
Visual Affordance Prediction of
Hand-Occluded Objects

Tommaso Apicella

Supervisors: Prof. Paolo Gastaldo

Prof. Riccardo Berta

Prof. Andrea Cavallaro

Department of Electrical, Electronic, Telecommunications Engineering
and Naval Architecture (DITEN)

University of Genoa

Centre for Intelligent Sensing (CIS)
Queen Mary University of London

This dissertation is submitted for the degree of
Doctor of Philosophy

Joint Doctorate in Interactive and
Cognitive Environments - Cycle 36 March 2024

Visual Affordance Prediction of Hand-Occluded Objects

Tommaso Apicella

Joint Doctorate in Interactive and Cognitive Environments
JD-ICE

XXXVI cycle

Acknowledgements

This PhD Thesis has been developed in the framework of, and according to,
the rules of the Joint Doctorate in Interactive and Cognitive Environments
JD-ICE with the cooperation of the following Universities:

Università degli Studi di Genova (UNIGE)
DITEN - Dept. of Electrical, Electronic, Telecommunications Engineering and Naval Architecture

SEALab - Smart Embedded Applications Laboratory

Elios Lab - Electronics for the Information Society Laboratory

Primary Supervisor: Prof. Paolo Gastaldo
Secondary Supervisor: Prof. Riccardo Berta

Queen Mary University of London (QMUL)
EECS - School of Electronic Engineering and Computer Science

CIS - Centre for Intelligent Sensing

Primary Supervisor: Prof. Andrea Cavallaro

Acknowledgements

I would like to thank my supervisors Prof. Paolo Gastaldo, Prof. Riccardo Berta, and
Prof. Andrea Cavallaro, that supported me and gave me the unique opportunity of the
joint supervision. During these years they guided me pushing me outside my comfort
zone, making me see things from different perspectives, reminding me the objective
of having an impact on the community. I want to thank also the collaborators, Giulia
S., Alessio, and Edoardo, I think I learned a lot from their experience and from the
discussions about research.

My year in London was one of the most formative experiences I ever had. It was a
pleasure to spend time in CS440 and outside with Alessio, Changjae, Faxian, Long,
Yik, Chaoran, Dmitrii, Vandana, Alina, Helen, Xavier. I am really grateful for the
moments spent together, also with Simone, Giulia, Dayana, Nino, Richard, Alfie. All
these people accepted me and helped me enjoying my stay in London.

A special thanks to long-time friends Giacomo R., Luca T., Pietro, Sara, Vincenzo,
Davide, Monica, Nicola, Luisa, Auri, Daniele, Valerio, Barbison, Marco, Fra, Loci,
Edo, Bob, Carola, Chiara, for the joyful moments and to the even longer-time friends
Emanuele, Luca B., and Giacomo I., because they make my life beautiful.

Last but not least, I would like to thank my family, my mom and dad, my brother,
my cousins Gianmarco, Veronica, Alessandro, Furio, that always believed in me and
supported me.

Abstract

The prediction of affordances i.e., the potential actions an agent can perform on objects
in the scene, is fundamental for human-robot collaboration and wearable robotics
scenarios in which objects may be on a tabletop or held by a person. Perceiving
affordances from an image is challenging due to the variety of object geometric and
physical properties, as well as occlusions caused by clutter or by a person’s hand
holding the object. In this thesis, we propose a framework for visual affordance
prediction that estimates object properties such as position and mass, and identifies
graspable regions of objects, supporting the agent to perform the intended actions. As
previous methods focused on predicting the filling mass of a container manipulated by
a human, the complementary estimation of container mass regardless of the content was
underexplored. Moreover, during a human manipulation more than one object could
be in the scene, so a selection phase is necessary to focus only on the object of interest.
We propose a strategy to select the object manipulated by a human from a fixed frontal
RGB-D camera and we design a model to predict its mass. The model learns how
to combine color and geometric information to predict the (empty) container mass.
The integration of our pipeline with already existing filling mass predictors allows to
obtain the complete container mass (object plus content). Object detection methods
identify objects in a scene, however in wearable robotic applications the human knows
objects location and category. We investigate a transfer learning procedure to locate
objects in the scene regardless of their category (‘objectness’). We target lightweight
object detection models that could be used in a wearable application, where the
trade-off between accuracy and computational cost is relevant and was previously
not investigated. In case of human manipulations, the identification of the object
regions an agent can interact with is more challenging due to occlusions and the poses
object may take. We design an affordance segmentation model that learns affordance
features under hand-occlusion by weighting the feature map through arm and object
segmentation. Due to a lack of datasets to tackle this scenario, we complement an
existing dataset, annotating the visual affordances of mixed-reality images of hand-held
containers in third-person view. Experiments show that the strategy to select objects
and predict their mass outperforms most baselines on previously unseen manipulated

vi

containers; the transfer learning procedure improves the performance of lightweight
object detection methods in a wearable application; and the affordance segmentation
model achieves better affordance segmentation and generalisation than existing models.

Table of contents

Published work ix

List of figures xi

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem formulation . 6
1.3 Contributions . 7
1.4 Organisation of the thesis . 9

2 Literature review 11
2.1 Literature search criteria . 11
2.2 Preliminaries . 12
2.3 Mass Estimation . 14
2.4 Visual affordance segmentation . 16
2.5 Datasets . 19
2.6 Performance measures . 27
2.7 Summary . 31

3 Container mass estimation 33
3.1 Container localisation and mass estimation 34

3.1.1 Localisation . 36
3.1.2 Patches selection . 37
3.1.3 Mass estimation . 39

3.2 Validation . 40
3.2.1 Methods under comparison 40
3.2.2 Experimental setup . 40

viii Table of contents

3.2.3 Training details . 42
3.2.4 Results and discussion . 44

3.3 Summary . 47

4 Affordance Segmentation of hand-occluded objects 49
4.1 Object detection for affordance segmentation 50

4.1.1 Objectness fine-tuning . 52
4.2 The Arm-Container Affordance Network 54

4.2.1 Multi-branch architecture . 54
4.2.2 Feature separation and fusion 55
4.2.3 Predicting object affordances and the hand 56
4.2.4 Loss functions . 57
4.2.5 Mixed-reality affordance annotation 58

4.3 Validation . 60
4.3.1 Methods under comparison 60
4.3.2 Experimental setup . 63
4.3.3 Training details . 64
4.3.4 Results and discussion . 66

4.4 Summary . 78

5 Conclusion 81
5.1 Summary of achievements . 81
5.2 Future work . 83

References 89

Appendix A. Background 99
A.1 Preliminaries . 99
A.2 Transfer learning . 100
A.3 Feature extraction . 101
A.4 Architectures for semantic segmentation 103
A.5 Architectures for object detection . 105
A.6 Architectures for instance segmentation 108

Appendix B. Other research merits 111

Published work

Conference papers

[C1] T. Apicella, A. Cavallaro, R. Berta, P. Gastaldo, F. Bellotti and E. Ragusa.
An Affordance Detection Pipeline for Resource-Constrained Devices. IEEE
International Conference on Electronics, Circuits, and Systems (ICECS), 2021.

[C2] T. Apicella, G. Slavic, E. Ragusa, P. Gastaldo and L. Marcenaro. Container
Localisation and Mass Estimation with an RGB-D Camera. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022.

[C3] T. Apicella, A. Xompero, E. Ragusa, R. Berta, A. Cavallaro, and P. Gastaldo.
Affordance segmentation of hand-occluded containers from exocentric images.
IEEE/CVF International Conference on Computer Vision Workshops (ICCVW),
2023.

