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Subband Independent Component Analysis for
Coherence Enhancement

Zhenghao Guo, Yuhang Xu, Jan Rosenzweig, Verity M. McClelland, Ivana Rosenzweig, and Zoran Cvetkovic

Abstract—Objective: Cortico-muscular coherence (CMC) is
becoming a common technique for detection and characterization
of functional coupling between the motor cortex and muscle
activity. It is typically evaluated between surface electromyo-
gram (sEMG) and electroencephalogram (EEG) signals collected
synchronously during controlled movement tasks. However, the
presence of noise and activities unrelated to observed motor tasks
in sEMG and EEG results in low CMC levels, which often makes
functional coupling difficult to detect. Methods: In this paper, we
introduce Coherent Subband Independent Component Analysis
(CoSICA) to enhance synchronous cortico-muscular components
in mixtures captured by sEMG and EEG. The methodology relies
on filter bank processing to decompose sEMG and EEG signals
into frequency bands. Then, it applies independent component
analysis along with a component selection algorithm for re-
synthesis of sEMG and EEG designed to maximize CMC levels.
Results: We demonstrate the effectiveness of the proposed method
in increasing CMC levels across different signal-to-noise ratios
first using simulated data. Using neurophysiological data, we
then illustrate that CoSICA processing achieves a pronounced
enhancement of original CMC. Conclusion: Our findings suggest
that the proposed technique provides an effective framework
for improving coherence detection. Significance: The proposed
methodologies will eventually contribute to understanding of
movement control and has high potential for translation into
clinical practice.

Index Terms—Cortico-muscular coherence, filter banks, inde-
pendent component analysis.

I. INTRODUCTION

UNRAVELLING the interactions between cortical sen-
sorimotor activity and muscle is key to understanding

the underlying physiology and exploring more individualized
therapies for people suffering from movement disorders. The
mechanisms of cortico-muscular interactions can be studied by
analysing electroencephalogram (EEG) and electromyogram
(EMG) signals which are recorded synchronously from the
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sensorimotor cortex and muscle, respectively, during con-
trolled movement tasks. The advantages of such neurophys-
iological techniques are that they are resource efficient, non-
invasive and most critically offer the required time-resolution
which cannot be achieved by imaging techniques. In this
context, cortico-muscular coherence (CMC) analysis, which
detects the presence of synchronous components in elec-
trophysiological recordings from the brain and concurrently
active muscles, is one of the most commonly used methods
[2], [3], [4].

Coherence between EEG and EMG has enhanced our un-
derstanding of normal sensorimotor control [5], [6] and of
the pathophysiology of movement disorders, such as tremor
[6], [7], [8], myoclonus [8], [9], [10], Parkinson’s disease
[11], [12], [13], and dystonia [14], [15], [16]. Clinical applica-
tion of EEG-EMG coherence includes distinguishing between
different types of movement disorder, such as tremor versus
myoclonus [8], or between different tremor types [8], [17].
However, the full potential of EEG-EMG coherence in the
clinical assessment of motor disorders is yet to be fully
realised, partly due to its considerable variability between
individuals. Indeed, some individuals with good motor skills
do not express CMC above the significance level [18], [19],
[20], [21].

There are several factors that contribute to this variability
and tend to lower the calculated values of CMC. One of
the main reasons for the typically low level of coherence
between surface EMG (sEMG) and EEG is the presence of
noise and sEMG and EEG components unrelated to the task
of interest, which we will refer collectively as noise [1]. For
example, sEMG is usually recorded by electrodes placed on
the skin overlying the muscle, so it can be contaminated
by various types of noise, such as electrical noise from
power lines and external sources, motion artefact, as well
as cross-talk from other muscles [22], [23], [24]. Similarly,
the scalp EEG recordings are a mixture of brain, artefactual,
and other unknown random signals, e.g. instrumentation noise
and external electromagnetic activities [25]. Even genuine
physiological signals from the brain are effectively “noise”
in this context, as not all brain activities recorded are relevant
to the communication between cortex and muscle. When the
EEG and sEMG signals are recorded, all these additional
components are present within the recorded signal. Standard
coherence analysis does not include steps to distinguish these
different “noise components” from the signal of interest, so
they are inevitably incorporated into the analysis and impact
on the coherence value. The objective of this work is to
develop a denoising method that is capable of enhancing the
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coherence levels degraded by a considerable amount of noise
and interference activities involved in both EEG and sEMG
signals.

One approach towards eliminating noise in biological sig-
nals is based on wavelet transform thresholding [26], [27],
[28], especially effective for the removal of white Gaussian
noise (WGN). However, when dealing with suppressing the
components with respect to the activity unrelated to the con-
sidered task, wavelet thresholding algorithms may lose their
efficiency. Another algorithm that is very successful for noise
reduction of multichannel biological signals is independent
component analysis (ICA) [29], [30], [31], [32]. ICA, however,
requires data from a sufficiently large number of channels to
be able to separate independent sources, which may not be
available in practice [33]. Moreover, although ICA is typically
very effective for isolating artefacts, it is less effective for
separating different physiological activities [34].

To overcome the limitations of the wavelet threshold de-
noising (WTD) and ICA, a further method was proposed,
based on the joint use of wavelet decomposition and ICA,
that builds on the advantages of both techniques [35]. This
technique, referred to as Wavelet Independent Component
Analysis (W-ICA), proved to be very effective in artefact
rejection from biological signals [36], [37], [38], [39], [40],
[41], [42]. Drawing inspiration from W-ICA, we develop
a methodology for enhancing relative levels of components
involved in information transmission between two processes.
Whilst in this study we focus on EEG and sEMG signals
and their coupling involved in movement control, the proposed
methodology is more general. We propose to first generalise
W-ICA to employ also subband decompositions other than the
wavelet transform, and thus further increase the number of in-
put components and exploit different frequency resolutions. In
that direction, we consider subband decompositions obtained
via cosine-modulated filter banks (CMFB) [43]. We provide
the rationale behind the proposed methodology by postulating
that in the context of ICA of neurophysiological signals,
subband decompositions produce relatively fewer independent
components relative to the number of mixtures, and thus facil-
itate their separation. Further, towards extracting components
which are involved in interactions between two processes, we
propose to use the subband-based ICA in combination with
an automatic component selection algorithm that maximizes
their coherence levels. We refer to this technique as Coherent
Subband Independent Component Analysis (CoSICA). The
proposed method is designed to be applied to low-channel
count sEMG and EEG signals, with the aim of simplifying
the operation of diagnostic data collection.

