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Topology optimisation of architected cellular materials from additive
manufacturing: Analysis, design, and experiments

Marco Montemurro ', Giulia Bertolino, Enrico Panettieri
Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université, I12M UMR 5295, F-33405 Talence, France

ABSTRACT

This work deals with an experimental/numerical validation of the optimised topologies found through a special
density-based topology optimisation (TO) method wherein the topological descriptor, i.e., the pseudo-density
field, is represented through a non-uniform rational basis spline (NURBS) hyper-surface. The framework is
that of multi-scale TO methods to design architected cellular materials (ACMs). Specifically, in the maost
general case, the topological variables are defined at the scale of the representative volume element (RVE)
of the ACM and at the macroscopic scale of the structure. The transition among scales is performed via a
numerical homogenisation scheme based on the strain energy of elements, The proposed formulation exploits
the properties of NURBS entities to determine the relationships occurring among the topological variables
defined at different scales to correctly state the optimisation problem and to satisfy the hypotheses at the
basis of the homogenisation method. Three design cases are considered: in the first one, TO is performed only
at the macroscopic scale; in the second one, TO is performed only at the RVE scale; in the last one, TO is
performed simultancously at both scales. Multiple design requirements related to lightness, scale separation
condition (to ensure the validity of the results of the homogenisation method) and minimum printable size
are included in the problem formulation. Particularly, the last two requirements are implicitly satisfied by
controlling the integer parameters of the NURBS entity (describing the pscudo-density field at each scale)
without introducing explicit optimisation constraints. The multi-scale TO strategy is applied to a structure
made of ACM subject to three-point bending test-like boundary conditions: for each design case, the optimised
topology is manufactured through stereo-lithography and a comparison between experimental and numerical
results (obtained through non-linear analysis conducted a posteriori on the optimised topology) is performed
to assess the effectiveness of the approach.
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1. Introduction

In the last two decades, architected cellular materials (ACMs) have
attracted the interest of the scientific community and are increas-
ingly employed in different sectors, like aerospace, automotive, bio-
mechanical, energetic, etc., due to the possibility of conceiving the
micro/meso structure to get suited performances, e.g., in terms of high
specific stiffness, specific strength, high permeability, excellent energy
absorption and damping capabilities and thermal insulation,

To this end, the scientific community is developing different ap-
proaches to optimise ACMs: parametric optimisation of the geometrical
variables of pre-defined representative volume element (RVE) topolo-
gies [1,2], topology optimisation (TO) of the RVE to satisfy a given
macroscopic elastic behaviour [3-7] and TO of the ACM at multiple
scales [8-18]. TO is, undoubtedly, the most promising approach [19-
21] to perform the concurrent topology and material optimisation
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because it allows optimising both the distribution of the material and
the properties of the material at the macroscopic scale, these latter
depending on the topology of the RVE at the lower scale (micro-
scopic or mesoscopic, depending on the problem at hand). Moreover,
when the problem is stated in the most general way, the optimisation
of the topology of the ACM at multiple scales allows avoiding the
introduction of pre-defined geometries of the RVE: in this way, a
wider design space can be explored and general, efficient solutions
can be found. The basic idea behind the multi-scale TO of an ACM
is that the material is iteratively removed from the design domain (at
each scale) and redistributed in order to minimise a prescribed cost
function by satisfying the set of design requirements. Different TO
methods have been proposed in the literature to carry out the multi-
scale TO of ACMs, like, for instance, the level-set method [22,23], the
density-based TO method making use of the solid isotropic material
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Acronyms

3PBT Three-point bending test

ACM Architected cellular material

BC Boundary condition

CAD Computer aided design

CNLPP Constrained non-linear programming problem
cp Control point

DC Design case

DC1 First design case

DC2 Second design case

DC3 Third design case

DOF Degree of freedom

FE Finite element

GCMMA  Globally-convergent method of moving asymptotes
NURBS Non-uniform rational basis spline

RVE Representative volume element

SANTO SIMP and NURBS for topology optimisation
SEHM Strain energy-based homogenisation method
SIMP Solid isotropic material with penalisation
SLA Stereo-lithography

STL Standard tessellation language

TO Topology optimisation

with penalisation (SIMP) approach [3,24] (and its improved version
wherein uncertainty on material properties and boundary conditions
is integrated in the problem formulation [25-28]) or the bidirectional
evolutionary structural optimisation method [29]. The above strategies
can be applied, simultaneously, at the upper scale (i.e., that of the
structure) and at lower scale (i.e., that of the RVE), or just at this
latter, with the aim of determining the optimal configuration of the RVE
showing a prescribed macroscopic behaviour, e.g., prescribed stiffness
with the least mass as proposed in [30], maximum shear stiffness with
a prescribed volume [31], or unconventional properties, like negative
Poisson's ratio with a prescribed volume [4]. For more details on the
multi-scale TO of ACMs, the interested reader is addressed to the review
article by Wu et al. [32].

Regardless of the adopted approach, the assessment of the effective-
ness of multi-scale TO algorithms can be done either numerically on
meaningful benchmarks problems or experimentally by means of ded-
icated tests. In the following of this introduction, a brief survey about
the experimental validation of optimised solutions obtained through
TO methods available in the literature is presented. In particular, the
discussion is limited to the well-known three-point bending test (3PBT),
which is used to assess the effectiveness of some 2D and 3D benchmark
problems subject to the same boundary conditions (BCs) of the 3PBT.

Mohan and Simhambhatla [33] proposed a numerical framework
for TO and the corresponding experiments. The optimisation is carried
out through a density-based TO algorithm making use of the SIMP
penalisation scheme. The problem of minimising the compliance of a
structure (submitted to 3PBT-like BCs) is considered with a constraint
on the volume fraction of the solid phase. The topological variables
are defined only at the macroscopic scale and a manufacturability
constraint is applied a posteriori to the optimised topology to eliminate
the elements belonging to those topological branches whose thickness
is smaller than the one prescribed by the minimum printable size.

Rashid et al. [34] employed the bidirectional evolutionary struc-
tural optimisation method to optimise the topology of the RVE of
a simple beam subject to 3PBT-like BCs. The optimisation problem
was formulated in terms of compliance minimisation subject to a
constraint on the volume, and experimental tests were performed on
two beams for which two different RVE topologies were used. The

optimised specimens were fabricated through selective laser melting.
The experimental tests were conducted to compare the mechanical
response of solid specimens with the one of samples composed of the
optimised RVE, in terms of load vs. displacements curves. Moreover,
the obtained configurations were also investigated in terms of energy
absorption capability.

Zhang and Yanagimoto [35] dealt with the problem of optimising
sandwich-like structures, wherein the core is composed of repetitive
dome units filled with micro-lattice. The goal of the optimisation
process was to find the optimal distribution of the micro-lattice at
the macroscopic scale that minimises the total compliance subject to
a constraint on the volume, The asymptotic homogenisation technique
was exploited to calculate the equivalent elastic properties of the ACM
at the upper scale. Numerical and experimental results were compared
for different types of structures. The experimental data showed that
the maximal energy absorption under 3PBT-like BCs is achieved by the
graded dome micro-lattice structures with high density.

Zhang et al. [36] proposed a methodology to get optimised struc-
tures (subject to 3PBT-like BCs) made of graded ACMs. Particularly,
the RVE of the ACMs had a predefined topology (selected from a
given database). A preliminary campaign of homogenisation analyses
was carried out to determine the law to be used at the macroscopic
scale to penalise the stiffness tensor of the equivalent homogeneous
material (replacing the ACM at this scale) as a function of the relative
density of the RVE. In this way, at the end of the optimisation process
one can obtain a graded (possibly optimised) ACM. Experimental tests
were conducted on specimens made of polylactic acid by considering
different topologies of the RVE.

A similar study on graded ACMs was proposed by Kim and Park [37]
who made use of the density-based TO method based on the SIMP
approach to perform multi-scale TO. The optimised samples were fab-
ricated by digital light processing and then submitted to 3PBT-like
BCs.

By taking inspiration from the main idea presented in the above
works, this study aims to provide an experimental validation of the
computer aided design (CAD)-compatible density-based TO method
reformulated in the framework of non-uniform rational basis spline
(NURBS) hyper-surfaces [38-40]. Particularly, the general theoreti-
cal/numerical framework to optimise the topology of ACMs at multiple
scales, recently presented in [6,18], is here applied to a structure sub-
ject to 3PBT-like BCs. The multi-scale TO method presented in [6,18] is
based on: (a) the NURBS entities to represent the topological descriptor
at both the RVE (lower) scale and the macroscopic (upper) scale; (b)
the strain energy-based homogenisation method (SEHM) to set the link
between the scales of the problem (only weak coupling among scales
is considered).

Unlike the approaches used in [33-37], the problem formulation
presented in this work is general and include different design require-
ments and different design cases (DCs) corresponding to just as many
original features.

Firstly, three DCs are considered, depending on the scales involved
in the problem formulation at which the topological descriptor, i.e., the
pseudo-density field, is defined. In the first DC, the topological descrip-
tor is defined only at the upper scale of the continuum. In the second
DC, the topological descriptor is introduced only at the lower scale of
the continuum. In the last DC, the topological descriptor is introduced
at both lower and upper scales.