List of figures

1.1 Examples of applications benefiting from visual affordance prediction:
(a) object picking [78], (b) human-robot collaboration [105], and (c)
wearable robotics [7]. 2

1.2 Challenges in visual affordance prediction: (a) same object instance,
different filling and background, (b) same object category, different
instances, poses and backgrounds, (c) different object categories in
different poses and scenes. Images are from datasets of the literature
[40, 42, 107, 125], cropped for visualisation purpose. 3

1.3 Visual affordance prediction framework. The vision system predicts
the location, the mass and the functional regions of objects in the field
of view; based on the predicted information, the control system guides
the robotic hand to interact with objects. 6

2.1 Samples from mass estimation datasets: (a) Image2mass [109] and (b)
CCM [125]. Image2mass has different object types from toys to tools
with different materials and colors, distinguishable from the back-
ground (images taken from the paper). CCM focuses on manipulated
containers with different view, background, lighting, and interactions.
Images are resized at the same height for visualisation purpose. 20

2.2 Examples of manual annotation on real data [80, 82]. Mistakes are
highlighted using orange rectangles: not every object in the image is
annotated (1st column), or the annotation has missing regions (2nd
and 4th column), the annotation is over the hand occluding the object
(3rd column). 21

xii List of figures

2.3 Sampled RGB images from affordance segmentation datasets: UMD [80],
Multi-View [60], HANDAL [40], TRANS-AFF [58], IIT-AFF [82],
FPHA-AFF [53], CAD120-AFF [107], AFF-Synth [14], UMD-Synth [16].
Datasets have different object instances and background conditions
from single object on a plain colored background to clutter or hand-
occluded objects. Images are resized at the same height keeping the
aspect ratio for visualisation purpose. 26

3.1 Overall framework considering localisation and mass estimation phases.
An instance segmentation model locates objects in the RGB image.
The selection phase extracts the patches (image crops) and discards
crops based on the average distance computed from the depth map.
Then, the mass estimation model predicts the mass of the object. The
other phases of the framework (affordance segmentation, fusion, and
control) are not considered. 33

3.2 Block diagram of the proposed approach. For each frame, containers
are detected, then K nearest patches are selected leveraging the raw
depth maps considered in the segmentation mask coordinates. The
empty mass of each patch is predicted by the model which takes as
input the RGB patch and triplets of values: aspect ratio width, a, and
height, b, and average distance, d. The final empty mass estimation,
m̂, is the average of K mass predictions. Figure from [C2]. 35

3.3 Localisation phase performed by a generic instance segmentation
architecture. In each frame, the model detects the objects through the
detection head, and segments them using the segmentation head. . . . 36

3.4 Example of (a) aspect ratio and (b) average depth computation for a
single object in a frame. The aspect ratios (a and b) are computed
as division between the width and height of the patch and the width
and height of the whole image. The average depth d is computed as
division between the sum of depth values in the object mask pixels
(obtained with the pixel-wise product ⊙) and the number of pixels
belonging to the object mask. 37

3.5 Block diagram of the K-nearest candidates selection for a single record-
ing. The set of candidate containers, the tuples depth, RGB patch,
and aspect ratios are first sorted increasingly based on the average
depth and the first K elements of the set are selected. The K selected
candidates represent the closest patches to the fixed-frontal camera. . . 38

List of figures xiii

3.6 Mass estimation model. The input is the RGB crop of the object, the
aspect ratios a and b, and the average distance d, at the time instant t
and for the second object in the frame. Figure from [C2]. 39

3.7 3-fold cross-validation setups (F1, F2, F3) of the CCM training set.
Each fold selects videos from one instance of each container type as
testing set (), while videos belonging to the other instances are used
as training set (). Figure from [C2]. 41

3.8 Public testing sets containers. The containers instances are different
from the ones in the training set. Private testing set instances were not
released. 41

3.9 Sample patches of the extracted dataset. Black padding is applied
before resizing to keep the same aspect ratio. Figure from [C2]. 43

3.10 Analysis per container type of 3-fold cross validation and random
cross-validation of our proposed model for container empty mass
estimation. Top: testing score s in percentage. Bottom: mean of
relative absolute error ε . The maximum y-axis value is set to 10 for
visualization purpose, the actual value for cup in F1 is 22.95. Legend:

cup, glass, box total . 44
3.11 Comparison of models performance per container type on the two

CCM testing sets: (a) public and (b) private. Top: testing score s in
percentage. Bottom: mean of relative absolute error ε . The maximum
y-axis value of the score s and of the mean ε is set to 80 and 10
respectively for visualization purpose. In the public testing set, the
error of the random method is 21.43 and the error of the average
method is 12.25 for the class cup. In the private testing set, for the
class cup the error of the random method is 17.45. Legend: M1:
MobileNetV2 with Coordinate Attention [119], M2: custom neural
network [72], M3 (Ours), M4: random sampling, M5: average
mass. 46

3.12 Public, private, and combined testing scores s of container mass esti-
mation solutions in percentage. Legend: M1: MobileNetV2 with
Coordinate Attention [119], M2: custom neural network [72], M3
(Ours), M4: random sampling, M5: average mass. 47

xiv List of figures

4.1 Overall framework considering localisation and affordance segmenta-
tion phases. The object detector identifies objects in the RGB image
and extracts the patches (image crops). Then, the affordance segmen-
tation model identifies the graspable regions separating them from
the non-graspable ones. The other phases of the framework (mass
estimation, fusion, and control) are not considered. 50

4.2 Objectness fine-tuning block diagram. A model is pre-trained on a
large dataset (source domain) for object detection, then the parameters
are updated to match the target domain and distinguish between back-
ground and object minimising the loss function L. The RGB images
are from [66, 82]. 52

4.3 ACANet, our proposed model for Arm-Container Affordance seg-
mentation of hand-held containers. The object segmentation branch
predicts the object mask, the arm segmentation branch predicts the
arm mask, and the main branch fuses the predicted arm and object
masks with the feature maps (φa) to predict the arm and affordances
mask. The fusion block is highlighted in yellow. Figure from [C3]. . . 54

4.4 Propagation of the features maps in the fusion module. The features φa

are specialised into φo and φh and weighted using the object mask (m̃o)
and arm mask (m̃h). Finally they are combined through the element
wise sum. Feature maps are normalised and colored for visualisation
purpose. 57

4.5 Samples of annotated CAD models in Blender. In the first row the
original CAD model with the texture, in the second row the affordance
annotation on the surface of the objects. Key: graspable, contain 59

4.6 Samples of cropped RGB images and segmentation maps of arms and
object affordances from the annotated mixed-reality dataset, CHOC-
AFF. Key: background, graspable, contain, arm 60

4.7 Number of parameters in millions [M] and Floating Point Operations
(FLOPS) in giga [G] of object detection and affordance segmentation
models used in the literature. Legend: • object detection model, ▲
affordance segmentation model. 62

4.8 Mean Average Precision on affordance testing sets: (a) UMD and
(b) IIT-AFF. SSDv3-L and SSDv3-S indicate two versions of Mo-
bileNetV3 object detectors, J50 and J75 denote the selected Jaccard
index threshold. Legend: all classes, objectness (one class). . . . 67

List of figures xv

4.9 Percentage of images with at least one detection. ALL and ONE indi-
cate the detection configuration, SSDv3-L and SSDv3-S the employed
MobileNetV3 version. Legend: UMD, IIT-AFF. 68

4.10 Per class distribution of object detection pixels belonging to affordance
classes in testing sets: (a) UMD, (b) IIT-AFF. SSDv3-L and SSDv3-S
denote the distributions originated by the patches extracted using the
two architectures of MobileNetV3-based object detectors, while GT
the ground patches present in the dataset. Legend: background,

graspable, non-graspable. 69
4.11 Fw

β
score on testing sets: (a) UMD, (b) IIT-AFF. SSDv3-L and SSDv3-

S are the two versions of MobileNetV3-based object detectors. V1U is
the affordance detector MobileNetV1-UNET and V3L is MobileNetV3
LR-ASPP. Segmentation classes are background (B), graspable (G)
and non-graspable (NG). Legend: No detector, SSDv3-L,
SSDv3-S. 70

4.12 Comparison of the affordance and arm segmentation results between
the models on the two mixed-reality testing sets: (a) CHOC-B, (b)
CHOC-I. Legend: RN50-F, RN18-U, DRNAtt, ACANet
(ours). 71

4.13 Comparison of the affordance and arm segmentation results between
the models on the two real testing sets: (a) CCM, (b) HO-3D. Legend:

RN50-F, RN18-U, DRNAtt, ACANet (ours). 73
4.14 Comparison of the predicted affordance and hand masks of the models

on sampled images from the mixed-reality testing sets. The segmenta-
tion masks are overlayed on the RGB images. KEY - GT: ground-truth,

graspable, contain, arm. 75
4.15 Comparison of the predicted affordance and hand masks of the mod-

els on sampled images from the real testing sets. The segmentation
masks are overlayed on the RGB images. KEY - GT: ground-truth,

graspable, contain, arm. 76

A.1 Feature extraction blocks: (a) Residual block [47], (b) MobileNetV3
block [51]. 101

A.2 Block diagrams of semantic segmentation architectures: (a) UNet, (b)
DANet, (c) PSPNet. Block diagrams are simplified to visualise the
main architecture blocks. In UNet, the encoder block contains also a
downsampling layer, while the decoder block the upsampling one to
match tensor dimensionality. 104

xvi List of figures

A.3 Block diagrams of object detection architectures: (a) Faster R-CNN,
(b)YOLOv1, (c) SSD. Block diagrams are simplified to visualise the
main architecture blocks. KEY – NMS: Non-maximum suppression. . 106

