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We point out that an unnatural hierarchy between certain higher-dimensional operator coefficients in a
low-energy effective field theory (EFT) would automatically imply that the Higgs’ vacuum expectation
value is hierarchically smaller than the EFT cutoff, assuming the EFT emerged from a unitary, causal and
local UV completion. Future colliders may have the sensitivity to infer such a pattern of coefficients for a
little hierarchy with an EFT cutoff up to Oð10Þ TeV.
DOI: 10.1103/PhysRevD.109.033009

I. INTRODUCTION

The electroweak hierarchy problem is made all the more
puzzling by the discovery of a Higgs boson with no signs of
accompanying new physics beyond the Standard Model to
solve its infamous naturalness problem; scalar masses
unprotected by any symmetry would naturally lie at the
effective field theory (EFT) cutoff scale unless fine-tuning
occurs in the UV theory. Positivity bounds are powerful
connections between certain EFT coefficients and basic
properties of the underlying UV theory (see [1] and
references therein), and here we explore a potential con-
nection between positivity and the electroweak hierarchy.
The simplest positivity bounds carve the space of EFT

coefficients into two regions: (1) values that satisfy the
bounds and hence could have arisen from a unitary, causal
and local UV completion; and (2) values that violate the
bounds and have no such UV completion. Conventional
efforts to solve the hierarchy problem live in Region 1.
They typically aim to reconcile the electroweak hierarchy
with EFT expectations by extending the symmetries of the
Standard Model (SM). However, the absence of the
necessary new physics at the weak scale has motivated
looking for more “exotic” QFTs to address the hierarchy
problem, e.g., Refs. [2–4]. They aim to break the rules of
EFT by some as yet unknown UV/IR mixing, which is
expected to violate decoupling and locality. Such exotic
QFTs may live in either Regions 1 or 2. If measurements of

EFT coefficients place us in Region 2, this would be a
smoking gun for an exotic UV theory.
We point out that there is a subset of Region 1 in which

positivity is only satisfied for a restricted range of the Higgs
vacuum expectation value (vev), v, relative to the EFT
cutoff scale, Λ, that we denote by Region 1̄. In particular, if
there exist unitary, local, and causal UV theories that map
to a specific pattern of dimension-8 and dimension-10
operator coefficients c8 and c10, respectively, with jc10j ≫
jc8j and appropriate signs, then by positivity they neces-
sarily also have a hierarchy that satisfies

v2

Λ2
<

jc8j
jc10j

ðPositively lightÞ: ð1Þ

We define a Higgs whose vev satisfies Eq. (1) living in the
subset of Region 1̄ where c8 > 0 and c10 < 0 as being
“positively light.” Another subset of Region 1̄ with the
signs reversed requires instead a Higgs satisfying a lower
bound on its vev, that we call “positively heavy,”

v2

Λ2
>

jc8j
jc10j

ðPositively heavyÞ: ð2Þ

The EFT coefficient space is illustrated in Fig. 1.
Analogous positivity bounds involving dimension-6 oper-
ator coefficients can also be derived under additional UV
assumptions.
Often, varying the parameters of a given UV theory can

only produce a particular range of EFT coefficients at low
energies. Our novel use of positivity shows that in any
unitary, causal and localUV theory, once its parameters have
been partially fixed so that jc8j ≪ jc10j (with c8 > 0 and
c10 < 0), then no matter how the remaining parameters are
varied the Higgs vev may only take the unnaturally small
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values in Eq. (1). Since these UV theories produce a cha-
racteristic hierarchy between particular higher-dimension
operators in the low-energy EFT, this scenario could be
identified in future experiments.
A positively light Higgs would not, per se, be a solution

to the hierarchy problem; as we will see, Region 1̄ from an
EFT perspective is a fine-tuning in the ratio of higher-
dimensional operator coefficients. Nevertheless, it is inter-
esting that a correlated tuning of a priori unrelated
quantities in the EFT—the dimension ≤ 4 scalar potential
and higher-dimensional operator coefficients—could be
a sign of some UV mechanism restricting the allowed
spectrum of Higgs vevs, in the same spirit as Ref. [5] that
proposes the weak gravity conjecture as an alternative UV
consistency restriction on the Higgs vev. The argument
advanced here is that self-consistency of the UV theory,
rather than symmetry or cosmological dynamics, may
provide a radically different perspective on the hierarchy
problem. A potential measurement establishing us to be in
Region 1̄ would strongly motivate looking for such a UV
completion.

