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A B S T R A C T   

Coastlines are projected to face unprecedented pressures over the next century due to climate change-induced 
changes in sea level, storm, wave, and tidal regimes. This projection of increasing pressure is driving a reap
praisal of existing shoreline management practices, with both science and policy calling for future strategies to 
work with the natural protection provided by coastal habitats such as salt marshes. However, we currently lack 
the understanding of long-term ecosystem dynamics required to incorporate these habitats into the definitive 
predictions of risk relied on in coastal protection planning. Satellite remote sensing has the potential to provide 
data that could address this knowledge gap with its frequent repeat times and global coverage facilitating the 
production of high temporal frequency time-series over large areas. This study sought to explore this potential in 
one of the largest coastal plain estuaries the in the UK, the Severn Estuary. The Random Forest machine learning 
algorithm was used to develop a time-series of marsh extents across the estuary from 1985 to 2020 in Google 
Earth Engine, with widths also extracted as a proxy for the marshes’ protective capacity. These changes were 
monitored in six areas that contained the most significant areas of salt marsh across the estuary. This analysis 
revealed a significant increasing trend in extent and widths (p < 0.05), and therefore natural coastal protection, 
in three of the six areas over the study period, with validation testing finding an overall accuracy for the clas
sification of >90% and a strong agreement found between the detected widths and those found in previous 
surveys. These findings demonstrate that satellite remote sensing combined with machine learning has the po
tential to provide valuable insights into changes in the extents of marshes and therefore their protective capacity. 
This information can be useful in the coastal planning process, allowing decision-makers to assess the sustain
ability of existing defences fronted by marshes, as well as allowing them to make informed decisions about the 
location of restoration schemes.   

1. Introduction 

Traditionally, coastal management has attempted to hold back the 
sea through built defences (French, 2004). However, climate change is 
projected to cause increased pressure on coastal systems through rela
tive sea level rise (rSLR) (Nerem et al., 2018), as well as changing storm, 
wave and tidal regimes (Pickering et al., 2017; Reguero et al., 2019). 
This pressure is driving a reappraisal of management strategies, with 
calls for an increasing use of ‘ecosystem-based’ approaches which work 
with the natural protection provided by coastal habitats (Temmerman 
et al., 2013; UNEP, 2016). 

A commitment to an ecosystem-based approach has been formalised 

in the United Kingdom (UK) within a recent government policy state
ment on flood and coastal erosion risk management (FCERM), which 
states an intention to “double the number of government-funded pro
jects which include nature-based solutions to reduce flood and coastal 
erosion risk” (Defra, 2020). In England and Wales, this policy is to be 
implemented through Shoreline Management Plans (SMPs), which are 
non-statutory documents that are coordinated at a regional scale defined 
by discrete, littoral sediment cells that sub-divide the coast into Policy 
Units (PUs). Each PU is classified into one of four management strate
gies: No Active Intervention (NAI), Advance the Line (ATL), Hold the 
Line (HTL) or Managed Realignment (MR) which are assigned for policy 
epochs (20-, 50-, and 100-years). This strategy has been celebrated for 

* Corresponding author. 
E-mail address: J.E.Agate@brighton.ac.uk (J. Agate).  

Contents lists available at ScienceDirect 

Estuarine, Coastal and Shelf Science 

journal homepage: www.elsevier.com/locate/ecss 

https://doi.org/10.1016/j.ecss.2024.108639 
Received 31 March 2023; Received in revised form 18 December 2023; Accepted 12 January 2024   

mailto:J.E.Agate@brighton.ac.uk
www.sciencedirect.com/science/journal/02727714
https://www.elsevier.com/locate/ecss
https://doi.org/10.1016/j.ecss.2024.108639
https://doi.org/10.1016/j.ecss.2024.108639
https://doi.org/10.1016/j.ecss.2024.108639
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecss.2024.108639&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Estuarine, Coastal and Shelf Science 298 (2024) 108639

2

its strategic and holistic approach to managing coastal risk, particularly 
in the EUROSION project (Salman and Lombardo Doody, 2004), with 
similar strategies developed elsewhere such as in Abu Dhabi, India, and 
the United States of America (Pontee, 2017; Noujas and Thomas, 2018). 
However, a recent review by Ballinger and Dodds (2020) found that 
many plans lack a scientific basis in the decision-making process, which 
is fundamental for effective adaptive coastal planning (Pontee, 2017). 

Salt marshes are an important feature in many ecosystem-based 
strategies. Existing marshes reduce the requirement for built defences, 
and the realignment of defences and subsequent restoration of marshes 
have been suggested as a method to increase the protective capacity in 
areas where HTL policies are no longer sustainable. The interest in 
marshes stems from their effectiveness at protecting coastlines. This is 
caused largely by their high position within the tidal frame (Callaghan 
et al., 2010; Bouma et al., 2014) and is enhanced by surface roughness 
induced by often dense vegetation (Möller, 2006; Möller et al., 2014). 
Combined, these factors allow marshes to significantly attenuate wave 
energy, with estimates suggesting that 50% of wave height can be 
reduced over the first 10–20 m of salt marsh (Möller et al., 1999; Möller 
and Spencer, 2002) and that an 80 m strip reduces the height of sea wall 
required from 12 m to 3 m (King and Lester, 1995). This protective 
ability makes salt marshes extremely cost-effective, with the area of salt 
marshes fronting sea walls around England suggested to give capital cost 
savings of £13–32 billion and annual maintenance savings of £0.3 billion 
(Beaumont et al., 2006; Jones et al., 2011). 

However, despite an appreciation for the value of marshes, there is 
limited understanding of long-term changes in their extents (Bouma 
et al., 2014). This understanding is vital in shoreline management for 
two reasons. Firstly, as their capacity to protect coastlines and thus 
reduce requirements for built structures is influenced largely by their 
extent (Willemsen et al., 2020), changes should be understood to pro
vide an accurate review of coastal protection. Secondly, restoration of 
marshes through managed realignment has been suggested as a feasible 
strategy for coastal protection, with current SMPs implying an increase 
of 400 ha per year (Committee on Climate Change, 2018). However, the 
successful implementation of these schemes relies upon a sound un
derstanding of estuarine dynamics. As a result, it is essential this 
knowledge gap is addressed if marshes are to be included in definitive 
predictions of risk relied on in coastal protection planning (Bouma et al., 
2014; Brown, 2022). This understanding would also be greatly benefi
cial for other application such as blue carbon accounting (Luisetti et al., 
2013; Macreadie et al., 2019; Bertram et al., 2021) and insuring 
adherence to legislative requirements for habitat protection, such as 
through the Conservation of Habitats and Species Regulations 2017; HM 
Government (2017), which continues requirements laid out in the EU 
Habitats Directive (European Commission, 1992). 