A.4 Mask R-CNN block diagram. The diagram is simplified to visualise
the main architecture blocks. 109

List of tables

2.1 Literature methods for object mass estimation. 15
2.2 Literature methods for affordance segmentation using RGB or RGB-D

images. We exclude from this table other models that may be part of
the affordance segmentation pipelines e.g., a separate object detector
before the affordance segmentation model. 17

2.3 Characteristics of existing datasets for visual affordance segmentation. 22

3.1 Mass estimation model training details 43

4.1 Embedded systems hardware specifics representing plausible hard-
ware constraints of wearable applications. Values are taken from the
electronic systems website. 51

4.2 Training details of object detection and affordance segmentation models. 65
4.3 Hand-occluded affordance segmentation models: size and computa-

tional cost. 77
4.4 Comparison of the affordance and arm segmentation results between

ACANet and its variations on the two mixed-reality test sets and on
the two real test sets. 78

Nomenclature

List of abbreviations

IoU Intersection over Union

J Jaccard index

mAP Mean average precision

P Precision

R Recall

List of symbols

α Coefficient in the focal loss

δ Coefficient in the Dice loss

ε Relative absolute error

η Constant in the L1 loss

γ Exponent in the focal loss

m̂ Predicted mass

Ŝ Predicted segmentation map

λ Coefficient of a loss

φ Feature maps

ψ Bounding box

m̃ Predicted binary segmentation map

A Dependency between foreground and background pixels

a Width aspect ratio between object crop and original image

B Number of images in a batch

xx Nomenclature

b Height aspect ratio between object crop and original image

C Segmentation classes

c Index of a class

D Varying importance of pixels

d Average distance

E Error between ground truth and prediction

G Flattened annotation

I RGB image

i Index of images in a batch

I′ Depth image

j Index of the recording in a dataset

K Number of candidate patches

l Index of pixel position

m Annotated mass

N Number of images in a dataset

n Index of image in a dataset

O Number of objects in an image

o Index of object in an image

p Probability of a class

q Recall Index

S Annotated segmentation map

s Mass estimation score

t Time instant

U Number of tasks

u Task of the agent

V Number of recordings in a dataset

x Pixel in an image

z Euclidean distance

Chapter 1

Introduction

1.1 Motivation

Affordances are the potential actions that objects of interest present in the environment

offer to an agent (e.g., a person or a robot) [31]. The perception of objects affordances

from visual data enables assistive technologies for robotics and prosthetic applications

(e.g., grasping, object manipulation [7, 78]), or collaborative human-robot scenarios

(e.g., handovers [14, 101, 105, 128]), shown in Fig. 1.1. In these scenarios the

affordance prediction allows the robotic hand to interact with objects [81, 24, 14, 129].

Affordances depend on several entities related to the object and the agent such as

the task (or purpose) of the agent, the geometric, kinematic, and physical properties

of the end effector (the part of the agent that interacts with objects). The geometric

and physical properties of objects affect how the interaction between end effector

and object will be carried out. The perception of affordances from an image is a

complex problem due also to the changing appearance of objects and environment

settings e.g., occlusions, lighting conditions. The variability in object shape and in

setting pushed toward the adoption of machine learning techniques to exploit the

learning and generalisation capabilities of data-driven methods. In particular, we

refer to the supervised learning approach that is one of the most common in the field,

but requires data to be annotated. Annotating affordances is a time consuming and

expensive activity and it requires the definition of conventions due to the ambiguities.

2 Introduction

(a) (b) (c)

Fig. 1.1 Examples of applications benefiting from visual affordance prediction: (a)
object picking [78], (b) human-robot collaboration [105], and (c) wearable robotics [7].

In principle, an agent could perform different actions on the same object region

depending on the broader purpose or context e.g., for humans the blade of a knife

affords both grasping and cutting based on if they want to use the knife or pass it to

another person. Another example is the internal surface of a cup that affords both

grasping and containing based on if humans want to pour a liquid or move the cup,

and if the cup is filled with content. The annotation can be manually performed on

images [80, 82] or can be generated using computer graphics techniques starting from

the annotation of a 3D model of the object (CAD) [23]. Moreover, generating a good

quality CAD model from a real-life object is a time-consuming and expensive activity

and leads to obtain a single instance of an object category. The projection of the object

model in a scene assumes perfect knowledge about pose (translation and rotation) of

the object in the environment, which is not something necessarily present at testing

time, and requires additional processing to handle occlusions. The instances of the

same category can vary in shape, hence training a model only on few instances may

not be enough to generalise to unseen instances.

To perform actions on objects, an agent needs to estimate their properties e.g.

location and mass, and identify the functional regions (affordances) such as the gras-

pable ones [24, 105]. The properties and the functional regions allow the interaction

between the agent and the object, they constitute an information that can be refined

over time and also during the interaction. Functional regions are related to the object

geometry and physical properties of the object e.g., concave shapes afford the hold-

ing of a content, sharp regions afford cutting. Estimating the object location, mass,

1.1 Motivation 3

(a)

(b)

(c)

Fig. 1.2 Challenges in visual affordance prediction: (a) same object instance, different
filling and background, (b) same object category, different instances, poses and back-
grounds, (c) different object categories in different poses and scenes. Images are from
datasets of the literature [40, 42, 107, 125], cropped for visualisation purpose.

and functional regions, from an image is not trivial due to the variations in object

appearance that depend on the setting and the application. The object instance could

be previously unseen [101, 128], occluded either by other objects in cluttered scenes

or by a human hand during a manipulation. Containers are one of the most interesting

object set because they can change their properties e.g., the mass due a manipulation

(emptying or filling), their appearance in case of the material due to transparencies

and/or stiffness [105] (see Fig. 1.2a and Fig. 1.2b).

4 Introduction

The mass estimation is closely related to affordance, influencing the interaction

between an agent and the objects in both the motion planning and the force regulation,

and involving different modalities like vision, audio, tactile. The need of multiple

modalities arises to cope with the challenges introduced by using only one input e.g.,

predicting the mass of container made of an opaque material and filled with unknown

material, from an image. The additional audio and the tactile modalities can provide

cues about the container material, and the filling material, that may be hard to predict

from the visual information. In general, the mass of a container can be formulated as

the sum between the mass of the container without considering the content (empty

container mass) and the mass of the filling content (filling mass) [123]. Most of the

available methods focused on filling mass estimation [15, 54, 67], so the estimation of

the container mass regardless of the content is not fully investigated yet. Approaching

this subproblem using only the visual modality is challenging because the appearance

of objects is influenced by the type of interaction and by the object geometric and

physical properties. The object could be occluded by a human hand manipulating it

or the colour could be changed by the filling e.g. in case of transparent containers

(see Fig. 1.2a). Another challenge consists of locating the object of interest, that may

vary based on the setting or the application. Most of the methods that estimate the

filling mass uses off-the-shelf detection methods that may lead to mistakes in the mass

estimation if more than one object is present in the scene.

Identifying functional regions of objects (affordance segmentation) allows an agent

to focus on graspable regions for a potential interaction. Methods in the literature

adapt existing models for semantic or instance segmentation to locate and segment

the affordances of objects placed on a tabletop [14, 24, 38, 80–82, 97, 129, 130]. The

difference between affordance segmentation and the standard semantic and instance

segmentation task is that in affordance segmentation most of the pixels of the image

belong to the background and not to objects, hence learning the features to segment

objects (as in semantic segmentation) is not sufficient, because functional regions are

parts of the object mask. This makes the affordance segmentation problem highly

imbalanced and challenging. The trade-off between computational cost and accuracy

1.1 Motivation 5

is rarely investigated, but could be a requirement in the case of wearable robotic

applications [90]. The segmentation of functional regions is even more challenging

when the object is hand-held by a person due to the occlusions caused by the hand and

the different poses that the object may take (see Fig. 1.2b and Fig. 1.2c). Only one

work addressed this scenario, but the model did not explicitly consider the presence of

the forearm and the hand [53]. This can result in inaccurate affordance segmentation.

Additionally, the focus of the method on egocentric images from human perspective

could be unsuitable for an assistive application, e.g. human-robot collaboration, or

generalise to third person view. Another challenge of this scenario is the lack of

datasets to train and evaluate models.