II. POSITIVITY WITHOUT VEVS

We begin by recalling some known positivity bounds for
EFTs in which every field has already been expanded
around a unique stable vev. The central object that bridges
between the EFT and the UV is the scattering amplitude for
the elastic process AB → AB. This can be computed using

the low-energy EFT as a series expansion in the center-of-
mass energy s and momentum transfer t,

Aðs; tÞ ¼
X
i;j¼0

ai;j
sitj

Λ2iþ2j : ð3Þ

If the underlying UV completion is to be causal, unitary and
local,1 the a2n;0 coefficients in the EFT expansion must
obey the bounds

a2n;0 ≥ 0; ð4Þ
for all n ≥ 1 [6]. Analogous bounds can also be derived for
the a2n;1 coefficients (again with n ≥ 1), and these take the
form [7–12],

−βna2n;0 ≤ a2n;1 ≤ þαna2n;0: ð5Þ
Here, the positive parameters αn and βn depend on which
scattering process is considered, but ultimately there is
always a two-sided bound which forbids arbitrarily small
tunings of a2n;0 relative to a2n;1. We provide further details
in the Appendix.
In practice, the positivity bounds of Eqs. (4) and (5) are

most useful when applied to the EFT coefficients appearing
in a Lagrangian. For instance, consider,

LEFT ¼
X∞
d¼0

c̄d
Od

Λd−4 ; ð6Þ

where Od denotes a generic dimension-d operator, c̄d is its
constant coefficient, and there is an implicit sum over all
operators at each dimension. At tree-level, it is the
dimension-8 operators which contribute to the s2 part of
the amplitude and hence a2;0 is a linear combination of the
c̄8 coefficients.

2 The bound Eq. (4) then implies that some
c̄8 (or a linear combination of them) must be sign-definite if
a unitary, causal and local UV completion is to exist.
Similarly, a2;1 is a linear combination of the c̄10 coefficients
and Eq. (5) implies that these c̄10 cannot be tuned arbitrarily
large relative to c̄8. As a concrete example, c̄8O8 ¼
c̄8ð∂ϕÞ4 for a real scalar field ϕ must have c̄8 ≥ 0, and
the higher-derivative correction c̄10O10 ¼ c̄10ð∂ϕÞ2ð∂∂ϕÞ2
may not be hierarchically larger than c̄8.
Finally, it was recently noticed in Ref. [8] that for

sufficiently large helicities the parameter βn can vanish,
and as a result a2n;1 ≥ 0 obeys a simple positivity bound.
In particular, for the scattering of two spin-1=2 fields with
helicitieshA ¼ hB ¼ þ1=2, the amplitudemust obeya0;1 ≥ 0

in order to have a UV completion which is causal, unitary
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Positively light
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–

FIG. 1. Possible values for a particular dimension-8 (dimension-
10) operator coefficient c8 (c10). The subset of Region 1 in which
positivity bounds are satisfied for any vev is shown in green. The
remainder of Region 1, in which positivity is only satisfied for a
restricted range of vevs [Eqs. (1) or (2)] is colored orange—we
refer to this as Region 1̄. Region 2, in which the positivity bounds
are always violated, is shown in red.

1We assume Lorentz invariance throughout, and also the
existence of an S-matrix at high-energies.

2Any contribution to a2;0 from pairs of dimension-6 operators
may be absorbed into the c̄8 coefficient by a suitable field
redefinition.
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and converges at large s slightly faster than the Froissart
bound. This subset of local UV completions contains, for
instance, all tree-level completions with no t-channel
exchange [13–15]. Since a0;1 is a linear combination of
the c̄6 coefficients, such a UV completion can only exist if
some dimension-6 operator coefficients are sign-definite.

III. POSITIVITY WITH VEVS

Now we turn to the main focus of this work, which is the
effect on this story of a scalar field having a nontrivial vev. To
illustrate this most simply, consider an EFTwhich contains a
dimension-8 and dimension-10 operator of the form,