Secondly, depending on the DC at hand, different requirements are
involved in the problem formulation. For instance, in the most general
case, wherein the topological descriptor is defined at all the problem
scales, the design requirements include: a constraint on the overall mass
of the structure, a constraint on the volume fraction of the solid phase of
the RVE of the ACM, a constraint on the minimum member size (which
is related to the minimum printable size that can be manufactured
through the additive manufacturing process), a constraint on the scale



separation condition [18] (to ensure the validity of the results of the
SEHM).

Lastly, for each DC, the optimised solution is fabricated through
stereo-lithography (SLA) process and tested via 3PBT according to
ASTM norm [41]. Moreover, by exploiting the properties of NURBS
hyper-surfaces, the boundary of the optimised topology is easily ex-
tracted at the end of the TO process [42,43], and a non-linear analysis
(accounting for the non-linear behaviour of the material and for the
influence of the contact between the supports of the testing machine
and the sample) is performed on the optimised topology for each DC.
The goal is to compare the force vs. displacement curve obtained
numerically and experimentally to assess the effectiveness of the pro-
posed approach. This represents the first experimental validation of the
density-based TO method reformulated in the context of the NURBS
entities developed at the I12M laboratory in Bordeaux.

The reminder of the paper is as follows. The problem description
and the general work-flow, including numerical and experimental anal-
vses, are introduced in Section 2. Section 3 presents the experimental
setup used to characterise the properties of the resin composing the
optimised specimens, whilst the fundamentals of the NURBS hyper-
surfaces theory and of the SEHM are briefly recalled in Section 4. In
Section 5, the mathematical formulation of the multi-scale TO problem
is presented in the most general case wherein the topological descriptor
is introduced at multiple scales. Section 6 illustrates the numerical
results, for each DC, for both 2D and 3D problems. In Section 7, the
experimental validation of the optimised topologies through 3PBT is
presented together with the non-linear numerical analyses conducted a
posteriori on the optimised topologies. Finally, Section 8 ends the paper
with meaningful conclusions and prospects.

Notation. Upper-case bold letters and symbols are used to indicate
tensors (matrices), while lower-case bold letters and symbols indicate
column vectors. Subscripts m and M denote quantities evaluated at RVE
scale and macroscopic scale, respectively.

2. Problem description

The main goal of this work is the determination of the optimised
topology of a structure subject to 3PBT-like BCs with the aim of max-
imising its flexural stiffness subject to design requirements on lightness
and manufacturability. Specifically, three DCs are considered. In the
first design case (DC1), the topological variables are defined solely at
the macroscopic scale. In the second design case (DC2), the topolog-
ical descriptor is introduced only at the RVE scale and the loading
conditions are imposed at the macroscopic scale. In the third design
case (DC3), the topological variables and the design requirements are
defined at both lower and upper scales. Of course, in the last two design
cases, since the RVE topology is the same at all points of the upper scale
domain, the properties of the homogenised material are uniform at the
structure-level.

It is noteworthy that in DC3, which is the most general one, unlike
the approaches presented in [34-37,44], where the goal is to obtain
an optimised topology at the macroscopic scale, by using a pattern
of a pre-defined RVE geometry at the lower scale showing a given
macroscopic elastic behaviour, in this study, all the problem charac-
teristic scales (i.e., the lower scale and the upper one) are involved
in the problem formulation by considering a weak coupling among
scales, as discussed in [18]. The work-flow of the approach presented
in this study is illustrated in Fig. 1. Particularly, the design strategy is
articulated in the following steps:

1. The characterisation of the constitutive law of the material
(i.e., the resin) composing the specimens is performed in ten-
sion and through 3PBT. From these data, the flexural Young's
modulus is calculated and used (together with the Poisson's
coefficient) to assess the elasticity tensor of the linear elastic
material used in the TO calculations (step 2). Furthermore, the

non-linear stress vs. strain curves will be used in the non-linear
static analysis (step 5) conducted a-posteriori on each optimised
topology.

2. The TO process in the NURBS-density-based framework is con-
ducted for the three design cases discussed above.

3. The boundary of the optimised topology is recovered at the end
of the TO process by exploiting the properties of NURBS entities,
as explained in [42,43]. Unlike classical density-based TO meth-
ods, wherein the pseudo-density field is defined element-wise,
the NURBS-density-based method makes use of a pure geometric
entity to describe the pseudo-density field at each scale, thus
the reconstruction of the boundary of the optimised topology
becomes an easy task.

4. The optimised topologies are then converted in suitable standard
tessellation language (STL) files. After standard post-processing,
they are manufactured through SLA process. Mass evaluation
and some geometric measurements are performed to check the
conformity of the specimens.

5. 3PBT is conducted by following the procedure detailed in the
ASTM norm [41]. The force vs. displacement curve is extracted
as a main output of the experimental tests.

6. The boundary of the optimised topology (for each design case)
is exported in the ANSYS Workbench® environment and a non-
linear static analysis reproducing the BCs of the experimental
test is performed, by considering the non-linear behaviour of
the bulk material obtained at step 1. The goal is to obtain
numerically the force vs. displacement curve.

7. A comparison between experimental and numerical results is
performed to assess the accuracy and effectiveness of the pro-
posed approach.

3. Characterisation of the bulk material properties

To assess the behaviour of the Rigid 4000 resin,” which is the
constitutive material composing the specimens, traction and flexural
tests have been carried out on standard samples according to ASTM
norms [41,45,46]. The density of this resin is ¢ = 0.0014 kg m™3 and
the Poisson's coefficient is v = 0.3,

3.1. Tensile behaviour of Rigid 4000 resin

According to ASTM D638 norm [46], the tensile Young’s modulus
and the yield strength” (tension) are measured via quasi-static tests
performed at a speed equal to | mm/min on an INSTRON 5969 machine
with a Load Cell of 50 kN.

One type of dog-bone sample is conceived, as shown in Fig. 2,
and three specimens are fabricated via SLA technology. By referring
to Fig. 2, the nominal dimensions are: LO = 165 mm, WO = 19 mm,
L =57 mm, W = 13 mm, while the actual value of W and T, measured
after manufacturing the specimens, are listed in Table 1.

The load profile chosen to assess yield strength and Young's mod-
ulus is a ramp increasing from 0 mm to 5 mm during a time interval
equal to 4r = 350 s. The tensile Young's modulus is extrapolated from
the initial region of the ¢ — ¢ curves obtained from the test.

The curves resulting from the tensile tests are shown in Fig. 3 and
the extrapolated results, in terms of tensile Young's modulus E, and
tensile yield strength o, are listed in Table 2. The resulting ¢ ~¢ curve
used to describe the tensile behaviour of Rigid 4000 resin is shown

! https://formlabs-media.formlabs.com/datasheets/1801088-TDS-FR-

0P.pdf.

? The notion of yield stress, usually employed for metals, is replaced by
the notion of yield strength for polymers but the meaning is the same: it is
the value of the stress above which the material begins to deform in a plastic
fashion.
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Fig. 1. Work-flow of the design methodology for specimens subject to 3PBT-like loading conditions,
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Fig. 2. Schematic representation of the tensile dog-bone-like specimens with the related
geometric parameters,
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Table 1
Actual values of W and T of the dog-bone samples,
Sample N. W,., [mm] 1,.; [mm]
1 13.06 3.28
2 13.05 33
3 13.01 3.29

in Fig. 4 with the related standard deviation; according to the results
shown in Table 2, the tensile Young’s modulus is E, = 3601.81 MPa,
whilst the tensile yield strength is &, = 15.80 MPa.

3.2, Flexural behaviour of Rigid 4000 resin

To assess the flexural behaviour of the Rigid 4000 resin, the ASTM
D790-03 norm [41] is followed. The bending Young's modulus has
been extrapolated as a result of the 3PBT conducted via the Adamel
Lhomargy DY 36 Load Cell of 100 kN by controlling the displacement

70
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50
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o}
=
= 30
20
-a- 1" sample
10 =2 sample
= 3" sample
« I | !
0 0.5 | 1.5 2 25 3 3.5 1 15
£ 1072
Fig. 3. o — & curves obtained from the tensile tests,
Table 2

Tensile yield strength ¢, and tensile Young's modulus E, values extrapolated from the
results in Fig. 3.