In this thesis, we tackle the challenging problem of affordance prediction, intro-

ducing an overall framework (see Fig. 1.3) that considers the connections between the

affordances and the object properties. The modular structure allows the replacement of

each component based on the needs e.g., lightweight models to increase the throughput,

or more accurate models. Vision models are first trained offline on the single tasks to

learn the parameters that are kept constant during the inference phase. Object detection

methods restrict the input of subsequent models to some regions of interest in the

image, ignoring the ones that are not informative. The selection of the object of interest

in the scene depends on the specific purpose of the interaction e.g., taking the object

that is held by a human. Based on the objects present in the scene, other models predict

the mass, and the graspable regions to perform the task. The predictions of the visual

system can be fused and used as prior information to support the movement planning,

and the adjustment of the robotic hand pose and force during the interaction (Control).

The fusion of the estimated mass and segmented affordances is strictly related to the

control phase and the experimental validation consists in analysing the performance

with a robotic hand, hence we keep it as part of the future work. In this thesis, we

focus on the computer vision aspect of the framework, in particular the detection, mass

estimation, and affordance segmentation subproblems from visual data. We tackle

the mass estimation and the segmentation separately due to the absence of a single

unifying dataset with the necessary annotation to train and test models. However, as

6 Introduction

Fig. 1.3 Visual affordance prediction framework. The vision system predicts the
location, the mass and the functional regions of objects in the field of view; based on
the predicted information, the control system guides the robotic hand to interact with
objects.

mentioned before, these subproblems are strictly related to the way the agent will

interact with objects, from the planning of the object reaching to the actual interaction.

1.2 Problem formulation

A camera captures RGB-D frames with a human interacting with an object. Our

objective is to the detect objects of interest in a frame, estimate their mass, and identify

the affordance class graspable on the objects surface, separating it from non-graspable

classes e.g., contain (internal surface of a cup), pound (top of a hammer), and arm (in

case the object is hand-occluded).

Let It ∈ {0, ...,255}W×H×3 be the RGB image of one or more objects o= {1, ...,O}

an agent can interact with, where W is the width, H is the height, t is the time instant.

The object(s) may be placed on a tabletop or held by one person. Let I′t ∈RW×H be the

depth map associated to the RGB image, and u ∈ N be one of the U tasks of the agent.

1.3 Contributions 7

We define a function f1(.) that predicts the location of objects encoded as bounding

boxes ψt,o ∈ R4 where the dimensions are the top left corner coordinates in the image

plane, width and height. A function f2(.) predicts the object mass mt,o ∈ R>0. A

function f3(.) predicts the segmentation mask St,o ∈ {0, ...,C}Wo×Ho , where Wo and Ho

are the object width and height in the image plane, each pixel is one of the C classes

e.g., background, the object affordances graspable and contain, and the arm in case

the object is hand-occluded.

Considering our framework, the function f1, that localises and selects the objects, is

fed with the images while the mass estimation and the graspable regions segmentation

are performed by f2 and f3 respectively, based on f1 output:

ψt,o = f1(It , I′t ,u) , (1.1)

mt,o = f2(It , I′t ,ψt,o) , (1.2)

St,o = f3(It ,ψt,o,u) . (1.3)

The task u of the agent is considered as a prior and defined based on the potential

use of objects e.g., using a hammer to pound a nail, or taking a filled cup from a

person’s hand. The depth information I′t is used to select candidate objects and to

perform the mass estimation. I′t is not considered in the affordance segmentation

since most of the literature works show that the additional depth information does

not improve performance [8, 17, 62, 80]. The overall function describing the visual

affordance prediction can be written as combination of f2, f3 as f (f 2, f 3).

1.3 Contributions

Referring to the problem formulation, we provide contributions for the functions f1

(object detection), f2 (mass estimation), f3 (affordance segmentation). Considering

a camera framing a human manipulating an object e.g., a container, our aim is to

design a method to detect the manipulated object and estimate the mass regardless

of the content. Moreover, we tackle the problem of the detection in case of resource-

8 Introduction

constrained devices and the affordance segmentation in case of hand occlusion. The

contributions of the thesis are the following:

1. A procedure to locate the objects of interest in the scene. In case of a human

manipulating a container, we propose to select the manipulated container based on

the average distance computed from the depth map of a fixed-frontal camera. The

assumption is that the container manipulated by a human will be the nearest with

respect to the fixed-frontal view e.g., when preparing a handover [C2]. In case of

wearable robotic applications, a human indirectly controls the camera on a robotic

hand, moving it towards the object of interest. Since the human knows what object

to grasp (object of interest), we propose to learn the location of objects regardless

of the category (objectness) using a transfer learning technique called fine-tuning

(more details in Appendix A.2). We fine-tune lightweight models to target

resource-constrained devices that are common in wearable applications [C1].

The container selection procedure obtains an object localisation success of 90%

on a human object manipulation dataset, and the objectness fine-tuning improves

the detection performance on two affordance detection benchmarks. We publicly

release the code of the container selection procedure1.

2. A model to estimate the mass of a hand-occluded container regardless of the

content, using both color (RGB) and geometric information. The rationale

behind the model is that the object mass depends not only on the appearance

that provides cues about the material, but also on the dimensions. The model

processes RGB crops of the objects, the average distance of the object from

the fixed-frontal camera, and aspect ratio of the object crop compared to the

image resolution [C2]. Results show that the model is able to learn from images

having similar containers, yet in different configurations, e.g., lighting conditions

or filling. The combination of the mass estimation model with the mentioned

container selection results in a pipeline for container localisation and mass

estimation. The pipeline outperforms most of the baselines on two test sets

1 https://github.com/CORSMAL/Visual

https://github.com/CORSMAL/Visual

1.4 Organisation of the thesis 9

containing never seen object instances. We publicly release the code and the

trained model1.

3. A pipeline composed by the sequence of objectness detection and affordance

segmentation models to restrict the input of affordance segmentation models

to objects, instead of the whole scene [C1]. Moreover, we design a model to

segment affordances in a hand-occluded setting, separating the object and arm

regions. To achieve the separation between arm and object, our fusion module

weighs the feature maps to penalise pixels outside those regions [C3]. The

pipeline improves the performance of lightweight affordance segmentation model

overcoming the assumption of object in foreground and completely visible [90].

The designed affordance segmentation model trained on mixed-reality images of

hand-occluded containers shows better generalisation performance than previous

models to unseen backgrounds and object instances on both mixed-reality and

real data. We publicly release the code of the pipeline and the trained object

detection models2, the hand occluded object affordance segmentation code and

the trained model3.

4. The extension of the annotation of a mixed-reality dataset consisting of hands oc-

cluding containers [120], to train and test the models on affordance segmentation,

due to the lack of dataset in hand-occluded setting [C3]. We publicly release the

affordance annotation of the mixed-reality dataset4.

1.4 Organisation of the thesis

This thesis is organised as follows:

Chapter 1: we introduced the problem of visual affordance prediction with the overall

framework considered in the thesis to locate objects, estimate their mass, and

segment the regions of potential interaction for an agent. Also, we listed the

contributions of the thesis.
2 https://github.com/SEAlab-unige/ICECS-2021
3 https://github.com/SEAlab-unige/acanet
4 https://doi.org/10.5281/zenodo.5085800

https://github.com/SEAlab-unige/ICECS-2021
https://github.com/SEAlab-unige/acanet
https://doi.org/10.5281/zenodo.5085800

10 Introduction

Chapter 2: we review the literature of visual affordance prediction discussing differ-

ent perspectives on this problem. We focus the analysis on the mass estimation

and affordance segmentation subproblems, highlighting the challenges and the

limitations of available approaches; and we present datasets use to train and test

models with the measures commonly used to assess the performance.

Chapter 3: we present the proposed pipeline to detect containers of interest in a

recording based on the average distance, and we describe the model to predict the

container mass regardless of the content. We detail the training procedure and the

validation of the proposed method compared to the state-of-the-art techniques.

Chapter 4: we describe the pipeline to localise the objects in a scene and to segment

object affordances. We present the proposed fine-tuning procedure to detect

objects regardless of their class to support lightweight affordance segmentation

models in resource-constrained applications. Moreover, we describe the proposed

model to segment affordances in case of hand occlusions, along with the fusion

module to penalise pixels outside hand and object regions. We present the

annotation extension of a mixed-reality dataset to train and evaluate models on

hand-occluded container affordance segmentation task; we discuss the results

of the object detectors trained with the proposed procedure and we assess their

impact on the performance of lightweight affordance detection models; we

discuss the results of the proposed affordance segmentation model compared

with the state-of-the-art techniques on mixed-reality and real data.

Chapter 5: we summarise the achievements presented in this thesis, and we discuss

the future work.

