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Abstract

Due to data leaks, social media and the opening of various government databases,

data-driven investigative methods have become available to a wider set of actors,

including journalists. Retrieval, search and discovery are vital aspects of these

data-driven investigations (DDIs). By contributing to these research areas, this

thesis aims to develop methods that can be used in such investigations.

This thesis identifies two characteristics required of retrieval and search

methods intended for DDIs: Firstly, the underlying models need to be trans-

parent. Secondly, the models should leverage document structures with and

without supervised learning. The core contribution of this thesis is to develop a

retrieval method that has these two characteristics and to demonstrate its value

in investigative retrieval. By having these characteristics the proposed method

— denoted information content field weighting (ICFW) — also contributes to

the broader research area of establishing reliable standards for structured doc-

ument retrieval (SDR).

With respect to ensuring model transparency, the thesis formulates and eval-

uates formal constraints for SDR. These constraints facilitate the analytical

evaluation of existing and proposed models, thus allowing us to reason about

their behaviour in a more systematic and logical manner. This adds a layer

of transparency to the proposed, as well as existing SDR models, that was not

attainable before. In order to leverage the document structure for better per-

formance, ICFW defines the importance given to a document field, not as a

semantic property of the collection, but as a statistical property given to each

document field. Analysis showing that ICFW satisfies all the proposed con-

straints for SDR, unlike any existing model, together with a formal evaluation

of the method, demonstrates that it is indeed able to leverage document struc-

tures in new ways. Finally, the thesis demonstrates that the ICFW method can

be used in an investigative retrieval scenario by developing a prototype search

system which is evaluated on a hypothetical investigative search task. The sys-

tem uses the concept of relevance structures to estimate the context in which

entities occur in a data collection. These contexts are then used to rank other

entities based on the similarity of their context.

Overall, the research presented in this thesis shows that a focus on transpar-

ent analytical SDR models has significant potential in advancing investigative

retrieval and the field of Information Retrieval in general.
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Chapter 1

Introduction

1.1 Motivation

The motivation for this PhD thesis can be defined from two perspectives:

1. A technical perspective where the research is motivated by a lack of reliable

standard models for analytical structured document retrieval (SDR).

2. A practical perspective where the research is motivated by a lack of meth-

ods dedicated to what we define as investigative search, i.e. methods used

in data-driven investigations and more specifically in investigative data

journalism (IDJ).

The two perspectives are connected, and to an extent follow one another. The

technical perspective is contained in the first three content chapters of this

thesis, where methods for reliable analytical SDR standards are proposed and

analysed. The practical perspective encompasses the start and end points of

this thesis: The nature of IDJ dictates that if the proposed models were ever to

be useful in the field, they needed to be analytical and structure-focused, which

is the starting point for the technical motivations. Furthermore, the thesis

finishes with a chapter where a novel investigatory search system is developed

and evaluated; a system which was only feasible after reliable standards for

analytical SDR had been proposed in the previous chapters. The following will

discuss each perspective in detail.

1.1.1 Motivation: Technical Perspective

The majority of data is inherently structured. Whether it is websites, prod-

uct catalogues, or specific databases, the data has an underlying structure.

Probabilistic models, such as the BM25 and LM have become the standard for
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non-structured (atomic) retrieval, especially if the use of learn-to-rank models is

not warranted, or possible. There are many possible reasons why these models

have become the standard. In the context of this thesis the following three are

considered to be the most important:

1. The models have well-founded conceptual and theoretical models.

2. The models can be shown to rank documents intuitively, meaning in ways

that are expected based on widely agreed-upon heuristics.

3. The models have been shown to perform well on a multitude of established

test collections.

No such widely accepted standard exists for structured document retrieval (SDR).

The fielded extension of the BM25 — the BM25F — could be considered the

best candidate. However, it took 20 years for it to become available on commer-

cial systems, such as Elasticsearch and even then it is not the default model.

A possible reason for this is that in order to function well, the BM25F requires

optimisation, which is not the case for the standard approaches in atomic re-

trieval. For a retrieval model to be considered a reliable standard — at least

to the extent that BM25 and LM are in the context of atomic retrieval — it

cannot require optimization. It has to be available “off-the-shelf” and ready to

be implemented on any data collection. For an SDR model to accomplish this,

it should (in the author’s opinion) fulfil the three criteria described above. From

a technical perspective the lack of such a model is the underlying motivation

for this thesis.

1.1.2 Motivation: Practical Perspective

With growth in the volume, complexity and availability of information, data-

driven investigations (DDIs) are becoming more important in many areas. A

DDI is any investigation that relies primarily on data. Such investigations are

performed in a variety of areas from insurance fraud to law enforcement; from

academic research to journalism. What all these investigations have in common

is that they are all searching for interesting new facts in the data and that they

intend to use these facts in ways that impact other people.

The concept of learning interesting new things from data — rather than

simply retrieving information (documents) — relates closely to the field of ex-

ploratory search. Exploratory search is any search activity where the user is

primarily looking to learn something new from the data. However, in the case

of DDIs we need to be more specific: The users are not only looking to learn

something new, they are looking for previously unknown facts and furthermore,
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they are not looking just for themselves, but with the intention of sharing their

findings with others. This thesis denotes this type of search as “investigatory

search”, closely relating it to “investigative retrieval”.

For exploratory search, the motivation for the searching is for the user to

learn something new and interesting, whereas for investigatory search the mo-

tivation is to discover facts they can share with others. These facts can of

course be interesting, which makes investigatory search a sub-task of exploratory

search. The emphasis on facts and other people dictates — to an extent — the

kind of methods that can be used with investigatory search systems. When it

comes to communicating facts to others the user has to be able to rely on the

system not being biased, for example. The methods used have to be transparent

to the extent that the user can trust them, meaning they cannot be black-box in

nature. This focus on transparency does not need to be as strict for exploratory

search in general, since the user might just be looking to learn new things for

the fun of it.

The importance of the user being able to communicate the reasoning behind

an interesting fact is clear when it comes to using investigatory search systems in

the area of investigative data journalism (IDJ). As journalists lack the authority

of powerful institutions — unlike law enforcement for example — they have to

be able to trust their findings and to back up the facts they are reporting to the

rest of society. IDJ makes a good example of DDIs, as the distinction between

exploratory and investigatory search is clear. Therefore, IDJ is used as the main

example of DDIs in this thesis.

In recent years there have been many examples of IDJ where investigations

based on large leaks have led to significant changes in society. One such example

is the Panama Papers. Systems have been developed to help journalists scour

these databases in these investigations, but little, if any, academic attention

has been paid to the subject. From a practical perspective, it is this lack of

attention that has motivated this thesis and the technical issues it focuses on.

1.2 Research Objectives and Contributions

The objectives and contributions of this thesis are best described in a chronolog-

ical manner where the lessons learned from each high-level contribution led to

the next. Figure 1.1 and the following description of its components summarise

these steps and their specific contributions in detail. Each of the high-level

contributions corresponds to a section in the thesis.
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Figure 1.1: Thesis Overview

1.2.1 Research Objectives

• Describe the special characteristics and constraints of the retrieval scenario

DDIs and IDJ face when reporting from large datasets.

• Develop a retrieval model that fits the characteristics of IDJ by being

analytical, dealing well with structure and performing well without opti-

mization.

• Understand how previous SDR models and the proposed model succeed

and fail at being a viable standard for analytical SDR.

• Develop an analytical SDR model that fulfils the requirements of becoming
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a reliable standard for SDR.

• Implement and evaluate a prototype for an investigatory search system.

1.2.2 Research Contributions

The following summarises the core contributions of this thesis. The list has been

organized based on the flowchart in Figure 1.1 and the order of the chapters.

• Discussion: Investigatory search and investigative data journal-

ism. Chapter 2

– Defining investigatory search by identifying it as a subtask of ex-

ploratory search where the user is looking to discover new interesting

facts that can be communicated to others.

– Identifying the need for transparency and capability to leverage doc-

ument structures as important aspects of investigatory search in the

context of IDJ.

• Information content-based field weighting for SDR. Chapter 3

– Provide intuitive and theoretical justification for the use of informa-

tion content for field weighting.

– Developing BM25-FIC; an SDR method that leverages document

structures for increased performance.

– Formally evaluating the proposed model on benchmark datasets in

order to analyse its successes and failures.

• Formal constraints for SDR. Chapter 4

– Introducing formal constraints for SDR.

– Analysis of how existing models and the proposed model from the

previous point satisfy and fail to satisfy the constraints.

– Identifying cross-field term frequency saturation and the considera-

tion of field scores as essential features of a potential reliable standard

for SDR.

• Cross field term frequency saturation in information content-

based field weighting. Chapter 5

– A further iteration of BM25-FIC — denoted information content field

weighting (ICFW) — an information-oriented SDR model that in-

corporates cross-field term frequency saturation and is not specific to

BM25, but can be used in place of BM25F.
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– Formally showing how ICFW satisfies the formal constraints for SDR.

– Evaluating ICFW using well-established benchmarks to demonstrate

that it outperforms previous methods and is robust across different

structure types.

• Investigatory search system for ranking entities based on rele-

vance structure. Chapter 6

– Introducing and implementing the Relevance Structure-Based Entity

Ranking (RSER) system, which uses ICFW and user interaction to

rank a list of potentially interesting entities based on whether they

are found in the data in a context relevant to the user.

– Building a test collection for the proposed retrieval task.

– Formally evaluating RSER on the test collection.

1.3 Publications and Submissions

• BM25-FIC: Information Content-based Field Weighting for BM25F. Pub-

lished in BIRDS’ workshop at SIGIR 20’ [1]. Published (first author)

• Formal Constraints for Structured Document Retrieval. Published in IC-

TIR@SIGIR 22’ [2]. Published (first author)

• Automatic and Analytical Field Weighting for Structured Document Re-

trieval. Published in ECIR 23’ [3]. Published (first author)

• Analytical vs Non-Analytical Retrieval: Transparency. Published in Infor-

mation Systems 24’ (first author) [4].

1.4 Thesis Structure

Chapter 1 — Introduction

Introduces the motivation, research objectives and contributions of the thesis.

Chapter 2 — Motivation and Background

Describes the relevant literature and contextualises how the thesis relates to

existing research areas and approaches, especially in terms of Structured Docu-

ment Retrieval.
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Chapter 3 — Information Content-based Field Weighting

(ICFW)

Introduces the idea of using information content for field weighting. An intuitive

and theoretical justification is provided as well as a study where an initial version

of Information Content Field Weighting (ICFW); BM25-FIC is evaluated on two

test collections.

Chapter 4 — Formal Constraints for Structured Document

Retrieval (SDR)

Presents formal constraints for SDR. The need for analytically evaluating SDR

models became apparent in the previous chapter.

Chapter 5 — Term Frequency Saturation in Information

Content-based Field Weighting (ICFW)

Details how cross-field term frequency saturation is defined and can be used in

ICFW in order for the model to satisfy the SDR constraints from the previous

chapter.

Chapter 6 — Relevance Structure-based Entity Ranking

and Investigative Information Retrieval (InvIR)

Describes a prototype discovery system for investigative retrieval, where the

ICFW model and its field weights are used to define the context in which entities

occur in a data collection. This context is used to rank entities of interest

according to how well their context matches that of a known entity.

Chapter 7 — Conclusions

Concludes and discusses potential future work.
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1.5 Notation

Mathematical notation used throughout the thesis. The notation is repeated at

the beginning of appropriate chapters and sections, as well as in text, for extra

clarity.

t a term

d a document

c a collection

f document field: e.g. the title of a document.

F collection field: e.g. all the titles in the collection.

n(t, d) term frequency: How many times a term t occurs in a

document d.

n(t, f) term frequency (in document field f): how many times

term t occurs in f .

n(t, c) collection-wide term frequency. How many times

term t occurs in collection c.

TFM (t, d, (c)) term frequency quantification: The term frequency

component of a retrieval model M with respect to col-

lection c.

TFM (t, f, (F )) term frequency quantification: the term frequency

component of retrieval model M, with respect to a

collection field F

df(t, c) document frequency: How many documents in collec-

tion c have an occurrence of t.

df(t, F ) document frequency (in collection field F ): how many

times term t occurs in F .

IDF(t, c) inverse document frequency in collection c.

IDF(t, F ) inverse document frequency in collection field F .

RSVM (q, d, c) Retrieval Status Value, i.e. retrieval score for retrieval

model M for query q, document d and collection c.

RSVM (q, d, F ) Retrieval Status Value, i.e. retrieval score for re-

trieval model M for query q, document d and col-

lection field F .

N(c) the length of the collection, i.e. the total number of

documents. As c tends to be implicit, N(c) is usually

shorted to N .

N(F ) the length of the collection field, i.e. the total number

of documents. As F tends to be implicit, N(F ) is

usually shorted to N .
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Chapter 2

Motivation and Background

This chapter begins by discussing investigative data journalism (IDJ) and InvIR,

in order to establish a practical grounding to the technical areas described later

on in the chapter. This practical grounding affects the areas of IR discussed

in the technical part of the background chapter: As the focus of this thesis

is on what we call InvIR — where model transparency is instrumental — not

much time is spent on black-box learning algorithms for example. Instead, the

technical aspects of this chapter concentrate on analytical IR methods designed

for both non-structured (atomic) and structured data. Structured data meaning

documents that have information in multiple fields and non-structured meaning

documents where all the information is in a single field, i.e. there are no fields

and no structure. It is the intention of this thesis to transfer lessons learned in

atomic retrieval to structured retrieval, both in terms of high-level topics such as

retrieval constraints and lower-level technical concerns such as term frequency

saturation.

More specifically the chapter is structured as follows:

• Section 2.1 introduces investigative data journalism as an area for IR.

• Section 2.2 establishes the concept of InvIR as a sub-category of ex-

ploratory search.

• Section 2.3 discusses the distinction between analytical and non-analytical

retrieval models.

• Section 2.4 introduces the relevant non-structured retrieval models.

• Section 2.5 explores the relevant structured models.

• Section 2.6 discusses the importance of term frequency saturation.

• Section 2.7 explores retrieval constraints and axiomatic retrieval.

18



• Section 2.8 summarises the key aspects of non-structured and structured

retrieval models and how they relate to each other in terms of the focus

of this thesis.

2.1 Investigative Data Journalism

Before discussing InvIR, it is worth clarifying exactly what is meant by IDJ.

Investigative journalism refers to any journalism that has a significant inves-

tigative component, as opposed to simply reporting facts that are published by

someone else (government, sports organizer etc.) the journalist has to go and

do some investigating themselves [5]. Traditionally this has meant finding and

talking to sources “on the inside”, confirming their statements through other

avenues and reporting the findings. Data journalism is any journalism that has

to do with numbers and data. Investigative data journalism means that the

story is not reporting solely the numbers and statistics in the data, which is the

domain of data journalism. In the last three years everyone has become famil-

iar with a very basic form of data journalism, the daily updates on Covid-19

numbers. Investigative data journalism then not only reports the data, or the

numbers but also investigates what is happening behind them. Many of the

examples of these investigations have to do with public data and information

gained through freedom of information requests. Many important investiga-

tions, such as showing the bias of law enforcement towards black people and the

horrible state of psychological wards, were done effectively by hand [6, 7].

The focus of this thesis is on investigative data journalism that deals with

data sets large enough to warrant the use of automation. A well-known example

of such investigations is the tax-heaven leaks that we have seen in recent years.

The Panama, Paradise and Pandora papers all reported on millions of docu-

ments related to offshore banking, using data leaked from unknown sources. In

order to highlight what kind of investigations this thesis is interested in, we

will shortly discuss the first of the leaks — the Panama Papers — but all the

implications would also apply to their successors as well.

The Panama Papers started with a whistleblower contacting journalists in

the Suddeutsche Zeitung in 2015. Throughout the following year or so, the

still anonymous source provided more than 11 million files, a data set of 2.6

terabytes. The data was largely unstructured, meaning the database had to

be reconstructed before it could be effectively searched and reported on. This

took a team of technical experts over a year to accomplish and involved a deal

of automation [8]. It has been estimated that by 2021 different countries had

recovered 1.3 billion dollars in tax revenue as a direct result of the Panama

Papers, meaning the impact of such investigations is a significant one [9].
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A set of tools has appeared in the last 10 years to help journalists with

exploring the data. The most notable ones are Datashare, developed by the

International Consortium for Investigative Journalism (ICIJ) for projects such

as the Panama Papers and Aleph developed by the Organized Crime and Cor-

ruption Reporting Project (OCCRP) for similar data-driven investigations. At

the core of each of these tools are various information retrieval methods. A

central argument of this thesis is that these tools and investigations represent a

branch of IR that has previously been understudied and warrants special con-

sideration. In this thesis, we denote this branch as Investigative Information

Retrieval (InvIR).

2.2 Investigative Information Retrieval (InvIR)

This section introduces the concept of InvIR as a type of exploratory search;

or exploratory information retrieval. First, it is worth clarifying some of the

notation. Exploratory search refers to any search activity where a user is looking

to learn something new from the data, rather than simply looking for factual

answers to questions. This means that their information need tends to be much

more complicated, meaning their queries tend to be more complex and that

often a search session would be comprised of multiple queries [10]. Figure 2.1 by

Marchioni [10] shows the different kinds of search tasks that relate to exploratory

search. Exploratory information retrieval as a term is not used as widely as

exploratory search. In this thesis, the two are used interchangeably.

Figure 2.1: Categorization of search activities by Marchioni [10].

InvIR is similar to exploratory IR, in fact, it can be seen as a subset of it.
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InvIR refers to any search task where the goal is to learn new facts from the

data that are interesting not only to the user but to other people as well. The

difference from exploratory search is the emphasis on facts and other people.

The IDJ scenario described in the previous section is a clear example of InvIR,

as the investigators and journalists are not only searching the data to learn

something for themselves but have the aim of reporting their findings to the

rest of the world to expose corruption and crime.

The emphasis on other people has implications in terms of what is required

of the retrieval system. In order for the information found to be reportable, it

has to be believable, meaning the journalist has to understand what they have

found, how they have found it and how it can be trusted. This means that an

InvIR system has to be transparent and a user has to be able to reason with

the system in order to understand all of the relevant information. Table 2.1

illustrates how ad-hoc IR, exploratory IR and InvIR are related. It relates to

Figure 2.1 in that search activities shown there can be seen in the light of the

three types of IR. Ad-hoc IR deals with more straightforward queries and can

therefore be seen as a “lookup” search activity. Exploratory IR covers both

learning and investigating search. InvIR can be seen to specifically relate to the

rightmost search activities. Table 2.1 looks at the various aspects that make

InvIR a sub-category of exploratory search.

Aspect Ad-hoc IR Exploratory IR Investigative IR

Complex Information Needs Optional Essential Essential
Query Reformulation Optional Essential Essential
Session-Based Optional Essential Essential
Complex Results Optional Essential Essential
Complex Data Optional Essential Essential
Transparency Optional Optional Essential
Reasoning Optional Optional Essential

Table 2.1: Differences and similarities between Ad-hoc IR, Exploratory IR and
InvIR. The emphasis on transparency and reasoning is what differentiates InvIR
from Exploratory IR.

Complex information needs: The complexity of the information need

is often reflected in the type of search activity the information need represents.

Ad-hoc retrieval essentially covers all possible search activities, meaning for

activities such as question answering and verification, the information need is

not necessarily complex, whereas for others such as comparison it might be.

This is why in Table 2.1 complex information needs is classified as optional.

For exploratory and InvIR information needs tend to be much more complex.

Take the comparison search activity from Figure 2.1 for example. The query

could be something like “How much more likely is it that it is raining in Lon-
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don, than in Helsinki in June?”. Processing such a query often demands more

from the system, and in many cases requires the use of entity recognition and

multiple queries [10, 11, 12]. Exploratory search and InvIR deal with complex

retrieval tasks such as analysis and evaluation, rather than more straightforward

ones such as known item search, as demonstrated by Figure 2.1, meaning for a

system to be exploratory, or investigative, it must be able to consider complex

information needs.

Query Reformulation: as well as complex queries, their reformulation

is essential for investigative and exploratory IR. This can be done with help

from the system, or completely based on the results the user is seeing [13]. For

example, the system can suggest new / better queries, or the user themselves

can reformulate their query based on the results they are seeing.

Session-based: the need to handle multiple queries brings forth the need

for session-based use of the retrieval system [10, 13]. Unlike in ad-hoc IR,

exploratory and InvIR are likely to require multiple queries where each of the

queries affects the next. The final information need is then fulfilled by activities

during the whole session, most likely involving multiple data collections with

intermediate analysis.

Complex Results: with more advanced information needs and a sessions-

based approach comes the need for a more complex presentation of the search

results. It is likely that a simple ranking of documents with no extra informa-

tion is not enough for exploratory and InvIR. The user should be given more

information regarding each document that has been matched and the underlying

reasons for why they have been matched [11, 12].

Transparency: moving to the aspects of the retrieval systems essential for

InvIR, but not for all exploratory search activities. The level of transparency

required from an investigative system is much higher than other kinds of ex-

ploratory search. For example, if a user is simply exploring a dataset in order

to learn something new for themselves, it is not necessarily essential that they

understand fully how the system has “taught” them. However, underlying the

concept of investigations and InvIR is the assumption that the user (investiga-

tor) is not only looking for new knowledge for themselves but for others as well.

Furthermore, the investigators are not looking to learn just anything, they are

looking to learn new facts. IDJ is a clear example of this as the end goal is

to have a positive effect on society as a whole using the findings of the investi-

gation. In order for this to be possible, people have to believe the journalists’

stories and the facts that they present. If they turn out to be untrue, the jour-

nalist’s reputation is ruined and the story is dead. For this reason, it is essential

from the user’s side that they can trust the system and its algorithms, meaning

things like black-box deep learning systems with their known and unknown bi-
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ases are problematic. The next chapter will discuss at length how transparency

is defined in the context of this thesis.

Reasoning: it is not only the underlying algorithms of an InvIR system that

the user has to trust. Even if the system is not black-box and everything could

be traced back to underlying collection statistics, this is not something the user

can report to other people and expect to be taken at their (the system’s) word.

This again is evident from the IDJ example as people would not necessarily trust

the word of journalists. Instead, the system has to be able to communicate

the reasoning for why it has offered the knowledge it has. Here we are not

necessarily talking about an automated system that finds interesting entities in

a data collection. The process can be as simple as a user forming connections

between entities in the data and reporting on those connections. In such a case

the system has to be able to show the user how the connections interact and

— to an extent — whether they are valid. Some automation can be involved of

course.

The final chapter in this thesis introduces an InvIR application which ranks

entities based on how interesting they might be to an investigator based on

the context the investigator describes. The key point is that when doing so,

the system has to be able to explain its reasoning for the ranking, meaning it

has to be able to point to the specific documents in the data, which led to the

conclusions. And coming back to the previous point (Transparency) the system

also has to explain why those documents are important.

In terms of this thesis, the focus is much more on transparency than rea-

soning. As the above suggests, the two are closely connected: For example, in

terms of transparency, it is beneficial for the system to be able to communicate

the reasoning behind the retrieval outcomes. In order to do this, the underlying

models must be transparent to an extent at least, otherwise, the system itself

cannot fully explain why it has produced the outcome. The point to be made

here is that, in many ways transparency is a predecessor of reasoning in the con-

text of InvIR, which is also why it is the main focus of this thesis. Reasoning is

only briefly considered in a non-theoretical way in the final chapter.

2.3 Analytical vs Non-Analytical Retrieval

The notion of analytical vs non-analytical retrieval models is key to this entire

thesis, so it is worth clarifying it before starting on specific models. This thesis

considers a model analytical if its ranking behaviour can be inferred from its

specification without further knowledge. For example given a query, two doc-

uments and a model (with known hyperparameters), if the model is analytical

the ranking of the documents can be inferred, without having to process the
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documents, or query in any way. A non-analytical model would be one where

such inference is not possible. The distinction is important due to the grow-

ing popularity of non-analytical learn-to-rank (LTR) models, especially those

involving large language models such as BERT [14].

Analytical models are often considered simplistic and not very powerful. As

opposed to LTR models, which are non-analytical, they do not leverage training

data to the same extent, or in the same manner and therefore usually perform

worse on evaluation baselines. However, analytical models have three important

advances over non-analytical models:

• They are more transparent.

• They function better if there is no training data.

• They tend to be faster.

The first two points are crucial in the context of my research, as transparency

and lack of training data are distinguishing characteristics of an investigative

retrieval scenario, which is why the focus in this section and the rest of the

thesis is on analytical models.

2.3.1 Analytical vs Non-Analytical Retrieval: Transparency

Transparency in IR, as well as other areas of computer science is a widely de-

bated topic. There is no straightforward, all encompassing definition for it. For

the purposes of this thesis, transparency in retrieval is defined using the above

distinction between analytical and non-analytical retrieval. Any model where

the ranking behaviour can be inferred without having to process the documents

or the query, is considered to be transparent. Of course, the transparency of a

retrieval model also depends on the observer, i.e. the user. For example, the

BM25 as a retrieval model is much more transparent to a user who is familiar

with the algorithm, compared to someone who is not. However, the point that

is being made here is that no matter who the user is — a model such as the

BM25 — where the ranking can be inferred is more transparent than one where

it cannot be.

2.4 Non-Structured (Atomic) Document Retrieval

IR is a vast field spanning over 50 years of research and hundreds of different

branches. It is not in the scope of this thesis to introduce and consider every

single one of them. Instead, we focus on branches and models that are widely

used today, introducing their formal definitions, as well as roots in order to
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provide context. Furthermore, the models we consider must work on any textual

data, including cases where no connections between the documents are available.

In essence, this means that approaches such as fuzzy retrieval, generalized vector

space model, PageRank etc. are not considered here [15, 16, 17, 18].

2.4.1 Notation

It is worth clarifying the notation used in this thesis with regards to terms as

there is significant confusion in literature [19].

• n(t, d) = term frequency: How many times a term t occurs in a docu-

ment d.

• n(t, c) = collection-wide term frequency. How many times term t occurs

in collection c. n(t, c) =
∑

d∈c n(t, d)

• TFM (t, d, (c)) = term frequency quantification: The term frequency com-

ponent of a retrieval model M .

• df(t, c) = document frequency: How many documents in collection c have

an occurrence of t.

• N(c) = the length of the collection, i.e. the total number of documents.

As c tends to be implicit, N(c) is usually shorted to N .

2.4.2 TF-IDF

Term Frequency - Inverted Document Frequency (TF-IDF) is one of the best-

known term weighting methods and perhaps the most popular IR method out-

side of the field. Originally introduced by Karen Spark-Jones, it gives more

emphasis to rare terms making retrieval much more effective [20]. In its original

form, the IDF did not have a formal mathematical formulation, but rather an

intuitive one: Query terms which appear in many documents are worse at dis-

criminating between them and should therefore be given less weight than those

appearing in a few documents [20, 21]. Over the years there have been many

interpretations and versions of the TF-IDF model. It is not within the scope of

the thesis to summarize all of them. The following will seek to point out the

most relevant ones to this thesis.

Spark-Jones introduced the concept of TF-IDF as we know it [20]. The

TF-IDF combination represents the concepts of exhaustivity and specificity re-

spectively, where exhaustivity describes how well a term covers a given topic

and specificity how well a given term describes a topic. Her important observa-

tion was that ”It [term specificity] should be interpreted as a statistical rather
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than semantic property of index terms” [20]. Meaning that collection and term

statistics can be used to infer the specificity of terms, rather than having to

assign them semantically (manually).

One of the underlying themes of this thesis is to argue that the specificity of a

document field, i.e. the weight given to a field of a document, should also be

interpreted as a statistical, rather than semantic property.

Inverse Document Frequency

Definition 2.1 (Original Inverse Document Frequency (IDF)). Let t be a term,

c a collection, N the number of documents in c and df(t, c) the document fre-

quency.

IDForiginal(t, c) := log
N(c)

df(t, c)
(2.1)

When describing retrieval model components, the base of the log is generally not

relevant as we are dealing with ranking. For this reason, the rest of the thesis

only specifies the log when it is relevant.

Definition 2.1 shows the original version of IDF by Spark-Jones [20]. It has

no mathematical grounding, which has caused the IDF to have a reputation of

being heuristic [19]. However, there have been many attempts to formalise the

IDF. One of the most notable and relevant to this thesis is by Robertson et al.

They derive what is known as the Robetson-Spark-Jones Weight from the binary

independence retrieval (BIR) model [22, 21]. The definitions below demonstrate

how the Robetson-Spark-Jones Weight relates to the IDF.

Definition 2.2 (Robetson-Spark-Jones Weight - wrsj,full). Let ri be the number

of relevant documents containing t in collection c, R the number of relevant

documents and ri the number of relevant documents containing term t.

wrsj,full(t, c, R, ri) := log
(ri + 0.5)(N −R− df(t, c) + ri + 0.5)

(R− ri + 0.5)(df(t, c) + ri + 0.5)
(2.2)

Definition 2.2 assumes relevance knowledge, i.e. knowing R. If this knowl-

edge is not available assuming R = ri = 0 transforms Definition 2.2 to Defini-

tion 2.3 [21]:

Definition 2.3 (wrsj,nR — No relevance knowledge).

wrsj,nR(t, c) :=
N − df(t, c) + 0.5

df(t, c) + 0.5
(2.3)

Definition 2.3 is very close to the IDF and can be used in its place, however,

it becomes problematic for terms that occur in more than half of the documents
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as the wrsj,nR value becomes negative. Robertson el al. argue that the df(t, c) in

the numerator can be dropped to fix this issue, thus transforming Definition 2.3

to Definition 2.4 [21, 23].

Definition 2.4 (wrsj — No relevance knowledge / smoothed).

wrsj,tweak(t, c) := log
N + 0.5

df(t, c) + 0.5
≈ IDF(t, c) (2.4)

Definition 2.4 is very close to Definition 2.1 and behaves almost exactly the

same way in terms of the “term specificity” values it produces.

Definition 2.5 shows the IDF used by the ElasticSearch library and the

Wikipedia article for BM25 at the time of writing12.

Definition 2.5 (IDF-BM25-Elastic-Wiki).

IDF(t, c) := log

(
N − df(t, c) + 0.5

df(t, c) + 0.5
+ 1

)
(2.5)

Most likely the IDF in Definition 2.5 is an altered version of Robertson et.

als RSJ-weight in Definition 2.3. By adding +1 the equation does not produce

the unwanted negative values. Why ElasticSearch has not used the method

suggested by Robertson et al. themselves (Definition 2.4) is not clear. However,

the two of them produce very similar values in real retrieval scenarios.

Definition 2.6 shows another popular IDF variant.

Definition 2.6 (IDF-Sum-Smoothed).

IDFsum-smooth(t, c) := − log
df(t, c) + 0.5

N + 1
(2.6)

Here the smoothing is slightly different with with 0.5 and 1 in the numerator

and denominator respectively, compared to 0.5 and 0.5 in other variations.

In Lucene and ElasticSearch (non-BM25 models) the IDF is calculated using

Definition 2.7.

Definition 2.7 (IDF-Elastic-Lucene).

IDFES-Luc(t, c) := 1 + log
N + 1

df(t, c) + 1
(2.7)

Many of the different variations of the IDF can be seen to come out of the

different definitions of the document frequency (df). Here we have defined docu-

ment frequency (df(t, c)) to be the absolute number of documents in collection c

1https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
2https://en.wikipedia.org/wiki/Okapi_BM25
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in which term t occurs. However, using different notation, as done by [19] we

can define different document frequencies.

For the following equations, we use the DF instead of df to keep things clear.

Definition 2.8 (Normalising document frequencies).

DFtotal(t, c) := df(t, c) (2.8)

DFsum(t, c) :=
df(t, c)

N
(2.9)

DFsum,smooth(t, c) :=
df(t, c) + 0.5

N + 1
(2.10)

DFBIR(t, c) :=
df(t, c)

N − df(t, c)
(2.11)

DFBIR,smooth(t, c) :=
df(t, c) + 0.5

N − df(t, c) + 0.5
(2.12)

The first one does not relate to any of the IDF definitions directly, but rather

points out the fact that in reality when we talk of IDF we are actually talking

about Inverse normalised Document Frequency. The second one is the basis

for Definition 2.1, the third for Definition 2.6, and the third together with the

fourth for Definitions 2.3 and 2.4

Going forward when the IDF is discussed in this thesis we are referring to

Definition 2.4.

Apart from the BIR-based derivation of the IDF, there have been many

attempts to formalize the IDF mathematically. Many of these have to do with

information theory and concepts such as entropy, cross-entropy and information

content. The relevant attempts will be covered later in the thesis. Outside of

information theory approaches worth mentioning include [24, 25].

Term Frequency

In a similar way to the IDF component, the TF component in TF-IDF has seen

a lot of change over time. The key issue here is how it is saturated. The original

TF was simply calculated as the number of term occurrences in a document.

Definition 2.9 (Raw-TF). Let n(t, d) be the number of times term t occurs in

document d.

TFraw(t, d) := n(t, d) (2.13)

The issue with this approach is that the first occurrence of term t is given

the same importance as a second or third occurrence. This means that the

model does not inherently appreciate documents with more unique query terms,

something which has been shown to be beneficial by many [26, 27, 28, 2]. In order
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for the model to do this, term frequency must be saturated. A straightforward

and widely used option is to use the LOG-TF.

Definition 2.10 (Log-TF).

TFlog(t, d) := log (1 + TFraw(t, d)) (2.14)

This ensures that the importance given to occurrences of a term decreases

as the term frequency increases, i.e. term frequency is saturated. This has been

shown to be a useful heuristic by many [26, 27, 29]. Since there is no formal

mathematical basis for Equation 2.14 in terms of modelling term dependency it

is exactly that; a heuristic.

Vector Space Model

Before moving on to the BM25-model is worth mentioning the vector space

model (VSM), which has been widely used together with TF-IDF.

Definition 2.11 (RSV-Vector Space Model). Let −→q be a query vector in a

space defined by the vocabulary of the collection and
−→
d be a document vector

defined over the same space.

RSVVSM(q, d) :=

−→
d · −→q√−→
d 2 · −→q 2

(2.15)

The VSM get its name as the RSV is calculated as the cosine angle between

the query and the document. The numerator in Equation (2.15) is the Eu-

clidean norm which helps with the length normalization between the query and

document vectors. These vectors can be defined using TF-IDF, which makes

the model more effective, than if simple term occurrences are used [19].

Using the cosine “similarity” between vectors is still widely used in IR. For

example, advanced deep learning methods still compare query and document

vectors, much in the same way as VSM, except they use methods such as word

embeddings instead of TF-IDF vectors [30, 31, 32].

2.4.3 Best Match 25 (BM25)

Out of all the retrieval models introduced in this section, the BM25 [33] is by

far the most relevant one in terms of this thesis. Even though other models are

used in the analysis and experiments as well, the BM25 was the starting point

for all the new models introduced in this thesis. The reason for this is that in the

last 10 years, it has become the standard in both the academic and commercial

space. Furthermore, the way in which it incorporates term frequency saturation
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has been an important inspiration for the SDR methods proposed in this thesis.

The BM25 is sometimes considered an iteration of the TF-IDF model, as its

two main components resemble those of the BM25, especially in the absence of

relevance knowledge when wrsj,full −→ wrsj,tweak.

However, this should be considered a misunderstanding of BM25 and TF-

IDF. The original iterations of BM models before BM25(15, 11) had four com-

ponents, one for the RSJ-weight, one for document term frequency, one for

query term frequency and one for document length [34]. However, the query

term frequency component is usually omitted and term frequency component is

combined with the document length component [33]. Robertson el al. developed

the BM25 to mirror the probabilistic 2-Poisson model but with a more tangible

and simple form [34, 35]. The 2-Poisson aspect of BM25 only concerns the TF

component of 2.14, the wrsj,full is added separately [34].

Definition 2.12 (BM25-TF). Let k1 be the term frequency saturation param-

eter, b the document length normalization parameter and avgdl(c) the average

document length for collection c.

TFBM25,k1,b(t, d, c) :=
TFraw(t, d)

TFraw(t, d) + K
(2.16)

Kk1,b(d, c) = k1 ×
(

1 − b + b
|d|

avgdl(c)

)
(2.17)

It is worth re-formulating Equation 2.16 to capture how the document length

normalization and term frequency saturation aspects of the BM25 term fre-

quency quantification are connected. Furthermore, this adds clarity later on,

as we are largely focused on term frequency saturation, not document length

normalization.