LEFT½H� ¼ c8
O8

Λ4
þ c10

jHj2O8

Λ6
; ð7Þ

whereO8 is the only interaction that could contribute to the
s2 part of an AB → AB scattering amplitude, and H is an
additional (possibly complex) scalar field. We will often
identify H with the complex Higgs doublet of the SM,3

although the discussion here is more general.We assume the
potential for H has a stable vev at jHj ¼ v. We also assume
that a well-defined S-matrix element for AB → AB scatter-
ing exists on this background.
Focussing on low-energy perturbations about this vac-

uum, i.e., integrating out H, produces the simpler EFT,

LEFT½v� ¼ c̄8
O8

Λ4
; ð8Þ

where

c̄8 ¼ c8 þ
v2

Λ2
c10: ð9Þ

Provided we have normalized O8 so that a2;0 ¼ c̄8, the
positivity bound of Eq. (4) then requires,

c8 þ
v2

Λ2
c10 ≥ 0: ð10Þ

The underlying UV theory may only be unitary, causal,
local and contain v as a stable vev if this bound is
satisfied.4 The implication of positivity bounds around

different vevs was recently studied in Ref. [17] in the
context of cosmological EFTs, where demanding the
existence of different vacua (e.g., flat versus expanding
spacetime [18,19]) places different constraints on the low-
energy coefficients. Here, we turn that logic around and
point out that for certain values of the coefficients, the vev
is effectively constrained by the requirements of unitarity,
causality and locality in the UV, as in Eq. (1). In particular,
when there is a hierarchy jc8j ≪ jc10j, a negative value of
c10 (with c8 > 0) can only satisfy this bound if v is
hierarchically smaller than Λ. Consequently, any unitary,
causal, and local UV theory that produces a low-energy
EFT with jc8j=jc10j ≪ 1 with c8c10 < 0 could only ever
produce a restricted range of Higgs vevs.
The new insight here is that the low-energy coefficient c̄8

in LEFT½v� receives contributions from coefficients of
higher-dimension operators once we partially UV complete
the theory by introducing the radial modes of H. More
generally than Eq. (7), this partial UV completion takes the
form,

LEFT½H� ¼ f8ðξÞ
O8

Λ4
; ξ ≔

jHj2
Λ2

: ð11Þ

Positivity of low-energy AB → AB scattering around the
jHj ¼ v vacuum then requires,

f8ðv2=Λ2Þ ≥ 0: ð12Þ

This can impose a restriction on the vev v whenever
the function f8ðξÞ violates the natural EFT power counting
in which f8ðξÞ ¼

P
n f8;nξ

n with Taylor coefficients
f8;n ∼Oð1Þ. With this power counting, f8ðξÞ is expected
to be very flat near the vacuum point ξ ≈ v2=Λ2, since all
derivatives would be suppressed by powers of v2=Λ2 ≪ 1.
Any violation of this power counting, in which one or more
derivatives of f8 become large and with appropriate signs,
would produce a bound on v2=Λ2 in terms of f8 evaluated
at a different value of ξ (away from the vacuum point). For
instance, when f8ð0Þ is unnaturally small the positivity
bound Eq. (12) can be written as,

v2

Λ2
þO

�
v4

Λ4

�
≤

jf8ð0Þj
jf08ðv2=Λ2Þj ≪ 1; ð13Þ

whenever f8ð0Þ > 0 and f08ðv2=Λ2Þ < 0.
Furthermore, for UV theories with a super-Froissart

convergence we would arrive at the same conclusion for
dimension-6 operators of the form,

LEFT½H� ¼ f6ðξÞ
O6

Λ2
; ð14Þ

where O6 contributes to a0;1 for four-Fermi scattering with
aligned helicities. While the restriction to super-Froissart

3In the context of the electroweak theory, our discussion
applies only to UV theories that match onto the SMEFT at
low energy. We do not consider more general UV theories that
can be matched at low energies only onto a nonlinearly realized
electroweak chiral Lagrangian with a singlet Higgs, known as the
“Higgs EFT (HEFT)” (see, e.g., Ref. [16] and references therein).

4If there is more than one stable vacuum, then there will be one
bound of the form Eq. (10) for each vev. Some regions of the EFT
parameter space may only admit UV completions (satisfy the
positivity bounds) around some of these vevs [17], which
corresponds to the fact that distant minima in the EFT potential
can be destabilized when “integrating in” heavy states.
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growth makes such bounds less general, observational
prospects are better for these dimension-6 operators (see,
for example, Refs. [20,21] for current constraints from
recent global fits and Ref. [22] for future sensitivity
projections).
Finally, notice that since c10 (f08) does not contribute to

a2;1, it is not bounded in relation to c8 (f8) by other
positivity bounds like Eq. (5). Unlike dimension-10 oper-
ators which contain more derivatives, a dimension-10
operator which contains more fields may be tuned much
larger than c8—at least, until its loop corrections grow to
dominate a2;0.

5 Of course, in practice, the “natural” expect-
ation is that jc8j ∼ jc10j are comparable when there are no
symmetries or selection rules to suggest otherwise, since
this is invariably what happens in the simplest UV
completions.