Sample N. @, [MPa) E, [MPa]
1 15.60 3536.02
2 15.74 3592.54
3 18,51 3721.93

with a speed equal to 1 mm/min; particularly, the displacement varies
as a ramp in the range [0.5.5] mm during a time interval equal to
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Fig. 4. o - ¢ curve of the average tensile material behaviour with the related standard deviation,
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Fig. 5. Schematic representation of the 3PBT apparatus with the related g ic | .
Ar = 400 s. The schematic representation of the experimental apparatus Table 3 ) i
(with the related geometric parameters) is shown in Fig. 5. A:lmal mensions of the ples used for three-point bending test and the related
o - Vi N
Three samples are used during the 3PBT. They are manufactured in s:cs LT -
the form of a parallelepiped having the following nominal dimension mple N.  Lror [mm] 5 [mm] d [(mm] m[Nmm7] E, [(MPa]
96 x 20 x 5 mm?, The flexural Young's modulus £ is calculated as: 1 96.04 20.12 5.08 27.20 1323.48
2 96.02 20.21 5.09 27.27 1309.84
_ L'm 1 3 96.01 20.06 5.08 27.27 1327.44
"7 e @
where L = 80 mm is the support span, b is the width and 4 is the
depth of the specimen (these geometric parameters are shown in Fig. 5), as:
while m is the slope of the tangent of the force-displacement curve. NN .
The values of the actual size of the specimens together with the related R, , = @y, iy [iay Ni, (60 3)
1odN

values of m and E are listed in Table 3.

The resulting ¢ — ¢ curve used to describe the flexural behaviour of
Rigid 4000 resin is shown in Fig. 6. According to the results shown in
Table 3, the flexural Young's modulus is £y = 1320.25 MPa.

4. Theoretical background
4.1. Non-uniform rational basis spline hyper-surfaces

A NURBS hyper-surface is defined as h : BV — &P where N is the
dimension of the parametric space, whilst D is the dimension of the
co-domain. The formula of a NURBS hyper-surface reads:

ad| "y
h(‘:l‘“"gn\f) - Z"' Z Rll 1N(5—l""“:N)y||. aNt (2)

=0 =0

where R, ({.....Cy) are the piece-wise rational basis functions
related to the standard Bernstein's polynomials N, (£,), (k= 1.....N)

"y "y N R
2:;,-o'" 2:;_..,-a ["’h~ P | P N/A.M(sx)]

In Eqs. (2) and (3), hi¢,.....{y ) is a D-dimension vector-valued rational
function, {; € [0,1] is the kth dimensionless coordinate (or parametric
coordinate), whilsty, , € [£P is the vector collecting the coordinates
of the generic control point (CP). The number of CPs along the ¢
parametric direction is (n; + 1), with n; € M, while p, € MU0 (j =
l.....N) is the basis functions degree along the same direction. The
jth CP coordinate y',"' iy s stored in the array Y'' € R +ipexiay b
j=1,...D. The expﬁlclt' expression of CPs coordinates is:

(1 (L

in =“3|- PRESTRS o 2

v (4)

The CPs layout is referred to as control hyper-net [47]. The generic CP

affects the shape of the NURBS entity by means of its coordinates. The

overall number of CPs constituting the hyper-net is:

N
(n, + 1). (5)

Nep 1=
1=1
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Fig. 6. o —« curve of the average flexural material behaviour, The standard deviation
is not reported since it takes very small values in the range [0.08-0.21] MPa,

In Eq. (3), a weight @, is associated to the generic CP. The higher
the weight the more the NURBS entity is attracted towards the as-
sociated CP. For each parametric direction {;, the NURBS blending

functions N, ({,) appearing in Eq. (3) can be defined recursively as:
I, af ok << o' \
Ny olG) = T (6)
0, otherwise,
» ) k) »
sk =Y . Viergrt Sk .
N gl = m_*‘thn,.q-l(H)"' o Nisra1 € @
"1‘.+q— Ty "n,upl - ":‘-H
g=1....pp. k=1,....N,

where each constitutive blending function is defined on the knot vector:

T _ o (k)
Vi = (00,0060 o
pytl Pt (8)
Vg ERMY k=1,...,N,
with:
me=n, +p + 1 9)

The NURBS blending functions are characterised by several interesting
properties: the reader is addressed to [47] for more details on the topic.
Here, only the local support property is recalled because it is exploited
in the context of the NURBS-density-based method [38-40]:

Ry (i iy) #0,
P » RIUER e [N N
if ({),....¢x)E [1,"” 3 U g4l [ X e X [1.:~ .1.‘:.\,”.\’“

Eq. (10) implies that each CP (and the associated weight) affects only a
precise zone of the parametric space, which is denoted as local support.

[' (10

4.2, The strain energy-based homogenisation method

When dealing with the design of ACMs at multiple scales, a ho-
mogenisation procedure is mandatory to set the transition among the
scales of the problem at hand. At the lower scale, the RVE of the ACM
can be interpreted, from a mechanical standpoint, as a heterogeneous
medium composed of two constituents, i.e., the bulk material and the
void. At the macroscopic scale, instead, it is modelled as an equiva-
lent homogeneous anisotropic medium whose mechanical response is

described by a set of equivalent material properties. Accordingly, the
macroscopic structural responses will depend upon both the topological
descriptor defined at the RVE scale (through the calculation of the
equivalent material properties of the homogenised continuum) and the
one introduced at the macroscopic scale to describe the distribution of
the equivalent homogeneous material (see Section 5 for more details
on the definition of the topological variable at each scale).

To assess the macroscopic structural responses and their depen-
dency upon the topological variable introduced at the lower scale, in
this study, the macroscopic elastic behaviour of the RVE is determined
using the SEHM of periodic media [48]. It is noteworthy that two
variants of the SEHM are available in the literature: the first one makes
use of the elements averaged stresses to compute the components
of the macroscopic elasticity matrix C,, [48], whilst the second one
employs the strain energy of the elements to determine C,, [6]. As
discussed in [6], the SEHM based on the strain energy of elements
requires the least number of finite element (FE) analyses to compute
the components of C,, (and the related gradient with respect to the
topological variable defined at the RVE scale). Accordingly, only this
variant is used in the following to set the scale transition.

The SEHM technique makes use of the repetitive unit of the ACM
to evaluate the resulting macroscopic physical properties. The basic
feature of the SEHM is the assumption that the strain energy of the
RVE of the ACM and the one of the corresponding volume of the
homogeneous solid at the macroscopic scale are equal. To evaluate
the elastic response of the ACM at the macroscopic scale, two main
hypotheses are considered: (a) linear, elastic behaviour for the consti-
tutive material of the RVE; (b) the buckling of the ACM topological
branches is disregarded.

To determine the stiffness tensor C,, of the ACM at the macroscopic
scale, the RVE is submitted to an average strain field ¢, i.j = 1,2.3
(tensor notation). The six independent components of the average strain
tensor are applied through the following set of periodic BCs on the RVE
faces [48]:

(1]

“m(?'anl s X2e X3) = Uy (0, X2, Xm3) = 2amlf,ml'

0 x,; €24, 05 x5 < 24a,3),

um(xml ’ 2amZ‘ me) - um(xml .0, X,"_‘) = 20»1252"2‘ (1 1)
0= Xl =< zaml* 0= X =< 20m3)'

Uy (X g s X s 20,030 = U, (X0 X0, 0) = Za,",f;'"},
0= X1 S 2"'ml' 0= X2 S Zaml)'

where i = 1,2,3. In the above equations, L, = 2a,, is the characteristic
length of the RVE along the x, axis, while i, is the component of the
displacement field along the same axis.

Consider the equilibrium equation of the FE model of the RVE. In
the most general case it reads:

-

K, i, =f,,

X . . 12
a,. fn € RNwnor ['(w € ENwnor*Nupor | a2

where N, o is the overall number of degrees of freedom (DOFs) of the
structure before the application of the BCs, while K,, is the non-reduced
(singular) stiffness matrix of the RVE. 4, is the non-reduced vector of
generalised displacements containing both imposed and unknown DOFs
of the FE model and f, is the non-reduced vector of generalised nodal
forces (both known and unknown quantities). The expression of the
above vectors and matrix is:

N K K u s
K, :=[ T -'"BC].I‘!,,, :={ " }.l’,,, :={r‘”}.
KWBC l(m UynBC Tm

u,, f, € RNwvor Uuper Ty € RNanc,
K,, € RVe0oe*Nanor K o € RNabor*Nuc ['(m € RNanc*Nune

(13)

In Eq. (13), N,por is the number of unknown DOFs, while N, g
represents the number of DOFs where BCs on generalised displacements
are applied (of course N, por = Nopor + NVysc)- U, and u, gz are



the unknown and known vectors of generalised displacements, respec-
tively. f,, is the vector of generalised external nodal forces, whilst r,,
is the vector of generalised nodal reactions where BCs on generalised
displacements are imposed. K,,, K, zc and K,, are the stiffness matrices
of the FE model of the RVE after applying BCs. Since periodic BCs of
Eq. (11) are imposed in terms of displacements and no external forces
are applied to the FE model of the RVE, i.e., [, = 0, the equilibrium
problem of Eq. (13) is of the Dirichlet’s type.