TFBM25,k1,b(t, d, c) :=
TFpiv,b(t, d, c)

TFpiv,b(t, d, c) + k1
(2.18)

where TFpiv,b is the document length normalized term frequency:

Definition 2.13.

TFpiv,b(t, d, b, c) :=
TFraw(t, d)

b× |d|
avgdl(c) + (1 − b)

(2.19)

Definition 2.14 (RSV BM25).

RSVBM25,k1,b(d, q, c, R) :=
∑
t∈q

TFBM25(t, d, c) · wrsj,full(t, c, R) (2.20)

The hyperparameters in BM25-TF are k1, which determines the scale of
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term frequency saturation and b which determines the scale of document length

normalization. Term frequency saturation is one of the concepts in this thesis

and therefore it will be discussed at length in a separate section (Section 2.6).

The other hyperparameter is b, which controls the degree of document length

normalization. Figure 2.2 demonstrates the effect of b on BM25-TF.

Figure 2.2: The effect of document length normalization on term frequency
quantification for BM25 with different values of b.

Even though less emphasis is given to document length normalization, com-

pared to term frequency saturation in this thesis, it is worth noting that it is an

important factor in making BM25 as powerful as it is. It is also worth noting

that the widely accepted good ranges for b (0.75-0.80) and k1 (1.2-2.0) have

made it possible for BM25 to become popular, which as we will see later, is a

problem when it comes to SDR as these ranges do not seem to apply. Closely

related to the BM25-TF is Paiks-TF, where term burstiness is considered as

well [36].

2.4.4 Language Modelling (LM)

LM became popular in the late 90s and has since been considered one of the

main benchmark models in IR research. This section introduces and clarifies

the theory underlying LM.

LM is based on a different conceptual model compared to the BM25. Where

BM25 seeks to model the probability of a document being relevant given a query,
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LM instead estimates the probability of a query given a document: P (q|d) rather

than P (d = relevant |q). This distinction between P (q|d) and P (d = relevant |q)

has been discussed at length by Roelleke [19].

Intuitively, LM estimates the probability of producing a query by randomly

choosing words from a document. Problems with this conceptual model arise

if there are words in the query that are not found in the document. If the

ranking score for a document was calculated as the product of the query term

probabilities within a document, all documents that do not contain every single

query term would get a score of 0. This of course is not desirable, since those

documents could still be useful. In order to include these documents in the re-

trieval results, LM not only considers the probability of terms given a document

P (t|d), but also the probability of terms given a collection as a whole P (t|c).
The two probabilities are mixed in different ways and are commonly referred

to, as the foreground and background models respectively.

Definition 2.15 (RSV-LM). Let λ be the mixture parameter, determining the

weight given to the foreground and background models.

RSVLM(d, q, c) :=
∑
t∈q

TFraw(t, q) · log [(1 − λ)P (t|d) + λP (t|c)] (2.21)

It is worth noting that in literature sometimes the mixture parameter is de-

fined the other way around as: RSVLM(d, q, c) :=
∑

t∈q TFraw(t, q)·log(λP (t|d)+

(1−λ)P (t|c)) [19]. In this thesis Definition 2.15 is preferred as it is used by the

Lucene system and thus makes the experimentation later on more straightfor-

ward.

By normalizing Definition 2.15 and transforming using methods described

by Roelleke [19] we can derive the following definition for RSV-LM.

Definition 2.16 (RSV-LM-Normalized).

RSVLM,norm(d, q, c) :=
∑
t∈q

n(t, q) · log

(
1 +

(1 − λ)

λ

P (t|d)

P (t|c)

)
(2.22)

In most cases P (t|d) and P (t|c) are defined as the maximum likelihood estimate

of the probability of term t under the term distribution of for document d, or

collection c as defined below [37]:

Definition 2.17 (LM Term Probabilities). Let n(t, c) be the collection-wide
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term frequency, i.e. the number of occurrences of term t in all the documents.

P (t|d) =
n(t, d)∑

ti∈d n(ti, d)
(2.23)

P (t|c) =
n(t, c)∑

ti∈c n(ti, c)
(2.24)

The best-known variations of LM models are about estimating the value

for λ, as it determines the trade-off between the background model and the

foreground model. These methods are often called smoothing methods, as they

smooth the effect of the background model on the RSV.

The most straightforward smoothing method is the Jelenik-Mercer method.

There λ is set as a constant between 0 and one. Widely used retrieval libraries

such as Elastic Search and Lucene set λ = 0.1, though they mention this works

better for short queries, rather than long ones3. A more complex smoothing

method is Dirichlet-based smoothing.

Definition 2.18 (LM - Dirichlet-based smoothing).

λ :=
|d|

µ + |d|
(2.25)

A case can be made to set µ as a function of avgdl [19]. In general values

between 200 and 2000 have been recommended [38].

A more recent model by Cummings el al. introduces the smoothened Polya

urn document (SPUD) language model where the multinominal distribution,

used in most language models, is replaced with the Dirichlet compound multi-

nominal [29]. This has a strong effect on how term frequency saturation is

modelled, as we will see in Section 2.6.

2.4.5 Divergence from Randomness (DFR)

Amati el al. introduced the DFR model in the early 2000s [39]. It represents a

third conceptual model for how documents are to be retrieved that we discuss

in this section, the first one being the probability of relevance (BM25) and

the second one query likelihood (Language Modelling). The underlying idea in

DFR is to score documents based on how divergent they are from being random.

Conceptually, if we have a matching term with a high likelihood to appear in a

document — such as the word ”the” — the model will not give it a lot of weight,

even if it occurs many times. The DFR model is covered at some length here as

3https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-
similarity.html
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it is based around information content, the same as the proposed models later

in this thesis.

At the core of the DFR model lies the two probability mass functions de-

scribed below. The significance of defining them as probability mass functions,

rather than cumulative probability functions, or density functions is discussed

later on in the section.

Definition 2.19 (DFR Probability 1 — Prob1). Let Θ be a model of ran-

domness. In Amati et al. [39] Θ = [Bernoulli-Poisson, Bernoulli-Divergence,

Bose-Einsten, TF-IDF]

Prob1(t, d, c,Θ) := P (n(t, d)|Θ) (2.26)

Definition 2.20 (DFR Probability 2 — Prob2). Let ϑ be a model of random-

ness. In [39] ϑ ∈ [Laplace, Bernoulli]

Prob2(t, d, ϑ) := P (n(t, d)|ϑ) (2.27)

Definition 2.21 (DFR Informative Content 1 — Inf1).

Inf1(t, d, c,Θ) := − log2 Prob1(t, d,Θ) (2.28)

Definition 2.22 (DFR Informative Content 2 — Inf2).

Inf2(t, d, ϑ) := 1 − Prob2(t, d, ϑ) (2.29)

Definition 2.23 (Divergence from Randomness RSV).

RSVDFR(d, q, c) :=
∑

t∈q∩d

[TFraw(t, q) · Inf1(t, d,Θ) · Inf2(t, d, c, ϑ)] (2.30)

As is evident from Definition 2.23 the weight given to a term depends on

two kinds of informative content. Here it is important to distinguish between

information content as it is understood in information theory and as a compo-

nent of entropy and informative / information content as it is understood in

terms of what Hintikka [40] calls semantic information theory. DFR is based

on the latter. According to Hintikka’s definition, both Definition 2.21 and 2.22

are valid measures of informative content. Amati el al. provide formal proof for

why the two informative content measures are combined in Definition 2.23, by

considering Inf2 as a normalizing component which discounts the effect of Inf1

based on the concept of risk, which they borrow from utility theory.

The DFR model is comprised of three components: The basic model, the

first normalization and the second (document length) normalization. Here the
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focus will be on the first two, as document length normalization is not a core

aspect of this thesis.

Basic Models of Randomness

The basic model calculates the probability and therefore the information content

of a document having a given number of query term occurrences. The models of

randomness considered by Amati et al. [39] are the Bernoulli model, the Bose-

Einstein model, the tf-idf model, the tf-itf model and the tf-expected idf model.

The Bernoulli model is approximated using the Poisson model and a divergence

model. The Bose-Einstein model is considered using two limiting formulae the

geometric distribution and using Stirling’s formulae.

Not all these options are discussed at length here. Three of the above basic

models are discussed in detail for the following reasons: the Poisson-based ap-

proximation of the Bernoulli model as it relates to the formulation of the BM25

(P in [39]), the Bose-Einstein model and the TF-IDF model (I(n) in [39]).

For the Bernoulli model of randomness Inf1Bern is defined as:

Definition 2.24 (Bernoulli Model of Randomness). Let p = 1
N and Bern be a

model of randomness based on the Bernoulli distribution.

Prob1(t, d, c,Bern) :=

(
n(t, c)

n(t, d)

)
pn(t,d)(1 − p)(n(t,c)−n(t,d)) (2.31)

Slightly confusingly [39] et al. call this model of randomness Bernoulli, even

though it represents the binomial distribution.

Following Definition 2.21 for Inf1 the expanded expression is as follows:

Inf1(t, d, c,Bern) = − log [Prob1(t, d, c,Bern)] (2.32)

Assuming that p decreases towards 0 as N increases, the formula above can

be approximated using the Poisson distribution:

Inf1(t, d, c,Bern) ≈ − log Poisλ(n(t, d)) (2.33)

Poisλ(n(t, d)) =
e−λλn(t,d)

n(t, d)!
(2.34)

where λ = p×n(t, c). Setting λ in this way is important as λ defines the expected

probability of randomly observing n(t, d) occurrences of term t in document d.

By setting p = 1
N , the model guarantees that there are no cases where the

P (n(t, d)) > P (n(t, d) + 1), as 1
N represents the minimum probability we can

observe for a term.
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The Bernoulli model of randomness is as the Binominal distribution, where a

single Bernoulli trial models the probability of a term occurring, or not occurring

in a document.

The second basic model considered here is the Bose-Einstein model. Suppose

that we randomly place n(t, c) tokens of a term in N documents. This “event”

completely describes its occupancy numbers: n(t, d1), . . . , n(t, dN ). For all the

possible events the following is true:

n(t, d1) + · · · + n(t, dN ) = n(t, c) (2.35)

The number of possible configurations for Equation 2.35 is defined as s1 and is

given by the binomial coefficient:

s1 =

(
N + n(t, c) − 1

n(t, c)

)
=

(N + n(t, c) − 1)!

(N − 1)!n(t, c)!
(2.36)

s1 denotes the total number of combinations possible given N documents and

n(t, c) term occurrences. In order to calculate the probability of document dk

having exactly n(t, d) occurrences of term t, the number of configurations that

produce such an outcome must also be considered. This number is denoted as

s2 can be calculated by considering Equation 2.36 without the document k:

n(t, d1) + · · · + n(t, dk−1)+

· · · + n(t, dk+1) + · · · + n(t, dN ) = n(t, c) − n(t, dk) (2.37)

In a similar manner to s1 the number of possible combinations for this event

can be calculated as:

s2 = N − 1 + (n(t, c) + n(t, dk) − 1)n(t, c) − n(t, dk)

=
(N + n(t, c) − n(t, dk) − 2)!

(N − 2)!(n(t, c) − n(t, dk))!
(2.38)

Assuming that n(t, c) ≫ 1, N ≫ 1 and that n(t,c)
N = O(1) (same as for Poisson

above), both s1 and s2 follow the Bose-Einstein distribution. The probability of

document dk having exactly n(t, d) occurrences of term t can then be calculated

in using combinations, with s1 representing all possible combinations given a

collection c and s2 all possible combinations given c, without document k. For

the Bose-Einstein model of randomness Prob1 is calculated as:

Definition 2.25 (Bose-Einstein Model of Randomness).

Prob1(t, d, c,Bose-Ein) =
s2
s1

(2.39)
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It is worth noting that the Bose-Einstein model of randomness is not really

a probability model based on a Bose-Einstein “probability” distribution, but a

probability calculated using combinations which are calculated using binomial

coefficients. These binomial coefficients follow the Bose-Einstein distribution

due to the above-mentioned assumptions about n(t, c), N and n(t,c)
N .

Equations (2.36) and (2.38) are related to the derivation of the Bose-Einstein

distribution from the microcanonical ensembles. Another potential derivation of

the Bose-Einstein distribution comes from the grand canonical ensemble. Part of

this derivation states that the probability distribution for the number of bosons

(term occurrences in IR) is a geometric distribution. The details underlying the

derivation of the Bose-Einstein distribution using microcanonical ensembles and

the grand ensemble venture too far into the world of physics for us to spend

time on it here.

Following Definition 2.21 for Inf1 the expanded expression for Equation 2.39

is as follows:

Inf1(t, d, c,Bose-Ein) = − log [Prob 1(t, d, c,Bose-Ein)] (2.40)

The third basic model considered here is the TF-IDF randomness model. It

is discussed here at length as the IDF is a concept that is prevalent in many

parts of this thesis, both in terms of implementation and inspiration. The

TF-IDF randomness model computes Prob1 by first computing the unknown

probability of p of choosing a document at random and then computing the

probability of having n(t, d) occurrences of t in that document. Using a Bayesian

approach and various assumptions about the underlying distributions, as well as

the distribution features, [39] arrive at the following definition for the probability

of randomly choosing a document with the term t:

P (t ∈ d|c) :=
df(t, c) + 0.5

ND(c) + 1
(2.41)

They further assume that the occurrence of a term t is independent of all other

term occurrences including those of term t, meaning the probability of observing

n(t, d) occurrences of term t is defined as:

Definition 2.26 (TF-IDF Model of Randomness).

Prob1(t, d, c,TF-IDF) := P (t ∈ d|c)n(t,d) (2.42)
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Following Definition 2.21 for Inf1 the expanded expression is as follows:

Inf1(t, d, c,TF-IDF)

= n(t, d) · log
N + 1

df(t, c) + 0.5
∝ TFraw(t, d) · IDF(t, c) (2.43)

From Equation 2.43 it is evident that the TF-IDF model of randomness

closely resembles the TF-IDF model with the raw term frequency quantification,

assuming an log N+1
df(t,c)+0.5 like IDF. This means that term frequency is not

saturated by Equation 2.43.

First Normalization

The underlying idea behind the first normalization (Inf2) is to model what [39]

calls the after-effect of sampling. That is, Prob2 is focused only on modelling the

probabilities of term occurrences in documents that have an occurrence of the

term (the elite set). It is assumed that the probability Prob2(n(t, d)) is obtained

by the conditional probability P (n(t, d)+1|n(t, d)), i.e. the probability of having

one more occurrence of t in the document. The probability P (n(t, d)+1|n(t, d))

is obtained using the aftereffect model. [39] introduce two aftereffect models,

one based on the Laplace law of succession and one on Bernoulli trials and

an urn model. Here we concentrate on the former, which shares similarities

with the BM25 term frequency quantification (TFBM25). The Laplace model of

aftereffect calculates Prob2 as

Prob2(t, d) = P (n(t, d) + 1|n(t, d)) =
n(t, d)

n(t, d) + 1
(2.44)

Following Definition 2.22:

Definition 2.27 (Laplace Aftereffect model).

Prob2(t, d,Laplace) :=
n(t, d)

n(t, d) + 1
(2.45)

Inf2(t, d,Laplace) =
1

1 + n(t, d)
(2.46)

From Equation 2.27, as n(t, d) grows Inf2 decreases. Together with the basic

randomness model, this means that term frequency is saturated. For example,

even though the TF-IDF basic model of randomness (Inf1TF-IDF) uses the raw

term frequency after it is multiplied by Inf2 term frequency is saturated. The

nature of this saturation is similar to TFBM25, which is obvious from Equa-

tion 2.45 (with k1 = 1).

The TF-IDF basic model with Laplace first normalization is used in the
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experimentation of this thesis as it shares many similarities with the proposed

models: Firstly, they both are based on information content, secondly, the un-

derlying inspiration is related to the IDF and finally, the term frequency satu-

ration of Laplace smoothing is similar to that of the BM25, which is one of the

underlying motivations for the proposed models in this thesis.

The Underlying Purpose of Inf1 and Inf2

As discussed earlier there are two important aspects that all the atomic retrieval

models discussed in this chapter must possess in order for them to function well:

1. They should emphasise terms that are better discriminators, i.e. they are rare

and 2. Term Frequency should be saturated. The DFR model — much like the

BM25 — splits these two model attributes into two components. Inf1 makes sure

the rare terms receive more emphasis and Inf2 (or first normalization) saturates

the effect of higher term frequencies.

More formally, consider the Bernoulli-Poisson-based Prob1. Definition 2.24

represents a probability mass function (PMF) for the number of occurrences of

term t being equal to n(t, d) (P (n(t, d)|d, c))). What makes Prob1 and Prob2

probability mass functions, rather than probability density functions is their

inherent discrete nature. The DFR model could also be defined not through

the probability mass function, but the cumulative distribution function (CDF)

(P (n(t, d) <= kt) where kt is the number of times term t is observed in a

document). This approach has been denoted as first-generation DFR (DFR-1)

in literature [19]. Amati et al. only focus on the mass function-based approach

(DFR-2 in [19]), which is also what we have done here. As the PMF is calculated

based on the number of occurrences of term t in a document (n(t, d)) and the

number of occurrences in a collection (n(t, c)), the higher the value for n(t, c) is,

the higher the value for Prob1 is, meaning the higher n(t, c) is the lower Inf1 is.

This is the underlying purpose of Inf1; to emphasise rare terms. As mentioned

earlier, the purpose of Inf2 is to saturate term frequency.

Notes on Implementations

In terms of commercial implementation, different libraries offer different options

for the DFR Basic models and the second normalization. Lucene and libraries

built on top of it such as Elasticsearch have the Geometric Bose-Einstein model

and the three different TF-IDF models. For the aftereffect both the Laplace

and Bernoulli options are available. The same goes for the SOLR library.
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Thesis Baseline DFR Model

The experimentation in Chapter 5 uses DFR with a TF-IDF basic model,

Laplace as the first normalization and H1 as the second normalization.

Definition 2.28 (RSV DFR Baseline). Let nnorm(t, d) = n(t, d) · avgdl
|d| , i.e. the

length normalized term frequency.

RSVDFR,BL(d, q, c,TF-IDF,Laplace)

:=
∑

t∈q∩d

Inf1(t, d, c,TF-IDF) · Inf2(t, d,Laplace)

=
∑

t∈q∩d

nnorm(t, d) · log
N + 1

df(t, c) + 0.5
· 1

1 + nnorm(t, d)
(2.47)

This configuration was chosen for the following reasons: 1. It is shown to

perform relatively well by [39], 2. It uses the TF-IDF as an underlying model, a

feature shared with our proposed model and 3. The Laplace first normalization

shares similarities with the BM25, which has had a large influence on models

presented in this thesis.

The last point was also made by Amati [39] in their original paper. The

following provides a simplified explanation for clarity in the context of this

thesis. Rearranging Equation 2.47 we have:

RSVDFR,BL(d, q, c,TF-IDF,Laplace) =
nnorm(t, d)

1 + nnorm(t, d)
· log

N + 1

df(t, c) + 0.5
(2.48)

If we assume that the second term corresponds to the IDF (more specifically,

Definition 2.6), no document length normalization and that the k1 value for

BM25 is equal to 1, the ranking functions (Equations 2.47 and Equation 2.20)

are the same.

An argument could be made that there are better-performing DFR ver-

sions, especially in terms of basic models of randomness. Often used candidates

include the Bernoulli model of randomness with Poisson approximation and

the Bose-Einstein model of randomness. The reason why we have chosen the

TF-IDF-based model of randomness is that it closely relates to other atomic

retrieval models in the thesis. The focus in this thesis is not on which atomic

model performs the best with our proposed field weighting methods, but in-

stead to demonstrate that they can be used with any atomic retrieval models.

No significant effort is spent comparing our field weighting method used together

with BM25 against it being used with DFR for example. The focus instead is on

demonstrating that whatever the underlying atomic model is, the proposed field

weighting methods increase performance. For these reasons, it is not important
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which DFR model is used, which is also why only one is used.

2.4.6 Non-Analytical Supervised Ranking Models

The distinction in literature between different types of ranking models is not

a clear one. Probabilistic models are sometimes considered to encompass all

the above-mentioned models, even though it is difficult to see the probabilistic

foundations of TF-IDF and VSM. Furthermore, once training data and super-

vised learning enters the equation things get even more muddled. For example,

it could be argued that the BM25 and LM are supervised models if their hy-

perparameters are optimised. As discussed before, in this thesis the distinction

between analytical and non-analytical is highly important. Therefore, in terms

of notation in this thesis all non-analytical models will be called learning-to-rank

(LTR) models, whether they are feature driven, or deep learning-based. This

helps clear the confusion between learning (LTR parameters) and hyperparam-

eter tuning (BM25 k1 and b tuning).

The focus of this thesis is on analytical models as they are a better fit for

investigative tasks, which means not as much time will be given to non-analytical

models. However, for context, these models are introduced briefly.

Feature Driven Learn-To-Rank Models

An extensive summary of the research on feature-driven learning-to-rank (LTR)

models can be found in Liu et al. [41]. We summarise their description of the

field and extend it where appropriate.

Where in BM25, LM and DFR a ranking model is defined through condi-

tional probabilities and for TF-IDF through heuristics (to an extent), the idea

underlying LTR is to learn the model from the data [41]. There are three main

approaches to doing this:

• Pointwise. Input = document + query. Output = single value used to

rank all documents.

• Pairwise. Input = (document1 + query) + (document2 + query). Out-

put: Preference on which document should be ranked higher.

• Listwise. Input = list of all documents + query. Output = ranked list

of documents.

The first two approaches are often modelled as regression or classification

tasks with the corresponding loss functions. The listwise approaches calculate

loss more naturally in terms of a ranking task, using accuracy metrics, such
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as Normalised Discounted Cumulative Gain (NDCG) over the entire ranking

directly [42].

Table 2.2 shows classification of feature-driven LTR models from Lie et

al. [41] (extended).

SVM Boosting NeuralNet Others

Point
OC SVM [43] McRank [44] Prank [45]

Subset
Ranking [46]

Pair
Ranking SVM [47] RankBoost [48] RankNet [49]
IR SVM [50] GBRank [51] Frank [52]

LambdaMart [53] LambdaRank [54]

List
SVM MAP [55] AdaRank [56] ListNet [57] SoftRank [58]
PermuRank [59] ListMLE [60] AppRank [61]

Table 2.2: Feature-driven LTR models from and their classification from Liu
et al. [41].

All the models in Table 2.2 require manual definition of features. Things

like BM25 scores and PageRank scores are often used, but theoretically, any

feature defined between a document and a query can be used [41]. Constructing

and choosing the features is not a simple task and usually requires knowledge

of the data (in terms of structure for example) and of the kinds of queries that

users might submit. This means there have to be query logs available. It is also

time-consuming as it has to be done by hand [62].

There are two main methods for developing training data for LTR models.

1. Human annotated query-relevant document pairs and 2. click-through data.

With regards to the application area of this thesis, i.e. IR for data investigations,

each of these approaches has problems. For the first one the issue is that in a

more exploratory search scenario, the user’s information needs and therefore

possible queries are not known (no query logs), which means it is not possible

to annotate a representative set of them. For the second one, the problem is even

more apparent, as the data investigators work with rarely has been explored by

many other people, thus it is unlikely that there is click-through data available.

Furthermore, click-through data tends to be proprietary.

Raw-Feature Driven Ranking Models

Deep learning ranking methods do not require constructed features, instead,

they use the raw text from queries and documents directly. This differenti-

ates these models from those using neural networks mentioned in the previous

section.

[62] provides a good overview of models in this area. We will summarise

42



some of the different model types, but will not go into further detail as deep

learning models are inherently non-analytical and thus do not fit well with the

topic of this thesis.

Deep learning approaches in IR tend to be borrowed from other areas of

research, such as NLP and classification. However, IR has some unique issues

that need to be resolved before these models can be deployed: Firstly, queries

and documents are different in length and in nature. Secondly, there exists

what is known as the semantic gap between the query and the document, i.e.

different terms are used for describing the same thing depending on the con-

text. According to [62] the deep neural components and techniques central to

deep IR models are as follows: convolutional neural networks (CNN) [63], recur-

ring neural networks (RNN) [63], Long term-short memory (LSTM) [64], gated

recurrent units (GRU) [65], attention mechanisms and word embeddings.

More recently deep learning IR models built on large-scale language models4

such as BERT, T5 and GPT-3 have become increasingly popular. They have

been shown to beat previous approaches by a significant margin [66]. However,

using the language models for IR has some drawbacks: Firstly, the models have

a maximum length of the term vector (i.e. document length) that can be used,

meaning documents have to be short. Secondly, if these models are used directly

they are slow. For each new query, an inference step is required, which makes

many of the models obsolete in a real-world retrieval scenario. Some approaches

chop documents up and aggregate the parts later to deal with the first problem

and some avoid the latency issue by loosening the term dependency assumptions

in the network [67, 68].

All LTR approaches, whether they are feature-driven, no-feature-driven, or

based on large-scale language models tend to trade off accuracy for efficiency.

However, in terms of this thesis, there is an even more important trade-off. As

these models are not analytical, increases in accuracy cannot be assigned to

any formal part of the model, meaning as they become more complex and more

accurate, they become less transparent. It is this trade-off between accuracy

and transparency that resulted in the focus on analytical models for this thesis.

2.5 Structured Document Retrieval (SDR)

Structured document retrieval (SDR) refers to any retrieval scenario where the

objects of interest (documents) are structured and where this structure is used

by the retrieval system. In the past, much of the research in this area has focused

on hierarchical structures found in document types such as XML. However, the

4different from Language Modelling retrieval approach discussed earlier
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focus of this thesis is on non-hierarchical structured data. This makes the

proposed approaches more general, as hierarchical structures documents can be

flattened to non-hierarchical structures, but not vice versa. Furthermore, the

retrieval task is “easier” to an extent as the depth dimension is not a problem.

Since analytical models for SDR is a research area far from being saturated, it

makes sense to start from the “easier” scenario.

2.5.1 Field Notation

To avoid confusion between documents, collections, document fields and collec-

tion fields it is worth clarifying the notation used.

• f = document field: e.g. the title of a document.

• F = collection field: e.g. all the titles in the collection.

• n(t, f) = term frequency (in document field f): how many times term t

occurs in f .

• TFM (t, f, (F )) = term frequency quantification: the term frequency com-

ponent of retrieval model M, with respect to a document field f/

• df(t, F ) = document frequency (in collection field F ): how many times

term t occurs in F .

2.5.2 Document Structures and Information Needs

All the examples I could find of large-scale IDJ projects deal with data sets

where structure is important. Whether it is in terms of search, entity linkage,

or entity relationships, the data never seems to be atomic. This is likely due to

the fact that the underlying data often consists of things like emails, contracts

and spreadsheets, all of which are structured. This is one of the main reasons I

chose to make document structures a central part of my thesis.

Before diving into existing Structured Document Retrieval (SDR) models,

it is worth discussing data structures generally in some detail. Specifically, the

different ways in which parts of the structure (document fields) can be connected

and how their interplay might help us model information needs.

Consider an ad-hoc retrieval scenario with a single search field over a struc-

tured data set with multiple fields. Even though few assumptions are made

about the nature of the data in this thesis, it is important to discuss differences

in potential structure types for two reasons: 1. the considerations highlight

issues that SDR models need to account for and 2. they directly affect the

methodology used to model information needs in this thesis.

44



A common example of a document structure in SDR literature is one with

two or three fields that all serve a similar purpose. For example a title, body

and sometimes anchor text or in-link text [69, 70, 71, 30]. In such cases, the

fields can be understood to differ only in their “quality”. This idea refers to the

concept of elite terms, which describe the topic the author wants to talk about

better than other terms [33, 72, 73]. With limited space (titles are short) the

author is likely to use more elite terms [69]. Therefore the terms in title are

better “quality” and their importance should be boosted.

Other SDR scenarios include ones where the fields refer to completely dif-

ferent aspects of the document, such as the author or date of publication. This

category would also include things like product catalogues, with fields such as

manufacturer, product name and description. Lastly, more complex structures

might include fields such as titles of related documents.

In cases where the fields are different representations of the same aspect of

the document, such as the {title, body} example, it is important to account

for the dependency of term occurrences across the fields. This is the biggest

strength of probably the best-known multi-field retrieval mode; the BM25F

[69]. However, there are apparent downsides to assuming strong constant de-

pendence on term occurrences across fields in terms of the other two examples.

For example, the dependency between {title and author} is not as clear as {title
and body}. This is because document titles and bodies are likely to use the same

terms to talk about the same entity, meaning the dependence between the term

occurrences should be assumed to be high, whereas the author field is likely

to have terms which when mentioned in the body, refer to another entity. For

example, if John Doe is the name of the author and the term John is mentioned

in the body, it is likely that it means another John. Therefore the dependency

of terms should be assumed to be lower. Even more problematic would be the

dependency between {title and titles of related documents}. This is because

almost by definition the terms in the two fields refer to different entities.

Another aspect of SDR is whether to emphasise the occurrences of terms

differently if they appear in many fields, as opposed to one field. In the case

of {title and body} it might not matter whether a term appears twice in the

title, or once in the title and once in the body, apart from the effect of the field

weights. However, in the case of {title and titles of related documents} it clearly

does, as the occurrences by definition refer to different entities.

One of the key aspects of my research is to move away from the notion of

treating document structures as a nuisance that needs to be dealt with. A set

of widely used probabilistic SDR models handle the nuisance of cross-field term

dependency by simply modelling the documents as atomic after some form of

field weighting. It will be demonstrated later on that even though these models
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perform better, due to being less noisy, they miss out on significant potential

performance gains, by ignoring structure. The models I introduce consider

document structures as useful and something to be leveraged.

2.5.3 SDR Models for Hierarchical Structures

The first in-depth analysis of SDR is by Wilkinson [74]. The work is usually

cited to argue that considering the structure of documents, rather than seeing

them as atomic, tends to be beneficial for retrieval performance. The paper

includes experiments with multiple models, many of which combine document

section-based relevance scores using a weighted sum.

With the increased demand for systems that could deal with structured doc-

ument types such as SGML and XML, came a host of approaches based on dif-

ferent theoretical grounding. Lalmas et al. use Dempster-Shafer Theory of Evi-

dence for modelling uncertainty in SDR instead of probability theory, producing

various models that represent document structure as trees [75, 76, 77].They ar-

gue that the DS Theory of Evidence is a better fit than probability theory

because according to them it is more flexible if dealing with aggregated compo-

nents [75]. Fuzzy logic has been used by Kazai et al. [78]. Bayesian inference

and network methods were used by Myaeng et al. and Piwowarski et al. [79, 80]

amongst others. They model documents as hierarchical networks. Other earlier

approaches by Baumgarten and Lalmas [81, 82, 83] used probabilistic logic.

Roelleke [84] points out that all the above approaches share the common

feature of using a variant of the TF-IDF weighting scheme. Another similarity

is that they all consider the document structures as hierarchical. This means

that an inherent part of the models is to control how the importance of elements

is reflected higher on the tree, i.e. if element E1 has two sub-elements E2 and

E3, how is the importance of TF-IDF scores in E2 and E3 reflected in E1

for example. [84] suggests adding an accessibility component to the TF-IDF

weighting scheme, where the importance given to terms is discounted when

moving up the tree depending on the nature of the document structure. Their

model is denoted TF-IDF-acc.

With the of INiative for the Evaluation of XML Retrieval (INEX) in the

early 2000s, structured document retrieval started focusing on XML documents

specifically. The research looks at querying the XML data both using formal

languages such as XPath, XIRQL and XXL as well as using natural language

queries [85, 86, 87]. An important variable in deciding which approach to take

has to do with how much the user knows about the data structure [88, 89]. The

main aim of many XML retrieval approaches is to balance between two types

of users, those who understand and know the document structure and can thus
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express it in their queries and those who do not [89, 90]. Many of the approaches

discussed before were used at INEX as well, with the addition of LM-based SDR

models in the early and mid 2000s [90, 91].

The task of XML retrieval in terms of INEX is not a simple one to describe

compared to ad-hod-retrieval with atomic documents for example. There are

a number of variables which need to be considered. Firstly, what part of the

document should be shown to the user? In XML retrieval this problem is inves-

tigated by determining the best point of entry for a given query [78]. Secondly,

as pointed out by Kazai et al. [78] amongst others, depending on the nature of

the data (many short elements, or fewer long ones) different approaches should

be considered. Some require more focus on the structure of the document, and

some on the content. Thirdly, not only do the different elements of the doc-

uments need to be considered separately they are also nested, meaning their

hierarchical relations need to be taken into account. Fourthly, the degree to

which the user is familiar with the document structure has an effect on both the

choice of appropriate models and the element types that should be presented.

If the user is not familiar with the structure, it is much less likely that their

query can be leveraged to recognize correct entry points or constraints on the

structure. And finally, a common aspect of many of the XML retrieval models

discussed above, especially those more focused on structure, rather than con-

tent, is the fact that they consider the semantics of field types. Meaning some

expect queries to name the field types, either explicitly through a formal lan-

guage such as Xpath, or simply in the query (e.g. show me titles of movies with

Brad Pitt).

The SDR approach proposed in this thesis considers a more simple scenario

than the one described by the above 5 points. Firstly, the question of which

parts of documents to show to the user is not a priority. Secondly, documents

are modelled as non-hierarchical, meaning each document has m non-nested

elements (fields). And finally, no knowledge of the structure by the user is as-

sumed, meaning the queries cannot be expected to contain hints about which

elements to focus on. These “simplifications” reflect the characteristics of in-

vestigative retrieval. However, it is worth mentioning the third point here. If

we cannot use the queries to understand which elements the user is interested

in how do we assign weights to them? One approach used extensively by the

models in the next section is to optimize weights over the different element types

using training data, meaning fields that are known to be important purely from

experience are given more weight.

One of the key points of this entire thesis is to argue that this is not what

should be done. Karen Spark-Jones argued in the 70s that term specificity

weights should be considered a statistical property of terms, not a semantic one
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set arbitrarily. So too this thesis argues that field weights should not be consid-

ered a semantic property of fields learned from training data, but a statistical

one set according to collection statistics.

2.5.4 Field Score Aggregation (FSA) v. Term Frequency

Aggregation (TFA)

The models in this section can be said to have one of two underlying aggregation

functions: one that explicitly considers the structure (FSA), and one that does

not (TFA). The following two definitions will explain each approach in detail.

These high-level definitions do not consider the specificity of terms (e.g. IDF),

only how the score contributions from an increase in term frequencies are con-

sidered. Firstly, there are the models that rank documents on each field type,

and then aggregate the field-based retrieval scores using weights:

Definition 2.29 (Weighted Sum of Scores (FSA)). Let d be a document con-

sisting of m fields, f be a field consisting of terms and wf a weight assigned

to a field and M be an atomic retrieval model e.g. BM25. In the context of

calculating the RSV, fields are considered in the same way as documents were

for atomic retrieval.

RSVFSA,M (d, q, c) :=

m∑
i=1

wi · RSVM (fi, q, c) (2.49)

Equation (2.49) can be interpreted as a special case of the utility function

where the utility of a field is replaced by its rank score.

The other group of models — most notably the BM25F — applies the weights

to the field-based term frequencies, sums them together across the fields and

then retrieves over these aggregated documents.

Definition 2.30 (Weighted Sum of Term Frequencies (TFA)). Let f⃗ =

[n(t1, f) . . . n(t|f |, f)] be a vector representation of field f , n(t, f) the term fre-

quency of term t in field f and wf a field weight.

RSVTFA(d, q, c) := RSV(d̄, q, c) (2.50)

d̄ := [w1 × f⃗1 . . . wfm × f⃗m] (2.51)

Each of the above aggregation functions has its strengths, although the lat-

ter is usually considered more robust. Chapter 4 discusses the strengths and

weaknesses at length, whilst demonstrating the cost of these weaknesses using

formal retrieval constraints and analysis with real-world data.
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2.5.5 Field Score Aggregation (FSA) Models

FSA refers to SDR models where traditional retrieval models are used to score

documents based on each field and the scores are aggregated using field weights

(See Definition 2.29). The retrieval scores can be produced by any atomic

model, BM25 or LM for example. Such models are closely related to the field

of meta-search where the scores of different search engines are aggregated to a

single ranking [41, 69]. The RSV score for FSA models with different field level

models is calculated using Definition 2.29. In terms of notation, an FSA model

using BM25 as the underlying atomic retrieval model is denoted FSA-BM25 and

its RSV as RSVLFSA,BM25.

