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Abstract 

 

Polymer flooding offers the potential to recover more oil from reservoirs but requires significant 

investments which necessitate a robust analysis of economic upsides and downsides. Key 

uncertainties in designing a polymer flood are often reservoir geology and polymer degradation. 

The objective of this study is to understand the impact of geological uncertainties and history 

matching techniques on designing the optimal strategy for, and quantifying the economic risks of, 

polymer flooding in a heterogeneous clastic reservoir. 

 

We applied two different history matching techniques (adjoint-based and a stochastic algorithm) 

to match data from a prolonged waterflood in the Watt Field, a semi-synthetic reservoir that 

contains a wide range of geological and interpretational uncertainties. Next, sensitivity studies 

were carried out to identify first-order parameters that impact the Net Present Value (NPV). These 

parameters were then deployed in an experimental design study using Latin Hypercube Sampling 

to generate training runs from which a proxy model was created using polynomial regression.  A 

particle swarm optimization algorithm was employed to optimize the NPV for the polymer flood. 

The same approach was used to optimize a standard water flood for comparison. Optimizations of 

the polymer flood and water flood were performed for the history matched model ensemble and 

the original ensemble. 

 

The Adjoint technique yielded a better quality match compared to stochastic history matching, 

whereas, the stochastic history matching resulted in a more diverse set of history matched  

ensemble. The optimal strategy to deploy the polymer flood and maximize NPV varies based on 

the history matching technique. The average NPV and the variance is predicted to be higher by 

4% ($600 million) and 1.9% ($149 million) respectively in the stochastic history matching 

compared to the adjoint technique. This difference is due to the ability of the stochastic algorithm 

to explore the parameter space more broadly, which created situations where the oil in place was 

shifted upwards, resulting in higher NPV. Optimizing a history matched ensemble leads to a 

narrower range in absolute NPV compared to optimizing the original ensemble. This difference is 

because the uncertainties associated with polymer flooding are not captured during history 

matching. The result of cross comparison, where an optimal polymer design strategy for one 

ensemble member is deployed to the other ensemble members, predicted a decline in NPV but 

surprisingly still shows that the overall NPV is higher than for an optimized water food, even for 

sub-optimal polymer injection strategies. This observation indicates that a polymer flood could be 

beneficial compared to a water flood, even if geological uncertainties are not captured properly. 

This thesis reported the bias of stochastic algorithm by creating reservoir models where oil in place 

were shifted upwards. This can be further investigated and addressed. 
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Chapter 1. Introduction 
 

 Energy Market 
Population growth and the need to increase living standards and GDP impact energy 

consumption. The global population is expected to increase from 7.5 billion to 9.2 billion people 

between the years of 2019 and 2040 according to a report by ExxonMobil Corporation (Figure 

1-1), with most population growth occurring in countries that are non-members of Organisation 

for Economic Cooperation and Development (OECD). Global GDP is expected to increase by 

3.5 percent from 2016 and 2040 on a year-on-year basis with large part of the growth taking 

place in non-OECD developing countries as well (OPEC 2017). Therefore, oil demand is 

predicted to increase between 95.8 million BOPD in 2016 to 111.3 million BOPD in 2040 as a 

result of the massive increment in both global population and GDP (OPEC 2019). ExxonMobil 

and BP outlook also have similar projections, where they predict that oil and natural gas will be 

required to meet more than half of the global energy demand by 2040 as shown in Figure 1-2 and 

Figure 1-3, respectively. Economic growth and prosperity in developing countries will largely be 

driven by fossil fuels especially for transportation, as it is cheaper (Gibbs 2017). Consequently, 

oil will remain an important player in the economic growth of developing countries. From a 

global point of view, oil will still be the dominant part of the global energy mix between 2015 

and 2040 (Figure 1-3).   



2 
 

 

Figure 1-1. The projected demographic of the global population (billions of people) by age and 

countries (from ExxonMobil Corporation 2019) 

 

 

Figure 1-2 The global energy mix shifts to lower carbon fuel (from ExxonMobil Corporation 

2019) 
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Figure 1-3 The global energy mix shifts to lower carbon sources (after BP 2019) 

Prior to the last decade, the assumption was that oil was going to be exhausted, which led to the 

research of techniques to boost oil recovery from mature oil fields, including Enhanced Oil 

Recovery (EOR) (Total E&P 2017). Nonetheless, about ten years ago, they have been a change 

in discussion from the prediction of peak oil supply to the prediction of peak oil demand. A great 

number of economists are now convinced that global oil consumption should hit its peak demand 

in 10 to 30 years followed by a decline in demand (Dale and Fattouh 2018). The recent focus on 

oil demand trend is motivated by numerous factors, including the restructuring of energy and 

environmental policies on the fossil fuel industry to help mitigate global warming. 

When oil prices crashed in 2015, oil companies have reduced exploration and EOR projects, 

focusing more on maintaining oil production capacity and developing new oil fields. Figure 1-4. 

shows that this behaviour has led to a downward trend of oil field discoveries that reached a 70-

year low in 2018. Currently, the impact of COVID-19 outbreak which has created a short-term 

oversupply of approximately 16 million barrels a day and also the Vienna Alliance that is falling 

apart will continue to further suppress exploration activities and therefore new discoveries will 

continue to be on the decline (Figure 1.4). Rystad energy has predicted the discovered volume in 

2020 may be lower than the historic low of 2018 (Rystad Energy 2020). The low investment to 

explore for and develop new oil fields might not have a short-term impact. However, in the long 
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term, about a decade from now, a supply crunch may occur which will push oil prices up again 

(Bousso 2017; Crooks and Ward 2017).  

About 60% of the world oil production has been coming from mature fields and the rate of 

discovering new reserves has been declining steadily over the past two decades (Manrique et al. 

2010). In order to meet the increasing energy global demand, it is important to apply  EOR 

techniques to these known and existing reserves (Manrique et al. 2010). 

The recovery factor of a typical oil and gas field globally is approximately 40% at after 

secondary recovery process such as gas flooding and water flooding (Sandrea and Sandrea 

2007). This implies that about 60% of the initial oil in place is left unrecovered due to the 

following reasons: 1) Heterogeneity in rock permeability and by gravitational segregation of the 

reservoir fluids, 2) Low proportion of the reservoir volume connected to the wells i.e. the 

presence of sealing faults or other flow barriers which may lead to disconnected compartments of 

oil that are not in pressure communication with the entire reservoir, or 3) Capillary trapping in 

pores. Therefore, the need arises to devise advanced means to recover this residual oil in the 

reservoir if the oil price is right. Enhanced Oil Recovery is a tertiary recovery mechanism in 

which fluid (the displacing phase) is injected into the reservoir to alter the property of reservoir 

fluid and therefore mobilize residual oil which then leads to increased recovery of the oil initially 

left behind. However, it is important to note that most EOR processes are more expensive than 

secondary recovery processes and only become economically attractive for larger oil fields and 

at high oil prices (Core 2013). 

 



5 
 

  

 

Figure 1-4 Oil and gas field discoveries in Barrels of Oil Equivalent (BOE) and downturn in 

conventional exploration (number of new field wildcat wells, NFWs) (IHS Markit 2020). 

 Enhanced Oil Recovery 
There are three different recovery stages in a conventional oil reservoir: primary, secondary, and 

tertiary (Figure 1-5). Primary recovery involves the production of oil in a reservoir using its 

initial natural energy without any external intervention to boost production. Water influx from 

aquifers, rock and fluid expansion, gas cap, solution gas or the combination of these mechanisms 

are the sources of natural energy (Sheng 2011). At the secondary recovery stage, the reservoir no 

longer possesses enough energy to produce oil naturally for a long period of time and therefore 

supplemental energy is applied to recover more oil. Secondary recovery involves injection of 

water or gas into the reservoir for pressure maintenance and to displace oil to the producing 

wells. Lastly, tertiary recovery refers to a process where special materials and fluids are injected 
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in the reservoir once secondary recovery options are exhausted. Tertiary process usually involves 

injecting chemicals mixed with water, miscible gas, or thermal energy (Lake et al. 2014). 

 

 

Figure 1-5 Recovery mechanisms in a conventional oil and gas reservoir (from Oil & Gas 

Journal 2000). 

The description above shows a conventional order of developing a field. However, in practice, it 

can be more profitable to initiate tertiary process as soon as possible in the field development. 

For instance, BP started up production of Clair Ridge in 2018 with the deployment of Low 

Salinity EOR from the first day (BP 2018). EOR is different from Improved oil Recovery (IOR) 

in that EOR describes the injection of fluid into the reservoir which, in addition to pressure 

maintenance, also enhances displacement efficiencies. In contrast, IOR also considers infill 

drilling, horizontal well drilling, workovers, and EOR process. Hence, IOR is a broader term 

which can be applied to any depletion stage (Lake et al. 2014; Sheng 2011). A key performance 

indicator of an EOR project is how much incremental Net Present Value (NPV) can be realized 

compared to the NPV of the current field development plan (Lake et al. 2014; Sheng 2011). 

 Polymer Flooding in Field Applications  
Polymer flooding is a technique of achieving a more favourable mobility ratio, and hence 

improve macroscopic sweep of a water flood process. Polymer flooding has the potential to 

recover a significant increment of the oil original in place, typically, 8% at an additional cost 

between US$8 and US$16 per incremental barrels (Muggeridge et al. 2014). However, 
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increasing the viscosity of the injected fluids poses injectivity challenge where it becomes 

difficult to inject polymer into the reservoir. More so, the resultant solutions are susceptible to 

shear damage at high shear rates. At high temperatures, polymer molecules become unstable and 

may result in degradation. Polymer flooding is usually considered to be a tertiary recovery 

technique. However, early studies suggested using polymer as a secondary recovery method. 

Studies by Pye (1964), Sandiford (1964) and Schurz (1964) all recommended to use polymers in 

an augmented secondary waterflood.  In general, it is advisable to start any EOR process as soon 

as possible provided the oil price is high enough (Bondor 2011). Polymer flooding is no 

exception, and early injection of polymers will lead to a more effective displacement compared 

to a tertiary polymer flood, in addition to limiting the problems associated where additional 

water production. However, early polymer flooding in green fields incurs additional risks 

because the reservoir description is more uncertain compared to mature fields and thus future 

reservoir performance is more difficult to forecast. As a result, the economic benefits of an early 

polymer flood compared to a regular water flood are difficult to quantify. Reservoir simulation is 

a valuable tool to carry out comprehensive and rigorous screening to evaluate the financial risk 

associated with polymer flooding (Sorbie 1991). However, reservoir models do not capture all 

the geological uncertainties and uncertainties associated with the flow of polymer in porous 

medium. Therefore, to sufficiently predict the downside and upside of a polymer flooding, it is 

necessary to have adequate reservoir models that account for a realistic range of uncertainties 

relevant to the geology and modelling decision instead of perturbing a single base case (Bentley 

& Ringrose 2017). To increase the reliability of the forecast, reservoir simulation models are 

tuned such that the simulated dynamic response matches the production data, this process is 

known as history matching. 

 Standnes and Skjevrak (2014) reviewed 72 different polymer floods (66 of which were onshore) 

that date back to 1964; 92% of projects used Hydrolysed form of Polyacrylamide (HPAM) as a 

polymer. Of these 72 floods, 40 were considered a success on a technical level, 6 failed, 11 

promising, 10 too early to determine and 5 not evaluated. The reasons for failure were due to a 

poor design process which led to underperforming floods by either injecting small slug sizes 

(17% Pore Volumes in comparison to 34% Pore Volumes in successful floods) or low polymer 

concentrations. It is worth noting that the success rate was higher in secondary flood polymer 

floods compared to tertiary floods.  

The international Energy Agency (IEA) estimated about 375 EOR projects worldwide (Figure 

1-6) produced slightly more than 2 million bbl/day in 2018. The forecast this could grow to 4.5 

million bbl/day or about 4% of global production by 2040 (Figure 1-7) 
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Figure 1-6 Global EOR projects at different points in time (IEA 2020). 

Figure 1-7 Estimated contribution of different EOR methods to global oil production (IEA 2020) 
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1.3.1.  Current Polymer Projects  
The contribution to the world’s oil production from polymer flooding is estimated at about 

80,000 bbl/day in 2020. The forecast show that the contribution from polymer flooding could 

grow 120,00 bbl/day by 2029 (Figure 1-8). 

 

 

Figure 1-8 Estimated contribution of polymer flooding to global oil production (South et al. 2018) 

Despite the limited contribution of chemical EOR methods to global oil production, the potential 

for polymer flooding is significant. It is estimated that an additional 2,100MMstb of oil could be 

recovered from the North Sea alone using polymer flooding (McCormack et al. 2014). Table 1-1 

shows results from a global survey by Sheng et al. (2015) that indicates that over 700 pilot and 

large-scale polymer flood projects are either currently executed or are in the planning phase. The 

average incremental recovery across the projects that are currently under operation is 6.7% while 

the water cut could be reduced by 13%. In addition, polymer flooding can also be combined with 

other chemical EOR methods, including but not limited to low salinity flooding or surfactant 

floods, which show significant incremental recoveries in laboratory experiments but need a more 

stable oil price environment to move to pilot stages (Muggeridge et al. 2014). 
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Table 1-1. Review of current, planned, and ongoing polymer flood projects across the globe 

(from Sheng et al, 2015). 

Angola 1 Indonesia 1 

Argentina 11 Kuwait 1 

Australia 1 Mexico 1 

Austria 1  Nigeria 1 

Brazil 2  Oman 2 

Canada 50 Poland 1 

China 67 Romania 3 

Colombia 1 Russia 2 

France 5 Suriname 1 

Germany 12 Trinidad 1 

Hungary 1 UK 1 

India 6 USA 560 

 

The most successful polymer flooding projects are located in China, and specifically the projects 

in the Shengli and Daqing oil fields have caused other countries to reconsider the application of 

chemical EOR (Kokal and Al-Kaabi 2010). The Daqing field is the world’s largest polymer 

flood project. Polymer flooding research in the Daqing field commenced in the early 1970s, 

followed by a pilot test in 1990 where an increase of 14% in recovery was observed in a single-

layer test and an increase of 11.6% in a double layer-test (CNPC 2016). In 1996, a large-scale 

polymer flooding commenced in the northern section of the field. The polymer flooding at 

Daqing field has yielded an average incremental recovery of 11% compared to a water flood, and 

a decrease in average water cut of approximately 24.8% (Wang and Liu 2006). Another 

important polymer flooding project is located in Oman in the Marmul field, which at 90 cp 

contains the highest viscous oil in the Arabian Gulf (Delamaide 2014). The first pilot at the 

Marmul field commenced in 1986 but full-field polymer flooding did not start until 2010 due to 

low oil price. 6.3 million barrels of incremental oil were produced from the Marmul field by 

December 2013 (Oil & Gas News 2015). The world’s first offshore polymer flooding project is 

the Dalia field in Angola, which went on production in 2006 and where a feasibility study 

showed that polymer flooding would be economical even during the early stages of the field 

development (Morel et al. 2008). 

Overall, polymer flooding has been tested and proven to be successful and possesses a lot of 

promising opportunities to recover more oil. However, it requires adequate risks and uncertainty 

quantifications as the economics can be very challenging, which is the reason they are not 

widespread. Therefore, there is a need to develop a robust workflow that will integrate the 

interpretation and geological uncertainties as well as uncertainties associated with the history 

matching process in the optimisation of the NPV of polymer flooding in a heterogenous clastic 

reservoir. 

The novelty of this thesis is the detailed investigation of how different history matching 

approaches and optimization methods impact the predicted performance and optimal design of a 



11 
 

polymer flood. We show that an optimized polymer flood is beneficial compared to an optimized 

water flood even if geological uncertainties are not represented adequately in the reservoir 

models. Although the specific experimental design techniques (i.e. Latin Hypercube Sampling) 

and optimization algorithm (i.e. Particle Swarm Optimisation) are not new, the application of the 

experimental design and proxy modelling workflow to analyse polymer flooding to complex 

heterogeneous reservoirs has not been widely reported. 

 

 Research Objectives and Scientific Hypothesis 
The objective of this thesis is a detailed analysis on the performance of a particular and well-

established EOR mechanism, polymer flooding, while considering a range of uncertainties. On 

the one hand, uncertainties related to the reservoir geology are studied, including but not limited 

to the depth of top structure, presence fault networks, net-to-gross, cut-offs, and the actual 

reservoir modelling approach. On the other hand, a reservoir model is also calibrated to the 

observed data during history matching to analyse the success of possible EOR schemes. History 

matching introduces another source of uncertainty as history matching is an ill-posed problem, 

and different history matching methods can lead to different production forecasts and uncertainty 

estimates. This thesis therefore aims to investigate how different history matching techniques 

impact our ability to predict the optimal strategy of a polymer flood while considering geological 

uncertainties and analyses of the subsequent financial upsides and downsides. 

Scientifically, the central hypothesis of this thesis is that reservoir models that have been history 

matched for a different displacement process may not capture the relevant geological structures 

needed to predict an EOR process, which changed fluid-rock interactions, adequately. Ringrose 

and Bentley (2015) used the so-called “Flora’s rule” to explain that the same geological 

heterogeneity impacts reservoir dynamics in different ways, depending on the fluids that are 

present in the reservoir or injected into the reservoir. 

More specifically, this thesis aims to answers to the following research questions: 

1. How do different history matching techniques affect our ability to forecast the 

performance prediction of a waterflood and polymer flooding? 

2. Are the optimal polymer flooding deployment strategies obtained from fast proxy-based 

optimization different from optimization methods that use a full physics simulation? 

3. How do geological uncertainties affect the prediction and performance of Polymer 

flooding? 

4. How is this risk assessment affected by the history matching procedure?  

5. What is the value in terms of risk assessment of history matching different realizations of 

geological models before carrying out polymer flooding optimization? 

The answers to these research questions are obtained through the following objectives:  

1. Generate an ensemble of a history matched models which account for uncertainty in 

reservoir geology using an adjoint technique and particle swarm method.  
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2. Carry out uncertainty quantification of each ensemble using Markov Chain Monte Carlo 

(MCMC) with proxy algorithm to assess how history matching techniques impact the 

prediction of uncertainty. 

3. Optimise and compare a polymer injection strategy using the history matched ensembles 

from Step 1 (constrained optimisation) and also the original reservoir model ensemble 

(unconstrained optimisation).   

4. Compare and contrast the results of the proxy-based method of optimization and full-

physics optimisation. 

5. Carry out uncertainty analysis and risk assessment of waterflood and polymer flooding 

using a proxy based MCMC technique. 

 

 Structure of Thesis 
Chapter 1, this chapter, provided an overview of the world’s energy market, the role oil and gas 

play in meeting future energy demand, and under which circumstances EOR projects can 

contribute to future oil production. The remainder of thesis is organised in as follows: 

Chapter 2 presents the literature review on EOR, with specific emphasis on polymer flooding. 

This chapter discusses the types and structure of polymers used for EOR, properties of polymer 

solutions, and the phenomena of polymer flooding in porous media. This chapter also reviews 

different history matching methods, including the classification of assisted history matching 

techniques such as deterministic methods, stochastic sampling, and data assimilation. Chapter 2 

finally ended with a review on uncertainty quantification techniques and geological 

parameterisation.  

Chapter 3 provides a detailed description of the Watt Field, which is the semi-synthetic reservoir 

used in this study. Chapter 3 describes the methodology and provides the specific information 

about the history matching and optimisation techniques that are used throughout the thesis. 

Chapter 4 explains how the ensembles of history matched models where generated using the 

adjoint technique and particle swarm method. The chapter further investigates how this resulting 

history matched models impact future reservoir performance forecasts.  

Chapter 5 presents the results and detailed analysis from the optimisation of the polymer flood, 

using the two history matched reservoir model ensembles but also the original ensemble that was 

not history matched. The optimisation also includes a cross-comparison of different reservoir 

models and optimisation strategies to assess the financial upsides and downsides when 

optimising a polymer injection under geological uncertainty. Furthermore, MCMC with Proxy-

based Acceptance-Rejection (PAR) were used to compute the Posterior Probability Function 

(PPF) of the three different ensembles.  

Chapter 6 concludes the thesis, summarising the key outcomes and providing suggestions and 

recommendations for future research. 
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Chapter 2.          Literature Review 
 

 

 Introduction 
The reasons for low oil recovery factor in reservoirs are both technical and economical. During 

primary recovery, there is usually insufficient energy in the system to lift all the oil. If water 

injection is introduced to provide pressure support and sweep oil towards the production wells, 

the injected water may bypass oil due to viscous fingering and/or geological heterogeneity. 

Economically, over the course of the lifecycle of a well, a point is always reached where the cost 

of producing an additional barrel of oil is higher than the price for that barrel of oil. When this 

point is reached, the well is abandoned with as much as 70% of the oil unrecovered in the 

reservoir (Lake et al. 1992).  Therefore a substantial percentage of oil in place cannot be 

recovered by the conventional techniques and may become the target for Enhanced Oil Recovery 

(EOR) to increase the recovery factor (Zekri et al. 2000). 

EOR techniques, such as polymer injection and Water Alternating Gas (WAG) injection, offer 

the potential to recover more oil and extend the life of a mature oil field that has been undergoing 

a water flood, which is helped by the often much-improved understanding of the reservoir 

geology and reservoir dynamics after many years of production and data gathering (Abu-Shiekah 

et al. 2012). The primary aim of all EOR methods is to increase the volumetric (i.e. macroscopic) 

sweep efficiency and to enhance displacement (i.e. microscopic) efficiency, which can be 

achieved in two ways. First, volumetric sweep can be increased by reducing the mobility ratio 

between the displacing and displaced fluid, which reduces the tendency of viscous fingering. 

Second, the effect of capillary trapping can be reduced by lowering the interfacial tension 

between the displacing and displaced fluids. Both mechanisms reduce the residual oil saturation 

and increase ultimate recovery. Therefore the final recovery factor depends upon the microscopic 

displacement efficiency and volumetric sweep efficiency of the displacement front (Chierici 

1995). 

 A review by Manrique et al. (2010) indicates that thermal and chemical EOR processes 

dominate in sandstone reservoirs while gas and water-based recovery methods dominate in 

carbonate and turbidite reservoir. Applying EOR in offshore fields is more complex compared to 

onshore fields because of the well-spacing, limited space for new surface facilities, and 

environmental regulations. Lithology impact EOR both in onshore and offshore. Figure 2-1 

illustrates the design and implementation steps that are needed when planning an EOR 

programme, from the initial data collection and management, to screening and laboratory studies, 

to reservoir simulation, pilot tests, and finally full field implementation. 
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Figure 2-1. Design and implementation steps of a comprehensive EOR program (from Abu et al. 

2014).
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EOR methods can be separated into four generic classes, chemical methods, thermal methods, 

gas injection, and microbial methods, which are discussed in more detail below (Tunio et al. 

2011). 

I. Chemical methods include polymer flooding, surfactant flooding, and alkaline flooding, 

or a combination, therefore. These methods aim to change the way the displacing and 

displaced fluids interact by altering the chemistry of the injected (displacing) fluids. More 

specifically, polymer flooding is the process of injecting polymers into the reservoir 

which lowers the mobility ratio between the injected fluid and reservoir fluid, thereby 

reducing viscous fingering, increasing macroscopic sweep efficiency, and delaying water 

breakthrough. Surfactant flooding involves the addition of surface-active chemicals 

(surfactant) to the injected water, which reduces the interfacial tension between the 

displacing and displaced fluid, i.e. decrease the capillary forces that trap oil in the pores 

of the reservoir rock. Alkaline flooding is a process where alkaline chemicals such as 

sodium hydroxide, sodium carbonate or sodium orthosilicate are added which react with 

in situ fluids to reduce interfacial tension between oil and water resulting in lower 

residual oil saturation (Broome et al. 1986). Foam flooding is another form of chemical 

EOR where foam is injected or generated within the reservoir to mitigate sweep 

inhomogeneities caused by high permeability layers or gravity override (Sheng 2011a). 

II. Gas injection includes the injection of CO2 or N2 into the reservoir, either at miscible or 

immiscible conditions. Gas injection improves the displacement efficiency by eliminating 

or lowering the interfacial tension between the oil and the displacing fluid (gas). If 

deployed after water flood it has the potential to re-establish a pathway to recover the 

remaining oil thereby reducing residual oil saturation (McGuire et al. 1995). The 

disadvantage of gas injection is lower macroscopic sweep efficiency because the 

displacing phase (gas) has a lower viscosity and density than oil, and are adversely 

impacted  by viscous fingering, heterogeneity and gravity (Claridge 1972). Gas injection 

can also be combined with water injection in the form of Water Alternating Gas (WAG) 

injection. WAG is an efficient EOR method because it combines the benefits of gas 

injection to reduce oil saturation and water injection to improve mobility control and 

frontal stability (Lake et al. 1992). 