This paper is organized as follows. In Section II, relevant
aspects of CMC analysis are reviewed. In Section III, we
introduce the CoSICA methodology. Section IV and Section
V present results of assessments of CoSICA in terms of its
effectiveness for increasing CMC, using both simulated data
under different signal-to-noise ratios (SNRs) and neurophysi-
ological data, respectively. Finally, the results are discussed in
Section VI and conclusions are drawn in Section VII.

II. BACKGROUND

A. CMC between noisy EEG and EMG

Muscle movement is controlled by a cortical excitation
signal xc(t), which is transmitted via Nx paths; each path
may have a different delay Di and attenuation bi. The control
signal received by the muscle, yc(t), together with noise ny(t),
forms the corresponding sEMG signal y(t). The sEMG signal
thus has the form

y(t) = yc(t) + ny(t) =

Nx∑
i=1

bixc(t−Di) + ny(t) , (1)

where ny(t) is a combination of noise in a general sense and
various other events unrelated to the considered task. Analo-
gously, a synchronously recorded EEG signal x(t) is a mixture
of muscle-control activity xc(t) and a component nx(t) that
is a combination of artefacts, other cortical events, and noise.
Therefore, the EEG signal has the form x(t) = xc(t)+nx(t).

Cortico-muscular coupling is commonly detected and quan-
tified by means of coherence analysis [44]. The coherence
Cxy(ω) between two stationary processes x(t) and y(t) is
defined as

Cxy(ω) =
|Sxy(ω)|2

Sxx(ω)Syy(ω)
, (2)

where Sxx(ω) and Syy(ω) are their power spectral densities,
and Sxy(ω) is their cross spectral density. The value of coher-
ence is a real number between 0 and 1, with 0 indicating a
complete absence of linear association between two processes
such that they are totally incoherent and 1 indicating a perfect
linear association such that two processes are completely
coherent.

When yc(t) is the response to xc(t) via a linear time-
invariant system and both nx(t) and ny(t) are independent
zero-mean processes, the coherence between the sEMG and
EEG signals at a frequency ω can be shown to have the form

Cxy(ω) =

|B(ω)|2S2
xcxc

(ω)

(Sxcxc(ω) + Snxnx(ω))
(
|B(ω)|2Sxcxc(ω) + Snyny (ω)

) ,

(3)
where Sxcxc(ω), Snxnx(ω), Snyny (ω) are power spectral
densities of xc(t), nx(t) and ny(t), and B(ω) is the frequency
response of the propagation channel (1) [45]. It can be
observed that, in the absence of the noise components nx(t)
and ny(t), the coherence is equal to one. On the other hand,
the coherence can be very low if the components xc(t) and
yc(t), are weak when compared to the noise.

B. Time-frequency Representation of Coherence

In coherence analysis of non-stationary processes, spectral
densities are estimated within time segments over which their
statistical properties remain approximately constant. To that
end, the short-time Fourier transform (STFT) is employed.
Given a signal x(t), its STFT within intervals centred around
time instants tc = n∆t, n ∈ Z is computed as X(tc, ω) =∑∞

t=−∞ x(t)w(t−tc)e
−jωt, where w(t) is a window function

designed according to time-frequency resolution requirements
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and ∆t is the window shift [46]. The time varying power
spectral and cross-spectral densities are estimated by averaging
the STFT magnitude spectra over different epochs (trials):
Ŝxx(tc, ω) = 1

L

∑L
n=1 |Xn(tc, ω)|2, and analogously for

Ŝyy(tc, ω), while Ŝxy(tc, ω) = 1
L

∑L
n=1 Xn(tc, ω)Y

∗
n (tc, ω),

where ∗ denotes the complex conjugate, L is the number of
epochs, and Xn(tc, ω) and Yn(tc, ω) are the short-time Fourier
transforms of the nth trial of x(t) and y(t). Therefore, the
coherence between x(t) and y(t) is computed as

Cxy(tc, ω) =
|Ŝxy(tc, ω)|2

Ŝxx(tc, ω)Ŝyy(tc, ω)
. (4)

Significant coherence can be defined by setting the confidence
limit (CL) to 95% which is estimated as

CL(a%) = 1−
(
1− α

100

) 1
(L−1) , (5)

where α is set to 95 [47].

III. COHERENT SUBBAND INDEPENDENT COMPONENT
ANALYSIS

A. Subband Decompositions

Consider a set of signals ym(t), m = 1, ...,M which are
mixtures of components ci(t), i = 1, . . . I , that is

ym(t) =

I∑
i=1

αmici(t) .

In a situation where there are fewer mixtures than components,
M < I , in general it may not be possible to identify the
independent components. If we filter the mixtures with J filters
hj(t), j = 1, . . . J , we obtain J times as many mixtures1

ym,j(t) = ym(t) ∗ hj(t) =

I∑
i=1

αmici(t) ∗ hj(t) ,

but that does not necessarily provide an advantage, since in
general the number of components is increased by the same
factor, i.e. every component ci(t) gives rise to J compo-
nents ci(t) ∗ hj(t), j = 1, . . . J , and they are no longer
statistically independent. If, on the other hand, a substantial
set of the filtered independent components are equal to zero,
hj(t) ∗ ci(t) = 0, the ratio between the number of mixtures
and the number of components increases. Thus, if based on
domain specific knowledge, filters hi are designed so that
each filter removes one or more independent components, then
the effective number of mixtures will increase relative to the
number of components. In motor control, different frequency
bands have different functional importance, which suggests
that subband-based ICA could be particularly effective in
the context of separating independent components from low-
channel count sEMG and EEG recordings. In this study, we
propose using dyadic stationary wavelet transform (SWT) and
CMFB for subband decomposition so as to obtain different
frequency resolutions. The details are in the following.

1We use ∗ to denote the convolution operator,

c(t) ∗ h(t) =

∞∑
τ=−∞

c(τ)h(t− τ) .