2.5.6 BM25-Field (BM25F)

Robertson el al. introduced the BM25F in order to allow for term frequency

saturation across fields. BM25F calculates the retrieval score of a fielded

document as the BM25 score of a flattened document representation where

the field weights are applied directly to the term frequencies of the fields:

nw⃗(t, d) =
∑m

i win(t, fi, d), meaning the aggregation function is TFA [69, 70]:

Definition 2.31 (BM25F Retrieval Status Value). Let nw⃗(t, d) be the weighted

sum of term frequencies over the fields and rel is the relevance information used

by the RSJ weight.

RSVBM25F(d, q, c) :=∑
t∈q∩d

(k1 + 1)nw⃗(t, d)

nw⃗(t, d) + k1

(
b |d|
avgdl(c) + (1 − b)

)wrsj(t, c, rel) (2.52)

In the absence of relevance information the wrsj becomes the IDF [21] as

discussed in Section 2.4.2.

Robertson et al.[92] later introduced a version of BM25F where length nor-

malization is applied to each field, rather than the whole document:

nw⃗(t, d) =

m∑
i

wi
n(t, fi, d)

B(bi, fi, Fi)
(2.53)

B(bi, fi, Fi) =

(
(1 − bi) + bi

|fi|
avgdl(Fi)

)
(2.54)

BM25F is considered perhaps the most effective analytical SDR model, both

in terms of commercial adaptations (e.g. ElasticSearch, Lucene etc.) and as a

baseline in academic research [93, 30, 94]. It is also one of the main ones used

as a main benchmark in this thesis.

49



2.5.7 Other Analytical SDR Approaches

Mixture of Language Models (MLM)

The retrieval score for MLM is calculated by applying the field weights over

field-based language models (θf ), summing the resulting probabilities together

and taking their product over the query terms [71].

Definition 2.32 (RSV-MLM). Let θd be the mixed language model, θf a field

level language model,
∑m

f=1 wfi = 1 and λ the mixture parameter calculated

using dirichlet smoothing.

RSVMLM(d, q, c) :=
∏
t∈q

P (t|θd) (2.55)

P (t|θd) :=

m∑
f=1

wfP (t|θf ) (2.56)

P (t|θf ) := λ1P (t|f) + λ2P (t|F ) (2.57)

The probabilities P (t|F ) and P (t|f) are calculated using the maximum like-

lihood estimate as: P (t|X) := n(t,X)
|X| where X ∈ {f, F}.

Since, the field weights are incorporated into the model explicitly, rather

than applied over field-based retrieval scores, the underlying aggregation model

for the MLM is TFA.

Probabilistic Retrieval Model for Semistructured Data (PRMS)

The PRMS model uses the probability of query terms appearing in fields for

better mapping between the two [95].

RSVPRMS(q, d, c) := P (q|d) :=
∏
t∈q

m∑
f=1

P (Fi|t)P (t|fi) (2.58)

where P (Fi|t) is define using Bayes theorem as: P (Fi|t) = P (t,f)P (f)
P (t) and

P (q|fi) = TF(t,fc)
|N | . See [95] for further details.

The PRMS model is mentioned here as it appears in literature often. How-

ever, it is not given much emphasis as both the experimentation in this thesis

and in many papers have demonstrated that it does not perform well [94, 96].

Fielded Sequential Dependence Model

The Fielded Sequential Dependence (FSDM) is a multi-field adaptation of the

non-fielded Sequential Dependence Model [97, 98, 99]. With MLM as its un-

derlying model, FSDM adds ordered and unordered bigrams to the ranking
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function, thus modelling for the dependency between words. The ranking score

for FSDM is defined as a weighted sum of the ranking scores based on the differ-

ent term definitions (unigrams, ordered bigrams and unordered bigrams). The

weights are usually learned.

2.5.8 Learning-to-Rank and Structured Document Re-

trieval

With the increased popularity of neural networks (NN) and deep learning in

most data-driven research areas, its use in IR has also become more common.

Learning-to-Rank (LTR) models have been outperforming traditional models for

most retrieval-task types in the last 10 or so years. However, not much emphasis

has been given to document structures in the learning-to-rank literature. Non-

fielded LTR models are often used as benchmarks against fielded models and

vice versa [30, 93]. This thesis focuses on models that are designed specifically

to deal with structured data. This is because the end goal of this thesis is not

only to increase the accuracy of SDR models but to understand the structure as

well. And to do that the model has to consider the structure given the query.

Trabelsi et al. [62] provide an extensive summary of neural models for doc-

ument retrieval. Their focus is on non-fielded data, but some time is spent on

SDR as well. They discuss table retrieval methods at length as they see it as a

type of SDR. Table retrieval seeks to match tables to queries [62]. As an area,

it is out of the scope of the literature considered here.

Perhaps the best known and definitely the most cited paper on neural models

(the only one pointed out by [62]) for SDR at the time of writing this thesis

is “Neural Ranking Models with Multiple Document Fields” [93]. This major

piece of research by the team at Microsoft and academics at UCL introduces a

very complex neural network which is able to consider each field separately and

also aggregates them in a non-linear way.

Their model outperforms the benchmarks, including BM25F. However, in

terms of NDCG@10, the difference between the two is only about 5%.

Another neural network approach for SDR looks at the domain of Semantic

Product Search [100]. The research was conducted on Home Depot data by

people working at Microsoft, Home Depot and Emory University. Their model

outperforms the baselines including the BM25F in terms of some accuracy met-

rics but fails to show an improvement in terms of MAP.

Balaneshinkordan et al. [30] introduced the Attention-based Neural Archi-

tecture for Ad-hoc Structured Document Retrieval (ANSR) model, which has re-

ceived less attention but still falls well within the group of neural models for SDR

discussed here. They focus on attention gates, however, to compare the query
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and document representations they use simple cosine similarity, rather than a

fully connected network, which was criticised later on by Zamani et al.[93].

The number of LTR methods aimed at structured documents specifically

remains relatively low. They are usually aimed at specific tasks such as web

search as in the case of Zamanani et al. [93], or product search in the case of Choi

et al. [100], with the exception of Balaneshinkordan et al. [30]. Furthermore,

the increases in performance are not necessarily as big as one might hope. They

tend to do better than the BM25F, which is to be expected as they can tackle

things like the semantic gap between the queries and documents. However, it is

not clear that they are able to leverage the structure in new ways. The issues

discussed in the next chapter are still likely to affect these more complex models.

Another important issue to note is that due to the complexity of neural rank-

ing models, they are usually not trained directly on the entire database. Instead,

they are usually trained on candidate documents, i.e. a set of documents re-

trieved with a model such as the BM25 for non-structured documents, or BM25F

for structured documents [62]. This technically makes them re-ranking models,

not ranking models and comparing the performance of a re-ranker to the ranker

that precedes it, is problematic, to say the least.

2.6 Term Frequency Saturation in IR models

The purpose of this section is to discuss how the retrieval models introduced

so far apply term frequency saturation and how this affects their ranking be-

haviour. This is an important discussion as term frequency saturation and the

effects it has on performance, retrieval constraint satisfaction and intuitiveness

of rankings are central aspects of this thesis. What term frequency saturation

means is that as the number of term occurrences grows, each new one should

be given less importance than the last one. For example, if term frequency in-

creases from 100 to 101, this should have a smaller effect on the retrieval score

than increasing from 2 to 3. More formally, the second derivative of the TF

function should be negative: ∂2 RSV
∂ TF2 < 0.

But why is term frequency saturation important? Consider the documents

in Table 2.3.

n(t1, d) n(t2, d)
d1 1 1
d2 2 0

Table 2.3: Example documents. Equal term specificity assumed, i.e. specificity
components e.g. IDF do not affect RSV. Furthermore, assume equal document
length. q = {t1, t2}
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If term frequency is not saturated, i.e. the second occurrence of t1 in d2 is

given the same importance as the first occurrence of t2 in d1 the two documents

would receive the same score. This would be the case for any model using TF-

IDF with TFraw(2.9). However, intuitively we would prefer documents where

more unique query terms occur. By saturating term frequency and thus giving

the second occurrence of t1 less weight than the first one, and therefore less

weight than the occurrence of t2 in d1, we ensure that documents having more

unique query terms are ranked higher.

2.6.1 Atomic Document Models

As mentioned in the previous section BM25 has a hyperparameter controlling

the degree of term frequency saturation. Figure 2.3 shows how Definitions 2.9,

2.10 and 2.12 affect term frequency saturation across the first 5 term occur-

rences. Equations (2.14) and (2.16) have been slightly modified so that they

both start from 1 in the figure. This modification does not affect their ranking

results in any way, but it makes the figure more readable.

log (1 + TFraw(t, d)) −→ log (1 + TFraw(t, d)) × 1

log(2)
(2.59)

TFpiv,b(t, d, c)

TFpiv,b(t, d, c) + k1
−→ (k1 + 1) TFpiv,b(t, d, c)

TFpiv,b(t, d, c) + k1
(2.60)

Figure 2.3 shows that by choosing k1 it is easy to set the degree of term

frequency saturation. Furthermore, it can be seen how that degree is quite high

for the recommended k1 range of 1.2 - 2.0.

Consider Table 2.3 but with n(t1, d2) = 10. Should d1 still have a higher

rank score than d2? With k1 < 1.2, this would be the case, but not with

k1 = 2.0. For language modelling, there is no hyperparameter to directly adjust

the degree of term frequency saturation. However, term frequency is saturated

through the log component in Equation (2.21).

Of course, these considerations are only with respect to changes in term

frequency, rather than term specificity. If term t1 had much higher specificity

than t2, depending on k1 it is possible that document 2 would rank higher, since

the second occurrence of t2 in document 2 would be given more weight than the

first occurrence of t2 in document 1, due to the IDF / RSJ component.

Figure 2.4 demonstrates an important difference between the BM25 and LM

models: On the left, we have BM25 models with k1 set as 1.2 (top) and 2.0

(bottom). On the right, we have LM (Definition 2.16) models with λ set as

0.1 (top) and 0.25 (bottom). The horizontal bar lines show how query terms of

different specificities interact. For example, the green line in the top left graph
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Figure 2.3: Term Frequency Saturation for different term frequency quantifica-
tions. Figure inspiration taken from Roelleke [19].

(k1 = 1.2) shows the relationship between term frequency and retrieval score

for a relatively rare term. The horizontal line meets the green at approximately

term frequency = 2.5. This means that for a term with the specificity of the

orange line, we would need a term frequency of three in order to out-weight

one occurrence of a term with the specificity of the green line. However, if we

look at the bottom left graph (k1=2.0) we see that the horizontal bar between

the green and orange lines is shorter. Now they meet at term frequency = 2,

meaning that two occurrences of the orange term are enough to compensate for

one of the green ones. By adjusting the k1 hyperparameter we can therefore

change model behaviour with respect to how terms with different specificities

interact. The same is not true for LM. This is evident from the figure as the

length of the horizontal bars is the same for all levels of λ and all specificities.

The reason for this is that in LM the specificity component, i.e. the background

model is within the saturation method, i.e. the log.

With respect to LM [29] points out that “this nonlinearity [saturation of

tf] is only the consequence of a mathematical transformation, and the actual

dependency between successive occurrences of the same term is not modelled”.

Cummins [29] introduced the Polya Urn Document Language Model (LM-

SPUD) in order to model this dependency, i.e. term frequency saturation for-
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Figure 2.4: The difference in modelling term frequency saturation between
BM25 and LM. BM25 on the Left and LM on the right. The main takeaway is
that adjusting model parameters has no effect on the relative importance given
to terms with different specificities. See below for an in-depth discussion.

mally. However, the model does not contain a hyperparameter for adjusting

the degree of term frequency saturation, much like log-TF and LM-Multinomal

models. Figure 2.5 shows how term frequency saturation is different between

the LM-multinominal and LM-SPUD.

The term frequency saturation in the DFR retrieval model depends on the

model of randomness chosen for the base model and the first normalization.

However, none of the models of randomness allows for adjusting the degree of

term frequency saturation, this remains exclusively possible for the BM25.

Term frequency saturation in atomic models is relevant to this thesis as

its demonstrated importance in non-structured retrieval was one of the main

inspirations for applying it to structured models in a more formal manner.

2.6.2 Structured Document Models

Term frequency saturation in SDR is more complex than atomic retrieval. The

reason for this is made evident by Table 2.4 and the discussion that follows.

Unlike in Table 2.3, here the term occurrences are spread over multiple fields

(f1 and f2). This brings us back to the question from the beginning of this
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Figure 2.5: The effect of change in TF on term weight for Polya-urn LM
model [29]. MQLdir = multinominal LM with dirichlet-based smoothing, SPUD
= Smoothed Polya Urn Document model with dirichlet-based smoothing. Fig-
ure from Cummins [29].

field f1 f2 flattened doc
term n(t1, d) n(t2, d) n(t1, d) n(t2, d)
d1 1 0 0 1 t1 + t2
d2 1 0 1 0 t1 + t1

Table 2.4: Example with two fields f1, f2 and two query terms t1, t2 illustrating
term frequency saturation across fields.

section about how should term occurrence dependencies, i.e. their saturation

be modelled across fields. The two occurrences of a term are likely to be highly

dependent if the fields are title and body for example. The notion of the fields

only differing in quality by Robertson et al. [69] would be valid here. But what

if the fields are titles and related titles, for example, it is less clear whether

dependency can be assumed.

FSA-based SDR models do not model the dependency across fields at all.

Since the field-based scores (RSV(q, f)) are calculated independently without

considering other fields, the term frequency of term t in field f1 is assumed to

be independent of its term frequency in any other field. In a sense, FSA models

end up double counting the second occurrence of term t1 in Table 2.4. This

double counting means that given equal specificity weights, the two documents

in Table 2.4 have the same ranking score, even though one of them has more

unique query terms.

Robertson et al. was the first to formally discuss this issue at length and
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to provide a solution with their BM25F approach, albeit the MLM model was

introduced sooner and also does not suffer from it [69, 71]. Since both of these

models concatenate the fields into flattened document presentation before cal-

culating the final score (TFA-based models), term frequency is saturated in

exactly the same way as it is for the atomic counterparts. For the BM25F this

is evident from Definition 2.31, as the BM25-TF is calculated over flattened

document representation, meaning term frequency saturation is applied. This

in turn means that the documents in Table 2.4 are ranked intuitively. TFA-

based models thus saturate term frequency across fields, but in doing so revert

back to considering the documents as non-structured. Chapter 4 discusses and

demonstrates why this is problematic and Chapter 5 proposes more advanced

methods for cross-field term frequency saturation.

2.7 Axiomatic Retrieval and Retrieval Con-

straints

Fang et al. [26] introduced formal constraints (axioms) for (atomic) IR, to “cap-

ture retrieval heuristics, such as the TF-IDF, in a formal way, making it possible

to apply them to any retrieval formula analytically”. They extended this work

to axiomatic retrieval, where the constraints are used to develop new retrieval

models [27]. They also developed semantic retrieval constraints [101].

Their work represents an important branch of IR research for the following

reasons: 1. it facilitates model evaluation not only based on accuracy metrics

but their underlying behaviour as well, 2. it offers a new starting point for novel

model development and 3. the constraints can be used to optimise LTR models

more efficiently [102, 32].

Between the original paper ([26]) and the summary paper for retrieval con-

straints ([28]) the notation and formalization of the constraints changed. For

clarity, we summarise the relevant constraints here using the notation from the

“summary paper” (Diagnostic Evaluation of Information Retrieval Models) [28].

Table 2.5 shows the formal constraints by Fang et al. [28] and their underly-

ing intuition. As discussed earlier the focus in this thesis is on term frequency

and specificity, rather than document length. Therefore only the first four con-

straints are of interest and will be described here in detail.

Definition 2.33 (TFC1). Let q = t be a query with only one term t. Assume

|d1| = |d2|.

∀q, d1, d2 if n(t, d1) > n(t, d2) then RSV(q, d1) > RSV(q, d2) (2.61)

57



Constraints Intuition

TFC1 to favour a document with more occurrences of a query
term

TFC2 to ensure that the amount of increase in score due to adding
a query term repeatedly must decrease as more terms are
added

TFC3 to favour a document matching more distinct query terms
TDC to penalize the words popular in the collection and assign

higher weights to discriminative terms
LNC1 to penalize a long document (assuming equal TF)

LNC2, TF-LNC to avoid over-penalizing a long document
TF-LNC to regulate the interaction of TF and document length

Table 2.5: Heuristic retrieval constraints and their intuition by Fang et. al [28].

The first of the constraints is the most straightforward one, it simply states

that all else being equal if term frequency increases in a document, so should

the retrieval score for that document. More formally the first derivative of RSV

with regards to term frequency should be positive: ∂ RSV
∂ TF > 0.

Definition 2.34 (TFC2). Let q = t be a query with only one term t. Assume

|d1| = |d2| = |d3| and n(t, d1) > 0.

∀q, d1, d2 if n(t, d2) − n(t, d1) = 1 and n(t, d3) − n(t, d2) = 1

then RSV(q, d2) − RSV(q, d1) > RSV(q, d3) − RSV(q, d2) (2.62)

TFC2 relates perhaps the most to the topics in this thesis. It states that

term frequency should be saturated, or more formally the second derivative of

RSV with regards to term frequency should be negative: ∂2 RSV
∂ TF2 < 0.

Definition 2.35 (TFC3). Let q = {t1, t2} be a query consisting of two terms t1

and t2. Assume |d1| = |d2| = |d3| and td(t1) = td(t2) where td is any reasonable

measure of term discrimination, i.e. specificity (e.g. IDF).

∀q, d1, d2 if n(t1, d1) = n(t1, d2) + n(t2, d2) and (2.63)

n(t2, d1) = 0, n(t1, d2) ̸= 0, n(t2, d2) ̸= 0 (2.64)

then RSV(q, d1) < RSV(q, d2) (2.65)

TFC3 states that given equal specificities for two terms, i.e. IDFs for exam-

ple, documents with more distinct query terms should be favoured. As discussed

in the previous section, TFC3 is closely related to TFC2, as the degree of term

frequency saturation, i.e. the size of the second derivative of RSV with regards

to term frequency, determines what kind of specificity values TFC3 is satisfied
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for.

Definition 2.36 (TDC). Let q = {t1, t2} be a query consisting of two terms t1

and t2. Assume |d1| = |d2| and that d1 only contains t1 and d2 only contains

t2.

∀q, d1, d2 if td(t1) > td(t2) then RSV(q, d1) > RSV(q, d2) (2.66)

The TDC constraint ensures that occurrences of terms with higher term

discrimination (e.g. higher IDF) are given more weight.

Axiomatic retrieval and the above retrieval constraints represent an impor-

tant part of IR research, that directly affects the contributions of this thesis.

Chapter 4 introduces constraints for SDR, which in many ways mirror the work

done by Fang et al. As has been the case for atomic retrieval, these constraints

can be used to develop analytical models (as done in Chapter 5) and to optimize

LTR models for SDR.

2.8 Key Components, Similarities and Differ-

ences of Atomic and Structured Models

Table 2.6 summarises how atomic and structured retrieval relates to some of the

key concepts in this thesis: exhaustivity, specificity, term frequency saturation

and retrieval constraints.

One of the key objectives of this thesis is to transfer the lessons learned in

analytical atomic retrieval to analytical structured retrieval. To a large extent,

this is done by borrowing concepts from the former and applying them to the

latter. For example, exhaustivity is a concept as old as IR itself, however, in

SDR it is not clear how it should be defined. Should it be the field-based retrieval

score, the field-based term frequencies, or something else entirely? The same

goes for specificity; ever since Spark-Jones argued that it should be a statistical

property — rather than a semantic one — this has not been contested much.

In SDR it is difficult to define specificity. One possible option pursued in this

thesis is to define it as the weight given to different document fields. Term

frequency saturation has been identified as a key issue in both atomic retrieval

and structured retrieval. However, currently, it is deployed in SDR by — to

an extent — dismissing structure altogether, which in the author’s opinion is

counterintuitive, as it does not make sense to throw away useful information.

This is something this thesis hopes to rectify. retrieval constraints have played

a key part in atomic retrieval. Research presented in this thesis introduces such

constraints for SDR.
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Aspect Atomic Retrieval Structured Retrieval
Exhaustivity The degree to which a

term describes a docu-
ment. Usually estimated
from term frequency an ap-
propriate function such as
TF-BM25, Log-TF, or fore-
ground model.

TFA models: exhaustivity
is estimated from summed
term frequencies in the
same way as atomic models.
FSA models: exhaustiv-
ity can be seen as the field-
specific retrieval score.

Specificity How specific a term is in
the collection. Usually esti-
mated from the rareness of
the term. Common meth-
ods include the IDF and
P (t|c)

The part specificity plays in
SDR will be discussed at
length in Chapter 3. A pos-
sible interpretation is that
specificity is defined by the
field weights.

Term Fre-
quency
Saturation

Key component in estab-
lished models. Handled by
taking the log of term fre-
quency in some way (LM,
Log-TF), or by other nor-
malization methods (BM25,
DFR)

Lack of term frequency sat-
uration in FSA models was
one of the underlying moti-
vations for the BM25F [69].
One of the key contribu-
tions of this thesis is to in-
corporate it into the FSA.

retrieval
constraints

Formal constraints intro-
duced by Fang et al. [26] al-
low for the analytical eval-
uation of models, thus ex-
tending the understanding
of how models function.

Chapter 4 introduces four
constraints for SDR.

Table 2.6: Summarises key aspects of retrieval models. Comparison between
atomic and structured models.
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Chapter 3

Information Content-based

Field Weighting (ICFW)

The purpose of this chapter is to introduce one of the core contributions of this

thesis; the use of information content-based field weighting (ICFW) in SDR.

Some parts of its contents were published in the BIRD@SIGIR workshop in

2020 [1]. The chapter is structured as follows:

• Section 3.1 describes the motivation of the chapter.

• Section 3.2 introduces the contributions of the chapter.

• Section 3.3 provides intuitive and theoretical justifications for the proposed

approach.

• Section 3.4 discusses the context of the proposed method with regard to

existing methods.

• Section 3.5 studies of the proposed method with a formal evaluation using

benchmark data collections.

• Section 3.6 concludes the chapter.

3.1 Motivation

As discussed in the Background chapter (Chapter 2), the data collections InvIR

deals with can be incredibly complex. Much of the pre-processing effort of the

data has to do with parsing the structure of the data into a well-defined ontology.

In the context of this thesis, the important takeaway is that the data collections

used in these investigations tend to have complex structures. Most established
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SDR methods tend to leverage document structures by optimising field weights

over the document structure, e.g. by boosting the title of the document as it is

perceived to be more important than the body field for example. Unless done

purely based on prior expert knowledge, these methods require training data in

order to optimise the field weights. In investigative scenarios, the data collection

would rarely have this kind of training data. If the data collection comes from

a leak or is public data we would expect not to have click-through data. With

this in mind, this chapter introduces a method for boosting important fields

automatically without the need for training data and optimization.

3.2 Introduction

The inspiration for how to automatically set field weights comes from atomic

retrieval and more specifically the IDF. The IDF emphasises terms that carry

more information and are thus better discriminators between documents. In the

same way, the proposed approach uses the amount of information carried by a

document field to boost its effect on the final retrieval score. The justification

for the proposed method is closely related to the IDF, both in terms of intuition

and theory.

In the context of existing SDR approaches the proposed method sits between

earlier approaches that considered document structure explicitly (e.g. INEX re-

lated models) and more recent adaptations of atomic approaches to SDR (e.g.

BM25F). This chapter introduces the BM25-FIC; the first iteration of infor-

mation content-based field weighting (ICFW), which is the main model of this

thesis. BM25-FIC does not saturate term frequency across fields, nor is there

any analytical evaluation of the model at this stage. Iteratively developing the

ICFW method is one of the main contributions of this thesis.

3.3 Intuitive and Theoretical Justification

The intuitive justification for the use of information content for fields weighting

goes back to the work of Spark-Jones from 1972 and leans on the underlying

idea of one of the best-known IR concepts; the IDF [20].

There are two proposed theoretical justifications for the use of information

content in field weighting. Firstly, information theoretical definitions of the IDF

by Aizawa et al. [103] are borrowed to explain the use of the negative log as a

measure of information content. Secondly, semantic information theory by [40]

is used to justify measures of information content in a similar way as it has been

used in the DFR retrieval model.
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3.3.1 Intuitive Justification

The inspiration and intuition for the use of information content for field weight-

ing is related to the concept of specificity in atomic retrieval, as discussed in

Section 2.8. That is, the underlying conceptual model for how documents fields

are weighted is related to a conceptual model from atomic retrieval based on

the exhaustivity and specificity of terms: It can be argued that the analytical

models described in Section 2.4 (Non-Strucured Document Retrieval) at their

core combine the exhaustivity and specificity of a term to give it a weight, that

is then summed over the terms in the query. These two concepts are defined

here formally for clarity.

Definition 3.1 (Exhaustivity of a Term in a Document). The degree to which

a term describes a document in terms of a query. Usually estimated using some

form of term frequency quantification.

Definition 3.2 (Specificity of a Term in a Collection). How specific a term is

in the collection. Usually measured in terms of how the rarity of a term.

For TF-IDF and BM25 exhaustivity is represented by the TF quantification

and specificity by the IDF / RSJ-weight. For LM the same is true for the fore-

ground model and the background model. For DFR exhaustivity and specificity

are more mixed within the Inf1 and Inf2 components. It is our intention to

extend this line of thinking to SDR: At the core of most well-known analytical

SDR models (BM25, MLM, FSA) are field weights that are adjusted according

to the importance of a field. The conceptual model for SDR introduced in this

thesis treats a retrieval score for a specific field as a measure of its exhaustivity

and the field weight as a measure of its specificity.

Definition 3.3 (Exhaustivity of a Document Field in a Document). The degree

to which a document field describes the document’s relevance in terms of the

query. Here estimated as the field-specific retrieval score.

Definition 3.4 (Specificity of a Document Field in a Collection). How specific

a document field is in terms of the collection field. How to best estimate this is

one of the core research questions in this thesis.

Equations (3.1) and (3.2) demonstrate clearly the similarity of the conceptual

models between atomic retrieval model BM251 and our proposed SDR approach.

Similarity Between BM25 and Proposed Approach

Let d be a document, q a query, c a collection, TF the term frequency quantifi-

cation, IDF the inverse document frequency, wf be the field weight of field f ,

1BM25 used instead of the traditional TF-IDF, as the former is a simple document scoring
model, rather than a VSM model.
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M an atomic retrieval model e.g. BM25 and RSVpro the RSV score for the

proposed SDR approach.

RSVBM25(d, q, c) :=
∑
t∈q

TFBM25(t, d) · IDF(t, c) ∼
∑
t∈q

exh(t, d) · spe(t, c)

(3.1)

RSVpro(d, q, c) :=
∑
f∈d

RSVM (f, q, F ) · wf (f, q, F ) ∼
∑
f∈d

exh(f, d) · spe(f, F, q)

(3.2)

Both Equations 3.1 and Equation 3.2 combine the exhaustivity and specificity,

of terms in documents and fields in documents respectively. Where the atomic

approach (above) considers the term frequency to reflect the exhaustivity of a

term in a document the proposed approach considers the field-based retrieval

score to do the same. Specificity is reflected by the IDF in the atomic case and

the field weight in the structured case.

Before the development of the IDF, the specificity of a term was often de-

fined semantically [20]. For example “beer” and “tea” would have a higher

specificity than “beverage” as they are more specific descriptions of a drink

than “beverage”. In their seminal work from 1972 Spark-Jones argues that:

It is not enough, in other words, to think of index term specificity

solely in setting up an index vocabulary, as having to do with accu-

racy of concept representation. We should think of specificity as a

function of term use. It should be interpreted as a statistical rather

than semantic property of index terms. [20]

Meaning the specificity of a term should be calculated from collection statis-

tics rather than defined semantically [20]. In widely used SDR models (FSA,

BM25F, MLM, FSDM) the weight given to a field, i.e. the specificity of a field

is usually2 set semantically, e.g. a title is given more weight because it is known

to carry more information, either based on expert knowledge, or training data.

Inspired by the arguments of Spark-Jones for term specificity from 50 years

ago, this thesis argues that the specificity of a document field, i.e. field weight

“should be interpreted as a statistical, rather than semantic property” of doc-

ument fields [20]. From this follows that field weights would be interpreted as

discriminating features rather than just semantic importance boosting features,

i.e. they are used to give more emphasis to document fields which carry more

information in a statistical sense, rather than a semantic one.

It is worth noting that in Equation 3.2 the specificity function takes f as

an input. This means the specificity is not set for the entire field as a whole,

2PRMS is an exception
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meaning the specificity of document fields can vary between documents, e.g. the

specificity of a title can be different for two different documents. Furthermore,

q is also present in both the exhaustivity and specificity terms, meaning these

concepts are defined based on the query.

3.3.2 Theoretical Justification

Having established the intuition of what we wish to do with information content-

based field weighting, the section will now turn to its theoretical grounding. It

is not the intention of this section to formally and unequivocally explain the use

of information content for field weighting in terms of mathematical concepts

such as probability theory. The following justifications still has gaps and issues.

However, the same is true for many popular IR concepts and approaches, includ-

ing perhaps the best-known IR concept outside of the field; the IDF. Therefore

the purpose of this section is to justify the use of information content for field

weighting by proposing possible theoretical explanations for it, which hopefully

— together with the intuitive justification above — will convince the reader of

the validity of the approach.

As the intuition underlying the proposed field weighting method is closely

related to TF-IDF and BM25, it makes sense to start its theoretical ground-

ing there as well. As mentioned above, the exhaustivity of a document field

with respect to a query is modelled by its retrieval score, making this part of

the model straightforward. How about the specificity of a document field? In

atomic retrieval — more specifically the TF-IDF and BM25 — specificity corre-

sponds to the IDF / RSJ-weight of a term. To establish a theoretical grounding

for statistically calculating a value for the specificity of a document field with

respect to a query, we therefore start with the IDF.

The task of establishing theoretical foundations for the IDF is an open ques-

tion. Many approaches have been suggested, but none are unanimously agreed

upon. It is not in the scope of this thesis to summarise all these approaches and

the critique they have received. Instead, we focus on the ones that are relevant to

this thesis, namely the approach described in Section 2.4.2 by Robertson et al.

where the IDF is derived from the BIR model and the approach by Aizawa

et al. [103] where the IDF is explained in terms of information theory and mu-

tual information. The former was already described in Section 2.4.2 and related

more to the definition of IDF used in this thesis. The latter is described here,

as it relates directly to the theoretical grounding for using information content

in field weighting.

Aizawa et al.[103] seek to define the TF-IDF model and therefore the IDF as

the mutual information between the events of documents occurring and terms
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occurring within a document collection, ending up with the definition below:

Definition 3.5 (Aizawa’s Expected Mutual Information). Let E(MI) be mutual

information and N the total number of documents.

E[MI(d, c)] :=
∑
t∈d

n(t, c)∑
t∈c n(t, c)

log
N

df(t, c)
(3.3)

From Definition 3.5 [103] infers the IDF using a set of assumptions con-

tested by Robertson [21] who points out that the assumptions effectively put

the TF-IDF back in the realm of heuristics. The key issue in terms of this the-

sis is not whether the derivation of TF-IDF by Aizawa et al. [103] is formally

correct. Whether or not this is the case, it represents one possible explana-

tion for the IDF, an explanation which this thesis can use to justify using the

negative log probability when defining information content in Definition 3.4:

spe(f,F) = - log(P(f,Fq)). As the IDF, defined as the negative log of a docu-

ment containing term t in the above definition, represents the specificity of a

term in a collection, we define the specificity of a document field as the negative

log of the probability of it occurring, given a query. This line of thought opens

up the theoretical justification of our approach to a host of critiques, much like

the justification of TF-IDF by Aizawa [103].

To avoid this criticism it is worth pursuing another avenue for justifying

using the negative log probability for estimating the specificity of a document

field. Instead of defining information content using information theory, it can

be defined in a more flexible manner. Hintikka [40] separated approaches for

discussing information mathematically to statistical information theory, which is

information theory as it is usually discussed today with concepts such as entropy,

mutual information and information content and to what is called semantic

information theory, where the information carried by an event can be described

in a more flexible manner. According to Hintikka [40], the main difference

between statistical information theory and semantic information theory is their

approach to probability and uncertainty. Whereas statistical information theory

deals with uncertainty in the sense of what happens in the long run in situations

that can be repeated again and again, semantic information theory is more

concerned with uncertainty in a “logical” sense :

In a theory of semantic information, we are primarily interested in

the different alternatives which one can distinguish from each other

by means of the resources of expression we have at our disposal. The

more of these alternatives a sentence admits of, the more probable

it is in some ’purely logical’ sense of the word. [40].
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One of the ways semantic information theory portrays information content

(IC) of event x is IC(x) = 1 − P (x), which is famously used by the DFR model

to describe information content in their Inf2 component. Here information con-

tent is seen as a measure of the risk of accepting Inf1 as a good estimator of

the field weight, where risk is explained in the context of utility theory, as in

high risk equals high potential gain. Another way Hintikka [40] describes in-

formation content, or informative content (the terms are used interchangeably)

is IC(x) := − log(P (x)) (also used by Amati et al. [39]). The justification for

the use of these definitions is not grounded in probability theory in the same

way as what Hintikka [40] would call statistical information theory, but they do

have a logical and intuitive root. Furthermore, they are used to justify the DFR

model, meaning there is precedent for their use in IR.

Justifying the combination of exhaustivity and specificity, i.e. retrieval score

and field specificity is not attempted in this thesis. However, as we have seen

with the TF-IDF, it is not always necessary for a model to be fully grounded

in mathematics for it to be used in IR. In fact, the connection between the two

components in our approaches is as well defined as the connection between TF

and IDF in the TF-IDF approach (Or BM25-TF and IDF). The TF-IDF and

BM25 were the inspiration for combining the exhaustivity (field-based retrieval

score) and specificity (information content weight) in our approach as well.

Other possibilities include using mixture models, as done by LM, although this

is not covered in this thesis.

To summarise, the information content of a document field f in this thesis

is defined as the negative log of the probability of said document field given a

query q and collection c.

Definition 3.6 (Information Content).

IC(x) := − log(P (f |q, c)) (3.4)

The use of negative log can be justified to an extent either through informa-

tion theory in a similar way as done by Aizawa et al. [103] for the IDF or using

semantic information theory as done by [39] in the case of DFR. The analysis

and explanation here will be extended in Chapter 5 where the need to combine

multiple information content sources arises.

3.4 Background and Context

Having discussed the intuitive and theoretical justification for using information

content for field weighting, the chapter will now turn to placing the proposed

approach in the context of existing SDR models. These existing models are
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roughly divided into two parts, earlier models that are explicitly designed for

structured (usually hierarchical) data and models that are extensions of atomic

retrieval models. The same categorization was used in Chapter 2 (Background).

How the proposed approach relates to non-analytical SDR approaches is not

discussed here for the reasons described in Chapter 2.

3.4.1 SDR Models for Hierarchical Structures (INEX,

XML, SGML)

To recap, Chapter 2 (Background) introduced the INEX, XML and SGML-

related models, discussing how they often deal with highly complex data struc-

tures (upto 190+ unique document fields) and how the focus on file types such

as XML, meant that the models were quite structure specific. In doing so, five

distinguishing aspects of this group of models were pointed out. These five as-

pects are important when considering how our proposed approach is similar to

and different to theirs.

• Point of Entry: Many of the models give significant emphasis to what

part of the document should be displayed to the user in the ranking.

• Complexity of Data: The models often make assumptions regarding

the nature of the data, i.e. many short and nested elements v. few longer

ones.

• Hierarchy: Most of the approaches model the documents as trees with

more than two levels.

• Users familiarity with the data: The degree to which the user knows

the structure affects the way in which they query the data.

• Field type semantics: The names of the field can give hints about the

content. This information is often used by the models.

The approaches in this thesis assume less complex data structures (descibed

below) and a more straightforward retrieval scenario than what is described

above. There are two main reasons for this, the first one has to do with the

data structure and the second one with the retrieval scenario.