By considering elementary (i.e., uni-axial and bi-axial) strain com-
ponents in Eq. (11), and by imposing the equivalence between the
strain energy of the equivalent homogeneous anisotropic continuum
and that of the RVE of the ACM, the components of tensor C,, (Voigt's
notation) can be determined as [6]:

W, (2
CMu=L:A)2. k=1,...6, (14)
Veve (€
w,, (‘Eu"" ) 0 0
wj
Cny = 55 ~Cwugo—Cuyga hJ=1..6.1#).(5)
- szé""t'“/ .‘E"‘) £

Eq. (14) is used to evaluate the terms belonging to the main diag-
onal of tensor C,,, whilst Eq. (15) allows for determining the terms
outside the main diagonal. W, (¢ ) and W, (zz,.zfu) represent the
work of internal forces, evaluated for uni-axial and bi-axial strain fields,
respectively, while Vi = 8a,,0,,0,; is the volume of the design
domain of the RVE in the case of 3D problems. It is noteworthy that
Eq. (14) must be solved before Eq. (15): in the most general case,
i.e., for a macroscopic anisotropic behaviour, six static analyses must be
solved for 3D problems to calculate the diagonal terms of the stiffness
tensor and to deduce the extra diagonal terms via the superposition
principle; see [6] for more details on this topic.

5. Multi-scale topology optimisation: the NURBS-density-based
method

As stated in Section 2, the goal of this study is to determine the
optimal topology of the continuum (at each characteristic scale of the
problem at hand), which minimises the generalised compliance [40] by
meeting the following design requirements:

1. A constraint on the mass fraction imposed at the upper scale.

2. A constraint on the volume fraction imposed to the topolog-
ical descriptor defined at the lower scale (this constraint is
introduced only for DC3).

3. A constraint on the minimum thickness that can be fabricated
through the SLA process. This constraint is formulated as a
minimum member size constraint at the structure scale or at the
RVE scale, depending on the problem formulation.

4. When the topological descriptor is defined at both lower and
upper scales (DC3), a constraint on the scale separation con-
dition is introduced to ensure the validity of the results of
the homogenisation technique in calculating equivalent elastic
properties of the material at the upper scale, according to the
strategy discussed in [18]. Since the topology of the RVE and
the one of the structure are continuously changing during the
optimisation process, introducing this type of constraint is of
capital importance to avoid the occurrence of too small topo-
logical branches at the upper scale whose size could become of
the same order of magnitude of the RVE characteristic length (in
such circumstances the results of the homogenisation technique
are not correct). Specifically, the smallest thickness of the topo-
logical branches occurring at the upper scale must be greater
than or equal to a multiple of the characteristic length of the
design domain at the lower scale.

For the sake of brevity, the problem formulation is presented only
for the most general case (DC3): in this case the goal is to determine
the optimised topology of the ACM at both RVE scale and macroscopic
scale. This problem can also be interpreted as a design problem of a
complex anisotropic medium whose goal is the concurrent optimisation
of the material properties (performed through the optimisation of the
RVE topology at the lower scale) and of the macroscopic topology
(i.e., the distribution of the equivalent homogeneous anisotropic ma-
terial at the upper scale). Since the RVE topology is the same at all
points of the upper scale domain, the properties of the homogenised
material are uniform at this scale.

Remark 5.1. In this study, the characteristic scales of the problem are
weakly coupled, which means that the design requirements calculated
at the macroscopic scale (and involved in the problem formulation)
depend upon the topological variables defined at both scales. On the
one hand, quantities describing the behaviour of the RVE at the up-
per scale (e.g., the equivalent elastic properties of the homogeneous
anisotropic material replacing the RVE, the volume fraction of the
RVE, etc.) depend only upon the topological descriptor defined at the
RVE scale. On the other hand, the structural responses defined at the
macroscopic scale (e.g., the compliance, the displacement field, etc.)
depend upon the topological descriptors defined at both scales. Of
course, the dependency of the macroscopic structural responses upon
the topological descriptor defined at the lower scale is implicit because
the RVE topology affects the components of the macroscopic elasticity
matrix C,,.

Remark 5.2. The notion of scale separation introduced in this work is
the one ensuring the validity of the results of the homogenisation pro-
cess at the upper scale within a continuously changing topology. This
concept should not be confused with the notion of coupling between
scales, The scales are separated only in terms of characteristic lengths,
but they are coupled because the structural responses at the upper scale
depend upon the geometrical and material parameters defined at the
lower scale. More details on this aspect are available in [18].

The main features of the approach are briefly described here only
for 3D multi-scale TO problems. The characteristic scales of the prob-
lem (and the relative geometrical features) are illustrated in Fig. 7 in
the most general case (DC3).

5.1. Design variables

Consider the compact Euclidean space D, ¢ £, defining the design
domain at the generic yth scale (y = m, M), in a Cartesian orthogonal
frame O(x 1, x 0. % 3):

D, ={x} = (x,1.x0.%3) €ER i x, €10,L,], =123}, a6
r=mM,

where L ; is the characteristic length of the domain defined along x
axis, as shown in Fig. 7. In the density-based TO approach, the material
domain 2, C D, at the generic scale is identified by means of the
pseudo-density function p (x,) € [0.1] for x, € D 2 p (x,) = 0 means
absence of material, whilst o, (x ) = 1 implies presence of material. The
number and the type of design variables depend, of course, upon the
characteristic scales involved in the problem at hand. Particularly, three
design cases are considered in this work: (a) the topological descriptor
is defined only at the macroscopic scale (DC1), hence y = M; (b)
the topological descriptor is defined only at the RVE scale (DC2), thus
z = m; (c) the topological descriptor is defined at both scales (DC3),
hence y =m. M.

In the framework of the NURBS-density-based method, the topo-
logical variable (at each scale) is represented by a NURBS entity.
Specifically, a NURBS entity of dimension D + | is used to describe
the pseudo-density field, i.e., the topological variable, of a problem
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Fig. 7. Characteristic scales of the two-scale topology optimisation problem: (a) the upper scale of the structure and (b) the lower scale of the repr

the architected cellular material,

of dimension D. Therefore, for a 3D TO problem a 4D NURBS hyper-
surface is needed to describe the part topology [39,40]. The first three
coordinates of the hyper-surface correspond to the Cartesian coordi-
nates defining the domain, while the last coordinate corresponds to the
pseudo-density field that reads:

2 L)

el Fp2 B3

PCCp2iCps) = z Z z R'z

T 1=07 2=07 3=0

1'12'13(91‘413'*1‘)”I'zl',zu." (]7)

z=mM,
where p PRTETN is the pseudo-density value at the generic CP, while
R i, are the rational basis functions of Eq. (3). The dimensionless
parameters {,; can be obtained as:

X
;H=L—'”, y=mM, j=123. (18)

X

Among the parameters governing the shape of the NURBS entity,
only the pseudo-density at CPs and the associated weights are included
in the design variable vectors £, and § , defined as:

T T
f“ = (Puuo- o Punan ) , f,g = (W(m»--- -('-’nllnl:nl,) ' (19)
£1.8,0 € R,

accordingly, the number of design variables for each scale is, at most,
Nye = 2n,cp. ¥ = m M. The other parameters involved in the
definition of the NURBS entity, i.e., degrees, knot-vector components
and number of CPs, are set a-priori at the beginning of the TO and are

not optimised: for more details the reader is addressed to [39,40].
5.2. Objective function

At the lower scale, the stiffness matrix of the FE model of the RVE
is penalised as follows:

N
l‘tm = z f‘:‘- (4:"1 ’ 4m2) i';.-Kmri‘uu-' (20)
e=1

where p,,, is the fictitious density of Eq. (17) computed at the centroid
of the generic element ¢ and N, is the total number of elements
composing the FE model of the RVE. L, € RNor*Naor s the
connectivity matrix of element ¢ (whose number of DOFs is N¢ ),
whilst K, , € ®Vwor*ovor is the non-penalised element stiffness
matrix expressed in the global reference frame of the model. In Eq. (20),
a > 1 is a suitable parameter that aims at penalising all the meaningless

tative volume el t of

densities between 0 and 1: in agreement with the classic SIMP approach
this parameter is set as a = 3.

The pseudo-density function defined at the lower scale affects also
the mechanical performances of the structure at the upper scale via
the elasticity tensor C,,, according to Eqgs. (14) and (15). Indeed, the
elasticity tensor of the equivalent homogeneous anisotropic material is
involved in the definition of the global stiffness matrix of the FE model
at the macroscopic scale K,,. Accordingly, matrix K,, depends upon
the pseudo-density fields defined at both scales as follows:

Nare

Ky = Y sy (C.wl‘fuz)LL,L B}, Cys (&1 €na) By d QL.
e=1 M

Me

(21)

where N, is the number of elements constituting the FE model at
the upper scale, p,,,. is the fictitious density of Eq. (17) computed at
the centroid of the generic element ¢ of the FE model at upper scale,
Ly, € Rwwor™Munor s the connectivity matrix of element ¢ (whose
number of DOFs is N{, ), while By, € R™"uoor is the matrix
representing the product between the linear differential operator and
the shape function matrices of the generic element.

