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Variable-stiffness composites optimisation under multiple design
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ABSTRACT

Keywords:
Variable-stiffness composite

The aim of this paper is twofold. On the one hand, it presents a methodology for the deterministic optimisation
of a general class of variable-stiffness compasite (VSC) structures, including a solution obtained by using
lamina with a curvilinear fibres-path and variable-thickness, by considering different design requirements
under multiple load cases, The considered framework is the multi-level design methodology based on the

Multi-level optimisation
Polar method

B-spline y . R . .
BL:ZI::g polar parameters (PPs) to describe the macroscopic behaviour of the VSC structure. Particularly, only the
Strength first-level problem is addressed in this work: the design variables are, thus, the PPs and the thickness of

the VSC laminate, whose spatial distribution is described via basis spline (B-spline) surfaces. The goal is to
minimise the mass of the VSC structure subject to design requirements on feasibility, strength, first buckling
load and maximum curvature of the fibres-path. This latter is formulated as an equivalent (conservative)
constraint in the PPs space, regardless of the fibres-path within each lamina. Moreover, a general formulation
of the gradient of the requirements related to buckling load and strength is proposed, which takes advantage
from the main properties of B-spline entitics and PPs. On the other hand, this paper aims to propose a new
benchmark problem that is representative of a panel belonging to the fuselage of a standard civil aircraft
subjected to multiple loading conditions. To this end, a wide campaign of numerical tests has been performed
by considering a sensitivity analysis of the optimised solution to: (a) the integer parameters involved in the
definition of the B-spline entities describing the distribution of the PPs and, possibly, of the thickness, (b)
the type of VSC structure, (c) the type of deterministic optimisation algorithm. The results can be used as a
database to assess the effectiveness of different design strategies against the optimised solutions presented in
this paper.

Manufacturing constraints

1. Introduction composite laminates having different thickness. Of course, a hybrid

(more general) solution exploiting the main features of the two above

Modern manufacturing processes, like fused filament fabrication
(FFF) technology combined with continuous filament fabrication (CFF)
one [1-4], or automated fibre placement (AFP) [5-9] and continu-
ous tow shearing (CTS) [10] technologies, allow fabricating variable-
stiffness composite laminates (VSCLs) with uniform thickness wherein
the filament (in the case of the FFF+CFF process) or the tow (in the
case of the AFP and CTS technologies) is steered along a curvilinear
(possibly optimised) path within each lamina. This class of VSCLs is

classes can be obtained by using variable-angle tow laminates within
composite structures made of patches of different thickness by consid-
ering tows/filaments and plies drops among adjacent laminates. This
type of VSCLs can be obtained, for instance, by using recent additive
manufacturing processes for composite materials, like the FFF+CFF
technology.

Nevertheless, the potential behind additive manufacturing processes

often referred to as variable-angle tow laminates.

An alternative way of obtaining VSCLs consists of using a straight-
fibres format within each ply and by varying the thickness (i.e., the
number of layers) of each “laminate-patch” composing the structure.
However, this operation cannot be performed without considering the
so-called blending (or ply drop) requirement [11-13]. This requirement
deals with the continuity of ply orientation angles between adjacent
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for composite materials is, today, still not fully exploited. By properly
tuning the process parameters one can imagine to fabricate a more gen-
eral class of composite structures, wherein the filaments can be steered
along a curvilinear path inside layers of variable thickness. Possibly,
the fibres volume fraction of each layer can be kept (almost) constant
by varying the density of the filaments according to the thickness




variation. This type of VSCLs will be referred to as variable-thickness
VSCLs in the following of the paper.

This work will focus, thus, on this general class of VSCLs, which
are characterised by a continuous variation of the fibres-path and
of the thickness of each lamina without considering a discontinuous
ply drop between the regions characterised by different thickness.
Therefore, the development of an efficient, robust and reliable design
methodology accounting for different design requirements related to
variable-thickness VSCLs is of paramount importance. Of course, the
design of variable-thickness VSCLs, as the one of classical VSCLs, is an
intrinsically multi-scale problem that can be dealt with through two
different approaches [14,15].

The first one is commonly referred to as direct approach and consists
in taking, as design variables, the parameters describing the fibres-path
within each lamina [16-38]. Without any ambition of exhaustiveness,
one can cite the work by Giirdal and Olmedo [18] wherein a linear
function is used to describe the local fibre orientation angle: this
parametrisation was later used by Alhajahmad et al. [19] to maximise
the failure load of a VSCL with a cut-out made of a 16-ply symmetric
balanced stacking sequence with only two independent local orienta-
tion angles of the type [+6,, +0,],¢ (the optimisation was performed
through a metaheuristic algorithm). Huang and Hatfka [20] made use
of piece-wise bi-linear interpolation to describe the fibres-path within
each ply with the aim of maximising the failure load of a plate with a
cut-out subjected to a uni-axial tensile load, whilst Nagendra et al. [21]
and Cao et al. [23] employed non-uniform rational basis spline curves
to describe the fibres-path of the lamina. Recently, an interesting
approach has been proposed by Tian et al. [22] wherein the fibres-
path of the generic ply is described via a divergence-free vector field
locally tangent to the fibres direction. More recent approaches make
use of multi-fidelity surrogate models (i.e. surrogate models obtained
by combining the results of low-fidelity and high-fidelity numerical
models of the variable stiffness composite structure) to try to speed up
the optimisation process [39-45].

Regardless of the adopted modelling strategy, the main limitations
of the direct approach are essentially four: (i) the number of design
variables is proportional to the number of layers, thus, it becomes
considerably high for thick VSCLs; (ii) the number of layers cannot
be included within the vector of design variables in the framework
of a deterministic optimisation process because it is not a continuous
variable; (iii) the structural responses depend upon combinations of
trigonometric functions (up to the power four) of the local fibres
orientation, thus, the related optimisation problem is a non-convex
multi-modal problem (i.e., a problem characterised by a huge number
of equivalent local minima); (iv) to find a solution in a reasonable
time, researchers systematically introduce simplifying assumptions on
the nature of the stacking sequence, e.g., the use of symmetric stacks
to ensure a zero membrane/bending coupling stiffness matrix or the
use of balanced stacks to get an orthotropic membrane stiffness matrix
(although the bending one remains anisotropic).

The second approach, which has been introduced to overcome the
limitations of the direct approach, is often referred to as multi-level ap-
proach. In the framework of the multi-level approach, the design prob-
lem of a VSCL is articulated in two (or more) sub-problems focusing on
different scales. In the first-level problem (FLP), which is formulated
at the macroscopic scale, the VSCL is represented as an equivalent
homogeneous anisotropic single-layer plate whose behaviour is usually
described either in the lamination parameters (LPs) space [15,46-52]
or in the polar parameters (PPs) space [53-58]. It is noteworthy that
the representation of the anisotropy based on the PPs is characterised
by, at least, two advantages when compared to the representation based
on LPs [53-55]. Firstly, the polar formalism has been generalised to the
case of higher-order theories [59-61], thus it can be applied to the de-
sign of moderately thick to thick VSCLs. Secondly, it allows expressing a
general n-rank plane tensor by means of a set of invariants related to its
elastic symmetries, thus optimising the PPs fields allows to determine,

locally, the best elastic symmetry type and its best orientation. Finally,
it is noteworthy that, thanks to the polar formalism and to the original
problem formulation (and the related numerical strategies) presented
in [57,58], it has been possible to obtain optimised configurations
outperforming those resulting from the use of the representation based
on LPs on the same benchmark structures [46,47]). Therefore, the
representation of the anisotropy based on the PPs will be employed
also in this paper. By extending the approach presented in [55] to the
most general case of a variable-thickness VSCL, the design variables of
the FLP are the parameters tuning the field functions used to describe
the distribution of the PPs and the thickness over the structure. It
is noteworthy that the manufacturing constraints must be translated
into equivalent (possibly conservative) constraints in terms of PPs and
overall thickness of the structure.

Once a proper formulation of all mechanical and technological de-
sign requirements in the PPs space has been derived and (at least) one
solution has been found for the FLP, it is possible to consider the second
step of the multi-level procedure that focuses on the mesoscopic scale:
the stacking sequence recovery phase, also called second-level problem
(SLP). Particularly, the goal of this phase, is the determination of, at
least, one optimum stack matching, locally, the optimised distribution
of the PPs and of the thickness resulting from the resolution of the FLP.
Generally, the recovery of a suitable stacking sequence is formulated as
an unconstrained optimisation problem wherein the design variables
are the parameters describing the fibres-path within each lamina. A
further advantage of the approach based on PPs is that the stack
recovery phase can be formulated in a very general way, i.e., without
introducing hypotheses neither on the nature of the stacking sequence
nor on the shape of the fibres-path [53,54,56].