Firstly, as the underlying motivation for the thesis was to develop approaches

that work with a large variety of data structures in order to be useful in inves-

tigations, assuming fewer fields and effectively no hierarchy in sensible. Hierar-

chical data can always be represented in a flattened way, but not the other way

around. The structure assumed here is one where a document has m fields, each

a direct sub-component of the document with no hierarchy, or relation between
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Figure 3.1: Document model

the fields. See Figure 3.1. There is no reason why the approaches developed

here could not be extended to hierarchical data. However, this is left for future

research. Secondly, the approaches developed in this thesis assume that the user

has little, or no knowledge of the data structure to start with. This assumption is

made because of the intended application area of the methods, i.e. investigative

IR and more specifically IDJ. When digging through new datasets, investigators

would rarely be very familiar with their structure, therefore it makes sense to

extend this assumption to the retrieval models themselves. What this means is

that the semantics of the fields are not used for retrieval purposes, i.e. title is

just a field rather than “a short description of the whole document” for example.

A major characteristic of the methods proposed in this thesis and those de-

scribed above is the emphasis on considering term occurrences in different fields

separately. Hierarchy-based models tend to concatenate document elements up-

wards, thus appreciating the occurrences of terms in separate fields. As we will

see in the next section, this is not done by fielded versions of atomic models. A

good example of an attempt to appreciate term occurrences in different fields is

provided by Roelleke [84], where the occurrences are weighted depending on the

nature of the document structure. This line of research was extended by Wang

et al. [104] by using context-specific term metrics to calculate the importance

of terms up document trees.

To summarise, the main difference between the INEX-related SDR models

and the approach proposed in this thesis is their assumptions of the structure

of the data and the complexity of the retrieval scenario. The main similarity is
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their appreciation of term occurrences in multiple fields.

3.4.2 Fielded Atomic Models

As discussed in Chapter 2 (Motivation and Background), after the SDR models

described in the previous section, the interest of the research community turned

to fielded versions of atomic retrieval models. First with the Mixture of Lan-

guage Models (MLM) and followed by the various versions of BM25 [71, 69, 70].

The FSDM model was also discussed briefly [99]. However, not too much time

is spent on it as it differs from the other models considerably in how it models

term occurrences in general. Whereas, the proposed models in this thesis as-

sume that the order in which words occur does not matter e.i. Bag-of-Words

(BOW), FSDM uses bigrams and trigrams to model term dependencies.

One of the main differences between MLM and BM25F is that they do not

assume term occurrences to be independent across fields. They accomplish this

by applying the field weights to the term frequencies directly, rather than to

field-based scores as done by FSA models and most of the approaches in INEX

and their predecessors. The field weights in these models are set by heuristics

(e.g. title gets more weight because it is known to be important), or they are

learned from training data. Without these field weights the models effectively

revert back to atomic models, as the fields are not considered separately at all

(apart from document length normalization for the later version of BM25F [70]).

To summarize, the main difference between this group of SDR models and

our proposed approach is that, even without heuristics and training data, our

models are able to consider and leverage the document structure, unlike the

MLM and BM25F models. What this thesis takes from the fielded atomic mod-

els is the emphasis on the importance of cross-field term frequency saturation,

which is the focus of Chapter 5.

3.4.3 Other Models

There are two retrieval models worth discussing that do not fall within the cat-

egorization of the sections above. These are the PRMS model and its successor

the Field Relevance Model (FRM) [95, 105]. The underlying motivation behind

PRMS is to boost the term-level probabilities based on the probability of that

term occurring in a field. To recap the definition for RSVPRMS from Chapter 2.

Definition 3.7. Let i be a given field and PMa(Fi|ti) =
P (ti|Fj ,C))∑

Fk∈F P (ti|Fk,C))

RSVPRMS(d, q, c) :=

n∏
i=1

m∑
j=1

PMa(Fi|ti)P (ti|Fj , d) (3.5)
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This is related to our proposed SDR approaches in the sense that the prob-

ability of terms in a field is used to boost the term-based scores. However,

even though the definitions are similar, the underlying motivation is very dif-

ferent: whereas the PRMS boosts terms in fields they are more likely to occur

in, information content-based field weighting does the exact opposite, awarding

terms in fields where they are rare. The experimentation later in the thesis will

demonstrate clearly that ours is the better approach.

The FRM in an extension of the PRMS model which uses known relevance

data to boost terms in fields even more if they are known to be relevant. There-

fore it is closely related to the RSJ-weight if it is used to incorporate relevance

data [92].

3.4.4 Discussion

To summarise the message of the last two sections, the SDR approaches intro-

duced in this thesis are inspired by the conceptual model for atomic retrieval

where the weight given to a term is defined by its exhaustivity and specificity.

In our approach, the weight given to a document field is defined as a product

of its exhaustivity (field-specific retrieval score) and specificity (field weight).

As was argued by Spark-Jones 50 years ago with regard to atomic retrieval, the

underlying argument for using information content for weighting fields is that

specificity should be a statistical property of a document field, rather than a

semantic one [20].

A formal justification for the conceptual model and the use of information

content for field weighting is attempted using two different approaches. Firstly,

information theory is used in a similar way as it has been used for justification

of the IDF by Aizawa [103]. Secondly, we discuss a different definition of infor-

mation content as it was put forward by Hintikka [40]. It is not the intention

of this section to unequivocally justify our approach in a formal mathematical

way, but rather give intuitive explanations for why it does work.

In terms of existing SDR models, our approach sits between earlier methods

where the document structures and their semantics were used explicitly (INEX,

XML retrieval, SGML retrieval, database retrieval) and newer methods that are

fielded extensions of atomic models. The proposed approach borrows the explicit

leveraging of structures (not the semantic aspect) from the earlier models and

the use of term frequency saturation from the latter ones, although the latter

aspect of the model is not visited until Chapter 5.
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3.5 BM25-FIC

The purpose of this study is to demonstrate the usefulness of the use of informa-

tion content for weighting in SDR and the idea of using statistical field weights,

rather than semantic ones in general. The model itself is quite “simple” and

therefore we expect it not to always work. However, the lessons learned from

this study directly motivated the content of the next Chapter.

3.5.1 Model Specification

To recap, the RSV score for our proposed model at the highest level was defined

as Equation (3.2):

RSVproposed(d, q, c) :=∑
f∈d

RSVM (f, q, F ) · wf (f, q, F ) ∼
∑
f∈d

exh(f, q, F ) · spe(f, q, F ) (3.6)

To make the model explicitly about the BM25 we set M = BM25 and rewrite

the equation above in terms of the number of fields m.

Definition 3.8 (RSV B25-Field-Information Content (BM25-FIC)).

RSVBM25-FIC(d, q, c) :=

m∑
i=1

wfi(fi, q, Fi) RSVBM25(f, q, F ) (3.7)

Now the only unknown parameter in the ranking function is the field weight

wf . As discussed previously in this chapter, this weight is defined as the amount

of information a document field carries with respect to a query, i.e. its infor-

mation content. The information content is defined as the negative log of the

probability of query q and document field f given a collection field F . Intu-

itively this means that more weight is given to document fields that are good

discriminators.

Definition 3.9 (Field Weight as Information Content).

wfi(fi, q, c) = IC(fi, q, c) := − log(P (q, fi|Fi)) (3.8)

Definition 3.10 (Probability of a Query and Document Field).

P (q, fi|Fi) =
∏

t∈q∩fi

P (t ∈ fi|Fi) (3.9)

As was the case for DFR, instead of using the probability of a term occurring

in a document (P (t ∈ fi|Fi)), we could also use the probability of a term
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occurring n(t, d) times in a document (P (n(t, d|Fi))), or even the probability of

a term occurring n(t, d) times or less in a document (i.e. the CDF). However,

focusing on term metrics that are defined for the whole corpus rather than

specific documents (df(t, c) vs. n(t, d)) is beneficial from an implementation

point of view, as well as a theoretical point of view later on in the thesis when

we combine different information features together.

Definition 3.11 (Probability of a Term). Let N be the number of documents

in which term t could potentially occur, i.e. those that are not empty.

P (t ∈ fi|Fi) :=
df(t, f, c)

N (t, f, c)
(3.10)

According to the log rules and using Equations (3.9) and (3.10) Equa-

tion (3.9) can be transformed to:

Definition 3.12 (Field Weight as Information Content Expanded).

wf (f, q, c) :=
∑

t∈q∩f

− log
df(t, f, c)

N (t, f, c)

∝
∑

t∈q∩f

IDF(t, Fi)

 (3.11)

It is obvious that Definition 3.12 is effectively the sum of field-based IDFs

for the intersection of a query and a document field.

3.5.2 Model Candidates

We experiment with three different model candidates. More specifically, three

definitions for N are compared to get an understanding of how to best estimate

the number of documents in which term t could potentially occur , i.e. those

that are not empty.

Definition 3.13 (Total Number of Document Fields Ntot).

Ntot(c) := N(c) (3.12)

Ntot simply defines the number of documents where term t could occur as

the total number of documents in the collection.

Definition 3.14 (Number of Non-empty Document Fields Nnon-empty).

Nnon-empty(t, f, c) := |{d|f ∈ Fc ∧ ∃t, fd : n(t, fd) > 0}| (3.13)

Nnon-empty ensures that fields which are empty for many documents are

given less weight than they would otherwise. This makes sense as often fields

are empty for reasons, such as data redundancies.
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Definition 3.15 (Norm Number of Non-empty Document Fields Nnorm).

Nnorm(t, f, c) := Nnon-empty
avgfl(c)

avgfl(f)
(3.14)

Nnorm ensures that short fields get more weight. Adding weight to shorter

fields has been shown to be beneficial in previous research [69].

3.5.3 Evaluation and Analysis

The aim of the following experimentation is to demonstrate the proposed BM25-

FIC model. It serves as a starting point for the following two chapters: A

first iteration of an information content-based field weighting retrieval model

is tested on two very different data collection. Understanding the strengths

and weaknesses of this first iteration helps guide the research in the following

chapters.

The evaluation seeks to answer the following three research questions, which

correspond to different degrees of optimisation of the model candidatates and

baselines. As discussed in the introduction chapter, in InvIR scenarios there is

usually little training data available. For this reason the main focus in on RQ1,

where no optimization is performed.

RQ1: How does BM25-FIC compare to baseline models when no optimization

is performed?

RQ2: How does BM25-FIC compare to baseline models when the underlying

model (BM25) is optimised?

RQ3: How does BM25-FIC compare to baseline models where field weights

have been optimised?

Data Collection

For evaluation, we consider two benchmark datasets: the Kaggle Home Depot

product catalogue data set3, also used by Balananesinkordan et al. [30] and

DBpediaV2 by Hasibi et al. [94].

The Homedepot data set contains 55k products with name, description and

attribute fields. The attribute field contains additional information, such as

notes and can also be empty. We considered 1000 queries with the most relevance

judgements available. The documents were judged by humans on a scale between

1 and 3. Altogether there are 12,093 judgements, 10,260 relevant and 1,833 non-

relevant.

3https://www.kaggle.com/c/home-depot-product-search-relevance/data
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DBpedia2 is the second variant of a test collection by Balog et al. [96] ex-

tended by Hasibi el al. [94]. The data consists of 4.6 million Wikipedia entries

with the fields: labels, categories, similar entities, related entities and attributes.

The 463 queries for DBpedia are divided into four categories: Named entity

queries, IR-style keyword queries, natural language questions and list search

queries. We consider all these categories together. See Hasibi et al. [94] for

more details on the exact definition of the fields and more information on the

collection in general.

Baselines

The baseline models considered for the experimentation are FSA-BM25 (2.29)

and the simpler version of BM25F with no field level-based document length

normalization [69]. In this section, we assume that there is no training data or

semantic knowledge of the fields available. This means that the field weights for

FSA-BM25 and BM25F have to be set as uniform. The BM25 hyperparameters

have been set according to the usual recommendation as b = 0.8 and k1 = 1.6,

where k1 = 1.6 is the mid point of the recommended [1.2 − 1.8] range [19].

RQ1: How does BM25-FIC compare to baseline models when no

optimization is performed?

Table 3.1 shows the performance of the baseline models, as well as the BM25-

FIC candidates when no optimization is applied. We can see that there is a clear

data collection Homedepot DBpedia
Baselines

metric MAP NDCG@100 MAP NDCG@100
FSA-BM25 0.246 0.444 0.224 0.351
BM25FSimple 0.238 0.429 0.285 0.433

Model Candidates
metric MAP NDCG@100 MAP NDCG@100
BM25-FIC-Tot 0.259 0.459 0.204 0.326
BM25-FIC-Non 0.263 0.464 0.207 0.331
BM25-FIC-Norm 0.290 0.492 0.194 0.314

Table 3.1: Results for Homedepot

difference between the two datasets. First of all, for Homedepot FSA-BM25 is

the better-performing baseline — though not by a large margin — whereas

for DBpedia BM25F is significantly better. However, more importantly, the

BM25-FIC candidates do remarkably well for Homedepot and remarkably bad

for DBpedia. For Homedepot the increase in MAP and NDCG@100 is about
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0.05 in absolute terms and for DBpedia, the decrease is around 0.1 in absolute

terms for both MAP and NDCG@1004.

Both FSA-BM25 and BM25-FIC use FSA as the underlying aggregation

method. It would seem from the results that where FSA does well, so does

BM25-FIC. In order to understand better why the performance of FSA-BM25

was so bad for DBpedia two questions were posed: 1. was FSA-BM25 better

for some queries, as was the case for Homedepot, or was the poor performance

purely due to the data collection and 2. what could be possible reasons for

such a big difference in the performance of FSA-BM25 and BM25-FIC between

Homedepot and DBpedia

Answering the first question is easy, there are indeed many queries (30+)

where FSA-BM25 does significantly better than BM25F for DBpedia, however,

there are significantly more queries where the BM25F does better than FSA-

BM25. Answering the second one is more difficult. To give some hints as to

the reason for one model doing better than the other for different queries, the

queries with the largest difference in performances between the models were

analysed. Table 3.2 presents these queries.

BM25F FSA-BM25

1 concord steel In which city was the former
Dutch queen Juliana buried?

2 banana paper making Campuses of Indiana University
3 daggeroso inclined to use a dag-

ger novel Sons and Lovers
st paul saints

4 Paul Auster novels shobana masala
5 chase masterson Scott Counti
6 What did Bruce Carver die

from?
charles darwin

7 ashley wagner the morning call lehigh valley pa
8 rock 103 memphi birds cannot fly
9 the dish danielle fishel In which U.S. state is Area 51 lo-

cated?
10 Which books by Kerouac were

published by Viking Press?
bradley center

Table 3.2: Top 10 queries for each model in terms of ∆ MAP. BM25F-column:
∆ MAP = MAPBM25F −MAPFSA-BM25 and FSA-BM25-column: ∆ MAP =
MAPFSA-BM25 −MAPBM25F

The reasons why BM25F does better than FSA-based models have been anal-

ysed extensively by Robertson et al. [69]. As discussed in Section 2.6, saturating

BM25F saturates term frequencies across fields, meaning term occurrences in

different fields are not “double counted”. Take the query “concord steel”: The

4Percentage changes not reported as percentages of arithmetic means are non-sensible
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relevant document article is “Shougang Concord International”, a Chinese steel

company. It is obvious that for this query it is paramount that both the query

terms appear in some of the document fields, otherwise things like “concord

planes”, get high scores. Effectively, any document that does not have both the

query terms is immediately non-relevant. As FSA-BM25 does consider term oc-

currences across fields, documents with the term “concord” found in two fields

will receive a higher score than those with the term “concord” in one field and

“steel” in another. It is because the BM25F gives more weight to the occurrence

of steel in other fields, rather than further occurrences of “concord” (concord

has a higher IDF), that it does better.

However, as mentioned for some queries in the DBpedia benchmark, FSA-

BM25 does much better than BM25F. Furthermore, for Homedepot overall,

the performance of FSA-based models, especially BM25-FIC does significantly

better. Some possible reasons for this are suggested by the FSA-BM25 col-

umn in Table 3.2: The clearest example of a query FSA-BM25 does well on

is “Campuses of Indiana University”. Firstly, we would expect relevant docu-

ments to contain a field with all three query terms (“of” dropped as a stopword).

This is because we are not interested in all Universities in Indiana, just Indi-

ana University campuses. Secondly, the model benefits from considering the

fields separately: For relevant documents the term “University” occurs in all

five fields, having slightly different meanings in each. FSA-BM25 gives more

weight to such documents, whereas BM25F would give the same importance to

three occurrences of “University” in the attributes field as it would for three

occurrences of “University” spread over three different fields.

The above discussion regarding the queries in Table 3.1 should not be seen

as a formal analysis of the models and their behaviour. Theorizing based on in-

dividual queries does not produce conclusions that can be generalized. Instead,

the discussion should be read as the underlying motivation to examine the per-

formance and behaviour of both TFA and FSA-based models more closely, in

order to understand whether it is possible to develop a model which has both

of their strengths. The next Chapter is where we formally analyse and examine

these things more closely.

How does BM25-FIC compare to baseline models when the underly-

ing model (BM25) is optimised?

Table 3.3 shows the results of the experimentation when the underlying model

hyperparameters k1 and b have been optimised. The optimisation was performed

using coordinate ascent (CA), optimizing for NDCG with 5-fold cross validation

[106].

77



data collection Homedepot DBpedia
Baselines

metric map ndcg@100 map ndcg@100
FSA-BM25 0.314 0.510 0.284 0.434
BM25FSimple 0.243 0.433 0.308 0.463

Model Candidates
metric map ndcg@100 map ndcg@100
BM25-FIC-Tot 0.343 0.534 0.323 0.473
BM25-FIC-Non 0.344 0.535 0.323 0.474
BM25-FIC-Norm 0.314 0.510 0.281 0.430

Table 3.3: Results for Homedepot

As expected, optimising the k1 and b parameters for the candidate models

and the baseline increases accuracy in all cases. The trends within the baselines

stay as they were in the previous section. However, there is an important

difference in the results for the DBpedia dataset in terms of the baseline results

compared to our candidate models. As opposed to completely non-optimised

scenarios, BM25-FIC-Tot and BM25-FIC-Non outperform both baselines. This

is highly interesting as it suggests that optimising the parameters compensates

for the fact that BM25-FIC is an FSA-based model and thus term frequency

is not saturated across the fields. A potential explanation for this is the k1

hyperparameter specifically. When optimised k1 is just above 0, or even 0

depending on the field. This suggests that by considering within-field term

frequencies higher than one as one, reduces the noise created by a lack of cross-

field term frequency saturation to the extent that an FSA-based model can

outperform a TFA-based in some circumstances. Of course, this should not

be considered good model behaviour, as the model basically dismisses within

field term frequencies altogether. Term frequency is an important part of any

retrieval model and thus should be taken into account, meaning k1 should not

be set to 0, except in very special circumstances. How to solve the issue of FSA

models lacking cross-field term frequency saturation, without having to dismiss

term frequencies higher than 1 will be one of the main problems to be solved

throughout the rest of the thesis.

How does BM25-FIC compare to baseline models where field weights

have been optimised?

Table 3.4 shows the results of the experimentation for the case where the field

weights and hyperparameters for the baseline models have been optimised. For

the candidate models, only the hyperparameters k1 and b have been optimised.

The candidate models do not have field weights to optimise, so the main idea
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of this exercise is to understand how much worse they performed compared to

baselines where field weights are optimised.

data collection Homedepot DBpedia
Baselines

metric map ndcg@100 map ndcg@100
FSA-BM25 0.352 0.538 0.317 0.473
BM25FSimple 0.337 0.526 0.330 0.483

Model Candidates
metric map ndcg@100 map ndcg@100
BM25-FIC-Tot 0.343 0.534 0.323 0.473
BM25-FIC-Non 0.344 0.535 0.323 0.474
BM25-FIC-Norm 0.314 0.510 0.281 0.430

Table 3.4: Results for Homedepot

From Table 3.4 we can see that the performance difference between the fully

optimised baselines and the candidate models is smaller than we would perhaps

expect. For example, for Homedepot the FSA-BM25 only barely beats the

BM25-FIC-Tot and BM25-FIC-Non candidate models, whilst BM25FSimple in

fact does worse than BM25-FIC-Tot and BM25-FIC-Non. For DBpedia the

same is true except the better-performing baseline is BM25FSimple.

What these results suggest is that the BM25-FIC model and the underlying

information content-based field weighting are able to leverage the structure of

the document in similar ways as the FSA-BM25 and BM25F models when their

field weights are optimised. Demonstrating that this is indeed the case and

formulating a more advanced iteration of the BM25-FIC model will be the topic

of Chapter 5. However, first, the next chapter will establish a more concrete and

robust framework for discussing and analysing how within-field term frequencies

are modelled in SDR. This will be done through the formulation of formal

constraints for SDR.

3.6 Summary, Conclusions and Contributions

This chapter covered the following issues:

• Intuitive justification for the use of information content for field weight-

ing. Borrowing the concepts of exhaustivity and specificity, as well as the

work Spark-Jones from 50 years ago, the intuition for the use of informa-

tion content for field weighting was defined as an attempt to define the

specificity of a field as a statistical, rather than a semantic property of the

field.
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• Theoretical justification for the use of information content for field weight-

ing. Two justifications offered: 1. by mirroring the justification for the

IDF by Aizawa [103], the use of information content is justified using infor-

mation theory. 2. By borrowing a more flexible definition of information

content by Hintikka [40], its use is justified in a similar manner as it is in

the DFR model.

• Discussion on the background and context using information content-

based field weighting, focusing on how it relates to existing atomic and

structured retrieval models.

• A study on a simple field weighting method for the BM25. Experiments

were performed on two datasets. Initial small-scale results guide the next

chapter.

The main conclusions are:

• The use of information content for field weighting can be justified — to

an extent — both intuitively and theoretically.

• A simple version of the approach (BM25-FIC) works very well on the

Homedepot collection and very badly on the DBpedia collection.

• The underlying reasons for the above discrepancy would seem to have

something to do with how the model manages to appreciate occurrences

of terms in multiple fields, but fails to saturate term frequency across fields.

However, at this point, these observations are very vague and cannot be

backed by evidence.

The main contributions are:

• Introduction of a new approach to field weighting in SDR with a well-

founded conceptual/intuitive and theoretical framework.

• A study using a simple method for information content-based field weight-

ing (BM25-FIC) with formal evaluation.
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Chapter 4

Formal Constraints for

Structured Document

Retrieval (SDR)

This chapter introduces formal retrieval constraints for SDR. Large parts of its

content were published in ICTIR’22 [2]. The chapter is structured as follows:

• Section 4.1 briefly describes the motivation behind formulating constraints

for SDR in the context of this thesis and in general.

• Section 4.2 introduces the proposed approach and the chapter’s contribu-

tions in the context of SDR in general.

• Section 4.3 formally describes the constraints for SDR.

• Section 4.4 analyses how existing models satisfy and fail to satisfy the

proposed constraints.

• Section 4.5 details the experimentation and analysis demonstrating how

the constraints affect the ranking behaviour of various models on bench-

mark data collections.

• Section 4.6 concludes.

4.1 Motivation

Chapter 3 demonstrated that BM25-FIC worked well for the Homedepot

dataset, but not as well for the DBpedia dataset. Specifically, for the non-

optimised task, BM25-FIC performed very well for Homedepot and very badly
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for DBpedia. The experimentation suggested that one of the main reasons for

poor performance on DBpedia was the lack of term frequency saturation across

fields, an observation also made by Robertson et al. [69]. However, BM25-FIC

and FSA-BM25 outperformed BM25F for the Homedepot data, even though

BM25F does saturate term frequency across fields. Closer inspection suggested

that this might be because the FSA-based models appreciate terms occurring

in multiple fields more than them occurring in just one. So it seemed like there

might be a trade-off between these two models (FSA vs. TFA) on different data

collections. However, trying to identify which approach is better for what data

collection would be at this point heuristic at best. Therefore, a formal analysis

of the trade-off was required.

Fang et al. [26] introduced their (atomic) retrieval constraints in order to

“capture retrieval heuristics, such as the TF-IDF, in a formal way, making it

possible to apply them to any retrieval formula analytically.” This chapter does

something similar, except it is not heuristics we capture (what they consider

heuristics has been formalized in many cases [92, 39, 103, 29]), but intuitive

“rules”, that SDR models should aim to follow. By using these constraints

hopefully, we can better understand exactly how the different aggregation func-

tions (FSA and TFA) behave in terms of ranking and how we could further

develop information content-based field weighting to work across different re-

trieval scenarios and data collections.

4.2 Introduction

Analytical retrieval models, such as the BM25 and Language Modelling (LM),

are used widely in commercial and academic settings. The behaviour of these

models is understood well due to extensive research over the last 20+ years. One

important line of enquiry has been formal retrieval constraints / axioms [26, 27].

The aim of this chapter is to develop such a framework for structured document

retrieval (SDR). This is accomplished by identifying four constraints that define

optimal ranking behaviour in simple, but informative scenarios, by analysing

how existing models adhere to those constraints and by testing how satisfying

the constraints affects retrieval behaviour.

Table 4.1 summarises the intuition underlying the four chosen constraints for

SDR. There are of course many more possible constraints. These four constraints

have been chosen because they lead to intuitive ranking behaviour by avoiding

some issues structured data creates. The documents in Table 4.2 will be used to

demonstrate these issues. A hypothetical model satisfying all four constraints

would rank the documents as RSV(d1) > RSV(d2) > RSV(d3) > RSV(d4) >

RSV(d5). This results from the fact that intuitively d1 should be ranked first
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Constraint Abbr. Intuition
Term distinctiveness TD-Co Adding unseen query terms to a document

should increase the retrieval score more
than adding query terms already consid-
ered

Field distinctiveness FD-Co Adding a query term to a new field should
increase the retrieval score more than
adding it to a field where it already occurs

Term importance TI-Co A model should consider the importance
of a term on a field level, rather than
document-level

Field importance FI-Co A model should be able to boost or de-
crease the weight given to a field, based on
some notion of field importance

Table 4.1: Intuition underlying formal constraints for SDR. Field refers to a
field of a document; e.g. abstract or author.

because it contains both query terms, d2 should be second because the one

query term appears twice and in different fields, d3 should be third because the

one query term occurs twice in the same field, d4 should be fourth as it only

contains one occurrence of a query term and d5 should be last because it also

only contains one occurrence, but in a field where the term has a lower IDF.

field plot description flattened doc
term english spy english spy
field-specific IDF 1.9 2.5 2.0 2.1

document 1 1 0 0 1 english spy
document 2 1 0 1 0 english english
document 3 0 0 2 0 english english
document 4 0 1 0 0 spy
document 5 0 0 0 1 spy

Table 4.2: Example with two fields and two query terms illustrating how rank-
ings by existing SDR models are not always intuitive.

The first contribution of this chapter is to formalize retrieval constraints

that guarantee this ranking. It is not the intention of this chapter to claim that

the described ranking behaviour is always the correct one, as this is defined

by the user. Instead, the intention is to formulate constraints that produce an

intuitive ranking where no knowledge of user preferences is available. The lack

of knowledge about user preferences also means that field weights are set as

uniform.

The second contribution is to analyse why and how widely used SDR

models satisfy, or fail to satisfy the constraints and how this affects their rank-

ing performance on benchmark datasets. It will be shown that the underly-
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ing reasons have to do with how they model term frequency across different

fields and how they model document structure in general. FSA-based models

consider term frequency to be independent across fields, an assumption which

was shown to be harmful by Robertson el al. amongst others [69, 92] and

results in the TD-constraint not being satisfied (RSV(d1) = RSV(d2) rather

than RSV(d1) > RSV(d2) in Table 4.2). On the other hand, TFA-based mod-

els, such as BM25F and Mixture of Language Models (MLM), consider the

document as atomic (rather than structured) after term frequency weighting,

meaning they fail to fulfil the FD-constraint (RSV(d2) = RSV(d3) rather than

RSV(d2) > RSV(d3) in Table 4.2). Since TFA-based models sum the term fre-

quencies together before considering their importance or specificity (e.g. IDF),

they also fail to consider the Term Importance constraint (RSV(d4) = RSV(d5)

rather than RSV(d4) > RSV(d5) in Table 4.2). There are models such as PRMS

that fail to consider field importance in any way, thus failing to satisfy the Field

Importance constraint and often the Term Importance Constraint as well.

The third contribution is to discuss how SDR models could be developed

in the future to better satisfy the constraints. Our findings suggest that in order

for an SDR model to accomplish this, it should be able to balance between

saturating term frequency across fields, whilst still explicitly considering the

document structure. The next chapter further develops the use of information

content-based field weighting to do just this.

4.3 Constraints for Structured Retrieval

Regarding the example in Table 4.2, the following constraints lead to an intuitive

ranking: As mentioned above, d1 should be ranked first because it contains both

query terms, d2 should be second because the one query term appears twice and

in different fields, d3 should be third because the one query term occurs twice

in the same field, d4 should be fourth as it only contains one occurrence of a

query term and d5 should be last because it also only contains one occurrence,

but in a field where the term has a lower IDF. It is worth noting that the use

of IDF in Table 4.2 refers to the use specificity of a term in general, understood

as its discriminative power, or information content. IDF is used for clarity, as

the majority of analysis in this chapter focuses on the BM25.

This “intuitive ranking” does not necessarily represent the “correct ranking”,

as this is ultimately judged by the user. For example, the user might be more

interested in the description field, in which case it might make sense to rank

d3 higher than d2. However, lacking this kind of knowledge of user preferences,

the ranking behaviour described above does correspond to four intuitive rules:

84



1. With all else equal, documents with many distinct query terms should

rank higher than those with few (Term Distinctiveness)

2. With all else equal, documents where a query term occurs in several fields

should rank higher than if the term occurs only in a few fields (Field

Distinctiveness).

3. With all else equal, documents where a query term occurs in a field where

it is rare, should rank higher than documents where it occurs in a field

where it is common (Term Importance).

4. With all else equal, documents where a query term occurs in a field that

is important should rank higher than documents where the term occurs

in a less important field (Field Importance)

Transforming these rules into formal retrieval constraints is done in the following

subsections and is the main contribution of this chapter.

4.3.1 Term Distinctiveness: TD-Co

Definition 4.1 (Term Distinctiveness (TD-Co)). Let Q denote a query, S a

retrieval score and d a document. A document has a set of m fields: {f1 . . . fm}.
Here the field f in which term ti occurs is irrelevant so an occurrence of term ti

is denoted as ti. Let Td be a set of query terms that occur in document d.

∀Q, d, f, t : if tk ̸∈ Td and tj ∈ Td then S(Q, d ∪ tk) > S(Q, d ∪ tj) (4.1)

I.e. adding many distinct query terms to a document should increase the

score more than adding a few, no matter in which fields they appear. For the

documents in Table 4.2 this would mean that document d1 ranks higher than

d2. The satisfaction of this constraint is central to the BM25F retrieval model.

By saturating term frequency across fields, the BM25F gives more importance

to the first occurrence of a query term, compared to subsequent occurrences of

the same term, wherever in the document they occur [69]. By doing so, it puts

more emphasis on a document having many distinct query terms, rather than

a few. This logic is one of the central aspects of the BM25F, which has been

shown to outperform FSA-based models for various data collections [69, 70].

In essence, the TD-Constraints is communicating a similar issue as constraint

TFC3 by Fang et al. in [26]. However, it is worth re-formalizing it for SDR

because, 1. it will be shown that many SDR models do not satisfy it, whereas in

atomic retrieval this is not common and 2. its implications are more severe for

SDR, as term frequencies are often inflated through field weights. Furthermore,

instead of defining the constraint only for scenarios where the IDF values of
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terms are equal, we analyse the satisfaction of the constraint for a more general

case.

4.3.2 Field Distinctiveness: FD-Co

Definition 4.2 (Field Distinctiveness (FD-Co)). Let Q denote a query, S

a retrieval score and d a document. A document has a set of m fields:

{f1 . . . fm}. The occurrence of term ti in document field f is denoted ti,f , mean-

ing a document is modelled as a set of term occurrences over a set of fields:

d = {ta,f1, ta,f2, . . . , tb,f1, . . .}. Let Fd(t) denote a set of fields f in document d

with an occurrence of term t.

∀Q, d, f, t : if fk ̸∈ Fd(t) and fj ∈ Fd(t) then S(Q, d ∪ ti,fk) > S(Q, d ∪ ti,fj)

(4.2)

In other words, the more fields a query term appears in, the higher the

ranking score of the document should be. This constraint also implies that

adding a query term to a new field of a document should increase the ranking

score more than adding a query term to the field where it already appears. For

the documents in Table 4.2, this would mean that document d2 ranks higher

than d3.

The order of {ta,f1 . . . ta,fm} does not refer to the order of the fields in the

documents, but the order in which query term ta occurs in them, meaning f1 is

not the first field of the document, but the first field in which ta occurs.

4.3.3 Term Importance: TI-Co

Definition 4.3 (Term Importance (TI-Co)). Let Q denote a query, S a retrieval

score and d a document. A document has a set of m fields: {f1 . . . fm}. I(t)

denotes the importance of a term (e.g. IDF(t)).

∀Q, d, f, t : if I(tk) > I(tj) then S(Q, d ∪ tk) > S(Q, d ∪ tj) (4.3)

The underlying idea behind the TI-constraint is that a term might carry

a different meaning depending on the field it occurs in, and therefore its occur-

rences in different fields should be treated separately. In terms of Table 4.2,

the TI-constraint concerns the ranking of the last two documents. If it is not

satisfied, the same weight is given to the occurrence of “spy” in the plot field

and the description field, even though the field-specific IDF values are different.

Such a model effectively sees documents d4 and d5 as the same, leading to them

being ranked in a non-intuitive manner.
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4.3.4 Field Importance: FI-Co

Definition 4.4 (Field Importance (FI-Co)). Let Q denote a query, S a retrieval

score and d a document. A document has a set of m fields: {f1 . . . fm}. I(fi)

denotes the importance of field fi.

∀Q, d, f, t : if I(fk) > I(fj) then S(Q, d ∪ ti,fk) > S(Q, d ∪ ti,fj) (4.4)

In other words, adding a query term to a field with greater importance

must increase the score more than adding one to a field with lower importance.

For the documents in Table 4.2, this would mean that document 1 would rank

higher than document 2 if the plot field were boosted due to some knowledge

of its importance. This might seem trivial, but the point being made is that an

SDR model should be able to weight fields based on some notion of importance.

This weighting can be done through learning field weights or using heuristics

for example.

4.4 Constraint Satisfaction by Existing Models

Aggr. Term Dist.
TD-Co

Field Dist.
FD-Co

Term Imp.
TI-Co

Field Imp.
FI-Co

PRMS FSA NO Cond. NO YES
FSA FSA NO Cond. YES YES
BM25-FIC FSA NO Cond. YES YES
BM25F TFA Cond. NO NO YES
MLM TFA Cond. NO YES YES
FSDM TFA Cond. NO NO YES

Table 4.3: Constraint satisfaction of SDR models: Cond. = Conditional. Con-
ditional means that collection statistics need to be considered.

Table 4.3 shows which SDR model satisfies which constraints. Conditional

satisfaction of a constraint refers to cases where collection statistics need to be

accounted for, i.e. the specificity / IDF of query terms for example. Whereas

Fang et al. assume the IDFs of query terms to be equal, the analysis in this

chapter looks at what levels of specificities cause a model to satisfy, or not satisfy

a given constraint. In simple terms, if we were to assume that IDFs are equal

for all terms, the “conditional” entries in Table 4.3 could be changed to “YES”.

4.4.1 Term Distinctiveness Satisfaction

FSA models do not satisfy TD Constraint. This is because the field-based scores

are summed together, with no regard to whether both query terms (english AND

spy) occur, or only one of them. The issue is evident from Table 4.2. Assuming
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equal specificity weights (e.g. IDF), d1 and d2 are rank equal. Intuitively we

want documents with more query terms to rank higher. The problem comes

from the fact that FSA assumes term frequency to be independent across fields

for a given term, thus “double accounting” the occurrence of english. TFA solves

this by saturating term frequencies across the fields, i.e. it assumes a constant

dependency of term occurrences between fields for a given term. It has been

shown that this significantly increases the robustness of the models and makes

them less noisy [69, 70].

The satisfaction of the TD-Constraint is conditional for the TFA-based mod-

els. They suffer from the same issue as atomic models when it comes to the

specificity ratio of query terms as discussed in Chapter 2. There exists a thresh-

old for the ratio of IDF values between query terms at which a second occurrence

of a query term can dominate over the first occurrence of another query term.

The following will explain this conditionality in the general case for BM25F,

after which we will discuss how the general case can be simplified to capture

the conditionality of satisfying TD-Constraint in a more intuitive way.

Definition 4.5 (Cross-Term IDF Ratio). The ratio of the IDF values between

terms b and a is denoted IDF-CT-Rat(ta, tb, c). Let t be a term and c a collec-

tion.