1) Dyadic stationary wavelet transform: The dyadic SWT
used in this study decomposes the M mixture signals with
wavelet filters across J − 1 scales into MJ filtered mixture
signals ym,j(t), j = 1, ..., J . These are obtained by convolv-
ing ym using filters hJ−1,0(t) and hj,1(t), j = 1, ..., J − 1,
as

ym,j(t) =

{
hJ−1,0(t) ∗ ym(t) , j = J ,

hj,1(t) ∗ ym(t) , j = 1, . . . , J − 1 .
(6)

The filters are derived from two prototype filters h0(t) and
h1(t) through an iterative procedure that is specified in the
z-transform domain as

HJ−1,0(z) =

J−2∏
k=0

H0(z
2k) ,

Hj,1(z) = H1(z
2j−1

)

j−2∏
k=0

H0(z
2k) .

The prototype filters h0(t) and h1(t) are designed to be half-
band low-pass and half-band high-pass, respectively. Hence,
ym,j(t), j = 1, . . . , J are components of ym(t) occupying
approximately frequency bands(

fs
2j+1

,
fs
2j

)
, j = 1, . . . J − 1, and

(
0,

fs
2J

)
,

respectively, where fs is the sampling frequency [48]. If
signals are acquired using sampling frequency fs = 1024 Hz,
and the wavelet transform is computed at J − 1 = 7 scales,
then ym,3(t), ym,4(t), ym,5(t), ym,6(t), ym,7(t) and ym,8(t)
occupy approximately high γ (64− 128) Hz, low γ (32− 64)
Hz, β (16−32) Hz, α (8−16) Hz, θ (4−8) Hz, and δ (0−4)
Hz bands of neural oscillations, respectively. Increasing the
number of scales of the wavelet transform divides recursively
only the lowest band in two, whereas all other bands remain
unchanged, as evident from the filter structure.

A signal ym(t) can be reconstructed from its wavelet
components according to

ym(t) =
1

2J−1
h̃J−1,0(t) ∗ ym,J(t)

+

J−1∑
j=1

1

2j
h̃j,1(t) ∗ ym,j(t) ,

(7)

where the superscript ˜ indicates time reversal. Figures 1(a)
and 1(b) illustrate an analysis-synthesis filter bank for a 3-scale
SWT. Note that compared to the conventional discrete wavelet
transform (DWT), the downsampling operators are removed
from the channels [49], which allows for translation-invariance
and retains the same amount of samples in each subband for
ICA.

2) Cosine-modulated filter bank: Towards exploring an
alternative subband decomposition, with the potential for an
increased number of components and finer frequency resolu-
tion at high frequencies, we propose using the CMFB. Figure
2 illustrates a J-channel maximally decimated filter bank.
For each input ym(t), the analysis filters fj(t), j = 1, ..., J
decompose it into J subband signals that are then decimated
by J , according to

ym,j(t) =

∞∑
τ=−∞

fj(τ)ym(Jt− τ) . (8)
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(a) SWT analysis filter bank.

(b) SWT synthesis filter bank.
Fig. 1. An illustration of a 3-level SWT decomposition and reconstruction
filter bank, where J = 4.

The signal ym(t) can be reconstructed from its subband
components as

ym(t) =

J∑
j=1

∞∑
τ=−∞

gj(t− Jτ)ym,j(τ) , (9)

where gj(t) are the synthesis filters following the interpolators.
Analogously to the SWT (or the non-decimated DWT), we
considered also CMFB decompositions without the decimation
in the channels. Our empirical results showed however, that the
proposed CoSICA achieves better results with the decimation.

Fig. 2. An illustration of a J-channel maximally decimated filter bank.

The filters fj(t) and gj(t) can be obtained by cosine-
modulation of a prototype filter f(t)

fj(t) =

2f(t) cos

(
(2j − 1)

( π

2J

)(
t− L− 1

2

)
− (−1)

j π

4

)
,

gj(t) =

2f(t) cos

(
(2j − 1)

( π

2J

)(
t− L− 1

2

)
+ (−1)

j π

4

)
,

where 0 ≤ t ≤ L−1, and L is the length of f(t). In this study,
the prototype filter design proposed in [50] is used, with filter
length that is two times the number of channels, L = 2J .

The prototype filter f(t) is designed to be a low-pass filter
with a cut-off frequency of π/2J , so owing to this particular
filter bank constructions, subband components ym,j(t), j =
1, . . . , J of ym(t) occupy uniformly distributed frequency
bands (

j − 1

2J
fs,

j

2J
fs

)
, j = 1, . . . J ,

respectively [48]. In order to extract β band (16 − 32) Hz
oscillations, which are involved in motor control, at sampling
frequency of fs = 1024 Hz, we need a CMFB with at least
32 channels. Increasing the number of channels to 64 and 128
extracts further the α, and then θ and δ bands, respectively,
and divides the β band into narrower subband components.

B. Independent Component Analysis

Consider the matrix of filtered mixtures
y(t) = [y1,1(t), ..., y1,J(t), ..., yM,1(t), ..., yM,J(t)]

T

= [y1(t), y2(t), ..., yNy
(t)]T ,

where each ym,j(t), 1 ≤ m ≤ M, 1 ≤ j ≤ J, is represented
as a column vector, y(m−1)J+j(t) = ym,j(t) and Ny = MJ .
Let further qn(t), n = 1, . . . , Nq be the independent source
signals mixed according to

yi(t) =

Nq∑
j=1

ai,jqj(t) ,

where ai,j is the (i, j) entry of the mixing matrix A. ICA
amounts to finding an estimate Ŵ of the inverse matrix
W = A−1 by making the de-mixed components, in particular,
column vectors of the matrix

q̂(t) = [q̂1(t), q̂2(t), ..., q̂Ns(t)]
T ,

where
q̂(t) = Ŵy(t) , (10)

maximally independent. We refer to signals q̂i(t) obtained in
this manner as subband independent components (SICs).

C. Subband Independent Components Selection

The problem that needs to be resolved once SICs are ob-
tained is to find those which constitute the sought sEMG/EEG
activity. In the context of CMC analysis, we propose to select
SICs based on their impact on CMC levels, as those which
are involved in the considered motor task should increase the
overall coherence level, whereas those which are unrelated
to the task should effectively act as noise that lowers the
coherence. For that purpose a greedy selection algorithm is
proposed. A subset of components q̂i(t) selected in this man-
ner is recombined, aiming to reconstruct a version of sEMG
and EEG containing a relatively higher level of components
involved in cortico-muscular coupling. The details of the
proposed algorithm are as follows:

1) Initialization. Perform W-ICA or CMFB-ICA on sEMG
signals to obtain SICs q̂i(t), i = 1, 2, ..., Ns as input for
component selection. A subband independent component
(SIC) counter g is set to g = 1, and the initial value of
CMC, C0

xy , is computed as the value of CMC between
EEG and sEMG that is reconstructed with all SICs.