Developing regular accounts of marsh extents has previously been 
impeded by available technology. Traditional methods include the in- 
situ marking of extents using GPS systems, as well as the manual 
delineation of shorelines from aerial imagery. Carrying out these ap
proaches at the regional to national scale required for coastal decision- 
making (Pontee, 2017) is extremely time and resource-intensive, which 
is of particular issue for the often underfunded Coastal Groups entrusted 
with developing SMPs (Pottier et al., 2005; Ballinger and Dodds, 2020). 

Optical satellite remote sensing has the potential to provide the data 
required to understand historical changes in marsh extents and incor
porate salt marshes into coastal decision-making. Optical satellites 
collect reflectance data across the visible and infrared spectrum which is 
discretised into spectral bands (e.g., green, or red). These bands can then 
be used to calculate spectral indices (SIs), which enhance contrast in the 
reflectance of different materials. In the case of salt marsh monitoring, 
vegetation indices (VIs) are commonly used such as the Normalized 
Difference Vegetation Index (NDVI), which measures plant photosyn
thetic activity. This approach, combined with machine learning, has 
been used to generate a variety of data in marshes such as vegetation 
cover (Kumar and Sinha, 2014; Laengner et al., 2019; Lopes et al., 

2020), vegetation condition (Lopes et al., 2019, 2020), vegetation 
communities (Friess et al., 2012; van Beijma et al., 2014; Sun et al., 
2018; Villoslada et al., 2020), aboveground biomass (Campbell and 
Wang, 2020) and carbon storage (Cao and Tzortziou, 2021; Ladd et al., 
2021; Villoslada et al., 2022). Additionally, water indices have been 
used to map intertidal areas both in Australia (Sagar et al., 2017; Bish
op-Taylor et al., 2019) and the UK (Fitton et al., 2021). 

Satellite remote sensing is also an inherently scalable approach to 
monitoring, with global coverage, a return time of a few days and a 
historical record over several decades. This scalability has been further 
enhanced by the advent of the Google Earth Engine (GEE) (Gorelick 
et al., 2017). Previously, the storage and processing power required to 
analyse data over large areas has inhibited the use of satellite data 
(Schaeffer et al., 2013; Gorelick et al., 2017). GEE overcomes this issue 
by providing a multi-petabyte library of geospatial data including sat
ellite products that can then be processed over the cloud. This has 
enabled large-scale analysis of coastal wetlands across the globe, 
including in Iran (Mafi-Gholami et al., 2019), Mexico (Celis-Hernandez 
et al., 2022), across Europe (Laengner et al., 2019) and even globally 
(Campbell et al., 2022; Murray et al., 2022). As this processing is carried 
out in the cloud, the GEE also reduces the resource and expertise re
quirements for decision-makers, thus making it more useable for 
management. 

However, whilst there is substantial evidence of the value of satellite 
remote sensing for monitoring salt marshes and other coastal habitats, 
there has been little uptake of this technology in coastal management 
(Ouellette and Getinet, 2016). This limited use in management has been 
attributed to a lack of understanding amongst decision-makers, partic
ularly regarding its value and low associated costs (Schaeffer et al., 
2013). Consequently, it is essential that the value of this approach is 
communicated to decision-makers to ensure they have the best tools to 
inform coastal protection planning. 

This study demonstrates the value of this technology in the Severn 
Estuary, UK. The Severn Estuary is a large, transboundary system with 
complex management strategies (Ballinger and Stojanovic, 2010), ulti
mately increasing the need for a sound information base for 
decision-making. Additionally, a large amount of salt marsh lines its 
edges, which provide considerable ecosystem services (Dargie, 1999; 
Armstrong et al., 2020), although there have been no recent formal re
views of their status. 

To map marsh extents, a Random Forest (RF) algorithm was devel
oped in the GEE using Landsat imagery, with training data derived from 
previous extent surveys carried out by national government agencies. 
This was undertaken across six areas containing some of the most sig
nificant areas of salt marsh across the Severn Estuary, with the accuracy 
of the derived extents assessed using validation testing. Marsh widths 
were also extracted to provide an indication of the coastal protection 
provided by marshes in the Severn Estuary as width of the vegetated 
area has been found to one of the most important predictors of the wave 
attenuation provided by the intertidal area (Willemsen et al., 2020). This 
study asked the overarching research question “can Landsat derived 
from GEE provide valuable insights into changes in salt marsh extents 
and widths in the Severn Estuary, which can be used for coastal 
protection?” 

2. Study area 

This study explored changes in salt marsh extents in the Severn Es
tuary, located in the south-west of the UK, with both English and Welsh 
banks (Fig. 1) and is one of the largest coastal plain estuaries in the UK. 
The area is protected for its importance, with the entire estuary desig
nated as Special Area of Conservation (SAC), and the majority also 
designated as a Special Protection Area (SPA), Ramsar site and Site of 
Special Scientific Interest (SSSI). The estuary also contains three major 
cities: Cardiff, Newport, and Bristol, with a major port at Avonmouth. 

The estuary experiences hyper tidal conditions, with a tidal range of 
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14.8 m as a result of the coastal morphology (Allen and Duffy, 1998; 
Manning et al., 2010). The high tidal range results in a high-energy 
system, with average tidal velocities from 0.6 to 1.5 m s− 1 (Manning 
et al., 2010). This high energy, combined with substantial fluvial inputs 

causes high turbidity in the estuary, with 1.3 × 107 and 9 × 106 tonnes 
of sediment suspended at spring and neap tides respectively (Collins, 
1987; Allen, 1990a). This turbidity is greatest at two Estuarine Turbidity 
Maxima (ETM), one upstream of Sharpness and one in Bridgwater Bay 

Fig. 1. The location of the Severn Estuary along with the localities focussed on in this study. Panel a shows the location of the Severn Estuary in the UK, b shows the 
estuary in greater detail, including the location of major towns and cities, the English/Welsh border and the localities. Panels c–h show close-up aerial photographs of 
the marshes in each locality, with the extent of the locality marked by the black line. The SMP PUs within each locality are also shown along with their 20-year policy. 
The white line in the bottom right of panels c–h marks 1 km. Aerial imagery in panels c–h was sourced from Esri. 
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(Manning et al., 2010) (Fig. 1). 
The marshes of the Severn Estuary are largely of the estuarine 

fringing type (Allen, 2000). These marshes are morphologically irreg
ular as instead of the sinuous channels that are found across much of 
Europe, channels are straight as a result of the very high tidal range 
(Chatters, 2017). The most extensive study of vegetation in the area was 
carried out by Dargie (1999), which found 15 National Vegetation 
Classification (NVC) communities across low, mid and high marsh areas. 