The formulation of the equilibrium problem for a linear static anal-
ysis, considering the most general case of inhomogeneous Neumann-—
Dirichlet BCs, reads:

KM"M - fM- OM-fM e R""Mn(»‘]'(‘“ € BV upor*Nyor 22)

where Ny ,or is the overall number of DOFs of the FE model at the
macroscopic scale, whilst @,, and f,, are the non-reduced vectors of
generalised displacements and forces, respectively. In analogy with
Eq. (13), Eq. (22) can be rewritten as follows:

IKM . Kamne { Uay }={r.u}
Kysc' Ky UaBC Fas

LLEYE r'“ € RVunor, Uypes Py € EN“HC-

K,, € RNwoor*Nunor K, o € RNvooe*Nune | K € RNwsc*Nuse |
(23)

where the physical meaning of the different quantities is the same as the
counterparts defined at the lower scale, see Section 4.2, As discussed
in [40], under inhomogeneous Neumann-Dirichlet BCs, the generalised
compliance C,, at the upper scale is defined as:

Cy =1l uy —rluype. (24)



Since in this study the continuum is submitted to 3PBT-like BCs at
the upper scale, and since the 3PBT is performed by controlling the
imposed displacement, only inhomogeneous BCs of the Dirichlet’s type
must be considered in Eq. (24), i.e., uype # 0 and f, = 0. Accordingly,
the generalised compliance simplifies to:

Cy = —TL“Mnc- (25)

Therefore, the generalised compliance is a non-positive definite func-
tional in the case of the 3PBT.

Inasmuch as the solution search for the multi-scale TO problem is
performed via a deterministic algorithm, the derivation of the formal
expression of the gradient of the objective function with respect to the
topological variable introduced at each scale (and of the constraint
functions too) is needed to speed up the optimisation process. Such
expressions were derived in previous works [6,40] and are reported
in Appendix for the sake of completeness.

5.3. Constraint functions

The design requirements, which are integrated in the problem for-
mulation as optimisation constraints, are presented in the following.
The first requirement is related to the lightness of the structure and is
formulated in terms of a constraint on the overall mass of the structure
mye. The mass of the structure reads:

miyg = T Vg (26)
with

Nate
Vie = 2, PateVase: (27)

=]
In Eq. (27), V), is the volume of the generic element composing the
mesh of the FE model at the upper scale. In Eq. (26), ry, is the density
of the equivalent homogeneous anisotropic medium which is defined
as:
N

-
%Y Ve (28)
VRVh ; me’ me

Ty =

where 1, = ¢ is the density of the constitutive material composing the
RVE of the ACM and V,, is the volume of the generic element compos-
ing the FE model of the RVE. Therefore, the lightness requirement is
formulated as:

g
M pfref
In the above formula, my,  is the reference value of the macroscopic
mass, whilst ¢, is the imposed mass fraction. A further requirement
is considered in terms of the volume fraction of the solid phase at the
RVE scale when DC3 is considered. To this end, the RVE volume is
introduced as:

£108a1 S i) 1= —mm <0, (29)

\Al'
Vi 2= D PV (30)
e=1

Accordingly, the requirement on the volume fraction of the RVE solid
phase is expressed as:

£2(Em1- L) = VV—"' = Ymv 20, (31)
RVE
where 7, - is the imposed volume fraction.

As stated above, two further requirements are included in the prob-
lem formulation. The first one deals with the scale separation condition
if the topological descriptor is defined at both lower and upper scales
(DC3). As discussed in [18], this requirement is introduced through
a minimum length scale condition on the topological variable at the
upper scale. Specifically, to ensures the validity of the results of the
SEHM, the minimum size of the topological branches at the upper scale
must be greater than or equal to a multiple of the characteristic size of

the RVE at the lower scale. The second requirement is a technological
constraint related to the minimum printable size and it is introduced as
a minimum member size constraint at the lower scale (DC2 and DC3)
or upper scale (DC1), depending on the problem formulation.

The main advantages of the NURBS-density-based method are re-
called here below.

+ The topological descriptor, i.e., the pseudo-density field, at the
generic scale, for a problem of dimension D is described through
a geometric entity of dimension D + 1, i.e., the NURBS hyper-
surface.

Unlike the classic density-based TO method, wherein the pseudo-
density field is defined element-wise, thanks to the local support
property of the NURBS basis functions, the NURBS-density-based
method does not require the introduction of artificial filtering
techniques to avoid checker-board effect and to avoid/reduce the
dependency of the optimised topology to the mesh quality. Par-
ticularly, the optimised topology (at the generic scale) does not
depend about the size of the elements composing the mesh of the
FE model (at that scale), but depends, of course, upon the integer
parameters tuning the size of the local support, i.e., degrees of
the Bernstein’s polynomials and number of CPs [49]. This means
that an eventual mesh refinement has an impact only on the value
of the structural responses (displacements, strains, stresses, etc.),
but not on the minimum member size of the topology.

Fig. 8 illustrates one of the main advantages of the NURBS-
density-based method: the possibility of exporting a CAD-
compatible entity to any CAD software. This allows for an easy
reconstruction of the boundary of the optimised topology for 2D
problems. Conversely, for 3D problems, wherein a 4D NURBS
hyper-surface is used to represent the topology, the process is
more elaborate because it requires the formulation of a dedicated
surface fitting problem as discussed in [42]. Regardless of the
problem dimension, the boundary of the optimised topology is
available at each iteration (thus geometric constraints related to
the properties of the boundary can be imposed in a relatively
easy way) and can be retrieved straightforwardly by evaluating
the threshold value for the density field meeting the optimisation
constraints (this operation is automatically done by the algorithm
at the end of the optimisation process).

A further advantage of the NURBS-density-based method is in the
handling of the geometric constraints imposed on the topological
variable at the generic scale, as widely discussed in [49]. Specifi-
cally, since the pseudo-density field describing the topology of the
continuum, at both scales, is described through a NURBS hyper-
surface, it is possible to set the integer parameters (number of
CPs and basis functions degree along each parametric direction)
governing its shape to automatically satisfy the minimum length
scale requirement, without introducing an explicit optimisation
constraint in the problem formulation. Therefore, according to the
guidelines provided in [18,49], the scale separation requirement
and the manufacturing requirement are controlled by means of
this feature.

.

More details on the reconstruction strategy and on the advantages of
the NURBS-density-based algorithm are available in [38,39,42].

5.4. Problem formulation

Here below, the problem formulation is reported for the most
general case, wherein the topological descriptors are introduced at both
lower and upper scales [18]. Accordingly, the multi-scale TO problem is
formulated as a constrained non-linear programming problem (CNLPP)
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GCMMA algorithm parameters.

Parameter Value D C

move 0.1

albefa 0.1

Stop criterion Value

Maximum n. of function evaluations 10000

Maximum n. of iterations W xn,,

Tolerance on objective function 10

Tolerance on constraints 0

Tolerance on input variables change 0 2“m'2

Tolerance on Karush -Kuhn -Tucker norm 10
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(32)

Of course, the number and the type of constraint functions as well as
the number of design variables involved in the problem formulation
depend upon the DC at hand, as discussed in Section 2. Particularly,
in Eq. (32), the design requirement g, is always active, whilst g, is
active only when the topological descriptor is introduced at the both
macroscopic scale and RVE scale (DC3). Moreover, in Eq. (32), Cyy.¢
is the reference value of the macroscopic compliance, whilst p, . and
Pemax are lower and upper bounds on the pseudo-density at each CP,
and w,,.,, and w_ . are the bounds on the generic weight (the bounds
on the design variables are introduced at each characteristic scale). The
overall number of design variables of problem (32) depends upon the
DC at hand and it is equal to: (a) n,,, = 2n,cp for DC1; (b) n,,, = 2n,cp
for DC2; (¢) n,,, = 2n,cp + 2nyep for DC3.

6. Numerical results

The proposed methodology is tested on both 2D and 3D problems:
all calculations are carried out by means of the code SANTO (SIMP
and NURBS for topology optimisation). The software, coded in python
language, is interfaced with the FE code ANSYS” to compute the me-
chanical responses of the structure at each scale. Moreover, the CNLPP
of Eq. (32) has been solved through the globally-convergent method of
moving asymptotes (GCMMA) algorithm [50], whose parameters are
listed in Table 4.

Fig. 9. Finite eclement model of the representative volume element with its
characteristic size for 2D problems,

The design variables bounds are set as follows: p .., = 107 o,
3 @ i = 0.5, @s,, = 10 ( = m. M). Regarding the other continuous
parameters involved in the NURBS entity definition in the 2D and 3D
cases, the non-trivial knot vectors components in Eq. (8) are evenly
distributed in the interval 10, 1[.

Furthermore, symmetry constraints are imposed to the pseudo-
density field describing the RVE topology: double symmetry for 2D
problems (with respect to axes x,,, = a,, j = 1.2) and three planes
of symmetry (x,,, = a,;, j = 1,2.3) for 3D problems, in order to get an
optimised topology characterised, at most, by an orthotropic behaviour.
The presence of symmetry axes/planes implies a reduction in the design
variables count, at the yth scale, according to the following formulz:

nﬂl @, for B —spline entity,

v (33)
211,Z, 8,,. for NURBS entity,

M ovar =

with N =2 and N =3 for 2D and 3D problems, respectively, and

Nyt 1

. if ny, s odd,

2
= l”ﬂ+l

0 34)

J + 1. otherwise,

where |--] is the floor operator.
The main goal of the numerical tests is to investigate the influence
of the problem formulation, i.e., DC1, DC2 and DC3, on the flexural
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Fig. 10. Finite element model of the design domain at the macroscopic scale with its characteristic size for 2D problems,

stiffness of the optimised solution. For all benchmarks, the Rigid 4000
resin, whose physical properties are described in Section 3, is used as
bulk material. Of course, all optimisation analyses are conducted under
the hypothesis of small displacements and strains and by assuming a
linear elastic behaviour of the Rigid 4000 resin by using the flexural
modulus Ey calculated in Section 3.2, a Poisson's coefficient v = 0.3
and a density ¢ = 0.0014 kg m~>, The reference macroscopic mass
of the structure and the reference macroscopic compliance are those
characterising the starting solution. Moreover, the reference volume
(at the generic scale) is the volume of the overall design domain of
dimension D.