IV. EXAMPLE UV COMPLETION

The unnatural hierarchy in higher-dimensional operator
coefficients that a UV theory must have to belong to Region
1̄ leads us to expect a UV-completion that goes beyond the
simplest possibilities. In the absence of an explicit reali-
zation of such a UV theory, it is nonetheless useful to see a
concrete example of a simple model in which the obstacles
can be made explicit.
Consider a toy model with a heavy real scalar ϕ of mass

M, a light complex scalar H and a Dirac fermion Ψ. Their
UV interactions include

LUV ⊃ −ðyϕΨ̄Ψþ H:c:Þ − μg3ϕ3 − μg1ϕjHj2; ð15Þ

where y; g1; g3 are dimensionless couplings and μ is a
dimensionful scale. Matching to the EFT Lagrangian
equation (7), with

O8 ¼ −Ψ̄Ψ∂μΨ̄∂μΨ; ð16Þ

using MATCHETE [23] yields

c8 ¼ ðyþ ȳÞ2; ð17Þ

c10 ¼
4g1ð3g3 − g1Þμ2

M2
ðyþ ȳÞ2: ð18Þ

We see that c8 has a definite positive sign, while c10 can
have arbitrary sign depending on our choice for the
couplings g1, g3. Substituting into Eq. (10), assuming
c10 is negative, then gives an apparent bound on the vev,

v2

M2
<

jc8j
jc10j

¼ 1

jg1ð3g3 − g1Þj
M2

μ2
: ð19Þ

However, this cannot impose a hierarchy v2=M2 ≪ 1 by
more than a loop factor, since it would require taking
μ ≫ M which is associated with a breakdown of perturba-
tion theory when ðgiμÞ2 ≥ 4πM2. A more systematic
exploration of potential UV completions is warranted.

V. EXPERIMENTAL PROSPECTS

We have so far discussed the positivity bound Eq. (1) as a
theoretical constraint on the EFT parameter space. To
potentially establish this bound experimentally depends
on whether a low-energy observer has access to measure-
ments at different energy scales within the EFT. From
hereon we fix the scalar field H to be the complex Higgs
doublet of the electroweak theory. Expanding around
the vev, we also define the singlet radial mode h via
H ¼ ð0; vþ hðxÞÞT= ffiffiffi

2
p

.
In the jHj2 ¼ v2=2 vacuum of the SM, and at very low

energies E below the Higgs mass mh, i.e., E < mh < Λ, an
experimentalist can only measure the physical combination
c̄8 of Eq. (9), for example via AB → AB scattering. One
cannot determine the vev contribution to c̄8 by doing
measurements at these low energy scales. At higher
energies, mH < E < Λ, but still within the EFT, the
Higgs’ radial mode h can be produced on-shell and
participate in scattering processes, so that c10 can be
measured e.g. via the AB → ABh or AB → ABhh proc-
esses. See the Appendix for more detailed discussion.
In the absence of a direct determination of c8 ¼ f8ð0Þ it

is not possible to experimentally establish a bound on the
vev from measurements alone, but we can still obtain
indirect evidence for being in Region 1̄ if we were to
measure c̄8=Λ4 and e.g. vc10=Λ6, and thence infer that
c̄8 ≪ jc10j assuming the cutoff scale Λ is at least a TeV, for
instance—a reasonable assumption given current null
results in direct searches.6 This is expected to be the case
in Region 1̄ since c̄8 is bounded from above by c10.
Therefore, even if we are not able to explicitly establish
an upper bound on the Higgs vev through measurements, if
we indeed live in Region 1̄ then a consequence is that we
should find an unnatural suppression of a particular ratio of
higher-dimensional operator coefficients and no new phys-
ics below a certain scale.
Dimension-8 operators have been constrained at the LHC

in various processes [24–37], with promising prospects for
much higher sensitivity at future colliders [36–39]. As an
illustrative example, we consider a set of flavor-universal,

5O10 will generically contribute to a2;0 via two- and three-loop
processes, and we describe in the Appendix how to include these
in the positivity bound when the EFT is strongly coupled.