To explore changes in salt marsh extents in the estuary, we focussed 
on six areas that contain some of the most significant areas of salt marsh. 
This decision was made as many of the marshes are very narrow making 
them unsuitable for detection with Landsat’s relatively coarse 30 m 
resolution (Laengner et al., 2019). We determined these areas using 
previous salt marsh surveys (NRW [unpublished], EA, 2020) and also 
published literature (e.g., Allen, 1990b; Haslett and Allen, 2014). The 
chosen areas were the Wentlooge Levels (WL), Usk mouth (UM) and 
Caldicot Levels (CL) on the Welsh side of the estuary, and Woolaston 
(W), Slimbridge (S) and Northwick and Aust warths (NA) on the English 
side of the estuary which are shown in Fig. 1. 

HTL is the dominant policy across this area across the 20-year epoch 
as can be seen in Fig. 1, with most units maintaining the same policy 
over the 50- and 100-year epochs (SECG Atkins, 2017). The only ex
ceptions are the SEV6 PU in NA, which maintains an NAI policy across 
the all epochs, W, in which the HTL policy changes to MR in the 
100-year epoch, and S, which switches from MR to HTL for the 50- and 
100-year epochs. 

For analysis, the landward border of each of the salt marsh areas set 
to the high water mark which was determined from the Ordnance Sur
vey Boundary-Line™ shapefile (Ordnance Survey, 2022). This data set is 
created by the Ordnance Survey and maps the approximate high-water 
mark across the United Kingdom. This data set was then manually 
adjusted where salt marsh areas were known to be inland of this line. 

3. Methodology 

A flow chart is provided in Fig. 2 demonstrating each of the steps 
used to generate the salt marsh extent and width data. Landsat images 
were taken from 1985 to 2020. This imagery was prepared for analysis 
by first adding spectral indices (SIs) and then by taking an annual mean 
from images across each year. Training and validation data were 
generated from previous salt marsh surveys carried out by national 
government agencies and used to label pixels from the annual mean of 
the same year as either ‘salt marsh’ or ‘not salt marsh.’ These labelled 
pixels were then split into training and validation sets by 80%:20%. 
Training data were then combined for all the survey dates to train a 
Random Forest (RF) model that was assessed for accuracy using the 
validation data from each survey. The trained model was then used to 
classify the annual means from 1985 to 2020 to generate the extents, 
with the widths calculated from the resultant extents. 

3.1. Data 

3.1.1. Landsat surface reflectance 
Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic 

Mapper (ETM+) and Landsat-8 Operational Land Imager (OLI) Surface 
Reflectance (SR) data were collated for analysis. SR is a level-2 product, 
which has been atmospherically corrected to ensure continuity in the 
imagery. Landsat-5 covers the period from 01/01/1984 to 05/05–2012, 
Landsat-7 covers the period from 01/01/1999 to present, and Landsat-8 
covers the period from 11/04/2013 to present, all with a spatial reso
lution of 30 m. Imagery was accessed through the Google Earth Engine 
(GEE) Python Application Programming Interface (API). 

Images were initially filtered to those from 1st January 1985 to 31st 
December 2020 to ensure that each year had full coverage for reliable 
sampling. Images were then reduced to those with an image quality 
above 7 (0 being worst and 9 best; using the ‘IMAGE QUALITY’ field 

included in the metadata) and a cloud cover below 40% (using the 
‘CLOUD COVER’ field in the metadata) to reduce the chance of anom
alous pixels following the procedure outlined in Laengner et al. (2019). 
Images were also filtered to WRS Row/Path 24/203 to ensure each pixel 
was sampled at an equal frequency. Tidal stage was also considered to 
ensure the marshes were not flooded when the image was captured as 
flooding has been shown to influence spectral response (Beget and Di 
Bella, 2007). This was performed by comparing sensing times with data 
from the Avonmouth, Portbury and Newport tidal gauges accessed from 
the British Oceanographic Data Centre (BODC, 2023) as well as a visual 
assessment of images taken at high tides or where no tidal data were 
available. No images were found to have issues, with all the images 
taken at a tidal level below mean high water spring. This filtering pro
duced a total of 178 images, the spread is shown in Fig. 3. 

3.1.2. Spectral information 
Three spectral indices (SIs) were included as inputs for the model and 

were chosen to enhance differences between salt marsh and non-salt 

Fig. 2. Flow chart demonstrating the extent detection methods used in 
this study. 
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marsh areas. These SIs included two vegetation indices (VIs), the 
Normalized Difference Vegetation Index (NDVI) and the Modified Soil 
Adjusted Vegetation Index (mSAVI2) and the Normalized Difference 
Water Index (NDWI). These SIs were calculated from combinations of 
the green (G; TM/ETM+: 0.52–0.60 μm, OLI: 0.533–0.590 μm), red (R; 
TM/ETM+: 0.63–0.69 μm, OLI: 0.636–0.673 μm) and near infrared 
(NIR; TM/ETM+: 0.77–0.90 μm, OLI: 0.851–0.879 μm) bands. 

NDVI was conceived by Rouse et al. (1974) is one of the most widely 
used VIs for differentiating vegetated and non-vegetated areas as it is 
based upon the high reflectance of NIR wavelengths and low reflectance 
of R wavelengths from chlorophyll. 

NDVI =
NIR − R
NIR + R  

mSAVI2 was also included as it was designed to perform better than 
NDVI in cases where there is high reflectance across bare ground or low 
vegetation cover (Qi et al., 1994), which may be the case across 
mudflats. 

mSAVI2 =

(

2 × NIR + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 × NIR + 1)2
− 8 × (NIR − R)

√ )

2 

NDWI is commonly used for detecting water in images and was 
included to ensure any flooded intertidal areas were removed. It takes 
advantage of the high reflectance of G wavelengths and low reflectance 
of NIR wavelengths in water (McFeeters, 1996). 

