nodes (Stam and Reijneveld, 2007). Node cen
trality is measured by degree and betweenness centrality (i.e., how 
central a brain region is within a network compared to others). Degree 
centrality (DC) is defined as the number of edges for each node (Bull
more and Sporns, 2009; Rubinov and Sporns, 2010), while betweenness 
centrality (BC) measures centrality at a local level, indicating the frac
tion of all shortest paths in the network that pass through a given node 
(Stam and Reijneveld, 2007). Nodes with high BC or DC are defined 
network hubs (van den Heuvel and Sporns, 2013). Hub nodes may play a 
crucial role in integrating information and facilitating communication 
between different parts of the brain. Networks with high CP and short LP 
present a property of small-worldness, which influences the network 
wiring cost (Watts and Strogatz, 1998). 

2.6. Statistical analysis 

2.6.1. Between-group comparisons 
To examine between-group statistical differences on global graph 

theory measures, ANCOVA models (in SPSS v.24, IBM Inc, USA) were 
used on the mean cluster coefficient, mean degree centrality, path 
length, global efficiency and small-worldness, with age, sex, center, PDS 
and social-economic score (SES) as covariates. Sex and center were 
dummy coded in the model. Included in our statistical models were age, 
sex, center, pubertal development scale (PDS) and SES as covariates. 

At a local level, only network hubs were inspected, running two- 
tailed t–tests on nodal betweenness and degree centrality and cluster 
coefficient. In this study, ROIs which had BC and DC values at 2 SD 
above the mean were identified as network hubs. For the CP all the 400 
ROIs were considered, since differences in overall distributions between 
the groups were of interest. Statistical tests were corrected for multiple 
comparisons using false discovery rate (FDR), based on the Benjamini 
and Hochberg procedure (Benjamini and Hochberg, 1995). 

2.6.2. Whole-group correlation between graph theory and stress measure 
We investigated if there was a linear association between the global 

graph theory measures (mean CP, LP, SW, global efficiency and mean 
DC) and the level of stress for each participant (represented by the total 
number of NLEs individually). The partial correlation coefficient was 
calculated at each sparsity level controlling for age, gender, center and 
PDS (Petersen et al., 1988). PDS scores were standardized, using 
z-transformation. 

2.6.3. Connectivity strength analysis with NBS 
Our interest was also investigating the association between stress 

with edge connectivity strength between two nodes (such strength is 
indicated graphically by different edge thickness). To do so, we used 
Network-based Statistics (NBS) (Zalesky et al., 2010), a toolbox based on 
a nonparametric statistical method to correct for multiple comparisons. 

Table 3 
Regions of interest (ROIs) that comprise the 17 networks in Schaefer template. 
Additional details of the networks are included in the supplementary data.  

Networks Name network ROls 

1 Visual Central Striate, extrastriate 
2 Visual 

peripheral 
Striate, extrastriate 

3 SomatomotorA Central sulcus, secondary somatosensory 
4 SomatomotorB Auditory cortex, central sulcus 
5 DorsaI Attention 

A 
Temporal Occipital, parietal occipital, superior 
parietal lobule 

6 Dorsal Attention 
B 

Post-cingulate, frontal eye field, precuneus 

7 Salience A Ventral Attention Par opercularis, insular cortex, 
medial parietal and frontal 

8 Salience B Ventral Attention Lateral, ventral, medio-parietal, 
orbital frontal cortex 

9 Limbic Orbito-frontal 
10 Limbic Temporal pole 
11 Control A Temporal, inferior parietal sulcus, dorsal and 

lateral prefrontal cortex, cingulate 
12 Control B Inferior parietal lateral, dorsal, ventro-lateral 

prefrontal and medio-parietal frontal 
13 Control C Posterior cingulum, precuneus 
14 Default A Dorsal and medio-dorsal prefrontal, posterior 

cingulate 
15 Default B Temporal, inferior parietal, ventral and dorsal 

prefrontal 
16 Default C Inferior parietal, retrosplenial, parahippocampal 
17 Temporo- 

parietal 
Temporal cortex  
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In this study between-group differences at a single connection level were 
analyzed, controlling for false discovery rate, based on 100,000 per
mutations, α = 0.05 and a two-sided t-test between groups. Any edge 
showing a p-values lower than the α value was considered statistically 
significant. 

3. Results 

3.1. Between-group differences 

Chi-square tests showed no statistically significant differences be
tween groups in age, sex, or PDS scores, and the two groups did not differ 
in intracranial volume (p = 0.23). There was no statistically significant 
effect of scanning centers when comparing between groups (χ2 = 0.104). 