6If evidence of nonzero dimension-6 EFT coefficients were
also to be established in experiment, one could put a more
meaningful “prior” on the scale Λ that would then imply an even
smaller ratio of c̄8=jc10j the higher the scale Λ is above a TeV.
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four-lepton, dimension-8 operators and their dimension-10
counterparts where an jHj2 is attached to the corresponding
dimension-8 operator. The dimension-8 operators are
defined as

Oð1Þ
8 ¼ ∂

νðēiγμeiÞ∂νðēiγμeiÞ;
Oð2Þ

8 ¼ ∂
νðēiγμeiÞ∂νðL̄iγμLiÞ;

Oð3Þ
8 ¼ DνðēiLiÞDνðL̄ieiÞ;

Oð4Þ
8 ¼ ∂

νðL̄iγ
μLiÞ∂νðL̄iγμLiÞ; ð20Þ

where i labels the lepton flavor, and L and e denote the left-
handed lepton doublets and right-handed (charged) lepton
singlets respectively. The full set of positivity bounds that
can be obtained from four-lepton scattering amplitudes was
computed in Ref. [39].
We compute projected sensitivities at future lepton

colliders to the corresponding c̄ðiÞ8 and cðiÞ10 , taking FCC-
ee [40], CLIC [41], and a hypothetical 10 TeV muon
collider [42] (μC) as typical examples across a range of
center-of-mass energies. The processes that are sensitive to

c̄ðiÞ8 and cðiÞ10 are eþe− → eþe− and eþe− → eþe−h, respec-
tively (replacing e with μ for the μC). The FCC-ee and
CLIC dimension-8 projections are taken from Ref. [39],
and we computed the μC projections assuming 10 ab−1 of
integrated luminosity.
For the eþe− → eþe− projections, the differential cross-

section with respect to the cosine of the lepton polar angle,
cos θ, was used as a discriminating variable, taking 25
equally spaced bins in the interval ½−1; 1�. We performed an
identical analysis to Ref. [39] for the μC projections, also
assuming a 1% systematic uncertainty in each bin.
For eþe− → eþe−h, we instead used the cosine of the

angular separation between the lepton and antilepton,
cosðΔθlþl−Þ and assumed only statistical uncertainties.
For a given collider energy, Ec.m., the dominant eþe− →
Zh background, with the Z boson decaying on-shell to a
pair of leptons, has a shoulder at

cosðΔθlþl−Þ ¼ 1 − 2

�
2mZEc.m.

E2
c.m. þm2

Z −m2
h

�
2

; ð21Þ

where mZ and mh denote the Z and Higgs boson masses,
respectively. In the high-energy limit, the position of the
shoulder tends to 1. We exploited this feature to define
optimized bin boundaries for the intermediate energy
experiments where Ec.m. > mZ þmh, finding that the
sensitivity did not depend on increasing the number of
bins, as long as one boundary was defined suitably near the
predicted cosðΔθlþl−Þ shoulder and another was placed
about halfway between −1 and the shoulder. For the higher
energy experiments, good sensitivity was obtained by
having a few bins near cosðΔθlþl−Þ ¼ −1, where the
majority of the SM background resides. The specific

binnings used for each collider and energy stage are given
in Table I. The eþe− collider run conditions were chosen to
match Ref. [39] and summarized in Table II with the
exception of the polarized beam at CLIC.
The projected sensitivities are show in Fig. 2, represented

by a scale, Λ, with solid bars assuming c̄i8; c
i
10 ¼ 1 and

hatched bars corresponding to the maximally strongly

coupled scenario of c̄ðiÞ8 ; cðiÞ10 ¼ ð4πÞ2. The projected reach
in Λ increases (decreases) for coefficients induced by
strongly (weakly) coupled new physics. All colliders probe
Λ above their centre of mass energies for cðiÞ < ð4πÞ2,7 thus
ensuring the validity of the EFT for at least some range of
couplings. A 3 TeV CLIC or 10 TeV μC offer the best
prospects for probing the 4-lepton operators we consider,
while FCC-ee, even though it is primarily a precision

machine, can still access the multi-TeV scale for large c̄ðiÞ8 .
The scale that can be probed for dimension-10 (dimension-8)
operators is ∼10ð200Þ TeV at the upper limit of strongly

coupled scenarios. For such values of cðiÞ10 , the dimension-8
coefficient corresponding to a little hierarchy in thevevwith a

10 TeVEFT cutoff would be jc̄ðiÞ8 j ∼ 0.1, which Fig. 2 shows
is within experimental reach.
We note that it is not possible to experimentally establish

a bound on the vev without a measurement in a different

TABLE I. Binnings used for the differential distributions in
cosðΔθlþl−Þ to determine our sensitivity projections for dimen-
sion-10 operators in lþl− → lþl−h at future lepton collider
experiments.