Either the representation based on LPs or the one based on the
PPs have been extensively used to deal with the optimisation of VS-
CLs including design requirements on stiffness [14,15,55], buckling
load [46,48,57] and failure load [47,58]. The works dealing with the
minimisation of the compliance of VSCLs are, undoubtedly, the most
frequent ones available in the literature [14,15,55].

Regarding the design requirement related to the first buckling load,
one can cite the works by Ijsselmuiden et al. [48] dealing with the
maximisation of the first buckling load of a VSCL by considering
a conservative approximation method wherein the buckling load is
expressed as a linear combination of the in-plane and bending stiffness
matrix terms in the space of the LPs. Wu et al. [46] made use of a
deterministic algorithm to maximise the first buckling load of a VSCL
subject to feasibility constraints on the LPs, whose distribution over
the structure is represented through basis spline (B-spline) surfaces.
Recently, Fiordilino et al. [57] proposed an alternative formulation of
the problem of maximising the first buckling load of a VSCL subject
to feasibility constraint on PPs (whose distribution over the structure
is represented via B-spline entities), without introducing simplifying
hypotheses on the behaviour of the stack: the results obtained by for-
mulating the problem in the PPs space outperform those found by Wu
et al. [46] and provide a clear evidence about the advantages related
to the use of PPs in the framework of multi-level design strategies for
VSCLs.

As far as the requirement on the failure load is concerned, it is
noteworthy to mention the work by Ijsselmuiden et al. [49] wherein a
conservative failure envelope in the LPs space is proposed. Such formu-
lation has been subsequently employed by Khani et al. [47] to maximise
the failure load of a VSCL square plate with a circular hole with-
standing tensile loads subject to feasibility constraint on the LPs. An
alternative formulation has been recently presented by Izzi et al. [58]
wherein the problem of maximising the failure load of the VSCL has
been formulated in the PPs space by using the unified formulation
of different laminate-level failure criteria proposed by Catapano and
Montemurro [62]. Thanks to an efficient change of variables remapping
the feasibility constraints on the PPs over the unit square and to an
efficient numerical framework exploiting the properties of B-spline



entities (used to represent the variation of the PPs over the structure),
it has been possible to find optimised configuration characterised by
failure load considerably higher than those characterising the optimised
solutions presented by Khani et al. [47].

In the light of the above (non-exhaustive) literature survey, one can
infer that most of the research works available in the literature focuses
on the optimisation of VSCLs without considering variable thickness
solutions and by including only one design requirement of mechanical
nature (among stiffness, failure load and first buckling load) in the
problem formulation as objective/constraint function. Moreover, in
most of the considered research studies, only single loading conditions
are considered. To go beyond these limitations, the aim of the present
work is twofold. Firstly, since this work is focused only on the FLP
of the multi-scale two-level optimisation strategy (MS2LOS) for VSCLs
based on PPs and B-spline entities [55], which must be solved via
a deterministic algorithm, a general problem formulation including
design requirements related to mass, to first buckling load, to failure
load, to feasibility conditions and to manufacturing constraint on the
maximum admissible curvature of the filament/tow (reformulated in
the PPs space) of variable-thickness VSCLs is presented. In this con-
text, the first original contribution of this paper is represented by a
formulation of the gradient of the buckling load more general than
that presented by Fiordilino et al. [57], which can be used for general
shell elements of whatever shape. Regarding the formulation of the
failure load requirement and of the manufacturing constraint (and of
the related gradient expressions), the general formulation presented by
Izzi et al. [58] is employed in this work.

Secondly, this work aims to propose a benchmark problem, rep-
resentative of a fuselage panel with a porthole withstanding multiple
loading conditions, whose results can be exploited by other researchers
in the field of composite structures to check/validate the accuracy of al-
ternative optimisation strategies (belonging to the family of multi-level
approaches) to design VSCLs or to propose better design methodologies.
To the best of the authors’ knowledge, a general benchmark problem
for VSCLs considering multiple loading conditions and including con-
flicting design requirements, such as those mentioned above, in the
problem formulation has never been proposed in the literature, In order
to provide an exhaustive analysis of the proposed benchmark problem,
an extensive campaign of numerical analyses has been performed on
this benchmark structure by considering different classes of VSCLs
(with both uniform and variable thickness) and by investigating the
influence of the integer parameters involved in the definition of the
B-spline entities (used to describe the distribution of the PPs and of
the thickness over the structure) on the optimised solutions. A further
sensitivity analysis has been conducted to investigate the influence of
two different deterministic optimisation algorithms, i.e., the Sequential
Least-Squares Quadratic Programming (SLSQP) and the Globally Con-
vergent Method of Moving Asymptotes (GCMMA) algorithms, on the
optimised solutions: the results of this analysis allows inferring useful
remarks and guidelines on their use in relation with the non-convex
nature of the design problem at hand and the performances of the local
minimisers.

The paper is organised as follows. The definition of the benchmark
structure with the related load cases and design requirements is pre-
sented in Section 2. The mathematical formulation of the FLP is detailed
in Section 3 by considering a deterministic optimisation framework.
The finite element (FE) model of the structure is presented in Section 4,
whilst the numerical results are presented and discussed in Section 5.
Finally, Section 6 provides meaningful conclusions and prospects.

Notation. Upper-case bold letters and symbols are used to indicate
matrices, while lower-case bold letters and symbols indicate vectors,
which are to be intended as column ones.
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Fig. 1. Geometry and displacement boundary conditions of the benchmark structure.

2. Definition of the benchmark structure

To show the effectiveness of the MS2LOS for designing VSCLs, a
meaningful benchmark problem is defined: the least-weight design of a
square VSC plate of side ! with a central circular plastic porthole of
radius r (shown in Fig. 1), subject to multiple design requirements.
Such requirements include a constraint on the first buckling load, a
constraint on the failure load and constraints on the manufacturability
of the structure. This structure represents a simplified “flat model”
of a panel extracted from a stiffened vessel of radius R having a
plugged opening and withstanding pressurisation and other external
loads. Of course, this structure can be considered as a representative
of an industrial application when the radius of curvature assumes a
sufficiently high value (which is the case of the panels belonging to
the fuselage of standard civil aircraft).

The composite plate constitutes the design region (DR) of the struc-
ture and is made of unidirectional AS4/3501-6 carbon/epoxy pre-preg
tows. The material properties of the constitutive pre-preg tow are
reported in Table 1 (for the meaning of the polar parameters listed
in this table the reader is addressed to [58]). The porthole constitutes
the non-design region (NDR) of the structure and is a plate of uniform
thickness 7, made of isotropic acrylic plastic whose properties are
reported in Table 2.

The reference solution (RSol) is defined as the structure having a
homogeneous isotropic DR of uniform thickness rpq,.

The structure is constrained on its outer edges as shown in Fig. 1.
Part of these constraints ensures that the outer edges of the structure
remain straight while withstanding external loads. The plate and the
porthole are considered perfectly bonded to each other on the inner
common edge, without overlap. Two load cases (LCs) are considered
and four basic loading conditions are identified. By referring to Fig. 2,
these loading conditions are;

Uni-axial compression. A distribution of compressive forces per unit
length 7, (y) is applied along the x axis on edge BC whose
resultant is Fi- (Fig. 2(a)).

In-plane bending. A distribution of forces per unit length 7 ,,(y) is
applied on edge BC along the x axis, whose resultant is the
bending moment My around the z axis (Fig. 2(b)).

In-plane shear. A uniform distribution of in-plane shear forces per
unit length 7, is applied on all edges (Fig. 2(c)).
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Fig. 2. Basic loading conditions acting on the benchmark structure and used to define the two considered load cases.

Table 1
Material properties of the unidirectional AS4/3501-6 carbon/epoxy tow used in the
design region of the benchmark structure [47,58,63].

Technical constants

Polar parameters of Q" * Polar parameters of Q% "

E, [MPa] 142000 7™ [MPa) 22040 79 [MPa] 5272
E, [MPa] 10300 T [MPa] 19838 RO« [MPa] 1928
G,. [MPa] 7200 R% [MPa] 14840 @Y [rad] /2
i 0.27 RE'" [MPa] 16550
vy 0.54 Olb' [rad] ©

o [rad) 0
Engineering strengths Pol. par. of G* < Pol. par. of G* * and g" ¢
X [MPa] 2280 7:6’ [MPa] 7077 TG« [MPa] 8637
X' [MPa) 1440 Th' [MPa] 1312 RO« [MPa] 1647
Y =2 [MPa] 57 Rl[,“ [MPa] 3206 @O~ [rad) x/2
¥’ = Z' [MPa] 228 R [MPa] 405 T% [MPa] 68
Q [MPa) 40 0&‘ [rad] «x/4 R* [MPa] 68
RwS [MPa] 71 olg- frad] 572 @t [rad]  £/2
Density g [g/em*] 158

* In-plane reduced stiffpess matrix of the ply.
" Out-of-plane shear stiffness matrix of the ply.
© In-plane strength matrix of the ply.