III. Thermal methods add heat to the reservoir to lower the viscosity of the reservoir fluid, 

and in some cases to vaporise the oil. Thermal methods are mainly applied to heavy oil 

reservoirs although they have been used to accelerate gravity drainage in more 

conventional reservoirs as well. Heat can be added to the reservoir through cyclic steam 

injection, steam injection or in situ combustion applied (Bera and Babadagli 2015). 

Thermal EOR is the most popular EOR, representing  about 67% of the global EOR 

applications (Mokheimer et al. 2019). Steam-Assisted Gravity Drainage (SAGD) is 

widely used in oilfields in Canada yielding relatively high oil recovery factor between 60 

to 80% (Mokheimer et al. 2019). 

IV. Microbial methods aim to manipulate the function or structure, or both, of the microbial 

environments existing in oil reservoirs in order to improve the recovery of trapped oil and 

extend the life of a reservoir (Bryant and Burchfield 1989) . The mechanism of microbial 

methods includes, flow diversion, in situ upgrading, wettability modification and 
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generation of biosurfactants within the reservoir. Microbial methods result in reduction of 

the oil/water interfacial tension, promotes emulsification and leads to improvement in oil 

recovery from the reservoir (Bryant and Burchfield 1989). Microbial EOR has not been 

widely applied even though it was first proposed in 1947, this is because of the difficulty 

to predict its performance in the field (Muggeridge et al. 2014a). 

 

 Geological Uncertainty 
Geological uncertainty is a major challenge that are encountered in reservoir modelling and 

simulation. Uncertainty is introduced due to the incomplete understanding of the geology and 

lack of data to populate the entire heterogenous reservoir model, as we are often provided with 

data from the wellbore (Ringrose and Bentley 2015). Christie et al. (2005) provided a good 

analogy to this challenge encountered in reservoir modelling. They likened reservoir production 

forecasting to “drawing a street map of London and then predicting traffic flows based on what 

you see from twelve street corners in a thick fog”. In reservoir simulation it therefore means that 

we lack knowledge on the spatial extent of our reservoir facies, and this incomplete knowledge 

of the geology propagates into the uncertainty in the forward prediction of the reservoir model. 

As already established, the real geological description of a reservoir is unknown, it is therefore 

imperative to devise means to account for uncertainty. Ringrose and Bentley (2015) broadly 

classified the methods for geological uncertainty quantification into 3: 1). Rationalist approaches 

(best guess): In this method, a preferred case is chosen as a base case and then run as a best guess 

or with the addition of a range of uncertainty to that guess. 2). Multiple stochastic approach: In 

this approach large realizations of geological models are probabilistically generated using 

geostatistical simulation. The probability of different methods is calculated based on their 

relative frequency. 3). Multiple deterministic approach: Unlike the best guess approach, multiple 

deterministic approach does not choose a preferred base-case model. In this approach, a smaller 

number of scenarios are modelled in such a way that each one will represent a complete reality 

of an explicitly defined reservoir concept. Figure 2-2 shows different methods of geological 

uncertainty quantifications. 
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Figure 2-2. Methods of geological uncertainty quantification (from Ringrose and Bentley 2015). 

In multiple stochastic approach, a geo-modeller will typically build hundreds of realisations of 

reservoir models to quantify the uncertainty of a field before production. These realisations are 

parameterised numerically to cover the range of uncertainty in the reservoir. However, 

uncertainty of interpretational elements which is impossible to account for are often neglected. 

Examples of  such interpretational uncertainties are: uncertainties in the fault model i.e. the 

choice of the numbers of faults in the reservoir, uncertainties in the picking up the depth of top 

structure which will impact the bulk volume of the reservoir, the uncertainty of choosing a shale 

cut-off to define net-to-gross, the uncertainty in the permeability prediction model and the 

uncertainty in the depositional (Arnold et al. 2013). It is therefore essential to integrate these 

elements into the workflow of reservoir modelling in order to reduce risk. 

Building a reservoir model should be purpose driven, which should be to provide answers to 

some specific questions (Bentley 2015). The first stage of reservoir modelling workflow is to 

observe if there are heterogeneities and other geological structures in the reservoir. The next step 

is to decide which of these heterogeneities to include in the reservoir model by determining 

which heterogeneity and geological structure is sensitive to the reservoir fluid and the production 

mechanism using Flora’s rule. Some fluid types are more sensitive to heterogeneities than the 

others. For instance, gas reservoirs are less sensitive to heterogeneity in permeability than oil 

reservoirs under a waterflood (Bentley and Ringrose 2017). According to "Flora's Rule" 

(Ringrose and Bentley 2015), if an EOR process such as polymer flooding changes the fluid-rock 

interactions and mobility ratios, it is not guaranteed that key geological uncertainties are properly 
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captured in a reservoir model that was previously history matched for a different recovery 

mechanism. It is therefore possible that geological uncertainties are not adequately propagated 

into future predictions of reservoir performance, particularly when the history matched model is 

centred around a single base case. 

 EOR Optimization 
The performance of enhanced oil recovery (EOR) processes in heterogeneous reservoirs usually 

suffers from low macroscopic displacement efficiency associated with early breakthrough, 

unstable pressure distribution, oil rate reduction, and low ultimate oil recovery (Jarrell et al. 

2002). Therefore it is important to carry out production optimization to achieve maximum oil 

recovery within the present economic limits and geological uncertainties (Chen et al. 2012). 

Extensive simulation studies have been performed on how to optimize the injection profile in 

order to maximize the net present value (NPV) or the macroscopic displacement efficiency of 

EOR schemes both for synthetic reservoirs and real-field applications (Sudaryanto and Yortsos 

2001).  Taheri and Sajjadian (2006) carried out optimization of CO2-WAG parameters such as 

WAG ratio, slug sizes of gas and water and alternating time interval to maximise oil recovery at 

the lowest possible cost. Due to the complexity of the field-scale problem, such optimization 

applications have been mostly limited to small-scale problems (Davidson and Beckner 2003).  

Chen et al. (2010) optimised NPV in the Pubei Oil Field by identifying optimal WAG ratio, 

cycle time, injection rate and the bottom-hole pressure for a producing well. AlAmeri et 

al.(2020) developed a workflow which integrates geological uncertainties and employs multi-

objective optimisation to maximize WAG injection in a complex giant carbonate reservoir. 

Van Doren et al. (2011) employed adjoint-based optimization to determine the optimum values 

of the slug size, polymer concentration, injection and production rate in a full field of a heavy oil 

reservoir simulation model with viscosity of 90cp, 250 production wells and 50 injection wells. 

NPV increased from a base case of $180 million to $192 million by increasing oil recovery 

factor by 10% and decreasing polymer injection. Further insight from the results showed that the 

polymer concentration was lower in some injectors compared to other injector. The physical 

explanation was that the injection wells with lower polymer concentration was located in the 

region with smaller oil column, implying less volume of oil needed to be swept. Clemens et al. 

(2011) used streamline simulation to optimize the polymer utilization factor (UF) in a Romanian 

Field by identifying the optimal well pattern, slug size and polymer concentration. The result 

from their study show that the UF decreased from 3.01 kg/bbl for the base case to 2.01 kg/bbl 

and the incremental oil recovery over waterflood increased from 5.01 * 106 bbl to 6.1 * 106 bbl. 

Mantilla and Srinivasan (2011) presented a feedback control framework that quantifies 

uncertainties in reservoir modelling and production forecast of an ensemble. The uncertainties of 

the ensemble are updated by continuously monitored production data from a truth case model. 

The updated reservoir models representing the uncertainties are optimized using a proxy-based 

optimisation algorithm to maximize NPV for polymer flooding by identifying optimal injection 

and production rates. The NPV for polymer flooding from the presented feedback control 

technique showed similar NPV to the NPV of the optimized truth case model. 



19 
 

Additionally, most of the previous studies on production optimization have been performed 

using a single reservoir model, therefore, the corresponding results are deterministic, and cannot 

account for the uncertainties associated to the reservoir characterisation, description and history 

matching. Production optimisation using a single reservoir model and ignoring geological 

uncertainties is known as nominal optimisation. Due to the impact of reservoir heterogeneity on 

EOR processes, the optimal solution obtained using nominal optimisation may be suboptimal 

and deviate significantly from the actual optimal strategy (Yang et al. 2011). To account for 

geological uncertainties and reduce risks in EOR optimisation, robust optimisation has been 

recently employed. In robust optimisation, multiple realisations of geological models are used to 

determine an optimal risk weighted strategy that is most likely to yield good performance in any 

of the realisations (Chen et al. 2012).  

Efforts have also been made to address the problem of geological uncertainty in production 

optimization, mostly for water flooding processes. Van Essen et al. (2009) addressed the 

geological uncertainty of the robust water flooding optimization process by performing the 

optimization over multiple models.  Alhuthali et al. (2008) computed the optimal injection and 

production rates based on multiple geological models and then maximized the sweep efficiency 

during water flooding considering the geological uncertainty.  

Therefore, there is a need to employ a robust approach to determine the optimal production–

injection scheme of EOR processes using multiple realizations of geological models that account 

for uncertainties in both reservoir geology and history matching. The challenge with robust 

optimisation is that it is computationally expensive to use all the realisation in the optimisation 

workflow, to lower the computational effort, a subset of representative realisations can be 

selected to carry out the optimisation study (Chen et al. 2012). 

 Polymer Flooding 
Polymer flooding is a chemical EOR process which involves adding relatively long chains of 

high molecular weight, polyelectric and soluble polymers into the injected water. The aim of 

adding polymers to injected water is to raise the water viscosity in order to lower its mobility and 

to be approximately the viscosity of oil or even higher in some scenarios.  Polymer flooding 

therefore targets oil reservoirs that contain oil with relatively high viscosities, from 100 cp up to 

5000 cp, and from 12 API° to 22.3 API° (Saleh et al. 2014). The mobility control that is induced 

by polymer flooding helps to overcome challenges that are encountered when injecting water 

into high viscosity oil reservoirs such as viscous fingering and bypassing of oil or early water 

breakthrough. In other words, polymer flooding can increase incremental recovery by improving 

the volumetric sweep efficiency (Seright 2010). Heavy oil reserves (i.e. liquid petroleum of less 

than 22.3 API° and more than 200 cp viscosity at reservoir conditions) represent 20-25% of the 

global oil resources and according to the USGS, there are estimated 355 billion barrels of viscous 

oil in recoverable reserves at an estimated recovery factor of 13-15% (Meyer and Attanasi 2013). 

From the above statistics, it is clear that recovery factors for heavy oilfields can be enhanced by 

using EOR techniques.  
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In addition to improving the sweep efficiency, polymer flooding has also been deployed in near 

wellbore treatments to plug off watered out high permeability zones and reduce water cut or to 

improve the performance of injection wells to make the injection profile even. Furthermore, cross-

linked polymers can be injected to plug off high permeability zone deep in the reservoir for fluid 

diversion (Sorbie 1991). This thesis will focus on deploying polymer solutions for better mobility 

control and volumetric sweep in the entire reservoir. 

 

The end-point mobility ratio 𝑀 describes the stability of a displacement front and is given by  

 

 

𝑀 =

𝑘𝑟𝑤
µ𝑤

⁄

𝑘𝑟𝑜
µ𝑜

⁄
=  

𝑘𝑟𝑤µ𝑜

𝑘𝑟𝑜µ𝑤
, 

 

2-1 

where 𝑘𝑟𝑤 is  the relative permeability of water, 𝑘𝑟𝑤 is the relative permeability of oil, µ𝑤 is the 

viscosity of water, µ𝑜 is the viscosity of oil. For cases of 𝑀 ≤ 1, displacement piston-like, reaching 

100% recovery of the displaced fluid at breakthrough (Chang 1978). In contrast, when 𝑀 > 1 the 

displacing phase is moving faster than the displaced phase, which results in early breakthrough of 

the displacing phase and by-passing of the displaced phase (Sorbie 1991). The inefficient 

displacement at unfavourable mobility conditions, i.e. for  𝑀 > 1, is exacerbated if the reservoir is 

heterogeneous and contains, for examples, high-permeability streaks or fractures (Sorbie 1991). 

Since polymers alter the viscosity of the water phase, i.e. the displacing phase, the mobility ratio 

can become more favourable which eventually impacts the recovery factor 𝑅𝐹, which is defined 

as  

 

 𝑅𝐹 = 𝐸𝐷 × 𝐸𝐴 × 𝐸𝑉 , 2-2 

where 𝐸𝐷 is the displacement efficiency, 𝐸𝐴 is the areal sweep efficiency, and 𝐸𝑉  is the vertical 

sweep efficiency. Polymer flooding increase the volumetric sweep efficiency which is defined as 

the product of areal and vertical sweep efficiency. Note that polymer flooding often does not 

lower residual oil saturation, nor does it increase microscopic displacement efficiency (i.e. 

proportion of oil displaced from the pores by the injected fluid). However, polymer flooding 

increase the macroscopic sweep efficiency (i.e. proportion of the connected reservoir volume that 

is swept by the injected fluid) (Figure 2-3). Polymer flooding can speed up oil recovery, and 

therefore the estimated ultimate recovery can be reached sooner compared to water flooding, 

leading to higher NPV (Seright 2010). This is because polymer flooding will lower water cut and 

allow more oil to be produced in the earlier stage of reservoir thereby increases the cash inflow 

which will have a higher value compared to when the oil will be produce in the later stage of the 

reservoir during water flooding. However, increasing the viscosity of injectants such as polymers 

could substantially impact injectivity, slow down fluid throughput and delay oil production from 

flooded patterns (Seright et al. 2009). Injectivity is defined as the injection rate divided by 

downhole pressure difference between the well and the formation. The major properties of 

polymers that affect injectivity are debris in the polymer, polymer rheology in porous media and 

polymer degradation patterns (Seright et al. 2009). When preparing polymer solution, ineffective 

polymer hydration and debris in the polymer can lead to near wellbore plugging (Burnett 1975). 

Rheology in porous media can have a significant impact on injectivity for example Hydrolysed 



21 
 

form of Polyacrylamide (HPAM) exhibit viscoelastic (shear thickening) behaviour in porous 

media i.e. the effective viscosity increases with increase in shear rate (Seright 1983). Therefore 

the resistance factor increases with increase in flux for moderate to high viscosities which can 

lead to injectivity loss (Pye 1964). Mechanical degradation causes an increase in entrance 

pressure drop which decreases injectivity (Seright 1983). 

 

 

Figure 2-3. Fingering effect with Water flooding (left) and decreased effects of fingering with polymer 

flooding (right) (Zerkalov 2015).  

2.4.1. Types of Polymers  
Different types of polymers exist which can be used for polymer injection. These can be broadly 

classified into two types, synthetic and biopolymers (Sorbie 1991). The commonly used 

synthetic polymer is the HPAM. The commonly used biopolymer is Xanthan. HPAM is the most 

widely used polymer for polymer flooding. Further details on the molecular structures and 

different behaviour of HPAM and Xanthan are provided next. 

2.4.1.1  Xanthan 
Xanthan is produced and used by other industries, for example as a thickener in the food 

industry, and could therefore readily be adapted for EOR purposes. Xanthan is manufactured by 

bacteria fermentation and polymerization process with a micro-organism known as Xanthomonas 

campestris (Lake 1989; Sorbie 1991; Green and Willhite 1998). The Xanthan polymer base is 

primarily composed of cellulose-like chain of glucose monomers and glycoside links. Different 

variants of the Xanthomonas yield polymers with somewhat different properties as a result of 

marginal change in their molecular weight and structure of the produced polymers (Sorbie 1991).  

Many authors have simplified the molecular structure of Xanthan polymer molecule to a rigid 

rod-like structure (Figure 2-4). A Xanthan polymer molecule consists of a straight chain with 
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further side groups that fold and coil helically around the backbone to form a rod-like structure 

that possess a certain degree of stiffness (Sorbie 1991). This presence of a rod-like structure was 

confirmed by rheological research and experiments, as Xanthan was seen to be relatively 

insensitive to brine properties, e.g. temperature, salinity, pH levels and hardness. The estimated 

diameter of Xanthan is approximately 2nm and its molecular weight ranges between 1 gmol-1 – 

12 x 106 gmol-1 (Sorbie 1991).  The choice of higher molecular weight usually causes the 

molecules to aggregate and gel, which may result in plugging or retention of polymer in the 

reservoir. This problem can be mitigated by running Xanthan polymers through filters to isolate 

any gel or debris prior to deployment (Sorbie 1991; Lake 1989). Xanthan polymers are also 

prone to bacteria attacks in the storage facilities or during injection to the reservoir. To overcome 

this challenge, Xanthan if often treated with biocides such as formaldehyde to suppress the 

growth of Xanthan gum degrading microorganisms. However, the use of biocides increases the 

cost of polymer flooding and also poses high environment impact (Lake 1989; Sorbie 1991). 

 

Figure 2-4. The molecular structure of Xanthan (from Dominguez and Willhite 1977). 

2.4.1.2  Polyacrylamides 
Polyacrylamides (PAM) are synthetic polymers because they are manufactured through the 

process of polymerisation of the acrylamide monomers (Lake 1989; Sorbie 1991; Green and 

Willhite 1998). PAM consist of the monomeric units of acrylamide molecules and possesses a 

straight chain of flexible random coil-like molecular structure. The hydrolysed version of PAM 

(HPAM) is widely available because it is also used by other industries. HPAM is more widely 

used in EOR projects than Xanthan polymers because it is resistant to bacteria attack, it has good 

water solubility and mobility control and it is less expensive than Xanthan. HPAM has also 

shown permanent permeability reduction (Lake 1989; Sorbie 1991; Green and Willhite 1998). 

Due to its higher photoelectric nature when hydrolysed, HPAM solutions are affected by the 

salinity and hardness of the formation brine (Sorbie 1991; Lake 1989; Green and Willhite 1998). 

In contrast to Xanthan, HPAM also does not have any supplemental structure to its backbone 
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(Figure 2-5) that provides stiffness to its molecules and is hence more susceptible to mechanical 

degradation (Sorbie 1991).  

  

Figure 2-5. The molecular structure of HPAM (from Sheng 2011). 

The molecular weight of HPAM ranges from 2 gmol-1 – 20 x 106 gmol-1, the diameter between 7 

– 25 Å, and the approximate length 10µm.  

2.4.2.  Mathematical Model for Polymer Flooding 

2.4.2.1  Black-Oil Model 
The Black Oil model is popularly used in reservoir simulation. It can be considered as an 

extension of where the mass of each phase is conserved. It models the oil, water and gas as 

discrete phases and can be applied to the low-compressibility fluids, and fluid systems where 

water and oil only contain a little fraction of dissolved gas. The Black Oil model can be used to 

model the primary depletion and secondary recovery as well as polymer flooding. The mass 

conservation equations for the Black Oil model are given by (Trangenstein and Bell 1994)   

 𝜕 (𝜙
𝜌𝑠𝑜

𝐵𝑜
𝑆𝑜)

∂t
= −∇ (

𝜌𝑠𝑜

𝐵𝑜
𝜐𝑜) + 𝑞𝑜 ,  
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𝜌𝑠𝑔

𝐵𝑔
𝑆𝑔 +

𝑅𝑠𝑜𝜌𝑠𝑜

𝐵𝑜
𝑆𝑜])

∂t
= −∇. (

𝜌𝑠𝑔

𝐵𝑔
𝜐𝑔 +

𝑅𝑠𝑜𝜌𝑠𝑜

𝐵𝑜
𝜐𝑜) + 𝑞𝑔 + 𝑞𝑜

𝑔
,  
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and 

 𝜕 (𝜙
𝜌𝑠𝑤

𝐵𝑤
𝑆𝑤)

∂t
= −∇ (

𝜌𝑠𝑤

𝐵𝑤
𝜐𝑤) + 𝑞𝑤.  

2-5 

 

𝐵𝑜, 𝐵𝑔, 𝐵𝑤 are the formation volume factor of the oil, gas and water, respectively, and 𝑞𝑜, 𝑞𝑔, 𝑞𝑤 

are the oil, gas and water volume flow rate, respectively. 𝜙 is the porosity, 𝑅𝑠𝑜 is the gas in 

solution and 𝜐 is the velocity which is described by Darcy’s law as  
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𝜐𝛼 = −

𝐾𝑘𝑟𝛼

𝜇𝛼

(∇𝑃𝛼 − 𝜌𝛼𝑔∇z),   with 𝛼 = 𝑜, 𝑔, 𝑤,  
2-6 

 

 where 𝑃𝛼 is the pressure of each fluid phase, which contains the capillary pressure as  

 

 𝑃𝑐𝑜 = 𝑃𝑜 − 𝑃𝑤 ,   𝑎𝑛𝑑  𝑃𝑐𝑔 = 𝑃𝑔 − 𝑃𝑜 .  2-7 

 

2.4.2.2 Two Phase Flow with a Polymer 
The mathematical model of polymer flooding is an extension of the black oil two phase flow 

equations for oil and water presented above. In this equation, polymer is added to the water 

phase and the polymer concentration 𝑐𝑝, is expressed in mass per volume of water. The 

assumption is that the introduction of polymer will not alter the properties of the oil phase. The 

conservation equations for oil, water, and water with polymer are expressed as 

 

 𝜕

𝜕𝑡
(

𝜙𝑠𝑜

𝐵𝑜
) + 𝛻 ⋅ (

𝑣⃗𝑜

𝐵𝑜
) =

𝑞0

𝐵𝑜
 ,   
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𝑣⃗𝑤

𝐵𝑤
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𝑞𝑤

𝐵𝑤
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𝜕𝑡
(

(1 − 𝑠ipv)𝜙𝑠𝑤𝑐𝑝

𝐵𝑤
) +

𝜕

𝜕𝑡
((1 − 𝜙ref)𝜌𝑟𝑐𝑎) + 𝛻 ⋅ (

𝑐𝑝𝑣⃗𝑝

𝐵𝑤
) =

𝑞𝑝

𝐵𝑤
 ,  
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and the Darcy velocities are given by 

 

 𝑣⃗𝑜 = −
𝑘𝑟𝑜

𝜇0
K(𝛻𝑝0 − 𝜌0𝑔𝛻𝑧)  

2-11 

 

 𝑣⃗𝑤 = −
𝑘𝑟𝑤

𝜇𝑤,eff𝑅𝑘
K(𝛻𝑝𝑤 − 𝜌𝑤𝑔𝛻𝑧)  
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 𝑠𝑤 + 𝑠𝑜 = 1 and 𝑝cow(𝑠𝑤) = 𝑝0 − 𝑝𝑤 2-13 
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Several new parameters have been introduced that are not captured in the black oil model 

presented above. Each of them is explained in the following together with various physical 

phenomena they model. 

2.4.3.  Properties of Polymer Solutions 

2.4.3.1  Polymer Solution Viscosity 
Polymers viscosify a solution through interactions between polymer molecules with solvent 

molecules that lead to energy dissipation. Polymers dissipate higher energy than smaller 

molecules which results in higher viscosity (Sorbie 1991). Polymer solution viscosity is directly 

proportional to polymer concentration in the solution and molecular weight (Lake 1989; Sorbie 

1991; Green and Willhite 1998). Todd-Longstaff mixing model  is used to express the effective 

viscosity of water 𝜇𝑤,𝑒𝑓𝑓 and polymer 𝜇𝑝,𝑒𝑓𝑓 (Todd and Longstaff 1972). The effective viscosity 

of polymer is defined as 

 

 𝜇𝑝,𝑒𝑓𝑓 = 𝜇𝑚(𝑐𝑝)
𝜔

𝜇𝑝
1−𝜔,  2-14 

 

where, 𝜇𝑚(𝑐𝑃) is the viscosity of a completely mixed solution of water and polymer, 𝑐𝑝,𝑚𝑎𝑥 is 

the maximum possible polymer concentration, 𝜇𝑝 = 𝜇𝑚(𝑐𝑃,𝑚𝑎𝑥), and 𝜔 ∈ [0,1] is the Todd-

Longstaff mixing parameter. The polymer solution and the water are wholly mixed when 𝜔 = 1, 

and the polymer solution is completely immiscible in pure water when 𝜔 = 0. Partial mixing 

occurs when the values of 𝜔 is between 0 and 1. The viscosity of partially mixed water can be 

expressed as 

 𝜇𝑤,𝑒 = 𝜇𝑚(𝑐𝑝)
𝜔

𝜇𝑤
1−𝜔,  2-15 

 

 

The effective water viscosity 𝜇𝑤,𝑒𝑓𝑓 is therefore defined as 

 

 1

𝜇𝑤,𝑒𝑓𝑓
=  

1 − 𝑐𝑝 𝑐𝑃,𝑚𝑎𝑥⁄

𝜇𝑤,𝑒
+

𝑐𝑝 𝑐𝑃,𝑚𝑎𝑥⁄

𝜇𝑝,𝑒𝑓𝑓
 ,   
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2.4.3.2 Rheology and Behaviour of Polymer Solution 
Fluids are classified into two categories namely, Newtonian and Non-Newtonian fluids. For 

Newtonian fluids, the viscosity is the constant of proportionality between the shear stress and 

shear rate i.e. viscosity is independent of shear rate and given by 
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 𝜏 = 𝜇𝛾,    2-17 

 

where 𝜏 is the shear stress, and 𝛾 is the shear rate. Water is an example of a Newtonian fluid. On 

the other hand, when polymer is added to water, the resultant polymer solution becomes non-

Newtonian fluid. A non-Newtonian fluid is a fluid in which the relationship between the shear 

stress and shear rate is non-linear. The viscosity in this situation is termed “apparent viscosity” 

and it is a function of shear rate (Sorbie 1991) given by 

 𝜏 = 𝜂(𝛾)𝛾,   2-18 

 

where 𝜏 is the shear stress and 𝜂(𝛾) is the shear dependent apparent viscosity. 