2) SIC removal. The g-th SIC is removed, i.e. the matrix
of SICs is updated with the g-th SIC set to zero, and the
sEMG signal is reconstructed with the updated matrix of
SICs.

3) CMC estimation and SIC selection. The CMC between
EEG and reconstructed sEMG signals is calculated. If it
is higher than Cg−1

xy , the coherence Cg
xy to be compared
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next time will be updated with the value of CMC calcu-
lated between EEG and the reconstructed sEMG signals.
Otherwise, if the CMC is lower than or equal to Cg−1

xy , the
gth SIC, qg(t), is restored in the updated matrix of SICs
and the reference coherence level is set to Cg

xy = Cg−1
xy .

4) Iteration. The index g is incremented by 1 and steps 2)
to 3) are repeated until all SICs have been considered.

5) Repeat. Repeat steps 1) to 4) using reconstructed sEMG
and SICs of EEG as input.

In this study, the β band CMC is taken into account during
the process of the proposed component selection algorithm,
since it has been found to be task dependent [3], related to
motor performance [51], and modulated by different types and
intensities of afferent stimuli [19]. Both the average coherence
in the β band and its value at 24 Hz, the centre of the
band, were used for this purpose, but the conclusions and
qualitative observations remained the same. We will refer to
this coherence enhancement method as CoSICA. The overall
framework for the proposed method is illustrated in Figure 3.

Fig. 3. A block diagram of the proposed CoSICA methodology.

The complexity of the proposed method is equal to the
complexity of the component selection algorithm added to
the complexity of ICA [52], for which fast implementations
exist. The complexity of the component selection algorithm
increases linearly in the product of the length of the SICs
(subband independent components) and their total number,
which is upper-bounded by the product of the number of

available sEMG and EEG channels and the number of bands
in the employed subband decomposition. In particular, the
numerical complexity of the component selection algorithm
is O(MJT ), where M denotes the number of collected
sEMG and EEG channels, J represents the number of wavelet
transform or CMFB channels, and T is the duration of the
collected signals. This is because the component selection
algorithm is performed once for each SIC, and there can be
up to MJ SICs, and it involves inversion of the subband
decomposition and coherence estimation, the complexity of
which is linear in signal duration.

IV. EVALUATIONS USING SYNTHETIC DATA

The performance of CoSICA is first evaluated using simu-
lated data under different SNRs. The simulated two-channel
EEG signals were generated by the wavelet-based method
proposed in [53]. In order to mimic a motor control task,
only the component corresponding to the β band (16-32 Hz)
was regarded as the cortical excitation signal that was related
to the process of interest. To be specific, the simulated two-
channel EEG signals were filtered by a Butterworth bandpass
filter with a lower cut-off frequency of 16 Hz and a higher
cut-off frequency of 32 Hz. The simulated sEMG signal was
generated from the sum of the outputs of two linear time-
invariant systems, each with a single-channel simulated EEG
signal as input. Both systems were modelled as having 1000
paths with attenuation parameters bi distributed according to
a standard Gaussian distribution, and delays Di following
a normal distribution with a mean of 20 ms and standard
deviation of 4 ms as described in [54]. We repeated the
procedure and generated sEMG signals of two channels.

Three additional components were also added to the sim-
ulated sEMG and EEG signals, generated using the sum of
sine waves with random amplitudes and phases, distributed
uniformly between 0 and 0.3, and 0 and 2π, respectively.
Frequencies of these additional components were chosen to
be within α, β, and γ bands. Specifically, the components in
the α band were the sums of 4 sine waves of frequencies 9
Hz, 10 Hz, 11 Hz, and 12 Hz. Analogously, the components
in the β band were the sums of 16 sine waves of frequencies
17 Hz, 18 Hz, ..., 32 Hz, and the components in the γ
band were the sums of 28 sine waves of frequencies 37
Hz, 38 Hz, ..., 64 Hz. Since these components are not of
interest in the considered motor task, they are regarded as
“noise”. Finally, pseudorandom Gaussian noise was added to
all simulated EEG and sEMG signals. The signal-to-noise
ratio (SNR) is calculated by dividing the energy of the noise-
free β-band EEG/EMG signal by the sum of the energies of
the other components (i.e. unrelated α-band, β-band, γ-band
components and pseudorandom noise component). Only the
power of pseudorandom noise is changed to obtain different
SNRs. One sEMG channel was selected as the signal to be de-
noised, and the other channel was used as the additional input
to the CoSICA algorithm to separate independent components
from the two-channel sEMG; analogously for the simulated
EEG. These simulated data were used to compare the results
from the described methodologies with results from standard
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CMC estimation, calculated according to (4). Significance
levels were calculated according to (5).

The proposed CoSICA method was applied to 200 segments
of two-channel sEMG and EEG signals simulated in this man-
ner. Each segment was 250 samples long, and the sampling
frequency was 250 Hz. Figure 4 shows the discrete Fourier
transform (DFT) magnitude of the simulated EEG/EMG signal
of one channel in a single segment under different SNRs. It
can be observed from the figure that the spectrum of the noise-
free β-band EEG/EMG is confined to the (16-32) Hz range,
whereas the spectrum of EEG/EMG with SNR ≤ −5 dB is
spread out over the whole frequency range.

Fig. 4. The DFT magnitude of one channel’s simulated EEG/EMG signal
under different SNRs.

A comparison of the results from the standard CMC and
CoSICA methodologies applied to the simulated signals is
shown in Table I. In this experiment, the Daubechies db2
wavelet was applied, and the number of scales of the SWT was
set to 3, hence the subband components ym,3 approximately
represent the (15.625 - 31.25) Hz, i.e. the β band. The number
of channels in CMFB was set to 8 which yields subbands’
bandwidth of 15.625 Hz, so that the second channel corre-
sponds to the β band. The number of independent components
to be estimated in ICA equals the number of input channels (8
for W-ICA and 16 for CMFB-ICA). According to the table, the
proposed CoSICA significantly enhances the average β range
CMC value. The relative increase in CMC levels exhibits a
monotonically increasing trend as the SNR decreases, whereas
the overall CMC level increases with the SNR. Furthermore,
the highest CMC increase (183.53%) is achieved by CoSICA
using SWT for both simulated sEMG and EEG signals at
SNR = −15 dB.