4 Qut-of-plane strength matrix of the ply.

“ In-plane strength vector of the ply.

Table 2

Materlal properties of the acrylic plastic constituting the

porthole,
Property Sym, Value
Young's modulus [MPa) E 3210
Poisson’s ratio [~ v 0.38

Pressurisation. A uniform pressure p is applied on the whole struc-
ture, completed by the corresponding membrane tensile loads
(in analogy to the loads of a pressurised vessel of radius R whose
longitudinal axis is perpendicular to the x axis of the structure).

LC1 is the sum of the first three basic loading conditions above and
is applied for a more conservative evaluation of the buckling load.
Indeed, the last loading condition is excluded from LC1 because the
pressurisation and its related tensile membrane loads increase the
buckling load of the structure. LC2 is applied for the evaluation of
the failure load of the structure and consists of the sum of all four
aforementioned basic loading conditions. Fi, My, 7., and p have been
set to the minimum values ensuring that RSol withstands LC1 and LC2
without buckling or failure, respectively. Moreover, they have been
set in such a way that the corresponding basic load conditions are
equally critical (i.e., same factor of safety) with respect to failure when
applied separately on RSol.’ The values of the applied forces and of the
geometric parameters of the structure are reported in Table 3.

! In this way, RSol is, by construction, the least-weight no-buckling and
no-failure uniform-thickness homogeneous isotropic composite solution for the
considered design case.

Table 3
Geometrical characteristics of the benchmark structure, and values of
the loads acting on it.

Parameter Sym. Value
Side length [mm) ! 400
Porthole radius [mm] r 100
Porthole thickness [mm] [ 10
Reference thickness [mm] Thsal 4.6
Vessel radius (mm] R 2000
Resultant compressive force [N] F 1.498 - 107
Resultant bending IN mm] M, 1779 10/
Shear load per unit length [N/mm] . 80.90
Pressure [MPa) P 0.098

As discussed in Section 3, the design problem is formulated as a
constrained non-linear programming problem (CNLPP): the goal is the
minimisation of the mass of the structure subject to constraints on its
first buckling load and failure load (which must be greater than or equal
to those of RSol) and a constraint on the maximum curvature of the
tows composing its composite part. The structure is made of a point-
wise fully orthotropic, quasi-homogeneous VSCL, i.e., a VSCL having
the same orthotropic behaviour in terms of normalised membrane and
bending stiffness matrices with a zero membrane/bending coupling
stiffness matrix [59]. Specifically, three sub-classes of VSCLs, previously
introduced by the authors [58], are considered:

C1 Uniform-Thickness VSCLs with Variable Orthotropy Direction (UT-
DVO), but uniform anisotropic moduli, i.e., this class of VSCLs is
characterised by the same type of orthotropy at each point of the
structure, except the orientation of the main axis of orthotropy
that varies point-wise.

C2 Uniform-Thickness VSCLs with a Fully Variable Orthotropy (UT-
FVO), i.e., the orthotropy type and the orientation of the main
axis of orthotropy vary at each point of the design domain for
this class of VSCLs.

C3 Variable-Thickness VSCLs with a Fully Variable Orthotropy (VT-
FVO).

In this context, the adjectives uniform and variable refer to the spatial
variation of the properties over the laminate. The application of the
requirement on the maximum tow curvature is currently limited to
VSCLs belonging to sub-class C1 because, up to now, an equivalent
formulation of this requirement in the PPs space has been determined
only for this class of VSCLs [54,58].

Regarding the behaviour and the modelling of the benchmark struc-
ture, the following hypotheses apply:

H1 The behaviour of the material constituting both DR and NDR is lin-
ear elastic and the hypothesis of small perturbations (i.e., small
generalised displacements and strain) is assumed for FE analy-
ses.



H2 The macroscopic behaviour of the VSCL is described in the frame-
work of the first-order shear deformation theory (FSDT).

H3 The plastic porthole does not fail under considered load cases.

H4 Regarding VSCLs-C3, the spatial variation of thickness is consid-
ered continuous and symmetric with respect to the laminate
middle plane.

H5 The DR is composed of an “ideal material”, i.e., without the
presence of defects due to the manufacturing process of the
VSCL, like gaps and overlaps among adjacent tows.

Of course, these last two hypotheses correspond to solutions that are
not manufacturable with current processes. These solutions can be in-
terpreted as the theoretical limit achievable by using increasingly thin-
ner and narrower tows in the AFP manufacturing process, or with the
evolution of modern additive manufacturing technologies for composite
materials [3].

3. Mathematical formulation of the first-level problem

The main features of the FLP of the MS2LOS for the optimum design
of VSCLs are described in this section by putting the accent on the new
contributions introduced in this work. More details on the MS2LOS for
designing VSCLs can be found in [55,57,58].

The macroscopic response of the VSCL is described in the framework
of the FSDT, whose constitutive equation (expressed in the local frame
I.={0;x,.y,.z,}) reads:

r=K ¢ e}

where r and ¢ are the vectors of the generalised forces per unit length
and the strains of the laminate middle plane, respectively, whilst K,
is the laminate stiffness matrix (Voigt’s notation). The expression of the
above vectors and matrix is:

A

-~

B 0 N
D 0|, £:={ x4 ¢ (2)
H

Yo

n
ri=4m ¢, K =
q sym

In Eq. (2), A, B and D are the membrane, membrane/bending cou-
pling and bending stiffness matrices of the laminate, H is the out-of-
plane shear stiffness matrix, n, m and q are the vectors of membrane
forces, bending moments and shear forces per unit length, respectively,
whilst £, x, and y, are the vectors of in-plane strains, curvatures and
out-of-plane shear strains of the laminate middle plane, respectively.
In the following of this section, the normalised stiffness matrices are

introduced to analyse the elastic response of the VSCL. They are defined
as:

AT = l:\. B® = EB. D= El), H" = lH, (3)

t ”? ? t

where 1 is the total thickness of the laminate.
3.1. Design variables

As discussed by Montemurro and Catapano [55], the macroscopic
behaviour of a quasi-homogeneous, orthotropic VSCL is uniquely de-
scribed through four quantities: the thickness of the VSCL r and the

three PPs R, R} and @". When dealing with the FLP formulation,
it is useful to introduce the following dimensionless quantities:
RN RN oM
o o Dok 1 1
ri= s Pk - _RO..,' I —Ro"“ - 7S (4)
1

0]
As widely discussed by Vannucci [64], the optimal value of the PPs
constituting the solution of the FLP must correspond to a feasible
stacking sequence to be determined as a solution of the subsequent SLP.
To this end, suitable feasibility constraints must be integrated in the

formulation of the FLP. However, as discussed by Picchi Scardaoni and
Montemurro [65], the feasibility constraints proposed by Vannucci [64]
constitute just the convex-hull of the true feasibility domain. Indeed,
as explained by Picchi Scardaoni and Montemurro [65], the convex
approximation of the true feasibility domain can be considered in the
FLP formulation only if the laminate is made of a sufficiently high num-
ber of lamina (theoretically an infinite number) with the orientation
angles of the plies taking value in a sufficiently big and scattered set. To
avoid introducing the optimisation constraints describing the convex-
hull of the feasibility domain presented by Vannucci [64] into the FLP
formulation, the following variable change, recently introduced by the
authors [58], is used:

) L ok — 1

(@ o) = (_2(‘7?_1)- Pl)- (5)
whose converse relation is

(Poxs> 21) = (1 + 2 (“12 =1). ). (6)

This variable change consists of remapping the convex-hull of the
feasibility region of the PPs space over a unit square domain [0, I] x
[0, 1]: accordingly, all combinations of &, and «, satisfy the feasibility
conditions presented by Vannucci [64].