A non-Newtonian polymer solution exhibits two types of behaviour, shear thinning 

(pseudoplastic) or shear thickening (dilatants). Most available commercial polymers exhibit 

shear thinning in which the apparent polymer viscosity decreases with an increase in shear rate 

(Figure 2.6). This is an important feature for maintaining injectivity as high shear rates in the 

wells allow polymer solutions to be injected more easily. The shear rate decreases as the injected 

polymer solution moves away from the wells into the reservoir, which increases the flood 

viscosity and hence provides a better sweep efficiency.  
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Figure 2-6. Viscosity curves of the rheology measurements of investigated xanthan gum solution 

of different concentrations (Mrokowska and Krztoń-Maziopa 2019). 

2.4.3.3  Polymer Stability 
For a polymer flooding to be successful, it is essential to avoid degradation of the polymer as a 

result of mechanical, biological or chemical factors such that the original solution viscosity 

remains constant. Chemical degradation occurs when polymer molecules are interacting with 

oxygen or iron. Biological degradation occurs when polymer molecules interact with bacteria. 

Mechanical degradation usually occurs as a result of high polymer injection rates near the 

restricted flow path at the wellbore perforations, which exerts mechanical stresses on the 

polymer, resulting in its breakdown and loss of viscosity (Lake 1989). The stability of polymer 

solution can be tested in laboratory experiments. In this study, the effect of salinity, temperature, 

and microbial activities are not considered, and polymer degradation is not modelled.  

2.4.3.4  Polymer Retention in Porous Media 
Polymer molecules interacts with the porous media surfaces and minerals as polymer solution 

flows through the porous media. The interactions cause the polymer molecules to be retained by 

the porous media resulting in complete or partial loss of polymers. Any polymer solution flowing 

through a porous medium experiences retention which can adversely impact a polymer flood by 

delaying oil displacement and recovery (Lake 1989). To demonstrate the effect of polymer 

retention, Green and White 1998 presented a delaying factor ranging from a very low retention 

of 10µg to a high retention of 200µg (Figure 2-7). Given one pore volume of a polymer solution 

of concentration 2000 ppm at moderate retention, the delay factor is about 3%, whereas the delay 

factor in the case of moderate polymer retention of 100µg and polymer concentration of 

1000ppm is approximately 51%, this implies that about 51% of more polymer is required to 

reach the target formation when compared a scenario where there is no polymer retention. If the 

rate of polymer retention is higher than 200µg, the rate of oil displacement and the economic 

feasibility of polymer flooding will be seriously affected. 
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Figure 2-7. Polymer bank delay factor caused by polymer retention (after Green and Willhite 

1998) 

Mechanical entrapment, hydrodynamic retention and adsorption are the three mechanisms 

responsible for polymer retention in porous media (Figure 2-8) (Dominguez and Willhite 1977). 

Mechanical entrapment in the porous media occurs when polymer molecules plugs small pores 

due to the large size of polymer molecules compared to the size of the pores. Water and salt 

molecules can travel through porous media because they are relatively of a smaller size, but 

polymer molecules are large and are trapped leading to the accumulation of polymer in small 

pores. Hydrodynamic retention occurs when polymers are temporarily trapped is stagnant region 

of the reservoir by hydrodynamic forces called osmotic forces. Polymer Adsorption is frequently 

the major cause of polymer retention and is discussed next. 
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Figure 2-8. Polymer retention in porous media (after Huh et al. 1990). 

2.4.3.4.1  Polymer Adsorption  
The mechanism where polymer molecules interact and bond with the rock surface is known as 

adsorption (Cohen and Christ 1986). Adsorption leads to loss of polymer from the solution 

which reduces its viscosity and delays polymer propagation. Adsorption has been widely 

reported in literature and assumed to possess an instantaneous effect (Sorbie 1991; Zhang and 

Seright 2014). However, this effect is only limited to physical adsorption and excludes 

chemisorption. Chemisorption is the chemical reaction that occurs between the polymer and the 

rock surface after an extended period of injecting polymer. Adsorption is assumed to be an 

irreversible reaction (Zhang and Seright 2014). 

Adsorption can be modelled using isotherms such as the linear, Langmuir and Freundlich 

isotherms. The Langmuir isotherm used to model adsorption of polymer can be expressed as: 

 

 
𝐶̂𝑝 = 𝑚𝑖𝑛 (𝐶𝑝

𝑎𝑝(𝐶𝑝 − 𝐶̂𝑝)

1 + 𝑏𝑝(𝐶𝑝 − 𝐶̂𝑝)
),   

2-19 

 

where, 𝐶𝑝 is the injected polymer concentration, 𝐶̂𝑝 is the adsorbed polymer concentration. 

(𝐶𝑝 − 𝐶̂𝑝) represents the equilibrium concentration in the rock-polymer solution system, 𝑎𝑝 and 

𝑏𝑝 are empirical constants (Sheng 2010). 

Note that the Langmuir model is an equilibrium relationship and assumes that adsorption is 

instantaneous and reversible with respect to polymer concentration. In conditions where polymer 

concentration is declining and polymer adsorption is considered to be irreversible, Langmuir 
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model cannot be applied directly. Therefore, an additional parameter must be introduced to track 

adsorption history (Li 2007). 

2.4.3.4.2 Permeability Reduction  
Permeability reduction is the effect of complete or partial blockage of pore spaces as a result of 

polymer adsorption. Different methods can be employed to estimate permeability reduction. For 

instance, resistance factor, which is defined as the ratio of water mobility to polymer mobility, 

both during and after the flood. Resistance factor helps to uncouple the effect of adsorption and 

the change in viscosity, although it may not be a reliable measurement for permeability 

reduction, because a slight change in viscosity may counteract the change caused by adsorption. 

A more frequently used technique is to express permeability reduction as a function of the 

residual resistance factor (RRF). Permeability reduction is directly proportional to adsorption and 

it is estimated using the RRF in reservoir simulation. The RRF compares the water mobility prior 

and after the flood and therefore eliminates any impact of viscosity changes in the polymer 

(Jennings et al. 1971). The reduction factor 𝑅𝑘, expressed as 

 
𝑅𝑘(𝑐𝑝) = 1 + (𝑅𝑅𝐹 − 1)

𝑐𝑎(𝑐𝑝)

𝑐𝑎,max 
 ,    
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where 𝑅𝑅𝐹 ≥ 1, 𝑐𝑎 is the adsorbed polymer and 𝑐𝑎,max is the maximum adsorption. 

Permeability reduction needs to be estimated during the design and planning of a polymer flood, 

as it can impact injectivity and lead to flow diversion. However, this assumption can only be 

valid in conventional reservoirs with high permeability, where retention is predominantly due to 

absorption. Whereas, in tight reservoirs, entrapment is basically responsible for permeability 

reduction (Huh et al. 1990). Therefore, permeability reduction in a low permeability reservoir is 

higher compared to permeability reduction in a high permeability reservoir, even though the 

polymer losses as a result of adsorption is lower in low permeability reservoirs compared to high 

permeability reservoirs.  

2.4.3.4.3 Inaccessible Pore Volume 
If pore throats are too narrow for a polymer molecule with a given molecular weight, this pore 

space is known as the inaccessible pore volume (IPV). The presence of IPV will prevent polymer 

solution from gaining access to some parts of the reservoir as polymer molecules will only flow 

through the larger pores. Polymer solution will therefore travel faster through the larger pores as 

compared to any accompanying tracer which will have full accessibility to the entire reservoir. 

The effect of IPV could therefore lead to viscous fingering and bypassing the oil (Sorbie 1991). 

The second explanation of the increase in travel speed of polymer solution as a result of IPV is 

the wall exclusion. Wall exclusion occurs when polymers molecules that are close to the wall of 

the porous medium are pushed to the centre of the flowing stream leading to increase in polymer 

concentration at the centre of the stream. Because the velocity of the streamlines at the centre of 

the pore is usually higher than the velocity close to the wall, the higher concentration of polymer 

solution at the centre of the stream will travel faster compared to any accompanying tracer that 

are usually more evenly distributed across the entire reservoir (Lake 1989). Note that polymer 
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adsorption can also restrict the flow of a polymer solution, which can have a similar effect as the 

IPV (Sorbie 1991). 

 History Matching  
Reservoir models need to be calibrated, which is done using history matching where parameters 

are adjusted until model and data agree. Mathematically, this means that we seek to find 

plausible model variables that minimise a misfit. History matching aims to determine some 

plausible model variables 𝛼 that minimise the misfit between the observed production history 

and modelled response (Chen and Oliver, 2010). The objective function is a performance 

criterion used in assisted history matching. It estimates the misfit between the simulated response 

and production data. Some scientists were minimizing the sum of the absolute value of the 

misfits called the least-absolute-values method, whereas other scientists were minimizing the 

sum of the squared value of the misfits called the least-squares method 

 

Ɗ = ∑ |𝑜𝑏𝑠𝑑 − 𝑚𝑜𝑑𝑑|,

𝑁

𝑑=1
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Ɗ = ∑ 𝑤𝑑  (𝑜𝑏𝑠𝑑 − 𝑚𝑜𝑑𝑑)2,

𝑁

𝑑=1
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where 𝑜𝑏𝑠𝑑 and 𝑚𝑜𝑑𝑑are observed and modelled data at data point 𝑑, respectively, 𝑁 is the 

number of data points, and 𝑤𝑑 is the weight factor at data point 𝑑. 

The prevalence of the least-squares method over the least-absolute-values procedure in the oil 

industry is due to its simplicity, even though the least-absolute-values technique is more robust 

to outliers than the least-square method.  

A more general form of the least-squares method in misfit definition is given in Equation 2-23 

below which includes a scaling factor, 

 
Ɗ(𝛼) = ∑ 𝑤𝑖

𝑖

 ∑ 𝑤𝑖,𝑡

𝑡

  (
𝑜𝑏𝑠𝑖,𝑡 − 𝑚𝑜𝑑𝑖,𝑡

𝑠𝑐𝑎𝑙𝑒𝑖
)

2

, 
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where 𝑖 is the data type, 𝑡 is time step, 𝑤𝑖 is the weight for the i-th data, 𝑤𝑖,𝑡 is the weight for the 

i-th data at the time t, 𝑜𝑏𝑠 and 𝑚𝑜𝑑 are the observed and simulated data respectively, and the 

𝑠𝑐𝑎𝑙𝑒𝑖 is the scale  factor for the i-th data type. A scaling factor is used to consider data with 

different absolute ranges. A common choice is to use the standard deviation in the observed data 

as a scaling factor. In its simplified version, the least-squares method with scaling factor is given 

by  
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Ɗ(𝛼) = ∑
[𝑜𝑏𝑠𝑑 − 𝑚𝑜𝑑𝑑(𝛼)]2

2𝜎𝑑
2 ,

𝑁

𝑑=1

    

 

2-24 

 

where 𝛼 is the vector of parameters that are updated during history matching, 𝑜𝑏𝑠𝑑 and 𝑚𝑜𝑑𝑑 are 

observed and modelled data at data point 𝑑, respectively, 𝑁 is the number of data points, and 𝜎𝑑
2 

is the uncertainty of the measurements with the assumption of an uncorrelated Gaussian error in 

the measurements (Oliver et al. 2008). 

The observed (or historical) data can be production data, pressure data obtained from well tests 

and formation tester, tracer observations, or time-lapse seismic data (Stephen 2013). The most 

popular historical data for history matching are production data, i.e. time series of measurements 

of pressure, flow rate, ratios of flow rates such as water cut, obtained in producing or injecting 

wells (Hajizadeh et al. 2010). Model parameters that may be tuned include but are not limited to 

rock properties (porosity, horizontal and vertical permeability), fluid properties and models for 

rock-fluid interactions (compressibility, oil and water relative permeability, capillary pressure), 

fluid contacts, and geological properties (net-to-gross, fault transmissibility, fracture data, aquifer 

volume and strength).  

History matching is a complex inverse problem with ill-posed and under-constrained 

characteristics when using observations such as production data to determine the model 

parameters. The complexity is related to the nonlinearity of the reservoir dynamics and the 

nonlinearity induced by the relationship between data and model parameters and there is hence 

no unique solution, which means that many plausible reservoir models can show similar 

simulation responses that match the historical data (Tavassoli et al. 2004). Figure 2.9 shows the 

basic workflow for history matching. History matching can be carried out either manually, where 

the reservoir engineer edits the reservoir model input deck and perturbs the parameters, based on 

experience and intuition, or automatically, using an optimization algorithm.  

The method of perturbing uncertain parameters only on the dynamic model is known as Small 

Loop, whereas, an integrated approach where uncertain parameters are varied in the geological 

model is known as Big Loop. The advantage of a Small Loop approach is that it allows the 

Reservoir Engineer  to totally investigate and understand the distributed material balance and 

connectivity of the reservoir. However, the disadvantage of Small Loop is that the dynamic 

model are often modified in such as way that it loses geological consistency. The advantage of 

Big Loop is that it allows greater degree of freedom in investigating all possible uncertainty 

while ensuring geological consistency. Figure 2-9 shows the basic workflow in history matching – 

Big Loop vs Small Loop.   
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Figure 2-9. Basic workflow during history matching - Big loop versus small loop. 

2.5.1.  Manual History Matching 
Manual history matching is typically achieved by a repetitive trial-and-error process which 

involves a series of simulations where model parameters are adjusted manually to reduce the 

mismatch between the simulated and the observed data. This method takes time and is based on 

the experience, knowledge, and expert judgement. For large fields it may take months to yield a 

single acceptable model. It often merely results in the best practical solution within decision time 

and may eventually provide a reservoir description that may be impracticable and inconsistent 

with the geological interpretation. The process of manual history matching is summarised in the 

Figure 2-10.  
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Figure 2-10. The manual history matching procedure (Kelkar and Perez 2002). 

Gather data
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•Wells completed in only one flow unit
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Interpret 
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•RFT and spatial pressure gradient maps for pressure match

•Water front maps and water occurrence coming from vertical rise

•Lateral fingering, coning for water match
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•Initially controlled by total reservoir voidage for pressure match

•Thereafter controlled by oil rate for saturation match (validation)

•Constrained by minimum bottom-hole flowing pressure and maximum fluid and gas rates

•Compare model results to observed and interpreted data

•Repeat until acceptable match is achieved
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2.5.2.   Assisted History Matching 
Using modern computer hardware and software algorithms, history matching is increasingly 

automated (but not fully automated), which the exploration of a much larger parameter space 

(Oliver et al. 2008). Assisted history matching uses optimization techniques to minimise the 

objective function that is normally defined as a misfit (Eq. 2-24). However, given the large 

amount of data generated by assisted history matching, it is more difficult to ensure that the 

resulting models are geologically consistent or indeed to gain insights into the reservoir 

dynamics and underlying geology. Assisted history matching generally has the ability to generate 

many more history matched models and provide a better match than manual history matching 

(Gruenwalder et al. 2007). 

In recent years, the field of optimisation and history matching has grown rapidly due to the 

recent developments in theory, algorithms, and the computational contributions of computer 

hardware to solve various problems in engineering and science (Kabir et al. 2003).  In general, 

optimisation algorithms can be classified as local or global algorithms. Local algorithms seek to 

find a local minimum. However, most optimisation and history matching problems have more 

than one local optimum and minimum respectively and therefore finding a local minimum will 

not guarantee that the global minimum solution has been found as well (Mohamed et al.2010). 

Global optimisation algorithms on the other hand always achieve the global minimal of the 

objective function if the algorithms allow for a sufficiently large number of iterations. A good 

history matching practice is finding a trade-off between exploitation and exploration. 

Exploitation operations finds new solutions from existing ones by improving the parameter 

choices to minimize the misfit using information about the misfit surfaces. Exploration means 

finding new points in the search space that has not been explored without considering what have 

been learnt from previous sampling. Local optimisation algorithms are less explorative, but they 

are very strong in exploitation whereas the Global algorithms are very strong in exploring the 

parameter space, but less exploitative (Sambridge and Mosegaard 2002). 
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Figure 2-11. A schematic classification of optimisation algorithms according to their strength of 

exploitation and exploration (from Sambridge and Mosegaard 2002). 

Generally, there are three classes of assisted history matching, deterministic methods, stochastic 

methods, and data assimilation.  

2.5.2.1  Deterministic Methods  
Deterministic methods take advantage of the analytical properties of the problem to solve the 

optimisation problem. They are also called local optimization methods since they always find a 

local minimal of the objective function. Deterministic methods are divided into two subgroups, 

gradient-based and sensitivity-based methods.  

Gradient-based methods such as Gradient descent and Steepest descent method are one of the 

earliest methods of deterministic optimisation used in assisted history matching. They calculate 

the derivative of objective functions with respect to the model parameters that are being adjusted, 

so as to minimise the objective function (Jahns 1966; Coats et al. 1970; Thomas et al. 1972). 

Gradient-based methods can be quick and efficient but in certain cases these methods can either 

get stuck in local minima or may not converge in some other cases. Another drawback of 

gradient methods is that it derives only one good solution instead of a variety of good solutions. 

Sensitivity-based methods such as Gauss-Newton methods, Sparse Equations or Least Squares 

methods calculate sensitivity coefficients of the objective function which are defined as the 
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partial derivatives that yield the change in model response as a function of the change in 

reservoir properties. The sensitivity coefficients can be computed using Adjoint technique 

(Oliver et al. 2008).  

2.5.2.1.1 The Adjoint Technique 
The adjoint technique is an efficient way to accurately calculate the gradient of a function with 

respect to the function’s variables. It is particularly useful in a history matching study with many 

model parameters. The adjoint state variables are solutions to the linear equation system, 

although the forward equation system can be non-linear. The adjoint techniques calculates the 

gradient of objective functions (e.g. oil rate, water rate and flowing bottom hole pressure) with 

respect to the grid block properties. A single Adjoint model run is used to backpropagate the 

mismatch between the measured and modelled production data. The propagated error field is 

then converted into an estimate of the exact gradient of the objective function with respect to any 

of the grid block parameters, regardless of dimensionality of the problem. A Gradient-based 

method can then be used with the computed gradient to select the new search directions within 

the parameter space. The adjoint state variables are solutions of equations in which mass is 

injected at the location and time of an observation. This mass is then propagated backwards in 

time along pathways which only integrate the properties that contribute to the observation (Rao 

and Mishra 1996; Wu et al. 1998; Almuallim et al.2010) . The mismatch for a parameter (e.g. oil 

production rate) can be defined as the sum of the squared difference between historical and 

simulated data. Equation 2-25 mathematically represents the mismatch quantify, where 𝑑 varies 

from 1 to the total number of history data points. 

 
Misfit, D =  ∑ (

𝑜𝑏𝑠𝑑 − 𝑚𝑜𝑑𝑑

𝜎𝑑
)

2

𝑑

, 
 
2-25 

For each well, there are four misfit quantities, which include the mismatch in gas production rate, 

oil production rate, water production rate and bottom-hole pressure. The objective function has a 

weight for every well, and a weight for each parameter. 

All misfit parameters as expressed mathematically as follows: 

Gas production misfit parameter 𝐷𝐺𝑎𝑠 is defined as  

 
𝐷𝐺𝑎𝑠 =  ∑ 𝑤𝑔𝑎𝑠 (

𝑜𝑏𝑠𝑔𝑎𝑠𝑑
− 𝑚𝑜𝑑𝑔𝑎𝑠𝑑

𝜎𝑑
)

2

𝑑

, 
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Oil production misfit parameter 𝐷𝑜𝑖𝑙 is defined as 

 
𝐷𝑜𝑖𝑙 =  ∑ 𝑤𝑜𝑖𝑙 (

𝑜𝑏𝑠𝑜𝑖𝑙𝑑
− 𝑚𝑜𝑑𝑜𝑖𝑙𝑑

𝜎𝑑
)

2

𝑑

,   
2-27 

Water production misfit 𝐷𝑤𝑎𝑡𝑒𝑟 is defined as 
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𝐷𝑤𝑎𝑡𝑒𝑟 =  ∑ 𝑤𝑤𝑎𝑡𝑒𝑟 (

𝑜𝑏𝑠𝑤𝑎𝑡𝑒𝑟𝑑
− 𝑚𝑜𝑑𝑤𝑎𝑡𝑒𝑟𝑑

𝜎𝑑
)

2

𝑑

,   
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BHP misfit parameter 𝐷𝐵𝐻𝑃 is defined as 

 
𝐷𝐵𝐻𝑃 =  ∑ 𝑤𝐵𝐻𝑃 (

𝑜𝑏𝑠𝐵𝐻𝑃𝑑
− 𝑚𝑜𝑑𝐵𝐻𝑃𝑑

𝜎𝑑
)

2

𝑑

.  
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The total misfit 𝐸 is obtained by the weighted sum of these individual misfit parameters 

 𝐷 =  𝐷𝑔𝑎𝑠 + 𝐷𝑜𝑖𝑙 + 𝐷𝑤𝑎𝑡𝑒𝑟 + 𝐷𝐵𝐻𝑃 ,    
2-30 

where 𝑤𝑔𝑎𝑠, 𝑤𝑜𝑖𝑙, 𝑤𝑤𝑎𝑡𝑒𝑟, 𝑤𝐵𝐻𝑃 represents the weighting factors for gas, oil, water and BHP 

respectively. 

The overall objective function 𝐷, is obtained by a total weighted summation over every well 𝑗 is 

expressed as : 

 𝐷 = ∑ 𝑤𝑗𝐷𝑗

𝑗

 ,    
2-31 

where 𝑗 varies from 1 to the total number of wells, 𝑤𝑗 represents the weighting factor of the well 

𝑗 and 𝐷𝑗  represents the total mismatch score for that well. 

The objective is to minimize the above function using adjoint technique. Adjoint technique 

computes the partial derivative  
𝜕𝐷

𝜕𝑥
 , of the objective function with respect to each parameter 𝑥, 

such as permeability, porosity and kv/kh ratio at the grid block level. 

2.5.2.2  Stochastic Methods  
Stochastic methods are based on derivative-free algorithms. Their convergence rate is typically 

slower than that of gradient methods, but they are not trapped in local minima. These algorithms 

include a random component and obtain the global minimum by its ability to allow the search to 

occasionally move in the direction of a worse solutions.  

Different variants of stochastic algorithms exist, with different levels of sophistication and 

complexity, such as random search, hill-climbing, and population-based evolution algorithms. 

Population-based stochastic algorithms are common in history matching. They provide a flexible 

framework in which the exploration of the search space is followed by local search in previously 

identified regions, leading to a more effective search, i.e. better exploitation. Specific variants of 

population-based stochastic algorithms that have been applied to history matching problems 

include simulated annealing (Sultan et al. 1994), genetic algorithms (Romero et al. 2000), 

evolutionary strategies (Schulze-Riegert et al. 2001), neighbourhood algorithms (Subbey et al. 

2003), scatter search (April et al. 2003), tabu search (Yang et al. 2007), population-based 

Incremental learning (Petrovska and Petrovska 2009), particle Swarm optimization (Mohamed et 
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al. 2010), differential evolution (Hajizadeh et al. 2010), or ant-colony optimization (Hajizadeh 

2010). 