V. EVALUATIONS USING NEUROPHYSIOLOGICAL DATA

A. Data Acquisition

The studies were conducted in 14 healthy adults (9 female)
aged 24-62 years. All were right hand dominant by self-
report and none had any history of movement disorders. The
experimental arrangements have been reported previously [19]
and are illustrated in Figure 5. In brief, the subjects sat at
a table and performed a simple grasp task with their right
hand, holding a ruler between thumb and index finger, with the
wrist and forearm supported to minimise fatigue. Mechanical
perturbations were provided from an electromechanical tapper
that generated pulses of lateral displacement of the ruler,
giving subjects the sensation that their grip on the ruler may
be lost. A single trial lasted 5 seconds, with the stimulus
delivered 1.1 s after the start of the data collection period.
The perturbation lasted for 20 ms with rise time of 5 ms. The
stimuli were delivered at pseudorandom intervals between 5.6

s and 8.4 s (mean 7.0 s) to prevent anticipation of the stimulus.
Data were collected in blocks of 25 trials (data epochs) with
a short rest between blocks to avoid fatigue. Up to 8 blocks
of data (200 trials) were collected per subject.

(a) Positions of the tapper, ruler, hand, and sEMG electrodes. The
red rectangle indicates the FDI active electrode, whereas the dashed
red rectangle represents the FPB active electrode placed on the thenar
eminence (on the palmar aspect of the hand). The inactive EMG electrodes
were placed over the tendons of the respective muscles (not shown).

(b) Positions of EEG electrodes. Two bipolar EEG are recorded using
four electrodes shown as red circles.

Fig. 5. The collection of EEG and sEMG signals.

The muscle pair, first dorsal interosseous (FDI) and flexor
pollicis brevis (FPB), is predominantly activated during this
task. EMG was recorded using self-adhesive electrodes in a
belly-tendon montage over FDI and FPB of the dominant
hand. Two bipolar EEG, i.e. EEG from dominant motor cortex
(EEGD) and EEG from non-dominant motor cortex (EEGND),
were recorded from the scalp overlying the bilateral motor
cortex with two electrodes placed 5 cm lateral to the vertex
along the interaural line, and the other two electrodes posi-
tioned 2.5 cm anterior to them, respectively. EMG and EEG
signals were amplified, filtered (0.5−100 Hz for EEG; 5−500
Hz for EMG) and sampled at 1024 Hz. Raw EEG signals
were scrutinized off-line by eye and epochs of data containing
movement artefacts were rejected from further analysis [19].
Power line noise was removed by a digital notch filter.

B. CMC Enhancement for Neurophysiological Data

In the original neurophysiology study [19], the coherence
observed in some subjects was relatively strong, whilst in
others it was very weak and remained below the level of
significance for that individual throughout the epoch (Table
II and Figure 6(a)). For the present study, eight subjects that
exhibited different levels of coherence were selected. The FDI
signal was used as the sEMG to be de-noised, whilst the FPB



7

TABLE I
INCREASE OF AVERAGE β RANGE CMC BETWEEN RECONSTRUCTED SEMG AND (RECONSTRUCTED) EEG ACHIEVED BY COSICA FOR SIMULATED

DATA UNDER DIFFERENT SNRS.

SNR (dB)
Original Significance After CoSICA using SWT After CoSICA using SWT After CoSICA using CMFB After CoSICA using CMFB

for sEMG only for sEMG and EEG for sEMG only for sEMG and EEG

CMC value threshold CMC value CMC increase (%) CMC value CMC increase (%) CMC value CMC increase (%) CMC value CMC increase (%)

-5 0.3318 0.0149 0.3782 13.98 0.6208 87.10 0.3675 10.76 0.4730 42.56

-10 0.1426 0.0149 0.1834 28.61 0.2913 104.28 0.1678 17.67 0.2436 70.83

-15 0.0340 0.0149 0.0579 70.29 0.0964 183.53 0.0490 44.12 0.0765 125.00

signal was used with FDI for the separation of independent
components. Analogously, the EEGD and EEGND signals
were used as the EEG to be de-noised and the additional signal
to aid blind source separation, respectively. The coherence
between EEGD and FDI was estimated in a short-time Fourier
domain using a 500 ms-long (512 samples) Hanning window
with 250 ms (256 samples) overlaps. The CoSICA was applied
to each window of data separately.

The wavelet decomposition of CoSICA, was performed
using the Daubechies db2 wavelet. Since α (8 − 16Hz), β
(16−32Hz) and γ (32−64Hz) frequency bands have different
functions in sensory-motor integration and the sampling rate
used was 1024 Hz, in order to approximate this frequency
resolution, 6 scales of the wavelet transform were considered.
The decision not to separate θ and δ bands is governed by
the data acquisition process during which most of the (0− 4)
Hz EMG content was filtered out, as is common in motor
neurophysiology studies, to minimize movement artefact. The
number of independent components to be estimated was set
to 2 × 7 = 14, which is the maximum for the given number
of input channels. Alternatively, for the CMFB of CoSICA,
the number of channels J = 64 was selected, corresponding
to subband bandwidth of 8 Hz, matching the finest frequency
resolution of the wavelet transform; the number of independent
components was set to 2×64 = 128, also the maximum given
the number of input channels.

The results of the original CMC patterns for subjects A-
H are shown in Figure 6(a), while the baseline results are
presented in Table II. According to Figure 6(a) and Table
II, subjects A-D exhibit significant β-range CMC during
most of the pre-stimulus and post-stimulus periods. Subjects
E-H, on the other hand, show only a few brief bursts of
significant coherence immediately after the stimulus, and the
time-frequency region where CMC is detected is very sparse.
Figures 6(e) and 6(f) show CMC enhancement of subjects
A-H after CoSICA for both EEG and sEMG, using SWT
and CMFB, respectively. The enhancement of CMC levels is
evident in all tested cases. After applying CoSICA, in subjects
E-H significant coherence appears even where it could not be
observed in the post-stimulus period after 2 s. Further, it can
be observed that CoSICA using CMFB with J = 64 achieves
the best results.