In agreement with Eqs. (4) and (5), four independent fields are
needed to describe the elastic response of the VSCL at the macroscopic
scale, i.e., 7, a;, «,, ¢,. Each field can be either uniform or variable over
the laminate, depending on the considered VSCL sub-class (see Sec-
tion 2). Particularly, VSCLs belonging to sub-class C1 are characterised
by non-uniform distribution of ¢, and uniform distribution of r, «,, and
a;. When VSCLs belonging to sub-class C2 are considered, a;, a,, and
¢, are non-uniform fields, whilst r is uniform over the DR. Lastly, for
VSCLs belonging to sub-class C3 all fields are non-uniform. The generic
field ¢ is described through a B-spline scalar function [55,57,58]:

ny om
Elty,up) = Z Z Ny o )N, @172, with § = rag.ay by (7)
Jy=liy=0
where £"172) is the value of the field at the generic control point (CP),
whereas N,  (u)) and N, , (u) are the Bernstein's polynomials of
degree p, and p, computed at parametric coordinates u; and u,, which
are defined as:

(uy, up) 1= (; %) uy.uy € [0, 1], (8)

where x and y are the Cartesian coordinates, as illustrated in Fig. 1. In
agreement with the classical theory of B-spline entities [66], n, + 1 CPs
are needed along the d-th parametric direction, for a total number of
CPs equal to Ngp = (1) + 1) % (n, + 1). Note that Bernstein's polynomials
introduced in Eq. (7) are defined span-wise through the so-called knot
vectors:

vl .o 00,0 o b withd = 1.2 )
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As already done in previous works [55,57,58], the inner components of
the knot-vectors, the number of CPs and the degree of the Bernstein’s
polynomials along each parametric direction are set by the user before
the optimisation process and are not considered among the design
variables of the FLP. Particularly, the inner terms of the knot vectors
are evenly distributed in the interval )0, 1[. More details on B-spline
entities are available in the book by Piegl and Tiller [66].

In the light of the above remarks, only the value of the generic field
at each CP, i.e., &'"1”2', is integrated in the vector of design variables.
Accordingly, the overall number of design variables characterising the
VSCL depends upon the sub-class to which it belongs, as listed in
Table 4, In the most general case, i.e.,, when 7, «,, «; and ¢, are non-
uniform fields, the total number of design variables is 4 x Ngp. They



Table 4
Number of design varlables for each sub-class of variable-stiffness
compaosite laminates considered,

T Ay L1 & Total
C1 1 1 1 Nep 3+ Nep
c2 1 Nep Ner Nep 1+3% Ngy
c3 Ner Nep Ner Nep 4% Neyp

are collected in the vector x as:

T ._ 100 ey ) AR ) 10Uh 1wy 1000
X .—{r S voy e T e T g

) "ljnln,n:) } )
(10)

3.2, Structural responses and their gradients

As discussed in Section 2, four types of requirements are involved in
the formulation of the FLP considered in this work. Specifically, design
requirements are formulated on: (a) the mass, (b) the first buckling
load, (c) the failure load, (d) the curvature of the tows, To solve the
FLP by means of a deterministic algorithm, the formal derivation of
the expression of the response function and of its gradient are needed
for each requirement. The above design requirements are computed
as results of both linear static and eigenvalue buckling FE analyses.
Regarding static analyses, the equilibrium equation (expressed within
the global frame of the structure I" = (O: x, y. z]) reads:

Ku = f = ify;. (1)

where K is the global stiffness matrix of the structure, u is the vector of
the degrees of freedom (DOFs) collecting both unknown and imposed
DOFs, [ is the vector of generalised external nodal forces defined as
the product of the load factor /i and the reference load vector fi.,
(which can either be the one related to LC1 or the one related to LC2,
depending on the assessed requirement). Eq. (11) can be arranged such
that the unknown DOFs, indicated with a subscript F, are separated
from imposed DOFs, identified by a subscript D:

[Kff iy ]{ ue }=A s (12)
Kpor Koo ) fRer
ity A S )

K* u* ~

Rel

where the superscript + means reordered and, of course, Kj, . = K;.DT.
The eigenvalue buckling problem in the FE framework is stated as

(K + 44Sgr J uy = 0 with u, # 0, (13)

where S, is the stress stiffening matrix, which depends on the geo-
metric characteristics of the structure and on the stress field associated
to the static problem of Eq. (11) when 4 = | and the suited Ref LC is
applied (i.e., LC1 in the considered design case), 4, is the bth eigenvalue
of the system (i.e., buckling load factor of the structure), and u, is the
bth eigenvector (i.e., buckling mode) associated to 4.

The expressions of the functions related to the mass, the failure
load, and the tow curvature requirements have been derived in a
previous work [58] and are hereafter recalled for the sake of clarity.
As far as the buckling requirement is concerned, an expression of the
response function and of its gradient more general than that presented
by Fiordilino et al. [57] is derived and implemented in this work.

Structural responses related to maximum failure load and maximum
tow curvature requirements are approximated through the p-Norm
function that operates on an indexed set of values computed per-
element (g,) in the design region as follows:

e
pnig,) = (qu) ~ m:ixq,. (14)
¢

where p is the power of the norm, which is related to the accuracy of
the approximation. Its value is chosen according to the formula [58]

log NPR
p=|—re | (15)
log (1 + dnux)

where d . is the desired maximum relative difference between the
value of the p-Norm and the value g, and N"® is the number of
values upon which the p-Norm is computed, here equal to the number
of elements belonging to the DR of the structure (Sections 2 and 4).

The derivative of the p-Norm operator with respect to the generic
variable £ reads

a(p"(qe’) _ I-p - "q.-
- (pnig.)) Z (qf 'E) (16)

3.2.1. Mass requirement

The design requirement related to the mass of the VSCL is defined
as a relative difference between the mass of the DR of the structure,
and a reference mass, here set equal to the mass of the composite part
of the reference solution RSol:
_ Mpg = My,

St a7
M My,
with My, = Mg rsoi- The mass of the VSCL is approximated as:
”’DR =p Z (Ar'f)‘ (18)
€E3pg

where A, is the area of the eth element and 1, is the thickness evaluated
at its centroid (obtained as 7, = r, 1gs, ), Whilst S, is the set collecting
the ID of the elements belonging to the DR of the structure. The
function f,, is linear with respect to the design variables £"1-2, A
negative value of f,; means that the mass of the DR is lower than the
reference value.

The partial derivative of fy reads:

TRsal? ( dr,
¢
"’DR‘RSOI fGU.,,, arliid2)

d/M _ ) iff=f.

ag42) (19

if&#r,
where LS, , indicates the discretised local support of the generic CP
(iy.iy), defined as:

— . i A21 4D
LS, ., = {ee DR : (u),.u,,) € IuII N I X |l~‘! WU +P|HI }

ii i+
(20)

According to the local support property of B-spline basis functions [66],
only the elements falling in the local support (or influence zone) of the
CP (i).i,) are influenced by the variation of the generic design variable
&) Of course, the size of the local support zone depends on the B-
spline integer parameters. It is noteworthy that, according to Eq. (7),
the partial derivative of the generic field & computed at the centroid of
the eth element (&, := &(u,..u,,)) reads:

3
% = N, () N, (). 21)
3.2.2. Buckling requirement

For the application of the buckling requirement, the buckling factor
of safety Ay is introduced. It is defined as the minimum positive
eigenvalue of Eq. (13), leading to instability of the structure:

Ag 1= moin(A',, > 0). (22)
The function related to the buckling requirement is simply defined as
Aph — A
fp = Zh B 23)
Agh

where Ay, is a threshold buckling load factor, here equal to Az, =
Ag rsors 1-€., the buckling load factor of RSol withstanding a suited LC.



Clearly, a negative value of f implies that the considered structure has
a higher buckling load than RSol. For a VSCL submitted to given BCs,
the gradient of fy can be obtained by solving the following system:

05 _ A T
FREEE - Ui UpWE.ii;
a¢, dK; . B
* A Z dﬂl:lsl IT!- aE (‘Ref.c"’”;‘ﬁ'mr..,;:
€ELS) = ¢
K& Uy =~ Wap
(24)
where:

+ Uy is the strain energy associated to the buckling mode deforma-
tion and it is defined as

Uy = %ulT,Ku,,. (25)

* Yy, and Y are two analogous fictitious force vectors
defined as:

. o:o / ToaT Kl,ume
Vg, o= f LB, ———B L.dS
R fegpz (dghl":. A ‘ d*

(26)
and
— g, T T
WRet iyiy = E; (05‘“7 /Aﬂ B, 0, —B. dS)uM.
@ Wiz
(27)
*+ 8, is an 8 x 1 vector, whose components are defined as
(spe), = u',';sjf G108, dS Luy. i=1,...8 (28)
A"

T [ T T - -
vy = {v”. L Ui } with vj, |, = 0 is the auxiliary vector.

* g is defined as

we = ) CTBIK s (29)

Regarding the quantities 5, ., B,, £, and ug,, appearing in Egs. (24),
(26) and (27), they are related as follows :

ERef e = B(‘ceukd‘ (30)

In Eq. (30), ug, is the solution of Eq. (11) with 4 = 1, £, is the gen-
eralised connectivity matrix (including also the affine transformation
aligning the element local frame I, to the global one I'), which is
defined as

L. oiuu, u =2Lu (31)

and B, is the matrix containing the partial derivatives of the shape
functions of the element ¢ computed at its centroid, which is defined
as

B, iu e, £, =Bu,. (32)

The analytical expression of the laminate stiffness matrix K, and
its gradient can be found in [58], while the definition of &, and O,
appearing in Eq. (28) is given in Appendix A, where the proof of
Eq. (24) is provided.