2.5.2.3 Data Assimilation Methods  

Data assimilation methods perform a sequential calibration of the model parameters to 

observation data in a time series. Data assimilation methods takes two different approach, which 

could be either ensemble smoother or Ensemble Kalman Filter (EnKF). Ensemble smoother 

approach performs the global updates in model parameters through recursive updates in the time-

space domain, on the other hand, the EnKF performs the global update in time domain. 

Ensemble Kalman Filter (EnKF) is the most widely used data assimilation method for history 

matching (Evensen et al. 2007). Similar techniques such as Kalman Filter (KF) (Kalman 1960) 

are frequently applied to linear filtering and prediction problems. EnKF which was invented by 

Evensen (1994) as a technique of extending the classical KF to nonlinear problems by executing 

KF using Monte Carlo methods. Each time historic data becomes available, EnKF optimises and 

updates the parameters such as porosity, permeability and (Evensen et al. 2007). EnKF can be 

used to integrate production data by sequentially updating an ensemble of reservoir models 

during simulation. Therefore, each reservoir state vector consists of three types of parameters i.e. 

static (e.g. porosity and permeability, etc.,), dynamic (e.g. cell pressure, water, oil, and gas 

saturation, etc.) and production data (such as gas-oil ratio, bottomhole pressures and water cut 

etc.). For a comprehensive review on the application of EnKF on reservoir engineering, refer to 

(Aanonsen et al. 2009), and a comparative analysis between ensemble smoother and EnKF is 

published in (Skjervheim and Evensen 2011). 

The advantage of EnKF is its simple formulation that can easily be applied in history matching. 

Liu and Oliver (2005) showed that EnKF is very efficient and robust compared to gradient-based 

methods. The disadvantage of the EnKF is that it typically underestimates uncertainty due to the 

use of small ensemble sizes. Small ensemble sizes are important for computational efficiency, 

but introduce sampling errors and limit the degree of freedom to assimilate data. Consequently, it 

results in underestimation of ensemble variance after data assimilation with EnKF. The 

underestimation of posterior variances  effectively indicates the underestimation of uncertainty in 

the reservoir model parameter after data assimilation. EnKF also requires additional 

parameterisation to adapt to a discrete variable and is not well suited for parameters with multi-

modal distributions (Naevdal et al. 2005). 

 Parameterisation of Uncertain Properties 
Uncertainty in oil and gas reservoirs is due to geological heterogeneity, the sparsity of geological 

data, the localised measurements of production data at wells which results in a low information 

content, and the limited accuracy of any measurements. Key sources of the uncertainty are the 

structure of the reservoir, the spatial distribution of rock properties (e.g. porosity and 

permeability), and the reservoir fluid which is controlled by poorly understood reservoir 

properties.  
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The use of a set of discrete interpretable quantities that captures the key element of a system to 

describe a complex system is termed parameterisation. The procedure for carrying out the 

parameterization for uncertainty analysis is to identify the essential model components which 

have the greatest impact on the fluid flow and degree of uncertainty, and then define the prior 

range for each of these parameters. Parameterisation methods can be classified into two groups 

(Oliver and Chen 2011): spatial zonation and transform-domain methods. In spatial zonation, the 

reservoir model is divided into zones and a common property multiplier is applied to a property 

in all the grid cells within the zone (Gavalas et al. 1976; Shah et al. 1978; Jahns 1966). Spatial 

zonation method is important because geological and facies regions can be defined as zones. 

Spatial zonation method is suitable when the prior knowledge is reliable. The major challenges 

of this method are associated to the identification of the number, location and shape of the 

individual zones and artificial discontinuities that exist at the boundaries of identified regions 

(Khaninezhad and Jafarpour 2011). The Transform-domain methods are effective when the prior 

model is not properly known. Transform-domain method aim at lowering the redundancy in grid-

based property descriptions by considering that geologic features exhibit strong correlations 

across different scales that commonly lend themselves to compact transform-domain 

representations. Many transform-domain parameterisation methods such as principle component 

analysis (PCA), discrete cosine transform (DCT) and discrete wavelet transform (DWT) have 

been used in subsurface flow systems (Bhark et al. 2011; Jafarpour et al. 2010). 

Parametrisation aims to adjust the number of uncertain model parameters to a much lower 

dimension because of the low information content obtained in most production data (Oliver et 

al., 2008). The choice of a parameterisation method in field applications is not straightforward 

because the selection of model parameters to be estimated and the identification of the optimal 

number of model parameters can be difficult. 

 Probabilistic Uncertainty Quantification 
Significant research efforts focus on how to quantify uncertainty in oil and gas reservoirs. 

Bayesian method has been the most widely applied technique. The Bayesian method is an 

inductive probability as it attempts to provide the probability of future event based on the amount 

of data present. The Bayesian method quantifies the uncertainty in the reservoir forecast if there 

is poor information of some reservoir properties (Bond et al. 2007). Another application of 

Bayesian method is the Bayesian inference, where the initial estimate of uncertainty is updated to 

a new posterior estimate using observed data. The Bayesian method is given by 

 

 
𝑝(𝑚|𝑂) =

𝑝(𝑂|𝑚)𝑝(𝑚)

∫ 𝑝(𝑂|𝑚)𝑝(𝑚) 𝑑𝑚
 ,         
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where the prior probabilities 𝑝(𝑚) consists initial probabilities for the model parameters, 

𝑝(𝑂|𝑚) is the likelihood function that measures the degree the observed and modelled data 
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differ and  𝑝(𝑚|𝑂) is the new posterior probability of the model parameters based on 

observations 𝑂. Bayes Theorem can be simplified as 

  

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟.        2-33 

 

Prior information stands for the level of knowledge of the unknown model parameters prior to 

seeing the observed data. Prior information can be grouped into three based on how much 

information we have (Bond et al. 2007): 1). Non-informative prior distributions assign equal 

probability to all values in the parameter’s ranges. Typically, non-informative prior is defined as 

a uniform distribution. 2). Highly informative prior distribution is used if there is a substantial 

knowledge available regarding the possible value of a model property. A normal distribution 

defined by the mean and standard deviation is a common representation of this type of 

distribution. 3). Moderately informative distribution refers to a case where there is limited 

knowledge about the model property. 

The likelihood of a reservoir model is commonly computed by using the misfit based on the 

observed data and the simulation response of the reservoir. For instance, if we are matching on 

oil rate, then the likelihood, 𝑝(𝑂|𝑚), is the probability that the measured observation 𝑞𝑜𝑏𝑠 is 

equal to the simulated response 𝑞sim of the reservoir model m. Assuming that the measurements 

errors at any time are Gaussian, independent, identically distributed (all have the same variance) 

with zero mean error, and there are no simulation errors, the likelihood at timestep t can be 

defined as: 

 
𝑝(𝑂𝑡 ∣ 𝑚) =

1

𝜎√2𝜋
exp {−

1

2

(𝑞𝑜𝑏𝑠 − 𝑞sim)𝑡
2

𝜎2
}, 
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where v is the standard deviation of the measurement error, 𝑞𝑜𝑏𝑠 and 𝑞𝑜𝑏𝑠 are the observed and 

simulated data, respectively. 

As the measurement errors are assumed to be independent between timesteps, the joint 

probability density is calculated by the product of probabilities of each measurement for p data 

points, as given by 

 

𝑝( 𝑂 ∣ 𝑚 ) = (
1

𝜎√2𝜋
)

𝑁

∏  

𝑁

𝑡=1

exp {−
1

2

(𝑞𝑜𝑏𝑠 − 𝑞𝑠𝑖𝑚)𝑡
2

𝜎2
}. 
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As (
1

𝜎√2𝜋
)

𝑁

 is a constant: 

 

𝑝( 𝑂 ∣ 𝑚 ) ∝ ∏  

𝑁

𝑡=1

exp {−
1

2

(𝑞𝑜𝑏𝑠 − 𝑞𝑠𝑖𝑚)𝑡
2

𝜎2
}. 
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Hence, if we use misfit definition M in Equation (2.21), we can define the likelihood function as 

in Equation (2.x6) so that by minimising the misfit M we maximise the likelihood (Tarantola 

2005). 

 𝑝( 𝑂 ∣ 𝑚 ) ∝ 𝑒−𝑀           2-37 

 

 

The posterior probability distribution (PPD) is the most crucial aspect of uncertainty 

quantification. PPD can be described as the modification of probability distribution function 

(PDF) integrating the information provided by the production data. Figure 2-12 shows the 

Bayesian framework for uncertainty quantification. 

 

 

Figure 2-12. Bayesian framework for uncertainty quantification (after Christie et al. 2013) 

 

Uncertainty quantification using the conventional history matching technique can be carried out 

using three methods:  

(1) Methods that categorise the PPD locally around the Maximum Likelihood (ML), or 

Maximum a posterior (MAP) (when the prior is incorporated): The Linearization of the 

maximum posteriori (LMAP) is an example of this approach. The maximum a posterior 

(MAP) estimate is first determined, then approximate conditional realizations, is 

generated using linearization about the MAP estimate (Davis 1987). LMAP has an 

advantage of a single base case history matching, however, the generated realization may 

provide a poor estimate of the uncertainties in data mismatch.  

 

(2) Methods that use a subset of the ensemble: Randomised maximum likelihood (RML) is 

an approach to generate conditional realization from a subset of an ensemble of history 

matched models (Kitanidis 1995). A study has been presented which show that the RML 
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method samples the posterior probability density function (PDF) correctly if data and the 

model are linearly correlated (Reynolds et al. 1999). Nevertheless, no rigorous theoretical 

foundation exists for the method when the correlation between data and model is 

nonlinear, which is the case when the data represent production data (Oliver 1996). 

 

(3) Methods that sample from the complete ensemble: Markov Chain Monte Carlo (MCMC) 

is an example of algorithms used to sample the full posterior probability density function 

(PDF) (Slotte et al. 2008). This process usually requires a massive number of steps to 

converge to the appropriate distribution even with small number of uncertain parameters 

and may be unrealistic to achieve using full physics simulation. In order to minimize the 

computational cost, a proxy model is built to represent the global objective functions and 

then MCMC is applied to the response surface.  

 Summary 
This chapter started with a review of the various EOR methods available, where we discussed 

chemical methods, Gas injection, thermal methods, and microbial methods. This chapter further 

provided a discussion on the geological uncertainties and different ways to account for 

uncertainties in reservoir models such as best guess, multiple stochastic approach, and multiple 

deterministic approach. We pointed out the importance of having an adequate number of 

realizations of geological models to reduce risk and account for uncertainties in reservoir 

forecast especially when modelling a capital-intensive project like EOR. We further discussed 

the mechanism of polymer flooding in providing mobility control and hence improvement to the 

macroscopic sweep efficiency. We also discussed different types of polymers and described the 

characteristics of two most popular polymers used in polymer flooding which are Xanthan and 

HPAM. A mathematical model that captures all the key components of flow of polymer in 

porous media was presented and each flow phenomena were further discussed. This chapter also 

presented a review on history matching techniques and optimization algorithms such as 

deterministic and stochastic and data assimilation. We also discuss different ways to approach 

the parameterization of uncertain parameters during history matching. Finally, this chapter 

presented a workflow for probabilistic uncertainty quantification using Bayesian Theorem. 

We presented two optimization methods i.e. nominal and robust optimization and we further 

established that robust optimization is usually not  applied in EOR modelling such as polymer 

flooding due to computational efforts and therefore to reduce risk we applied robust 

optimization. Even though robust optimisation has been applied to water flooding, the geological 

realisations employed do not usually capture geological uncertainties that are not possible to 

paramaterise during history matching such as top structure, shale-cut offs in determining the net-

to-gross, fault models as well as uncertainties due to history matching technique. We apply 

robust optimization to robustly quantify the financial upside and downside of polymer flooding. 

Robust optimization helps us to integrate the uncertainties that are encountered during the entire 

reservoir modelling workflow (i.e., geological and interpretational uncertainties) as well as 

history matching uncertainties. 
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Polymer flooding is a promising but capital-intensive enhanced oil recovery (EOR) approach and 

therefore requires comprehensive and rigorous screening and risk evaluation (Sorbie 1991). 

Reservoir simulation is a valuable tool for carrying out this assessment, but usually does not 

capture all the uncertainties associated with the geological heterogeneity and complexity present 

in the reservoir, as well as the physical uncertainties associated with the polymer flood itself. It is 

necessary to use adequate reservoir models to reduce the risks associated with polymer flooding. 

In other words, we need to account for a realistic range of uncertainties relevant to geology and 

modelling decisions rather than modifying a single base case (Bentley and Ringrose 2017). 

According to "Flora's Rule" (Ringrose and Bentley 2015), if an EOR process such as polymer 

flooding changes the fluid-rock interactions and mobility ratios, it is not guaranteed that key 

geological uncertainties are properly captured in a reservoir model that was previously history 

matched for a different recovery mechanism. It is therefore possible that geological uncertainties 

are not adequately propagated into future predictions of reservoir performance, particularly when 

the history matched model is centred around a single base case. 

 

History matching is a way of reducing uncertainties in the input variables of a reservoir model. 

History matching uses historical production data of a field to determine the reservoir properties 

that cannot be measured. History matching is achieved by tuning the reservoir properties to 

eliminate the mismatch between the simulated and observed production data. Once the simulated 

data matches the production history, the history matched reservoir model can be used for future 

production forecasts. History matching is an ill-posed problem and the relationship between input 

and response variables is highly non-linear, i.e. different combinations of the uncertain model 

properties can yield results that match the same production data. History matching can be broadly 

categorized by two approaches, deterministic and stochastic history matching. Deterministic 

methods obtain a single, or sometimes a small number of,  history matched models, often through 

manual tuning of model parameters or by using a deterministic optimization algorithm (Oliver and 

Chen 2011). In contrast, stochastic history matching techniques aim to obtain an ensemble of 

models that covers the space of uncertain model parameters more broadly. Our study will examine 

how each approach impacts the projected economics of a polymer EOR scheme. 
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Chapter 3. Methodology 
 

 The Watt Field 
Several synthetic reservoir models such as Brugge field, CSPE10, PUNQ model, Olynpus 

challenge etc., have been developed to carry out studies on enhanced oil recovery, upscaling, 

history matching and optimization (Peters et al. 2009; M. A. Christie and Blunt 2001; Dehghan 

Monfared et al. 2014). These model realizations miss out geological, interpretational, and 

modelling uncertainties encountered during reservoir characterization and modelling. These 

uncertainties are difficult to parameterize and include but are not limited to the presence and 

location of the faults, the depositional environment, the top structure of the reservoir, shale cut-

offs, rock typing methods.  

The Watt Field  is  a synthetic field based on real field data generated to address geological, 

interpretational and modelling uncertainties encountered during reservoir characterisation and 

modelling (Arnold et al. 2013).  The interpretational and modelling uncertainties are around the 

following areas:  

I. Top structure model – seismic interpretation of the top structure defines the enclosure 

size and can be quite uncertain from the data and the depth conversion. 

II. Fault network modelling – fault location, dimensions and the connectivity of the network 

defines the partitioning of the reservoir. 

III. Grid resolution – The resolution of the grids that can capture adequately the geological 

features of a reservoir model.  

IV. Facies modelling methods – choice of algorithm to populate model with facies which is 

influenced by the depositional environment of the reservoir. 

V. Facies interpretations – how the facies are interpreted from well logs through shale 

cutoffs 

VI. Poro-perm transforms from the available well data – how to model permeability and 

porosity between the wells for the individual facies. 

VII. Relative permeability data. 

The field was appraised using six wells, Wells A to F, and 16 horizontal production wells located 

at the central part of the reservoir, 5 horizontal and 2 vertical injectors were subsequently used to 

develop the field. 

Top structure and wireline data is based on real field data, whereas, the fluid properties, the 

relative permeability, and capillary data are synthetic. Core data which contains the Porosity and 

permeability for Wells A and C were provided. Neutron Density porosity data is provided for all 

wells A to F.  Six relative permeability data, three for the coarse sand facies (code 0) and three 

for the fine sand (code 1) were provided. 
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3.1.1. Overview of the Watt Field 
The Watt Field (Arnold et al. 2013) is a semi-synthetic reservoir model based on real reservoir 

data and includes a broad range of geological uncertainties and modelling decisions. The 

reservoir has an area of 12.5 km by 2.5 km and is about 190 m thick. Most of the reservoir lies 

below the oil water contact. The initial pressure of the reservoir is 2500 psi as measured from 

Repeat Formation Testing (RFT) and well test data. The Watt Field was appraised using six 

wells and developed using 12 horizontal production wells located across the central part of the 

reservoir and 7 injectors around the edges. A synthetic field development plan was used in this 

study. In the original development plan, the horizontal multi-lateral wells aimed to maximize the 

distance from the oil water contact because of the low relief of the field and increase oil 

production from the top oil layer of the reservoir.  

The depositional environment of the Watt Field is interpreted as a braided river system. Facies 

consist of coarse sand, fine sand, and shales. Key geological uncertainties are the top structure, 

shale cut-offs to define net to gross and the location and presence of faults (Arnold et al. 2013). 

Three possible fault models were developed, the first with only East-West trending faults, the 

second with additional North-South trending sub-seismic fault, and the final one with an 

additional number of sub-seismic faults. The Watt Field also considers uncertainties in the 

reservoir modelling itself in that both, pixel and object-based modelling, were used to predict the 

facies distribution while applying three different cut-off values of 0.5, 0.6, and 0.7. Permeability-

porosity cross plots from the cored wells were used to model the permeability of each facies 

between wells. The reservoir is water-wet and two different two-phase relative permeability 

curves based on the Corey model are included in the model. The viscosities of oil and water are 

10cp and 1cp, respectively. The PVT properties are uniform. Table 3.1 summarises the key 

reservoir properties. For further details on the Watt Field please refer to Arnold et al. (2013). 

The geological and interpretational uncertainties considered in this thesis will be discussed in the 

subsequent sections. 
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 Table 3-1. Table of uncertainties considered in the Watt Field model.  The combination of  top structure, 

fault model and facies cut-off uncertainty results in 81 different combinations/realizations. 

 

Model property Description File name 

Top Structure 

1 TS-1 
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2 TS-2 

3 TS-3 

Fault Model 

1 FM-1 

2 FM-2 

3 FM-3 

Facies Model (Cut-

offs) 

0.6 CO-1 

0.7 CO-2 

0.8 CO-3 

Grid 

100 m by 100 m by 5 m G-1 

100 m by 100 m by 10 m G-3 

200 m by 200 m by 5 m G-3 

 

3.1.2. Geological and Interpretational Uncertainties 

3.1.2.1 Top Structure 
Uncertainties in the top structure are accounted for by developing a number of possible tops from 

the same depth converted horizon, conditioned to three different sets of well picks.  Three 

different well picks were chosen by three different interpreters from the same wireline data with 

a variation in top structure height of between 2 and 20 meters depending on the well (Figure 3-1 

Figure 3-2). The seismic horizon was tied to each well pick. Due to the inherent uncertainties in 

this process, three different possible depths of the top structure models were developed. Wells A 

and B showed a very good correlation and high precision in well picks and thus indicates a small 

uncertainty, whereas the well picks of Wells E and F had an uncertainty of approximately 10 

meters. 
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Figure 3-1. Seismic top structure and major identified faults modelling (a) is the plan view of the 

reservoir, (b) is a cross section (Line 1), (c) is a cross section (Line 2) (from Arnold et al. 2013). 
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Figure 3-2. Example of three top structural models of the Watt Field (from Arnold et al. 2013). 

From the interpretation of the seismic data several faults were identified and then depth 

converted together with the top structure. Faults displacements are calculated from the top 

structure curvature and therefore contain an implicit uncertainty in the throw along the faults.  

All the observed faults strike in a general East-West direction. There is no large-scale faulting 

apparent in the seismic data in other directions, but sub-seismic faulting may be possible. Hence 

the impact of sub-seismic faults striking in a North-South is investigated, because such faults 

would impact on connectivity between wells. No significant fault displacement is apparent in the 

appraisal and the development wells, and hence any displacement across the North-South 

striking faults is likely to be small.  

To capture these uncertainties, three faults models in the reservoir were developed (Figure 3-3). 

The first model contains only East-West striking faults. The second model contains additional 
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North-South striking sub-seismic faults with displacements of less than 10m. The third contains 

additional sub-seismic North-South striking faults.  

Another important uncertainty is the sealing potential of the faults, caused by juxtaposition of 

sedimentary units and the creation of a low-permeability damage zone in the fault core. For 

simplicity, the Watt Field only considers simple constant and uniform fault transmissibilities for 

each fault model.  

 

 

Figure 3-3. Uncertainty in fault network models of the Watt Field developed by three different 

interpreters (from Arnold et al. 2013). 
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3.1.2.2 Facies modelling 
Facies can be detected in the wells in cored sections if provided. There is a large amount of noise 

in the gamma data provided for this reservoir which makes it less effective as a predictor for the 

facies.  Alternatively, the facies were detected using relative porosity difference (RPD) with 

different shale cut-offs (0.6, 0.7 and 0.8) being used to classify the coarse sand facies. Three cut-

off values were established, and the facies logs for all 6 appraisal wells were predicted. Facies 

logs were developed for each cut-off (Figure 3-4). Shale cut-off is used to distinguish between 

sand and shale and allows the identification of total sand intervals. This implies that for a shale 

cut-offs of 0.6, rocks with more than 60 percent are considered as non-reservoir rock, while 

rocks with equal to or less than 60 percent are considered as reservoirs. Average permeability 

increased from 557md to 623md as shale cut-off  was increased from 0.6 to  0.8. Also the 

standard deviation of permeability was also seen to increase with shale cut-off (i.e., from 

1440md to 1628md). This implies that heterogeneity of the reservoir increased, creating more 

high permeability channels which can impact sweep efficiency. Pixel modelling techniques and 

object modelling techniques were used to populate the properties of the static models resulting in 

different realisations of geological models. A comprehensive and well detailed modelling of the 

Watt Field reservoir model can  be found in the appendix section of Arnold et. al. (2013). 
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Figure 3-4. Permeability distribution of the Watt Field model  for three different cut-offs. 

 

3.1.2.3 Porosity-permeability modelling 
As aforementioned, Permeability data is provided as core plug data in Wells A and C. Prediction 

of permeability in the other wells were done using a direct prediction from identified poro-perm 

correlations (Figure 3-5).  This can be developed where no core plug data is available using log 

predictions like neutron density porosity.  Figure 3-6 shows the correlation between neutron 

density and core plug porosity estimates and the probability histograms for both measurements 

of porosity. The good correlation and similar probability distributions suggests we can expect 

good porosity predictions from the neutron density logs in the other wells.  Figure 3-7 is the 3D 

model that shows the porosity and permeability distribution of one realisation of the Watt Field 

model. 
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Figure 3-5. Porosity Permeability (left) and kv/kh (right) plot for Well C (from Arnold et al. 2013). 

 

 

 

Figure 3-6. Porosity distributions for well core plug data and neutron density predictions. The two 

distributions are very similar (from Arnold et al. 2013). 
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Figure 3-7. 3D model of the Watt Field showing porosity distribution (top) and permeability distribution 

(bottom) for one geological realisation. 

 

Six relative permeability curves were available, three each for the coarse and fine sand facies 

generated from cores taken from three different wells A, C and F (Figure 3-8) The Sor values for 

fine sand are 0.02, 0.23 and 0.0 for Wells A, C and F respectively. Whereas, the Sor values for 

coarse sands are 0.4, 0.0, and 0.1 for Wells A, C and F respectively.  The available data shows 

that capillary pressure is negligibly small, so it is not considered in the models.   
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Figure 3-8. Relative permeability curves from Wells A, C and F for the fine sand (left) and coarse sand 

(right) facies. 

The saturation of which kr become 0 is the end point saturation of the relative permeability 

curve. Irreducible water saturation swirr or the connate water saturation swc is the end point 

saturation for water. Whereas, the end point saturation for oil is called the residual oil saturation  

sor. The value of relative permeabilities at end point saturation can indicate wettability as 

follows: 

For water-wet system, krw(sor) ≪  kro(swirr) and for oil-wet system, krw(sor) ≈  kro(swirr) 

  

3.1.3. Truth Model 
One of the 81 realizations was selected as the truth case from which we generated the production 

data (oil, water and gas rates and BHP data) (Figure 3-9) for later history matching of the 

remaining 80 realisations. The production data was generated for 2933 days (8 years). The 

STOIIP for the truth case is 1.6 Billion bbl and it will take about 40 years to recover about 60% 

of the STOIIP using the current field development scenario.The truth case model (Figure 3-10) 

was operated at a maximum well production rates of 12,500 bbl/day and a minimum BHP of 

1000 psi for the producer and a field injection rate of 70,000 bbl/day with a maximum BHP limit 

of 3500 psi. Rates were the primary control mode for both producer and injectors whereas BHP 

limits were the secondary control mode. However, during injection there was a period where the 

BHP limits were reached and the primary control switched to BHP leading to a decrease in 

injection rate. For producers, at certain period, the minimum BHP limit of 1000psi were reached 

in some wells and the production rates also decreased to avoid the pressure from dropping below 

bubble point resulting in a three phase flow. Figure 3-11 and show the third layer and cross 

section of the Watt Field after 40 years of production and Figure 3-12 shows the cumulative oil 

production for all the 26 realisations after 40 years. 