6.1. 2D results

Three different analyses are performed in 2D, corresponding to
design cases DCI1, DC2 and DC3 introduced in Section 2. In cases DC2
and DC3, the design domain of the RVE, illustrated in Fig. 9, is a
square of size L, = 2a,, = 2a,, = 4 mm. Three static analyses are
performed on the FE model of the RVE to determine the elasticity tensor
of the ACM at the macroscopic scale through the SEHM discussed in
Section 4.2, For each analysis, the periodic BCs of Eq. (11) are applied
through constraint equations among homologous nodes belonging to
the opposite faces of the RVE, by considering elementary unit strains.
The FE model of the RVE has been coded in the Ansys automatic
parametric design language and the mesh is made of N, = 3600
PLANE182 elements (four nodes, two DOFs per node, plane stress
hypothesis with unit thickness).

For all the analyses the design domain at the macroscopic scale,
shown in Fig. 10, is of rectangular shape and subject to 3PBT-like
BCs. Its geometric parameters are: ay, = 100mm, ay, = 60mm,
Lg¢ = 10 mm and L, = 2%, A static analysis is conducted on the
macroscopic FE model whose mesh is made of N,,, = 1500 PLANE182
elements (four nodes, two DOFs per node, plane stress hypothesis with
thickness equal to 30 mm). The displacement component along x,.,
axis is zero for the node located at x,,, = L, while the node located
at x,;, = ayy — Lg is clamped. A vertical displacement d,;, = ~2mm
is applied at (XM‘.Xuz) = (L‘\'.GMQ).

As stated above, when the design case DCI is considered, only the
constraint g, is integrated in the CNLPP of Eq. (32) and the mass
fraction is set to y,,, = 0.4. The problem is solved by considering
a NURBS surface characterised by »nycp = 50 x 30 CPs and blending
functions degree p,,, = 3, (i = 1,2). As explained in [49], this choice
corresponds to a minimum length scale dy,.. = 5 mm. For DC1 the

initial guess at the macroscopic scale is characterised by a uniform
density field whose value is determined in order to satisfy the constraint
on the macroscopic mass fraction of Eq. (29).

Regarding the design case DC2, only the constraint g, is integrated
in the CNLPP of Eq. (32) and the mass fraction is set to y,,,, = 04.
The problem is solved by considering a NURBS surface characterised
by n,cp =31 x 31 CPs and blending functions degree p,,, =3, (i =1,2),
which corresponds to a minimum length scale 4, ., = 0.4 mm at the
lower scale. For DC2 the initial guess at the RVE scale is characterised
by a central hole, which is generated by setting to zero the value of
some CPs of the NURBS entity. Particularly, the number of CPs whose
pseudo-density is zero is the result of an iterative process that stops
when the constraint on the mass fraction at the macroscopic scale of
Eq. (29) is meL

Finally, for DC3, problem (32) is solved by considering both con-
straints g, and g, and by using a mass fraction of y,,,, = 0.4 at the
upper scale and a volume fraction of y,,, = 0.3 at the lower one. The
NURBS surface is characterised by n_cp = 31 x 31 CPs at the RVE scale
and by nycp = 30 x 10 CPs at the macroscopic one, with the same
value of blending function degree p,, = py, = 3. (i = 1,2). This choice
corresponds to a minimum length scale of d,,,, = 0.4 mm at the lower
scale and of d ..., = 20 mm at the upper scale (in this way the number
of RVEs included in the thinnest topological branch at the macroscopic
scale is equal to Npyg = 5). For DC3 the initial guess at the RVE scale
is characterised by a central hole, which is generated by setting to zero
the value of some CPs of the NURBS entity. Particularly, the number of
CPs whose pseudo-density is set equal to zero is the result of an iterative
process that stops when the constraint on the RVE volume fraction of
Eq. (30) is met. Conversely, the initial guess at the macroscopic scale
is characterised by a uniform density field whose value is determined
in order to satisfy the constraint on the macroscopic mass fraction of
Eq. (29).

The optimised solutions are reported in Fig. 11: results are provided
in terms of the number of iterations to achieve convergence (N, ), of
the value of reference and optimised compliance and mass, as well as
of the minimum member size measured at the end of the optimisation
process, i.e., d",_,,,i,, with (y = m, M). The macroscopic elasticity ma-
trices related to the optimised solutions of design cases DC1, DC2 and
DC3 are reported in Table 5,

From the analysis of the results, the following remarks can be
inferred:
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1. The optimised topology obtained when considering DC1 is char-
acterised by the highest flexural stiffness, followed by the op-
timised solutions of DC3 and of DC2, respectively. Particularly,
this result is due to the influence of the topology at the macro-
scopic scale on the generalised macroscopic compliance, which
is stronger than the influence of the topology at the lower scale
(or, equivalently, of the influence of the equivalent homoge-

main orthotropy axis aligned with axis x,,,. This is an expected
result because the displacement imposed at the macroscopic
scale to simulate the BCs of the 3PBT is applied along the x,,,
axis. Moreover, the volume fraction of the optimised topology
of the RVE for DC2 is lower than the volume fraction of the
optimised topology of the RVE for DC3 because, the constraint

neous material at the macroscopic scale) on the same quantity.
. When considering DC2 and DC3, the optimised topology at the
RVE scale shows a macroscopic orthotropic behaviour with the

on the macroscopic mass fraction being the same among the
two design cases, the RVE topology of DC2 evolves towards a

configuration characterised by a lower volume fraction of the



Table 5
Elasticity matrix of the optimised topologies {llustrated in Fig. 11,

Design case Stiffness matrix [MPa]
551923 236538 0
Del C, =[236538 551923 0
| 0 0 1576.92
(18825 269.78 0
D2 C, =[26978 s67.12 0
0 0 247.91
[672.11 37230 0
pC3 Cy=[37230 119643 0
0 0 Ham

solid phase to satisfy the design requirement on the overall mass
of the structure.

3. One can notice that, depending on the macroscopic loading con-
ditions, it is not necessarily useful to formulate the TO problem
by defining the topology descriptor at multiple scales. Specifi-
cally, for 3PBT-like BCs, an isotropic RVE (i.e., an RVE com-
pletely filled by the isotropic constitutive material) reveals to
be the optimal solution in terms of the behaviour of the equiv-
alent homogeneous material used at the macroscopic scale. As
expected, the same topology illustrated in Fig. 11 (a) can be
obtained in design case DC3, by suppressing the constraint on
the volume fraction at the lower scale and by choosing the same
number of CPs used in DC1 for the NURBS entity defined at the
macroscopic scale. In this case, the pseudo-density at the lower
scale converges towards the unit value for all the CPs of the
NURBS entity, whilst the pseudo-density field at the upper scale
converges exactly towards the same configuration as DC1.

4. As discussed in [49], thanks to the local support property of the
NURBS basis functions, the constraint on the minimum length
scale (at both lower and upper scales) is easily satisfied for
all design cases without introducing an explicit optimisation
constraint in the problem formulation.

6.2. 3D results

Analogously to the 2D case, three analyses are performed in the
3D case, corresponding to design cases DC1, DC2 and DC3. For DC2
and DC3, the design domain of the RVE, shown in Fig. 12, is a cube
of size L,, = 2a,,, = 2a,, = 2a,, = 4 mm, The elasticity tensor at
the macroscopic scale is assessed via six static analyses performed on
the FE model of the RVE. The periodic BCs of Eq. (11) are applied
through constraint equations among homologous nodes belonging to
the opposite faces of the RVE, by considering elementary unit strains,
for each analysis. The FE model of the RVE has been coded in the
Ansys automatic parametric design language and the mesh is made of
N, = 8000 SOLID185 elements (8 nodes, 3 DOFs per node).

For all the analyses the macroscopic scale domain, shown in Fig. 13,
is a parallelepiped submitted to 3PBT-like BCs. The geometrical param-
eters of the design domain at the macroscopic scale are: a,; = 100 mm,
apy = 60mm, ayy = 30mm, Lg = 10 mm and Ly = 2. A static
analysis is conducted on the macroscopic FE model whose mesh is made
of Ny, = 22500 SOLID185 elements (8 nodes with 3 DOFs per node).
The BCs are set as follows: w,;, = 1,3 = 0 is set on the nodes located
at xp, = Lg, while wy, = up; = uyy5 = 0 is set on the nodes located
at xyg, = ayy — L. A vertical displacement d,, = —2mm is applied on
nodes located at (x ., Xyp2) = (Ly, @pa)

Regarding DC1, only the constraint g, is integrated in the CNLPP
of Eq. (32) and the mass fraction is set to y,,,, = 0.4. The problem is
solved by considering a NURBS hyper-surface characterised by nycp =
25% 15x 7 CPs and blending functions degree p,,, = 3. (i = 1,2.3). This
choice corresponds to a minimum length scale dy, ;. = 5 mm.