IDF-CT-Rat(ta, tb, c) :=
IDF(tb, c)

IDF(ta, c)
(4.5)

Definition 4.6 (Cross-Term IDF Ratio Threshold). Let q = {t1, . . . , tn} be a

query, d a document with T occurrences of term ta in field fi and z occurrences

of term tb in another field fj. Let d be an amended version of d, where the

occurrences of term tb in fj have been replaced by occurrences of ta.

IDF-CT-Ratth(ta, tb, c, k1) :=

wiT+wjz
k1+wiT+wjz

− wiT
k1+wiT

wjz
k1+wjz

(4.6)

IDF-CT-Ratth(ta, tb, c, k1) defines the threshold for IDF-CT-Rat(ta, tb, c)

above which score(d) > score(d). It is worth noting that strictly speaking,

the TD-Constraint states that T = z = 1. However, Definition 4.6 and The-

orem 4.1 do not make this assumption. Instead, they solve the problem for a

general case, which we will then simplify. Formal theorem and proof are below.

The underlying idea of the cross-term IDF ratio theorem is that there exists a

threshold for IDF-CT-Rat(ta, tb, c) below which TD-Constraint is not satisfied

by BM25F, meaning the documents d1 and d2 in Table 4.2 would be ranked

incorrectly.

Theorem 4.1 (BM25F and the Term Distinct. Constraint). Let

q = {t1, . . . , tn} be a query, d a document with T occurrences of term ta in
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field fi and z occurrences of term tb in another field fj. Let d be an amended

version of d, where the occurrences of term tb in fj have been replaced by oc-

currences of ta.

∀(ta, tb) ∈ q ∩ d :

IDF-CT-Rat(ta, tb, c) > IDF-CT-Ratth(ta, tb, c, k1)

⇒ RSVBM25F(q, d, c) > RSVBM25F(q, d, c) (4.7)

Proof. Following Definition 4.5 the threshold for satisfying the TD-Constraint

becomes

IDF(tb, c)

IDF(ta, c)
>

wiT+wjz
k1+wiT+wjz

− wiT
k1+wiT

wjz
k1+wjz

(4.8)

wiT

k1 + wiT
IDF(ta, c) +

wjz

k1 + wjz
IDF(tb, c)

>
wiT + wjz

k1 + wiT + wjz
IDF(ta, c) (4.9)

Since |d| = |d|, the ranking of the documents, i.e. the inequality of the

scores is not affected by document length normalisation. Therefore we can set

nnorm(t, f, d) = n(t, f, d) in Eqn. (2.52) without changing the analysis. Assum-

ing the term frequencies from the theorem and following Eqn. (2.52) we can

re-write Eqn. (4.9) as

RSVBM25F,k1,b(q, d, c) > RSVBM25F,k1,b(q, d, c) (4.10)

In order to understand how BM25F satisfies the constraints more intuitively

and in terms of Table 4.2, we assume uniform field weights and set T = z = 1

(see documents d1 and d2 in the example). This simplifies Eqn 4.6 to:

IDF-CT-Ratth(ta, tb, c, k1) =
2k1 + 2

k1 + 2
− 1 (4.11)

Eqn. (4.11) shows that whether the BM25F satisfies the TD-Constraint de-

pends on the ratio of the IDFs and the term frequency saturation parameter

k1. If k1 = 2.0 the ratio of IDF values below which BM25F would fail to satisfy

the TD-Constraint equals 0.5. So if the rarest term of the query has an IDF

twice the size of the most common term, the constraint is not satisfied. There

are cases where it makes sense for a model to not satisfy the TD-Constraint, for

example, if the common term is a stopword. The IDF value for stopwords tends

to be very close to 0, so the constraint is obviously not satisfied, nor should it be.
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However, a term can easily have half the IDF of another and still be important,

so the conditionality of the TD-Constraint should be considered analytically.

This issue is present in both SDR and atomic retrieval. The following discusses

how it might be more severe for SDR, due to field weighting.

Consider a scenario where k1 = 2.0 and the occurrences of ta for d in fj

occur in the third field fk. The field weights are wfi = 1, wfj = 1 and wk = 3

Maybe fk is a title of the book and we wish to boost it compared to the abstract

and body for example. In such a situation an occurrence of the new term tb

in field fj would have the same effect on the score, as a second occurrence

of ta in fk, even if IDF(ta) = IDF(tb), i.e. the TD-Constraint would not be

satisfied even if the terms had the same IDF. The key takeaway here is that

when heuristically boosting fields because they are important — say the title

of a book — other hyperparameters should be considered as well. In order for

the field boosting to work, it is therefore likely that all the parameters have to

be optimised using supervised learning of some form. In this instance k1 would

have to be adjusted to set the degree of term frequency saturation, other SDR

models such as the MLM are not able to adjust this degree well, which might

lead to worse performance.

4.4.2 Field Distinctiveness Satisfaction

TFA models (MLM, BM25F, FSDM) do not satisfy the FD-Constraint. After

applying the field weights at the term level, they consider the document as

atomic. This issue is obvious in the retrieval scenario in Table 4.2 for the ranking

of documents d2 and d3: Assuming equal IDF values, it does not matter whether

english appears twice in description, or once in plot AND once description, the

documents get the same rank-score.

Satisfying the FD-Constraint is conditional for the FSA-based models. The

following will explain this conditionality in the general case for FSA-BM25,

after which we will discuss how the general case can be simplified to capture

the conditionality of satisfying the FD-Constraint in a more intuitive way.

Definition 4.7 (Cross-Field IDF Ratio). The ratio of the IDF-values between

fields j and i for term t is denoted IDF-CF-Rat(t, Fj , Fi).

IDF-CF-Rat(t, Fj , Fi) :=
IDF(t, Fj)

IDF(t, Fi)
(4.12)

Definition 4.8 (Cross-Field IDF Ratio Threshold). Let q = {t1, . . . , tn} be a

query, d a document with T occurrences of term t in field fi and z occurrences

of term t in another field fj. Let d be an amended version of d, where the

occurrences of term t in fj have been moved to fi and z occurrences of non-
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query terms have removed from fi and added to fj. These non-query terms

ensure that IDF-CF-Rat is only concerned with query term occurrences, rather

than document lengths.

IDF-CF-Ratth(t, Fi, Fj , k1) :=
wi

wj

T+z
k1+T+z − T

T+k1

z
z+k1

(4.13)

IDF-CF-Ratth(t, Fi, Fj , k1) defines the threshold for IDF-CF-Rat(t, Fj , Fi)

above which the FD-Constraint is satisfied, meaning RSVFSA,M(d, q, c) >

RSVFSA,M(d, q, c). It is worth noting that strictly speaking, the FD-Constraint

states that T = z = 1. However, Definition 4.6 and Theorem 4.1 do not make

this assumption. Instead, they solve the problem for a general case, which we

will then simplify. The formal theorem and proof are below.

The underlying idea of the cross-field IDF ratio theorem is that there exists a

threshold for IDF-CF-Rat(t, Fi, Fj) below which FD-Constraint is not satisfied

by FSA-BM25, meaning the documents d2 and d3 in Table 4.2 would be ranked

incorrectly.

Theorem 4.2 (FSA and the Field Distinctiveness Constraint). Let

q = {t1, . . . , tn} be a query, d a document with T occurrences of term t in field fi

and z occurrences of term t in another field fj. Let d be an amended version of

d, where the occurrences of term t in fj have been moved to fi and z occurrences

of non-query terms have removed from fi and added to fj.

∀t and (Fi, Fj) ∈ q ∩ d :

IDF-CF-Rat(t, Fi, Fj , k1) > IDF-CF-Ratth(t, Fi, Fj , k1)

⇒ RSVFSA,M(q, d, c) > RSVFSA,M(q, d, c) (4.14)

Proof. Following Definition 4.7 the threshold for satisfying the FD-Constraint

becomes

IDF(t, Fj)

IDF(t, Fi)
>

wi

wj

T+z
k1+T+z − T

T+k1

z
z+k1

(4.15)

wi
T

T + k1
IDF(t, Fi) + wj

z

z + k1
IDF(t, Fj) >

wi
T + z

k1 + T + z
IDF(t, Fi) (4.16)
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The BM25 retrieval status value of field f is calculated as

RSVBM25,k1,b(q, f, F ) :=
∑
t∈q

nnorm(t, f, bf )

k1 + nnorm(t, f, bf )
IDF(t, F ) (4.17)

Since |d| = |d|, the ranking of the documents, i.e. the inequality of the

scores is not affected by document length normalisation. Therefore we can

set nnorm(t, f, d) = n(t, f, d) in Eqn. (4.17) without changing the analysis. As-

suming the term frequencies from the theorem, and following Eqn. (4.17) we

can re-write Eqn. (4.16) as

RSVFSA,M(q, d, c) > RSVFSA,M(q, d, c) (4.18)

In order to understand how FSA-BM25 satisfies the constraints more in-

tuitively and in terms of Table 4.2, we assume uniform field weights and set

T = z = 1 (see documents d2 and d3 in the example). This simplifies Eqn. (4.13)

to:

IDF-CF-Ratth(t, Fi, Fj , k1) =
2k1 + 2

2 + k1
− 1 (4.19)

Meaning the FD-Constraint is satisfied by the FSA models as long as the ratio

of the highest and lowest IDF-value for all terms is greater than 2k+2
2+k1

− 1. This

would be likely if the two fields are correlated in their content, as we would

expect similar IDFs for a given term in both fields. The above analysis has

focused on the BM25, however, FSA models can be used with any retrieval

function. A similar analysis on LM would focus on the hyperparameter µ and

the background model.

4.4.3 Term Importance Satisfaction

If the TI-Constraint is not satisfied the same weight is given to the occurrence

of “spy” in the plot field and the description field, even though the field-specific

IDF-values are different. The model effectively sees documents d4 and d5 as

the same, leading to them being ranked in a non-intuitive manner. FSA models

satisfy the TI-constraint as they consider each field separately with respect to

term specificity. BM25F does not satisfy the TI-Constraint, as the document

is flattened before the rarity of terms is considered. For MLM the constraint is

satisfied as the background model enters Definition 2.32 at the field level.
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4.4.4 Field Importance Satisfaction

The FI-constraint is the easiest to satisfy. As long as the model is able to give

weight to fields based on their importance this constraint is satisfied. For FSA,

BM25F, MLM and FSDM this can be done through field weighting. However,

for PRMS this is not possible as the weight is not based on the importance of

a field, but on how each query term is mapped to it.

4.5 Evaluation and Analysis

The following experimentation demonstrates how each of the proposed con-

straints affects ranking performance on established benchmark collections.

4.5.1 Data collections and Baselines

The main data collection for the experimentation is DBpedia [94]. The collection

consists of 4.6m documents and 467 queries, which are divided into four query

types: named entity queries (NEQ), IR-style keyword queries (KEY), natural

language questions (NLQ) and list queries (LQ). There are 5 document fields:

entity name, attributes (wiki page full info), categories, similar entities and

related entities. For more details see [94]. In order to analyse the TI-Constraint,

single-term queries are required, of which there are few for DBpedia. For this

part of the analysis, we use the Homedepot dataset1. There are 55k documents

and 10k+ queries, some of which have very few relevance judgements. We have

chosen the 1000 queries with the most judgements and out of those only consider

the ones with a single query term (n=65). BM25 is used as the underlying model

for the analysis as there exists a strong precedent for its use in both atomic and

structured retrieval research.

4.5.2 Field and Term Distinctiveness: What is their Rel-

ative Importance?

So far it has been demonstrated that there is a trade-off between the FD and

TD-constraints for FSA and TFA. To analyse this trade-off, we compare the

performance of BM25F and FSA-BM25. For FSA-BM25 we use the original

version of the BM25 by Robertson el al. [33, 107], with IDF values calculated

from an atomic representation of the collection, same as for BM25F. This ensures

we are only comparing the models in terms of satisfying the FI and TD con-

straints, rather than the TI-constraint, as otherwise the field specif IDF values

1https://www.kaggle.com/c/home-depot-product-search-relevance
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would create noise. For BM25F, the version introduced in [69] where docu-

ment length normalization is done at the document level, rather than the field

level is used. This is because it represents a more concrete TFA model, where

everything is done at the document level after summing the term frequencies

together. Furthermore, analysing the effect of document length normalisation

is not among the main objectives of this thesis. Field weights for each model

are uniform.

Figure 4.1: Comparison of BM25F and FSA-BM25 on DBpedia. ∆ MAP =
MAP(BM25F) − MAP(FSA-BM25).

Figure 4.1 compares the performance of BM25F and FSA-BM25. There are

three important observations to be made: 1. purely in terms of MAP, BM25F

performs much better than FSA-BM25 (0.284 vs. 0.236), 2. there are many

queries where FSA-BM25 outperforms BM25F (up to 0.5 increase in MAP),

meaning both models have their strengths and 3. there does not seem to be a

trend for which of the query types do well for the models (colours are evenly

distributed).

Possible reasons for why BM25F does better on some queries and FSA-BM25

on some were discussed in the previous chapter by looking at the top and bottom

5 queries in Table 3.2. To recap, BM25F does better for queries where the query

terms would not necessarily occur in the same field and FSA-BM25 does better

for queries where the query terms would occur all together in at least one field

and where it is useful to consider term occurrences in different fields separately.

The above analysis confirms the importance of both the CO-TD and the CO-

FD constraint. If an SDR model was able to saturate term frequencies across

fields, i.e. to appreciate an occurrence of “steel” anywhere in the document more

94



than a second occurrence of “concord”, whilst still considering term occurrences

in different fields separately, we can clearly see from Figure 4.1, that there are

significant performance gains to be made.

4.5.3 Field and Term Importance: Where do They Mat-

ter?

Figure 4.2: Comparison of model performance. LEFT (Homedepot):. 39
queries where |q| = 1, ∆ MAP ̸= 0 and ∆ MAP = MAP(FSA-BM25-f) −
MAP(FSA-BM25-g). RIGHT (DBpedia): ∆ MAP = MAP(BM25F-uni) −
MAP(BM25F-T2).

For analysing the TI-constraints we compare two versions of FSA-BM25:

One where the IDF component of the model is calculated from global docu-

ment frequency values (FSA-BM25-g) and one where field-based document

frequency values are used (FSA-BM25-f). Importantly, we only consider

single-term queries. This is because the lack of term frequency saturation across

fields results in more noise for the FSA-BM25-f model compared to the FSA-

BM25-g model. This part of the analysis is only interested in the effect of the

global v. fielded IDF. Therefore limiting the analysis to single-term queries does

not affect the validity of the conclusions that are drawn. As DBpedia has a lim-

ited number of single-term queries we use the Homedepot dataset as discussed

in Section 4.5.1 Figure 4.2 (left) compares the two models. From the figure it is

evident that it is better to use field-based IDFs, thus confirming the importance

of the CO-TI constraint.

For the field importance analysis, we compare the rankings of a BM25F

model with uniform field weights (BM25F-uni) to one where the title-field

has a weight of 2 (BM25F-T2) (other fields have a weight of 1). BM25F is

used, rather than FSA-BM25 as it has been shown to perform better with field

weighting [69]. Figure 4.2 (right) compares the performance of BM25F-uni and

BM25F-T2 on DBpedia. There are 2 important observations to be made: 1.
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The overall MAP is similar for both models (0.288 v. 0.284). 2. There is a trend

in terms of the query types: BM25F-T2 performs well for the Named Entity

Query type, which includes queries such as “Bradley Center” and “Plymouth

Police Department” in the top 5, where the query terms appear in the title.

BM25F-uni performs better for queries where the terms should not appear in

the title, such as the list search queries: “did nicole kidman have any siblings?”

and “matt berry tv series”. In short, BM25-T2 works if we know that for a given

query the title-field is important for the query in question, thus confirming the

validity of the CO-FI constraint.

4.5.4 Discussion

The key points discussed in this section are 1. the trade-offs between

the FD-Constraint and the TD-Constraint, 2. the relationship between

IDF-CF-Ratth(t, Fi, Fj , k1) and IDF-CT-Ratth(t, Fi, Fj , k1), 3. query-type and

domain considerations, and 4. what an SDR model that satisfies all four con-

straints would look like.

Table 4.3 illustrates the trade-off between satisfying the TD and FD-

Constraints. Models that satisfy the FD-Constraint do not satisfy the TD-

Constraint, and vice versa. As discussed by Robertson el al. FSA-based models

assume independence of term frequencies across fields [21]. Regarding the ex-

ample in Table 4.2, this means that it does not matter whether a document

has both the query words “english” AND “spy”, or just “english” spread over

two fields, meaning the TD-constraint is not satisfied. TFA-based models solve

this problem by saturating term frequency across fields. They assume a constant

level of dependence between term occurrences in different fields, defined by their

underlying scoring functions. However, in doing so they have to consider the

document as atomic, rather than structured. In terms of the example in Ta-

ble 4.2, this means that it does not matter whether a document has occurrences

of “english” in the plot AND description fields, or just description, meaning the

FD-Constraint is not satisfied.

Theorems 4.2 and 4.1 analyse the conditions for FSA-based models satisfying

the FD-Constraint and TFA-based models satisfying the TD-Constraint. For

FSA, the key metric to knowing whether a constraint is satisfied is the cross-

field IDF ratio (Def. 4.7) and for TFA the cross-term IDF ratio (Def. 4.5). For

each of these, there exists a threshold above which the FD-Constraint and the

TD-Constraint are satisfied, respectively. If we simplify Eqns.(4.6) and (4.13)

assuming the term frequencies from Table 4.2 and uniform field weights we get

the simplified threshold values presented in Eqns. (4.19) and (4.11). Interest-
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ingly we observe that

IDF-CF-Ratth(t, Fi, Fj , k1) = IDF-CT-Ratth(ta, tb, c, k1) (4.20)

meaning the cross-field IDF ratio threshold for satisfying the FD-Constraint

for FSA is equal to the cross-term IDF ratio threshold for satisfying the TD-

Constraint for TFA. For FSA the ratio is defined for a given term and for TFA

between different terms. Whether each of the models satisfies their respective

constraints depends on underlying collection statistics and the query. For ex-

ample, if the query includes terms that have very different IDF values across

fields, FSA models might not satisfy the FD-Constraint. Or, if the query terms

have very different IDF values (some very rare and some common), TFA models

might not satisfy the TD-Constraint. Which one is more likely, depends on the

nature of the retrieval scenario. For example, in a QA retrieval scenario, it is

likely that the query contains stopword-like terms. In such cases, not satisfying

the TD-Constraint fully could be desirable. For keyword-like queries, the op-

posite is likely to be true. Not satisfying the FD-Constraint is more harmful in

scenarios where there are many fields that carry different kinds of information,

rather than in scenarios with redundant, or very similar fields.

The analysis in this chapter suggests that in order for an SDR model to

satisfy the constraints (even conditionally), the model would need to facilitate

term frequency saturation across fields (unlike the FSA), but should not revert

to considering documents atomic (unlike the TFA). Furthermore, the model

should consider the findings in Theorems 4.2 and 4.1, i.e. analytically asses the

term specificity ratios at which the constraints are satisfied. This is exactly

what is going to be done in the next chapter.

4.6 Summary, Conclusions and Contributions

This chapter covered the following issues:

• Introduction of four constraints for structured retrieval:

– Term Distinctiveness: Adding unseen query terms to a document

should increase the retrieval score more than adding query terms

already considered.

– Field Distinctiveness: Adding a query term to a new field should

increase the retrieval score more than adding it to a field where it

already occurs.

– Term Importance: A model should consider the importance of a term

on a field level, rather than a document level.
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– Field Importance: A model should be able to boost, or decrease the

weight given to a field, based on some notion of field importance.

• In-depth analysis of when the existing models satisfy the constraints.

• Experimentation demonstrating why and how it is useful for models to

satisfy the constraints.

• Discussion on how an SDR model could potentially satisfy all constraints.

The main conclusions were:

• The proposed four constraints lead to intuitive retrieval behaviour in sim-

ple retrieval scenarios.

• Satisfying the proposed four constraints is associated with better retrieval

performance.

• For an SDR model to satisfy all four constraints, it needs to saturate term

frequency across fields, whilst considering the field-level retrieval scores.

The main contributions are:

• The formalization of four retrieval constraints for SDR.

• Analysis demonstrating that they lead to intuitive ranking behaviour in

simple retrieval scenarios.

• Analysis demonstrating if and how existing models satisfy the constraints,

including formal theorems and proofs.

• Experimentation on established benchmarks, demonstrating that satisfy-

ing each constraint contributes to higher retrieval performance in its own

way.
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Chapter 5

Term Frequency Saturation

in Information

Content-based Field

Weighting (ICFW)

This chapter introduces a version of information content-based field weighting,

where term frequency is saturated across fields. Large parts of its content were

published in ECIR’23 [3]. The chapter is structured as follows:

• Section 5.1 describes the motivation behind the chapter.

• Section 5.2 introduces the content and contributions of the chapter.

• Section 5.3 details how cross-field term frequency saturation is applied by

the ICFW method.

• Section 5.4 explains how the lambda scaling parameter can be used to

guarantee the satisfaction of SDR retrieval constraints introduced in the

previous chapter.

• Section 5.5 describes how to best approximate the underlying collection

metrics used to calculate lambda.

• Section 5.6 introduces a version of ICFW that can be better optimised.

• Section 5.7 presents the experimentation and analysis.

• Section 5.8 concludes.
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5.1 Motivation

The high-level motivation for this chapter is the same as it was for Chapter 3;

developing better analytical SDR models that can be used in investigative IR.

This chapter can be seen as an iteration of Chapter 3 where the findings concern-

ing the retrieval constraints for SDR are used to further develop the proposed

approach, i.e. using information content for field weighting in SDR. One of the

main findings of the previous chapter was that all four SDR constraints served a

purpose and that satisfying them would require the saturation of term frequency

across fields. This was the starting point for this section of the thesis: How can

we develop the BM25-FIC model so that term frequency is not independent

across fields? Furthermore, the goal was to make the weighting system that is

not BM25 specific and instead have it work with any atomic retrieval model.

If it was possible to develop a model which could consider the structure

of the documents explicitly (rather than just flattening the document as the

BM25F does), whilst saturating term frequency across fields, this model would

have the potential to outperform existing analytical SDR models significantly,

as it would satisfy the SDR constraints. If such a model was developed and

it was demonstrated that it outperforms existing models on a variety of data

types, it would be a potential candidate for a new standard model in SDR.

5.2 Introduction

The main contribution of this chapter is a new field weighting method, denoted

Information Content Field Weighting (ICFW). The method applies weights over

the field-based scores produced by any atomic retrieval model (e.g. BM25, LM

etc.) without optimization, just like the BM25-FIC. However, unlike BM25-

FIC, ICFW saturates term frequency across fields. By setting the level of this

saturation, it can be shown that ICFW satisfies all four SDR constraints from

Chapter 4.

ICFW brings together all the lessons this thesis is looking to learn from

atomic retrieval described in Section 2.8:

• Exhaustivity: The field-specific retrieval scores represent the exhaus-

tivity of a field.

• Specificity: The specificity of a document field is estimated using the

ICFW field weights.

• Term frequency saturation: The model saturates term frequency

across fields.
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• Retrieval constraints: The model is developed to satisfy all four SDR

constraints.

5.3 Saturating Term Frequency Across Fields

ICFW aggregates the field-based retrieval scores of a document by multiply-

ing each by their information content-based field weight and summing these

weighted scores together. The field weight is calculated as a combination of col-

lection field-based information content and document field-based information

content, where a scale parameter λ determines the weight given to the latter.

The more weight is given to document field-based information content, the more

term frequency is saturated across fields.

Definition 5.1 (Term Probabilities). Let ff(t, d) be the field frequency; i.e. num-

ber of fields in d that contain term t. ||Fi|| := {f
∣∣|f | > 0} is the number of

non-empty document fields. Let m(d) :=
∣∣{f |f ∈ d}

∣∣ denote the number of

fields in document d. The probability of a term occurring in a document field fi

(of type i) given collection field Fi is denoted P (t ∈ fi|Fi). The probability of a

term occurring in a document field fi given document d is denoted P (t ∈ fi|d).

P (t ∈ fi|Fi) :=
df(t, Fi)

||Fi||
(5.1)

P (t ∈ f |d) :=
ff(t, d)

m(d)
(5.2)

Note that Eqn. (5.1) corresponds to Equation (3.7), except empty fields are con-

sidered.

Definition 5.2 (Field Probabilities). The probability of q and fi given collection

field Fi is denoted P (q, fi|Fi). The probability of q and fi given document d is

denoted P (q, fi|d).

P (q, fi|Fi) :=
∏

t∈q∩fi

P (t ∈ fi|Fi) (5.3)

P (q, fi|d) :=
∏

t∈q∩fi

P (t ∈ fi|d) (5.4)
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Definition 5.3 (ICF and ICD). The collection field-based information content

of a document field fi is denoted ICF(q, fi, Fi, d) and the document-based infor-

mation content of fi is denoted ICD(q, fi, d). Information content of an event

is defined as its negative log probability as proposed by Hintikka [40] and used

previously in the DFR model by Amati et al. [39].

ICF(q, fi, Fi, d) := − logP (q, fi|Fi) (5.5)

ICD(q, fi, d) := − logP (q, fi|d) (5.6)

If q is implicit and as Fi follows from fi, ICF(q, fi, Fi, d) is shortened to

ICF(fi, d) and ICD(q, fi, d) to ICD(fi, d).

Definition 5.4 (ICFW and Scale Parameter Lambda). Let λ be a scaling pa-

rameter defining the importance given to the document-based information con-

tent ICD. λ≥0.

wicfw,λi
(fi, Fi, d, q) := ICF(q, fi, Fi, d) + λi · ICD(q, fi, d) (5.7)

where not ambiguous wicfw(fj , d) is short for wicfw,λi
(fi, Fi, d, q). Note that if

λ = 0, ICFW is equal to BM25-FIC (apart from the ||F || variable).

Definition 5.5 (ICFW Retrieval Score). Let SM be a retrieval score of retrieval

model M (e.g. BM25). Given document d, query q, scaling parameter λ, collec-

tion c and retrieval model M , the score (retrieval status value) of d is denoted

RSVICFW,λ,M (d, q, c).

RSVICFW,λ,M (d, q, c) :=
m∑
i=1

wicfw,λi
(fi, Fi, d, q) · RSVM (q, fi, c) (5.8)

The parameter λ scales the impact of the document-based information con-

tent. If λ is set to 0, wicfw,λi is defined only through information content based

on the collection field (ICF), i.e. term occurrences would be considered inde-

pendent between the fields as done in BM25-FIC in Chapter 3. As discussed

in previous chapters and extensively by Robertson et al.[69], this is not a good

assumption and results in the TD-constraint not being satisfied.

However, as λ increases, term frequency is saturated more across fields:

Higher λ puts more emphasis on ICD, meaning it gives more weight to docu-

ment fields with distinct terms, rather than ones re-appearing. I.e. the second

occurrence of a term increases the retrieval score less than the first one, no mat-

ter what field it is in (assuming similar IDFs across fields). The size of λ defines

the scale of this cross-field term frequency saturation.
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The simplest way of setting lambda is to have it as a constant for the col-

lection. In this way, the term frequency saturation across fields is constant, the

same as for BM25F. Setting lambda this way will be considered in the experi-

mentation. However, to find an appropriate value for lambda, optimization is

needed. One of the main aims of this chapter was to provide a field weighting

method that does not need optimization. The following section will describe

an alternative way for setting λ that analytically considers the scale of term

frequency saturation with respect to the TD-constraint and FD-constraint.

5.4 Satisfying SDR Constraints

The examples and analysis in this section largely assume the underlying field re-

trieval model for ICFW to be BM25. That is M = BM25 for RSVICFW,M (Defi-

nition 5.5). This assumption is made for the sake of clarity. The examples would

work for any retrieval model (LM, DFR etc), but the math changes slightly be-

tween the models. There are two reasons for this: 1. For the TD-Constraint

the ratio between term-level score contributions is important for the analysis.

For the BM25, if we assume equal term frequencies for terms ta and tb, the

ratio of their score contributions only depends on their IDF components. This

makes the analysis more straightforward. 2. For the FD-Constraint we have a

similar case where the ratio of term level score contributions between two levels

of term frequency is important. For the BM25, this ratio depends only on the

TF component, which again simplifies the analysis.

5.4.1 Satisfying the Term Distinctiveness Constraint

The aim of this section is to clarify how and when ICFW satisfies the TD-

constraint. The following section does the same for the FD-constraint. Each

section begins with a problem statement which frames the problem in a simpler

manner with examples and visualizations. Afterwards, the problem is solved

formally for the general case. The formal solution is then dissected more by

simplifying some underlying assumptions and by observing how the model be-

haves.

Problem Statement

As demonstrated in Chapter 4, TFA-based models (BM25F etc.) satisfy the TD-

constraint because they saturate the term frequency across fields, however, in

doing so they break the FD-constraint [2, 69, 70]. ICFW does not have this same

problem, as term frequency can be saturated across fields, without reverting

back to considering the document as atomic, as done by TFA-based models.
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Lambda can be set for each query analytically, making sure the term frequency

saturation is strong enough for the model to satisfy the TD-Constraint.

Figures 5.1 and 5.2 demonstrate how different values of λ affect the RSVICFW

scores with example documents. The linear regression-like nature of Equa-

tion (5.7) is evident from the figure and it also means the lines for documents 1

and 2 will cross. This is because the document with many occurrences of the

rarer term (d2) will have a higher RSV score for λ = 0 and a less steep slope than

a document with fewer occurrences of the rare term (d1). The slope for a docu-

ment is defined by its document-based information content (ICD). Documents

with fewer query terms, i.e. lower ICD will be ranked lower than documents with

more query terms for high values of λ, meaning the TD-Constraint is satisfied.

The first of the two figures (Figure 5.1) shows a scenario where the IDFs

of query terms do not differ significantly. This means that the amount of term

frequency saturation required is not very high and the lines cross at a relatively

low level of lambda. Figure 5.2 shows a more severe case where the second

field plot description flattened doc
term english spy english spy
field-specific IDF 1.9 2.0 2.5 2.1

document 1 1 0 0 1 english spy
document 2 1 0 1 0 english english

Figure 5.1: Effect of lambda on RSV example. m = 5, λTD-th = 0.28

occurrence of english in the description field is very rare. This means that

cross-field term frequency saturation has to be high, meaning the lambda value

where the lines cross is much higher for Figure 5.2 than for Figure 5.1.

These examples suggest that there exists a threshold for lambda above which
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field plot description flattened doc
term english spy english spy
field-specific IDF 3.8 3.7 9.1 3.9

document 1 1 0 0 1 english spy
document 2 1 0 1 0 english english

Figure 5.2: Effect of lambda on RSV example. m = 5, λTD-th = 5.9.

the TD-constraint is satisfied. This threshold depends on query term and col-

lection statistics. The next section will demonstrate how this threshold can

be calculated for the general case, thus guaranteeing that ICFW satisfies the

TD-constraint.

General Solution

In order to analyse and explain the conditionality of ICFW in satisfying the TD-

constraint the following first generalises the question and answers it formally.

The discussion that follows analyses the generalization in terms of issues that

arise and simplifies some assumptions in order to communicate exactly how the

TD-constraint is satisfied.

Definition 5.6 (Score Contribution of a Term). Let f denote a document field

with occurrences of t and f̄ denote an amended version of document field f

without occurrences of t. The score contribution of a term t occurring in a field f

is denoted as Scontr,M (t, f, q, c). For clarity, where not ambiguous Scontr(t, f) is

short for Scontr,M (t, f, q, c).

Scontr,M (t, f, q, c) := SM (q, f, c) − SM (q, f , c) (5.9)
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Definition 5.7 (Score Contribution Ratios). Given terms ta and tb and doc-

ument d, the cross-term score contribution ratio, i.e. the ratio of the score

contributions (Scontr) of terms ta and tb is denoted Ω(ta, tb, fi, fj , d). Given

term t, fields fi and fj, the cross-field score contribution ratio, i.e. the ratio of

the score contributions of t in fields fi and field fj, is denoted Ψ(t, fi, fj , d).

Ω(ta, tb, fi, fj , d) :=
Scontr(ta, fi, d)

Scontr(tb, fj , d)
(5.10)

Ψ(t, fi, fj , d) :=
Scontr(t, fi, d)

Scontr(t, fj , d)
(5.11)

These definitions are the ICFW-equivalent of the Cross-Term IDF Ratio

and Cross-Field IDF Ratio definitions from Chapter 4 where we considered the

BM25F and BM25-FSA models and constraint satisfaction (Definition 4.5 and

Definition 4.7).

Definition 5.8 (Scale TD-Threshold - Two Terms). Let q = {t1, . . . , tn}, d a

document with occurrences of term ta in field fi and occurrences of term tb in

field f . Let d be an amended version of document d, where the occurrences of

tb in field f are replaced by further occurrences of term ta. For presentation

purposes Ω(ta, tb, fi, f , d) is shortened to Ω and Ψ(ta, f , fi, d) to Ψ. When used

inside equations, the terms are sometimes further simplified to Ω and Ψ.

λTD-th(ta, tb, d, fi) :=
log df(tb,F )|F |ΩΨ

df(ta,F )ΩΨ|F |

log mΩ+1 ff(ta,d)Ω(Ψ+1)

mΩ(Ψ+1) ff(ta,d)Ω+1

(5.12)

(
=

ΩΨ ICF(f, d) − ICF(f, d)

−Ω(Ψ + 1) ICD(fi, d) + Ω ICD(fi, d) + ICD(f, d)

)
(5.13)

λTD-th defines the lambda-value above which score(d) > score(d). This is the

lambda-value above which the ICFW satisfies the TD-constraint with respect

to ta and tb. See formal theorem and proof in Appendix A.1. The following

generalizes Definition 5.8 for the entire query, rather than two specific terms.

Definition 5.9 (Scale TD-Threshold - Query). In order to generalize Def. 5.8

to the entire query, rather than two query terms and fi, we need to con-

sider the rarest and most common query terms and the field with the smallest

Scontr(ta, fi, d). Let tra be the rarest query term, tco the most common query

term and fmin the field with the smallest score contribution (Scontr(tra, fi, d))

for term tra.

λTD-th(q, d) := λTD-th(tra, tco, d, fmin) (5.14)
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Setting ta = tra, tb = tco, fi = fmin ensures score(d) > score(d) for the entire

document and query. This is because changing the most common term to the

rarest term in f has the highest impact on RSV(q, d, c), which needs to be offset

by the ICD component and therefore a larger value for λ.

From the Theorem we can see that Definition 5.8 holds if:

ICF(f, d)

Ψ ICF(f, d)
< Ω <

ICD(f, d)

(Ψ + 1) ICD(fi, d) − ICD(fi, d)
(5.15)

log df(tb,F )

|F |

Ψ log df(ta)

|F |

< Ω <
− log ff(tb,d)

m

log ff(ta,d)
m − (Ψ + 1) log ff(ta,d)

m

(5.16)

The discussion section that follows will examine this conditionality in more

depth.

Discussion

As mentioned at the beginning of this section Definition 5.8 is far from intuitive,

or straightforward. It is worth dissecting it more by making some simplifying

assumptions. By setting Ψ(ta, f , fi, d) = 1, meaning we assume that terms have

equal score contributions across fields, the formula simplifies to

λTD-th(ta, tb, d, fi) =
log df(tb,F )|F |Ω

df(ta,F )Ω|F |

log mΩ+1 ff(ta,d)2Ω

m2Ω ff(ta,d)Ω+1

(5.17)

If we further assumes that Ω(ta, tb, fi, f , d) = 1 Equation 5.17 simplifies to

λTD-th(ta, tb, d, fi) =
log df(tb,F )|F |

df(ta,F )|F |

log m2 ff(ta,d)2

m2 ff(ta,d)2

= 0 (5.18)

By setting Ψ = 1 and Ω = 1 we assume that all terms have the same IDF in all

fields. This is not a realistic assumption, but it does resemble the assumptions

made by Fang et al. with respect to their formal retrieval constraints: Their

TFC3-Constraint states that documents with more distinct query terms should

be favoured, given equal IDFs (specificities). In our context, this is the same as

assuming Ω = 1 and Ψ = 1

Equation (5.18) shows that if there are no differences in the score contribu-

tions of terms across terms or fields, as long as λ is set above 0 the TD-Constraint

is satisfied. As we constraint lambda to λ > 0 in Definition 5.4 it can be said

that if Ω = 1 and Ψ = 1, ICFW always satisfies the TD-Constraint.