A Gaussian noise of 15% of the value was introduced in the data to simulate the impact of 

measurement error in the data. 
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Table 3-2. Key Parameters of the Watt Field model. 

Parameter Value Unit 

Dimension 12500 x 2500 x 190 m 

Resolution 226 x 59 x 40 - 

Number of cells in the model 533,360 - 

Rock compressibility 4e-6 1/psi 

Mean Porosity 0.18 - 

Mean Permeability 471 mD 

Kv/Kh Ratio 0.1 - 

Initial Reservoir Pressure 2500 psi 

 

 

Figure 3-9. Historic production data (oil rate, water rate, cumulative oil production and average 

reservoir pressure) generated from the truth case model. 
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Figure 3-10. 3D view of the Watt Field model showing oil saturation as well as the location of  injection 

and production wells. 

 

 

Figure 3-11. Third layer (top) and cross section (bottom) of the Watt Field model showing oil saturation 

as well as the location of  injection and production wells after 40 years of production. 
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Figure 3-12. Forecast for cumulative oil production assuming a do-nothing scenario for all realisations 

after 40 years of production. 

 

 Particle Swarm Optimisation 
PSO is a population-based stochastic optimization algorithm originally proposed by Kennedy and 

Eberhart (1995). It is inspired by the simulation of the social behaviour of a flock of birds 

(Mohamed et al. 2010) and was originally adopted to balance the weights in neural networks. PSO 

is comparatively straightforward and easy to implement, computationally efficient. In the oil and 

gas industry, PSO has been applied to history matching (Mohamed et al. 2010; Kato et al. 2014; 

Fernández Martínez et al. 2012), well placement optimisation (Onwunalu and Durlofsky 2010) 

and drilling (Irgens and Lavenue 2007; Self et al. 2016). 

 

PSO starts with an initial population of random solutions and then looks for optimal solutions by 

updating subsequent generations of the initial solution. The individuals iteratively assess their 

candidate solutions and remember the location of their best success so far within the search space, 

making this data available to their neighbours. The particles are also able to see where their 

neighbours have had success. Movements through the search space are guided by these successes, 
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with the population usually converging towards good solutions. The balance between exploration 

(i.e. testing a broader parameter space) and exploitation (i.e. faster convergence to a solution) in 

search for multiple optima is maintained by iteratively updating the motion of the particle. The 

best solution the particle has seen, and the best solution across the whole population, are used to 

update the velocity of each particle, and consequently its position (Eberhart and Kennedy 1995). 

The particle’s position 𝑥 is updated by the velocity vector elements 𝑣 as  

 
 

 𝑥𝑞
𝑝+1 = 𝑥𝑞

𝑝 + 𝑣𝑞
𝑝+1, 

 

 3-1 

 

                         

where 𝑝 and 𝑞 are the iteration and parameter counters, respectively. The velocity 𝑣, which is 

transporting each particle, is updated through 

 
 𝑣𝑞

𝑝+1 = 𝜔𝑣𝑞
𝑝 + 𝑐1𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑞

𝑝 − 𝑥𝑞
𝑝) + 𝑐2𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑝 − 𝑥𝑞

𝑝),  3-2 

 

                           

where 𝜔, 𝑐1 and 𝑐2 are coefficients which weigh previous velocity (inertia), best known 

position 𝑝𝑏𝑒𝑠𝑡𝑞
𝑝
, and position of neighbourhood particle 𝑔𝑏𝑒𝑠𝑡𝑝. 𝑟1and 𝑟2 are random numbers 

generated between 0 and 1 that weigh 𝑏𝑒𝑠𝑡𝑞
𝑝
 and 𝑔𝑏𝑒𝑠𝑡𝑝, respectively, for acceleration towards 

the best position. 

In this thesis, we used PSO algorithm within CMOST for history matching and polymer flood 

optimisation. 
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Table 3 3.  PSO Algorithm (Eberhart and Kennedy 1995) 

Step 1 Initialize the algorithm by generating an initial set of 𝒏𝒊𝒏𝒊𝒕 models (or 

particles) at random locations (𝒙𝒒
𝐩=𝟎

) in a parameter space and with an 

random velocity (𝒗𝒒
𝐩=𝟎

) at each particle . 

Step 2 Calculate the misfit value for each model (or particle). 

Step 3 For each particle 𝑖, update the position and value of 𝑝𝑏𝑒𝑠𝑡 (. If current fitness 

value of one particle is better than its 𝑝𝑏𝑒𝑠𝑡 value, then its 𝑝𝑏𝑒𝑠𝑡 value and the 

corresponding position are replaced by the current fitness value and position, 

respectively. 

Step 4 Find the 𝑔𝑏𝑒𝑠𝑡 (global best) fitness value and the corresponding best position of 

the entire population of 𝑔𝑏𝑒𝑠𝑡, and update if required. 

Step 5 Update the velocity for each particle using Equation 3-1 The updated velocity is 

determined by the previous iteration velocity and the distance of the respective 

particle from the 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 location. Initially, the velocity is randomly 

generated with 𝜈𝑞
p=0

∈ [−𝜈 max , 𝜈 max ]. If a particle violates the velocity limit 

𝑣 max , its velocity will be set back to the limit. 

𝑣𝑞
p+1

= 𝑤𝑣𝑞
𝑝 + 𝑐1𝑟1 × (𝑝𝑏𝑒𝑠𝑡𝑞

𝑝 − 𝑥𝑞
𝑝) + 𝑐2𝑟2 × (𝑔𝑏𝑒𝑠𝑡𝑝 − 𝑥𝑞

𝑝)   

where 

𝑣𝑞
𝑝
 is the velocity of particle 𝑖 at iteration 𝑝; 

𝑥𝑞
𝑝
 is the position of particle 𝑖 at iteration 𝑝; 

𝑐1 is the weighting factor, termed as cognitive component that represents the 

acceleration constant that changes the velocity of the particle towards 𝑝𝑏𝑒𝑠t𝑞
𝑝
; 

𝑐2 is the weighting factor, termed as the social component that represents the 

acceleration constant that changes the velocity of the particle towards g𝑏𝑒𝑠𝑡𝑝; 

𝑟1 and 𝑟2 are two random vectors with each component corresponding to a 

uniform random number between 0 and 1; 

𝑝𝑏𝑒𝑠𝑡𝑞
𝑝

 is the 𝑝𝑏𝑒𝑠𝑡 of particle 𝑖 at iteration 𝑝; 

𝑔𝑏𝑒𝑠𝑡 is the global best of the entire swarm at iteration 𝑝; 

and 𝑤 is an inertia weight that determines the tendency of a particle to continue 

in the same direction it has been moving. 

 

Step 6 Update the position of each particle using as in Equation 3-2 

𝑥𝑞
p+1

= 𝑥𝑞
𝑝 + 𝑣𝑞

p+1
    

Step 7 Repeat steps 2 to 6 until maximum iteration is reached. 

 

3.2.1. PSO History Matching 
In total, 26 of the available 81 different geological realizations were used in this study to constrain 

the problem to a manageable size. These geological realizations were selected in such a way that 

the key interpretational uncertainties inherent to the Watt Field are adequately captured in our 

workflow. Geological uncertainties accounted for include three different faults models, the 

depositional model, the modelling algorithm (object- and pixel-based modelling), three different 

top structure, shale cut-offs (0.5, 0.6, 0.7) and permeability distributions.  
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For the stochastic approach using PSO, history matching start with a realization of the Watt Field 

Model. The original 40 layers were divided into 8 layers to reduce the number of parameters. The 

top layers consist of 4 cells thick with the lower 2 layer being 8 cells thick. The reservoir properties 

were modified with multipliers in each of the 8 layers to reduce the misfit. The individual misfit 

components (i.e. oil rates, water rates, gas rates, well bottom-hole pressure and average reservoir 

pressure) were assigned an equal weight of 1 and summed up to a single objective function using 

a weighted average. We could use this weighting because of the high level of confidence we have 

in our historical data, which was generated synthetically from a known “truth case”. Our weighting 

eliminated any bias and we therefore did not consider it necessary to assign a higher weight to a 

specific objective function. The history matching then modified the reservoir properties in such a 

way that this misfit is minimized. Table 3-3 illustrates the reservoir properties and their ranges that 

were modified to obtain an acceptable match between the simulated reservoir response and the 

production data generated from the truth case model. Note that we used individual multipliers for 

each property. The base case value for a multiplier is always 1. We maintained a constant multiplier 

for each uncertain reservoir properties across each layer of the reservoir to reduce the number of 

uncertain parameters as the PSO algorithm becomes inefficient in high dimensional problems. 

 
Table 3-3. Uncertain reservoir properties adjusted during history matching. 

Reservoir Properties Range of Multiplier 

Porosity (-) 0.05 – 1.3 

Permeability (md) 0.05 – 10 

Kv/Kh Ratio (-) 0.01 – 10 

Fault Transmissibility Multiplier (-) 0 – 1 

 

Table 3-4. Input parameters used in PSO algorithm 

Parameters Values 

Number of particles                        20 

Inertia weight, 𝑤                             0.729 

Cognitive component, 𝑐1               1.50 

Social component, 𝑐2                     1.50 

 

PSO algorithm then runs 500 iterations with different combinations of uncertain parameters to 

determine the best-so-far model for the 26 selected geological realizations. The ensemble of best-

so-far models from PSO are used for uncertainty analysis and comparison with the best matched 

model from adjoint ensembles. 
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 Adjoint Technique 
Recall from Chapter 2, the total misfit 𝐷 is obtained by the weighted sum of these individual 

misfit parameters (Equation 2-31). 

The objective is to minimize the above function using adjoint technique. Adjoint technique 

computes the partial derivative  
𝜕𝐷

𝜕𝑥
 , of the objective function with respect to each parameter 𝑥, 

such as permeability, porosity and kv/kh ratio at the grid block level. 

 A gradient-based optimizer is coupled with the adjoint technique in SENEX to find a solution in 

an iteration of the following optimization steps (Ruijian et al., 2009) 

1. The initial set of input parameters 𝑚 is taken from a reference solution or an initial 

prediction. In our case the parameter set includes all porosity, horizontal permeability and 

𝑘𝑣/𝑘ℎ values at the grid blocks. The dimension of the input parameter is hence of order 

of 106. 

2. The objective function 𝐷(𝑥) is calculated from the forward run of reservoir simulator and 

the corresponding sensitivity 𝑑𝐷 𝑑𝑥⁄  is calculated using the adjoint system. In this thesis 

we focus on oil, gas, and water rates as well as pressure data on a well-by-well basis. 

3. The optimization step uses sensitivities that were calculated analytically included in 

δ𝑥𝑙+1from the previous simulation run 𝑙 in order to calculate an updated set of model 

parameters 𝑥𝑙+1 as 𝑥𝑙+1 = 𝑥1 + δ𝑥𝑙+1. 

4. The number of regression steps is either continued until a maximum number of steps 𝑁𝐿 is 

reached or convergence is obtained. 

Similarly to PSO, the deterministic approach using Adjoint technique commences history 

matching with a realization and modification were made on the reservoir properties at each grid 

cell to reduce the misfit. We applied the adjoint type technique implemented in the commercial 

simulator SENEX (Senex 2013) to calculate analytical sensitivities for all well-based responses 

with respect to horizontal and vertical grid block permeabilities. The calculated sensitivities 

were then used in an iterative optimization to improve the misfit at the well level. Sensitivities 

and parameter updates were calculated for approximately 533,360 values (i.e. the total number 

of grid blocks) for each uncertain property (i.e. porosity, permeability, and Kv/Kh ratio) at the 

grid block level. We used the same properties as for the PSO-based history matching, i.e. oil 

rates, water rates, gas rates, well bottom-hole pressures, and average reservoir pressure to 

compute the misfit between simulated and observed production data. To avoid unphysical 

property updates in porosity and permeability, constraints were defined for porosity (-10% to 

+10%), horizontal permeability (-10% to +50%) and vertical permeability (-10% to +50%). The 

matching process commenced by a simulation run of the initial model where the sensitivity of 

the objective function with respect to each reservoir property at each grid cell was computed. 

A new set of reservoir parameters were then generated based on the calculated sensitivities. 

This new set of parameters formed the input for the next simulation run. The iteration continued 

while the mismatch was successively minimized and terminated when a satisfactory match was 
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achieved or when no further improvement was observed. Figure 3-13 shows the workflow 

employed by SENEX to reduce the misfit between the simulated and observed data. 

 

 

Figure 3-13. Workflow used by SENEX in adjoint based history matching process (from SENEX 2013). 

 

Note: The parameter limits for both history matching techniques were set after sensitivity 

analysis. Since both techniques takes different approach in modifying the reservoir, the 

recommended parameter limits varied. Adjoint suggested lower range in parameter because it 

considered each property of a grid block as a parameter whereas in PSO, reservoir properties 

were modified using layering method. 
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 Design of Experiment 
Design of experiment (DoE) refers to the design of an experiment which has the purpose of 

analysing the variations of information under a certain condition that directly affects the 

variation (Elvind, 1992). An experimental design predicts the outcome by introducing changes in 

the combinations of the input reservoir parameters. The change in one or more input parameters 

is usually assumed to result in the change of the output variable (production response). Control 

variables (equation of the reservoir simulator) are also identified. The aim of DoE is not only to 

identify suitable variables (input, response, and control), but also to plan and deliver the 

experiment in a statistically optimal manner in the presence of limited computational resources. 

A major concern in DoE is often related to the reliability of the design. However, carefully 

selecting the input variables and making sure proper and detailed documentation is provided can 

mitigate these concerns (Fletcher 1970). 

To make a choice of an experimental design, the aim is to select a design which produces highest 

insight of characteristics employing the lowest number of sampling (Astakhov 2012). 

Furthermore, the chosen experimental design technique should also provide confidence that the 

sampled points are a true representation of the design space (Ruby-Figueroa 2016). The choice 

of an experimental design is influenced by the nature of the problem being studied and the 

magnitude of resources available such as time, computational power, and the extent the problem 

has been defined (Cavazzuti 2013).  

There are two key approaches to DoE, orthogonal design and random design. The orthogonal 

design assumes that the model parameters and input variables are statistically independent and 

uncorrelated and can be varied independently. Orthogonal design explores a larger search space 

and can represent model non-linearities (Seidenfeld 1992). The limitation of orthogonal design is 

that it is deterministic in nature and as such susceptible to collapse problems where one or more 

initial points appears to be irrelevant rendering the rest of the time-consuming computer 

experiment useless. Widely used orthogonal experimental designs are fractional and full-factorial 

design (Figure 3-14), central composite designs, and Box-Behnken designs. The random design 

involves the stochastics sampling of the model parameters in a random manner. Stochastic 

samplers are also known as space-filling designs because they are not constrained by sample 

sizes which are specific multiples of design parameters. The most used random design of 

experiment technique is the Latin Hypercube Sampling (LHS). LHS is not susceptible to collapse 

problem because if one or more input variable (reservoir parameter) appears to be unimportant, 

every point in the design will still provide some useful insight with respect to the influence of the 

other variables on the output (production response). Therefore, any experiment will be useful 

(Seidenfeld 1992). DoE is a key step for sensitivity analysis, history matching, and uncertainty 

analysis. DoE can also be used to train proxy models effectively (Elvind, 1992). Deterministic 

designs such as Box-Behnken, fractional factorial and central composite designs, are perfectly 

octagonal. These designs samples edges of the parameter space, and produce results that are 

biased towards extreme but are skewed against the contributions  from samples in-between the 

extremes. However, LHS which is a more space filling and efficient technique were applied to 
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guarantee that each design variable has all parts of its ranges sufficiently represented in the 

sample. 

 

 

Figure 3-14. Full Factorial Design for a system with three parameters and three parameter settings (low, 

medium, high). Each dot connotes a parameter combination (after Astakhov 2012). 

3.4.1. Latin Hypercube Sampling 
LHS is a statistical technique for generating a near-random sample of plausible collections of 

parameter values from multidimensional distribution. As applied in statistical sampling, a Latin 

Square is a Square grid containing sample points provided each row and column contain only 

one sample. LHS is the extension of this assumption to a given number of dimensions, in which 

each axis aligned with a hyperplane contains one sample. In an experimental design with 𝑀 

variables, the range of each variable is divided into 𝑁 equal levels and that there is only one 

point (or sample). 𝑁 sample points are then placed to meet the requirements of a Latin 

hypercube. LHS then forces the total number of divisions to be the same for each variable. LHS 

does not require more samples for higher dimensional variables. As stated above a random 

procedure is employed to determine the sample points. The quality of the experimental design 

can be improved by randomization and optimization of point placement. 

The popularity of LHS can be attributed to its flexibility to provide data for modelling techniques 

based on different statistical assumption and cover small to large design spaces. In addition, LHS 

can be optimized without considering the statistical assumptions of the model, more so, the 

choice of number of data points is quite flexible, and therefore can be determined based on the 

available resources. Another key strength of LHS is its non-collapsing capability i.e. if few input 

variables are considered non-influential to the response and are dropped out, the resulting design 

still remains a Latin hypercube design, although, it may be suboptimal. Therefore, if another set 

of properly designed data for the smaller domain is not affordable, the existing data will still be 
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useful. In addition, random samples can be taken one at a time, remembering which samples has 

initially be taken (Del Vecchio 1997).  

We apply LHS (Figure 3-15) to generate training runs for the proxy model because of the 

efficiency of LHS in sampling the entire parameter space using a minimum number of sample 

points. The population of the properties of the static models were performed using a stochastic 

approach. Therefore, a stochastic sampling technique seems to be appropriate. 

Figure 3-15: Latin Hypercube sampling for a system with two parameters and 6 parameter settings. Each 

dot represents a parameter combination (after Astakhov 2012). 

 Proxy Models 
The non-linear behaviour of a full-physics reservoir model simulation can be approximated by a 

proxy model (also known as response surface), which provides a functional form that links the 

simulation output (e.g. well rates) to the input parameters of interest (e.g. well location or 

permeability variations). Proxy modelling has become an efficient way to study parameter 

sensitivities or decrease the computational cost for challenging reservoir simulation  (e.g. 

Aissaoui and Moreno 2013; Babaei et al. 2015; Mohaghegh et al. 2015; Polizel et al. 2017). 

More so, proxy models have been successfully applied to augment the optimisation of water 

alternating gas injection in fractured carbonates reservoir (Agada et al. 2017; AlAmeri et al. 

2020). 

To generate a proxy model, an appropriate number of simulation runs, i.e. sampling points, is 

needed to train the proxy model for a range of input parameters. These sampling points can be 

chosen using experimental design in such a manner that the proxy model covers a broad range of 

input parameters and corresponding simulation outputs.  The exact number of simulation runs to 

train the proxy model depends on the complexity of the problem and the DoE method that was 

selected. 

Nevertheless, every proxy model is faced with these two main challenges. 1). Proxy model is 

limited in applications i.e. there only applicable to a particular objective function, and a 
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particular recovery mechanism. Also, they are limited to the specific parameter ranges used 

during the building of the proxy model. This implies that when a new objective function is 

introduced, or when the parameter ranges are modified, a new proxy model will need to be 

constructed. 2). The response surface of a proxy model changes as additional training runs are 

being introduced (Figure 3-16), therefore the position of the global optimal solution is also subject 

to change (Ahmadi et al 2018; Zubarev 2009; Jaberet al 2019). 

 

Figure 3-16. The evolution of the proxy model as the number of simulations for a single in fill well 

optimisation problem. (after Zubarev (2009)). 

 

3.5.1. Polynomial Regression 
For engineering application, the major challenge is usually the accurate identification of a 

suitable regression function which will adequately capture the essential features of the original 

problem. This challenge can be addressed by carrying out the optimization process iteratively 

and fitting new response surface approximations sequentially on a subsection of the entire design 

space. Typically, response surface approximations are implemented using first or second order 

polynomials. The general formulation for a quadratic polynomial regression is given by 

 

𝑦(𝑥) =  𝛽0 ∑ 𝛽𝑖

𝑛𝑑

𝑖=1

𝑥𝑖 ,   

 3-3 
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where,  𝑥 is a vector of input variables of length 𝑛𝑑, 𝑥𝑖 is a linear term, 𝑥𝑖
2 is a quadratic term and 

𝛽0, 𝛽𝑖, 𝛽𝑖𝑖 represents unknown regression co-efficient constant for linear, cross and quadratic 

term respectively. To make sure that a suitable regression function 𝜂 was chosen, the model 

adequacy should be assessed. 
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3.5.2. Proxy Model Validation 
Cross-validation (Kohavi 1995) is usually performed to evaluate the proxy model through 

comparison with the full-physics simulation model. Cross validation is achieved by splitting the 

data into a training set and a validation set; the validation set does not contribute to the 

construction of the proxy model. Furthermore, a quantitative statistical measure can be used to 

assess model adequacy such as the co-efficient of determination 𝑅2 which can be expressed as 

 𝑅2 = 1 −
𝑠𝑠𝑒

𝑠𝑠𝑡
  ,  

 3-5 

where 𝑠𝑠𝑒 is the sum of squared residuals and 𝑠𝑠𝑡 is the total number of squares. 𝑅2 can be 

defined as the amount of variance in the sample response described by the fitted response 

surface. 𝑅2 ranges from 0 to 1, a value of 𝑅2 = 1 connotes a perfect fit and the absence of a 

residual. Precautions needs to be taken while handling this statistic. Increasing the regression 

function by adding new regressors will lead to an increase in the coefficient of determination not 

considering if it can improve the model predictive quality. In some cases, the response value at 

the sampling points are not approximated rather interpolated and therefore do not provide any 

information between the sampling points. To prevent this occurrence, the adjusted coefficient of 

determination 𝑅𝑎𝑑𝐽

2  can be employed. 𝑅𝑎𝑑𝐽

2  is expressed as 

 
𝑅𝑎𝑑𝐽

2 = 1 −
¥ − 1

¥ − þ
(1 − 𝑅2) , 
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where ¥, is the number of independent variables, þ is the size of the vector. The statistics of the 

adjusted 𝑅𝑎𝑑𝐽

2  does not necessarily increase as more data points are added rather it decreases as 

unnecessary data are added to the model. 

Finally, prior to the deployment of the proxy model to approximate the full physics simulation, 

the accuracy of the model must be assessed. To examine the predictive ability of a proxy model, 

the set of sampling points is subdivided into two components. The first part is known as training 

data, it is used to generate the proxy model, while the second part is known as validation data 

which is used for validation. 

 

 Monte Carlo Markov Chain with Proxy-

Based Rejection and Acceptance 
Markov Chain Monte Carlo (MCMC) is a computer-based sampling technique (Rubinstein and 

Kroese 2016). MCMC enables the characterization of a distribution without having the full 

knowledge all of the distribution’s mathematical properties by a random sampling of values out 

of the distribution. A key strength of MCMC is its ability to draw samples from distributions 

even when all that is known about the distribution is how to calculate the density for different 

samples (Ravenzwaaij et al. 2018). The name MCMC combines two features: Monte-Carlo and 

Markov chain. Monte-Carlo is the technique of predicting the properties of a distribution by 

assessing random samples from the distribution (Jim and David 2013). For instance, Monte-
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Carlo computes the mean of a large sample of the distribution instead of computing the mean 

directly from the equation of the normal distribution. The merit of the Monte-Carlo technique is 

obvious: computing the mean of a large sample of data is much easier compared to computing 

the mean directly from the equation of the normal distribution especially in situations where 

random samples are easy to draw while the equations of the distributions are difficult to solve 

(Dunn and Shultis 2012). The Markov chain feature of MCMC is the concept that the random 

samples are created by a unique sequential process. Each random sample is used as a starting 

point to create the next random sample, consequently yielding a chain structure.  