Appendix A: we introduce some concepts and architectures that are useful to under-

stand the thesis.

Chapter 2

Literature review

In this chapter, we discuss the criteria used for the literature search (Sec. 2.1). We

describe advantages and drawbacks of different approaches to visual affordance predic-

tion (Sec. 2.2). We present an overview of the methods concerning the mass estimation

(Sec. 2.3) and affordance segmentation (Sec. 2.4) subproblems. We describe the details

and the limitations of existing datasets to train and test models (Sec. 2.5), and we report

the main performance measures used to evaluate object detection, mass estimation,

and affordance segmentation (Sec. 2.6). To conclude, we summarise the main concepts

of the literature review (Sec. 2.7).

2.1 Literature search criteria

The literature search was conducted to find works related to the visual affordance

prediction problem. The main databases to conduct the search were Google scholar,

IEEE Xplore, Springer, and some works were found searching the references of other

papers. The main keywords used during the search were: ‘grasping’, ‘affordance’,

‘grasping detection’, ‘affordance detection’, ‘affordance segmentation’. We considered

works related to Computer Vision and Robotics using only RGB or RGB-D input, from

2015 onwards because dataset started to grow in size including tens of thousands of an-

notated images and deep learning methods started to show better generalisation results

than hand-crafted features methods. We divided the collected publications about affor-

12 Literature review

dance prediction (total of 59 papers) into: preliminaries (26 papers), mass estimation of

objects and hand-occluded containers (10 papers), affordance segmentation/detection

(23 papers).

2.2 Preliminaries

The term ‘affordance’ was coined to indicate the actions that the environment offers to

the agent [31]. This broad definition suggests the intrinsic complexity of the problem

of understanding and predicting affordances that is studied in different fields such

as Ecological Psychology [9, 110], Neuroscience [85], Human Computer Interac-

tion [91], Computer Vision [44], and Robotics [57, 133]. The definitions given by

psychologists are partially overlapping, due to the problem complexity that in humans

involves perceiving, reasoning, and acting. For example, Gibson defined affordances

as directly perceivable [31], while Stoffregen and Chemero as relation between agent

and environment [9, 110]. In contrast with the direct perception of affordances, in

Robotics and Computer Vision, the use of machine learning models implies building

a representation of the environment [133]. In particular, in Robotics the concept of

affordance is mapped into grasping that allows the connection between the object and

the agent. Approaches are divided in two types [57]: one generates grasping poses

based on the physical and geometric modelling of both the object and agent (analytical

approach), while the other one learns from observed samples of grasping poses (data-

driven approach). Analytical approaches assume a perfect knowledge of the system

and the environment to compute the grasp pose, while data-driven approaches aim at

generalising from the observed sample poses. Among these two, the most consistent

approach with Neuroscience and Ecological Psychology is the grasp synthesis, because

it uses the perception and image features to generalise to unknown categories [57].

Most of existing works in grasp synthesis with data-driven approaches tackled the

problem considering the grasping as functional to the object pick-up, ignoring the

grasping as functional to different types of action (definition of affordance) [6, 29]. In

this thesis, we adopt the definition related to the functional interaction with an object

2.2 Preliminaries 13

predicted from a visual input [44, 80, 85]. Through data-driven approaches we aim

at identifying the regions that the agent can use to perform an action on the object

(grasping), distinguishing them from the regions that the agent can use to perform

actions with the object (e.g., cut, contain, pound). Although the segmentation of affor-

dance regions is independent of the robotic arm, it can be mapped to the robotic arm

primitives that execute the actions using off-the-shelf control strategies [24, 82, 129].

Visual affordance prediction can be tackled using different approaches e.g., recog-

nition, grasping detection, keypoint detection, segmentation, each one represents a

different perspective on the problem with its own advantages and drawbacks. The

affordance recognition predicts the actions that can be performed with objects in

the scene either from human demonstration [48, 87], or from images of the envi-

ronment [112, 140]. However, the absence of a segmentation process to associate

affordances to regions of objects constitutes a high level reasoning, not sufficient to al-

low the physical interaction of a robotic hand [48, 112, 140]. The position of graspable

points on the object surface can be learned to identify where the agent can perform the

interaction [70, 88, 127]. These methods are mostly trained on simple conditions such

as objects on a tabletop, so the keypoint detection could fail with different backgrounds

especially if the method is using the color information. Alternatively, the graspable

regions of an object can be detected using a rectangle to represent the 5 degrees of

freedom of a parallel plate gripper on the image plane [2, 3, 18, 61, 64, 92, 135]. In

particular, 1 degree of freedom is used to encode the gripper rotation with respect

to the horizontal axis, 2 for the translation of the gripper center (on the horizontal

and vertical axis), 2 for the geometry of the gripper (1 for the opening width, and 1

for the fingers length). The underlying assumptions are the depth map availability

to obtain the full 7 degrees of freedom representation of the gripper in the space (3

degrees of freedom for translation, 3 for rotation and 1 for the opening width) and the

fact that the objects can be grasped almost everywhere on the surface which is not

always true. Distinguishing functional regions helps to avoid grasping some regions

e.g., the internal surface of a cup filled with liquid. Moreover, most of the scenarios

targeted by the grasping detection techniques are in controlled conditions: objects on

14 Literature review

a tabletop or on the floor, with a top-down framing of the camera. These conditions

may cause models to fail the detection when deployed in other scenarios, where the

view is not top-down or hand occlusion is present due to a person holding the object.

Recently, affordance prediction problem has been approached as one shot affordance

detection exploring the selection of objects of interest [69, 134], or the segmentation

of affordance regions [41], based on the similarity between a support set of images and

a query set of images. One of the limitations in these approaches is that the support

image is supposed to be similar to the query ones implying that the object category in

the scene should be known a priori.

2.3 Mass Estimation

The estimation of container properties such as its mass represents a crucial stage

to prepare the interaction with objects. In a collaborative scenario like human-robot

handover, the mass clue can help the robot planning the movement and regulating the

force to hold the object during the object retrieval and the maneuvering [86]. Mass

estimation methods can process different data sources (see Table 2.1) to overcome

challenges such as transparent objects with noisy depth data, occlusions due to human

manipulation, variation in filling level, shape, stiffness, material and pose, that affect

the appearance of the container and the sound during a manipulation e.g., filling. The

container mass can be indirectly retrieved by combining two properties: filling mass

and empty container mass. The filling mass can be seen as the result of three contribu-

tions: filling type classification, filling level and container capacity estimation [123].

To perform filling type classification, audio is one of the most used modality, either

processing spectrograms [15] or classical audio features [13]. Solutions for filling

level estimation can exploit only audio modality [55] or the combination with visual

data [54, 67]. Visual information represents the main modality used to estimate the

container capacity. The detection problem is tackled either using heuristic methods

based on the handover application [15], object detectors [67] or instance segmenta-

tion models [54]. The task of capacity estimation can be considered as a regression

2.3 Mass Estimation 15

Table 2.1 Literature methods for object mass estimation.

Ref Input Views Task

RGB D A FM EM

Donaher et al. [25] ◦ ◦ • - • ◦
Liu et al. [67] • ◦ • 4 • ◦

Iashin et al. [54] • • • 4 • ◦
Ishikawa et al. [55] • • • 1 • ◦

Christmann et al. [15] • • • 1 • ◦
Wang et al. [119] • • ◦ 1 ◦ •

Matsubara et al. [72] • • ◦ 3 ◦ •

Apicella et al. [C2] • • ◦ 1 ◦ •

KEY – •: considered, ◦: not considered, D: depth,
A: audio, Views: viewpoints, FM: filling mass,
EM: mass regardless of the content.

problem, employing either simple Convolutional Neural Networks on single fixed

frontal view depth data [15] or distribution fitting via Gaussian processes using object

category as a prior across multiple views [67]. Otherwise, the segmented container can

be approximated to a primitive shape in 3D, computing capacity as a by-product [55],

or using volume formulas [54].

Recently, few works have provided solutions to the problem of estimating the

empty container mass from visual data [72, 119]. The detection of the container

is tackled using lightweight object detector (YoloV55), while the container mass is

learned using an augmentation strategy to vary the dimension of containers modifying

accordingly the mass, and a variance minimization to ensure consistent predictions

of the same container at test time [119]. Alternatively, the container detection is

performed by the Localisation and object Dimensions Estimator (LoDE) [126] using

with Mask R-CNN [46] to predict the object mask, while the empty container mass is

regressed using a custom Convolutional Neural Network that combines: the patch of

the container extracted using a formula to select the most visible view (across frontal,

left and right views of the scene), the symmetrically restored object mask from left

side fixed view, and information about container dimensions (height, width at the

5 https://github.com/ultralytics/yolov5

https://github.com/ultralytics/yolov5

16 Literature review

bottom, width at the top) [72]. However, this method is not suitable in case a single

camera is available, because of the selection formula that requires more than one view.