NDWI =
G − NIR
G + NIR  

3.1.3. Salt marsh extent surveys 
Previous salt marsh extent surveys were included for both training 

and testing purposes. These surveys have been carried out by national 
government agencies in England and Wales, the Environment Agency 
(EA) and Natural Resources Wales (NRW) and are shown in Table 1. 

3.2. Training and validation sampling 

The previous extent surveys shown in Table 1 were used to create 
classified shapefiles across each of the salt marsh areas in which poly
gons were coded either as 0 which reflected ‘not salt marsh’ or 1 which 
reflected ‘salt marsh’ areas. The classified shapefiles were imported into 
the GEE where they were used to label the pixel values that fell within 
the classified polygons as 0 or 1. 

Pixel values were sampled from an annual mean which was calcu
lated per pixel across the SIs. The decision to use an annual mean, rather 
than individual images, aimed to a) to reduce the effect of missing data 
in individual images such as from the removal cloud pixels and from the 
broken scanning line corrector in Landsat-7, and b) as the exact date the 
extent surveys (Table 1) were carried out was not available. The average 
annual means and standard deviation per model, SI and class (‘not salt 
marsh’ and ‘salt marsh’) are shown in Table 2. The low values for the 
average standard deviation demonstrate there was relatively little 
temporal variation in pixel values, with the average annual standard 
deviation lower than the standard deviation in pixel values per model, SI 
and class in all cases. The standard deviation of each class is also lower 
than the difference in mean SI values between each class, further 

Fig. 3. Number of Landsat images collected in each year. L5 = Landsat-5, L7 = Landsat-7, and L8 = Landsat-8.  

Table 1 
Previous surveys of salt marsh extents carried out in the Severn Estuary. NRW =
Natural Resources Wales, EA = the Environment Agency (England).  

Country Date Reference 

Wales 1989 (NRW, unpublished) 
2008 (NRW, unpublished) 
2009 (NRW, unpublished) 
2017 (NRW, unpublished) 

England 2008 EA (2020) 
2019 EA (2020)  

Table 2 
The average annual mean and average annual standard deviation (SD) of pixel 
values for the three models. The annual mean and standard deviation summarise 
temporal variation in pixel values within a year and are calculated as the mean 
value/standard deviation per pixel of all images in a year. These pixel values 
have been sampled using shapefiles from the previous surveys shown in Table 1, 
with the mean (± standard deviation) calculated from the images per model, SI 
and class.  

Model SI Class Average annual mean Average annual SD 

All NDVI Not SM 0.07 ± 0.15 0.07 ± 0.05  
SM 0.43 ± 0.17 0.11 ± 0.07 

NDWI Not SM − 0.10 ± 0.15 0.08 ± 0.05  
SM − 0.41 ± 0.15 0.10 ± 0.07 

mSAVI2 Not SM 0.07 ± 1.76 0.16 ± 1.90  
SM 0.55 ± 2.31 0.14 ± 2.11 

TM NDVI Not SM 0.07 ± 0.15 0.06 ± 0.05  
SM 0.43 ± 0.17 0.11 ± 0.08 

NDWI Not SM − 0.10 ± 0.15 0.07 ± 0.05  
SM − 0.41 ± 0.15 0.10 ± 0.07 

mSAVI2 Not SM 0.07 ± 1.76 0.13 ± 1.90  
SM 0.54 ± 2.31 0.14 ± 2.11 

OLI NDVI Not SM 0.11 ± 0.15 0.11 ± 0.07  
SM 0.51 ± 0.16 0.13 ± 0.07 

NDWI Not SM − 0.14 ± 0.14 0.12 ± 0.07  
SM − 0.48 ± 0.13 0.12 ± 0.06 

mSAVI2 Not SM 0.13 ± 0.28 0.25 ± 0.25  
SM 0.64 ± 0.15 0.14 ± 0.08  
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demonstrating the temporal variability is negligible. 
Samples were created for three models: a combined model contain

ing all the satellites, henceforth referred to as ‘All,’ as well as separate 
models containing both Landsat-5 and Landsat-7, which is referred to as 
the ‘TM’ model, and Landsat-8, which is referred to as the ‘OLI’ model. 
This was carried out because the bands derived from the Landsat-8 OLI 
sensor are slightly different to the bands from Landsat-5/7’s TM/ETM+

sensor (Roy et al., 2016) and thus this approach tested whether this 
affects their accuracy and thus whether separate models would be more 
appropriate. 

The pixel values from the three annual mean SI maps were sampled 
from both classes (‘salt marsh’ and ‘not salt marsh’). Each locality was 
sampled separately based upon the previous surveys which are shown in 
Table 1. This sample was then split 80% for the training data and 20% 
for the validation data. The training data from each year was then 
merged using the ‘ee.FeatureCollection.merge’ function to produce a 
single, combined training data set for each of the models. The same 
function was used to combine the validation data for each of the pre
vious surveys to assess year-on-year accuracy. The validation data was 
also merged to produce a single, combined validation set to assess the 
model’s overall performance. 

3.3. Random Forest model 

Salt marsh extents were detected from 1985 to 2020 using a Random 
Forests (RF) model trained inside GEE using the ‘ee.Classifier.smileR
andomForest’ function. RF is a supervised nonparametric ensemble 
classifier that grows a specified number of decision trees from a subset of 
the supplied training data with replacement (bagging). Individual trees 
are grown by splitting nodes based upon the Gini impurity criterion, 
which measures how often a randomly chosen element would be 
improperly classified. At each node of a decision tree, the algorithm 
considers different splits based on different features and their values. For 
each split, it calculates the Gini impurity for the two child nodes and 
selects the split that minimizes the weighted sum of Gini impurities. In 
the ‘ee.Classifier.smileRandomForest’ function, this process is continued 
until each leaf node contains a minimum of one training sample, with 
each leaf specifying a vote for a class (e.g., ‘salt marsh’/‘not salt marsh’). 
New data (e.g., testing data) is then passed through the trees in the RF, 
with the majority vote across all the trees then used as the final 
classification. 

RF is one of the most widely used algorithms for land cover classi
fication using remote sensing data (Phan et al., 2020) and has been 
demonstrated to outperform other algorithms in coastal wetlands 
(Martinez Prentice et al., 2021). This improved performance has been 
suggested to be due to the effective handling of outliers and its efficient 
performance with high-dimensional datasets (Mahdianpari et al., 2017; 
Xia et al., 2017). RF is also popular as few parameters must be optimised, 
making its application more straight-forward than alternative algo
rithms (Sievers et al., 2021). 