The Metropolis-Hastings MCMC method is one of the commonly used technique of MCMC 

(Rubinstein and Kroese 2016). The basic concept of Metropolis-Hasting MCMC is to conduct a 

random walk which is governed by a probabilistic criterion. The walk is being modified by the 

criterion accepting some moves while rejecting others so that the modified walk samples the 

target distribution. Table 3-6 explains the steps that are carried out by the Metropolis Hastings 

MCMC algorithm.  

Table 3-5. Metropolis-Hasting MCMC Algorithm (Liang et al.2010) 

Step 1 Start with any initial model 𝜽𝟎 

Step 2 Use the current point 𝜃, sample a candidate point 𝜃∗ from an arbitrary proposal 

distribution 𝑞(𝜃2/𝜃1) . The only restriction on the proposal distribution is that it 

is symmetric, i.e., q(𝜃2|𝜃1) = q(𝜃1|𝜃2) 

Step 3 Given the candidate point 𝜃∗, calculate the ratio of the density at the candidate 

(𝜃∗) and current points (𝜃), 

 
𝛼 =

𝑝(𝜃∗|𝑑)

𝑝(𝜃|𝑑)
. 

 3-7 

                                                         

Step 4 If the candidate increases the density (𝛼 > 1) , accept the candidate point (set 

𝜃 = 𝜃∗) and return to step 2. If the jump decreases the density (𝛼 < 1) , then 

accept the candidate point with probability 𝛼, else reject it and return to step 2. 

 

MCMC samples from the approximation of the posterior density function of history matched 

models. The technique by which the Adjoint and PSO methods converts misfit to likelihood is 

discussed in Chapter 2.  

The computational cost of Metropolis-Hasting MCMC can be expensive when used to conduct a 

reservoir simulation studies. This is because the MCMC often needs thousands of simulation 

runs to converge to the required distribution. To compute the posterior, each iteration will need a 

full physics simulation which is usually time consuming for real field application. In addition, 

the acceptance rate of the MCMC is usually small as most candidates will be rejected and the 

computation effort required to run the full physics simulation is wasted.  

To remedy this situation, where MCMC will require thousands of full physics numerical 

simulations, we apply the Proxy-based Acceptance-Rejection (PAR) sampling method. The 
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major benefit of the PAR method is the application of rapid proxy model application 

approximation of the posterior to infer if to accept or reject a candidate model. Full physics 

simulation is then conducted for only accepted candidates resulting in a massive save of 

computational effort. 

MCMC with PAR framework in CMOST allowed us to carry out a robust uncertainty analysis in 

each ensemble of reservoir models (i.e. unconstrained, stochastic and adjoint ensemble) by 

incorporating all the geological realization in each ensemble. Quadratic polynomial regression 

(Equation 3-4) was chosen as the proxy model for this analysis because the study from the 

comparative analysis between Artificial Neural Network (ANN) and polynomial regression in 

modelling polymer flooding showed that polynomial regression is more reliable in prediction 

than ANN. More details are discussed in Chapter 5 of this thesis. To ensure good quality of the 

proxy model, we set an acceptable 𝑅2 and 𝑅2 adjusted value of 0.9 and 0.85 respectively for 

training and an acceptable 𝑅2 prediction value of 0.8 as stopping criteria. The implication of this 

is that the MCMC with PAR engine will keep generating new experiments until the stopping 

criteria is reached. When the stopping criteria is met, the results of the proxy model analysis such 

as summary of fit, analysis of variance and polynomial equation is produced. Furthermore, the 

result of Monte Carlo simulation i.e. P10, P50, P90 estimates are provided. 

 Polymer Data 
As a result of high water cut, polymer flooding seemed to be an attractive EOR method  to be 

applied to Watt Field. Therefore, the screening criteria of Saleh et al. (2014) was used to evaluate 

the feasibility of polymer and the result from the screening analysis suggested that the Watt Field 

was a good candidate for polymer flooding. 

We used the data of Cannella et al. (1988) who performed experimental and theoretical studies of 

polymer flooding by injecting Xanthan into sandstone and carbonate cores. Polymer 

concentrations ranged between 0.1 to 2 lb/bbl, effective brine permeabilities from 40 to 8000 mD, 

and residual oil saturations from 25 to 80%. The resulting relationship between solution viscosity 

and polymer concentration and polymer adsorption profile was then used in the simulations (Figure 

3-17). We used the Todd and Longstaff mixing parameter, which models the impact of viscous 

fingering during a first contact miscible gas flood but has also been used in polymer flood 

simulations to model the impact of viscous fingering on the polymer slug (Bondor et al. 1972). 

The Residual Resistance Factor (RRF) is used to represent the permeability reduction resulting 

from polymer adsorption and blocking of pore throats. It depends on permeability and polymer 

concentration. A maximum RRF of 4 and a minimum of 1 has been used in this study.  
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Figure 3-17. Polymer viscosity model (left) and polymer adsorption model (right) used in this study. 

 

 

 Summary 
In this chapter, a case study that integrates both geological and interpretational uncertainties 

encountered in reservoir modelling which is often missed out has been presented. These 

uncertainties include, the top structure, fault network models, shale cut-offs in predicting net-to-

gross, and modelling methods resulting in 81 different realisations of geological reservoir 

models. A truth case was defined from one of the available 81 realisations from where 

production data were generated from a prolonged water flood for history matching. 

To enable us to study the impact of history matching techniques on the optimization of water 

flooding and polymer flooding, we presented the two history matching techniques applied in this 

thesis i.e. Adjoint and PSO techniques. This is necessary because the ensemble of reservoir 

models generated with different history matching technique will vary in size and diversity and 

may suggest different optimal strategies and associated risks. Experimental design was 

introduced focusing of space filling Latin Hypercube Sampling (LHS) which is a stochastic 

sampling technique used for this study and was chosen because of the stochastic population of 

reservoir properties in the Watt Field. LHS was used to generate training samples for the training 

of polynomial regression response surface. Monte Carlo Markov with Proxy-Based Rejection 

and Acceptance algorithm in CMOST which was used to generate P10, P50 and P90 estimates of 

the posterior probability distribution (PPD) for the history matched ensembles were described. 
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Finally, the polymer data from the experiment of Cannella et al. (1988) were used to generate a 

relationship between polymer viscosity and concentration, and polymer concentration and 

adsorption for modelling were presented. 
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Chapter 4. Comparative Analysis of the Impact 

of History Matching Techniques on Reservoir 

Uncertainty Quantification 

 Introduction 
In general, the production response obtained from the reservoir simulation of these geological 

realizations will not match the historic production data. Predictions from such reservoir models is 

unreliable unless the uncertain reservoir parameters are perturbed such that the response from the 

simulated model matches the observed production data.  As discussed in Chapter 2, a single 

calibrated reservoir model is often not enough to account for uncertainties and associated risks in 

reservoir evaluation and management, it is therefore important to generate multiple history 

matched reservoir simulation models to adequately quantify the uncertainties in reservoir 

performance. 

Recall from Chapter 2, assisted history matching is performed using optimisation algorithms, 

which are broadly classified as deterministic or stochastic based on their explorative and 

exploitative capabilities. Deterministic algorithms such as adjoint technique have the limitation 

that they only yield one, or at best a few, solutions and hence may not provide to reliable 

uncertainty estimates. (Oliver et al. 2008). However, deterministic algorithms have the advantage 

that they possess high convergence rates which saves time given that history matching process 

takes about 40% of the time used in reservoir simulation workflow (Gruenwalder et al. 2007). 

On the other hand, stochastic algorithms generate multiple history matched models and provide a 

more reliable uncertainty forecast but have lower convergence rates. However, if an ensemble of 

reservoir models that adequately capture the geological and interpretational uncertainties, is 

provided, it could be possible that the poor reliability in predicting the uncertainties by the 

deterministic algorithms such as the adjoint technique which is the major drawback is mitigated. 

Then, the fast convergence of adjoint technique could save significant CPU time during history 

matching. It will also be interesting to see how the two history matching techniques will affect 

our ability to forecast the performance prediction of a waterflood. 

To investigate this hypothesis, we create an ensemble of history matched models using a 

deterministic method (adjoint technique) and a stochastic algorithm (PSO). Each technique 

includes the combination of parameterization and history matching algorithms and the parameter 

ranges that will be employed which is determined during the sensitivity analysis. We then 

perform a comparative analysis of the ensemble of reservoir models generated using these two 

history matching approaches. The comparative strategy will focus on the history match quality 

and rate of convergence, diversity of the ensemble and reliability of forecast. 

 Workflow 
A trade-off between convergence and diversity is a good practice in history matching. 

Convergence refers to the rate of reduction of the mismatch in the objective function per 

iteration, whereas diversity refers to how diverse the matched models are distributed in the 
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objective space. History matching can be considered successful if a good trade-off is achieved 

within a reasonable time. In this study we will assess the performance of the two history 

matching techniques, adjoint and PSO using the following three criteria: Convergence speed and 

match quality, diversity, and reliability of forecasting. For the convergence speed and match 

quality, we observe the degree of reduction in history matching error per iteration of the history 

matching experiments and also compared final history match error of Adjoint and PSO 

techniques. The diversity of the matched models was assessed by visualising all the models in 

the objective space and we then plotted the average and range of each uncertain parameters for 

all the models matched using the two methods. Furthermore, the ensemble of history matched 

models is then sampled using MCMC with Proxy-based acceptance-rejection (PAR) algorithm in 

CMOST to robustly quantify the uncertainties in forecast. A qualitative analysis is performed on 

the reliability of the forecast based on the encapsulation of the truth case prediction within the 

probabilistic confidence range. To be specific, we examine the number of individual realisations 

in each ensemble that encapsulate the truth case model within its confidence interval. We use the 

Monte Carlo Probabilistic Distribution Functions (PDF) P10 and P90 lines as the confidence 

interval.  Figure 1-1 shows a flow chart employed in this chapter. 

  

Figure 4-1. A flowchart describing the entire workflow used in this chapter  

4.2.1. History Matching   
As discussed from Chapter 3, we selected 26 out of the 81 geological realisations (Figure 4-2) to 

match the production data generated from 2933 days of prolonged water flooding of the truth 

case model. An ensemble of history matched models were created using PSO algorithm 

implemented in CMOST. 
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Figure 4-2. Permeability distribution field of 12 of the 26 geological realisations of the Watt Field model 

used in this chapter  
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4.2.1.1 Stochastic History Matching with PSO 

History matching using this PSO, built on the previous work of Arnold et al. (2013), who 

performed history matching on this field using two parameterisation techniques i.e. layering and 

zonation methods. In the layering method, they divided the field into 8 different layers and 

assigned different reservoir properties and multipliers to each particular layer using PSO 

algorithm implemented in RAVEN. The result from the sensitivity study of algorithm 

configurations showed that flexi-PSO with the configuration shown in Chapter 3, produced a 

better overall match quality and hence it was used in this study. In the zonation method they 

divided the entire reservoir into 9 different sectors to allow tuning of individual wells differently 

and each sector was assigned different reservoir parameters and multipliers. We simplified the 

parametrisation because of the number of history reservoir models needed to be history matched. 

As stated in Chapter 3, a constant multiplier was assigned to each reservoir property across the 

entire reservoir to reduce the number of uncertain parameters as PSO can be trapped in local 

minima in high dimensional problems. The range of the reservoir property multipliers ranged 

from 0.05 to 1.3 for porosity, 0.05 to 10 for permeability, 0.01 to 10 for 𝐾𝑣/𝐾ℎ ratio, and 0 to 1 

for fault transmissibility. A similar result to that obtained by Arnold et al. (2013) was obtained 

using this parameterisation approach. 

4.2.1.2 Adjoint Technique 

The analytical sensitivity calculation using the adjoint technique employed in this work is 

deterministic by design. In order to generate alternative history matched cases, different start 

points (base case) are provided. The analytical sensitivity calculation is completely automatized 

and does not require further user interactions. Constraint definitions for rock property 

modification and the objective function definition are used to steer the history matching process. 

Constraints were defined for porosity (-10% to +10%), horizontal permeability (-10% to +50%) 

and vertical permeability (-10% to +50%). The misfit is evaluated for every iteration and the 

simulation is stopped when the misfit is no longer reducing. Figure 4-3 illustrates the workflow 

for adjoint history matching in this chapter. 
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Figure 4-3. Workflow adjoint history matching employed to match the Watt Field model using SENEX 

(Senex 2013) 

Note: We did not attempt to ensure geological consistency of the matched reservoir models with 

regularisation as it was beyond the scope of the thesis, rather the objective was to obtain 

ensemble of history matched models using different techniques. 

The multiple models generated by different history matching techniques and the original model 

ensemble (base ensemble) were then integrated into the MCMC with PAR framework in 

CMOST. This is to robustly quantify the uncertainties in predicting the cumulative oil recovery 

for a period of 30 years. Polynomial regression was chosen as the proxy model option for this 

analysis. The stopping criteria were an acceptable R2 adjusted value of 0.9, and an acceptable R2 

prediction value of 0.8. The number of simulation runs used for this uncertainty analysis were 
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390 for each ensemble which is much lower compared to running an MCMC framework with 

about 208,000 of full physics simulation estimated by MCMC engine in CMOST. 

 

  Results 
We analysed the result of history matching based on the aforementioned criteria: convergence 

speed and history match quality, diversity, and reliability of forecasting.  

4.3.1.  History match quality 
Figure 4-4 and Figure 4-5 show the convergence of the history matching experiments observed 

for 26 geological realizations using the Adjoint technique and 12 representative realization using 

PSO, respectively. The Adjoint technique has a higher convergence speed than PSO. The Adjoint 

technique is able to reduce the misfit significantly within the first 12 iterations and the history 

matching experiments were stopped after 15 iteration as no further improvement in match quality 

was observed. The stochastic nature of PSO explores the parameter space more widely which 

reduces the convergence speed; it takes between 170 and 500 iterations until the best solution for 

is found for across the 26 realisations. Figure 4-6 shows the global history matching error for 

both, the Adjoint technique and PSO. The Adjoint technique yielded a better match across all the 

geological realizations except for two realizations where PSO outperformed the Adjoint 

technique. Figure 4-7 and Figure 4-8 compare the field-based and well-based recovery curves, 

respectively, for one of the history matched geological realizations. The Adjoint technique yields 

a high-quality match because it varies the permeability field in the vicinity of the wells but does 

not necessarily ensure geological consistency (Figure 4-9). Overall, these results show that the 

exploitative capability of the Adjoint technique to minimize the objective function contributes to 

faster convergence and smaller history matching error. In contrast, the explorative nature of PSO 
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algorithm to search the parameter space more broadly leads to slower convergence and a higher 

history match error. 

Figure 4-4. History match error minimization speed for 26 geological realisations using the Adjoint 

technique 

 

Figure 4-5. History match error minimization speed for 12 geological realisation using PSO 

algorithm 
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Figure 4-6. Global history match error for base (blue) and the best-so-far models for Adjoint technique 

(orange) and PSO algorithm (yellow) 

 

 

Figure 4-7. Example of field-based history matching results using the adjoint technique and the PSO 

method for one geological realization of the Watt Field. 
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Figure 4-8. Example of well-based history matching results using the adjoint technique and the PSO 

method for one geological realization of the Watt Field. 
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Figure 4-9. Porosity (bottom) and permeability (top) for the original reservoir model (left), the history 

matched model (middle) as well as the difference map (right) using an adjoint technique. Note how 

parameters are changed only in the location of the wells. 

PSO changes the reservoir parameters more broadly, and across the entire reservoir, during the 

history matching process (Figure 4-10). Note that the stochastic history matching leads to an 

increase in the average permeability by a factor of two or more for most realizations, which 

implies that fluids flow more easily in the reservoir. However, the higher flow rates in the 

reservoir are often countered by a decrease in fault transmissibility along major fault using an 

adjoint technique. Note how parameters are changed only in the location of the wells. Figure 4-11 

shows permeability distribution for 6 of the 26 realisations of the Watt Field model before and 

after history matching using Adjoint technique and PSO. 

Stochastic history matching also had the tendency to increase the pore volume compared to the 

Adjoint technique (Figure 4-12).  

More generally, the broader change in history-matched reservoir model parameters is because 

the stochastic algorithm is able to explore the parameter space more widely, which leads to a 
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more diverse range of history matched models for each geological realization (Figure 4-13). 

Hence a wider range of uncertainty in the production forecast compared to the adjoint technique 

can be expected. However, since we consider an ensemble of geological models, the drawback of 

narrower uncertainty ranges arising from the adjoint technique is somewhat mitigated.  

 

 

Figure 4-10. Average horizontal and vertical permeability, porosity, and transmissibility for each of the 

26 geological realizations before (blue) and after history matching using the adjoint technique (green) 

and stochastic history matching (yellow). 
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Figure 4-11. Permeability distribution for 6 of the 26 realisations of the Watt Field model before (left) 

and after history matching using Adjoint technique (middle) and PSO (right). 
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Figure 4-12. Averages of horizontal permeability (left), vertical permeability (center), and porosity 

(right) across the 26 geological realizations before (Base) and after history matching using the adjoint 

method (Adjoint) and stochastic history matching (PSO). 

 

 

Figure 4-13. Variance in horizontal permeability (left), vertical permeability (center), and porosity (right) 

across the best matched cases of 26 geological realizations before (Base) and after history matching 

using the adjoint method (Adjoint) and stochastic history matching (PSO). 
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4.3.2. Reliability of the Forecast  
After the generation of ensemble history matched models by the Adjoint and PSO techniques, we 

then compared the uncertainty estimates calculated based on both techniques. Following the 

history matching, we forecast production for 30 years assuming a do-nothing scenario, i.e. 

continuing in a do-nothing scenario, the results show that PSO-based history matched models 

yielded a more robust forecast and wider spread of uncertainties in cumulative oil production 

(Figure 4-14). Furthermore, we evaluated the uncertainty prediction in cumulative oil production 

presented as a posterior probability distribution (PPD) i.e. the P10, P50, and P90 credible 

intervals (Figure 4-15). The credible intervals, i.e. the difference between P90 and P10 at the end 

of the forecast period, is also provided for comparison. A boxplot is used to represent the average 

distribution of the cumulative oil production for each ensemble (i.e. Base case, Adjoint technique 

and PSO) (Figure 4-16) as well as for the cumulative oil production distribution for each 

individual realization (Figure 4-17). The reference model, i.e. the “truth case” for which the 

production data was generated, lies above the P10 line of the base case ensemble whereas the 

Adjoint and PSO ensembles encapsulate the truth. The results for the models that were history 

matched using PSO showed more robust and wider range of distribution in cumulative oil 

production (37 Mbbl), while the models that were history matched with the Adjoint technique 

predicted a narrower distribution of uncertainty in cumulative oil production (36 Mbbl) after 40 

years of forecast. This is due to high diversity of models in the PSO ensemble as opposed to 

much similar matched models in Adjoint ensemble. It can also be noted that the forecast for the 

models that were history matched using  PSO is more reliable compared to the models that were 

history matched using the Adjoint method  because more forecasts for the models matched with 

PSO encapsulate the “real” production data from the truth, i.e. reference, model. Figure 4-17 

shows that 13 out of the 26 realization of the Adjoint ensemble encapsulate the truth, whereas 15 

of the individual realization in the PSO ensemble encapsulate the truth (Figure 4-18). 



87 
 

 

Figure 4-14. Forecast for cumulative oil production assuming a do-nothing scenario before – 

unconstrained (left) and after history matching using the Adjoint technique (centre) and PSO technique 

(right). 

 

Figure 4-15. Recovery prediction uncertainties based on PSO ensemble (left) and PSO ensemble (right) 
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Figure 4-16. Boxplots of average uncertainties forecast obtained based on the base, Adjoint and PSO 

Ensemble. 

 

Figure 4-17. Boxplots of uncertainties forecast obtained based on the individual 26 realizations of the 

Adjoint Ensemble. 
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Figure 4-18. Boxplots of uncertainties forecast obtained based on the individual 26 realizations of the 

PSO Ensemble. 

 

 Discussion 
To reduce risk, it is important that reservoir models capture key geological uncertainties 

especially those that cannot easily be parameterized during history matching, such as shale cut-

offs to define net-to-gross, top structure models, fault network, and modelling methods. These 

kinds of geological heterogeneities are included in the semi-synthetic yet realistic Watt Field 

(Arnold et al. 2013). Simulation results from a geological model normally do not match the 

observed production results immediately, and hence the models need to be adapted until there is 

good agreement between simulated and observed production data through the process of history 

matching. Obtaining a good match does not guarantee a good production forecast. Therefore, 

history matched models need to be evaluated to ensure a reliable forecast. The MCMC with PAR 

framework enabled us to estimate the uncertainty in the forecast i.e. P10, P50, and P90 estimates 

for the history matched ensembles and the original ensemble and for the individual realisation 

member in each ensemble. The average cumulative oil prediction in the PSO ensemble was 

wider compared to the uncertainty prediction from the adjoint ensemble. This is common 

knowledge in the field of history matching as PSO is more explorative and therefore yields a 

more diverse set of models while the Adjoint technique is more exploitative and produces 

matched models that are quite similar. Furthermore, the reliability of forecast in the PSO 

ensemble was also higher than the Adjoint ensemble as more of the uncertainties predicted by 

individual ensemble encapsulated the truth case than in adjoint technique. Therefore, the 

diversity of a history matched ensemble varies from one history matching technique to another, 

and results in variation in the range of uncertainty estimation. Our findings agree with the work 
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of Erba and Christie (2007), who compared the uncertainty estimation of two stochastic methods 

i.e. the genetic algorithm and neighbourhood. Their study shows that neighbourhood algorithm 

with higher explorative capacity generated a more diverse ensemble of history matched models 

which led to a wider range in uncertainty estimation. However, the uncertainty prediction after 

30 years by PSO and Adjoint ensemble were similar, with a difference of about 1 Mbbl in the 

range of uncertainty estimation. The similarity in uncertainty estimation establishes the fact that 

deterministic methods can be improved by using multiple realisations of reservoir model. In 

other words if a small number of geological models that adequately capture the key geological 

uncertainties can be designed, then a deterministic method such as the adjoint technique may be 

a good choice as it saves significant CPU time due to its fast convergence. 

 Summary 
In this chapter, we investigated how different history matching technique can impact the 

uncertainty estimations of recovery forecasting in a heterogenous clastic reservoir using MCMC 

with PAR algorithm. 26 of the 81 geological realization of the Watt Field, a semi synthetic 

reservoir model was used to carry out this analysis. We generated two ensembles of different 

quality using Particle Swarm Optimisation (PSO) and Adjoint technique. We further assessed the 

quality in terms of convergence speed and match quality, the degree of exploration and diversity 

in the models, and lastly the reliability of forecasting.  

From the results of the Watt Field case study we observed that stochastic history matching with 

PSO resulted in a more diverse sets of history matched ensemble than the Adjoint technique. 

This diversity can be attributed to the exploration capability of the PSO algorithm to search the 

parameter space more broadly. The exploitative capability of the Adjoint techniques leads to a 

higher convergence speed and lower history match error of the best models than the PSO-based 

approach.  

The results from the comparison of the uncertainty forecast show that PSO yielded a wider range 

P10 – P90 ranges that encapsulate the truth case, whereas Adjoint technique produced a narrower 

range. This due to high diversity that exist in the set of history matched models in the PSO 

ensemble compared to localized clusters of models in the Adjoint ensemble. Although the 

Adjoint ensemble yields a higher quality of history matched models, it does not guarantee a 

better capability in forecasting the future, which is in alliance with the finding of Tavassoli et al. 

(2004). The high diversity of the PSO ensemble used in uncertainty prediction produced a better 

forecast reliability compared to the Adjoint ensemble as more individual realization prediction of 

uncertainties of the PSO encapsulated the truth than the Adjoint technique. In conclusion, the 

higher exploration in the history matching process will more likely lead to a wider range in 

uncertainty forecast.   