Collider Ec.m. [GeV] cosðΔθlþl−Þ bin edges

FCC-ee 161 10 equally spaced bins in ½−1; 1�
240 [−1, −0.38, 1]
350 [−1, −0.31, 0.49, 1]
365 [−1, −0.28, 0.54, 1]

CLIC 380 [−1, −0.26, 0.59, 1]
1500 [−1, −0.95, −0.9, 1]
3000 [−1, −0.95, −0.9, −0.85, −0.8, 1]

μC 10000 [−1, −0.95, −0.9, 1]

TABLE II. Run conditions assumed for the projected sensitiv-
ities shown in Fig. 2.

Collider Runs: Energy [GeV] (Luminosity [ab−1])

FCC-ee 161 (10) 240 (5) 350 (0.2) 365 (1.5)
CLIC 380 (0.5) 1500 (2) 3000 (4)
μC 10000 (10)

7An FCC-hh machine [40] could probe even higher energy
scales for similar operators involving quarks, but we limit our
comparison to lepton colliders here.
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vacuum phase within the EFT or at least another indepen-
dent determination of the EFT cutoff scale. More precisely,
starting from the more general EFT described by Eq. (11),
one can relate the function f8 to these scattering processes
by expanding the Lagrangian around the vacuum:

L ¼
�
f8

�
v2

2Λ2

�
þ f08

�
v2

2Λ2

�
vh
Λ2

þOðh2Þ
�
O8

Λ4
: ð22Þ

So, by measuring AB → AB and AB → ABh scattering,
we can extract the quantities 1

Λ4 f8ðv2=2Λ2Þ ¼ c̄8
Λ4 and

v
Λ6 f08ðv2=2Λ2Þ respectively. From the former alone, it is
possible to ascertain whether the positivity bound Eq. (12)
is satisfied. The latter measurement is of a dimension-9
HEFT operator hO8, that comes from a dimension-10
SMEFT operator whose coefficient in units of 1=Λ6 is c10.
However, with these measurements alone one cannot use

positivity [say, in the form of Eq. (13)] to infer whether the
vev is bounded to be hierarchically small. The vev con-
tribution to c̄8 is f8ðv2=2Λ2Þ − f8ð0Þ ≈ v2

2Λ2 f08ðv2=2Λ2Þ up
to a dimension-12 contribution, and we are sensitive to the
right-hand side (rhs) by doing measurements of AB → ABh
at these intermediate energy scales. But without an inde-
pendent extraction of the cutoff scale Λ we cannot turn this
into a bound on v. Alternatively, as can be seen from
Eq. (13), one could unambiguously establish the bound on
v=Λ by accessing the value of f8 (or its derivative) at a
different value of jHj2=Λ2 (e.g. zero), say by measuring
AB → ABðhÞ scattering in a different (meta-)stable vac-
cum. While this is in principle possible within the EFT,

it is difficult to imagine doing any such measurement in
practice.
Finally, we note that a vev contribution can also arise

from dimension-8 operators contributing to dimension-6
positivity bounds [8,14,15], which require additional UV
assumptions but are experimentally more accessible. We
leave a detailed phenomenological study of experimental
prospects to future work.

VI. CONCLUSION

We proposed a novel interpretation of positivity bounds
when scalar vevs are taken into account. A positivity bound
on a single higher-dimensional operator coefficient at low
energies may subsume contributions from the vevs of
scalars that only become apparent at higher energies in
the next layer of EFT, where the scalar degrees of freedom
can be produced on-shell. One consequence is the existence
of a region of EFT parameter space where positivity is
conditional upon a hierarchy in the scalar vev and the EFT
cutoff. This is illustrated in Fig. 3.
While EFTs in this region feature an unnatural ratio of

higher-dimensional operator coefficients, it is intriguing
that such ratios may be related to fine-tuning in the
electroweak hierarchy assuming only unitarity, causality
and locality in the UV. There are not many other cases
where potential phenomena in the IR, together with
reasonable assumptions on the UV, lead to a restricted
spectrum of allowed Higgs vevs. Perhaps the closest
example of a UV assumption relating the Higgs vev to a
different IR observable is the connection between a feeble

FIG. 2. 95% CL projected sensitivity of FCC-ee (red), CLIC
3 TeV (purple), and a 10 TeV muon collider (blue) to four-lepton
dimension-8 operators (lighter shade, taken from Ref. [39] for
FCC-ee and CLIC) and to their corresponding dimension-10
operators with a jHj2 attached (darker shade). The filled bars
assume a Wilson coefficient of 1, while the hatched bars assume a
value of ð4πÞ2.