We decided on 100 trees based upon pre-tests, which aligns with the 
recommendations of previous land cover classification studies (Ghimire 
et al., 2012; Cánovas-García et al., 2017). All other hyperparameters 
were left as their default value. Once trained, this model was then 
applied across the annual mean aggregates for each year. 

3.4. Accuracy assessment 

The validation data produced in Section 3.2 was used to test the 
accuracy of the derived model. This was achieved by applying the model 
to the validation data, with the prediction then compared with the 
validation data using a confusion matrix. This confusion matrix was used 
to calculate several accuracy statistics which are shown in Table 3. 

User’s accuracy (Uac) is the proportion of pixels classified as ‘salt 
marsh’ that have been correctly classified (viz. are present in the 
reference image) and thus provides a complementary quantification of 

overestimations (commission error; commission error = 1 - Uac). 
Producer’s accuracy (Pac) is the proportion of ‘salt marsh’ pixels in 

the reference map that have been correctly classified in the satellite- 
derived map and thus provides a complementary quantification of ‘salt 
marsh’ underestimations (omission errors; omission error = 1 - Pac). 

Overall accuracy (Oac) is the proportion of correctly classified ‘salt 
marsh’ and ‘no salt marsh’ pixels in relation to the total number of pixels 
in the image. 

The Goodness-of-Fit (GOF) metric is the product of the user’s and 
producer’s accuracy and indicates the degree of spatial overlap between 
reference and satellite-derived maps (Hargrove et al., 2006). GOF can 
vary between 0 and 1, the closer to 1 the better the spatial agreement. 
Previous studies have shown GOF metric provides a more representative 
accuracy assessment than Oac in cases where one class dominates (Lopes 
et al., 2020). 

3.5. Extent and width assessment 

Salt marsh extents in the six areas across the Severn estuary were 
detected from 1985 to 2020. This was performed using the trained RF 
classifier which produced classified maps for each year, in which pixels 
were classified as either ‘salt marsh’ or ‘not salt marsh.’ The areal extent 
of salt marsh in each of the areas was then calculated by counting the 
number of ‘salt marsh’ pixels in and multiplying the sum by the area of a 
Landsat pixel in hectares (0.003 ha). Trends in areal extent were 
assessed in each of the areas using linear regression. Comparisons were 
also made between the detected extents and the extents determined in 
the previous surveys using the root mean square error (RMSE). 

Changes in the widths of salt marsh from 1985 to 2020 were also 
assessed in each of the localities to provide an indication of changes in 
their capacity for coastal protection. The width of the vegetated area has 
been suggested to be one of the most important indicators of the coastal 
protection provided by marshes (Willemsen et al., 2020). Widths were 
determined from the derived Landsat extents using transects. One kilo
metre long transects were generated in each locality perpendicular to 
the coastline at a 100 m spacing using the Boundary-Line™ shapefile 
(Ordnance Survey, 2022). This data set is created by the Ordnance 
Survey and maps the approximate high-water mark across the United 
Kingdom. This shapefile was cropped to the Severn Estuary and then 
simplified to ensure transects were perpendicular to the general shore
line morphology rather than local features. This simplification proced
ure was performed using the ‘Simplify’ tool in QGIS set to a tolerance of 
100 m, with smaller tributaries, creeks and harbour features also 
manually removed. 

To determine the width of the salt marsh, salt marsh polygon data 
were used to clip the transects using the ‘Clip’ tool, again in QGIS. With 
the reference data, both NRW and the EA provided the data in polygon 
form. To use the Landsat data, a binary raster was exported from GEE 
into QGIS in which 1 = salt marsh and 0 = no salt marsh. This raster was 

Table 3 
Accuracy statistics used in this study and their equations. TP = true 
positive, TN = true negative, FP = false positive, FN = false negative. 
Apart from Oac which applies to the whole model, statistics are calcu
lated for each class. For the ‘salt marsh’ class, TP = ‘salt marsh’ in the 
predicted data and the validation data, TN = ‘not salt marsh’ in the 
predicted and validation data, FP = ‘salt marsh’ in the predicted data but 
‘not salt marsh’ in the validation data, and FN = ‘not salt marsh’ in the 
predicted data but ‘salt marsh’ in the validation data.  

Statistic Equation 

User’s accuracy Uac =
TP

TP + FN 
Producer’s accuracy Pac =

TP
TP + FP 

Overall accuracy Oac =
TP + TN

TP + TN + FP + FN 
Goodness of Fit GOF = Uac × Pac  
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then polygonised using the ‘Polygonize (raster to vector)’ tool from 
GDAL, with the resultant polygon then used to clip the transects and the 
length in metres calculated using the OSGB36 coordinate system. 

Trends in marsh widths were assessed using linear regression. The 
detected widths were also assessed in comparison to the reference 
widths, again with linear regression in the form reference ~ predicted to 
ensure the slopes were representative (Piñeiro et al., 2008), as well as 
with the RMSE. Width changes were also compared with policy state
ments outlined in the most recent SMP (SMP2; SECG Atkins, 2017) to 
compare whether policies match physical changes. 

4. Results 

4.1. Accuracy assessment 

Comparing the accuracy assessment using the aggregated validation 
data for the three models, all three displayed a relatively similar per
formance, with Oac = 0.91 for the All and TM models and 0.92 for the 
OLI model. Looking at the validation data aggregated by year reveals 
more about the accuracy of each model as can be seen in Fig. 4. Here we 
can see that Oac for both the All and TM models remains relatively 
similar. OLI also has a higher Oac than the All model when looking at the 
2017 validation. However, Oac drops below the All model in 2019. Both 
the Uac and Pac for the ‘salt marsh’ class showed slightly greater varia
tion. However, GOF demonstrates that the TM and All models maintain 
very similar spatial agreement over each year, with the OLI model dis
playing a higher GOF in 2017 but lower in 2019. Whilst accuracies in the 
three models were similar, it was decided the TM model was most 
effective due to marginally higher accuracies and sensor consistency. As 
a result, this is the only model discussed further. 

Breaking down the validation per year also reveals there has been a 
general increase in accuracy over time. However, both Uac and Pac for 
the ‘salt marsh’ class remain relatively similar throughout the period 
very little impact on the total extents. 