In the considered design case, the reference LC for the evaluation
of the response function fy is LC1.

3.2.3. Failure load requirement
As far as the failure load requirement is concerned, the factor of
safety 4p is introduced. It is defined as the least positive load factor

bringing to the failure of the structure:

ip = mtin A e (33)
where

hpe i ={A> 0| FAA) = Fp}. (34)

In the above formula F, is the laminate failure index (LFI) [58,62]
computed at the centroid of the generic element that reads

F,:=Q," + LA (35)
where Q, and L, are defined as

Gy,
Q. =€l SEme e L=l Bome (36)

t

In Eq. (36), Gy, and g, . are the strength matrix and vector of
the VSCL at the macroscopic scale, whose terms can be expressed as
function of PPs R}, R} and @) and of the overall thickness ¢ of
the VSCL [58,62]. As discussed by Izzi et al. [58], the value g, is the
positive root of the quadratic equation obtained by equating Eq. (35)
to Fp,. In agreement with previous works [58,67], the threshold value
is set to Fp, = 0.5. The function related to the failure load requirement
is obtained by considering the inverse of the factor of safety:

- - 1y _ ;- -1 -
o (AF.L) = Aph,  max (AF‘) ~AEm A=Ak
Sy = = ~ — =—, (37)
E.Th AETh g

where A4, is a threshold factor of safety. In this work, it is set equal
10 Ag sy, I-€., to the factor of safety of RSol withstanding the reference
LC. By considering Eqs. (33)-(35) and the expression of the p-norm
operator, Eq. (37) reads:

-p e
20, -

fr 1= gy (38)

¢

Of course, a negative value of f; means that the considered structure
has a higher failure load than RSol.

The formal expression of the gradient of f has been derived in
a previous work [58] and it is recalled here below for the sake of
completeness:

"fF _ » l=p T~

PO =—{dpm)" (fr+1) (’l,q +D|:VR=1'J,¢:)' (39)
K Opp == Wips
where:

* 1,,, is defined as:

d{. s:d;

d GLumt)
1. = —_— || Fyy, = A A | —
i I e () () e

glu'
- (55|}

with 4, := L2 +4Q,Fp,.

&
N, T . 0 o
vp 1= { Vgp + Upp } with v |, = 0 is the auxiliary vector.

(40)

* yp is defined as:
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* Wrers,i, 18 @ fictitious force vector defined as:
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(42)

The analytical expression of the strength matrix G, ., and vector g
of the VSCL at the macroscopic scale and their gradient is available
in [58].

In the considered design case, the reference LC for the evaluation
of the response function fp is LC2.

3.2.4. Maximum tow curvature requirement

The design requirement on the maximum tow curvature has been
formulated as an equivalent constraint in the PPs space only for the
VSCLs belonging to sub-class C1 introduced in Section 2 [54,58]. These
VSCLs are described by uniform values of 1, R}, and R} (and, conse-
quently, of r, «, and «,), and a variable distribution of d>’l‘ (hence, of
¢,) in the PPs framework. In the context of the FLP of the MS2LOS for
VSCLs, a laminate-level conservative evaluation of the local curvature y
of the fibres, whose path in each kth layer is still unknown, is given

by Izzi et al. [58]:

ap N\ faw,\*
z(x.y) = ||V, (x.y)ll=\/(—') +(—') zZ an(xy, Y

dx dy
(43)

By denoting with yp;, the maximum admissible curvature related to the
manufacturing process, the manufacturability condition reads

max x (x, »E e (44)

Regarding function f, the square of y is used and the maximum
operator is approximated via the p-Norm operator defined in Eq. (14),
resulting in:
/e
AT 2
Z A 2 2
(26) -4 mest-s

fc = 3 ~ 3 \ (45)
Ay A

where g, is the tow curvature computed at the centroid of the element
e. As discussed by Izzi et al. [58], z, can be expressed in terms of the
field ¢, as

2 a2 T
e =(5) Vil Vébul,
A I B B
2 duy |, dx|, duy|, oax|, (46)
+ (t’d’l au, dipy | duy )2
duy ¢ ay |, duy ¢ ay |, ‘
In agreement with Eq. (7), the terms (dé, /du,), of Eq. (46) are of
the type:
ﬁ ; Hy Ny d(Nl,,uJ(llJ)) N (“& ) {“I“)'
L L4
7Y P e du, o (47)
e

for j k= 1,2 with j # k.

According to Eq. (8), the partial derivative of the parametric coordi-
nates (u;,u,) with respect to the global ones (x, y) reads

duy fdx = duy fay = 1/1

duy fdy = du, fox = 0. 8

fe is, thus, a quadratic function of the design variables. The formal
expression of the gradient of [ reads [58]:

I
[(1;)" 'GL]. (49)
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Table 5
Threshold values used for the mathematical definition of the
optimisation problem,

Property Unit Value
My, = Mg psa H 935
Anm = Ampsa - 1
Apan = Appsa - 1.37
£ mm”! 1/250
Table 6
Lower and upper bounds of the design variables.
Design variable Lower bound Upper bound
gz 0 2
a,! 0 1
it 0 1
o -2 +2
where
2 a(Veyl,)
T T 1 o
axl 5 Vol - n): if$=a.
— =12 a1 (50)
6{'” 43l 1
ifE# ).

3.3. Formulation of the optimisation problem

Considering the response functions representing the design require-
ments introduced in Section 2, the optimum design of the VSCL can be
formulated as a CNLPP as follows:

Sp(x) <0, under LCI,
m‘ian(x). s.t fF(x) 20, under LC2, (51)
fe(x) <0, (only for VSCL = ClI).

The characteristics and mechanical performances of RSol have been
used as threshold values for computing the response functions fy, fi
and fp. For computing the response function f- and its gradient, the
maximum admissible value of curvature proposed by Nagelsmith and
Guerrits [68] as threshold value for 1/4" tows has been used. All these
values are reported in Table 5. Finally, the value of the parameter p,
involved in the definition of the p-Norm operator of Eq. (14), is set
as p = 848 during the optimisation, computed through Eq. (15) for
dyy = 0.01 and NP® = 4608 (see Section 4).

Problem (51) is solved for all sub-classes of VSCLs described in
Section 2. A vector of design variables of different size is associated to
each sub-class, as discussed in Section 3.1. The lower and upper bounds
of the design variables are listed in Table 6,

4. Finite element model

The data needed to assess the structural responses introduced in
Section 3.2 are recovered during the post-processing phase of linear
static and eigenvalue buckling FE analyses performed in ANSYS APDL.

The FE model of the benchmark structure shown in Fig. 1 employed
in these analyses is made of 4-node quadrilateral shell elements (ANSYS
SHELL181) with six DOFs per node. The resulting mapped mesh is
illustrated in Fig. 3. The overall number of elements composing the
mesh has been set after a sensibility analysis (not reported here for
the sake of brevity) whose goal is to find a good balance between
computational costs and accuracy. The criterion of accuracy is related
to both the approximation of the spatial distributions of the thickness
and PPs over the structure, and to the evaluation of the mechanical
responses of the structure. The whole model is composed of 9600
elements, while the DR of the structure is modelled through NPF =
4608 elements,

Concerning the DR of the structure, the four independent fields
describing the macroscopic behaviour of the VSCL, ie., r, ay, a;, ¢,



Fig. 3. Finite element model of the benchmark structure. Only the upper right quarter
of it is shown.

Table 7
Parameters of the two employed optimisation algorithms (SLSQP and GCMMA) that
have been set to a value different from their default one,

Parameter Description Value

SLSQP/GCMMA

ftol/tol_f Tolerance on the relative difference between w0
two consecutive function values at convergence

/tol_p Minimum relative step between two 10
consecutive points

maxiter/max_it Maximum number of iterations 300

are evaluated at the centroid of each element and the corresponding
matrices K; . ., Gy, and g . [58] are assigned to such element.
The properties of the elements modelling the porthole are kept constant
during the optimisation and assigned in terms of thickness and elastic
constants (reported in Tables 2 and 3, respectively).

The application of most of the BCs described in Fig. 1 and of the
loads depicted in Fig. 2 is quite straightforward. The condition on the
straightness of the outer edges of the structure is imposed through sets
of constraint equations which couple the DOFs of the inner nodes of
each edge to those of its vertices. All distributed loads are applied as
equivalent resultant forces at the vertices of the edges.