Moreover, LoDE obtains an inaccurate geometric information of the container when

the depth map is incomplete, for example in case the container is partially occluded or

transparent. Another limitation of LoDE is about the symmetry of the object because

the optimisation process generates concentric circumferences, hence only cilindrically

symmetric objects can be reconstructed.

2.4 Visual affordance segmentation

Methods for visual affordance segmentation identify functional regions of objects

e.g., graspable regions, adapting models for semantic or instance segmentation from

images, but considering affordance classes as semantic labels [11, 44]. The affordance

segmentation training is performed either with full supervision or with weak super-

vision. Full supervision is possible when the whole regions in images are annotated.

Weakly-supervised learning studies techniques to learn from point-wise annotation that

is less expensive and time-consuming than dense annotation. As shown in Table 2.2,

most of the models use supervised learning paradigm to detect objects and segment

affordances, while very few models adopt weakly-supervised learning [20, 107], show-

ing comparable performance to early state-of-the-art approaches. The majority of

methods process RGB only images. RGB-D cameras are more expensive than RGB

sensors and using depth maps does not provide a significant boost in terms of per-

formance despite using additional information [8, 17, 62, 80]. To process the input

depth, models exploit geometric features [80, 81], however these features seem to be

dependent on the environment elements such as floor, tables and chairs, not fit when

the framing contains only the target object and the table, which is the case of most

affordance dataset (see Sec. 2.5). Methods using geometric hand-crafted features to

learn affordances underperform compared to deep learning techniques [81]. Some of

deep learning methods can be part of a two-stage approach including a detection step to

locate objects of interest. Affordances are then predicted in the region cropped around

2.4 Visual affordance segmentation 17

Table 2.2 Literature methods for affordance segmentation using RGB or RGB-D im-
ages. We exclude from this table other models that may be part of the affordance
segmentation pipelines e.g., a separate object detector before the affordance segmenta-
tion model.

Model Col Attention OA Aff. head Obj. head FS

SP CH SA C E C S D

S-HMP [80] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
ED-RGBD [81] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

ADNet [8] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
PartNet [62] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

Multi [17] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • •
A4T [58] ◦ ◦ ◦ ◦ • • ◦ • ◦ • •

DeepLabAff [107] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
MobileNetAff [90] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

BB-CNN [82] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
RN50-F [53] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
DRNAtt [38] • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
STRAP [20] • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦

GSE [137] • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
SEANet [130] • • • ◦ ◦ ◦ • ◦ ◦ ◦ •

ADOSMNet [10] • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •
RANet [139] • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

BPN [129] • • • ◦ • ◦ • • ◦ • •
AffordanceNet [24] • ◦ ◦ ◦ • ◦ ◦ • ◦ • •

ESPNet [115] • ◦ ◦ ◦ • ◦ ◦ • ◦ • •
B-Mask-RCNN [79] • ◦ ◦ ◦ • ◦ ◦ • ◦ • •

ACANet [C3] • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ •
KEYS – •: considered, ◦: not considered, Col: RGB only, OA: object-affordances
relation, FS: full supervision, SP: spatial, CH: channel, SA: self-attention, C:
classification, E: edge segmentation, S: segmentation, D: detection.

the detected object or the corresponding feature map [14, 16, 24, 44, 82, 129]. The two

steps can be tackled independently in a cascade approach [10, 82], to extract the re-

gions of interest, or learned in an end-to-end manner using multi-tasking [14, 24, 129].

For example, AffordanceNet [14, 24] replaces the instance segmentation branch of

Mask R-CNN [46] to predict affordance classes of the regions of interest localised in

the feature map. The existence of a detection model is the assumption of many models

in the literature [38, 53, 90, 130, 137], that are trained and tested with cropped images

containing the annotated object(s). The rationale behind the cascade approach is to

18 Literature review

have two models, one for detection and one for segmentation, that can be designed

or replaced independently to improve accuracy or computational complexity. The

dependence on the detection step can result in predicting the presence of an object in

the wrong region of the image (false positive) or missing to locate the object (false

negative), especially when the object is occluded by a hand. These mistakes lead to a

propagation of the errors affecting also the affordance segmentation model that may

predicts affordance regions in parts of the image without an actual object.

Recently, the attention mechanisms gained popularity in the instance and semantic

segmentation tasks and some methods were adapted to segment affordances focusing

on the object area or selecting more relevant features [38, 130, 137, 139]. For example,

DRNAtt [38], inspired by Dual Attention Network [30], uses Spatial Attention Module

to model contextual information (similarity between features in each pixel position)

and Channel Attention Module to model channel inter-dependencies (similarity among

channels) [30]. Due to the use of spatial attention, that works with low-resolution

feature maps, DRNAtt predicts false positives if large portions of the image belong

to the background, because at low-resolutions details of objects in the input image

may be lost. This limitation is common with other approaches adopting the spatial

attention [129, 130]. Another type of attention mechanism is the Shared Gradient

Attention, that predicts a spatial attention for each channel of a feature map. The

attention map is then combined with features maps to predict affordance segmentation

and semantic edge detection [130]. However, this type of model predicts false positives

in case objects are hand-occluded, transparent, or in cluttered environments because

of blurred or missing edges. Apart from the methods that restrict the affordance

segmentation to objects regions of interest e.g., two-stage methods, few models exploit

the relation between the object classes and the affordance regions [10, 129, 139]. The

link between objects and affordances is learned in the relationship-aware module

predicting the object categories through an attention mechanism that weights the

feature maps channels [139]. The fact that the relationship-aware module uses the

whole feature map could cause the model to fail in case of multiple objects and classes

are present or in case the object is partially visible due to occlusions. The other

2.5 Datasets 19

method to learn the relationship between objects and affordances is the relationship

attention module that processes the cropped feature map of a Mask R-CNN like

model [129]. In particular, a multi-layer perceptron predicts the weights (attention)

used to penalise the predicted affordance categories from the compressed (pooled)

representations of the predicted semantic edge, of the predicted affordances, and of

the predicted object classes. All mentioned methods focus on scenes with objects

that are placed on a tabletop, and are either fully visible or partially occluded due to

clutter [38, 81, 130, 137, 139]. These objects are often opaque or textured and easily

distinguishable from the background, causing the affordance segmentation models

to fail when observed objects are in more challenging poses or occluded, as in the

case of hand-held objects when manipulated by a person. There is only one close

work that tackles the segmentation of affordances of hand-occluded objects [53]. This

work uses a ResNet-FastFCN [122] with a pyramid parsing module [138] to predict

high-resolution outputs by using global contextual information (usually beneficial for

segmenting general scenes). However, the model ignores the hand and the global

contextual information does not help the model to capture fine affordance predictions

on the object of interest. This can result in inaccurate segmentation of the affordances

(e.g, predicted on the hand region). Even if the occlusions are common in realistic

scenarios, very few affordance segmentation methods explicitly handle them. Thus,

the problem of segmenting the affordance when occlusions are present remains still

open and could enable collaborative scenarios.

2.5 Datasets

The estimation of objects mass from images is underexplored in the literature,

hence the limited presence of datasets. Image2mass [109], consists of images of single

object on a white background crawled from Amazon with the mass provided by the

object description in the online store. However, the white background could influence

the generalisation performance of trained models to real scenes (see Fig. 2.1a). Most of

20 Literature review

(a) Image2mass

(b) CCM

Fig. 2.1 Samples from mass estimation datasets: (a) Image2mass [109] and (b)
CCM [125]. Image2mass has different object types from toys to tools with different
materials and colors, distinguishable from the background (images taken from the
paper). CCM focuses on manipulated containers with different view, background,
lighting, and interactions. Images are resized at the same height for visualisation
purpose.

existing solutions use the CORSMAL Containers Manipulation (CCM) dataset [125],

that includes annotated audio-visual recordings of people interacting with containers.

The annotation is performed by weighting with a scale the empty container and the

2.5 Datasets 21

Fig. 2.2 Examples of manual annotation on real data [80, 82]. Mistakes are highlighted
using orange rectangles: not every object in the image is annotated (1st column), or
the annotation has missing regions (2nd and 4th column), the annotation is over the
hand occluding the object (3rd column).

filled container, and the mass of the content is computed by means of subtraction. The

challenges in CCM dataset are the presence of hand occlusions that happen when

people interact with the containers, and the varying appearance of containers due to

the material, shape, and filling (see Fig. 2.1b).