Based on the results from our study, we can infer that the robustness of uncertainty quantification 

process can be enhanced by multi-objective history matching, where the history match error can 

be minimized and the divergence in forecast can be maximized simultaneously. 
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Chapter 5. Optimisation of polymer flooding 

in a Heterogenous Reservoir Considering 

Geological and History Matching 

Uncertainties 
 

 Introduction 
Capturing geological and engineering uncertainties requires running a wide range of full-physics 

simulations that explore the parameter space in order to provide a useful insight for sensitivity 

analysis that enables uncertainty quantification and optimization of recovery processes in 

geologically complex reservoirs during EOR. Modelling polymer EOR is computationally 

expensive due to the complex nature of the displacement process and the complex multi-scale 

heterogeneity inherent to many reservoirs. Proxy-based optimization can reduce the number of 

simulations runs by creating an empirical, data-driven proxy model (for example through 

polynomial regression) that mimics the full-physics simulation runs (Queipo et al. 2005). Usually, 

a proxy model is built using a set of full-physics training runs, blind-tested and validated through 

additional full-physics simulation, and iteratively refined using further full-physics simulations 

(Koziel and Yang 2011). The objective of this chapter is therefore to analyse the performance of a 

polymer flood while considering geological uncertainties inherent to a heterogeneous clastic 

reservoir where the uncertainties are related, for example, to the number and locations of faults, 

the depth of the top structure, or the depositional model but also the modelling decisions (e.g. 

choice of shale cut-off and pixel vs. object based modelling) (Arnold et al. 2013). Furthermore, 

we compare the prediction and performance of a full-physics polymer flood optimisation to the 

proxy-based optimisation of polymer flooding. 

 

In Chapter 4 we investigated how different history matching techniques can impact the uncertainty 

in estimating the forecasts of hydrocarbon recovery in a heterogenous reservoir by creating 

ensembles of reservoir models using two different approaches (Adjoint technique and PSO). The 

Adjoint ensemble converged faster with lower history matching error due to its exploitative nature 

but yielded a narrower forecast of uncertainty. In contrast, the PSO ensemble was more diverse 

and predicted a wider range of cumulative oil recovery. In this chapter we investigate how different 

history matching approaches (adjoint vs. stochastic method) and different optimisation methods 

(constrained vs. unconstrained) impact the predicted reservoir performance and optimal design of 

the polymer flood. Constrained optimisation employs the history-matched reservoir models 

whereas unconstrained optimisation employs reservoir models that have not been history matched. 

The advantage of unconstrained optimisation is a reduction in CPU time because the additional 

history matching step is not needed, but the resulting uncertainty in the production forecast may 

be larger than in the constrained optimisation.  

 

We hypothesise that according to “Flora’s rule” (Ringrose and Bentley 2015), models that have 

been history matched for a different displacement process may not capture the relevant geological 

structures needed to predict a polymer flood adequately, and hence the difference between 
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constrained and unconstrained history matching will be small. We therefore investigate if and how 

different commonly used history matching techniques impact the way optimisation algorithms 

improve the design of a polymer injection strategy while considering geological uncertainty. To 

compare and contrast these differences, we carried out a quantitative analysis between the 

optimisation results while considering the different history matching methods, focusing 

specifically on the incremental net present value (NPV) and the associated variability in NPV 

forecast. The novelty of this chapter is the detailed investigation of how different history matching 

approaches and optimization methods impact the predicted performance and optimal design of a 

polymer flood, which indicates that an optimized polymer flood is beneficial compared to an 

optimized water flood even if geological uncertainties are not represented adequately in the 

reservoir models. Although the specific experimental design techniques (i.e. Latin Hypercube 

Sampling) and optimization algorithm (i.e. Particle Swarm Optimisation) are not new, the 

application of the experimental design and proxy modelling workflow to analyse polymer flooding 

to ensembles containing complex heterogeneous reservoirs has not been widely reported.   

                                                   

 Workflow 
In this study we used the same 26 models from the 81 geological realisations of the Watt Field 

already used in Chapter 4. We used the same ensembles of history matched model created in 

Chapter 4. A sensitivity analysis allowed us to determine the first-order parameters influencing a 

subsequent polymer flood. We first optimize the NPV on three dissimilar reservoir models that 

represents different uncertainties in the original ensemble using both full physics and proxy-based 

optimisation to validate the accuracy of a proxy-based optimisation. The polymer flood was then 

optimized for each geological model with or without history matching (i.e. for constrained and 

unconstrained history matching). Water flood optimisation was also conducted using the same 

methodology to determine incremental NPV. Finally, uncertainty analysis was carried out to 

determine the impact of history matching on the economic risks of a polymer EOR project. The 

commercial black-oil simulator IMEX was used for all full-physics simulations. Figure 5-1 shows 

the flowchart describing the entire workflow employed in this study.  
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Figure 5-1. Flowchart showing the workflow used in this chapter. 

 

 
 

5.2.1. Objective Function for Optimisation 
We used NPV as the objective function to optimize the polymer flood because other quantities 

such as recovery factor may lead to incorrect results where the optimal solution may not 

necessarily be financially viable. A basic NPV calculation was used for the optimization process, 

assuming a constant price for oil ($55/bbl), constant  injection water handling costs ($2/bbl), 

constant  production water handling costs ($3/bbl), constant polymer costs ($2/lb), and a yearly 

discount rate of 10% (Janiga et al. 2017) given by 

 
 

𝑁𝑃𝑉 = ∑
𝐶

(1 + 𝑟)𝑡

𝑇

𝑡=0

  ,   
 5-1 

 

where 𝑡 is the time step, 𝑇 is the total time, 𝐶 is the model cash flow for each time step and 𝑟 is the 

discount rate.  The cash flow is given by 

 
 

𝐶 = [(𝑂𝑅 ∗
$

𝑏𝑏𝑙
) − (𝑃𝑀𝑅 ∗

$

𝑙𝑏
) − (𝐼𝑊𝑅 ∗

$

𝑏𝑏𝑙
) − (𝑃𝑊𝑅 ∗

$

𝑏𝑏𝑙
)],   

 5-2 

 

 

where 𝑂𝑅 is the oil rate, 𝑃𝑀𝑅 the polymer mass rate, 𝐼𝑊𝑅 the injected water rate, and 𝑃𝑊𝑅 the 

produced water rate.  
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5.2.2. Parameter Screening 
In order to evaluate the effect of the key design parameters such as polymer concentration, time to 

deploy polymer, the number and location of injection wells, or the injection rates on NPV, a 

sensitivity analysis was carried out before we commenced the optimisation. We first applied the 

one variable-at-a-time design to create tornado plots, and further used response surface-based 

sensitivity analysis to generate tornado charts which also account for the interactive effects 

between one parameter to another. Note that other experimental design methods such as the folded 

Plackett Burman design could be used to develop a Pareto chart to analyse the parameter 

interaction and uncertainties at even greater levels, but such an analysis was beyond the scope of 

this chapter as both of our sensitivity tests yielded the same qualitative results.  

 

The base case is a polymer flooding with polymer concentration of 0.5, time of deployment of 3 

years, and an injection rate of 12,000 stb/day. Reducing the polymer concentration decreased the 

NPV and increasing the polymer concentration slightly increased the NPV. Increasing the time of 

polymer deployment lowered the NPV, whereas, decreasing the time of polymer deployment 

increased the NPV. NPV was seen to increase as the injection rates increased in most injectors, 

whereas, some injectors are insensitive to injection rates. The sensitivity results presented in Figure 

5-2 show that polymer concentration, time to deploy polymer, and injection rates are the most 

influential parameters when optimizing NPV in the Watt Field. These first order parameters were 

then used subsequently in the DoE process to generate training data for the proxy model.  
 

 
Figure 5-2. Results from sensitivity analysis using one-parameter-at-a-time approach (left) and response 

surface (right), showing the operational parameters that have the largest impact on NPV during polymer 

flooding in the Watt Field. 
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5.2.3. Optimisation and Design of Experiments 
In the implementation of EOR in heterogenous reservoir, proxy models may be used to produce 

appropriate approximation of time-consuming computer simulation. The constructed proxy 

models can then be used to further understand the correlations and effect of the uncertain input 

parameter on the NPV, and also contribute to fast simulation optimisation and uncertainty 

analysis. The modelling parameters are categorised into two: The geological uncertainties and 

engineering uncertainties. The geological uncertainty is using the geological model mentioned in 

the previous section. In addition to that, we introduced faults transmissibility at the same range 

for all the faults across the three realizations. Nevertheless, transmissibility is not a separate 

entity, and will not change the concept of the geology described by the combination of the 

models mentioned above. Therefore, fault transmissibility is imposed on each geological 

realization as a variable parameter. Training data were generated with fault transmissibility 

between 0 and 1, which means from completely sealing to completely open. Similarly, a variable 

skin factor could have been introduced as an extra geological uncertainty to account for the loss 

of injectivity and productivity at wells, especially when injecting polymers at a very high 

concentration, but we decided to neglect this to enable us to focus on uncertainties at reservoir 

scale. The design control are those parameters we have control over and engineer or modify to 

achieve our objectives. As opposed to uncertain parameters which are not used in the 

optimization process, design parameters are employed to tune the reservoir behaviour to our 

desired need. Wells often contains numerous adjustable parameters such as the location and 

completion interval, and operational constraint e.g. Flow rate and BHP. In this study, the 

reservoir models were operated at a flow rate of 8000 bbl/day up to the point where minimum 

BHP limit of  1000 psi is reached, then the well control switches to BHP leading to decrease in 

production rates. The injectors were constrained with a surface injection rate of 11,000 bbl/day  

for a particular period until maximum BHP of 3500 psi which was set to avoid fracturing of the 

formation is reached. The injectors were then constrained by BHP resulting in the decrease of 

polymer injection rate and consequently impacted the displacement efficiency and oil recovery. 

For proxy training, we used polymer concentration, time to deploy polymer and choice of the 

location for four injectors. 

The LHS design in CMOST was used to vary the most influential uncertain parameters observed 

from sensitivity analysis for each of the three geological realizations. Fault transmissibility was 

varied from low transmissibility cases where the faults where completely sealing (FT=0) to high 

transmissibility cases where the faults are absolutely open (FT=1). Polymer concentration ranged 

from a waterflood scenario (polymer concentration of 0 lb/bbl) to a high polymer concentration 

of 2lb/bbl. Injection rate were maintained at a range of 10,000 stb to 18000 stb. Time to deploy 

polymer flooding varied from the first day to 10years after waterflooding. A normal prior 

probability distribution was assumed in the distribution of input parameters in the design space. 

Continuous uniform sampling within the data range were performed and treated discrete values 

as equally probable. Table 5.1 shows a summary of operational parameters used in the 

optimization of polymer flooding.  
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Table 5-1. Operational parameters for polymer flood (see Figure 5 3 for well locations). 

Parameters Range 

Polymer concentration (lb/bbl) 0 to 2 

Injection rate (stb/day) 10000 to 18000 

Time to deploy polymer (days) 0 - 3650 

Location of polymer injectors INJ1, INJ2, INJ3, INJ4, INJ5, INJ6, and B 

 

 
Figure 5-3. 2D plan view of a single geological realization of the Watt Field, showing the initial oil 

saturation, the location of the injector wells and the location of major faults. 

 

5.2.4. Uncertainty Analysis 
Recall that polymer flooding is a capital-intensive project and therefore requires rigorous screening 

and risk assessment. To quantify the economic risks of the polymer flood, we carried out a cross 

comparison where the optimal polymer design strategy for one geological realization was deployed 

to all 25 other realizations in the same ensemble. This approach allows us to estimate the financial 

downside if the optimal well controls that have been identified for one reservoir model are 

deployed to another reservoir model. In other words, we are testing how the NPV changes if sub-

optimal well controls are used for reservoir models which make different assumptions about the 

reservoir geology. In this process we also calculate the incremental NPV achieved during the 

polymer flood in comparison to an optimized water flood. 

 

Apart from geological uncertainties, there are sets of uncertainties related to fluid-rock 

interaction which should be considered, such as loss of viscosity due to degradation, polymer 

adsorption, residual resistance factor and inaccessible pore volume. To implement this analysis,  

the optimal polymer flooding and waterflood strategies for each individual realization in the 

three ensemble were integrated into the MCMC with PAR framework in CMOST to robustly 

quantify the uncertainties in the NPV prediction for each of the three different ensemble i.e. 

unconstrained (Base) ensemble, Adjoint and PSO ensemble. Table 5.2 shows the parameters and 

ranges used to carry out this risk assessment. 
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Table 5-2. Input Parameter and ranges for uncertainty quantification. 

Parameter Base Range 

Polymer Viscosity (cp) 67 50 - 67 

Inaccessible Pore Volume Multiplier (-) 1 1 – 1.3 

Polymer Adsorption Multiplier (-) 1 1 -1.3 

Residual Resistance Factor (-) 1.2 1.1 – 1.3 

 

 Results 

5.3.1. Proxy Modelling 
Sensitivity analysis were carried out to test the optimal number of training data to create a highly 

accurate approximation that had great reliability in prediction. This is necessary as creating 

excess training data will increase the computational effort and may not significantly improve the 

accuracy of the prediction, while an inadequate number of data will lead to erroneous proxy 

prediction. Furthermore, the simulation input variables and its associated outputs were employed 

to train a polynomial regression and an Artificial Neural Network (ANN) algorithm to produce 

approximations for the simulation output. To determine the optimal number of training runs 

required to train the proxy model, a sensitivity analysis was carried out for the three geological 

realisations. A total of 100 full physics simulation and were performed using a black oil 

simulator IMEX (CMG, 2018) to train a proxy model using PR and ANN, then an additional 100 

full physics simulations were run for validation. The co-efficient of determination 𝑅2 for both 

training experiments and validation experiments are shown in Table 5.3. The number of full 

physics simulation were gradually increased from 100 to 160, 300. A common observation is that 

ANN always shows a perfect 𝑅2 for training better that PR. However, PR provides a better 𝑅2 

for prediction across all the models. A total number of 160 training data set proved to be 

sufficient fit for this approximation. A response surface for the NPV computed using polynomial 

regression and ANN for 16 training runs 100 training runs and 160 training runs are shown in 

Figure 5-4 and Figure 5-5. There was not much difference observed in the response surface 

despite the perfect 𝑅2 values of the ANN. Figure 5-6 provides a comparison of NPV predictions 

for the full-physics simulations and for the proxy models for three different geological 

realizations of the Watt Field. The error in the proxy model prediction can be the result of 

distinct changes in the heterogeneously distributed parameters such as permeability and porosity. 

Better predictive accuracy could be achieved through repeated and denser sampling of the 

parameter space in these specific regions, but this would significantly increase the CPU time. 

The simulation output was used to generate the proxy model for polymer injection via polynomial 

regression. One proxy model was created for each of the 26 different geological realizations. Since 

there are three models for each geological realization – the original model prior to history matching 

and the two history matched models – a total of 78 proxy models were generated. Each proxy 

model accounts for the effect of polymer concentration, time to commence polymer flooding, and 
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the location of four injection wells on NPV. The quality of the proxy model was confirmed using 

additional validation runs. If needed, further training runs were added until the coefficient of 

multiple determination 𝑅2 indicated that the proxy model had sufficiently high quality. Polynomial 

regression was also used to generate a total of 78 proxy models for water flood optimization. The 

𝑅2 values ranged from 0.91 to 0.99 across all 26 realizations. The quality of the Proxy models for 

waterflood was higher than polymer flood, this is because of less complex physics and fewer 

parameters in the experimental design as only the injection rates were considered as a variable 

parameter. The 𝑅2 values ranged from 0.99 to 1.0 across all 26 realizations. 

 
Table 5-3.  The 𝑅2 Training (Train) and Verification (Ver) values of Polynomial regression and ANN 

Neural Network for three geological realizations of the Watt Field. 

No. 

of 

Data 

TS1_FM1_CO1_PIX TS2_FM3_CO3_PIX TS3_FM2_CO3_OBJ 

Polynomial 

Regression 

ANN 

Neural 

Network 

Polynomial 

Regression 

ANN 

Neural 

Network 

Polynomial 

Regression 

ANN 

Neural 

Network 

 

Train Ver Train Ver Train Ver Train Ver Train Ver Train Ver 

100 0.93 0.91 1 0.91 0.95 0.91 1 0.91 0.99 0.92 1 0.91 

160 0.92 0.94 1 0.91 0.96 0.91 1 0.96 0.99 0.96 1 0.95 

300 0.97 0.93 1 0.92 0.96 0.92 1 0.94 0.99 0.97 1 0.96 

 

. 
 

Figure 5-4. Response surfaces for the NPV computed using polynomial regression for 16 training runs 

(left), 100 training runs (centre), and 160 trai ning runs (right). 
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Figure 5-5. Response surfaces for the NPV computed using Artificial Neural Network for 16 training runs 

(left), 100 training runs (centre), and 160 training runs (right). 

 

 
Figure 5-6. Comparison of NPV predictions for the full-physics simulations and for the proxy models for 

three different geological realizations of the Watt Field 

 

PSO was then applied to each proxy model, i.e. the total of 78 proxy models, using the commercial 

simulator CMOST, to maximise the NPV by identifying the optimal injector location, the best time 

for polymer deployment, and the optimal polymer concentration. PSO was further coupled with 

the proxy models generated for the water flood using polynomial regression. This coupling had 
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the aim to optimize the NPV of a water flood for each realization by identifying the optimal water 

injection rates for each injection well.  

To quantify the economic risks of the polymer flood, we carried out a cross comparison where the 

optimal polymer design strategy for one geological realization was deployed to all 25 other 

realizations in the same ensemble. This approach allows us to estimate the financial downside if 

the optimal well controls that have been identified for one reservoir model are deployed to another 

reservoir model. In other words, we are testing how the NPV changes if sub-optimal well controls 

are used for reservoir models which make different assumptions about the reservoir geology. In 

this process we also calculate the incremental NPV achieved during the polymer flood in 

comparison to an optimized water flood. 

 
 

5.3.2. Adjoint vs PSO-Based History Matching 
The details of the methodology used in history matching is discussed in Chapter 4 of this thesis. 

The adjoint technique yields a high-quality match because it varies the permeability values in the 

vicinity of the wells but does not necessarily ensure geological consistency. However, during the 

forecast period of 30 years after history matching, assuming a do-nothing scenario, the PSO-based 

history matched models yield a more robust forecast and wider spread of uncertainties in 

cumulative oil production. 

 

 

5.3.3. Proxy-Based vs Full Physics Optimisation 
PSO was employed to optimize NPV for the three realisations (TS1_FM1_CO1_PIX, 

TS2_FM3_CO3_OBJ and TS3_FM2_CO3_OBJ) using full physics numerical simulation and 

proxy models generated from polynomial regression by identifying optimal injection locations 

for 4 polymer injectors as well as the time to deploy polymer and optimal polymer concentration. 

The idea is to compare and contrast the optimal strategy and absolute NPV of full physics 

optimisation and the optimisation on proxy models generated by polynomial regression. Also, 

PSO was used to maximize the NPV of the water flood in these models by identifying optimal 

injection rates for all the 7 injection wells. This is to enable us to compute the incremental NPV 

due to polymer flooding.  

The result of full physics optimisation on TS1_FM1_CO1_PIX geological realisation indicates 

that the sweep efficiency and field oil recovery factor improved significantly compared to 

waterflood. TS1_FM1_CO1_PIX geological realisation predicted an absolute NPV of $12.89 

billion. The observed trend of low NPV at low and high polymer concentration is because very 

low polymer concentration is not sufficient to provide the adequate mobility control and sweep 

efficiency to recover more oil, while very high polymer concentration will lead to loss of 

injectivity and excess polymer are being wasted in the aquifer. The proxy-based optimisation 

predicted an absolute NPV of $12.85 billion. Both optimisation methods identified the same 

optimal deployment strategy as they recommended to commence polymer flooding as early as 

possible, suggested 0.3 lb/bbl as optimal polymer concentration, and identified INJ6, INJ4, B and 

INJ1 as best polymer injectors. However, their choices of injection rates were seen to vary 

slightly as the proxy-based method underestimated the injection rates in some of the wells, hence 
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the difference in absolute NPV (see Table 5.4). The full physics optimization for this realization 

TS2_FM2_CO2_PIX yielded an absolute NPV of $12.99 billion, whereas the proxy-based 

optimisation predicted an absolute NPV of $12.94 billion. They both identified similar optimal 

deployment strategy i.e optimal polymer concentration of 0. 2 lb/bbl, optimal location for 

polymer injectors are INJ6, INJ4, B and INJ1, and recommended to start polymer injection as 

early as possible. A similar trend to the TS1_FM1_CO1_PIX reservoir model where absolute 

NPV were seen to decline at very low and very high polymer concentration were identified in the 

NPV vs polymer concentration cross plot. The choices of optimal injection rates were also seen 

to vary slightly in this particular reservoir model. The full physics optimization on realization 

TS3_FM2_CO3_OBJ yielded an absolute NPV of $11.99 billion while the proxy-based 

optimization predicted an absolute NPV of $11.96 billion. Both optimization approach also 

identified similar optimal deployment strategy of polymer concentration 0.3 lb/bbl, optimal 

location of polymer injectors (INJ1, B, INJ2 and INJ4) and recommended to commence polymer 

flooding as early as possible. There were also variations in the injection rates of some wells. 

Generally, Proxy-based optimization slightly under-predicted absolute NPV compared to the 

Full-physics optimization with an error margin of 0.2 to 0.4% (see Table 5.5). Proxy-based 

optimization also identified similar optimal polymer deployment strategy except for the slight 

variation of the injection rates in a few wells, which results in the disparity observed in the 

absolute NPV (Figure 5-7). However, the cumulative injection rates for all the models were very 

close with only 1000 bbl/day difference between the Full-physics and Proxy-based optimisation. 

Injection rate is the least sensitive parameter from our sensitivity analysis, which is the reason 

why no significant error was introduced in the results of proxy-based optimisaiton using these 

three geological realizations. 

The average CPU time was 15 hours to complete a polymer flood optimisation with 500 

iterations for a single reservoir model when using a proxy model, compared to a CPU time of 

approximately 72 hours using full physics simulation and 8 CPUs simultaneously. Both 

optimizations were carried out using a standard desktop PC. 



102 
 

 

Figure 5-7. Optimization convergence of Full Physics (left) and Proxy-Based optimization(right) for three 

geological realization. 

Table 5-4 Optimal injection rates for all the 7 polymer injectors in bbl/day. 

  TS1_FM1_CO1_PIX TS2_FM2_CO3_OBJ TS3_FM2_CO3_OBJ 

Injector

s 

Full Physics 

Optimization 

Proxy-Based 

Optimization 

Full Physics 

Optimizatio

n 

Proxy-Based 

Optimization 

Full Physics 

Optimization 

Proxy-Based 

Optimization 

INJ1 18000  18000 18000 18000 18000 18000 

INJ2 10000 16000 13000 11000 17000 18000 

INJ3 18000 16000 13000 17000 16000 10000 

INJ4 17000 15000 18000 18000 14000 18000 

INJ5 18000 18000 18000 17000 18000 18000 

INJ6 18000 17000 18000 16000 18000 18000 

B 18000 18000 18000 18000 18000 18000 

Total 117000 118000 116000 115000 119000 118000 
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Table 5-5. Absolute NPV for Full Physics and Proxy-Based Polymer Flood Optimization of the three 

realizaitons of the Watt Field. 

Realizations Full Physics NPV 

($Billion) 

Proxy-Based NPV 

($Billion) 

% Error 

TS1_FM1_CO1_PIX 12.89 12.85 0.3 

TS2_FM2_CO3_OBJ 12.99 12.94 0.4 

TS3_FM2_CO3_OBJ 11.99 11.96 0.2 

 

5.3.4. Constrained vs Unconstrained Optimisation 
The result from the optimization of waterflood on the 26 selected geological realization showed a 

range of absolute NPV from $10.1 billion to $13 billion with an average of  $11.8 billion for 

unconstrained, ensemble while the absolute NPV of the Adjoint ensemble ranged from $11.2 

billion to $12.6 billion with an average of $11.9 billion and the PSO ensemble yielded and absolute 

NPV ranging from $10.4 billion to $13.1 billion with an average of $12.3 billion (Figure 5-8). 

PSO ensemble predicted more NPV in most of the individual realization than the unconstrained 

and Adjoint ensemble because of the increase in oil in place during the matching process. The 

wide range in NPV can be attributed to the stochastic nature of PSO to search the parameter space 

more broadly which created high diversity of models in the ensemble. 

 

 
Figure 5-8. Absolute NPV for waterflood optimisation for Unconstrained, Adjoint and PSO 

ensemble 

 

The results for the polymer injection simulations indicate that sweep efficiency and field oil 

recovery factor in the Watt Field could be improved significantly compared to waterflood (Figure 
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5-9). The optimal strategies for the constrained and unconstrained optimisation are presented in 

Figure 5-10. The unconstrained polymer flood optimisation yielded an incremental NPV for the 26 

geological ranging from $300M to $1 Billion compared to an optimised water flood (Figure 5-11). 