For a comparative analysis of the effectiveness of CoSICA
in CMC enhancement, our evaluations involved three alter-
native techniques: 1) Wavelet thresholding-based denoising
(WTD) [55]: a well-established method for denoising biologi-
cal signals. Aligned with CoSICA’s wavelet decomposition,
the Daubechies db2 wavelet at six scales was used for
the WTD method. 2) Sparse signal representation (SSR): an

advanced signal processing approach that has been success-
fully used in image denoising [56] and speech separation
[57]. In this study, the K-SVD algorithm [58], in conjunction
with ADMM [59], was employed to derive a dictionary
capable of facilitating noise removal and achieving a sparse
representation with enhanced accuracy. 3) Sparsity-assisted
signal denoising and pattern recognition (SASD-PR) [60]: a
recent method capable of concurrently denoising signals while
detecting oscillatory patterns of interest. In our investigation,
the SASD-PR method was executed with 50 iterations, and
the convergence rate parameter was consistently set to 1.

The CMC patterns following the application of the three
reference methods and the proposed CoSICA methodology
are shown in Figure 6. Corresponding quantitative results,
reflecting the averaged β range CMC across all time windows,
are detailed in Table III. It can be observed that WTD, SSR,
and SASD-PR increased β range CMC levels across much
of the experimental trial, but only to a limited extent, with a
mean increase less than 20% (Table III). In contrast, CoSICA,
particularly when using CMFB, significantly enhances β range
coherence levels, achieving an average increase of over 300%.

TABLE II
INDIVIDUAL DATA FOR EEG-SEMG COHERENCE.

Subject Age Gender Average original β range CMC in the Significance
pre-stimulus windowa post-stimulus windowb thresholdc

A 39 Female 0.0255 0.0702 0.0166

B 44 Female 0.0268 0.0693 0.0154

C 25 Male 0.0331 0.0902 0.0167

D 26 Female 0.0088 (NS)d 0.0224 0.0149

E 32 Male 0.0113 (NS) 0.0064 (NS) 0.0149

F 32 Female 0.0044 (NS) 0.0086 (NS) 0.0179

G 24 Female 0.0069 (NS) 0.0123 (NS) 0.0157

H 36 Male 0.0063 (NS) 0.0172 (NS) 0.0177

a The pre-stimulus period was defined as -1.1 to -0.6 s.
b The post-stimulus period was defined as 0.4 to 0.9 s.
c The significance threshold is individualized for each subject, as it depends
on the number of trials of data once artefact-contaminated trails have been
removed.
d The abbreviation ”NS” stands for ”non-significant”.

Lastly, the impact of some CoSICA parameters on the
effectiveness of CMC enhancement is investigated. Taking the
averaged β range CMC across all time windows in subject A
as an example, Tables IV and V show how the coherence value
changes under different levels of wavelet decomposition and
different number of CMFB channels, when the preset initial
number of sought independent components varies. According
to Tables IV and V, when the number of subbands is fixed,
the coherence increases with the number of independent
components; also, when the number of independent compo-
nents is fixed, the coherence increases with the number of
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(a) Original CMC.

(b) CMC after denoising performed by applying WTD for sEMG and EEG with db2 wavelet at 6 scales.

(c) CMC after denoising performed by applying SSR for sEMG and EEG.

(d) CMC after denoising performed by applying SASD-PR for sEMG and EEG.

(e) CMC after CoSICA for sEMG and EEG using SWT with db2 wavelet at 6 scales.

(f) CMC after CoSICA for sEMG and EEG using CMFB with J = 64, which yields subbands’ bandwidth of 8 Hz.
Fig. 6. CMC spectrograms before and after WTD, SSR, SASD-PR, and CoSICA for sEMG and EEG in subjects A-H. The stimulus is applied at time zero.
Note that the colour scale is set such that dark blue represents values falling below the level of significance for that individual, whereas brighter colours show
significant coherence.

subbands. Comparing the CoSICA using SWT at 6 or more
scales and CMFB with 8 or 16 channels, CoSICA based on
the wavelet transform achieves more substantial coherence
increase, even when the number of employed independent
components in CMFB analysis is higher (e.g. CMFB with
16 channels and 24 and 32 independent components). Note
that at 1024 Hz sampling, owing to their uniform frequency
resolution, CMFBs need at least 32 channels to separate the
β band from EEG and sEMG signals, whereas the wavelet
transform achieves that already at 6 scales (7 channels). Hence,

when the number of CMFB channels increases to 32 or
above, the performance improves beyond that achieved by
the wavelet transform. It can be further observed that the
increase in the number of scales of the wavelet transform
to 7 (8 channels) leads to only a marginal increase in the
average coherence in the β range, which is not unexpected
considering that the additional scale in the wavelet transform
only separates the low-frequency θ and δ components and the
δ oscillations have been filtered out in the acquisition process
to remove movement artefacts [19]. Any further increase in
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TABLE III
QUANTITATIVE COMPARISON OF COHERENCE ENHANCEMENT ACROSS WTD, SSR, SASD-PR, AND COSICA.

Methods
Subject A Subject B Subject C Subject D Subject E Subject F Subject G Subject H Mean

Coherence Increase Coherence Increase Coherence Increase Coherence Increase Coherence Increase Coherence Increase Coherence Increase Coherence Increase Increase
Value (%) Value (%) Value (%) Value (%) Value (%) Value (%) Value (%) Value (%) (%)

Original Coherence 0.0455 - 0.0385 - 0.0604 - 0.0164 - 0.0084 - 0.0072 - 0.0082 - 0.0082 - -

WTD 0.0484 6.37% 0.0415 7.79% 0.0605 0.17% 0.0172 4.88% 0.0098 16.67% 0.0077 6.94% 0.0089 8.54% 0.0091 10.98% 7.79%

SSR 0.0546 20.00% 0.0461 19.74% 0.0723 19.70% 0.0196 19.51% 0.0097 15.48% 0.0086 19.44% 0.0098 19.51% 0.0100 21.95% 19.42%