Datasets for affordance segmentation are annotated labelling the pixels of the

object regions with an affordance class [14, 16, 58, 60, 80, 82, 107]. The definition of

the classes is decided as a convention in each work based on the object categories [60,

80, 82]. In general, each part is labelled with the action performed by a human when

using the object for the purpose it was designed e.g., the blade of the knife is the

part that is designed to cut, while the handle is graspable by the agent to perform

the cutting. Annotators are instructed with the convention by experts or they are the

experts themselves. Recent annotation tools (e.g., LabelMe [103]) allow an annotator

to create a closed polygon around the object region that by convention belongs to a

certain class and to label the region with the appropriate class. Manual annotation is

a time-consuming task and it is subject to different kinds of error. Some objects in

the scene might not be annotated, especially in case of clutter or if they are small for

22 Literature review

Table 2.3 Characteristics of existing datasets for visual affordance segmentation.

Dataset Images Real Tr TPV HO

UMD [80] 28,843 • ◦ • ◦
Multi-View [60] 47,210 • ◦ • ◦
HANDAL [40] 308,000 • ◦ • ◦

TRANS-AFF [58] 1,346 • • • G#

IIT-AFF [82] 8,835 • • G# G#

FPHA-AFF [53] 4,300 • • ◦ •
CAD120-AFF [107] 3,090 • ◦ • •

AFF-Synth [14] 30,245 ◦ ◦ • ◦
UMD-Synth [16] 37,200 ◦ ◦ • ◦

CHOC-AFF [C3] 138,240 G# • • •

KEY - Real: real data, HO: hand-occlusion, Tr: transparency,
TPV: third person view, •: considered, ◦: not considered, G#: mixed

example due to the distance from the camera. Moreover, the annotation might have

holes or might not be completely over the object boundaries, because intensity values

of the space are discretised in the pixels space, hence some pixels contain a blended

intensity value between the object and the background. We show some samples of

data manually annotated data in Fig. 2.2, highlighting human annotation mistakes e.g.,

missing affordance regions, or objects. In mixed-reality or synthetic datasets CAD

models are annotated, the object (CAD model and texture) is created in a virtual scene

and then a virtual camera renders the scene in an image [14, 16]. The projection of the

synthetic scene in the camera frame is performed using synthetic lighting, and also

the annotated regions can be projected in the camera frame to obtain the affordance

annotation. The effort of the annotator is in labelling the CAD model regions.

The majority of datasets has real images captured from a third person perspective,

and very few datasets contain hand-occlusions and transparent objects that increase the

level of challenge (see Table 2.3). UMD [80] is composed by images of objects placed

on a blue rotating table in the same environment, and has two types of annotations. In

one case an annotator labelled pixels associating only one affordance class per region.

In the other case, more than one annotator was involved to rank all affordance classes

with the one associated to a region, allowing for multiple affordance classes for a

2.5 Datasets 23

same region. Similarly, Multi-View [60] contains images of objects placed on a white

rotating table keeping the same lighting, but includes a larger number of affordance

classes and object categories. HANDAL [40] varies objects placement in outdoor and

indoor environments such as a street or a living room, also containing clutter. Off-the-

shelf methods predict the 6D pose of the objects in each frame and reconstruct the CAD

model [121], then the annotator labels the handle of the CAD models as graspable.

The final annotation mask is obtained by projecting the annotated CAD model in the

camera frame through the estimated object and camera pose. The main limitations

of HANDAL is the absence of hand occlusion and the fact that graspable regions are

annotated only on objects having a handle. TRANS-AFF [58] is focused on transparent

objects placed on a tabletop, increasing the difficulty to predict affordances, as objects

are also in different poses. IIT-AFF [82] is composed by images of objects placed in

a cluttered scene to better reflect a scenario with clutter and occlusions. One part of

the dataset is collected from other datasets like ImageNet [109] varying the instances

and the setting of the images. In CAD120-AFF [107] images are sampled from videos

of humans performing activities in a realistic setting, e.g., kitchen, office, with more

than one object in the scene and also hand occlusions. FPHA-AFF [53] has images of

hand-held objects acquired from an egocentric point of view. However, the affordance

annotation of this dataset is currently not publicly available and egocentric images

contains arms from the bottom of the image, resulting in objects highly occluded

by the hands. All the previous datasets are manually annotated but limited in their

size, making the training of visual affordance segmentation model a problem. The

need for thousands of labelled data has pushed towards the generation of synthetic

datasets. UMD-Synth [16] simulates UMD in a synthetic manner and has objects in

different backgrounds and object poses, but provides only one affordance per object

region. AFF-Synth [14] has images generated using domain randomization techniques

to overcome the gap between simulated and real data. Unlike UMD-Synth, each image

of AFF-Synth includes multiple objects, some of them can be used as distractors

during training, since they do not have affordance annotation. These synthetic datasets,

however, are still small in size and do not contain occlusions, especially in the case of

24 Literature review

objects held by a person. Fig. 2.3 shows sampled images from the mentioned datasets.

Note that the object instances and background conditions vary among datasets, and

that the categories available are overlapping mainly for containers such as mugs and

cups.

2.5 Datasets 25

(F
ig

ur
e

co
nt

in
ue

s
in

th
e

ne
xt

pa
ge

)

26 Literature review

Fi
g.

2.
3

Sa
m

pl
ed

R
G

B
im

ag
es

fr
om

af
fo

rd
an

ce
se

gm
en

ta
tio

n
da

ta
se

ts
:U

M
D

[8
0]

,M
ul

ti-
V

ie
w

[6
0]

,H
A

N
D

A
L

[4
0]

,T
R

A
N

S-
A

FF
[5

8]
,

II
T-

A
FF

[8
2]

,F
PH

A
-A

FF
[5

3]
,C

A
D

12
0-

A
FF

[1
07

],
A

FF
-S

yn
th

[1
4]

,U
M

D
-S

yn
th

[1
6]

.
D

at
as

et
s

ha
ve

di
ff

er
en

to
bj

ec
ti

ns
ta

nc
es

an
d

ba
ck

gr
ou

nd
co

nd
iti

on
s

fr
om

si
ng

le
ob

je
ct

on
a

pl
ai

n
co

lo
re

d
ba

ck
gr

ou
nd

to
cl

ut
te

ro
rh

an
d-

oc
cl

ud
ed

ob
je

ct
s.

Im
ag

es
ar

e
re

si
ze

d
at

th
e

sa
m

e
he

ig
ht

ke
ep

in
g

th
e

as
pe

ct
ra

tio
fo

rv
is

ua
lis

at
io

n
pu

rp
os

e.

2.6 Performance measures 27

2.6 Performance measures

Along with models and datasets, the literature provides performance measures i.e.

quantitative ways to evaluate and compare models predictions. Performance measures

compare the prediction with the annotation through a function that outputs a scalar

value. Based on the function, the performance can be better with a small value and

worse with a large value, or vice-versa.

To evaluate the performance of a mass estimation model on visual data, we use

the relative absolute error (ε) and the mass estimation score (s) between the estimated

measure m̂ j, and the true measure m j [124]. Given a set of recordings {v j| j = 1, ...,V},

we compute the relative absolute error as:

ε(m̂ j,m j) =
|m̂ j −m j|

m j , (2.1)

were j is the index of a single recording. The relative absolute error is an unbounded

function greater than 0. ε has a value over 1 when the estimated mass is greater than

the annotated mass, and close to 0 when the estimated mass is lower than the annotated

mass. The score s ∈ [0,1] is used to average the relative absolute error across all V

recordings6:

s =
1
V

V

∑
j=1
1 j e−ε(m̂ j,m j). (2.2)

The value of the indicator function 1 j ∈ {0,1} is 0 only when m̂ in recording j is not

estimated. The score has value 1 when the estimation error is 0 (the predicted mass and

annotation are equal). This score might not be ideal to compare models in applications

in which it is preferable predicting a greater mass value rather than a lower one e.g., a

container composed by a hard material with dangerous filling. If the model predicts

a mass lower than the actual value, the interaction between the robotic hand and the

object could cause the container to slip or to spill the content.