FIG. 3. Illustration of how the assumptions of a unitary, local,
and causal UV with a stable vacuum v translate to constraints on
the EFT parameter space in the IR. Region 1 where positivity is
satisfied corresponds to the green subset in the lowest energy EFT
1 below a scalar massmH , which is split into further subsets in an
EFT 2 at an intermediate scale above mH but below the EFT
cutoff Λ. Scalar vev contributions are relevant for interpreting the
bounds in the orange Region 1̄.
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fifth force and an upper bound on the Higgs vev assuming
the weak gravity conjecture holds in the UV [3,5,43]. More
generally, there can be other UV mechanisms that restrict
the range of scalar field vevs, for instance the swampland
distance conjecture [44]. It is worthwhile exploring such
unconventional relations between vevs in the IR and
properties of the underlying UV physics that may help
us better understand the hierarchy problem.
The possibility of living in the special EFT region we

have identified may not be so far-fetched. After all, the
coefficients of operators at dimensions 0, 2, and 4 in the
Higgs potential all indicate that our universe is highly
nongeneric in many ways: not only is the Higgs quadratic
term finely tuned to lie at the boundary of broken and
unbroken phases, the Higgs quartic in the SM places us in a
sliver of parameter space between vacuum stability and
instability, while the cosmological constant value is pre-
cariously balanced between implosion and explosion.
Dimension-6 operators could furthermore extend the con-
nection between near-criticality and parameters of the
SM [45–47]. It may well be that dimension-8 and −10
operators similarly place us on another boundary—at the
edge of positive and nonpositive theory space.
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APPENDIX

Here we collect various technical details about the
positivity bounds applied in the main text. In particular,
we summarize the two-sided bounds that forbid unnatural
hierarchies between successively higher-dimensional oper-
ator coefficients (that are not in conflict with the positivity
bounds with vevs that we have studied), and recall the
assumptions under which one may derive dimension-6
positivity bounds.
We assume that the scattering amplitude for the elastic

process AB → AB can be computed using the low-energy
EFT at center-of-mass energies s < smax, where smax is the
precise EFT cutoff (which may differ from the fiducial
scale Λ by factors of the coupling constants, as well as 4π’s
and other combinatoric factors). In the complex s-plane, we
therefore have an accurate determination of the amplitude
inside a disc of radius smax. Subtracting any singularities

which appear inside this disc8 leads to an analytic
amplitude which can be written as in Eq. (3). The
EFT coefficients ai;j can be extracted from Eq. (3) by

∂
i
s∂

j
tAðs; tÞjs¼t¼0, or equivalently by integrating ∂

j
tA=siþ1

around a closed contour which encircles the origin in the
complex s-plane. The assumption of causality (or, more
precisely, analyticity) in the UV implies that this low-
energy contour can be deformed into a high-energy contour
that encircles the singularities of the UV theory [6,7],

ai;j ¼
∂
j
t

j!

�Z
∞

smax

ds
2πi

�
DiscsAðs; tÞ

siþ1
−
DiscuAðu; tÞ

uiþ1

�

− Ress¼∞

�
Aðs; tÞ

si

��
; ðA1Þ

where u ¼ −s − tþ 2m2
A þ 2m2

B is the third Mandelstam
variable, Discz is the discontinuity across the real z-axis,
and Ress¼∞ is the residue at infinity. This “sum rule”
explicitly connects the EFT coefficients to the underlying
UV physics.
The second assumption we make of the UV is that time

evolution is unitary. In terms of the amplitude, this implies
DiscsA ≥ 0 via the well-known optical theorem.9 If the
quantum numbers of A and B are chosen so that there is a
trivial crossing relation between the s- and u-channel, then
unitarity also implies that DiscuA ≥ 0.10 Our third UV
assumption, locality (in the form of the Froissart bound),
guarantees that the residue at infinity vanishes for all i ≥ 2.
Consequently, the a2n;0 coefficients in the EFT expansion
must obey the bound in Eq. (4) for all n ≥ 1 if its UV
completion is to be causal, unitary and local. This bound
can only be saturated for any particular a2n;0 if every EFT
coefficient vanishes and the theory is trivially free at all
energies [53].
Positivity bounds for t derivatives of the amplitude

follow similarly from Eq. (A1) and suitable generalizations
of the optical theorem. These take the general form given in
Eq. (5), where the strongest αn and βn depend on details
of the scattering process considered. Concretely, 2βn ¼
2nþ 1 for scalar fields [7] and 2βn ¼ 2nþ1− jhAþhBj−
jhA−hBj for massless spinning fields with helicities hA and

8It will be convenient to also subtract any t-channel poles
appearing in the EFT amplitude. Note that we are working with a
nongravitational EFT, i.e., in the decoupling limit GN → 0 where
the t-channel pole from graviton exchange can be neglected.
Otherwise the subtraction of this s2=t term would lead to an
object that violates the Froissart bound, and for which the residue
at s ¼ ∞ in Eq. (A1) only vanishes for i ≥ 3 [6,48].