There were no statistically significant between-group differences in 
the global graph theory measures. The statistical model was run at each 
sparsity level both with and without SES (SES was statistically signifi
cantly different between the two groups); inclusion of the SES covariate 
in model did not alter results. Confidence intervals (CIs) at 95% for the 
global measures at each sparsity level are shown in Fig. S4. The data 
were also analysed with inclusion of the intracranial volume as a co
variate – no changes in results from previous model were found. 

Fig. 2 shows the node rank in the two groups at sparsity 10% based 
on DC. Statistically significant increases of DC were found in the High 
Stress group in the left (xyz coord: [− 14 − 84 − 13]) and right (xyz 
coord: [18–86]) extrastriate areas of the central visual network at 
sparsity 10% (t = − 2.736, pcorr=0.048 and t = − 2.951, pcorr= 0.048 
respectively), and in the posterior cingulate node of the left dorsal 
attention network (xyz coord: [− 42 − 37 46]) at sparsity 30% 
(t = − 2.993, pcorr= 0.042). No between-group statistically significant 
differences were detected in the other sparsity levels. 

At a sparsity 5%, there was a statistically significant decrease of BC in 
the left somato-motor cortex (xyz coord: [− 10 − 41 72]) in the High 
stress group (t = 3.674, pcorr=0.0042). Fig. 3 also illustrates the location 
of the highest nodes at this sparsity level. No other statistically 

significant differences between BC hubs were detected in other sparsity 
levels. 

Examining nodal CP, where all 400 nodes were considered, no p- 
value survived FDR correction, except for the network at sparsity 35%, 
where an increase was seen in part of the orbito-frontal cortex (pcorr=

0.04) in the High stress group. No statistically significant between-group 
differences were seen at the other sparsity levels. 

3.2. Whole-group partial correlations 

Partial linear correlations showed no statistically significant linear 
correlation between any of the global measures and level of stress in the 
whole group of adolescents (p > 0.05). A graphical example of partial 
linear correlation plots at sparsity 15% is shown in Fig. S5. 

3.3. Connectivity strength results 

There were statistically significant increases of edge connectivity 
strength in the High stress compared to the Low stress as shown in Fig. 4. 
Specifically, two statistically significant increases were seen: an inter- 
hemispheric edge connecting a part of the orbito-frontal cortex (xyz 
coordinates = [− 11 21 − 4]) to part of the right superior parietal lobule 
(xyz coord= [25 − 85 34]), belonging respectively to the limbic network 
and dorsal-attention network (t-value= 3.83, p < 0.0001). The second 
edge connected the posterior cingulate cortex node of the left dorsal 
attention network (xyz coord= [− 42 − 37 46]) to the pars opercularis 
node of the left salience network (xyz coord= [− 53 − 49 30]), t-test 
= 4.39, p < 0.00001. There were no statistically significant increases in 
connectivity detected in the Low stress compared to the High stress. 

4. Discussion 

In this study we examined if there were structural connectivity al
terations with negative life events in the adolescent brain. Graph theory 
measures were calculated across a range of different sparsity levels. In 

Fig. 1. Brain network extraction pipeline. Graphical representation of the method used to calculate brain networks and extract graph theory measures. Correlation 
matrices are built by calculating the morphological similarity between two cubes. Connectivity matrices are resized based on an atlas with 400 ROIs, and binary 
matrices are produced applying different thresholds which reflect different sparsity levels. 
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the between-group analysis, there were no changes in global network 
measures between Low and High Stress groups. The results from local 
measures analyses showed differences in centrality measures only at 
specific thresholds, otherwise no statistically significant results were 
detected between groups. In addition, the analysis on connectivity 
strength with NBS revealed hyper-connectivity between edges con
necting nodes that belonged to emotion and attention-related networks. 

The lack of statistically significant results in the global measures 
between groups suggested that stressful early-life events does not lead to 
global structural connectivity changes in the brain. Ho and colleagues 
reviewed studies on stress effect on brain connectivity, considering both 
graph theory metrics and edge strength, and found no statistically sig
nificant differences in global graph theory measures between adoles
cents suffering of neuropsychiatric disorders and healthy controls. They 
concluded this might be because the neurobiological basis of such 
metrics such as small-worldness, path length and efficiency is well 
established before adolescence (Ho et al., 2018). 