There is considerable variability in the optimal injection strategy, with polymer concentration 

ranging from 0.2 to 0.3 lb/bbl and the best wells to inject polymers being identified as INJ2, INJ3, 

INJ6 and INJB. However, all simulation results suggested that it is reasonable to commence 

polymer flood as soon as possible after a water flood. To further understand how individual 

geological uncertainties and modelling decisions (i.e. top structure, fault model, cut-offs and 

modelling methods) impact polymer flooding, we compared the results of individual geological 

realisations. The optimal strategy suggested by each of the 26 realisations were analysed and then 

we counted the frequency of each optimal parameter across all the 26 realisations in each ensemble 

(Figure 5-10). This comparison showed that top structure, fault models and geological modelling 

approach changed neither the incremental NPV nor the optimal strategy for the polymer flooding 

significantly. These uncertainties can hence be regarded as low risk for this field. On the other 

hand, the uncertainties when interpreting petrophysical data to indicate shale cut-offs had a 

significant impact in the optimal strategy on polymer flooding, impacting the estimated 

incremental NPV by approximately $340M.  

 

 
 
Figure 5-9. 3D view and cross section of the Watt Field model showing oil saturation as well as injection 

and production wells after 40 years of waterflood (left) and polymer flood (right). 
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Figure 5-10. Optimal polymer concentrations (left) and location of injector wells (centre) for the 

unconstrained optimization (blue) and for optimization after history matching using the adjoint method 

(green) and stochastic history matching (yellow), and the range in NPV based on different geological 

uncertainties (right). TS refers to the Top Structure of the individual models, FM to the Fault Models, CO 

to the Cut Off value for the net-to-gross ratio, and MM to the Modelling Methods. 

 
Figure 5-11. Incremental NPV for the the unconstrained optimization (Base Case) and for the 

optimization after history matching using the adjoint method and stochastic history matching. 
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To further analyse the impact of shale cut-offs, we grouped the 26 realisations according to the 

cut-off values (0.5, 0.6, 0.7). All geological realisations with the same shale cut-offs identified the 

same locations for the polymer injection wells. However, the incremental cumulative oil recovery 

was observed to drop on average as the shale cut-offs increased. This suggests that within the same 

shale cut-off value, the optimal polymer flooding strategy does not change much, and risk is 

reduced, while varying the shale cut-off changes the optimal polymer injection strategy 

significantly and thereby increases associated financial risk. It is worth to point out that the 

selection of shale-cut off is an uncertainty that is largely dependent on data interpretation and 

modelling decisions (Ringrose and Bentley 2015). 

 

The polymer injection designs from the constrained (adjoint technique) optimization yielded an 

incremental NPV ranging from $340M to $1 Billion compared to the optimized water flood across 

all 26 realizations (Figure 5-11). These results also suggested to commence polymer flooding as 

early as possible. NPV showed the same trend for the optimal injection strategy and the same 

impact of geological uncertainties as in the unconstrained optimization. This similarity arose 

because the adjoint technique changed the reservoir properties only locally, if at all, during history 

matching. However, incremental NPV predictions were seen to narrow compared to the 

unconstrained optimization case (Figure 5-11) because the geological uncertainties associated with 

polymer flooding were not adequately propagated. The polymer injection designs from the 

constrained ensemble using a stochastic history matching technique are based on reservoir models 

that have significant variations in the reservoir properties. Hence major changes in the optimal 

polymer deployment strategy were observed compared to the other two optimization scenarios. 

The optimal polymer concentration ranged from 0.1 to 0.4 lb/bbl while injectors INJ1, INJ2, INJ3, 

and INJ4 were identified as the best wells to inject polymer. 25 geological realization suggested 

to commence polymer flood as early as possible whereas one realization recommended to 

commence polymer flood after 3 years. The incremental NPV ranges from $305 Million to $1.5 

Billion. It was observed that the average cumulative NPV in stochastic ensemble was higher, but 

also had a higher risk, compared to the two other optimization scenarios (Figure 5-12). This 

difference is due to the ability of the stochastic algorithm to explore the parameter space more 

broadly, which created reservoir models where the initial oil in place increased.  

The constrained optimization based on stochastic history matched models also showed a higher 

incremental NPV with a higher variance. As in the case for the higher overall NPV, this difference 

is due to the significant modification of the reservoir properties during the history matching 

process. For example, oil production increases more rapidly at early time but then water cut 

problems develop (Figure 5-12). These changes in reservoir properties after history matching 

amplify the apparent benefit of polymer flooding compared to the water flood. For example, the 

increase in vertical permeability during the history matching causes water to move more quickly 

from the aquifer which in turn increases the water cut and enhances the perceived benefit of the 

polymer flood. In contrast, a decrease in fault transmissibility during the history matching rendered 

the polymer flood less beneficial as much polymer is lost in the aquifer. Overall, the constrained 

optimization based on stochastically history matched models predicted the lowest average 

incremental cumulative oil production but yielded the highest incremental and cumulative NPV 

compared to the two other optimization scenarios (Figure 5-13).  
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Figure 5-12. Absolute NPV for the the unconstrained optimization (Base Case) and for the optimization 

after history matching using the adjoint method and stochastic history matching. 

 

 
 

Figure 5-13. Cumulative oil production forecast for the unconstrained optimization (left) and for the 

optimization after history matching using the adjoint method (centre) and PSO-based history matching 

(right). 
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Figure 5-14. Incremental oil recovery for the unconstrained optimization (left) and for the optimization 

after history matching using the adjoint method (centre) and stochastic history matching (right). The 

different colours correspond to different top structures in the reservoir model. 

 

 

 

5.3.5.  Uncertainty Quantification 
 

5.3.5.1 Cross Comparison 
Figure 5-15 shows the result for three different realizations (REAL1, REAL13, and REAL26) from 

the three different reservoir model ensembles (Unconstrained, Adjoint, and PSO), i.e. for 9 

different realizations. In the following, we refer to the “right” strategy as the optimal strategy that 

was identified for a particular reservoir model from a particular ensemble (e.g. the optimal polymer 

injection strategy for REAL1 from the Unconstrained ensemble). We refer to the “wrong” strategy 

if the optimal polymer injection strategy for a particular reservoir model from a particular ensemble 

is applied to all other 25 reservoir models from the same ensemble. In other words, we apply a 

cross-comparison to analyse how NPV changes if we apply an injection strategy that was 

optimised for a particular ensemble member is applied to all other ensemble members, each 

corresponding to its own geological interpretation and with its own optimal injection strategy. This 

comparison helps us to quantify the risks of applying a “sub-optimal” injection strategy to a 

reservoir because the corresponding reservoir model does not represent the real subsurface geology 

adequately.  
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Although the NPV decreases if the “wrong” polymer flood design is deployed, the NPV after the 

polymer flood is still higher than the NPV for the optimized waterflood. This observation implies 

that the polymer flood appears to be a low-risk choice and likely more beneficial than an optimized 

waterflood even if the well controls have been optimized using a reservoir model that makes 

incorrect assumption of the reservoir geology. For the unconstrained model, the variance of the 

decline in NPV ranged from $100 million to 600 million. In contrast, for the constrained models, 

the variance of the decline in NPV ranged from $145 million to $496 million for the ensemble 

constrained using adjoint technique and ranged from $100 million to $600 million for the ensemble 

of geological model constrained using stochastic method. 

 

 
Figure 5-15. Cross-comparison of the optimal NPV for three different geological realizations (top to 

bottom) considering unconstrained and two constrained optimization techniques (left to right columns). 

During this cross-comparison, the optimal polymer flood design for one realization is deployed to all 

other 25 geological realizations to estimate the risk of using an incorrectly optimized polymer flood for a 

given reservoir geology by comparing the NPV for and optimized water flood (blue), NPV for the “right” 

optimal strategy (red) and NPV for the “wrong” optimal strategy for each realisations (light blue).   
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5.3.5.2 Uncertainty Forecasting 
The result from the uncertainty analysis of the average distribution of the absolute NPV 

conducted for both waterflood and polymer flooding are presented in form of a posterior 

probability distribution (PPD) i.e. P10, P50, and P90 is represented with a boxplot shown in 

Figure 5-16. For the waterflood boxplot, the truth case was observed to be above the P10 – P50 

credible interval for the Base (Unconstrained) ensemble, whereas the adjoint ensemble 

encapsulated the truth very slightly and the PSO ensemble confidently encapsulated the truth at 

P50 line. This is also in agreement with our discussion in the previous chapter about the ability 

of PSO to explore the parameter space more broadly and created a diverse set of models which 

samples the uncertainty space adequately. On the other hand, for the polymer flooding boxplot, 

the credible interval of the base and the adjoint ensemble could not encapsulate the truth case 

whereas the PSO ensemble encapsulated the truth case. Although PSO ensemble predicted the 

truth, the level of confidence was seen to drop from 50% probability in waterflood to a 

probability of 12% (Figure 5-16). A key take away from the results of this analysis is that the 

ensemble of history matched models that predicted the uncertainties in a waterflood correctly 

may not be able to correctly predict the uncertainties in the performance of an EOR such as 

polymer flooding especially if the history matching process is deterministic. This is in alliance 

with the aforementioned Flora’s rule, which states that if an EOR process alters the fluid-rock 

interactions and mobility ratios, it is not guaranteed that key geological uncertainties are properly 

captured in a reservoir model that was previously history matched for a different recovery 

mechanism. To improve the predictability of  an ensemble of reservoir models especially in EOR 

projects, diversity should be prioritised over match quality during history matching process, as 

we have shown that PSO ensemble with a lower match quality and high diversity delivered a 

more reliable uncertainty prediction for a polymer EOR. 
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Figure 5-16. Boxplots of average absolute NPV uncertainties forecast for waterflood (left) and polymer 

flood (right). 

 
 

 
Figure 5-17. Cumulative Probability distribution of average absolute NPV uncertainties forecast for 

waterflood (left) and polymer flood (right). 
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  Discussions 
Although polymer flooding is a promising EOR technique, it is also capital-intensive and will 

therefore require adequate screening and risk assessment. Accounting for these geological 

uncertainties during reservoir modelling is important but making sure they are preserved during 

history matching and uncertainty quantification stages is even more important. It is well 

understood that geological uncertainties pertinent to the reservoir can be reduced during history 

matching where the uncertain parameters are adjusted to match the observed production data. 

However, different fluid fills in the reservoir interact differently with the same reservoir geology 

(Ringrose and Bentley 2015).  It is therefore not guaranteed that key geological uncertainties are 

adequately propagated when forecasting future performance of a chosen EOR process if this EOR 

process changes the fluid rock-interaction and mobility ratios; hence EOR performance forecasts, 

such as the one discussed in this paper, may become unreliable. To test this hypothesis, we used 

the ensembles of history matched reservoir models created in chapter 4, i.e. the Adjoint technique 

and PSO. The type of history matching determined the size of the ensemble, the diversity across 

the ensemble members, the convergence speed, and the quality of the history match.  

Reservoir simulation and optimization of polymer flooding in a heterogenous reservoir is complex 

and computationally expensive. By applying a proxy-based approach to approximate full physics 

numerical simulation with a lesser number of training and validation runs that cover the parameter 

space and account for key uncertainties, we can significantly lower the computational effort. These 

proxy models can assist in understanding, the relationships and interdependencies of uncertain 

input parameters and accelerate the simulation and optimization of polymer flooding under 

geological uncertainties. Even though proxy models are considerably quicker to run compared to 

full physics simulations, it is crucial that such an approximation should be used with care. The 

accuracy of the proxy model must be properly assessed in order to provide a high predictive 

capability, using the appropriate goodness-of-fit measures such as the coefficient of determination 

𝑅2. Although the accuracy of a proxy model increases with an increase in the  training data, a point 

is often reached where adding more data will not yield any noticeable increase in the accuracy of 

the proxy model and only increases the computational cost. An initial sensitivity analysis to 

determine the first-order parameters needed to construct a reliable and efficient proxy model were 

carried out. For this particular application, the results from the sensitivity analysis suggested that 

160 training datasets were sufficient to approximate the polymer flooding in the Watt Field with 

good accuracy, i.e. high 𝑅2 value. Small discrepancies between the proxy model and full physics 

simulations are likely due to the presence of complex geological structures (e.g. the faulted nature 

of the Watt Field) and distinct changes in the resulting parameter distribution.  

This chapter therefore provides a complex, semi-synthetic, yet realistic case study that highlights 

the benefits of applying response surfaces, generated with polynomial regression, for the 

optimization of polymer floods, carried out with a PSO algorithm, in complex and heterogenous 

reservoirs under geological uncertainty. Using three different model ensembles for the Watt Field 

(i.e., unconstrained, Adjoint and PSO), this chapter showed that the NPV, sweep efficiency and 

oil recovery in this field were significantly improved by polymer flooding compared to waterflood 

due to improvement in mobility ratio leading to a more stable displacement. However, the optimal 
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injection strategy and range in NPV prediction were seen to vary from one ensemble to another. 

The result of cross comparison where optimal polymer injection strategy for one geological 

realization is applied to all other realizations in the same ensemble showed a slight decline in NPV 

but was still higher than the NPV for optimized waterflood for those realizations. The result from 

cross comparison indicates that the risk of polymer flooding may be low in this field and that 

polymer flooding may be more beneficial even though the reservoir model used to carry out the 

optimization makes an incorrect assumption of reservoir geology. Further uncertainty estimation 

using MCMC with PAR showed that the unconstrained ensemble did not encapsulate the NPV of 

the truth case both for polymer flooding and water flooding, hence the importance of history 

matching in reducing the risk. Adjoint ensemble encapsulated the NPV of the truth case for water 

flooding at P10 but did not capture the NPV of the truth case for the polymer flooding within its 

credible interval (i.e. between P10 – P90). Missing out the NPV of the truth case, implies that the 

use of multiple realization may mitigate the limitation of the Adjoint technique in terms of poor 

uncertainty estimation during water flooding as also seen in chapter 4, but may not adequately 

capture the uncertainties associated to change in fluid-rock interaction due to change in recovery 

mechanism such as polymer flooding. On the other hand, the PSO ensemble was seen to 

encapsulate the truth case for both recovery processes, although the confidence level dropped from 

50% for water flooding to 12% for polymer flooding. PSO ensemble being able to encapsulate the 

truth case can be attributed to its high diversity. These observations are therefore in alliance with 

the aforementioned Flora’s rule and become more obvious if the history matching process is 

deterministic. For a more reliable forecasting, we therefore recommend a stochastic approach such 

as the PSO method, possibly coupled to a multi-objective algorithm such that the history matching 

error can be minimized and the diversity across the matched models can be maximized 

simultaneously (Hutahaean et al. 2015). 

 Summary 
In this chapter we demonstrated how a wide range of geological uncertainties inherent to a 

heterogeneous clastic reservoir and different possible engineering controls could impact the 

efficiency of a polymer flood. We compared the unconstrained (i.e. without history matching) and 

constrained (i.e. with prior history matching) optimisation of a polymer flood in a heterogeneous 

reservoir using adjoint techniques and PSO-based stochastic algorithms to history match the 

reservoir models prior to optimization. The optimized polymer flood could yield an additional 

NPV ranging from $300 million to $1.5 billion compared to an optimized water flood. This 

variability in incremental NPV is due to the geological uncertainty of the reservoir. Importantly, 

shale cut-offs, which are an uncertainty related to data interpretation, are a key property that affects 

the optimization a polymer flood. Other geological uncertainties such as formation thickness or 

fault location have significantly less impact.  

 

We observed that the optimal polymer deployment varied as a function of the different history 

matching techniques. Constrained optimization based on stochastic history matching yielded a 

higher NPV with a larger variance compared to unconstrained optimization or constrained 

optimization that employs an adjoint technique for history matching. This difference arises because 

the stochastic algorithm explores a much broader parameter space and creates scenarios where 

porosity in the oil-bearing regions of the reservoir is increased, which leads to an increase in the 
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oil in place. Results from cross comparison where optimal polymer strategy for one geological 

realisation was applied to all other realizations showed that the polymer flood is low risk and likely 

more beneficial than a water flood, even if the polymer deployment was optimized based on 

incorrect assumptions concerning the reservoir geology. The result from uncertainty analysis using 

MCMC with PAR validates our hypothesis (Flora’s rule), as the confidence in predicting the 

uncertainty in NPV declined moving from water flooding to polymer flooding. 
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Chapter 6. Summary, Conclusions and Future 

Work 

 Summary and Conclusion 
It is a well-established fact that polymer flooding can improve the sweep efficiency of an oil 

reservoir thereby increasing the recovery factor. However, polymer flooding is not widespread 

due to economic reasons and therefore requires adequate screening and risk evaluation. There are 

significant uncertainties associated with reservoir characterization, reservoir modelling and 

history matching. Uncertainties also exist when modelling polymer in porous media such as 

polymer degradation, adsorption, and inaccessible pore volume. These uncertainties 

consequently reduce the predictability of reservoir simulation models to study field-scale 

polymer injection and therefore using reservoir simulation to design and optimize field-scale 

polymer flooding remains challenging. 

This thesis has succeeded in testing, applying, and expanding a workflow that integrates 

geological and interpretational uncertainties and uncertainties associated with the choice of 

history matching algorithms to robustly estimate the financial upside and downside of polymer 

flooding. This thesis contributes to the research of methods for history matching, uncertainty 

quantification in reliable forecasting and polymer flooding optimization, and further provided 

validation of Flora’s rule which is the central hypothesis. 

The thesis was organized in the following manner: Chapter 1 reviewed the current world energy 

market interactions including the transition to clean energy, and how these new conditions 

influence investment decisions by oil companies for EOR projects, specifically polymer EOR. 

Chapter 2 outlined the current understanding and outstanding challenges related to polymer 

flooding with specific emphasis on how polymer flooding can be optimized in the presence of 

geological uncertainties. This chapter further presented a review of history matching, 

optimization, and uncertainty quantification techniques. Chapter 3 described a case study which 

integrated both geological and interpretational uncertainties that are difficult to parameterize 

during history matching i.e. the Watt Field, and further presented the methodology adopted for 

this study. 

Chapter 4 investigated how two classical history matching techniques i.e. the Adjoint technique 

and PSO impact the estimation of uncertainties when predicting future recovery in a 

heterogenous clastic reservoir. The results of the comparison of these two history matching 

techniques show that an ensemble of reservoir models that were history matched using PSO is 

more robust and diverse compared to an ensemble of reservoir models that was history matched 

using the Adjoint technique. The reason for this difference is due to the explorative nature of 

PSO, whereas the Adjoint technique was more exploitative, leading to better convergence rates 

and improved match quality. Although the model ensemble generated with PSO yielded better 

forecasts in cumulative oil production because a larger number of reservoir models contain 

geological concepts that are close to that of the truth model, the forecasting accuracy of the 

ensemble generated with the Adjoint technique  was improved because a larger number of 
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reservoir models that span a wider range of geological uncertainties was considered, rather than 

just a single base case with an upside and downside. Therefore, both history matching technique 

predicted that a range of approximately 1 MMbbl in cumulative oil production after 30 years of 

production. The Adjoint ensemble matched models were very similar to the truth case in terms of 

average horizontal and vertical permeability, average porosity and average transmissibilities. 

High variations is observed with the history matched ensemble matched with PSO. More so, 

average STOIP across the Adjoint ensemble was the same as the truth case, whereas the average 

ensemble for the PSO ensemble were seen to increase by 0.9 %. From Figure 4-11 which shows 

the prior and history matched models show that the facies models were preserved as such 

applying a second misfit that conditions on the geostatistics may not yield a different result. 

Chapter 5 compared the performance of proxy-model based and full-physics optimization of the 

NPV for a polymer flood, using three different geological realizations of the Watt Field. Latin 

Hypercube Sampling was used to create 160 training runs to build a polynomial regression proxy 

model. The proxy models were iteratively validated and improved with extra training data until 

the quality of the proxy model was sufficiently high. The proxy models were then coupled with a 

PSO algorithm in CMOST to maximise the NPV, comparing the performance of an optimised 

polymer flood to the base-case of an optimised water flood. Full physics PSO optimization was 

also conducted using the same three geological realizations. Both optimization approach yielded 

similar NPV and optimal strategies for the three realizations with only slight differences in the 

optimal injection rates. Chapter 5 further examines how different history matching techniques 

impact the outcome of the optimization of the polymer flood. Proxy-model based optimsation 

was used to maximise NPV in the three ensembles of reservoir models (Unconstrained ensemble, 

PSO ensemble and Adjoint ensemble). The results from this analysis show that the optimal 

polymer deployment strategy varied as a function of different history matching techniques. The 

ensemble that was history matched using PSO yielded a higher NPV and a larger range of NPV 

values due to the PSO’s ability to explore a much broader parameter space. Specifically, the 

ensemble generated using PSO contained scenarios where the porosity in the oil bearing region 

in the reservoir was increased, leading to an increase in oil in place. Results from cross 

comparison where the optimal strategy for one realization was applied to all other realizations 

showed that, in general, polymer flooding has a low risk and may be more beneficial than water 

flooding even if polymer flooding was not fully optimized for a given reservoir geology. Finally, 

uncertainty estimates for the NPV were calculated for the polymer flood and water flood using 

the MCMC with PAR framework in CMOST. It was found that the model that was history 

matched using PSO yielded a more reliable forecast that included the actual truth case while the 

ensemble generated with the Adjoint technique could only provide reliable forecasts for the 

water flood which included the truth case. This observation can be explained by Flora’s rule 

because a change in recovery mechanism causes the fluids to interact differently with the same 

reservoir geology, which impacts the way how the uncertainty in NPV is estimated and 

forecasted. 

In conclusion, based on our analysis, the best strategy for this field will be to commence polymer 

flooding as early as possible, with the optimal polymer strategy suggested by PSO ensemble due 

to its reliability of forecast. In general, polynomial proxy approximation has proven to be a good 
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choice in modelling polymer flooding in heterogenous and complex clastic reservoir as this study 

shows similar results between proxy optimisation and full physics optimisation. Therefore, there 

may not be any need for full physics optimisations. Finally, the result of the cross comparison 

where the optimal strategy for one realization was applied to all other realizations showed that, 

even if we do not have the complete understanding of the geology, as long as we optimize a 

polymer flood, it may still be more beneficial compared to a water flood. 

 Future Work 
This thesis focuses on the analysis and optimization of polymer flooding to improve oil recovery 

in heterogenous clastic reservoir, specifically how the history matching of a water flood impacts 

the ability to forecast the range of NPV during a polymer flood where the reservoir fluids interact 

differently with the same reservoir geology compared to the original water flood. There are 

aspects related to this work presented in this thesis that could be improved, including but not 

limited to the following: 

• The history matching process only considered two different techniques.  It would be 

interesting to see how other history matching approaches such EnKF or Bayesian 

methods change the result in this thesis, in terms of history matching quality, 

optimization, and uncertainty quantifications.  

• The thesis only considered the optimization of a single objective. Often there are different 

competing objectives that influence that influence the optimization process, and it 

therefore would be interesting to apply multi-objective history matching and optimization 

to increase the diversity of the history matched models and analyse if a more robust 

estimation of uncertainty can be obtained.  

• In this thesis, only 26 of the 81 geological realizations of the Watt Field model were used, 

and only one proxy model was built for each realization to keep calculations manageable. 

It would be interesting to analyse how the results will change if all 81 realizations are 

used and a single proxy model is built for all the realizations.  

• Polynomial regression was applied to create the proxy models. It would be interesting to 

investigate how other approaches to create proxy models such as Polynomial Chaos 

Expansion, Radial Basis Functions, or machine learning techniques impact the 

optimization and uncertainty estimates, and also computational efficiency. 

• In this thesis, the viscosity contrast between the oil and formation brine was relatively 

small. A larger viscosity and mobility contrast could accentuate the differences between 

the water flood and polymer flood even more and could be investigated. 

• A compare-and-contrast study where other EOR techniques that impact fluid-structure 

interactions compared to a water flood, such as water-alternating-gas injection, are 

affected by constrained and unconstrained optimization. 

• To complete the study within a reasonable time, we stopped the simulations after 40 

years, while the  absolute NPV was still increasing with time. It will be interesting to see 

how the result of this study will change if the simulations run time were extended to the 

period where the absolute NPV start decreasing with time. 



118 
 

• We constructed a total of 78 realisations i.e. 26 realisations per ensemble for a total of 

three ensembles. To simplify things even more, a study where only a total of three proxy 

models is constructed (one per ensemble) can be built and compared to the result of this 

study. 

• The truth case model that we used to generate the production data from a prolonged 

waterflood was model based and it will be interesting to further investigate a scenario 

where the truth case model does not have similar input with other geological realisations. 

• We did not attempt to ensure geological consistency during history matching. It will be 

interesting to see how our result may change if regularisation is applied to ensure 

geological consistency of the history matched reservoir models.  
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