Figure 5.6 visualizes the lambda threshold changes for different values of Ω.

The curve is a rectangular hyperbola where the Ω value at the vertical asymptote
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and at λTD-th = 0 are of special interest to us in terms of the lambda threshold

and the TD-Constraint. We assume that T = z with respect to Theorem 4.2.

This is something that is inherently assumed by the SDR constraints and is

therefore a simplification that could have been made sooner. However, it was

determined that for clarity it was more sensible in the previous section to solve

the problem for a more general case and simplify it later. Consider first the

field plot description flattened doc
term english spy english spy
field-specific IDF 2.0 2.0 2.0 2.0

document 1 1 0 0 1 spy english
document 2 1 0 1 0 english english

Figure 5.3: Effect of lambda on RSV example. x = 1, T = z, m = 5,
− log

ff(tb,d)

m

log
ff(ta,d)

m −(Ψ+1) log
ff(ta,d)

m

= 7.212

and ICF(f,d)

Ψ ICF(f,d)
= 1

point where λTD-th = 0. If we assume that x = 1, it will always be the case that
ICF(f,d)

x ICF(f,d)
= 1. This is because the Ω-ratio will be defined by the IDF values

alone and at Ω = 1 the IDFs being equal means the DFs are equal as well. Put

in another way, as Ω is defined for a rare and a common term, if Ω < 1, the rare

term becomes the common term and the common term becomes the rare term.

The asymptote point at
− log

ff(tb,d)

m

log
ff(ta,d)

m −(Ψ+1) log
ff(ta,d)

m

defines a limit to where

λTD-th can be defined so that the TD-Constraint is satisfied. Meaning the
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condition for ICFW satisfying the TD-Constraint is that there exists a lambda-

TD-threshold such that λTD-th >= 0 and λTD-th <
− log

ff(tb,d)

m

log
ff(ta,d)

m −(Ψ+1) log
ff(ta,d)

m

.

It is worth mentioning that the threshold for the second condition is highly

dependent on m and for high values of m the value is notably smaller. To

summarize, within reasonable assumptions about the underlying model (satisfies

TC1-constraint by Fang et al.) and assuming Ψ = 1, ICFW satisfies the TD-

Constraint as long as λ > λTD-th.

5.4.2 Satisfying the Field Distinctiveness Constraint

This section analyses how ICFW satisfies the FD-Constraint much in the same

way as the previous section did for the TD-Constraint, starting with a problem

statement, solving the problem for the general case and then clarifying the

solution by simplifying some underlying assumptions using examples.

Problem Statement

As discussed in Chapter 4, FSA-based models satisfy the FD-Constraint condi-

tionally. Theorem 4.2 demonstrated how FSA-BM25 failed to satisfy the FD-

Constraint if the cross-field IDF ratio was below a certain level. That is if the

IDF of a term is much higher in one field, it is possible that the FSA-BM25 score

of a document where a term occurs in only one field is higher than the score

of a document where that term occurs in many fields. A similar conditionality

exists for ICFW.

Figures 5.4 and 5.5 demonstrate lambda affects the RSVICFW for example

documents. They are similar to the figures seen in the previous section. Fig-

ure 5.4 shows an example where the IDF values for the terms are relatively

similar. It is worth pointing out that the term “spy” is in fact irrelevant here

since the FD-Constraint is only concerned with singular terms. The term is kept

in the table for consistency with the previous section. An important aspect of

the analysis here is the fact that there are term frequencies greater than one in

the table in Figure 5.4. This means that the within-field term frequency satu-

ration plays an important part. Therefore the figures in this section consider

the example scenario for different values of k1. As discussed in Chapter 4, the

desired ranking of the documents in Figure 5.4 is score(d1) > score(d2). From

the figure, it is clear that this is indeed the case as long as lambda is below

a certain threshold (where the lines cross). It is also clear that the degree of

the within-field term frequency saturation (k1) has a significant effect on this

threshold. If lambda is too high, the score of document 1 falls below that of

document 2.
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k1 = 1.2 k1 = 2.0

field plot description flattened doc
term english spy english spy
field-specific IDF 4.2 4.3 4.5 4.2

document 1 1 0 1 0 english english
document 2 0 0 2 0 english english

Figure 5.4: Effect of lambda on RSV example. m = 5

Figure 5.5 shows a similar analysis for a different scenario, where the IDF

value for “english” is much higher in the “description” field. It is easy to see

that the lambda for where the documents are ranked correctly is significantly

lower.

These examples suggest that there exists a threshold for lambda below which

the FD-constraint is satisfied. This threshold depends on query term and col-

lection statistics, as well as the degree of within-field term frequency saturation.

The next section will demonstrate how this threshold can be calculated for the

general case, thus guaranteeing that ICFW satisfies the FD-Constraint.

General Solution

In order to analyse and explain the conditionality of ICFW in satisfying the FD-

constraint the following first generalises the question and answers it formally.

The discussion that follows analyses the generalization in terms of issues that

arise and simplifies some assumptions in order to communicate exactly how the

FD-constraint is satisfied.

Definition 5.10 (Score Contribution Ratio). Let q = {t1, . . . , tn} be a query, d

a document with T occurrences of term t in field fi and z occurrences of term t

in another field fj. Let d be an amended version of d, where the occurrences

of term t in fj have been moved to fi and z occurrences of non-query terms

have removed from fi and added to fj. These non-query terms ensure that the

theorem is only concerned with query term occurrences, rather than document
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k1 = 1.2 k1 = 2.0

field plot description flattened doc
term english spy english spy
field-specific IDF 1.9 2.0 4.0 1.2

document 1 1 0 1 0 english english
document 2 0 0 2 0 english english

Figure 5.5: Effect of lambda on RSV example. m = 5

lengths. For clarity ζ(t, fi, d) is sometimes simplified to just ζ.

ζ(t, fi, d) :=
Scontr(t, fi, d)

Scontr(t, fi, d)
(5.19)

Definition 5.11 (FD-Constraint Scale Threshold - Two Fields). Let

q = {t1, . . . , tn} be a query, d a document with T occurrences of term t in field fi

and z occurrences of term t in an average field f . Let d be an amended version of

d, where the occurrences of term t in f have been moved to fi and z occurrences

of non-query terms have removed from fi and added to f . These non-query

terms ensure that the theorem is only concerned with query term occurrences,

rather than document lengths.

λFD-th(t, d, fi, f) :=

(ζ − 1) ICF(fi, d) − Ψ ICF(f, d)

(1 + Ψ) ICD(fi, d) − ζ ICD(fi, d)

=

log
[
df(t,F )

|F | ]Ψ−1

[
df(t,Fi)

|Fi|
]ζ−1

log
[
ff(t,d)

m ]ζ

[
ff(t,d)

m ]1+Ψ

 (5.20)

λFD-th defines the λ value above which score(d) > score(d). This is the λ

above which the ICFW satisfies the FD-Constraint with respect to t, fi and f .

See Appendix A.2 for formal theorem and proof. From the Theorem we can say
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that Definition 5.11 holds if

(1 + Ψ)
log ff(t,d)

m

log ff(t,d)
m

< ζ <
Ψ log df(t,F )

N

log df(t,Fi)
N

+ 1 (5.21)

(1 + Ψ) ICD(fi, d)

ICD(fi, d)
< ζ <

Ψ ICF(f, d)

ICF(fi, d)
+ 1 (5.22)

The following generalizes Definition 5.11 to the entire query and collection rather

than a single term and two fields.

Definition 5.12 (FD-Constraint Scale Threshold - Query). Let the thighpsi be

a term with the highest Ψ-ratio and let fcom and frare be the two fields between

which the highest Ψ-ratio is defined.

λFD-th(q, d) := λFD-th(thighx, d, fcom, frare) (5.23)

The next section, together with Appendix A.2 will clarify this conditionality

using examples.

Discussion

As mentioned at the beginning of this section Definition 5.11 is far from intuitive,

or straightforward. It is worth dissecting it more by making some simplifying

assumptions. Consider first the score contribution ration ζ (Equation 5.19).

Assuming BM25 as the underlying retrieval model and equal document lengths,

ζ is only dependent on the term frequency and the parameter k1 as the IDF

components cancel out:

ζ(t, fi, d) =
TFBM25(t, d, c|n(t, d) = T + z)

TFBM25(t, d, c|n(t, d) = T )
(5.24)

Figure 5.6 visualizes the lambda threshold changes for different values of ζ.

The curve is a rectangular hyperbola where ζ value at the vertical asymptote

and at y = 0 are of special interest to us in terms of the lambda threshold

and the FD-Constraint. This is because λ > 0 only between these two points

on the curve. As this was one of the initial assumptions for the ICFW model,

it can be said that ICFW can only satisfy the FD-Constraint if there exists a

lambda-threshold value between these two points.

Consider first the dotted line on the left, i.e. the vertical asymptote. If

ζ is lower than this value, the inequality in Equation (5.11) is reversed (See

Theorem A.2). This means that in order for the FD-Constraint to be satisfied

we must have λ > λFD-th. This is also the point where λFD-th becomes negative,

meaning our base assumption of λ > 0 from Definition 5.4 is enough to guarantee
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field plot description flattened doc
term english spy english spy
field-specific IDF 2.0 2.0 2.0 2.0

document 1 1 0 1 0 english english
document 2 0 0 2 0 english english

Figure 5.6: Equation 5.20 plotted against ζ. Assume Ψ = 1, T = z and m = 5.

that lambda is greater than the value of the asymptote.

The dashed line in Figure 5.6 is another point where λFD-th becomes neg-

ative, meaning it is not defined for our model. In order to better understand

the meaning of this consider the example documents in Figure 5.6. ζ > 2 would

mean that the two occurrences of “english” for document 2 would have more

than twice the score contribution of one occurrence of “english” in document 1.

This means that not only would there be no within-field term frequency satura-

tion, but the second occurrence of a term would be actually given more weight

than the second occurrence one. This will not happen if we assume that the

underlying retrieval model is sensible (i.e. some term frequency saturation) and

we assume that T = z in Theorem 4.1. As discussed earlier, the latter is an

assumption made in the definition of the SDR constraints and therefore valid.

It is worth mentioning that the above analysis assumes that Ψ = 1. This is not

a valid assumption, however, it does help clarify how the model works.
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5.4.3 Satisfying the TD-Constraint and the FD-

Constraints Together

The preceding two sections have shown that ICFW satisfies the TD and FD-

Constraints given some conditions. The purpose of this section is to examine

whether the satisfaction of one constraint affects the satisfaction of the other.

This is an important point, as Chapter 4 showed how there is an inherent

trade-off between the two aggregation functions for existing SDR models. Fur-

thermore, both constraints were conditional on the value of λ, suggesting there

might be trade-offs.

For the sake of clarity, it is worth starting with the more straightforward

case where we assume that query terms have equal specificities (IDFS) across

fields. As mentioned earlier, this is not a valid assumption, but it has been used

in the past in retrieval constraint research and it provides a good starting point.

Assuming equal IDFs across fields is the same as assuming that Ψ = 1 and

Ω = 1 within the context of lambda-threshold definitions (Definitions 5.8 and

5.11) and the constraint definitions in Chapter 4 (4.1 and 4.2). Equation (5.18)

shows that with these assumptions as long λ > 0, the constraint is satisfied.

Since lambda is defined as λ > 0 in Definition 5.4, ICFW satisfies the TD-

constraint unconditionally given the above assumptions. From the analysis in

the previous section, we can say that given the above assumptions, ICFW also

satisfies the FD Constraint as long as ζ <
log

df(t,F )
N

log
df(t,Fi)

N

+ 1 or λ < λFD-th. In short,

assuming equal IDFs across fields, both the TD-Constraint and FD-Constraint

are satisfied if λ > 0 and λ < λFD-th.

In a real retrieval scenario we would expect the IDF values to vary across

terms, as well as fields. The examples in Figures 5.7 and 5.8 will examine how the

FD and TD-Constraints interact in such scenarios. Figure 5.7 shows an example

where there are differences in the IDF values, but they are still relatively small.

We can see that there exist lambda values where λFD-th < λ < λTD-th, which

means that if we set lambda as such, both the TD and FD-Constraints are

satisfied.

5.4.4 Satisfying the Term Importance Constraint

ICFW satisfies the TI-Constraint as it considers the specificity of terms sep-

arately depending on which field they occur in. In the example above this

means that if IDF(english,description) > IDF(english,plot), more importance

is given to the occurrence of “english” in the description field. This is the case

for two reasons: 1. the collection-based information content (ICF) is higher for

documents where “english” occurs in the description field and 2. because the
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field plot description flattened doc
term english spy english spy
field-specific IDF 2.7 2.0 2.9 1.5

document 1 1 0 0 1 english spy
document 2 1 0 1 0 english english
document 3 0 0 2 0 english english

Figure 5.7: Effect of lambda on ranking example. m = 5, k1 = 2.0

underlying retrieval model (BM25, LM, DFR) should also give more weight to

term occurrences with higher specificity (assuming the retrieval model chosen

is “sensible”).

5.4.5 Satisfying the Field Importance Constraint

ICFW satisfies the FI-Constraint as information content is seen as a measure

of the importance of a field. Documents with term occurrences in fields with

higher information content a favoured, and thus the constraint is satisfied.

Figure 5.8 shows a scenario where the occurrence of “english” has a signifi-

cantly higher IDF than “spy” in the description field. This results in a situation

where there exists no lambda such that λFD-th < λ < λTD-th, meaning only one

of the constraints can be satisfied.
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field plot description flattened doc
term english spy english spy
field-specific IDF 2.7 2.0 4.5 1.5

document 1 1 0 0 1 english spy
document 2 1 0 1 0 english english
document 3 0 0 2 0 english english

Figure 5.8: Effect of lambda on ranking example. m = 5, k1 = 2.0

5.4.6 Constraint Satisfaction Summary

Table 5.1 summarizes the satisfaction of the SDR constraints by ICFW and the

existing models discussed in Chapter 4.

The conditionality for ICFW satisfying the TD-Constraint and FD-

Constraint respectively are as follows:

Definition 5.13 (TD-Constraint Conditionality). ICFW satisfies the TD-

Constraint if:

0 < λ < λFD-th AND Ω <
− log ff(tb,d)

m

log ff(ta,d)
m − (x + 1) log ff(ta,d)

m

(5.25)

Definition 5.14 (FD-Constraint Conditionality). ICFW satisfies the FD-

Constraint if the field-level retrieval model saturates term frequency and if:

0 < λ < λFD-th (5.26)
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Term Distinct.
TD-Co

Field Distinct
FD-Co

Term Import.
TI-Co

Field Import.
FI-Co

FSA NO Conditional YES YES
BM25-FIC NO Conditional YES YES
PRMS NO Conditional NO YES
BM25F Conditional NO NO YES
MLM Conditional NO NO YES
FSDM Conditional NO NO YES
ICFW Conditional Conditional YES YES

Table 5.1: Constraint satisfaction of SDR models, including ICFW.

If both the conditions above are satisfied, then both TD and FD-Constraints

are satisfied. As we can see, ICFW is the only one that satisfies all four con-

straints (given the conditions described above). Analytically speaking this is

the reason we would expect it to perform better than the other models.

5.5 Approximating Appropriate Values for TD-

Constraint Threshold

If used directly Definition 5.9 is highly sensitive to per-term score contributions

(Definition 5.6). A single query term that is very rare in one of the fields defines

λ for all documents. This is because Definition 5.9 sets the lambda-threshold

so that the second occurrence of such a rare term needs to be offset by a first

occurrence of a common term. Therefore, Definitions 5.9 should not be viewed

as a definition of an optimal lambda value, but as a good starting point with

intuitive explanations.

With this in mind, the calculation of the thresholds is made less sensitive

to large variations of term specificity in Definitions 5.10 and 5.11. Firstly, we

assume that Ψ = 1, i.e. the specificity of a term is assumed to be the same in

all fields. This is done as we do not want λ to become too sensitive to variations

in specificity for a single term across fields. Rather we are more interested in

satisfying the TD-constraint and thus care more about the specificity values

across terms. Second, the effect of metrics based on singular terms and fields

needs to be smoothed using the rest of the query terms and the collection.

The three proposed methods for this smoothing approximate the df values in

Definition 5.8 in terms of the document frequencies and in terms of the Scontr

values in Definition 5.10 resulting in three proposed models:

Definition 5.15 (ICFW-Global (ICFW-G)). Let n(tra, f) = 1 and
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n(tco, f) = 1.

dfICFW-G(tra, Fi) = min({df(t, c) : t ∈ q}) (5.27)

dfICFW-G(tco, Fi) = max({df(t, c) : t ∈ q}) (5.28)

Scontr,ICFW-G(tco, fi, d) = min({Scontr,G(t, fi, d) : t ∈ q}) (5.29)

Scontr,ICFW-G(tra, fi, d) = max({Scontr,G(t, fi, d) : t ∈ q}) (5.30)

Definition 5.16 (ICFW-Global-Average (ICFW-GA)). Let tmax be the most

common query term in the collection, n(tra, f) = 1 and n(tco, f) = 1.

dfICFW-GA(tra, Fi) =

∑
t∈q\tmax

df(t, c)

|t ∈ q \ tmax|
(5.31)

dfICFW-GA(tco, Fi) = max({df(t, c) : t ∈ q}) (5.32)

Scontr,ICFW-GA(tco, fi, d) =

∑
t∈q\tmax

Scontr,GA(t, fi, d)

|t ∈ q \ tmax|
(5.33)

Scontr,ICFW-GA(tra, fi, d) = max({Scontr,GA(t, fi, d) : t ∈ q}) (5.34)

(5.35)

Definition 5.17 (ICFW-Local-Average (ICFW-LA)). Let n(tra, f) = 1 and

n(tco, f) = 1.

dfICFW-LA(tra, Fi) =

∑
t∈q\tmax

df(t, Fi)

|t ∈ q \ tmax|
(5.36)

dfICFW-LA(tra, Fi) = max({df(t, c) : t ∈ q}) (5.37)

Scontr,ICFW-LA(tco, fi, d) =

∑
t∈q\tmax

Scontr,LA(t, fi, d)

|t ∈ q \ tmax|
(5.38)

Scontr,ICFW-LA(tra, fi, d) = max({Scontr,LA(t, fi, d) : t ∈ q}) (5.39)

ICFW-G uses the document frequency values over the whole collection.

ICFW-GA further smooths the effect of rare query terms by estimating df(tra, c)

as the mean of collection-level document frequencies of terms that are not the

most common. ICFW-LA is similar to ICFW-GA, except the calculations are

done at the collection field level, rather than the collection level (F vs. c). For

the first two smoothing methods the value of lambda is the same for all fields,

for the third one the value varies across fields.

Determining Score Contribution for BM25, LM and DFR

Note that in Definitions 5.15, 5.16 and 5.17 n(tra, f) = 1 and n(tco, f) = 1.

This is an important point as it means that for the Scontr components the
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score is calculated as based on the first occurrence of a term in a document.

From Definition 2.14, we can see that if n(t, d) = 1 then Scontr,BM25(t, fi, d) =

IDF(t, Fi), the same is true for our DFR baseline model. This is because

the TF component equals 1 if (t, d) = 11. For LM the definition of Scontr

is more complex. From Definition 2.16 we can see that if n(t, d) = 1 then

Scontr,LM(t, fi, d) = log

(
1 +

(1−λ) 1
|d|

λP (t|c)

)
. For LM this thesis uses the Dirichlet-

based smoothing, meaning λ = |d|
|d|+µ . Note that the background model can be

estimated as the collection P (t|c), or the collection field P (t|Fi). To clarify, the

following definitions are used for calculating the Scontr,[G,GA,LA] for BM25 and

LM:

Scontr,G,BM25 -DFR(t, fi, d) := TFBM25,k1,b(t, d, c) · IDF(t, c) = IDF(t, c) (5.40)

Scontr,GA,BM25 -DFR(t, fi, d) := TFBM25,k1,b(t, d, c) · IDF(t, c) = IDF(t, c)

(5.41)

Scontr,LA,BM25 -DFR(t, fi, d) := TFBM25,k1,b(t, d, c) · IDF(t, Fi) = IDF(t, Fi)

(5.42)

Scontr,G,LM(t, fi, d) := log

(
1 +

(1 − λ) 1
|d|

λP (t|c)

)
(5.43)

Scontr,GA,LM(t, fi, d) := log

(
1 +

(1 − λ) 1
|d|

λP (t|c)

)
(5.44)

Scontr,LA,LM(t, fi, d) := log

(
1 +

(1 − λ) 1
|d|

λP (t|Fi)

)
(5.45)

Assuming no document length normalization as in Theorem A.1, if

n(t, d) = 1 ⇒ TFBM25,k1,b(t, d, c) = 1. The assumption of n(t, d) = 1 is in fact

unnecessary for the ICFW-BM25. This is because the Scontr components are

included in the lambda threshold calculation only as a ratio, which means the

TF component of the equation is cancelled out. In general, due to the composi-

tion of ICFW, it is more straightforward to use it with the BM25. In the above

equations this is clear from the fact that for BM25 document length does not

enter the equation.

1It is also this aspect of the ICFW that can be seen to justify the definition of probabilities
that we discussed in Chapter 3 (Definition 3.10) with respect to what term metrics are used.
By focusing on document frequencies, rather than term frequencies when calculating term
probabilities, the number of features that need to be considered when calculating λTD-th is
significantly reduced for BM25 and DFR
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5.6 Optimizing the ICFW Model

Even though the focus in this chapter and the thesis is on non-optimised SDR

models, sometimes training data is available and should therefore be used. In

its current form Definition 5.5 does not offer many options for optimization,

other than the parameters of the underlying model. Therefore we add an addi-

tional static field weight that is optimised together with the parameters of the

underlying model:

Definition 5.18 (ICFW-Optimised). Let wstat,i be a static field weight applied

over the whole field.

RSVICFW-opt,λ⃗,M,w⃗stat
(d, q, c) :=

m∑
i=1

wstat,i · wicfw,λi
(fi, Fi, d, q)

∑
t∈q

RSVM (q, fi, c) (5.46)

When training the model Definition 5.18 optimises the underlying model

parameters (e.g. k1 and b in for BM25), the static field weights and the lambda

parameter. Two methods for optimising lambda are considered:

Definition 5.19 (ICFW-Lambda-Const (ICFW-LC)). Let lambda be set as a

constant for each field, meaning lambda is a vector of length m.

λICFW-LC := [λ1 . . . λm] (5.47)

Definition 5.20 (ICFW-Lambda-Est (ICFW-LE)). Let lambda be estimated

in a linear regression manner from the mean and average of the queries IDF

values:

λICFW-LE(q, c) := B0 + B1 mean(IDF(q, c)) + B2 var(IDF(q, c)) (5.48)

The focus of this thesis is on analytical models and potential standard mod-

els for SDR. This means that more emphasis is given to model candidates which

do not need to be optimised. As a result of this, the time spent on optimised ver-

sions of ICFW is significantly smaller than on non-optimised versions. Further

study into how to best optimise ICFW is left for the future.

5.7 Evaluation and Analysis

The purpose of this section is to demonstrate the effectiveness of ICFW using

established benchmark datasets. After introducing the datasets the following

research questions (RQs) will be answered.
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RQ1: How well does ICFW do overall for the non-optimised task?

RQ2: What levels of lambda do we see?

RQ3: Which saturation method is best?

RQ4: How does saturating term frequency affect ICFW performance?

RQ5: How well can lambda be estimated analytically?

RQ6: Is the good performance of ICFW due to it satisfying the SDR constraints

more comprehensively?

RQ7: How well did ICFW do overall for the optimised task?

The focus in the experimentation is on ICFW where the underlying model

is the BM25. This is because the aim of the section is to demonstrate the value

of ICFW as a field weighting method and it therefore makes sense to compare

it to other strong aggregation methods with the same underlying model. The

BM25F is the most established analytical SDR method, so the experimentation

will focus on SDR models that use BM25 as the underlying model. Even though

MLM represents a similar approach in the LM sphere of IR, not much time will

be spent on it, or an LM-based version of ICFW. This is because MLM is not

as established, or robust as the BM25F.

5.7.1 Data Collections

The experiments are performed on three test collections reflecting different doc-

ument structure types from the more simple {title, body} of trec-web-small to

the more complex {names, related categories, similar entity names, entity name

and attributes} of DBpedia. The collections are DBpedia2 [94], HomeDepot3

and Trec-8-Small-Web4. The sizes of the data sets vary between 4.6 million

(DBpedia) and 50k Homedepot. More important than the number of docu-

ments, is the complexity of the structure, as this shows that ICFW is robust

across different structure types. For more information on the data sets see the

footnotes.

All the collections were preprocessed with Krovetz stemming and by remov-

ing the standard English stopwords. The experimentation was conducted as

a reranking task, with the initial retrieval done using ElasticSearch. All the

learning is done using coordinate ascent (CA), optimizing for NDCG with 5-

fold cross validation [106]. For ease of reproducibility, the implementation is

2https://github.com/iai-group/DBpedia-Entity
3https://www.kaggle.com/c/home-depot-product-search-relevance
4https://trec.nist.gov/data/t8.web.html
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DBpedia HomeDepot TREC-Web
Number of Documents 4.6M 55K 220K
Number of Queries 467 1000 50
Number of Rel. Judg. 49K 12K 47K
Number of Fields 5 3 2

Table 5.2: Test collection information

made available on GitHub at https://github.com/TuomasKetola/icfw-for-SDR

.

5.7.2 Baselines

It is not our aim to demonstrate that ICFW outperforms all SDR models.

Instead, we wish to show that ICFW is able to leverage the structure of the

data in ways that existing analytical models are not. As we are comparing

ICFW with existing field weighting methods, rather than existing SDR models,

the experimentation will not include all the models in Chapter. 2. Instead,

we will focus on the BM25 and LM retrieval models and their various fielded

versions.

BM25

FSA-BM25: Linear sum of BM25 scores. BM25F-Simple: A BM25 model

where document length normalization is applied over the concatenated docu-

ment [69]. BM25F: Fielded BM25 model where document length normalization

is applied at a field level [70]. For the non-optimised retrieval task, the BM25

parameters are set as b = 0.8 and k1 = 1.6 (midpoint in the recommended

range [1.2-2.0] [19]) and field weights are uniform. For the optimised task, mod-

els are optimised using coordinate ascent and 5-fold cross validation [106] for

NDCG@100. The underlying BM25 model for all the approaches is the original

one by Robertson et al. [107, 33].

Language Modelling

FSA-LM: Linear sum of LM scores using Dirichlet smoothing. MLM: Mixture

of language models [71]. For the non-optimised retrieval task the Dirichlet

hyperparameter is set as 2 × avgfl and field weights are uniform.

Divergence From Randomness

FSA-DFR: Linear sum of DFR scores with TF-IDF basic model, Laplace-based

first normalization and H1 second normalization. DFR-F: A fielded version of
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DFR, inspired by the BM25F and MLM.

Definition 5.21 (RSVDFR-F). Let nw⃗(t, d) be the weighted sum of term fre-

quencies over the fields, nnorm(t, fi) := n(t, d) · avgfl
|fi| and nnorm,w⃗(t, d) =∑m

i winnorm(t, fi).

RSVDFR-F(d, q, c)

:=
∑
t∈q

Inf1(t, d,TF-IDF) · Inf2(t, d, L) (5.49)

= nnorm,w⃗(t, d) · log
N + 1

df(t, Fi) + 0.5
· 1

1 + nnorm,w⃗(t, d)
(5.50)

Catchall Field

For the FSA-based models (baselines and candidate models) we consider model

versions where a catchall field has been appended to the data collection. All

the other fields have simply been flattened into this single field, meaning it is a

non-structured representation of the collection. This has been done as it is an

easy method for getting rid of some of the noise for FSA-based models resulting

from the independence assumption between term occurrences across fields. The

consideration of the catchall field is denoted by an addition of +all to the model

name.

5.7.3 Candidate Models

The experimentation focuses on testing how the satisfaction of the TD-

Constraint affects ICFW performance. Satisfying the FD-Constraint is more

straightforward as it is only concerned with term-specific variations in the speci-

ficity (IDF) values. Furthermore, from Chapter 4 we know that there are more

performance gains to be made by a model satisfying the TD-Constraint than

the FD-constraint. The fact that TFA-based models (BM25F and MLM) are

considered more robust than their FSA counterparts is also testament to this.

Focusing on the TD-Constraint means that we assume no variation for the

specificity of a given term across fields in the experimentation.

For the above reasons the candidate models set lambda according to the

TD-Constraint threshold, that is according to Definition 5.9. We consider three

different candidates for setting lambda related to the three smoothing techniques

from Section 5.5, together with assuming x = 1 (the DFR has the same definition

for Scontr as BM25). As discussed numerous times x = 1 is not a realistic

assumption in a real-world retrieval scenario, but the above-described focus on

variation of specificity across terms, rather than across fields for a given term

justifies it. This does not mean that future methods could not account for it as
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well. The discussion regarding the satisfaction of FD-Constraint in Section 5.4.2

provides a good starting point for this analysis.

To summarise the model candidates for ICFW are: ICFW-G where Defi-

nition 5.15 is used to estimate the underlying metrics, ICFW-GA where Def-

inition 5.16 is used and ICFW-LA where Definition 5.17 is used. For each

model candidate, we also consider a version with the catchall field. For the

supervised models we consider ICFW-LC and ICFW-LE for the two lambda

optimization methods from Section 5.6.

The results also show the accuracy of ICFW if λ = 0, meaning the model is

effectively the same as the BM25-FIC (denoted ICFW-λ-zero). Some figures

also consider a semi-optimised version of ICFW where a single value for lambda

is optimised, it is denoted ICFW-const-λ. Finally, ICFW-best denotes the

best-performing ICFW candidate.

5.7.4 Measuring Significance

Significance tests has been applied, even though there are different views on the

methodology. Fuhr and Sakai [108, 109] make the case that significance tests

should not be used on multiple hypotheses (without correction) and that simple

significance tests should not be applied to re-used test collections. Though the

authors share similar views, significance tests are still often considered a must-

have. Furthermore, some test collections are not reused (Homedepot) and the

proposed models are similar, meaning as features they are correlated.

5.7.5 Answering the Research Questions

RQ1: How well did ICFW do overall for the non-optimised task?

BM25

Table 5.3 shows the overall results for the experimentation. As discussed

earlier in the chapter, the results have been separated into non-optimised and

optimised tasks. For the non-optimised task, we report the performance of

ICFW-λ-zero where λ = 0 (i.e. BM25-FIC) and for each of the smoothing

methods from Section 5.5 we report the accuracy both for when a catchall field

is considered (-all) and when it is not.

Overall it is clear that ICFW does better than the best-performing baseline

for each data collection. Furthermore, this improvement is statistically signif-

icant at p < 0.01 for most proposed models. Figure 5.9 puts the scale of this

improvement in context.

From the figure can see that using ICFW for field weighting instead of opti-

mising BM25F provides approximately half the performance gains. This should
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dataset dbpedia trec-web homedepot
metric map ndcg@100 map ndcg@100 map ndcg@100

Non-optimized
Baseline Models

FSA-BM25 0.226 0.351 0.164 0.290 0.252 0.452
BM25F 0.295 0.444 0.229 0.377 0.249 0.440
BM25F-Simple 0.284 0.433 0.229 0.378 0.238 0.429
FSA-BM25+all 0.256 0.393 0.205 0.349 0.258 0.458

Proposed Models
ICFW-λ-zero 0.207 0.331 0.225 0.366 0.297 0.496
ICFW-G 0.299 0.448 0.243 0.391∗ 0.290∗ 0.486∗

ICFW-GA 0.302 0.449 0.241 0.389 0.297∗ 0.496∗

ICFW-LA 0.304∗ 0.453 0.233 0.378 0.299∗ 0.498∗

ICFW-λ-zero-all 0.239 0.369 0.245 0.395 0.290 0.488
ICFW-G+all 0.305∗ 0.459∗ 0.251∗ 0.406∗ 0.277∗ 0.470∗

ICFW-GA+all 0.313∗ 0.468∗ 0.249∗ 0.403∗ 0.285∗ 0.482∗

ICFW-LA+all 0.310∗ 0.464∗ 0.249∗ 0.402∗ 0.289∗ 0.487∗

Optimized
Baseline Models

FSA-BM25-CA 0.317 0.473 0.286 0.449 0.352 0.538
BM25F-CA 0.338 0.494 0.279 0.444 0.354 0.544
BM25F-Simple-CA 0.330 0.483 0.279 0.441 0.337 0.526
FSA-BM25+all-CA 0.334 0.492 0.286 0.451 0.358 0.547

Proposed Models
ICFW-LC-CA 0.335 0.489 0.287 0.450 0.358 0.547
ICFW-LE-CA 0.336 0.489 0.285 0.448 0.356 0.545
ICFW-LC+all-CA 0.344∗ 0.500 0.281 0.442 0.358 0.547
ICFW-LE+all-CA 0.344∗ 0.499 0.280 0.441 0.360 0.548

Table 5.3: Experimentation results with BM25 as the underlying model (M =
BM25 in Definition 5.5). The percentages show the increase compared to the
best performing baseline. * denotes significance at p < 0.05 for a Wilcoxon
signed ranks test. +all means the model considered a catch all field with all
fields concatenated.

be considered a notable improvement. Optimising BM25F uses training data to

understand the importance of fields and set their weights as well as the correct

hyperparameters (k1 and b). This means that the model has been built for a

specific dataset and a set of queries, which takes time and effort; if it is even

possible. Furthermore, there is no guarantee that it generalises to other queries

and data sets. Amongst others [94] demonstrated that the optimal values for k1

and b can change drastically if a different set of queries is considered with the

same data. On the other hand, ICFW does not require any training and can

be used off the shelf. This makes the relative improvement of using ICFW for

field weighting large compared to optimising BM25F, even though the latter is

more accurate.

LM

Table 5.4 shows the experimental results if LM is used as the underlying

model. Compared to BM25, the first observation is that the LM baselines do

much worse, especially for Trec-Web. A potential reason for this is that the

field-based scores for FSA-LM are not necessarily very comparable. The differ-
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Figure 5.9: The scale of performance improvement provided by the ICFW
put into context. The accuracy difference between ICFW candidates, a non-
optimised BM25F and an optimised BM25F. -CA denotes coordinate ascent-
based optimization

ence in document length between the title and body is significant and affects

the retrieval score directly, resulting in a situation where the title scores are in-

herently smaller. Hence some form of normalization might be called for. This,

however, is outside of the scope of this experimentation. A notable exception

to this is the Homedepot data collection where LM performs much better than

BM25.

In a similar manner to the BM25 analysis, Figure 5.10 puts into context

the improvements gained from using ICFW. For two of the data collections

(DBpedia, Homedepot) there is in fact a higher increase in accuracy from using

ICFW than from optimizing MLM. This is notable as it suggests that if the

underlying model is LM, ICFW can provide higher performance gains without

any optimization than baselines can with optimization.

For Trec-Web the results are problematic at best due to the field length issue

discussed above. These issues are likely to affect the ICFW models as well. How

to best solve them is left to future research. The rest of the experimentation

focuses on ICFW-BM25.

DFR

Table 5.5 shows the experimental results if DFR is used as the underlying

model. The trend is similar to the BM25-based experimentation. A notable

exception is that the ICFW-λ-zero-all model is the best performing one for
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dataset dbpedia trec-web homedepot
metric map ndcg@100 map ndcg@100 map ndcg@100

Non-optimized
Baseline Models

FSA-LM 0.201 0.323 0.093 0.151 0.282 0.472
MLM 0.232 0.345 0.094 0.151 0.300 0.480
FSA-LM+all 0.213 0.339 0.101 0.168 0.263 0.454

Proposed Models
ICFW-λ-zero 0.260 0.388 0.103 0.162 0.327 0.513
ICFW-G 0.272 0.407 0.105 0.173 0.318 0.499
ICFW-GA 0.271 0.405 0.106 0.172 0.325 0.507
ICFW-LA 0.273 0.407 0.103 0.164 0.328 0.513
ICFW-λ-zero-all 0.274 0.409 0.119 0.194 0.323 0.510
ICFW-G+all 0.279 0.418 0.120 0.199 0.316 0.500
ICFW-GA+all 0.282 0.421 0.121 0.197 0.322 0.506
ICFW-LA+all 0.284 0.422 0.122 0.200 0.323 0.510

Optimized
Baseline Models

FSA-LM 0.273 0.416 0.218 0.356 0.304 0.482
MLM 0.275 0.414 0.239 0.392 0.306 0.484
FSA-LM+all 0.287 0.434 0.218 0.356 0.304 0.483

Proposed Models
ICFW-LC 0.310 0.459 0.238 0.388 0.308 0.488
ICFW-LE 0.306 0.455 0.238 0.391 0.313 0.493
ICFW-LC+all 0.315 0.466 0.239 0.391 0.311 0.490
ICFW-LE+all 0.314 0.467 0.236 0.384 0.319 0.500

Table 5.4: Experimentation results with LM as the underlying model (M = LM
in Definition 5.5). The percentages show the increase compared to the best
performing baseline. * denotes significance at p < 0.05 for a Wilcoxon signed
ranks test. +all means the model considered a catch all field with all fields
concatenated.