In the second analysis, we examined if there was a linear association 
between number of stressful events and brain connectivity. The lack of 
statistically significant relationship between the LEQ and the global 
network measures across sparsity levels has been confirmed by previous 
findings (Ho et al., 2018), showing that stress due to negative life events 
is not associated to changes of global connectivity in adolescents. A few 
of studies suggested that employing diverse stress measures and 
considering varying severity levels may result in unique brain responses, 
as evidenced by specific patterns of connectivity. The implication is that 
the choice of stress assessment and its intensity can influence the 
observed neural connectivity patterns, emphasizing the importance of 
considering these factors in the interpretation of study outcomes (van 

Oort et al., 2017; Keshmiri, 2020). 
The connectivity strength analysis with NBS showed an increase in 

two edges of the High stress group. The first edge connected the orbito- 
frontal cortex (OFC) of the left limbic network to the superior parietal 
lobule (SPL) of the right dorsal attention network (DAN). The second 
edge connected the pars opercularis of the left ventral attention network 
(VAN) to the posterior cingulate cortex of the left DAN. These results 
confirmed previous studies on connectivity, showing the role of SPL in 
top-down attention and visuospatial cues processing (De Bellis et al., 
2015); volume reductions in this region were found in adolescents 
suffering with stress-related disorders, for example PTSD (Tan et al., 
2013) and MDD (De Bellis et al., 2015). In another study structural al
terations in the OFC and parietal lobe were found in children victim of 
physical abuse, correlated with social and learning difficulties (Hanson 
et al., 2010). 

The pars opercularis within the cingulo-opercular network (CON), 
plays a role in maintaining vigilance and alertness for tasks involving 
working memory (Sadaghiani and D’Esposito, 2015). This node has 
shown a strong responsiveness to cortisol levels in the body (Frodl and 
O’Keane, 2013), and alterations in its connectivity have been linked to 
both general and social anxiety disorders (Sylvester et al., 2012). Sheth 
and colleagues suggested chronic stress might lead to disruption be
tween limbic and prefrontal circuits during adolescence. Alterations in 
the connectivity of the ventromedial prefrontal and orbitofrontal cortex 
have been observed in correlation with elevated cumulative stress. This 
is linked to increased propensity for risk-taking behaviors and a reduc
tion in the regulation of emotional responses (Sheth et al., 2017), which 
are characteristic of adolescence. 

An increase of connectivity strength was also seen in the posterior 

Fig. 2. Between-group degree centrality differences. Hubs rank changes between Low and High stress groups based on degree centrality at sparsity of 10%. The 
ROI names on the y axis indicate the hemisphere, the network, the brain area and the number of the brain area subregions. The size of the node is proportional to 
betweenness value and color of node indicates to which neural network it belongs to. Starts are indicating statistically significant differences of degree centrality 
between groups. Error bars indicate the standard error. 
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cingulate node of the DMN in adolescents with higher stress levels. The 
same findings were previously associated to exposure to social stressors 
(Clemens et al., 2017), that could be associated to an enhancement of 
alertness state in the high stress group. 

The between-group difference found in degree centrality of the vi
sual central network in the high stress group emphasizes a higher 
number of edges connecting the visual central nodes to other brain re
gions (Soares et al., 2013). An increase of degree was seen in a 
sub-region of the posterior cingulate, which is part of the dorsal atten
tion network, confirming the results of the connectivity strength anal
ysis. In the Schaefer template, the posterior cingulate (together with the 
precuneus) is also part of the DMN, and a few studies suggested that 
sub-regions of the PCC are related to other networks such as attentional, 
somato-motor and executive control networks (Leech et al., 2012) (Veer 
et al., 2011). This might explain the relation between the structural 
changes in the PCC and stress-related responses. For example, in a 
previous study focused on PTSD, it was found that stress had implica
tions beyond altering the connectivity of the posterior cingulum. 
Furthermore, they identified a direct correlation between the 
re-experiencing of PTSD symptoms and connectivity alterations (Weis 
et al., 2018). The authors proposed that alterations in connectivity were 
primarily associated to the real occurrence of neuropsychiatric symp
toms associated with stress, rather than solely the stress factor itself. 
Other nodes emerging as hubs included those from the limbic, central 

executive, and attentional networks, aligning with findings from earlier 
research (Power et al., 2010; Sacchet et al., 2016). 

The decrease of nodal betweenness centrality found in the left 
somato-motor network of the High stress could also be explained by 
morphological alterations during adolescence. With the onset of pu
berty, GM loss was seen firstly in primary sensorimotor areas and later in 
association areas (Gogtay et al., 2004; Ernst and Mueller, 2008) 
spreading rostrally over the frontal cortex and caudally over the parietal 
and temporal cortex (Paus, 2005). In developmental studies, 
somato-motor centrality measures were indicated as potential predictors 
of neuropsychiatric disorders, such as ADHD in children (dos Santos 
Siqueira et al., 2014). 