As far as DC2 is concerned, only the constraint g, is integrated in
the CNLPP of Eq. (32) and the mass fraction is set to y,,. = 0.4. The

20,

Fig. 12. Finite element model of the rep ive 1 1 with its

characteristic size for 3D problems,

problem is solved by considering a NURBS hyper-surface characterised
by m.ep = 11 x 11 x 11 CPs and blending functions degree p,, =
3, (i =1,2,3), which corresponds to a minimum length scale d,,.., =
0.4 mm within the domain.

Finally, regarding DC3, problem (32) is solved by considering both
constraints g, and g, and by using a mass fraction of y,,, = 0.4 at the
upper scale and a volume fraction of y,;,, = (0.3 at the lower one. The
NURBS hyper-surface is characterised by n cp = 11 x 11 x 11 CPs at the
RVE scale and by nyp = 15x 10x 5 CPs at the macroscopic one, with
the same value of blending function degree p,, = py, = 3. (i = 1.2,3).
This choice corresponds to a minimum length scale of 4, = 0.4 mm
at the lower scale and of d .. = 20 mm at the upper scale.

For each design case, the initial guess at both scales is chosen by
following the same procedure used in 2D analyses.

The optimised solutions are reported in Fig. 14, results are provided
in terms of the number of iterations to achieve convergence (N, ), of
the value of reference and optimised compliance and mass as well as
of the minimum member size measured at the end of the optimisation
process, i.e., d,, i, with (7 = m, M).

The macroscopic elasticity matrix related to the optimised solutions
of design cases DC1, DC2 and DC3 are reported in Table 6. The same
remarks done in the case of 2D analyses hold for the optimised solutions
found in the 3D case.

Remark 6.1. The elasticity matrices reported in Table 6 are expressed
through Voigt's notation [51]. In this study, the passage from tensor
notation to Voigt's one is expressed by adopting the ANSYS convention
in terms of two-way relationship among indices:

{11,22,33,21,32,31} & {1.2,3,4,5,6). (35)

7. Validation of the optimised topologies through three-point
bending tests

In this section, the optimised topologies found in Section 6 are
validated, a posteriori, through a comparison with the results of ex-
perimental tests. For the sake of brevity, only 2D optimised solutions of
design cases DC1, DC2 and DC3 are printed by means of SLA technology
by extruding the related geometries. Then, the 3PBT is conducted on
the optimised topologies via the Zwick-Roell machine with a load
capacity of 250 kN at a speed of 0.9 mm/min.

Since the optimised topology is represented by a 2D contour, a
preliminary phase of reconstruction is necessary to manufacture the
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Fig. 13. Finite element model of the design domain at the macroscopic scale with its characteristic size for 3D problems,

Table 6 Table 7
Elasticity matrix of the optimised topologies ill d in Fig. 14. Printing ¢ of the ples for each design case.
Design case  Stiflness matrix Design case 1, [min] " Vy [mm’) my,, (8] m,, (8]
551923 236538 236538 0 0 0 DCl 255 300 76640 106,17 102
236538 551923 236538 0 0 0 DC2 255 300 84410 116,94 119
o1 C, =[H653 26538 55193 0 0 0 DC3 420 300 81630 113.08 114
0 0 0 1576.92 0 0
0 [ 0 0 1576.92 0
0 [ 0 i 0 1576.92
[1516.15 45485  0.044 0 0 0 Finally, the 3D volumes are tessellated to obtain STL files and
45485 153571 0.048 0 0 0 printed via the SLA printer Form 3B® with Rigid 4000 resin as a
nez C = ""(’,“ D-z“ “-;’J”‘ ”f” g 3 constitutive material. The manufacturing parameters chosen to print
o s ° "o 6005 o the samples are the default ones (i.e., thickness of the layer 7, = 0.1 mm,
| 0 0 0 0 0008 thickness of the support r, = 2 mm, melting thickness of the first
197203 S9L61 0.1 0 0 0 layers 7,, = 0.3 mm) and they are the same for all the samples. The
0161 197222 0034 0 0 0 main printing parameters related to the sample of each design case,
oCc3 Cy = 0041 004 0164 0 0 0 i.e., printing time 1, number of layers »;, volume V),, nominal mass
0 0 0 6024 O 0 M s, actual mass my,, are reported in Table 7, whilst the orientation
g g g g (”;” 0_304‘ and position of the samples during printing are illustrated in Fig. 16.

specimens. As discussed in [42,43], due to the use of NURBS entities
to represent the topology at the lower/upper scale, the reconstruction
of the boundary of the optimised topology becomes a trivial task,
regardless of the DC at hand. The reconstruction phase is performed
via the Catia V5 software and is shown in Fig. 15, for each design case.
Of course, when the topological descriptor is defined at both lower and
upper scales (DC3), the boundary of the optimised topology is obtained
by combining two operations, Firstly, the RVE topology is copied along
x and y axes within the macroscopic domain (rectangular pattern).
Secondly, a boolean operation is performed on the rectangular pattern,
i.e., the final topology is obtained by cutting the macroscopic domain
filled with the RVE topologies through the contour of the optimised
topology at the macroscopic scale.

It is noteworthy that, due to the high precision of the SLA process,
the difference between nominal and real dimensions of the samples is
negligible, i.e., of the order of hundredth of a millimetre.

The experimental set-up of the 3PBT for each optimised sample is
shown in Fig. 17. The machine is equipped with a dedicated support to
perform the 3PBT on unconventional specimens: the loading support is
placed in the middle of the top face of the sample, while two supports
are placed at a distance of 80 mm on the bottom surface of the sample,
providing an overhang of 10 mm.

The experimental results are shown in Fig. 18 in terms of force
vs. displacement curve, for each design case. One can notice that, as
far as the linear part of the curves is concerned, experimental results
corroborate the numerical ones discussed in Section 6, where the TO
calculations are conducted assuming a linear elastic behaviour of the
Rigid 4000 resin and small displacements and strains. Particularly, as
it can be inferred from Fig. 18, the flexural stiffness of the optimised



(a) Niter = 62, magopt = 99.7 kg,
Cafret = —1963.59 Nmm,
Casopt = —19922.61 Nmm,

d.‘\lmin =5 mm

(b) Niter = 107,
mafopt = 99.7 kg,
Cafref =
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C.\!opt -
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(c) J'nmin =04 mm (d) Niger = 89, MArfopt = 99.7 kg,
Cafret = —4374.75 Nmm,
—~12503.49 Nmm,

dpfmin = 20 mm

"
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Fig. 14, 3D test case: influence of the problem formulation on the optimised topology:
(a) optimised solution of DC1 (upper scale), (b) optimised solution of DC2 (lower scale),
(c) optimised solution of DC3 (lower scale), (d) optimised solution of DC3 (upper scale).

topology solution of DC1 is the highest one, whilst the flexural stiffness
of the optimised topology solution of DC3 is higher than the one of the
counterpart solution of DC2.

To carry out a more correct comparison between numerical and
experimental results, the optimised topologies, obtained after CAD
reconstruction of the boundary, together with the supports of the 3PBT
have been modelled in Ansys Workbench”™. Specifically, two non-linear
analyses are carried out for each design case. In the first case (indicated
as NLA1), the behaviour of the resin is modelled by considering the -«
curve resulting from the 3PBT conducted on the parallelepiped samples
discussed in Section 3.2. In the second case (indicated as NLA2), the
constitutive behaviour of the resin is modelled by exploiting the o — ¢

curve of the traction tests discussed in Section 3.1. For both cases, the
non-linear behaviour of the resin is modelled through an elastoplastic
multi-linear isotropic hardening law. In all the analyses, the supports
are modelled by using a steel with a linear elastic isotropic behaviour
having a Young's modulus £, = 200 GPa and a Poisson’s coefficient
Vieel = 0.3,

The FE model of the optimised topology (for each design case) used
for non-linear analysis is shown in Fig. 19, In each case, PLANE182
elements (plane stress hypothesis) with a thickness equal to 30 mm
are used. Due to the symmetry of each topology, only half of the
geometry is modelled. The number of elements composing the FE model
is N, = 5200, N, = 170608 and N, = 154933, for DC1, DC2 and
DC3, respectively. The contact regions between the supports and the
sample are modelled through CONTA171 and TARGE169 elements (2D
contact elements with two nodes and two DOFs per node) for the
nodes belonging to the contact region of the sample and of the support,
respectively. A no separation behaviour (with no friction) is assigned
to the contact region and the Lagrange method is used to penalise,
possibly, the initial penetration. The pinball radius of the contact region
is set to 0.2 mm by following the guidelines provided in [52].