5. Numerical results

The resolution of problem (51) has been carried through the nu-
merical platform DOMES (Deterministic Optimisation of Macroscopic
laminatEs via Splines) developed at the 12M laboratory in Bordeaux,
where all design requirements presented in Section 3.2, together with
their gradients, are implemented. DOMES is coded in Python lan-
guage and represents an interface between the FE software and the
optimisation algorithm, establishing a data structure for a modular
implementation of the various requirements and for a simplified set-
up of the design problem. With respect to the previous version [58], it
has been updated with the implementation of the buckling requirement
and the ability to deal with NDRs and multiple load cases,

Two optimisation algorithms are considered for the solution search:
the Sequential Least-Squares Quadratic Programming (SLSQP) algo-
rithm [69], included in the Python library SciPy v.1.4.1 [70], and the
Globally Convergent Method of Moving Asymptotes (GCMMA) algo-
rithm [71]. All parameters tuning the behaviour of the two algorithms
have been set to their default values, except for those reported in
Table 7.

Table 8
Sensitivity of the optimised solution to the number of control points when using the
SLSQP algorithm or the GCMMA one,

CPs SLSQP GCMMA
Sy [9%] Stop crit. Max constr. f,, [%)] Stop crit Max constr.

5x5 -11,07 maxiter. 2.10°° -10.52 conv. (iter. 277) <0
7x7 -13.12 max iter. 2-107° -8.48 max iter. 10+
9x9 ~13.82 maxiter. 2.107 ~12.62 max iter. <0
11 x 11 <1457 max iter, 2. 107* ~8.71 min step (iter. 96) <0
13 x 13 -14.98 max iter. 3.107° ~11.53 max iter. <0
15 x 15 -15.52 max iter. 1.107* ~11.49 max iter. <0
17 x 17 -15.65 max iter. 1.107* —~11.80 max iter. <0
19 x 19 -15.77 max iter. 2.10* -12.20 max lter. <0
21 x 21 -15.97 max ter. 4-107* —12.11 max lter. <0

The reference solution RSol is characterised by the following values
of the design variables: ¢ = 1, oy = 0.5, ¢y = 0 (corresponding to
e = ¢ = 0) and ¢, = 0. Moreover, RSol has been used as starting
point for obtaining all results presented in this section.

As far as the integer parameters of the B-spline entities are con-
cerned, the degrees of the Bernstein’s polynomials have been set to
p; = p; = 2, while the number of CPs is the outcome of a sensitivity
analysis, which has also been used to compare the aforementioned
optimisation algorithms. In this analysis, problem (51) has been solved
in the design domain of VSCLs-C2 considering square CPs grids of
various size with both algorithms. The results of this study are reported
in Table 8 wherein, for each number of CPs, the value of the maximum
constraint function and the type of stopping criterion satisfied at the
end of the optimisation process is reported for both SLSQP and GCMMA
algorithms. One can notice that, for this design application, the SLSQP
algorithm provides optimised solutions characterised by a value of the
cost function lower than that of the counterparts resulting from the
GCMMA algorithm, for all considered CPs grids, although they are
barely infeasible (the constraint violation is, in any case, very low and
negligible from an engineering perspective). This is most likely due to
GCMMA taking smaller and smaller steps and becoming trapped in a
local minimum, as this algorithm (unlike the SLSQP algorithm) enforces
the feasibility of the potential solution at each iteration. This feature
is visualised in Fig. 4, wherein the iteration history of the cost and
constraint functions for the optimisation process performed with the
GCMMA algorithm for a 17 x 17 CPs grid is plotted. The analogous
plot for the SLSQP algorithm is shown in Fig. 5. From the latter figure,
it is clear that the SLSQP algorithm accepts violations of the constraints
as long as significant reductions in the cost function can be obtained,
and then reduces them in later iterations of the optimisation process as
it approaches convergence.

A second observation that can be done looking at the results re-
ported in Table 8 is that the sensitivity of the optimised solutions
provided by the SLSQP algorithm to the number of CPs of the B-spline
entity has a consistent behaviour: the higher the number of CPs the
lower the final value of the cost function. This is not the case for the
optimised solutions provided by the GCMMA algorithm. It has therefore
been chosen to use the SLSQP algorithm with a 17 x 17 CPs grid, which
corresponds to a total of 276 active CPs, i.e., CPs having elements of the
DR in their local support. A comparison between the results provided
by the algorithms SLSQP and GCMMA is provided in Appendix B.

In the following of this section, the results obtained for all consid-
ered VSCLs sub-classes are presented and commented. The optimised
solutions are presented both in terms of their performances and of the
optimised distributions of the PPs and of thickness over the structure.
Regarding the latter, for improved readability, the distribution of the
dimensionless PPs p,5 and p, are provided instead of those of variables
a;, and «;. The results are summarised in Table 9 wherein they are
compared to RSol. In the case of a uniform field, the optimised value
of the related variable is reported directly in such table, otherwise a
figure (whose reference is reported in the table) is listed to show the
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Fig. 4. Iteration history of the cost and constraint functions for the optimisation process of a VSCL-C2 (variable-stiffness comp I with uniform thickness and fully
variable orthotropy) performed with the GCMMA algorithm.
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Fig. 5. Iteration history of the cost and constraint functions for the optimisation process of a VSCL-C2 (variable-stiffness composite Lami with uniform thickness and fully
variable orthotropy) performed with the SLSQP algorithm.
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A AT / Summary of the optimised solutions.
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Fig. 6. Optimised VSCLs-Cl (variable-stiffness composite laminates with uniform
thickness and varlable orthotropy direction): streamlines of the optimal distribution
of @ obtained without (a) and with (b) the imposition of the constraint on the
maximum tow curvature in Eq. (45),

optimised distribution of each non-uniform field. Moreover, in all the
figures, the optimal field related to the main orthotropic direction dr;“
is represented through streamlines plots.

From the results listed in Table 9, it can be noticed that optimised
solutions show mass savings ranging from —5.6% to —19.8% with respect
to RSol. Lighter solutions are obtained, as expected, when considering

¢ No constraint on the maximum tow curvature.

a less restrictive optimisation problem, either by removing the con-
straint on the tow curvature on VSCLs-C1 or by enlarging the design
space, i.e., moving from VSCLs-C1 to VSCLs-C2 and VSCLs-C3. All the
optimised solutions have performances practically identical to those of
RSol, however they all are barely infeasible, with a maximum violated
constraint of 4 - 1077,

The last row of Table 9 shows the optimal VSCL-C3 obtained by
solving a modified version of problem (51) wherein the threshold factor
of safety of Eq. (37) has been set to Appy, = 1. In this way, the least-
weight, no-failure and no-buckling VSCL-C3 solution is obtained, which
is about 24% lighter than RSol.
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Fig. 7. lteration history of the cost and constraint functions for the optimisation process leading to the VSCL-C1 solution (varlable-stiffness composite laminate with uniform
thickness and directionally varlable orthotropy) subject to the maximum tow curvature constraint.
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From Table 9 one can notice that the optimised solution obtained
for the sub-class C1 by imposing the constraint on the maximum
tow curvature is characterised by an R,-orthotropic behaviour [72],
while the one obtained without imposing the curvature constraint
presents a square orthotropy (p, = 0). In both cases optimal values
of pyx and p, are very small, hence the mechanical behaviour is
only slightly directional. However, this slight directionality has been
exploited through a local tailoring of the main orthotropy direction
(illustrated in Fig. 6) which allows these solutions to ensure the same
performances of RSol with a weight-saving of 5.6% in presence of
the curvature constraint, and of 10.3% when the constraint is not
imposed. Fig. 6 allows also visualising the effect of the application of
the constraint of the maximum tow curvature on obtained solutions
in terms of the streamlines of the optimised distribution of o;". It is

) p,

O0es0 02

04 0& 08 1000

with variable thickness and fully variable orthotropy) obtained with 4, ;, = 4, ¢, optimal distributions of the

interesting to observe the iteration history of the cost and constraint
functions for the optimisation process leading to the VSCL-C1 solution
subject to the maximum tow curvature constraint, plotted in Fig. 7.
As in all the other cases considered, the SLSQP algorithm is able to
find a barely infeasible solution, although still technically acceptable.
However, in this case it clearly has more difficulty in dealing with the
maximum tow curvature constraint than with the other two involved:
violations of the former are tens to hundreds of times higher throughout
the iterations than those of the latter. This is probably due to the high
value of the parameter p used in the p-Norm operator, which makes the
constraint function f highly non-linear and could lead the algorithm
to a new solution during iterations, characterised by a sudden change
in the maximum tow curvature, explaining the spikes of the constraint
function f in Fig. 7.
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Fig. 10. lteration history of the cost and constraint functions for the optimisation process leading to the VSCL-C3 solution (variable-stiffness composite laminate with varlable

thickness and fully variable orthotropy).

The possibility to locally optimise the orthotropy type as well as
the main orthotropy direction is exploited in the case of the optimised
solution obtained when considering the sub-class C2. This configuration
allows to achieve a reduction of the mass of 15.7% with respect to RSol.
When looking at the optimal distributions of the dimensionless PPs for
this solution shown in Fig. 8, the following remarks can be drawn:

+ p; — 0in a vast portion of the DR; this means that the local elastic
behaviour is characterised by a square orthotropy (o, # () or
isotropy (py = 0).