Looking at the localities across the estuary, some general trends are 

revealed. Overall, WL and UM displayed the lowest accuracies, with a 
GOF of 0.59 and 0.65 in 2009 and 1989 respectively. Comparatively S 
had the highest accuracy, with a GOF of 0.91 in 2019. W also showed a 
high accuracy, with a GOF of 0.88 in 2008. 

The variable importance for the TM model is shown in Fig. 5. VIs 
were most important, with NDVI proving to be the most important 
variable, followed closely by mSAVI2. NDWI was the least important 
variable in the model. 

4.2. Areal extent changes 

Detected changes in the areal extent of the localities across the 
Severn Estuary found a significant (p < 0.05) increasing trend across 
three of the six (Fig. 6), namely CL, S and UM (Fig. 1). Increases were 
greatest in CL, where extents were found to have increased from 136.0 
ha in 1985 to 141.0 ha in 2020, with a trend of +1.0 ha yr− 1. 
Comparatively, W was the only unit to show a decrease in extents, from 
80.0 ha in 1985 to 47.3 ha in 2020. W also displayed the most consistent 

Fig. 4. Accuracy results for the three models. Each facet demonstrates a different accuracy statistic. Uac, Pac and GOF refer to the accuracy of the salt marsh class.  

Fig. 5. Variable importance for the variables included in the TM model. 
Importance is shown as the sum of the decrease in Gini impurity over all trees in 
the model. 
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trend, with the linear regression showing a decrease of 0.8 ha yr− 1 and 
the change in year able to explain 82% of the variation in extents with a 
highly significant trend (p < 0.001). Both NA and WL did not show a 
significant trend (p = 0.21 and 0.29 respectively), with extents 
remaining largely the same although with some substantial interannual 
variations. Large interannual variations were also seen in the other 
areas, with many units showing a decrease in extent after 1999, with a 
subsequent increase between 2002 and 2004. Almost all the areas 
showed a sharp decrease in extent in 2012 with a subsequent increase in 
2013, with NA showing the most pronounced change. The only excep
tion was S, which demonstrated an increase in 2012 and subsequent 
decrease in 2013. Overall, interannual changes were least pronounced in 
W. 

Comparing extents detected in this study to those in previous surveys 
shows a relatively good agreement, with the detected extents largely 
capturing the changes seen between these surveys (Fig. 6). The greatest 
disagreement can be seen in WL, with an RMSE between the detected 
extents and the previous surveys of 4.72 ha. Most of this error can be 
seen in 1985 and in 2009. The remaining units showed a much stronger 
agreement, with W showing the greatest agreement with an RMSE of 
1.64 ha. 

4.3. Width changes 

Similar trends were seen in widths as in extents which can be seen in 
Fig. 7. CL, S and UM, as with their extents, showed significant (p < 0.05) 
increasing trends in mean width. This increase was greatest in S, which 
showed an increasing trend of 1.4 m yr− 1 followed by CL at 1.2 m yr− 1. 
W also showed a significant (p < 0.05) decreasing trend of − 3.7 m yr− 1 

with an R2 of 0.84. WL and NA, as with extents, also showed no sig
nificant (p < 0.05) trend in widths. Similar inter-annual changes were 
seen in width as to extents, with a drop in mean width after 1999 and in 
2012 seen in most units. However, inter-annual changes were less pro
nounced than with extents. 

Overall, a strong agreement was found between detected widths and 
widths from previous surveys as can be seen in Fig. 8. When broken up 
into each locality and date of the survey (as the facets are in Figs. 8), 13 
out of the18 showed the detected salt marsh widths explained over 90% 
of the variation in actual salt marsh widths. Of all the localities, detected 
extents explained most of the variation in W, with a mean R2 of 0.99, 
while NA showed the lowest error, with a mean RMSE of 19 m. 
Comparatively, detected extents in CL explained the least of the varia
tion, with a mean R2 of 0.89, making it the only locality with a mean R2 

< 0.9, while WL showed the greatest error, with a mean RMSE of 27.5. 
Both R2 and RMSE appeared to increase over time with a mean R2 and 
RMSE of 0.91 23.3 m in 1989, and 0.97 and 20.3 m in 2019. There was, 

Fig. 6. Changes in the detected area of salt marsh in each locality across the Severn Estuary from 1985 to 2020 from the TM model. Trend lines are shown in red for 
localities which were found to have a significant (p < 0.05) trend using linear regression (viz. not NA or WL). Blue squares show the extents recorded in the previous 
extent surveys carried out by NRW/EA for comparison (more details in Table 1). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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however, an exception in 2009 which showed the lowest agreement, 
with a mean R2 and RMSE of 0.88 and 29.3 m respectively. 

5. Discussion 

5.1. Model accuracy 

The accuracy assessment in this toolset shows that the RF model used 
in this study provides robust results using an easy-to-use series of 
methods that could be utilised to rapidly evaluate coastal wetland extent 
and change detection for coastal wetlands in the UK and beyond. This 
accuracy was demonstrated through confusion matrix validation testing, 
where an overall accuracy of 92% and GOF of 0.8 was found for the 
model, as well as through the comparisons between the detected widths 
and widths from previous surveys used as reference data, with detected 
widths able to explain 85%–99% of the variation in the reference widths. 
RF has been found to provide high classification accuracies in many 
other coastal wetland studies (e.g., Villoslada et al., 2020; Jia et al., 
2021; Martinez Prentice et al., 2021; Rummell et al., 2022) and thus the 
findings of this study further support statements of its value in these 
settings. 

Comparing the accuracy of the three models found that they each 
performed nearly equally well. The TM model showed a slightly higher 
accuracy than the All and OLI models which was likely due to the con
sistency of the TM and ETM+ sensors. However, the similar performance 
of the three models demonstrates that differences between the TM/ 
ETM+ and OLI sensors had relatively little effect on the classifications, 

despite differences in the wavelengths of some bands (Roy et al., 2016). 
This suggests that differences in the spectral response between mudflats 
and salt marshes are greater than spectral differences between the two 
sensors. Thus, future studies aiming to differentiate these two classess 
may reasonably include both sensors. 