By referring to Fig. 19, the BCs are set as follows: (a) symmetry
condition, i.e., u; =0, is imposed on the nodes located on the symmetry
plane; (b) ¥; = u; = 0 on the nodes belonging to the segment CD;
(€) u, = 6 = —0.5 mm on the nodes belonging to the segment AB.
The minimum and maximum number of sub-steps for the non-linear
static analysis are set to 200 and 1000, respectively. The force vs. dis-
placement curve obtained from analyses NLA1 and NLA2 are reported
in Fig. 20 where they are compared to the experimental counterpart,
for each design case. As expected, for small displacements, the force
vs. displacement curve obtained when the resin is modelled by using
the flexural behaviour of Fig. 6 is closer to the experimental results
obtained for each optimised sample. The discrepancies between the
numerical curves obtained using the flexural Young’s modulus (NLA1)
and the experimental ones for higher values of the displacement are
related to the nature of the FE model of the specimen (2D plane stress
hypothesis), which is not representative (in terms of stiffness) of the
real 3D specimen used during the test. Moreover, these discrepancies
are related to the constitutive law used for the resin: to correctly
capture the local stress field within the structure, the constitutive law
considering the difference between tension and compression should be
implemented by means of a suitable user-defined material subroutine,

8. Conclusions

In this work, the optimised solutions determined through the
NURBS-density-based method have been validated experimentally. Par-
ticularly, three DCs are considered: in the first case, the topological
descriptor is defined solely at the upper (macroscopic) scale; in the
second case, the topological variable is introduced at the lower (RVE)
scale; in the last case, the topological descriptor is introduced at both
scales. For each DC, the goal is to maximise the flexural stiffness
subject to requirements on the lightness, on the minimum member
size (related to technological constraints), and, when the topological
descriptor is defined simultaneously at lower and upper scales, two
further requirements are considered: the scale separation condition (to
ensure the validity of the results of the SEHM) and a constraint on the
volume fraction of the solid phase composing the RVE.

In each design case, the boundary conditions imposed at the macro-
scopic scale are those characterising the well-known 3PBT: in this
way, the optimised topologies obtained at the end of the process can
be easily manufactured and validated experimentally. In second and
third design cases, i.e., when the topological variable is defined at the
RVE scale, the scale transition is ensured via the SEHM (only weak
coupling among scales is considered). Indeed, the structural responses
at the upper scale depend both on the topological descriptor defined
at this scale and on the one introduced at the lower scale through
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(c) DC3

Fig. 15. CAD model of the optimised topology for each design case.

(a) DCI1

o

(b) DC2

o

{¢) DC3

Fig. 16. Orientation and position of the sample during printing for each design case.

(a) DCI1

(b) DC2

{¢) DC3

Fig. 17. Experimental set-up of the three-point bending test for the optimised 2D topologies for each design case.

the calculation of the equivalent elasticity matrix of the fictitious
homogeneous material, which replaces the RVE at the upper scale. The
optimised topologies resulting from the three DCs have been printed via
SLA and validated through 3PBT. Of course, a preliminary experimental
campaign of tests has been conducted to characterise the behaviour
(in traction and flexural) of the rigid resin constituting the constitutive
material of the optimised specimens. It is noteworthy that, although

the topology optimisation has been conducted by assuming a linear
elastic behaviour of the material composing the specimen and under
the hypothesis of small displacements and strains, the comparison
between numerical and experimental results is carried out a poste-
riori through non-linear FE analyses on the reconstructed optimised
topologies (i.e., after reconstruction of their boundary).
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Fig. 18. Force vs. displacement curve obtained from three-point bending test on the optimised sample of each design case.
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Fig. 19, Finite element model and boundary conditions for the non-lincar analysis conducted a posteriori on the optimised samples (for each design case).

Some features of the proposed methodology need to be highlighted
after a careful analysis of the numerical results.

Firstly, some advantages of the NURBS formalism can be clearly
identified: (a) since the topological descriptor introduced at each scale
is a NURBS entity, the final solution does not depend upon the quality
of the mesh of the finite element model; (b) unlike classical density-
based approaches, there is no need to define a further filter zone, since
the NURBS local support property establishes an implicit relationship
among contiguous elements of the mesh; (¢) when compared to classical
density-based approaches, the number of design variables is reduced;
(d) since the pseudo-density field at the generic scale is described
through NURBS entities, the boundary of the topology is available
at each iteration of the optimisation process, thus, the integration of
constraints of geometric nature (e.g., on the local curvature of the
boundary, on the local direction of the tangent vector, maximum mem-
ber size, etc.) in the problem formulation and the CAD reconstruction

phase of the boundary of the optimised topology become easy tasks;
(e) of course, the optimised topology depends upon the NURBS integer
parameters, i.e., number of control points and degrees of Bernstein’s
polynomials, which have a direct impact on the size of the local support
of the blending functions.

Secondly, the best performances, in terms of flexural stiffness, are
obtained in the first design case wherein the topological descriptor is
introduced only at the macroscopic scale. This means that, as far as
the 3PBT is concerned, the optimised topology is characterised by an
isotropic material filling the whole RVE and optimally distributed at
the macroscopic scale. This is confirmed also by the results of second
and third design cases, which highlight that, to satisfy the requirements
of the problem at hand and to withstand the applied loads, both the
RVE topology and the macroscopic one evolve towards a configuration
optimising the macroscopic elastic response of the continuum, as well
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Fig. 20. Force vs. displacement curves for each design case by considering different material behaviours for the Rigid 4000 resin.

as the material distribution at the upper scale. However, since the
lightness requirement and the constraint on the volume fraction of the
solid phase are introduced, the optimised topology at the RVE scale
cannot converge towards the isotropic solution. Of course, when consid-
ering the most general problem formulation, i.e., the one involving the
topological descriptor at both scales, when the constraint on the volume
fraction of the solid phase at the RVE scale is suppressed and only the
one on the overall mass of the structure is kept, the optimised solution
coincide with the one of the first design case (wherein the topological
descriptor is defined solely at the upper scale).

Thirdly, the effect of the minimum length scale requirement on
the optimised solution at each problem scale is correctly taken into
account, without the need of introducing an explicit optimisation con-
straint. Indeed, this requirement can be easily fulfilled by properly
setting the integer parameters of the NURBS entity representing the
topological variable at each scale.

Finally, regarding the comparison between numerical and experi-
mental results obtained on the optimised topologies (for each design
case), in terms of force vs. displacement curve, the utilisation of the
non-linear constitutive law of the rigid resin as well as the modelling of
the contact regions between the sample and the supports of the testing
machine allows obtaining a good agreement between numerical and
experimental curves only when the ¢ — ¢ curve describing flexural be-
haviour of the resin is used. Nevertheless, some discrepancies between
numerical and experimental results can be observed for some values
of the applied displacement. To obtain better (and more consistent)

results, the complete compression-traction curve describing the true
behaviour of the rigid resin should be modelled via a user-defined
material routine and a 3D numerical model should be considered
instead of a 2D model based on plane stress hypothesis. However, this
task does not fall within the scopes of the present work and could
constitute a prospect of this study.

A further prospect of this work is about the integration of the
non-linear behaviour of the bulk material within the TO process, by
developing also a suitable non-linear homogenisation strategy (as far as
second and third design cases are concerned). Finally, suitable failure
criteria at upper and lower scales should be derived and integrated
into the multi-scale TO problem formulation for the homogeneous
anisotropic material at the macroscopic scale and for the bulk material
at the RVE scale in order to optimise not only the stiffness of the
structure but also its strength.
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Appendix. Gradient of the objective function and of the optimisa-
tion constraints

When differentiating the generalised compliance C,, of Eq. (24)
with respect to £, (i = 1.2) one obtains:

Nue 8 & aC,
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In Eq. (A1), ey, (g = 1,....6) is the gth component of the strain
vector (Voigt's notation) of the generic element ¢ of the FE model at
the macroscopic scale, whilst ¥y, is its volume. In Eq. (A.2), e is the
qth elementary strain imposed on the RVE through the perlodlc BCs of
Eq. (11) and W, is the work of internal forces of the generic element
of the FE model of the RVE.

The gradient of the macroscopic compliance with respect to the
topological variable at the upper scale reads:
o __, Wate 90me g5 =1,

(A.3)
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where W,,, is the internal work of the generic element of the FE
model at the macroscopic scale. In Eqs. (A.1)-(A.3), the linear index
k, (x = m M) has been introduced for the sake of compactness. The

relation between &, and i, (j = 1.2.3) is:
k=i, igpn, + Ddialn, +Ding+1), r=mM. (A.4)

Moreover, in Egs. (A.1)-(A.3), the quantity S, (r = m M) is the

discretised version of the local support of Eq. (10), while 3 0Pse reads:
rik,
R . ifi=1,
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T

The scalar quantity R, , appearing in Eq. (A.5) is the NURBS rational
basis function of Eq. (3) evaluated at the element centroid.

Regarding the optimisation constraints, by differentiating Eqgs. (27),
(26) and (30) one obtains:
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