9While there are different conventions in use for the overall
phase of the amplitude, this can always be chosen so that the
optical theorem implies a positive discontinuity.

10Positivity bounds can also be derived more generally with a
nontrivial crossing relation between s- and u-channel [8,49–52].
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hB [8].11 For a general AAB→AB amplitude, α1=ð16π2Þ ¼
5!=a2;1 [9,10] and the upper bound in Eq. (5) roughly
corresponds to a2;0 being one loop factor away from a22;1.
For a maximally crossing symmetric amplitude like
AAA→AA for a real scalar A, the additional constraints from
crossing can be used to derive further bounds [11],
the strongest of which in four spacetime dimensions is
α1 ≈ 5.3 [12]. Similar two-sided bounds can also be derived
by applying crossing transformations to amplitudes which
are not manifestly crossing symmetric: see [54] for one
recent example. A very general feature of this different
bounds is that they forbid a large hierarchy between a2;1
and a2;0.
In this work, we have studied the application of

positivity to the coefficients c8 and c10 of two operators
which differ by the insertion of jHj2. At tree level, these
operators contribute only to the amplitude coefficient a2;0,
as shown in Eq. (10). However, as discussed in [7,9,55]
and more recently in [10,56], including loop contributions
from the EFT operators always leads to stronger positivity
bounds. For instance, when jc10j ≫ jc8j, the dominant
corrections to a2;0 are the two-loop process AB → ABh →
AB and three-loop process AB → ABhh → AB, which
contribute to the branch cut discontinuity of the low-
energy amplitude,

DiscsAðs; 0Þ
2πi

¼ jc10j2s6
Λ12

�
N3

ð16π2Þ3 þ
N2

ð16π2Þ2
v2

s

�
; ðA2Þ

where N2 and N3 are positive numerical constants that
depend on the details of O8, and we have neglected further
corrections in m2

A;B=s and in jc8j=jc10j. Subtracting this
branch cut up to smax produces the stronger positivity bound,

c8 þ c10
v2

Λ2
>

jc10j2s4max

Λ8

�
2N3

3ð16π2Þ3 þ
N2

ð16π2Þ2
v2

smax

�
:

Supposing that the EFT cutoff lies in the range v2 ≪ smax ≲
Λ and that the coefficients c8 > 0, c10 < 0 as in the

positively light quadrant of Fig. 1, this positivity bound
can be written as12

v2

Λ2
<

jc8j
jc10j

−
jc10js4max

Λ8

2N3

3ð16π2Þ3 ; ðA3Þ

which is indeed strictly stronger than (1). Equation (A3)
shows how stronger positivity bounds can place further
constraints on the vev when in the Region 1̄ of the EFT
parameter space.
Interestingly, it also demonstrates that while the bound

on a2;1 may not forbid a hierarchy in jc10j=jc8j, this ratio
cannot be made arbitrarily large. In particular, the EFT
energy up to which we can reliably subtract the branch cut
may not exceed smax, satisfying

s4max ≈ Λ8
3ð16π2Þ3
2N3

jc8j
jc10j2

; ðA4Þ

otherwise this positivity bound is violated for any positive
value of v2. While the constant N3 will differ between
different O8, in practice this correction in Eq. (A3) will
always be suppressed by three loop factors, in addition to the
hierarchy s4max=Λ8. Sowhile an arbitrary tuning of jc10j=jc8j
cannot be used to place arbitrarily tight bounds on the vev
(without making the EFT cutoff dangerously low), there
remains a large region of EFT parameter space inwhich both
(i) the vev is constrained by positivity arguments, and (ii) the
cutoff remains large and loops are under control.
In addition to the finite branch cut discontinuity on the

right-hand-side of the positivity bound, loops can further
affect the bounds by introducing an RG running of the
Wilson coefficients. For instance in the case of (7), the
dimension-10 interaction leads to a one-loop running of
c8ðμÞ. This does not affect our argument since the positivity
bound can be applied to theLagrangian at any fixedRGscale
μ. One could always fix μ at the outset (to some exper-
imentally relevant value) and interpret the bounds above as
constraints on the c8=c10 hierarchy at that particular μ.
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