Explorations into brain connectivity are impacted by methodological 
decisions encompassing factors like network segmentation, choice of 
neuroimaging technique, and the chosen parcelling approach. An 
important aspect in connectivity analyses is the selection of sparsity 
level, indicating the quantity of nodes and edges examined relative to 
the total potential connections in the graph. The decision to calculate 
graph theory metrics across seven different sparsity levels was made to 
ascertain whether statistically significant results were consistent across 
various levels, rather than being confined to a single level. 

In a few studies the influence of sparsity level on the brain connec
tivity measures was investigated, by calculating the intra-class correla
tion coefficient (ICC) on both structural (DTI) (Dennis et al., 2012; Yuan 

Fig. 3. Between-group betweenness centrality differences. Hubs rank in both groups based on betweenness centrality at sparsity= 0.05. In the bottom part of the 
figure, the size of the node is proportional to betweenness value and color of node indicates to which neural network it belongs to. In the bar charts, the star indicates 
the region with a statistically significant between-group difference (FDR corrected). The ROI names on the y axis indicate the hemisphere, the network, the brain area 
and the number of the brain area subregions. Error bars indicate the standard error. 
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et al., 2019) and rs-fMRI (Wang et al., 2011). For example, Dennis and 
colleagues found that LP and global efficiency were very unstable until 
sparsity level of 25%. Cluster coefficient had some dips within the 
sparsity range of 30–35%, whereas small-worldness presented many 
fluctuations, with peaks and dips (Dennis et al., 2012). Path length and 
global efficiency were less reliable than CP, since longer connections 
were seen to be trimmed before the shorter ones. Results on rs-fMRI 
confirmed CP low reliability, whereas nodal degree centrality showed 
high reliability (Wang et al., 2011). Finally, the most reliable connec
tions were found to belong to the frontal cortex, suggesting the metric 
reliability was also influenced by the areas involved in the networks. 
Overall, this indicates the tight relationship between the calculation of 
graph theory measures and the sparsity level. 

An important point to highlight in this study is the choice of events to 
measure the stress level for each participant. The Life Event Question
naire is a self-reported psychological test (as an adaptation of the 
Stressful Life-Event Questionnaire by Newcomb et al., 1981) where each 
event was rated to have a negative or positive impact by the participants. 
LEQ had been previously used (Newcomb et al., 1981; Burt et al., 2016) 
to investigate the relationship between the brain structure and func
tioning and the capacity to cope with NLEs. For the same event, par
ticipants indicated if an event was making them feel happy or unhappy, 
showing an inter-subject variability in the event perception as positive 
or negative. While we selected only the negative scores from each 
question (i.e., events) based solely on the participant’s ratings, this se
lection doesn’t inherently classify the event as objectively stressful or 
otherwise. Furthermore, the absence of significant findings are unlikely 
to be influenced by differences in DAWBA scores, given the low mean 
averages observed in both groups. In addition to the computer based 
scores, clinical raters using the DAWBA data diagnosed 3 participants for 
anxiety disorder and 1 participant for major depression. Thus there is no 
significant presence of psychiatric disorders in this cohort – consistent 
with the fact that they were recruited from the community and thus 

were a ‘low-risk’ group. 
One of the limitations of this study might be represented by the 

template choice to extract networks. While Yeo’s 400 parcellations gave 
a better understanding of where potential structural connectivity 
changes might occur, one potential disadvantage might be that parcel
lations included only the cortex, and none of the sub-cortical structures, 
such as amygdala, basal ganglia and thalamic nuclei, which are 
important to understanding what happens in the brain connectivity with 
stress. The use of parcellation based on adult brains for a sample of 
adolescents introduces a potential limitation in the generalizability and 
accuracy of our findings. The brains of adolescents undergo significant 
structural and functional changes during this developmental stage, and 
these changes may not be accurately represented by parcellation derived 
from adult brains. 

In this study, the focus was on examining alterations in gray matter 
networks among healthy adolescents who encountered negative life 
events. The analysis involved individual-level brain network extraction 
from gray matter segmentations, shedding light on the structural con
nections between brain regions within the adolescent context. The re
sults revealed differences within specific regions at a local scale, while 
no distinctions were evident in the broader graph theory metrics. This 
study findings offer potential insights into how stress can influence 
structural connectivity in adolescents, thereby contributing to a deeper 
understanding of the impact of environmental factors on typical devel
opment and the potential emergence of emotional and behavioral 
disorders. 
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