The validation testing did reveal notable errors in some of the clas
sifications. This error was greatest in the UM locality. Looking at the salt 
marsh present in the unit (Fig. 1), most of the marsh is relatively narrow, 
evident in the low detected widths (Fig. 7). UM demonstrated some of 
the narrowest widths of the localities, along with WL, which also showed 
a lower classification accuracy. Looking closer at the marshes in UM and 
WL reveals they also display a more complex marsh edge, with a ridge- 
runnel edge visible in UM in Fig. 1. Previous studies have found there is a 
greater error in classification at the marsh edge, attributed to the diffi
culty in classifying areas of marsh smaller than Landsat’s 30 m resolu
tion (Laengner et al., 2019; Lopes et al., 2020). This is the case for the 
marsh edge features in these areas and this study demonstrates that 
marsh edge morphology may affect classification accuracies. The 
converse of this effect can be seen in the higher classification accuracies 
of the S and W localities, which contain larger marsh platforms with 
simpler marsh edges as can be seen in Fig. 1. 

5.2. Salt marsh extent changes 

Significant increasing trends (p < 0.05) were found between 1985 
and 2020 in three out of the six localities in the Severn estuary (CL, S, 
and WL). These increases go against suggsestions that there has been a 

Fig. 7. Changes in detected salt marsh width across each locality from 1985 to 2020 from the TM model. The greyed area shows the standard deviation around the 
mean. Trend lines are shown in red for localities which were found to have a significant (p < 0.05) trend using linear regression (viz. not NA or WL). (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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widespread decrease in marsh extents in recent decades (MEA, 2005; 
Deegan et al., 2012; European Commission, 1992), although recent 
studies have also observed increases in other estuaries (Ladd et al., 2019; 
Laengner et al., 2019; Murray et al., 2022). Conditions in the Severn 
Estuary favour expansion due to the estuary’s hyper-tidal range. High 
tidal ranges increase suspended sediment concentrations (SSCs), which 
in turn facilitates marsh accretion and expansion (Reed, 1995; Kirwan 
and Guntenspergen, 2010; Ward et al., 2016a; Ward et al., 2016b; 
Schuerch et al., 2018; Ward and de Lacerda, 2021). High SSCs are 
known to be found in the Severn, with up to 10 × 106 tonnes of mud in 
suspension during spring tides and concentrations of 10–100 g l− 1 in the 
turbidity maximum zones (Manning et al., 2010). As a result, the find
ings of this study may provide further evidence of this mechanism. 

The high significance of the increasing trend in these localities sug
gests expansion will continue, at least into the near future. Changes in 
conditions could alter this trend. For example, rising sea levels over the 
21st century may threaten marshes, even in highly resilient systems such 
as the Severn Estuary (Phillips and Crisp, 2010; Church et al., 2013; 
Horton et al., 2018). Mariotti and Fagherazzi (2010) showed that for any 

given sediment supply marshes can expand or erode depending on the 
rate of mean sea level rise, with high rates resulting in high currents, 
thus inducing erosion. Phillips and Crisp (2010) observed a reduction in 
tidal range over the period 1993–2007, which, if continued, could 
reduce its effect on marsh resilience. However, a recent modelling study 
by Mariotti (2020) suggested that erosion is rare in mesotidal (2–4 m) 
systems with high sediment supply even under high rates of RSLR (10 
mm yr− 1), suggesting the hyper-tidal (14.8 m tidal range) Severn will 
remain resilient. 

Despite increases at most localities, W saw a significant decreasing 
trend in both marsh extents and widths (p < 0.05). Edge erosion occurs 
in areas with low sediment budgets (Brooks et al., 2021), suggesting that 
sediment supply is lower in this area. As sediment dynamics in the 
Severn Estuary are highly complex and relatively poorly understood 
(Manning et al., 2010), it is difficult to determine whether this is the case 
in all three units. However, W is located south of an estuarine turbidity 
maxima at Sharpness (Manning et al., 2010), suggesting this may be 
drawing sediment away from this area. This is further supported by the 
significant increasing trend in both extents and widths at S (p < 0.05), 

Fig. 8. Comparison between detected widths from the TM model and those from previous surveys facetted by each locality and the date of the survey. Each point 
represents the length of a transect. The solid, red line demonstrates a linear regression between the predicted and actual data. The dashed line represents an ideal 1:1 
relationship. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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which is further upstream of this turbidity maxima. 

5.3. Satellite remote sensing for coastal protection 

As we have gained increased traction in the availability of remotely 
sensed data, whether from low resolution, long term and freely available 
global data such as MODIS or Landsat, to shorter term, higher resolution 
data sets such as the global SENTINEL or national LiDAR sources, to 
local drone derived data, researchers have been provided with a range of 
new tools to undertake coastal monitoring assessments (Mafi-Gholami 
et al., 2019; Veettil et al., 2020; Villoslada et al., 2022). This, combined 
with the Google Earth Engine, which integrates a range of freely avail
able data in one place, together with a series of toolsets to select 
atmospherically corrected data with cloud cover removal and cover 
assessment algorithms, has significantly improved the accessibility of 
these datasets as well as improved their usability. These changes have 
made remote sensing a valuable tool for decision-makers. 

Wave attenuation provided by a salt marsh has been found to be a 
function of its width (Willemsen et al., 2020). The width increases 
observed in the majority of localities in this study therefore suggest a 
widespread improvement in the natural coastal protection provided by 
the marshes in these areas. This information, coupled with the signifi
cance of the increasing trends, suggests existing sea defences across 
much of the estuary may be sustainable with future sea level rise given 
observed expansion in response to current rates. As a result, this suggests 
the HTL policy across most of the PUs in these areas will be sustainable. 

Marsh expansion was, however, not observed across all the areas. A 
strong significant (p < 0.05) decreasing trend was found at W. The 
current SMP states a HTL policy over the next 20-year and 50-year 
epochs in the TID2 PU, which covers the W area (SECG Atkins, 2017). 
This decreasing trend suggests that this HTL policy may not be sus
tainable, particularly considering the strength and high significance of 
the trend which suggests it will continue. The policy for the TID2 unit 
switches to MR for the 100-year epoch. This change in policy fits the 
observed changes in extents. However, given the current rate of de
creases in width, marshes in the area could disappear in the next 52 
years suggesting a change in policy may be required sooner. Addition
ally, if current losses are due to a lack of sediment supply to the area then 
it may be expected that limited marsh development may occur under the 
MR policy (Day et al., 2021). As a result, the findings of this study 
suggest a reappraisal of the policies in this PU should be made. 