SASD-PR 0.0455 0.00% 0.0452 17.40% 0.0636 5.30% 0.0176 7.32% 0.0096 14.29% 0.0087 20.83% 0.0094 14.63% 0.0086 4.88% 10.58%

CoSICA-SWT 0.0582 27.91% 0.0517 34.29% 0.0779 28.97% 0.0255 55.49% 0.0149 77.38% 0.0111 54.17% 0.0136 65.85% 0.0113 37.80% 47.73%

CoSICA-CMFB 0.0760 67.03% 0.0741 92.47% 0.1134 87.75% 0.0372 126.83% 0.0371 341.67% 0.0386 436.11% 0.0732 792.68% 0.0736 797.56% 342.76%

the number of scales of the wavelet transform would only
provide finer frequency resolution in the δ band, which is not
relevant to movement control. An increase in the number of
channels of CMFB decompositions, on the other hand, results
in uniform improvements of the frequency resolution across
all bands, which, as results in Table V demonstrate, leads
to progressively more pronounced coherence enhancement.
Limits of this trend are illustrated by Figure 7, which shows
the dependence of the average enhancement of CMC by means
of CoSICA on the number of CMFB channels. In particular,
the dots in the figure represent the ratio of CMC after and
before CoSICA averaged over β range frequencies and over
time, with the time segment containing the stimulus excluded,
as it was an outlier dominating the results. The horizontal
bars show standard deviations of the coherence ratios across
the time segments. We can observe that the effectiveness of
CoSICA improves as the number of CMFB channels increases
up to 128, which corresponds to 4 Hz frequency resolution
across all the bands, however, we observed that the results also
vary more considerably along the time axes as the number of
channels increases, as reflected in the corresponding standard
deviations. It should be noted that any increase in the number
of channels is accompanied by a proportionate increase in the
computational complexity.

TABLE IV
COHERENCE AFTER APPLYING COSICA FOR SEMG AND EEG USING

SWT WITH DIFFERENT LEVELS OF WAVELET DECOMPOSITION AND
DIFFERENT NUMBERS OF INDEPENDENT COMPONENTS TO BE ESTIMATED.

Level of Number of Coherence Coherence
wavelet decomposition independent components value increase (%)

7
16 0.0584 28.35
12 0.0577 26.81
7 0.0574 26.15

6
14 0.0582 27.91
10 0.0574 26.15
6 0.0573 25.93

4
10 0.0573 25.93
7 0.0561 23.30
4 0.0554 21.76

2
6 0.0536 17.80
4 0.0529 16.26
2 0.0512 12.53

VI. DISCUSSION

It is well recognised that CMC is heterogeneous across
individuals [18], [61], [62], [63] and that standard coher-
ence methods often fail to detect significant cortex-muscle
interactions, even in healthy individuals with normal motor
control performing motor tasks under the same experimental
conditions [18], [19], [64]. This may relate in part to inter-
individual differences in cortical processing of movement-

TABLE V
COHERENCE AFTER APPLYING COSICA FOR SEMG AND EEG USING

CMFB WITH DIFFERENT NUMBERS OF CHANNELS AND DIFFERENT
NUMBERS OF INDEPENDENT COMPONENTS TO BE ESTIMATED.

Number of Number of Coherence Coherence
CMFB channels independent components value increase (%)

64
128 0.0760 67.03
96 0.0719 58.02
64 0.0657 44.40

32
64 0.0603 32.53
48 0.0595 30.77
32 0.0586 28.79

16
32 0.0569 25.05
24 0.0564 23.96
16 0.0525 15.38

8
16 0.0487 7.03
12 0.0479 5.27
8 0.0470 3.30

Fig. 7. The effect of the number of CMFB channels on the effectiveness
of CoSICA. The dots represent the ratio of CMC after and before CoSICA
averaged over β range frequencies and over time segments, whereas the
horizontal lines show corresponding standard deviations across the time
segments.

related information [63] and also to methodological issues,
including the influence of physiological noise [20]. Motivated
by the need to enhance the coherence levels degraded by a
considerable amount of noise and interference activities in
EEG and sEMG signals, we proposed CoSICA, which relies
on either SWT or CMFB for subband decomposition and ICA,
along with a component selection algorithm.

Using simulated data, it is shown that the noise severely
impairs the ability of traditional CMC measurement to reveal
underlying interactions (Table I). After applying the proposed
CoSICA, CMC was increased substantially. We further found
that using SWT for subband decomposition outperforms using
CMFB. Both simulated EMG and EEG were degraded by
noise, including WGN and irrelevant α, β and γ components.
At the sampling rate of 250 Hz and the wavelet transform
at three scales, the SWT subbands match the bands of the
synthesised θ/δ, α, β, and γ processes, (0-15.625), (15.62 -
31.25), and (31.25 - 62.5) Hz, respectively, which explains
the superior performance of the wavelet transform with the
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simulated data, in which there was known coherence between
the EEG and EMG over the whole β band.

We then conducted a comparative analysis to assess the
efficacy of CoSICA in detecting communications between the
cortex and muscle during a motor task. In the present study,
denoising methods, including WTD, SSR, and SASD-PR, did
not achieve pronounced enhancements (Figures 6(b), 6(c),
and 6(d)). Various other noise reduction methods have been
published for electrophysiological signals, but many are not
comparable as they were developed for use with high density
sEMG [65], [66] or multi-channel signals [67], [68], and
additionally are designed to remove specific, non-neurological
noise elements such as ECG [65], baseline drift [69], or mains
interference [70] from the signals. In contrast, the CoSICA
technique aims to filter not only specific noise components
but also physiological components unrelated to the considered
movement task. Among the compared methods, CoSICA using
CMFB with J = 64 channels achieved the best performance
in increasing CMC levels (Figure 6(f)). For the physiological
data, the genuine coherence is likely to involve bands narrower
than the entire β band. This is illustrated in [19], and in Figure
6(a) of this paper, in which it is seen that individual subjects
tend to show CMC across 8 Hz frequency bands within the
β range. Given a sampling frequency of 1024 Hz, CMFB
separated the composite signal into 64 subbands, each with a
constant bandwidth of 8 Hz. It is therefore not surprising that
a method with a matched frequency resolution would perform
better with the physiological data.