DBpedia in the non-optimised task.

Figure 5.11 simplifies Table 5.5 so that we can easily see the degree to

which ICFW increases performance in both tasks. It is noteworthy that the

two ICFW models perform as well as the optimised DFR-F model for both

DBpedia and Trec-Web. This means that we observe higher accuracy gains

for a non-optimised retrieval model, than an optimised one with the same un-

derlying retrieval function (DFR). A possible reason for this is the fact that,

unlike BM25F, DFR lacks the hyperparameters for adjusting term frequency

saturation and document length normalization, both at the field level and at

the document level.

RQ2: What kind of lambda levels do we see?

Figure 5.12 shows the distribution of lambda for the different data collection and

model candidates with BM25 as the underlying model. These are the lambdas

that produced Table 5.3 From the figure, we can see that λ < 8 for all data

collection and model candidate pairs, with higher values being significantly less

likely. This finding bodes well for ICFW the satisfaction of the FD-Constraint
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Figure 5.10: The accuracy difference between ICFW candidates, a non-
optimised MLM and an optimised MLM. -CA denotes coordinate ascent-based
optimization

as if we assume that x = 1, T = z and k1 = 1.6, meaning ζ = 1.44 the lambda-

threshold for satisfying the FD-Constraint (λFD-th) is equal to 7.9, meaning the

constraint is satisfied for almost all queries in our data-collection.

RQ3: Which saturation method is best?

None of the smoothing methods from Sections 5.5 clearly outperforms the oth-

ers for all data collections. In fact, each data collection has a different best-

performing method. For clarity of the rest of the analysis, it is worth choosing

a single smoothing method so that the discussion can be generalised to all the

data collections in question. ICFW-GA+all is the best compromise out of the

six proposed models.

RQ4: How does saturating term frequency affect ICFW performance?

Figure 5.13 shows the effect of lambda, i.e. cross field term frequency saturation

on NDCG@100. The underlying model is BM25 (M = BM25 in Equation (5.8)).

For RQ1 it is worth only considering the top three graphs, as the bottom ones

have inherent saturation due to the catchall field. ICFW-const-λ shows the

accuracy for an ICFW model where a single value for lambda is optimised.

At λ = 0, the ICFW-const-λ model corresponds to the BM25-FIC [1]. We

can see that for all the datasets (without catchall field), the optimal value of

λ is greater than 0, albeit for Homedepot even at λ = 0, ICFW outperforms
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dataset dbpedia trec-web homedepot
metric map ndcg@100 map ndcg@100 map ndcg@100

Non-optimized
Baseline Models

FSA-DFR 0.216 0.344 0.152 0.271 0.256 0.455
DFR-F 0.267 0.411 0.208 0.342 0.249 0.439
FSA-DFR+all 0.250 0.386 0.192 0.329 0.263 0.463

Proposed Models
ICFW-λ-zero 0.288 0.430 0.212 0.346 0.303 0.502
ICFW-G 0.294 0.441 0.229 0.370 0.298 0.493
ICFW-GA 0.296 0.441 0.227 0.366 0.305 0.503
ICFW-LA 0.300 0.447 0.218 0.358 0.305 0.504
ICFW-λ-zero-all 0.314 0.462 0.231 0.376 0.296 0.494
ICFW-G+all 0.298 0.450 0.237 0.386 0.286 0.478
ICFW-GA+all 0.308 0.460 0.234 0.383 0.294 0.491
ICFW-LA+all 0.303 0.455 0.233 0.380 0.297 0.494

Optimized
Baseline Models

FSA-DFR 0.270 0.409 0.211 0.348 0.335 0.526
DFR-F 0.308 0.454 0.233 0.377 0.345 0.532
FSA-DFR+all 0.299 0.444 0.212 0.350 0.345 0.537

Proposed Models
ICFW-LC 0.311 0.459 0.235 0.383 0.357 0.544
ICFW-LE 0.310 0.458 0.232 0.378 0.356 0.544
ICFW-LC+all 0.321 0.472 0.234 0.382 0.357 0.544
ICFW-LE+all 0.323 0.474 0.233 0.380 0.357 0.547

Table 5.5: Experimentation results with DFR as the underlying model (M =
DFR in Definition 5.5). The percentages show the increase compared to the
best performing baseline. * denotes significance at p < 0.05 for a Wilcoxon
signed ranks test. +all means the model considered a catch all field with all
fields concatenated.

baselines clearly. This explains the results in [1]. So we can conclude that

saturating term frequency across fields is indeed important. It is likely to be

more important for data structures such as {title, body}, where there is greater

dependence between term occurrences. This is evident in Figure 5.13 from the

high value of optimal lambda for Trec-Web.

RQ5: How well can lambda be estimated analytically?

Figure 5.13 demonstrates that lambda can be estimated well analytically. We

observe that the best performing smoothing method for each dataset from

Sec. 5.5 (ICFW-best) is able to locate the maximum point of ICFW-const-λ

well, even for very different values of lambda (0 for Homedepot+catchall vs.

16.5 for Trec-Web). ICFW-best is different for all the datasets: ICFW-LA,

ICFW-G and ICFW-LA for DBpedia, Trec-Web and Homedepot respectively

with no catchall field and ICFW-GA-all, ICFW-G-all and ICFW-LA-all with

the catchall field. Out of the three smoothing methods for df, ICFW-G is the

most straightforward one and its performance is therefore also reported in Fig-

ure 5.13. It only falls significantly short of ICFW-best for Homedepot.
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Figure 5.11: The accuracy difference between ICFW candidates, a non-
optimised DFR-F and an optimised DFR-F. -CA denotes coordinate ascent-
based optimization

RQ6: Is the good performance of ICFW due to it satisfying the SDR

constraints?

Table 5.6 suggests the reasons why ICFW outperforms baselines. The analysis

was done for BM25-based models on the HomeDepot data collection where

the number of queries is the highest. This was done to make the results less

noisy. By calculating the correlation of three query features with MAP difference

∆MAP
(BM25F → ICFW)

∆MAP (FSA-
BM25 → ICFW)

Field Proportion +0.220† +0.196†

Term Proportion +0.105† +0.284†

max(IDF) − min(IDF) +0.05 +0.12†

Table 5.6: Query feature correlation analysis on Homedepot data set (n=1000).
Field proportion = average proportion of fields a query term appears in. Term
proportion = average proportion of query terms in a document. Only relevant
documents are considered. † dagger denotes significance at 0.01 p-value.

between ICFW and the baseline models, we can see that ICFW behaves as we

would expect given its grounding in the constraints from Chapter 4. A higher

average proportion of fields query terms appear in, is associated with a larger

accuracy increase for ICFW compared to both the BM25F and BM25-FSA. This

makes sense as terms appearing in many fields make the models more prone to
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Figure 5.12: Histograms of lambda levels observed in experimentation

problems caused by not satisfying the SDR constraints. The same is true for

the second query feature in Tab 5.6: If relevant documents are more likely

to have most of the query terms, their dependence across the fields becomes

more important. As BM25-FSA does not account for this, it loses on accuracy.

BM25F is less affected by many query terms appearing as opposed to few, as

term frequencies are saturated across fields. However, the problem discussed in

Theorem A.1 is still present. The results in Table 5.6 are consistent with this.

A larger difference in the IDFs of the terms can also create problems. The issue

is only significant for FSA as term frequencies are not saturated across fields.

The correlation analysis demonstrates how query features that make TFA

and FSA vulnerable to problems associated with failure to satisfy the constraints

from Sec. 4 are correlated with how well the models perform against ICFW.

This suggests that the increased performance for ICFW is tied to constraint

satisfaction.

RQ7: How well did ICFW do overall for the optimised task

First considering the results for ICFW with BM25 as the underlying model. The

lower half of Table 5.3 presents the results for the supervised task. It is clear from

the results that the differences between the retrieval accuracy of the models,

both between the baselines and the ICFW models, are much smaller. None of

the baselines is clearly better than others across data collections. Interestingly,

BM25F — which is usually considered state of the art for analytical SDR models
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Figure 5.13: Estimating lambda vs. optimising lambda

— is the best only for DBpedia. Even there, the difference to FSA-BM25+all

is marginal. There are a few cases where we observe significant differences in

retrieval behaviour between the baselines and ICFW. In general, the findings

seem to correspond to the observation made by [110] for non-structured retrieval,

that once hyperparameter optimization is used, bag-of-words-based analytical

models do not differ significantly in accuracy.

The results are notably different if the underlying model is LM compared to

BM25. We see a much bigger improvement for ICFW compared to the baseline

models. Only for Trec-Web, there is no significant increase in accuracy.

5.7.6 Discussion

The experimentation has demonstrated that ICFW used together with BM25

clearly outperforms the baseline models FSA-BM25 and BM25F in a retrieval

scenario without training data (non-optimised). The importance of smoothing

the lambda value estimated by Definition 5.9 was demonstrated, though none of

the smoothing methods clearly outperformed the others across data collections.

ICFW-GA-all was deemed to be a good compromise, with large performance

increases for all data collections compared to the best baseline models. The

experimentation further demonstrated that the reason for the large increases in
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accuracy for the non-optimised task was due to ICFW saturating term frequency

across fields and therefore satisfying more of the SDR constraints from Chapter 4

than other existing methods. The theoretic foundation of ICFW, coupled with

its satisfaction of the SDR constraints and the demonstrated performance on

established benchmarks make it a good potential candidate for a new standard

SDR method.

5.8 Summary, Conclusions and Contributions

This chapter covered the following issues:

• The introduction and formalization of the ICFW method for field weight-

ing, with term frequency saturation.

• Discussion and demonstration of the importance of setting the scale pa-

rameter lambda in order for ICFW to satisfy the SDR constraints from

the previous chapter.

• Analysing the importance of smoothing lambda.

• Extensive experimentation on three benchmark data collections.

The main conclusions were:

• By using adding the document-based information content and the lambda

scaling feature to the (BM25-)FIC model term frequency can be saturated

across fields, which results in the model conditionally satisfying all four

retrieval constraints from Chapter 4.

• Smoothing lambda is important and has an effect on performance.

• The resulting models with various smoothing methods outperform exist-

ing SDR models by a large margin, especially when it comes to retrieval

scenarios where the models cannot be optimised using training data.

• ICFW is a feasible candidate for becoming a reliable standard for analyt-

ical SDR.

The main contributions are:

• ICFW; a method for using information content for field weighting where

term frequency can be saturated across fields.

• Theoretic foundation for ICFW.

• Analysis of how ICFW satisfies SDR constraints formulated in Chapter 4.
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• Formal evaluation of model on established benchmarks demonstrating how

ICFW outperforms existing SDR models by a large margin, especially for

a non-optimised retrieval scenario.
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Chapter 6

Relevance Structure-based

Entity Ranking and

Investigative Information

Retrieval (InvIR)

This section introduces the Relevance Structure-based Entity Ranking (RSER)

system. It is a prototype search engine for InvIR which uses the ICFW to help

users understand the structure of the data better and to rank interesting entities.

The aim of the chapter is to demonstrate the importance of ICFW in an InvIR

task where document structure plays an important part. It will be demonstrated

that the ICFW weights can be used by the user to better navigate during the

investigative process and that they can be used by the system to consider what

we call relevance structures; defined as different contexts in which entities occur

in the data. The chapter is structured as follows:

• Section 6.1 briefly describes the motivation for the chapter.

• Section 6.2 introduces the proposed search engine.

• Section 6.3 summarises relevant research.

• Section 6.4 introduces the concept of relevance structures.

• Section 6.5 describes the technical aspects of the engine.

• Section 6.7 explains the implementation and evaluation.

• Section 6.8 concludes.
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6.1 Motivation

As discussed in the Introduction (Chapter 1), the initial motivation for this

thesis came from helping investigators dig through mountains of unruly data.

Whether it is investigative journalists, law enforcement, or open source inves-

tigations, the professionals working in these areas require systems with a high

degree of transparency in order for them to trust their findings. More recently

much of the research in search and retrieval has focused on black-box learn-

ing algorithms and large language models. These methods are powerful and

have been shown to outperform traditional approaches. However, as has been

pointed out throughout this thesis, they lack the transparency required for di-

rect use in investigations. At the very least they must be complemented by

more transparent analytical models to ensure that the findings are valid and

truthful. Developing these methods has been the overarching aim of this thesis.

The leveraging of document structures was identified as the technical method

for developing transparent and interpretable retrieval models. The last three

chapters have presented these models, which have been shown to outperform

existing SDR models.

The thesis now turns to answering the original question of “How to help

investigators?” from a more practical and application-driven perspective, using

the technical tools developed in the previous chapters. The aim of this chapter

is to present and evaluate a prototype investigative search system, which — if

developed further — could be used by investigators with no prior knowledge of

the structure of the data to rank interesting entities. The intention here is not to

“solve” or “automate” the task of InvIR, but to demonstrate how the retrieval

methods introduced in this thesis can help with this task. As a result of this,

more attention is paid to the description of the system and its underlying idea,

rather than formal evaluation.

6.2 Introduction

This section first introduces the retrieval task at hand, followed by the proposed

method for solving said task.

6.2.1 Retrieval Task

As discussed in the Background chapter (Chapter 2), search is a central aspect

of data-driven investigations, where investigators dig through data collections

for previously unknown facts. These users can be journalists exploring public
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data and leaks12, law enforcement offices investigating data obtained through

foreclosures, or open source investigators scouring social media data for evidence

of dubious activity etc. [111, 112]. In all the scenarios above, it is possible that

the investigators have a list of “Entities of Interest” (EoIs) that they think could

be found in the data. This is because such investigations usually aim to find

people of importance, such as politicians in these data collections. Furthermore,

they might already know of an interesting entity in the data, this seed entity

(SE) can be used as a reference point.

The retrieval task considered is as follows: Given a user’s information need,

a list of EoIs, the user’s knowledge of a seed entity and their specific interest in

the seed entity, rank the list of EoIs based on whether they can be found in a

similar context as the seed entity in the data.

As a more concrete example consider the following: The information need is

“List of Russian people that keep money in tax heavens, own a yacht and have

ties to the government?”, the seed entity SE could be Arkady Rotenberg, who

is known to satisfy the information need well. The list of EoIs could be every

influential person in Russia for example (n=10k+). Given this information, we

would like to rank the EoIs based on whether they can be found in a similar

context in the data as Arkandy Rotenberg, i.e. whether they have money in tax

heavens, own a yacht and have ties to the government. This would significantly

ease the work of the investigator, as they would have a better idea of which

entities they should start with.

It is imperative that a user can easily understand the inner workings of

the system in terms of why it produces the ranking it does. Otherwise, the

investigator cannot trust the system. This is why so much emphasis is given to

the transparency of the system, through the transparency and analytical nature

of the underlying models, as well as the UI.

The above example describes the motivation for the proposed system well

in the context of investigations and the reduction of labour for the investigator.

However, its complexity makes it difficult to clearly explain the inner workings

of the system. For this purpose, it is easier to consider an example with movie-

related data. Table 6.1 demonstrates how the engine defines the context and

how the EoIs are ranked for data about movies, actors and characters.

The list of entities contains actors and characters from movies about magic:

Malfoy, Bilbo Baggins, Alladin, Coulter, Tom Felton, Nicole Kidman, Martin

Freeman, and Robin Williams. Consider two information needs, the first one is

actors in movies about magic and the second one is characters in movies about

magic. The information need is described by the base query “wizards magic

1https://aleph.occrp.org/
2https://datashare.icij.org/
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rank ranking for SE1 ranking for SE2

1 Tom Felton Malfoy
2 Nicole Kidman Bilbo Baggins
3 Robin Williams Alladin
4 Martin Freeman Coulter
5 Coulter Tom Felton
6 Malfoy Nicole Kidman
7 Alladin Martin Freeman
8 Bilbo Baggins Robin Williams

Table 6.1: Example entity ranking scenario where a user is looking to rank
entities in movies about magic based on context. q = wizards magic fantasy.
The first context is actors, second context is characters. SE = seed entity.
SE1 = Emma Watson, SE2 = Hermione.

fantasy” and a seed entity that is chosen by the user. For the first information

need the user chooses Emma Watson who they know is an actor in a magic

movie (Harry Potter) and for the second one they choose Hermione as they

know she is a character. Given this information, the system, with the help of

the user, should produce the two rankings of EoIs in Table 6.1 corresponding to

the two contexts.

6.2.2 Proposed Method

The core contribution of this chapter is to introduce the Investigative Search

for Relevance Structure-based Entity Ranking (RSER) system. The algorithms

used are transparent and the reasoning behind the final ranking is easily avail-

able to the user, meaning the user can trust the results more. As discussed in

Chapter 2, this is an important aspect of investigative search.

Using the example in Table 6.1 the system works as follows: The area of

interest for the information need is defined through a set of queries Q, in

Table 6.1 this is a single query q = wizards magic fantasy. The seed en-

tity SE is appended to the base query and an initial search is performed

(q(SEEmma Watson) = wizards magic fantasy Emma Watson). For both SE1 and

SE2, the user chooses interesting documents which provide evidence of the seed

entity’s desired context, in this case, the Harry Potter movies. The discovery

of these interesting documents is made easier by a user interface which helps

the user navigate and learn about the document structure. How the interface

accomplishes this is an important part of the contributions of this chapter.

Using the interesting documents found, the system ranks EoIs based on how

well their context in the data matches that of the seed entity. This context is

estimated using relevance structure of each entity, i.e. the ways in which the

document structure affects their relevance. So if SE = Emma Watson (context
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= actors) the top ranks are actors in movies and if SE = Hermione (context =

characters) they are characters.

This simple example demonstrates how a user can easily navigate a struc-

tured data collection and learn new information about EoIs using a known seed

entity. A real-world investigative scenario could be much more complicated in

terms of the underlying data structure, the base queries used and the EoI list.

As discussed in the previous section, the data collection could be a set of doc-

uments about companies and their ties to individuals and politicians, the base

queries could produce documents demonstrating corruption and the EoIs could

be persons of influence for a given country. After interaction and exploration,

the system would give a ranking of the EoIs that are most likely to be relevant to

the investigator. It is easy for the user to find out and understand why an entity

gets a high rank, meaning the user can reason with the system to understand

better the why behind it all.

As mentioned before, the focus of this chapter is on the description of the

proposed system and its underlying idea. However, a small-scale formal evalu-

ation is performed as well. RSER is evaluated on two test collections created

from movie data collected from IMDB by Bamman et al. [113] and DBpedia,

which is introduced in previous chapters. The test collections has been modi-

fied to fit the retrieval scenario above. All together 25 topics have been created.

Different initial retrieval models are compared, as well as different models for

comparing the similarity of EoI’s the seed entities’ relevance structures.

6.3 Background and Context

The purpose of this section is to clarify the context of the proposed investigative

search engine with respect to existing SDR research, including ICFW and with

respect to polyrepresentaiton.

6.3.1 Existing SDR Models suitable for RSER

As the structure of the documents is a central aspect of the system we are intro-

ducing it is worth recapping briefly the existing approaches to SDR discussed in

Chapter 2 and examining whether they are suitable for RSER. Wilkinson [74]

was the first to show that leveraging document structures is beneficial for re-

trieval performance. Llamas offered a more theoretical approach to SDR using

theory of evidence [75, 76]. The INEX initiative was big in the 2000s, with a

lot of focus given to presentation and hierarchical data [114, 79, 80]. Fielded

versions of established atomic retrieval models were introduced in [69] and [71]

for the BM25 and language modelling respectively. More recently deep learning
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methods have been applied to SDR as well [30, 93].

In order for an SDR method to be viable for the system introduced here,

it must differentiate between the document fields in terms of how they con-

tribute to the relevance of the document, meaning TFA-based models are not

viable as they do not satisfy the FD-Constraint, or the term importance con-

straint (TI-Co) from Chapter 4. As our intention is to develop an investigatory

search system, another important model feature is transparency (As defined in

Section 2.3), meaning deep learning-based black-box models are not feasible.

Finally, the underlying assumption is that we are dealing with new data and a

structure that we are not fully familiar with. This means that the SDR mod-

els we use are not optimised and must therefore work without training data.

Furthermore, they cannot use the semantics of the field name as they are not

known.

From all the SDR models mentioned in this thesis, we are then left with

the FSA-based models and ICFW. In the previous chapter, we saw that ICFW-

BM25 outperforms FSA-BM25, which means that it is likely that ICFW-BM25

is better for the proposed system as well, However, as we cannot be sure, the

experimentation also includes runs where FSA-BM25 is used as the underlying

model.

6.3.2 Polyrepresentation and Document Structures

The concept of relevance structure is an important aspect of the proposed inves-

tigative search engine and will introduced at length in the next section. It relates

closely to the concept of polyrepresentation and the principle of polyrepresen-

tation. First introduced by Peter Ingwersen based on the cognitive approach to

IR, the principle of polyrepresentation states that given a set of information con-

texts (different sources, observers etc.), documents that exist in what is known

as the cognitive overlap are most likely to be relevant [115]. In more concrete

terms, Frommholz [116] describes the different contexts as different document

fields, title, body text or review of a book in their example. Furthermore, they

describe the interplay of these contexts during the retrieval process, i.e. query

terms appearing in various document fields as different information needs. In

their example for the query ”A good introduction to quantum mechanics”, the

word ”good” would need to appear in a book review field, rather than the body

of the book in order for the query intent to be understood correctly. This

means that information need and the parts of the document where query words

appear are inherently connected. According to the principle of polyrepresenta-

tion the most relevant documents can be found where these information needs

overlap [115].
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Connecting the document structure and information need is done in a similar

way in the proposed investigative search system: an information need is indeed

characterized by how query terms and document fields are connected. Consider

the query “Clint Eastwood” over a movie database: one possible information

need is to find movies with Clint Eastwood as an actor and another as a director.

However, unlike with the principle of polyrepresenation, the proposed system

does not assume that the most relevant documents are those where the many

fields overlap. Meaning a movie with Client Eastwood as the director and an

actor is not necessarily considered to be the most relevant. Instead, we see

each combination of fields as a separable information need: Movies with Clint

Eastwood as both director and actor could represent just another information

need, just like movies with him as only an actor, or director. Each of these

three possible combinations of fields represents one relevance structure, which

the proposed system helps the user navigate.

6.4 From Document Structure to Relevance

Structure

So far the majority of this thesis has been concerned with document structures

strictly in terms of how they can be leveraged in order to formulate models

that perform better than their existing counterparts.. Document relevance has

not been discussed at length and has really only been an underlying concept in

the retrieval models considered and developed. There are many different formal

definitions for relevance within the IR discipline. See the following works for

a further discussion [117, 118, 119]. For the purposes of this chapter, a simple

definition of document relevance can be adopted: relevant documents are defined

as the documents the user finds useful/interesting.

Up to this point document structures have only been used to improve re-

trieval performance with respect to accuracy on benchmark collections. In the

introduction chapter it was stated that a good investigative search system would

also communicate information about the structure to the user, putting them in

a better place to formulate further queries and providing a higher degree of

transparency. There are limited benefits in simply describing the structure of

a relevant document to the user; furthermore, this does not need to be done in

conjunction with the retrieval model. However, what the RSER system does is

to describe the structure of the document in terms of how it affects the relevance

of the document. This is where the concept of relevance structures comes in.

A relevance structure describes how the structure of the document con-

tributes to the system’s perceived relevance of a document with respect to a
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query, i.e. the retrieval score. Put in another way, relevance structure describes

the composition of a document’s relevance with respect to field relevance. Rel-

evance structure can be visualised in many ways. Figure 6.1 demonstrates the

use of a histogram, which is also used in the proposed system.

Figure 6.1: The relevance structure of document d (d = [f1 . . . f6)]) presented
as a histogram.

More formally, relevance structure is defined as follows:

Definition 6.1 (Relevance Structure). Let ri be the relevance of a document

field fi. The relevance structure vector of a document with respect to query q

and collection c is denoted r⃗s.

r⃗s(q, d, c) := [r1(q, f1, c)...rm(q, fi, c)] (6.1)

ri can be defined in many different ways. The most naive method would

be to define it as a field-based RSV: ri(q, fi, c) := RSVM (q, fi, c). However, we

have seen in the previous chapters that raw field-based scores do not model the

relevance of document fields well if there is significant dependence between term

occurrences across the fields. This means that the relevance structure vectors

could become very noisy. ICFW was developed for exactly this purpose; to

saturate term frequency across fields in order to model the dependence of term

occurrence across fields. Therefore, it should be much better in estimating the

ri values in Definition 6.1.

Coming back to the example in Table 6.1, the relevance structure describes

the context in which the user wants to rank the list of potential entities. If the

seed entity is Emma Watson and the query is wizards magic fantasy the context

is likely to be actors in movies that are similar to Harry Potter in some ways.

More concretely, the relevance structure in this instance would be a vector of
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values over the document fields. Table 6.2 seeks to clarify this point.

seed entity rplot ractor rcharacter
SE1 a b c
SE2 a d e

Table 6.2: Relevance structure vectors for seed entities from table 6.1. b > c and
d < e. SE1 = Emma Watson, SE2 = Hermione rs1 = [a, b, c] and rs2 = [a, d, e]

This section has not discussed the choice of relevant documents in depth,

even though they are needed to define relevance structure in Definition 6.1.

This is because in the example we knew beforehand which fields the entities

would occur in and that the relevant document would be the Harry Potter

movies. Furthermore, so far each information need has been described by a

single relevance structure, which is also not necessarily valid. This is where the

proposed system comes in. The entire process starts with the user formulating

queries with corresponding seed entities and finding relevant documents, which

can then be used to define the relevance structures the user is interested in,

which in turn can be used to rank the list of potential entities.

6.5 System Specification

Before diving into the technical description of the system described in this sec-

tion, it is worth clarifying the notation used:

• SE be a seed entity, i.e. someone we know matches the information need

well and can be found in the data

• EoIs = (pe1 . . . pem) a list of potential entities of interest who might match

the information need.

• Q(e) = (q1(e) . . . qm(e)) a set of queries. Each query q contains an entity e.

This can be either the seed entity or one of the potential entities. For

SE = Hermione in Table 6.1 the q(Hermione) = “wizards magic fantasy

Hermione”.

• SIM[rs(qi, di), rs(qj , dj), γ] is a function that returns the similarity of two

relevance structures. γ denotes a chosen similarity model.

• ranking(q, c,M) a function that returns a set of relevance structures

Figure 6.2 shows the RSER user interface (UI), which will be used to describe

how the system works in detail. The example is based on a simple scenario where

the data collection consists of information about movies, actors and characters.
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The reason for the simple scenario is to make it easier to follow, but there is no

reason why the scenario could not involve more interesting and complex data.

Altogether there are six steps in the process. The following details each of these

steps.

Figure 6.2: User interface for RSER

Step 1: Defining the Entities of Interest

As with any search task, the investigatory process begins with the user having

an information need. In the proposed system, the user defines a list of potential
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entities (EoIs) they are interested in and believe could be found in the data.

Furthermore, the user defines a seed entity (SE) that they know is found in the

data and corresponds to their information need.

In the example from Table 6.1 and Figure 6.2 the list of potential entities

is a mix of character and actor names from movies with magic and wizards:

EoIs = [ Malfoy, Bilbo Baggins, Alladin, Coulter, Tom Felton, Nicole Kidman,

Martin Freeman, Robin Williams]. For Figure 6.2 and the explanation of the

process the seed entity SE = Hermione. This suggests that the user is interested

in characters found in magical movies, rather than actors.

Step 2: Formulating a Set of Queries

This step consists of the user formulating a set of queries Q that define the

context in which they wish to rank the list of potential entities. In our movie

example, this context is whether an entity is a character in a movie about magic

and wizards. To define this context — with the help of the seed entity — the

user should formulate queries that return documents proving that Hermione is

a character in such a movie.

These queries should not be too specific, as something like “Harry Potter

Hermione” would return the Harry Potter movies, but the associated relevance

structures would carry little information in the context of most of the potential

entities. Something like “wizards magic spells Hermione” would give better re-

sults. The user can also choose the retrieval model and the similarity model.

The different possible models are discussed in the Implementation and Evalua-

tion Section (Section 6.7)

Step 3: Choosing Documents of Interest

On the left of Figure 6.2 we can see the produced ranking. To the left of it are

some graphs that help navigate the ranking. The top one shows the document

on the left clustered based on their relevance structures. The clustering is

performed based on the relevance structure of the documents, i.e. the field

weights. TSNE clustering is used with the number of clusters calculated using

Silhouette Coefficients.

The user can easily examine the relevance structure of each document by

clicking the “More info” button which updates the bottom graph. From this

graph, the user can get an understanding of exactly how the document is relevant

to the query in terms of its structure. In this case, we can clearly see that the

document is relevant because of the plot and actor fields.

Using the cluster colours and the bottom graphs the user can easily navigate

the results based on their relevance structures. In Figure 6.2 this is clear from
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the Harry Potter movies all being blue. The user can easily select interesting

documents which then appear in the list at the bottom left of the UI. They can

re-run the query and add more items to the list. Once they believe they have

enough interesting documents the user simply clicks “Rank Entities”, which

starts the back-end analysis of the potential entities.

Step 4: Calculating Similarity Scores for EoIs

This step is performed by the system, not the user. For each entity in the list

of EoIs, we define a set of queries Q(entity) and for each of these queries, we

run a search. So for example, for the entity “Malfoy” we would run the query

“wizards magic spells Malfoy”, just as we ran ‘wizards magic spells Hermione”

for the seed entity. We would then look at the ranking produced and see if

there are relevance structures similar to those defined in the previous step, i.e.

the interesting documents were chosen. The similarity of each of the document

relevance structures in the ranking for “wizards magic spells Malfoy” would be

compared to those chosen by the user for the seed entity, using the similar-

ity model SIM[rs(qi, di), rs(qj , dj), γ] where di is a document of interest chosen

by the user, and dj is a document in the ranking corresponding to the query

“wizards magic spells Malfoy”. To calculate the similarity for a given EoI, we

consider k most similar documents from the EoIs rankings, compared to the

documents of interest. Section 6.7 will discuss different options for measuring

this similarity and the performance for different values of k.

Step 5: Rank the Potential Entities According to their Relevance to

the Information Need

Create the final ranking and allow the user to investigate the underlying queries,

documents and fields which have produced said ranking. This is done by sorting

the entities based on the SIM scores that were calculated in the previous step.

Step 6: Reasoning

If the user wishes to learn about the system’s reasoning for why an EoI gets

a certain similarity score they can click the “More Information” button to the

right of each EoI. This will show the ranking results for that specific EoIs queries

in the main ranking table, as well as the documents of interest that are the

reason for its similarity score. By deleting documents of interest that are not

relevant to their information needs, the investigator can then “reason” with the

system, as the system changes the ranking of the EoIs according to the choices

of the user. Effectively the user can overwrite what the system flagged as an

interesting document for any of the EoIs, which then gets reflected in the final
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ranking. The next section will discuss in more detail the nature of the reasoning

that the system facilitates.

6.5.1 Algorithmic Description of the System

Algorithm 1 describes the above process more formally

Algorithm 1 Proposed Retrieval Algorithm

PersSim = []; # similarity of each potential entity

SE = Hermione; # Seed entity

RSSE = RS(SE); # Set of Relevance Structures

Q; # set of queries for finding Harry Potter movies

for pe ∈ EoIs do # loop over potentially interesting entities

RsSim = [] # relevance structure similarities for pe
for q(pe) ∈ Q(pe) do

RSpe = RS(pe) = ranking(q(pe), c,M) # fetch RS

sim = SIM[RS(SE), RS(pe)]
AddItem(RsSim, topK(sim)) # only consider topK similar RSs

end for
AddItem(PersSim, (AVG(RsSim),pe))

end for
Sort(PersSim) # Sort EoIs according to RS similarity with SE

6.6 RSER and InvIR

Before discussing the implementation and evaluation of the proposed system, it

is worth discussing what exactly makes RSER an investigative search engine,

rather than just a search engine, or an exploratory search engine.

To recap, the defining characteristics essential for InvIR are:

1. Complex information needs.

2. Query reformulation.

3. Session-based.

4. Complex results.

5. Complex Data.

6. Transparency.

7. Reasoning.

Complex information needs, query reformulation and the session-based na-

ture of RSER are evident from the previous section. The system considers
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multiple queries, each of which is comprised of two parts (base query + entity)

within a session where the end result is to rank entities of interest. These fac-

tors reflect the complexity of the users’ information need: They are looking to

rank a list of entities, which can be seen as an aspect of their information need,

according to other aspects of their information need, described by their various

queries. The results are presented in a complex manner, where the relevance

structures are explorable both one by one and from clusters. To the best of the

author’s knowledge, this is the first system that visualises the relationship be-

tween relevance and document structures (relevance structures) in this manner.

It makes the search much easier as effectively documents with similar relevance

structures, i.e. documents that are relevant in the same context have the same

colour in the ranking. The complexity of data is also evident, as the search

engine is specifically designed to deal with structured data.

Moving onto the aspects of RSER that make it an investigative search engine,

rather than an exploratory one. The emphasis on transparency does not have

so much to do with the engine design itself, but rather with the underlying

retrieval and similarity models. If either of these was replaced by a black-box

algorithm a large degree of the transparency of the system would be lost, which

would make it an exploratory search engine instead. A degree of transparency

is also provided by the way in which the results are presented, as the user

has a better idea of which parts of the document contribute to its relevance.

In the context of the RSER system, the transparency of the system described

above is what facilitates the reasoning aspect of the system. As discussed in

Section 2.2, the focus of this thesis with respect to the special aspects of InvIR

is on transparency, rather than reasoning. However, with the RSER system,

we aim to demonstrate how this transparency can be used to facilitate the

understanding of the underlying reasoning within the system and to interact

with the system to guide that reasoning.

What it all boils down to is that even if the underlying algorithms are trans-

parent, a user with little knowledge about IR algorithms cannot fully trust the

system. That is why the ability of the system to communicate the reasoning

of the final ranking of the EoIs to the user and the users’ ability to reason

together with the system is an important aspect of what makes RSER an in-

vestigative search engine. This is why it is important that the user can get a

deeper understanding of why each of the EoIs has been ranked high or low. The

system accomplishes this by allowing the user to see the rankings that each of

the queries for each potential entity has produced and the documents of interest

the system has chosen for those query-entity pairs. If the documents of interest

are not correct, the user should be able to change them, effectively reasoning

together with the system to change the final ranking.
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Analysing the existing body of research around reasoning as a cooperative

and interactive task between a human and a computer in-depth is out of the

scope of this thesis. For example, there exist whole fields of study around

concepts such as semantic web, semantic reasoning and reasoning based on

knowledge bases that relate to this chapter but are too wide to capture in a

clear manner [120, 121, 122, 123]. One of the underlying reasons for this is the

fact that due to the technical chapters of the thesis, more focus has been given

to transparency. Instead of an in-depth analysis and evaluation of various kinds

of reasoning and fields concerned with it, here the aim is to describe what is

new about the reasoning that the RSER system facilitates. Systems such as the

semantic web use the semantics that information is labelled with to reason for

the best possible outcome, the RSER system reasons in a similar manner using

the document structures directly. Furthermore, the system communicates its

reasoning to the user who can change the underlying logic through which the

system has produced the EoI ranking. This means that reasoning becomes a

cooperative process between the system and the user, providing an additional

layer of transparency.

In summary, what makes the reasoning within RSER special is its focus on

the raw document structures, rather than the semantic aspects of documents

and the interactive nature of the reasoning process that it facilitates.

Together the seven points described above are what make the RSER system

and InvIR system, rather than an IR system of an exploratory search system.