On the left and right sides of the porthole, p,; has a negative

value (mainly close to —1), whilst p, — 0, which corresponds to

a square orthotropy with a high-shear-modulus behaviour.

On the top and bottom regions of the porthole, p,; has a positive

value (mainly close to 1), whilst p, — 0, which corresponds to a

square orthotropy with a low-shear-modulus behaviour.

+ On the comer regions of the plate, both PPs have positive val-
ues and the VSCL has a classical orthotropic behaviour. More
specifically, where py, = p, = 1 the VSCL behaves like a mono-
layer plate with the fibres locally oriented along the main axis of
orthotropy.

.

.

By comparing Fig. 9 to Fig. 8, a strong similarity between the
optimised solution obtained by considering the sub-class C3 (the most
general one) and the optimised solution obtained for the sub-class
C2 can be observed. The additional possibility of locally tailoring the
thickness offered by VSCLs-C3 results in an optimal solution with a
thickness distribution (Fig. 9(a)) characterised by thicker-than-average
outer and inner (around the porthole) edges evolving towards a thinner
intermediate region. This feature allows obtaining an optimised solu-
tion presenting a 19.8% mass reduction over RSol (an additional 4.1%
with respect to its uniform-thickness counterpart, i.e., the optimised
configuration obtained for sub-class C2).

Observing the iteration history of the optimisation process leading
to the VSCL-C3 solution, plotted in Fig. 10, it is clear that convergence
has not been achieved for this specific case. An even better solution
could have been obtained by increasing the maximum number of iter-
ations, which in this work was set at 300 (Table 7), a value considered
acceptable for practical use.

Fig. 11 shows the optimal distribution of the design variables for the
VSCL-C3 solution obtained with a value of ippy, = 1, i.e., by searching
for a no-failure solution instead of a solution with a factor of safety
higher than that of RSol. This solution presents many similarities with
the optimised configuration shown in Fig. 9, but it is characterised by
a more extended zone with a low-shear-modulus orthotropic behaviour

(cf. Figs. 11(b) and 9(b)), and a thickness distribution evolving towards
a thinner intermediate region (cf. Figs. 11(a) and 9(a)).

The distribution of 1/4g, for RSol and all aforementioned optimal
VSCL solutions is presented in Figs. 12 and 13. It can be clearly seen
that, the higher the structural efficiency (moving from the optimised
solution of sub-class C1 with constrained maximum tow curvature in
Fig. 12(b) to the optimised solution of sub-class C3 in Fig. 13(a)),
the more uniformly critical is the VSCL, with an increasing number
of elements characterised by a value of 1/A;, = 1/Aggs,. Of course,
adopting a value of igp, = 1 in problem (51) has an noticeable effect
on the distribution of 1/4;, for the related solution (Fig. 13(b)).

Finally, in Figs. 14 and 15, the buckling mode related to the first
buckling load of the structure is presented for RSol and all optimal
VSCL solutions. For Rsol and the optimised solutions of sub-classes C1
and C2 presented in Fig. 14, it is characterised by two opposed humps:
a main slightly tilted and off-centre hump, and a smaller one located in
the upper left comer of the structure (not always visible in the figure).
However, the optimised solutions obtained for sub-class C3 present a
different first buckling mode (Fig. 15): in addition to the two humps
described above, a third one occurs, which interests the right hand side
of the structure. It is most likely due to the presence in these solutions
of a thicker zone around the porthole border (see Figs. 11(a) and 9(a)),
which partially forces inflexion points in the structure,

6. Conclusions

A general theoretical/numerical methodology (with the related nu-
merical tools) for the deterministic optimisation of variable-stiffness
composite laminates (considering also general variable-thickness so-
lutions) including design requirements on mass, buckling load, fail-
ure load, and manufacturability of the solution has been proposed
in this work. The methodology deals with the first-level problem of
the multi-scale two-level optimisation strategy for variable-stiffness
composite laminates, hence it is focused exclusively on the macroscopic
scale of the structure. On the one hand, the proposed approach relies
on the polar method to describe the local macroscopic behaviour of
the variable-stiffness composite laminate in terms of both elastic and
strength properties (in the framework of the first-order shear deforma-
tion theory). On the other hand, the approach makes use of B-spline
entities to represent the distribution of the design variables.

The approach presented in this work allows tailoring various prop-
erties of variable-stiffness composite laminates: the type of orthotropy
and its direction, as well as the local thickness of the laminate. Var-
ious sub-classes of variable-stiffness composite laminates have been
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Fig. 12. Comparison of the distribution of 1/4;, for RSol and some optimised solutions. Opt VSCL-C1 . is the VSCL-C1 solution (variable-stiffness composite laminate with uniform
thickness and variable orthotropy direction) found when the constraint on the maximum tow curvature is enforced (zy, = 1/250 mm™").
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Fig. 13. Optimal VSCLs-C3 (variable-stiffness composite laminates with variable thick-
ness and fully variable orthotropy): comparison of the distribution of 174, for the
solutions obtained with 4, = 4., (@) and 4, =1 (b).

introduced and investigated, by finding optimal solutions for each of
them.

A meaningful design case is introduced and assessed in this work,
i.e., the least-weight design of one of the panels composing a fuselage
barrel having a plugged opening, withstanding pressurisation and other
external loads. The structure is modelled through a square variable-
stiffness composite plate with a central circular plastic porthole. The
least-weight homogeneous isotropic version of the structure withstand-
ing considered loads without buckling nor failure constitutes the refer-
ence solution and its mechanical performances are used as admissible
values in the optimisation process. For the assessment of each re-
quirement, an analytic response function and its gradient, formulated
taking full advantage of the properties of the B-spline entities, are
employed. The failure load of the structure is computed by applying a
laminate-level failure criterion based on tensor invariants. The manu-
facturability of the solutions is checked both in terms of the point-wise
condition on the existence of a suitable stack, and of a constraint on

the maximum curvature of the filaments/tows composing the variable-
stiffness composite laminate, formulated in the polar parameters space.
For both these requirements and for the mass one, expressions of the
functions previously derived by the authors have been employed. Con-
versely, regarding the buckling requirement, a new general expression
of the response function and of its gradient has been derived here and
implemented in the numerical platform DOMES.

Regarding numerical results, significant improvements with respect
to the reference solution have been obtained through the proposed
strategy. Optimal solutions show a mass reduction of the variable-
stiffness composite laminate in the range 5.6%—19.8%, depending on the
considered sub-class, while ensuring performances practically identical
to those of the reference solution. For one of the considered variable-
stiffness composite laminates sub-classes, not only the distribution
of material elastic properties, but also the thickness distribution is
optimised: the variable-thickness solution allows a 26% higher mass
reduction than the best uniform-thickness solution. A second variable-
thickness variable-stiffness solution is obtained simply enforcing the
less restrictive yet more realistic no-buckling and no-failure require-
ments. This solution presents a 24% lighter variable-stiffness composite
laminate than the reference solution.

The effectiveness of the proposed approach in dealing with re-
alistic engineering problems involving multiple design requirements
and complex load conditions is clearly shown through the obtained
results. Moreover, these encouraging results highlight the great po-
tential behind the various sub-classes of variable-stiffness composite
laminates investigated in this work, motivating, thus, further research
on this topic. Indeed, ongoing activities include: the formulation of
new criteria to predict the presence of manufacturing-related defects,
like filaments/tows gaps and/or overlaps, in the final structure, and
to account for their effect on the performances since the preliminary
design phase; the further generalisation of the design problem by
concurrently optimising the in-plane topology, the polar parameters
and the thickness of the laminate; the development of a more general
formulation of the second-level problem (and of the related numerical
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Fig. 14, Comparison of the first buckling mode (z component of the displacement) of RSol and of some optimised solutions. Opt VSCL-C1. is the VSCL-C] solution (variable-stiffness

composite laminate with uniform thickness and variable orthotropy direction) found when the constraint on the maximum tow curvature is enforoed (rp, =
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Fig. 15. Optimised VSCLs-C3 (variable-stiffness ¢ with variable
thickness and fully variable orthotropy): comparison of the first buckling mode (z
component of the displacement) of the solutions obtained with Jpp = dpp¢, (2) and
dgm =1 ().

tools) to recover the stack and the fibres-path within each lamina for
all variable-stiffness composite laminates sub-classes; the application
of the proposed strategy to variable-stiffness composite structures with
single and double curvature.
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Appendix A. Gradient of the buckling response function

Consider the energetic form of the classic eigenvalue buckling prob-
lem in the FE framework (specialised for the eigenvalue iy):

up (K+ AgSp ) ug = 0. (A.1)

By differentiating Eq. (A.1), one can find the following expression of
the derivative of iy with respect to the design variable &1

diy iy
AN 42)

r K . 1 OSper )
= —up + . A2
The term u;KuB is the double of the strain energy Uy associated to the
buckling mode deformation.