The present study also investigated the effect of CoSICA
parameters on CMC enhancement (Tables IV and V). With
the number of subbands fixed, the coherence increases with
the number of independent components. The observations
suggest that a relatively large number of independent com-
ponents may facilitate the separation of sources involved in
the considered motor task, reflecting the heterogeneity of
EEG/EMG signals. Further, with the number of independent
components fixed, the coherence increases with the number of
subbands. The increased number of subbands in each electrode
and finer frequency resolution also facilitates the separation
of independent sources. Interestingly, when comparing the
CoSICA using SWT at 6 scales (7 channels) and CMFB with
8 or 16 channels, CoSICA with the wavelet decomposition
achieves more substantial coherence enhancement, which can
be attributed to the fact that at the sampling frequency of 1024
Hz, the SWT at 6 scales separates (0 − 8) Hz, (8 − 16)
Hz, (16 − 32) Hz, and (32 − 64) Hz bands which have
distinct functions in sensory-motor integration, by matching
their frequency resolution, whereas the frequency resolution
of an 8 or 16-channel CMFB is too coarse to achieve their
separation. However, when the number of CMFB channels
increases to 32 and above, so that at least the β band is
extracted from sEEG and EMG signals, CoSICA with CMFB
outperforms that with the wavelet transform. The performance
further improves as the number of CMFB channels increases,
so that the α band is extracted too, and the frequency res-
olution of signal decomposition across all bands is refined.
This trend continues to 128 channels, which at 1024 Hz
sampling frequency corresponds to 4 Hz subbands, suggest-

ing that narrower frequency bands might extract additional
information. Optimal subband decomposition in CoSICA of
neurophysiological signals requires further investigation that
would include time-varying filter banks and wavelet packets
[48]. Nevertheless, our investigation here indicates that the
subband decomposition should at least separate the functional
bands of neural oscillations and ideally achieve additional
within band decomposition. In this study we only used two
EEG channels over sensorimotor cortex. This was a practical
choice aimed at limiting the duration of data acquisition and
associated costs, but future work could apply this technique
to recordings using a larger number of EEG electrodes and
therefore a wider cortical representation.

It is noted that in addition to removing noise, the CoSICA
method focuses the analysis on the most relevant parts of
the signal and removes those parts which are unrelated to
the communication between the cortex and muscles, through
its component selection algorithm. Along with the consid-
erable improvements in CMC levels demonstrated by the
proposed technique in both simulated and neurophysiological
data, further improvements could potentially be achieved by
exploring different techniques at the data collection stage.
Some examples include: 1) improving the spatial resolution
of the sensorimotor cortex EEG using a bipolar montage
[51]; 2) using single motor unit EMG recordings [3]; 3)
maintaining attention on the motor task (dividing attention
by simultaneously performing a mental arithmetic task led to
reduced levels of coherence) [62]; 4) accounting for the time-
lag between cortex and muscle activities [54]; 5) applying a
peripheral stimulus relevant to the task [19].

The proposed CoSICA is of relevance as CMC has been
increasingly advocated as a potentially inexpensive and useful
method to study the mechanism of cerebral cortex’s control
of muscle activity in healthy ageing [71], and to investigate a
functional connection between the cortex and muscles in stroke
and sports disorders patients during rehabilitation [72], [73],
[74]. Abnormalities of CMC and its modulation have been
demonstrated also in patients with dystonia, with the pattern
of abnormality differing according to the underlying aetiology
[16]. Studies have similarly proposed its potential utility in a
variety of neuro-degenerative disorders, such as Parkinson’s
disease (PD) [75], [74]. For instance, CMC has already been
used as a neuro-physiological indicator of functional coupling
between the primary motor cortex and peripheral muscles and
as an index for PD symptom variation [72], [73], [75], [74].
CMC has also shown utility as a therapeutic indicator in PD
patients [75], [74]. Moreover, some authors propose its utility
as a biomarker of the rehabilitation potential of the deep
brain stimulation (DBS) of the subthalamic nucleus (STN),
which is used to normalize pathologically altered oscillations
in PD patients [76], [74]. For example, STN-DBS has been
shown to increase the amplitude of 10-30 Hz CMC in PD
patients, likely due to the improvement of tremor by DBS [76].
Thus, CMC may be associated with the therapeutic effects
of DBS and other neuro-modulation technologies. Similar to
DBS, the transcranial alternating current stimulation (tACS)
can modulate cortical brain activity. Krause et al. showed
that decreased β band CMC and variability of fast lateral
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movements were due to motor cortex tACS at 20 Hz in PD
patients [75]. Therefore, CMC can enhance understanding of
pathophysiological mechanisms and has potential translational
use as a clinical biomarker. However, tools to enhance the
detection of CMC, such as the methods proposed here, are
needed for these applications to be realised.

Past studies using directional coherence analysis have em-
phasized that CMC reflects both the cortico-efferent descend-
ing signals from motor cortex to muscles, as well as ascending
cortico-afferent signals from muscles to motor cortex [73],
[77], [74]. Moreover, numerous studies have shown that the
factors that may affect CMC include the cortico-muscular
coordination, experimental design [78], [79], band frequencies
[79], force levels [80], age [71], and difference between
healthy controls and patients [75], [74]. In order to overcome
these challenges, future studies will need to focus in a greater
depth on understanding the relationship between cortical and
muscular activities and the applications in rehabilitation field
and clinical field in general, requiring greater resources and
data acquisition. If CMC is to become a standard of motion
decoding, it may eventually help exploit new rehabilitation
protocols in a number of major neurologic, neuro-degenerative
and even (functional) psychiatric disorders [74].

VII. CONCLUSION

In this paper, we proposed a denoising method, CoSICA,
based on the joint use of SWT/CMFB, ICA, and a compo-
nent selection algorithm. The components were selected by
the algorithm with the purpose of enhancing the coherence
between monitored cortex and muscle activities. By using
simulated data, the effectiveness of CoSICA was demonstrated
under different SNRs. The potential of CoSICA to increase
the detection of CMC using physiological data was also
evidenced. Finally, we demonstrated potential benefits of this
novel technique by comparing its results to those obtained
using the WTD, SSR and SASD-PR techniques for noise
removal. In the advent of increasing calls for individualised
medicine and domiciliary and ambulatory treatment delivery,
the proposed method provides a framework for enhancing
the detection of CMC especially when there are few EEG
and EMG channels, which are of particular importance for
minimizing the costs and complexity of data acquisition pro-
cedures.
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