6.7 Evaluation and Analysis

The purpose of this section is to demonstrate the general effectiveness of the

RSER system and more importantly, the importance of using ICFW-based field

weights when inferring context. As mentioned previously, the experimentation

is narrow in its scope and is not aiming to unequivocally show that RSER can

be used for complex InvIR scenarios, but instead to demonstrate that it has the

potential to do so and that ICFW plays a key part in this. After discussing the

implementation of the system and introducing the data collections the following

research questions (RQs) will be answered.

RQ1: Is There Value in Using ICFW-based Field Weights to Define Relevance

Structures?

RQ2: Which similarity model is the best one?

RQ3: Overall, what does the performance of RSER on the test collection tell

us about its effectiveness in general?
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6.7.1 Implementation

The proposed RSER system has been implemented using ElasticSearch, python

and Jupyter notebooks. Elasticsearch is used to store the data and to perform

the initial field-based queries using BM25 and BM25F. For each field in the

data collection, we retrieve the top 1000 documents with BM25. Furthermore,

we retrieve the top 1000 documents with the BM25F using all the fields and

calculate their field-based scores BM25 scores. Hyperparameters are set as

b = 0.8 and k1 = 1.6, as was the case in Chapter 5. A python library re-

ranks the retrieved documents and calculates their field weights using ICFW.

We test the system using all three proposed ICFW versions from the previous

chapter.

A Jupyter notebook is used to create the user interface (UI) presented in

Figure 6.2. The UI is not a part of the evaluation. The system is only evaluated

on its performance in terms of a benchmark test collection created specifically

for this chapter.

6.7.2 Test Collections

As discussed in the Introduction and Chapter 2, the data structures that IDJ

and InvR deals with are highly varied, often containing document types such as

emails, legal agreements, spreadsheets, message chains etc. In an ideal scenario,

the proposed system would be evaluated on a test collection that has been

used in large-scale investigations such as the Panama Papers, or Snowden files.

However, the raw data for this kind of information is not openly available.

Furthermore, as the retrieval task for the proposed search system tackles is non-

standard — as discussed in Section 6.2 — the ground truth, i.e. the optimal

ranking of EoIs, has to be defined by us. In order to do this we must possess

enough knowledge of the area in question to know what is a good ranking of

the entities, meaning the information has to be from an area that the author

is familiar with, or even better an area that most readers will be familiar with.

This is why we consider movie and Wikipedia data, rather than more complex

topics covered by previous investigations. There is a well-known benchmark

data collection that relates to InvIR; the Enron email data set. The following

details the dataset and explains why we cannot use it.

The Enron email data collection is a vast collection of emails and other elec-

tronic communications from the Enron Corporation, a company that was in-

volved in one of the biggest corporate scandals in American history [124]. The

collection consists of over 500k emails and other documents that were collected

during the investigation of the company’s fraudulent accounting practices. The

Enron email data collection has been widely studied and analyzed by journalists
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and others interested in understanding the scandal and its aftermath. Further-

more, it has been used by academics as a benchmark collection for various

tasks such as classification, message threading, network analysis, topic mod-

elling etc. [125, 126, 127, 128, 129]. At first glance, it would seem like an ideal

test collection for the evaluation here. However, there are three reasons why it

is not suitable:

1. None of the existing benchmark versions of the Enron data give a ground

truth that fits the InvR task described in this chapter.

2. The author does not possess enough domain knowledge to define base

queries, seed entities, potential EoIs or the correct final rankings for the

Enron email data.

3. The structure of the data (sender, receiver, subject, body, date) does not

have the complexity required to infer “context” to the extent that our

system requires.

In summary, since the purpose of this evaluation is not to show that the

proposed system “solves” InvIR, but to demonstrate that ICFW is useful in an

InvIR scenario both in terms of general performance and visualization, there is

no need to use data collections directly related to existing investigations. For

this reason, we have chosen datasets that non-expert readers are familiar with,

thus making the evaluation more transparent. The underlying datasets used are

DBpedia and IMDB.

Example Topic to be Searched

Due to the complexity of the retrieval task, the topics formulated for testing

the performance of the system are more complex than in traditional (ad-hoc)

IR test collections, such as those seen in Chapters 3, 4 and 5. Listing 1 shows

the structure of a test topic.

For each topic, we have the base query (”United States of America female

crime thriller”), a seed entity (Uma Thurman), a list of interesting documents

that a user would have checked (Kill Bill etc.) and a list of potential entities. For

each potential entity, we have defined whether they match the information need,

which in this instance corresponds to female actors in crime thrillers from the

US. Relevance is judged at 2 levels, 1 = relevant (female actors in movies that

clearly fit the crime thriller genre and take place in the US), and 0 (not relevant).

Altogether there are 15 topics for IMDB and 10 for DBpedia. One of the reasons

for using movie data is that it is easy to semi-automatically create the training

set. By filtering the data based on the various fields it is easy to come up with

a list of female actors in crime thriller films for example. This, of course, means
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Listing 1 Example of a Topic for IMDB

1 {

2 "query_id": "3",

3 "query": "United States of America female crime thriller",

4 "seed_entity": "Uma Thurman",

5 "interesting_documents": [

6 "UObKdYQB4U5l6a4-MCtu",

7 "I-bLdYQB4U5l6a4-YEQo",

8 "QebIdYQB4U5l6a4-0A4P",

9 "X-bLdYQB4U5l6a4-DD1U",

10 "buXGdYQB4U5l6a4-ueHa"

11 ],

12 "potential_entities": [

13 "Lorraine Bracco",

14 "Diane Keaton",

15 "Jodie Foster",

16 "Marlon Brando",

17 "Robert Deniro",

18 "Ray Liotta",

19 "Joe Pesci"],

20 "qrels": [

21 [

22 "3",

23 "",

24 "Lorraine Bracco",

25 "2"

26 ],

27 ...

28 [

29 "3",

30 "",

31 "Robert Deniro",

32 "0"

33 ]]}

that for such an example our system is obsolete if the user knows the data well

enough to use filters. However, as discussed before, in an investigative situation

the user would most likely not have this kind of knowledge. Furthermore, their

information needs are likely to be too complex to be simply communicated with

filters. For the RSER system, this would not be a problem and thus the less

complex movie-based data is simply used to demonstrate its value. For DBpedia

filters could not be used to define relevance, meaning the task had to be done

manually, which is also why there are fewer topics.

DBpedia Dataset

The DBpedia data-collection collection from Chapters 3, 4 and 5 is used for

the evaluation here as well. The system is evaluated on 10 topics that are

summarized in Table 6.3.
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Information Need Base Query Seed

US presidents that went to
Harvard University

United States Presi-
dent Harvard Univer-
sity

Barack
Obama

United Nations general secre-
taries from Africa

united nations secre-
tary general african

Kofi Annan

Books about the second world
war in asia

second world war book
pacific asia

Guadalcanal
Diary

Authors of books about
WW1

author book world war
one

Barbara
Tuchman

Countries with off shore oil
rigs

countries with sea
based oil reserves
drilling platform

Norway

Countries in the Americas
with oil

country america oil Venezuela

Books about the Spanish civil
war

book spanish civil war For Whom
the Bell
Tolls

Organized crime figures in
chicago

organized crime figure
chicago mafia

Al Capone

Authors of books about the
italian mafia

author book italian
mafia

Mario Puzo

Mafia members involved in
helping us military in WW2

mafia ww2 world war
2 war effort help new
york docks

Luciano

Table 6.3: Information needs, base queries and seed entities for DBpedia test
collection

IMDB Dataset

The underlying data for the evaluation is an IMDB database collected by [113].

The data consists of movie, actor and character data. It has been cleaned and

is stored in ElasticSearch instance and has the following fields: movie id, plot,

movie name, movie languages, movie countries, movie genres, actors, charac-

ters, actor genders. Table 6.4 shows the information needs, base queries and

seed entities for the IMDB collection.

6.7.3 System Settings

There are four features in the introduced system which can be changed:

1. The underlying retrieval model, M in Algorithm 1.

2. How the relevance structure is defined, i.e. how ri is defined in Defini-

tion 6.1.
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3. The similarity metric used to compare the relevance structure, SIM in

Algorithm 1.

4. The k value defines how many of the relevance structures are retrieved for

each query for each potential entity considered.

Retrieval Model: For the retrieval model we consider FSA-BM25, ICFW-G-

BM25, ICFW-GA-BM25, ICFW-LA-BM25, which have been introduced previ-

ously in this thesis.

Relevance: Three ways of defining ri are considered.

1. Field-based BM25 retrieval scores.

2. Field weights assigned by the ICFW model.

3. A product of the two.

Similarity: For the similarity metric γ we consider manhattan distance, cosine

distance and a combined metric where the two are multiplied.

k-cutoff: Finally, we try different values of k between 1 and 10. Figure 6.3

shows system performance for different values of k. The analysis assumes k = 4

as here we observe good performance for both data collections.

6.7.4 General Performance

Table 6.5 shows the performance of RSER for different underlying retrieval

models and similarity metrics at k = 4.

From Table 6.5 and Figure 6.3 it is clear that there is significant variation

in the performance of the system depending on how the underlying features are

defined. For this reason, it is important that the user interface offers options on

these features for the user, as is done in Figure 6.2.

6.7.5 Is There Value in Using ICFW-based Field Weights

to Define Relevance Structures?

As discussed earlier, ICFW was the stronger candidate compared to FSA-BM25

as the field weights are less noisy. For FSA, field-based BM25 scores were

used to estimate the relevance structure (ri,FSA = RSVBM25(q, fi, c) in Defi-

nition 6.1), whereas for the ICFW-based models the ICFW field weights were

used (ri,ICFW = wICFW(q, fi, c) in Definition 6.1). We also experimented with

a combination of ICFW-field weights and the BM25 score, where the two were

multiplied to estimate ri,ICFW-BM25: (ri = RSVBM25(q, fi, c) × wICFW(q, fi, c)

in Definition 6.1)
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(a) IMDB

(b) DBpedia

Figure 6.3: System performance for different values of k. k equals the different
cut-off points explained in Section 6.7.3, i.e. how many of the relevance struc-
tures are retrieved for each query for each potential entity considered.
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Table 6.5 demonstrates the feasibility of using ICFW-based field weights

for defining the relevance structures in RSER. The results are relatively noisy

due to the small number of evaluation topics per data collection (especially

the P@2 column). However, we can observe that there are no instances where

the FSA-BM25-based model outperforms the ICFW-based models. It is worth

noting that there are important differences between the two data collections:

In general, the benefits of using ICFW are greater for the IMDB dataset. A

likely reason for this is that the document structure for IMDB is much more

complex than it is for DBpedia, with 9 fields for the former and 5 for the latter.

Furthermore, the fields are much more diverse for IMDB. For example, the title

of a Wikipedia page relates closely to its body, similar title and related titles,

whereas for IMDB — apart from movie plot and title — the document fields

are much more different semantically.

As a general trend, we can say that ICFW-LA has the most robust perfor-

mance across similarity metrics and datasets. This makes sense intuitively as

ICFW considers the field level term metrics when calculating the lambda scal-

ing parameter, whereas ICFW-G and ICFW-GA average over the fields (Defi-

nitions 5.15, 5.16, 5.17).

6.7.6 Which Similarity Model is the Best One?

The experimentation does not show that one similarity model is better than the

others. The results suggest that whether cosine similarity or manhattan distance

is better, depends heavily on the data collection. For DBpedia, manhattan

distance would seem to produce better results when ICFW models are used

and worse results if a combination of ICFW and BM25 is used. Overall the

best results are obtained by using ICFW-LA together with manhattan distance.

A possible reason for this is that due to the simpler document structure, the

model needs to consider the degree of relevance for each field, as well the relative

importance of each field. For the IMDB dataset, cosine similarity does better

than manhattan similarity. This is likely to be because the relative importance

of fields is more important than their degree.

To clarify this point, consider two queries with two seed entities, one for each

data collection: “United States President Harvard University” with the seed

entity “Barack Obama” for DBpedia and “Actors in Italian mafia movies” with

the seed entity “Al Pacino” for the IMDB collection. For DBpedia important

documents would include Wikipedia articles such as “Barack Obama’s timeline”

for IMDB movies such as “The Godfather”.

For IMDB we would like to rank high entities where the query terms “Ital-

ian mafia” occur in the plot and/or description fields and the entity name (Al
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Pacino), occurs in the actor names field. If the entity name occurs in any other

field, the context is automatically wrong, as we are only interested in actors, not

characters for example. What this means is that the relative importance of fields

in terms of the relevance structure is of large importance, most likely more so

than the actual degree of relevance for any individual field. For DBpedia things

are not as straightforward. Since there are not as many fields, the system will

find it more difficult to differentiate context based on whether a field is relevant

or not, instead the degree of relevance will need to be considered. For example,

the Wikipedia timeline article should be about the EoI in question, but there

is no field that lists the important entities in a document for example. So the

system would need to distinguish the occurrence of the entity name (Obama)

from other query terms, such as president.

To summarise, with fewer fields the term-level occurrences of query terms

become more important that field-level occurrences, which is likely to be the

reason why for DBpedia manhattan similarity does better than cosine similarity

and why for IMDB the opposite is true.

6.7.7 Overall, what does the performance of RSER on the

test collection tell us about its effectiveness in gen-

eral?

Figure 6.4: Query-based Accuracies of RSER with ICFW-LA and Manhattan
Similarity on DBpedia
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Figure 6.5: Query-based Accuracies of RSER with ICFW-LA and Cosine Simi-
larity in IMDB

Figures 6.5 and 6.4 show the query level accuracies for RSER with DBpedia

and IMDB respectively. We can see that for all three accuracy metrics, the

performance of RSER is relatively steady across queries. For only three of the

queries does MAP drop below 0.45 and for NDCG below 0.75. Precision@2

is 0.5, or 1 for all queries, meaning the first two entities in the final ranking

usually provide at least one good true positive entity. This suggests that RSER

is indeed accurate enough to help investigators rank entities in terms of their

context relative to a seed entity, albeit for two narrow test collections.

6.7.8 Discussion

The experimentation has demonstrated that the entity ranking aspect of RSER

is able to rank movie and Wikipedia-based entities based on their context rela-

tive to seed entities relatively well. A user-based evaluation with investigation-

related data would be required to unequivocally show that the system can be

used in investigations. Such a study is outside of the scope of this thesis, which

spent the first three content chapters developing the technical solutions required

for the implementation of RSER. However, the experimentation does suggest

that the approach is valid and warrants further study.
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6.8 Summary, Conclusions and Contributions

This chapter covered the following issues:

• The introduction of an InvIR task where a user ranks a list of potentially

interesting entities based on their information need.

• A proposed method for tackling the above retrieval task, denoted

Investigatory Search for Relevance Structure-Based Entity Ranking

(RSER).

• Introducing the concept of relevance structures and demonstrating how

they can be used to further knowledge gained from the data by the user.

• The system was evaluated on a test collection built for the task specifically.

The main conclusions were:

• RSER ranks entities of interest well enough to suggest that such a system

could be useful in an InvIR scenario.

• The system works much better with ICFW than any other SDR methods,

to the extent that the system would not be feasible without ICFW

The main contributions are:

• An investigative search engine prototype denoted RSER.

• A formal evaluation of the search engine demonstrating how relevance

structures can be used in InvIR scenarios.
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Information Need Base Query Seed
Actors that have appeared in
westerns with Clint Eastwood

Clint Eastwood West-
ern

Wallach

character names in italian
mafia movies

italian mafia Vito Cor-
leone

actors names in italian mafia
movies

italian mafia Pacino

Female lead characters in
movies about crime in the
united states of america

United States of
America female crime
thriller

Uma Thur-
man

Movies with Harrison Ford
that take place in United
States with action

Harrison Ford United
States action

Fugitive

characters in comedies with
Jim Carrey about Christmas

comedy Jim Carrey
Christmas

Grinch

actors in films with wizards
and magic

wizard magic spells Daniel Rad-
cliffe

actors in films with wizards
and magic

wizard magic spells Hermione

characters in movies with
Bruce Willis about Christmas

Christmas Bruce
Willis

John Mc-
Clane

movies with Bruce Willis and
Samuel Jackson

Bruce Willis Samuel
Jackson

Die Hard 3

marx brothers black and white comm-
edy

Harpo Marx

male actors in action films
with Schwarzenegger

action film arnold
Schwarzenegger male
actors

Dolph Lund-
gren

male characters in action
films with Schwarzenegger

action film arnold
Schwarzenegger male
characters

John Matrix

german speaking movies set
in Berlin during war times

Berlin German Lan-
guage War

Good by
Lenin

Characters that have ap-
peared in westerns with Clint
Eastwood

Clint Eastwood West-
ern

Tuco

Table 6.4: Information needs, base queries and seed entities for IMDB test
collection
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weights similarity
DBpedia IMDB
ndcg p2 map ndcg p2 map

FSA-BM25
cosine 0.765 0.600 0.557 0.750 0.560 0.567
manhattan 0.758 0.500 0.550 0.716 0.567 0.540
cos*man 0.762 0.650 0.562 0.674 0.600 0.443

ICFW-G
cosine 0.715 0.600 0.492 0.783 0.567 0.621
manhattan 0.785 0.550 0.619 0.736 0.533 0.559
cos*man 0.739 0.450 0.558 0.704 0.567 0.496

ICFW-GA
cosine 0.792 0.550 0.642 0.770 0.567 0.622
manhattan 0.818 0.600 0.679 0.713 0.500 0.534
cos*man 0.752 0.550 0.612 0.683 0.467 0.464

ICFW-LA
cosine 0.749 0.450 0.584 0.803 0.633 0.670
manhattan 0.823 0.700 0.691 0.731 0.533 0.567
cos*man 0.763 0.650 0.603 0.675 0.500 0.469

ICFW-G x BM25
cosine 0.724 0.450 0.561 0.660 0.589 0.415
manhattan 0.729 0.500 0.558 0.689 0.533 0.497
cos*man 0.775 0.600 0.592 0.689 0.733 0.405

ICFW-GA x BM25
cosine 0.703 0.450 0.510 0.662 0.700 0.381
manhattan 0.701 0.450 0.533 0.663 0.333 0.460
cos*man 0.681 0.400 0.481 0.662 0.700 0.381

ICFW-LA x BM25
cosine 0.733 0.600 0.554 0.656 0.633 0.429
manhattan 0.750 0.500 0.595 0.708 0.533 0.522
cos*man 0.731 0.400 0.535 0.643 0.700 0.376

Table 6.5: Experimentation results for RSER
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Chapter 7

Conclusions

The initial research objective for this thesis was to develop tools, approaches and

models that would help with data-driven investigations. To this end, the thesis

began by defining investigative retrieval as a sub-task of exploratory search

with an emphasis on transparency and reasoning. By doing so, the high-level

initial question was framed within the specific research area of IR. The focus on

transparency — combined with the inherent complexity of data collections that

investigators deal with — guided the choice of technical contributions in this

thesis. More specifically, the methods developed in this thesis have contributed

to the wider field of IR, by proposing reliable standards for analytical SDR. The

thesis finished with a chapter where these technical contributions are applied to

InvIR.

Probabilistic models, such as the BM25 and LM have become the standard

for non-structured (atomic) retrieval, especially if the use of learn-to-rank mod-

els is not warranted. No such widely accepted standard exists for structured

document retrieval (SDR). The fielded extension of the BM25 — the BM25F

— could be considered the best candidate. However, without optimization, it

does not benefit from the document structure. The main technical contribution

of this thesis has been the introduction of information content field weighting

(ICFW); a new field weighting method for SDR. ICFW is analytical, works

without optimization, but can benefit from it and leverages the structure of the

documents effectively. These three characteristics are what make the model a

potential candidate for a new standard SDR model and what make its use in

InvIR feasible.

ICFW and related concepts were introduced throughout the thesis. There

are four steps, corresponding to chapters, which covered various aspects of the

model:

• Initial model description: Theoretical and intuitive justification for the
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use of information content in field weighting and initial study (Chapter 3).

• Formal constraints for SDR: In order to better understand where

information content-based field weighting does well and where it does not,

constraints for SDR were formalized, allowing for analytical evaluation

and comparison of SDR models (Chapter 4).

• Cross-field term frequency saturation in ICFW: From the previous

step, cross-field term frequency was identified as the main property missing

from the initial study model. This step analyses and identifies the best

ways to apply this saturation in information content-based field weighting,

presenting the ICFW method. (Chapter 5).

• Investigative search application: The usefulness of ICFW for InvIR

was demonstrated with the help of a prototype search engine where entities

of interest are ranked according to the context in which they are found in

a data collection. (Chapter 6).

Chapter 3 described intuitive and theoretical justifications for the use of

information content for field weighting. The intuitive justification is closely

related to the original justification for the TF-IDF model by Spark-Jones from

more than 50 years ago. In their conceptual model for TF-IDF weighting,

the term weight is defined through its exhaustivity and specificity. The core

revelation by Spark-Jones’ original definition of the IDF was to argue that

It [specificity] should be interpreted as a statistical rather than se-

mantic property of index terms. [20]

Meaning specificity should be automatically calculated using collection metrics,

rather than defined manually.

A central aspect of this thesis is to transfer methods from atomic retrieval

to SDR. The most obvious example of this is the SDR constraints, directly

inspired by the (atomic) retrieval constraints by Fang et al. [26]. However,

a similar transfer underlies the conceptual model and therefore the intuitive

justification of ICFW. By defining the conceptual model underlying SDR as

one where a field-level retrieval score represents the exhaustivity of a field and

the assigned field weights its specificity, this thesis has argued that the specificity

(field weight) should be perceived as a statistical property of the field, rather

than a semantic one. Another similarity of this thesis to the work of Spark-

Jones is proposing that specificity should be calculated as the negative log of

the probability of a field, as is the case for the specificity of terms with the IDF.

Two approaches for the theoretical justification of using the information

content for field weighting — calculated as the negative log probability of a field
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— have been given. One is related to the information-theoretic justification to

the IDF by Aizawa [103] and one to the justification for the use of information

content in DFR retrieval, relating to research on semantic information theory

by Hintikka [39, 40]. Each of these justifications has issues. This is not a huge

problem, as it is not the intention of this thesis to provide a complete, formal

mathematical justification for ICFW, but to demonstrate that there are intuitive

and theoretical justifications that can be used to explain why the model works.

Together with the intuitive and theoretical justifications for using information

content for field weighting, Chapter 3 also contains a study that uses a simplified

version of ICFW and demonstrates how it performs on two test collections. It

is obvious from the results that the model does very well on some collections

and very badly on others. The reasons behind this led to the next chapter.

Chapter 4 introduced formal constraints for SDR. The motivation came from

the findings of Chapter 3 and existing discussion within SDR research. In many

ways existing research — especially with respect to the BM25F — seemed to

agree that summing together field-based scores was not a robust solution to

SDR, as it assumes the occurrences of a term across fields to be independent

of each other. This was the main motivation for the BM25F, where weighted

term occurrences are first summed together and the retrieval model is then

applied over this flattened document representation. The findings from the

study in the previous step however suggested that this is not always the case.

Models that sum field-level scores — BM25-FIC included — outperformed the

BM25F for some test collections. So it would seem that sometimes it is better

to consider the structure explicitly, rather than worry about cross-field term

frequency dependence. This trade-off had not been examined in depth in the

past, which led to the formalization of retrieval constraints for SDR in this thesis.

The intuitive definitions for the constraints can be found in Table 4.1 and are

repeated below. One of the main findings in Chapter 4 was that none of the

existing SDR approaches satisfies all four constraints. Furthermore, there is a

trade-off between FSA and TFA-based models and between the TD-Constraint

and the FD-Constraint. The motivation for the next step (Chapter 5) came

from this trade off: Would it be possible to define the ICFW model in a way

that guaranteed the satisfaction of all four constraints?

The first two content chapters (Chapters 3 and 4) together with existing

research — especially by Robertson et. al on the BM25F [69, 70] — show that

in order for a model to satisfy the TD-Constraint, it would need to saturate

term frequency across fields. However, if we wanted the model to satisfy the

FD-Constraint, it would also need to consider the field-based score. The latter

condition was already satisfied by the BM25-FIC model from Chapter 3, so

Chapter 5 focused on the TD-Constraint. In order to saturate term frequency
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Constraint Abbr. Intuition
Term distinctiveness TD-Co Adding unseen query terms to a document

should increase the retrieval score more
than adding query terms already consid-
ered

Field distinctiveness FD-Co Adding a query term to a new field should
increase the retrieval score more than
adding it to a field where it already occurs

Term importance TI-Co A model should consider the importance
of a term on a field level, rather than
document-level

Field importance FI-Co A model should be able to boost or de-
crease the weight given to a field, based on
some notion of field importance

Table 7.1: Intuition underlying formal constraints for SDR. Field refers to a
field of a document; e.g. abstract or author. Table repeated from Chapter 4.

across fields, the proposed ICFW model not only considers the information

content of a document field at a collection field level but at the document level

as well. In simple terms, this meant the addition of another component (ICD)

and a scaling feature lambda to the field weight calculation:

wICFW(fi, d, Fi) = ICF(fi, d, Fi) (7.1)

→ wICFW,λ⃗(fi, d, Fi) = ICF(fi, d, Fi) + λi ICD(fi, d) (7.2)

See Chapter 5 for formal definitions. Extensive analysis is performed to show

that by analytically setting lambda ICFW satisfies all four constraints, albeit

with some conditions regarding query term specificities, collection metrics and

the degree of within-field term frequency saturation by the underlying model.

Table 5.1 from Chapter 5 (repeated below) demonstrates how the ICFW method

differs from existing approaches with respect to the SDR constraints and makes

obvious why it is expected to outperform them. Extensive formal evaluation

Term Distinct.
TD-Co

Field Distinct
FD-Co

Term Import.
TI-Co

Field Import.
FI-Co

FSA NO Conditional YES YES
PRMS NO Conditional NO YES
BM25F Conditional NO NO YES
MLM Conditional NO NO YES
FSDM Conditional NO NO YES
BM25-FIC NO Conditional YES YES
ICFW Conditional Conditional YES YES

Table 7.2: Constraint satisfaction of SDR models, including ICFW. Table re-
peated from Chapter 5.
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using established test collection is performed to demonstrate that ICFW does

indeed outperform existing analytical approaches for SDR.

The contributions of Chapters 3, 4 and 5 represent the main technical con-

tributions of this thesis from a technical IR perspective. Together they have

developed a model that fulfils the three conditions for a potential new standard

model for SDR by being analytical, not requiring optimization and leveraging

the document structure properly. These aspects are also what make the model

viable for use in InvIR.

The last chapter introduces an investigative search engine which uses the

ICFW-based field weights to infer the contexts in which entities occur in a data

collection and use these contexts to rank entities of interest. The system is called

Relevance Structure-based Entity Ranking (RSER). Chapter 6 introduces the

system in detail and evaluates its performance. It was demonstrated that the

system has the potential to be used in investigative scenarios, that it can help

users to understand the structure of the data they are dealing with better, give

them insight on how different document-query pairs provide evidence and that

ICFW is a core component of the system, without which its performance is

significantly worse.

The purpose of this line of enquiry is not “solve” or “automate” InvIR, but

to demonstrate how the field weights inferred by ICFW can be used to perform

investigative search more effectively compared to the BM25F or another exist-

ing approach. This is hugely valuable as it shows that the idea of treating field

weights as a statistical, rather than a semantic property of document fields, not

only increases retrieval performance but also opens up new opportunities for

more transparent and complex discovery. Demonstrating how ICFW weights

are essential for the proper functioning RSER brings together the overall con-

tribution of this thesis, which was to develop technical methods (ICFW) that

can be used in investigative scenarios to help investigators (RSER).

In conclusion, this thesis has paved the way for establishing new reliable

standards for SDR and for developing retrieval methods specific to data-driven

investigations. This was done by clearly defining what would be expected of a

reliable standard SDR model, through the definition of formal SDR constraints,

by formulating a model that adheres to those constraints (ICFW) and by demon-

strating the model’s value for investigative search.

7.1 Future Perspectives

Many of the methods discussed and proposed in this thesis are concerned with

relatively new and untouched areas. Within atomic retrieval, there are almost

two decades of active research with respect to retrieval constraints. This thesis
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and related publications represent the first efforts to do the same for SDR.

Furthermore, the notion of considering field weights as statistical properties of

fields and adjusting the scale of cross-field term frequency saturation is quite

different from current research focuses in IR. And finally, the research area

of InvIR discussed in this thesis is highly topical in a world where there is

an abundance of data, from which facts need to be inferred in a transparent

manner.

Due to the relative novelty and topicality of the areas discussed in this thesis,

there are many potential high-level options for continuing the research in the

future. These options include, but are not limited to:

• More SDR constraints.

• Different ways of estimating the optimal scale of term frequency saturation

across fields.

• New methods for optimising the ICFW model using training data.

• Adapting ICFW for hierarchical and connected data.

• Other search tasks and solutions that use the field weights produced by

ICFW.

• New approaches and models directed specifically at InvIR.

• User-based evaluation of RSER and other InvIR tools.
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Appendix A

Appendix

A.1 Term Distinctiveness and Scale Parameter

Lambda

The underlying idea of the scale threshold theorem is that there exists a thresh-

old for λ, above which the model satisfies the term distinctiveness constraint.

Let q = {t1, . . . , tn} be a query, d be a document with n(ta, fi, d) occurrences

of query term ta in field fi and n(tb, f , d) occurrences of query term tb in an av-

erage field f . Let d be an amended version of document d where the occurrences

of tb are replaced with occurrences of ta.

Theorem A.1. Given terms ta and tb, if λ > λTD-th, then RSV(d) > RSV(d).

Regarding term frequencies this means n(ta, fi, d) = n(ta, fi, d) and n(tb, f , d) =

n(ta, f , d)

∀(ta, tb) ∈ q : λ > λTD-th(ta, tb, d, fi) (A.1)

⇒ RSVICFW,λ⃗(q, d, c) > RSVICFW,λ⃗(q, d, c)

Proof. Following Def. 5.8 for λTD-th, the inequality becomes:

λ >
log df(tb,F )|F |ΩΨ

df(ta,F )ΩΨ|F |

log mΩ+1 ff(ta,d)Ω(Ψ+1)

mΩ(Ψ+1) ff(ta,d)Ω+1

(A.2)

Considering the numerator first:

log
df(tb, F )|F |ΩΨ

df(ta, F )ΩΨ|F |
= log

df(tb,F )

|F |
df(ta,F )ΩΨ

|F |ΩΨ

(A.3)

Following Eqn. (5.1) for the definition of probabilities and Eqn. (A.3) we obtain,
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log
P (tb, f |F )

P (ta, f |F )ΩΨ
= logP (tb, f |F ) − ΩΨ logP (ta, f |F ) (A.4)

Following Definition 5.3 we can re-write Eqn. (A.4) to obtain,

logP (tb, f |F ) − ΩΨ logP (ta, f |F ) = ΩΨ ICF(f, d) − ICF(f, d) (A.5)

Moving onto the denominator,

log
mΩ+1 ff(ta, d)Ω(Ψ+1)

mΩ(Ψ+1) ff(ta, d)Ω+1
= log

[ff(ta,d)
m ]Ω(Ψ+1)

[ff(ta,d)
m ]Ω+1

(A.6)

Inserting Eqn. (5.2) to Eqn. (A.6) and transforming the log expression we obtain,

log
P (fi|d)Ω(Ψ+1)

P (fi|d)Ω+1
= Ω(Ψ + 1) logP (ta, fi|d) − Ω logP (ta, fi|d) − logP (ta, f |d)

(A.7)

Following Definition 5.3 we can re-write Eqn. (A.7) to obtain

log
P (fi|d)Ω(Ψ+1)

P (fi|d)Ω+1
= −Ω(Ψ + 1) ICD(fi, d) + Ω ICD(fi, d) + ICD(f, d) (A.8)

λ >
ΩΨ ICF(f, d) − ICF(f, d)

−Ω(Ψ + 1) ICD(fi, d) + Ω ICD(fi, d) + ICD(f, d)
(A.9)

Inserting Eqn. (A.5) and Eqn. (A.8) to Eqn. (A.2) and solving for Ω we obtain,

Ω <
ICF(f, d) + λ ICD(f, d)

λ(Ψ + 1) ICD(fi, d) − λ ICD(fi, d) + Ψ ICF(f, d)
(A.10)

This inequality only holds if

− λ(Ψ + 1) ICD(f, d) + λ ICD(fi, d) − Ψ ICF(f, d) > 0 (A.11)

Ψ <
λ ICD(f, d) + λ ICD(fi, d)

−λ ICD(f, d) − ICF(f, d)
(A.12)

and

− Ω(Ψ + 1) ICD(fi, d) + Ω ICD(fi, d) + ICD(f, d) > 0 (A.13)

Ω <
− ICD(f, di)

(Ψ + 1) ICD(fi, d) + ICD(fi, di)
(A.14)
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Expanding the denominator from Equation (A.10) we obtain,

Ω <
ICF(f, d) + λ ICD(f, d)

ICF(fi, d) + λ ICD(fi, d) + Ψ ICF(f, d)

+ Ψλ ICD(fi, d) − ICF(fi, d) − λ ICD(fi, d)

(A.15)

Following Definition. 5.7, Eqn. (5.5) and Eqn. (5.6) Eqn. (A.15) is re-written:

Scontr(ta, fi, d)

Scontr(tb, f , d)
<

wicfw(f, d)

wicfw(fi, d) + Ψwicfw(f, d) − wicfw(fi, d)
(A.16)

Rearranging Eqn. (A.16) we obtain,

wicfw(f, d) Scontr(tb, f , d) + wicfw(fi, d) Scontr(ta, fi, d) >

wicfw(fi, d) Scontr(ta, fi, d) + wicfw(f, d) Scontr(ta, f , d) (A.17)

Assuming the term frequencies from the theorem, the retrieval score difference

is only dependent on the score contributions of term ta in field fi and term tb

in field f . For d the same is true for the score contributions of term ta in field fi

and term ta in field f . Following Definition 5.5 we rewrite Eqn. (A.17) and

obtain the implicated inequality from the theorem.
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A.2 Field Distinctiveness and Scale Parameter

Lambda

The underlying idea of the scale threshold theorem is that if there exists a λ that

is greater than 0 and greater than a certain threshold (λTD-th), and λ is higher

than said threshold the model satisfies the field distinctiveness constraint.

Let q = {t1, . . . , tn} be a query, d a document with T occurrences of term t

in field fi and z occurrences of term t in an average field f . Let d be an

amended version of d, where the occurrences of term t in f have been moved to

fi and z occurrences of non-query terms have removed from fi and added to f .

These non-query terms ensure that theorem is only concerned with query term

occurrences, rather than document lengths.

Theorem A.2. Given term t and field fi and f , if λ > λTD-th and λ > 0, then

RSV(d) > RSV(d).

λ < λTD-th(t, d, fi) > 0 (A.18)

⇒ RSVICFW,λ⃗(q, d, c) > RSVICFW,λ⃗(q, d, c)

Proof. Following Definition 5.11 the inequality becomes:

λ <

log
[
df(t,F )

|F | ]Ψ

[
df(t,Fi)

|Fi|
]ζ−1

log
[
ff(t,d)

m ]ζ

[
ff(t,d)

m ]1+Ψ

(A.19)

λ <
− log[df(t,Fi)

|Fi| ]ζ−1 + log[df(t,F )

|F | ]Ψ

− log[ff(t,d)
m ]1+Ψ + log[ff(t,d)

m ]ζ
(A.20)

λ <
(ζ − 1) ICF(fi, d) − Ψ ICF(f, d)

(1 + Ψ) ICD(fi, d) − ζ ICD(fi, d)
(A.21)

(A.22)

Conditional on (1 + Ψ) ICD(fi, d) − ζ ICD(fi, d) > 0 Equation (A.19) can be

transformed to obtain

ICF(fi, d) + λ ICD(fi, d) + Ψ ICF(f, d) + Ψλ ICD(f, d) > (A.23)

ζ ICF(fi, d) + ζλ ICD(fi, d) (A.24)

Following Definition 5.4 we obtain

wicfw(fi, d) + wicfw(f, d) > ζwicfw(fi, d) (A.25)
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Inserting Equations (5.11) and (5.19) we obtain

wicfw(fi, d) + wicfw(f, d) Scontr(t,f,d)
Scontr(t,fi,d)

wicfw(fi, d)
>

Scontr(t, fi, d)

Scontr(t, fi, d)
(A.26)

Rearranging Equation (A.26) we obtain:

wicfw(fi, d) Scontr(t, fi, d) + wicfw(f, d) Scontr(t, f , d)

> wicfw(fi, d) Scontr(t, fi, d) (A.27)
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