Consider now the term ug in Eq. (A.2). The stiffness matrix

HUER
of the structure is defined as

K:=) elK.2, (A.3)
L4

K, is the stiffness matrix of the element and, for a shell element, it is
defined as

K, := / BIK, ., B _dA. (A.4)
where A, is the area of eth element. By taking into account for
Egs. (A.3) and (A.4) and for the local support property, the term
ug in Eq. (A.20) can be expressed as

d;lq/:l
) K
VB"I': '-dfn,.n:)us
%, Tgy1? (A.5)
=3 o,f“n»':'/A 2%( d, —E 3 2 dA
céls,ll: e

dKLum

where the expression of the terms = can be found in [58].

¢
Consider the quantity u}Syug, which is the double of the non-
linear (second-order) part of the internal work of the reference stress
field over the additional strains due to the buckling mode ug:

U Seertp 1= 2Wiy (0 (uge ) € (ug) ) = ZWNL.(f’(“Ru) € (ug)).

(A.6)
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where the derivative of Eq. (A.16) read
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where 8 is a vector collecting the plate middle plane displacements ou* oK:, oK, ar (A.18)
partial derivatives (up to the first order) and the rotations, defined as s R __DF 4 DD Rer.D
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and R is the matrix of the generalised forces per unit length i.e., the

components of vector r of Eq. (2), defined as in Box I. R is a linear
function of the components of vector r and can be rewritten as

R=Z(r),0
{

where O, are properly defined 15 x 15 matrices. By introducing &,
i.e., the matrix relating the vectors &, and u,, which is defined as

(A.8)

(A.10)

G, :u, 5, 5,=6u, (A.11)

by using Eq. (A.10), and by comparing Eq. (A.6) and (A.7), one obtains
that

Sper 1= ZLT/ aTZ((rM,) 0, &,dA L (A.12)

which can be approximated by

Srer = 228 Y (rger), / 60,6, dA £, (A.13)
¢ ‘ A,

The expression provided in Eq. (A.13) allows highlighting the geomet-
rical nature of the stress stiffness matrix S: all the terms of the right
hand side of the equation, except ry, ., only depend on geometrical
properties of the eth element. Finally one can write

U Saety = D Sh Treror (A.14)
where s . is an 8 x 1 vector, whose components have been defined in
Eq. (28). By employing Egs. (A.14), (1) and (30), and by taking into
account for the local support property, one can derive
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where yy is the vector defined in Eq. (29). Consider the first and second
of Eq. (12), with A= 1:
Kipter p + KinUern = e i
Korger 5 + KppUkerp = frer -
Inasmuch as external forces and known DOFs do not depend upon the
design variables of the problem at hand, i.e.,

Mperr o Ngern
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(A.16)
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Consider now the arbitrary auxiliary vector vg, which can be reordered

such that v, * T := { Opr T ol'mT } The following relation holds:
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Eq. (A.19) simplifies to
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The above formula can be further simplified. Consider the term yrg,( ; ,,
defined as

JK

WUR\.r. (A.21)

VRetiyi, =

By using Egs. (A.3) and (A.4), and by taking into account for the local
support property, Eq. (A.21) can be expressed as
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Moreover, the components of the arbnrary vector ‘:ﬁ can be chosen in

Rel ¥ Ref, D
):( W) o:n Az

such a way that the terms mulnplylng vanish, i.e.,

{ K;v Vhr = Wi
vpp =0

By using Eq. (A.21) and the expression of vy obtained by solving the
auxiliary system of Eq. (A.23), Eq. (A.20) simplifies to

(A.23)

du
Vi Smon = O PR (A.24)

Therefore, the final expression of the generic component of the gradient
of fy defined in Eq. (23) can be obtained through Eqgs. (A.2), (A.5),



Table B.1

Comparison of optimised VSCLs-C2 (varlable-stiffness composite laminate with uniform thickness fully varlable
orthotropy) obtained through the CGMMA algorithm and the SLSQP one,

Solution Starting point  f,, [%] Max constr, t Mok ” &

RSol - 0 ] 1 0.00 0.00 0.00
C2-SLSQP RSol -15.65 110 0.844 Fig. 8(a) Fig. 8(b) Fig. 8(c)
C2-GCMMA -11.80 <0 0.882 Fig B.2(a) Fig. B.2(b)  Fig. B.2(c)
Rad - - 1.932 Fig. B.1(a) Fig. B.1(b) Fig. B.1{c)
C2,,,-SLSQP Rnd -13.74 11077 0.863 Fig. B.3(a)  Fig. B.3(b)  Fig. B.3(c)
€2y, ,GCMMA -3.53 <0 0.965 Fig. B.4(a)  Fig. B.4(b)  Fig. B.A(c)

© @Y

Fig. B.1. Random (Rnd) VSCL-C2 (variable-stiffness composite laminate with uniform thickness fully variable orthotropy) used as starting point for the comparison between the

optimisation algorithms SLSQP and GCMMA.
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Fig. B.2. Distributions of the mechanical design variables for the optimised VSCL-C2 (variable-stiffness compaosite laminate with uniform thickness fully variable orthotropy) found

by the CGMMA algorithm (solution C2-GCMMA).
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It is noteworthy that the solution of the auxiliary system of
Eq. (A.23), needed to compute the gradient of fj, can be obtained
through a FE analysis wherein all DOFs corresponding to the known
DOFs of Eq. (12) are set equal to zero, i.e, oy, = 0, and whose
generalised external nodal forces yy are computed using Eq. (29). Of
course, the components of yy; corresponding to the known DOFs of
Eq. (12), ie., wy ,, are discarded by the FE solver because applied on
constrained DOFs,

Appendix B. A comparison between results from SLSQP and
GCMMA algorithms

In this section, two sets of solutions obtained using the SLSQP
algorithm and the GCMMA one are presented for comparison purposes.

The optimal results for these solution are collected in Table B.1, which
is complemented by Figs. 8, B.2, B.3 and B.4. For the two sets, prob-
lem (51) has been solved with both algorithms in the design domain
of VSCLs-C2 considering a control grid made of 17 x 17 CPs. The first
set of results is obtained using RSol as starting point, while the same
random distribution of design variables (named Rnd and represented
in Fig. B.1) is used for obtaining the second set.

As far as the first set of results is concerned, clear similarities can
be observed between the optimal distributions of the design variables
obtained by GCMMA and SLSQP (cf. Figs. B.2 and 8). This is a strong
hint that both algorithms followed similar paths during the solution
search, however the final solution provided by GCMMA is characterised
by a value of the cost function that is higher than the one of the SLSQP
solution. This is most likely due to GCMMA adopting increasingly
smaller steps and getting trapped into a local minimum because this
algorithm enforces the feasibility of the potential solution at each
iteration (unlike SLSQP algorithm).

The second set of results, obtained using Rnd as starting point, is
shown in Figs. B.3 and B.4. The complete randomness of the starting

distributions of the design variables in Rnd (Fig. B.1) leads to optimal
distributions characterised by a higher degree of non-uniformity with
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Fig. B.3. Distributions of the mechanical design variables for the optimal VSCL-C2 (variable-stiffness composite laminate with uniform thickness fully variable orthotropy) found
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Fig. B.4. Distributions of the mechanical design variables for the optimal VSCL-C2 (variable-stiffness composite laminate with uniform thickness fully variable orthotropy) found

by the GCMMA algorithm when using Rnd as starting point (solution €2, ,-GCMMA).
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Fig. B.5. Comparison of the first buckling mode (z component of the displacement) of optimised VSCLs-C2 (variable-stiffness composite laminates with uniform thickness fully

variable orthotropy) obtained through the CGMMA algorithm and the SLSQP one.

respect to the one of the solutions previously presented. However,
SLSQP does a better job in smoothing the design variable fields which
results into a better solution (in terms of the value of the objective func-
tion) than the one provided by GCMMA. Nevertheless, it is noteworthy
that the solutions provided by the SLSQP algorithm are always barely
infeasible (but still acceptable from an engineering standpoint) because
the maximum value of the optimisation constraints is positive at the
end of the optimisation process.

Finally, the buckling mode related to the first buckling load of the
structure for the solutions listed in Table B.1 is shown in Fig. B.5
(the buckling mode for solution C2-SLSQP is shown in Fig. 14(d)). For
all solutions, it has the same characteristics of the buckling modes in
Fig. 14(d), i.e, it is a two-humps mode with a main slightly tilted and
off-centre hump, and a smaller one located in the upper left corner of
the structure (not visible in the figure).
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