Direct quantification of the wave attenuation provided by salt 
marshes is valuable for coastal decision-making as this data could be 
translated into the design of existing sea defences including their sus
tainability (Bouma et al., 2014). Rates of attenuation have been given in 
the literature; for example, Möller and Spencer (2002) suggested wave 
heights were dissipated by 0.5% per metre across two marshes on the 
UK’s east coast. Additionally, these figures could aid the translation of 
attenuation rates into monetary value, which would also aid 
decision-making, both for cost-benefit-analyses and stakeholder 
engagement (zu Ermgassen et al., 2021). However, the relationship 
between marsh width and wave attenuation has been suggested to be 
non-linear, making the use of simplistic percentage per metre statistics 
misleading (Möller et al., 2001; Koch et al., 2009). Consequently, further 
development is required before such figures can be operational. 

A major benefit of using the automated approach developed in this 
study for shoreline management is the ability to produce a time-series 
that can be used to explore significant trends within the data. Tradi
tional methods (e.g., manual delineation from aerial imagery) are pro
hibitively resource-intensive to carry out frequently across areas above a 
local scale thus preventing the development of regional time-series 
datasets. Comparatively, the open-access nature of Landsat (as well as 
other satellite missions such as Sentinel), combined with the free-to-use 
GEE, enables high temporal resolution monitoring at up to a global scale 
with very little resource requirements (Gorelick et al., 2017; Murray 
et al., 2022), a factor that is particularly important in the traditionally 

underfunded world of coastal management (Schaeffer et al., 2013; Bal
linger and Dodds, 2020). 

The trends observed in this study from the long time-series provide 
valuable insights into long-term ecosystem dynamics to inform future 
policy and engineering. This is an essential aspect of coastal planning 
(Pontee, 2017). However, this has been identified as the main knowl
edge gap preventing the inclusion of natural systems in this process 
(Bouma et al., 2014). The method applied in this study therefore pro
vides a positive improvement in this area and may, with further devel
opment, facilitate a greater awareness of the role of salt marshes in 
protection management and for other applications such as blue carbon 
accounting. Additionally, the ability to attach significance to these 
trends associated with the time-series data ensures decision-makers can 
be confident in the quality of the data, which is essential for robust 
adaptation planning (Nicholls et al., 2013; Brown, 2022). 

The validation testing used in this study provides evidence that 
satellite remote sensing may effectively derive salt marsh extents and 
widths to inform coastal decision-making, particularly at the regional 
scale. There were, however, inaccuracies in some areas, particularly in 
delineating marsh features close to the Landsat’s 30 m resolution. As a 
result, this method may not be practical for monitoring narrower 
marshes such as those in the Severn Estuary outside of the six localities, 
which were focussed on in this study. 

One potential way to reduce the errors in the data is to use Sentinel-2 
instead of Landsat which has an improved resolution of 10 m. This 
improvement in resolution has been found to have a marked improve
ment on the accuracy of delineated marsh extents and shorelines 
(Campbell and Wang, 2020; Blount et al., 2022). However, Sentinel-2 
was first launched in 2015, meaning it is not possible to create the 
almost 40-year time-series possible with Landsat. As a result, both 
should be considered to have their own independent advantages (Veettil 
et al., 2020). Going forwards, Sentinel-2 will likely provide a more ac
curate understanding of the coastal protection provided by marshes, 
particularly at the local scale, with already almost a decade’s worth of 
data to provide context. However, for the long-term understanding of 
changes in ecosystem dynamics and at a larger scale, Landsat remains 
the better choice. 

In this study, the near 1:1 slope observed between the predicted 
widths and actual widths demonstrates that the errors have not affected 
the overall prediction of widths. The understanding of the effect of the 
detection errors on the estimates of marsh width provided by the vali
dation data used in this study is essential for decision-making (Schaeffer 
et al., 2013; Ouellette and Getinet, 2016). As a result, it is vital that if a 
satellite-based approach to monitoring the coastline is used, validation 
data is also collected to provide an accuracy assessment. At first glance, 
this could be considered to negate the value of using satellite moni
toring. However, the higher temporal resolution of satellite data means 
that gaps between the validation data can be filled, providing the ben
efits of a long time-series. For example, the Saltmarsh Change data set 
created by the Environment Agency (2020) is carried out every ten 
years. The method used in this study therefore provides nine records of 
marsh extents between each Saltmarsh Change survey. As this data is 
integrated into testing and training the RF model, this approach can lead 
to a continual improvement in the accuracy of detected extents as 
further reference data is included. 

An important factor in coastal decision-making is taking a large-scale 
approach (Pontee, 2017). As a result, it is vital that the data used to aid 
this decision-making supports wider spatial planning to enable its use as 
a key decision-support tool (Potts et al., 2013). As satellites have a global 
coverage, they fit well into this requirement, with studies demonstrating 
that marshes can be monitored at international scales (Laengner et al., 
2019; Murray et al., 2022). The Severn Estuary represents a highly 
challenging environment to analyse due to its hyper-tidal range and 
narrow, fringing marshes, suggesting the methods used in this study 
could be transferable to other large marsh areas and thus scalable across 
larger areas. 
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6. Conclusion 

This study demonstrated that, with a relatively simple automated 
classification method applied to Landsat imagery, valuable insights 
could be derived about the coastal protection provided by salt marshes 
surrounding the Severn Estuary. Overall, marsh extents and widths were 
found to have increased across most of the areas focussed on in the es
tuary between 1985 and 2019 with a significant (p < 0.05) positive 
trend, suggesting an increase in their natural protective capacity. This 
increase in marsh area is likely due to observed high suspended sedi
ment concentrations in the estuary, creating positive sediment budgets 
in marshes that are likely to facilitate expansion. Although increases 
were widespread, a significant (p < 0.05) decreasing trend was observed 
in W. The current SMP document gives W a HTL policy which may not be 
sustainable considering these findings. In turn, this also demonstrates 
how the derived data can be used for policy evaluation. 

The ability to identify the significance of trends in extents is a major 
benefit of satellite remote sensing as it can aid projections into the 
future. Other methods that have been assess changes in marsh extents 
would be prohibitively resource-intensive to carry out at the temporal 
frequency and scale achieved in this study. The most substantial draw
back in the use of satellites is their vulnerability to classification errors. 
However, the validation testing found these errors were low in the 
model used in this study and the comparison between detected widths 
and those determined in previous surveys found a strong agreement. 
Additionally, as this is a fast-evolving field, continued work will likely 
reduce these errors as methods and sensors improve. As a result, 
satellite-derived products, such as used in this study, should be consid
ered a valuable asset to shoreline management planning. 
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