The performance of object detectors on a set of images {In|n= 1, ...,N} is evaluated

using the mean Average Precision (mAP), that depends on the Jaccard Index. The

6https://corsmal.eecs.qmul.ac.uk/challenge.html

https://corsmal.eecs.qmul.ac.uk/challenge.html

28 Literature review

Jaccard Index or Intersection over Union (IoU) is a score in [0,1] range used to count

bounding boxes true positives, false positives, and false negatives, since it takes into

account how much predicted bounding box is overlapped with the annotation and how

much they are similar in size. Given a predicted object class (score is used to rank the

predictions in descending order) and a IoU threshold, we first compute true positives

(T P), false positives (FP), and false negatives (FN). A true positive is a predicted

bounding box that has an IoU score with the bounding box of the same class over the

threshold, a false positive is a predicted bounding box that has an IoU score with the

bounding box of the same class below the threshold. A false negative is a ground truth

bounding box that has not a corresponding prediction over the IoU threshold. Precision

P = T P
T P+FP and recall R = T P

T P+FN can be computed, and precision-recall curve is built

interpolating points. The mean Average Precision (mAP) score is calculated by taking

the mean area of Precision-Recall curve over all classes and/or overall IoU thresholds.

Instead of computing the integral of the curve to retrieve the area, an approximation is

used by sampling points computed as:

mAP =
Q

∑
q=1

(Rq −Rq−1)P̂(Rq) , (2.3)

where Q is the number of interpolation points, P̂(Rq) = maxR̃≥Rq
P(R̃) is the precision

value at Rq. The computation of the mean average precision depends on the chosen

number of interpolation points, the more the better. For this reason, we adopted the

standard COCO score that uses 101-point interpolated curve averaging the results also

varying the IoU threshold.

To evaluate and compare the affordance segmentation models, we compute the per-

class precision, recall, and Jaccard Index as percentages across all images of a given

dataset {In|n = 1, ...,N}. Precision measures the percentage of true positives among all

positive predicted pixels. Recall measures the percentage of true positive pixels with

respect to the total number of positive pixels. The Jaccard Index measures how much

two regions with the same support are comparable. In general, when comparing multi-

dimensional data like segmentation mask, using a number to represent the comparison

2.6 Performance measures 29

leads to information loss e.g., in what regions the prediction and the the two images

are different. To compute precision, recall, and Jaccard Index, we first compute true

positives (T P), false positives (FP), and false negatives (FN) between prediction Ŝn

and annotation Sn for each RGB image In ∈ D and for each class c. A true positive

is a pixel x ∈ In that is predicted as class c in Ŝn and the corresponding pixel in Sn is

annotated as c. A false positive is a pixel x ∈ In that is predicted as class c in Ŝn, but

not annotated as c in Sn. A false negative is a pixel x ∈ In that is not predicted as class

c in Ŝn, but the corresponding pixel in Sn is annotated as c. We therefore compute the

per-class precision, P, the per-class recall, R, and the per-class Jaccard Index, J, as:

P =
∑

N
n=1 ∑x∈In T P

∑
N
n=1 ∑x∈In T P+FP

, (2.4)

R =
∑

N
n=1 ∑x∈In T P

∑
N
n=1 ∑x∈In T P+FN

, (2.5)

J =
∑

N
n=1 ∑x∈In T P

∑
N
n=1 ∑x∈In T P+FP+FN

. (2.6)

Note that we keep the notation simple and we did not include the index of the class c

in the above equations, as all the results will refer to the per-class measures. One of the

limitations of the described measures is that they do not take into account the distance

of the mistake e.g., false positives, to the annotation. In affordance segmentation task

it is preferable to have a region of false positives close to the annotation, rather than

in another part of the image support because it means that the model predicts the

affordance region close to the object rather than in the wrong portion of the image.

Another performance measure for affordance segmentation is Fw
β

[71]. The key

idea is to attribute different importance to different prediction errors, through weighting

functions. Y is column-stack representation of the ground-truth segmentation mask S,

while Ŷ is column-stack representation of the predicted segmentation mask Ŝ. Weight

functions are a A, which captures the dependency between foreground and background

30 Literature review

pixels, following the relation:

A(i, j) =


1√

2πσ2 e−
z(i, j)2

2σ2 ∀i, j Y (i) = 1,Y (j) = 1

1 ∀i, j Y (i) = 0, i = j

0 otherwise

, (2.7)

where z(i, j) is the Euclidean distance between pixel i and pixel j. σ2 controls the

influence of pixels that are farther away. The larger σ2 is, the greater the influence of

distant pixels.

The varying importance of pixels is captured through the function D that weighs

false detections based on their distance from the foreground

D(i) =

1 ∀i,Y (i) = 1

2− eα·∆(i) otherwise
, (2.8)

where ∆(i) = minY (j)=1 z(i, j). The constant α determines the decay rate.

The per-class Fw
β

is computed as:

Fw
β
= (1+β

2)
Pw ·Rw

β 2 ·Pw +Rw , (2.9)

where Pw = T Pw

T Pw+FPw is the weighted precision and Rw = T Pw

T Pw+FNw the weighted recall.

In particular, T Pw = (1−Ew) ·Y , FPw = Ew · (1−Y), FNw = Ew ·Y , where Ew =

min(E,EA) ·D is the combination between the error E = |Y − Ŷ | and the weighting

functions A and D. The parameters σ in A and α in D should be tuned for the specific

application and dataset, because the measure takes into account the distance in terms

of pixels, that is not the same as considering distances in the actual scene (two small

objects might seem far from each other if the camera is very close to them). We

used the default values to compare methods, as in the literature. Moreover, due to the

mathematical definition, Fw
β

can not be computed for the classes that are not in the

annotated mask, hence a part of the prediction mistakes are not taken into account. To

count all the mistakes, we computed the per-class Fw
β

between the concatenation of

2.7 Summary 31

all the predictions and the concatenation of all the annotations, so that all classes are

present [90]. However, this method might require a huge amount of memory to run

based on the resolution of segmentation mask and the dataset size.

2.7 Summary

Visual Affordance Prediction is a challenging problem with different abstraction layers.

In this chapter, we first described different perspectives on the affordance prediction

problem, that can be approached as a classification, keypoint detection, grasp detection,

segmentation. The main challenges are the varying appearance of objects due to factors

such as shape, pose, lighting, material, and presence of occlusions either due to other

objects or due to a human hand during an interaction. The literature review focused on

the estimation of the object mass and the segmentation of graspable regions, that can

support the control logic of a robotic-hand. The localisation is a common subproblem

for mass estimation and graspable regions segmentation, and is approached using

object detectors, or by leveraging multi-task learning. Mass estimation literature is

mainly tackling the filling mass estimation and only two methods were designed for

container mass estimation regardless of the content. Most of affordance segmentation

methods adapt instance and semantic segmentation models to the task of affordance

segmentation by changing the output classes, few models explore the relationship

between the object and the affordances and the objects. Only one method was targeting

the case of hand-occlusion, however from a first person perspective and without

segmenting the hand that may cause the method to segment as graspable the human

hand. Although object categories and instances in datasets vary, they are mostly

placed on a tabletop with a simple background. Objects are often opaque or textured

and easily distinguishable from the background, causing trained models to fail when

objects are in more challenging poses or occluded. Even though in realistic scenarios

occlusions are common, the state-of-the-art datasets and solutions considering them

are very limited in number, hence the problem of predicting object properties and

consequently affordances, remains still open. This thesis focuses on the mentioned

32 Literature review

limitations, proposing a method to estimate container mass regardless of the content

taking into account color and geometric information, a method to segment graspable

regions separating them from the hand occluding the object, and the extension of

annotation of a mixed-reality dataset of hand-occluded containers with affordances to

train and test models.

Chapter 3

Container mass estimation

In this chapter, we describe the localisation and mass estimation sections of the overall

framework (highlighted in Fig. 3.1). We present the proposed method to locate a

manipulated container and estimate its mass independently of the presence of the

content, from a fixed-frontal RGB-D camera (Sec. 3.1); we show the experimental

setup and the quantitative comparison with other methods (Sec. 3.2); and we draw the

chapter conclusions (Sec. 3.3).

Fig. 3.1 Overall framework considering localisation and mass estimation phases. An
instance segmentation model locates objects in the RGB image. The selection phase
extracts the patches (image crops) and discards crops based on the average distance
computed from the depth map. Then, the mass estimation model predicts the mass of
the object. The other phases of the framework (affordance segmentation, fusion, and
control) are not considered.

34 Container mass estimation

3.1 Container localisation and mass estimation

The proposed method runs on RGB-D sequences to predict the mass of the container

manipulated by a human regardless of the content. The rationale behind the pipeline

is to first detect the objects in the frames and to filter out the containers that are

not manipulated during the recording. To perform this filtering, we use a heuristic

approach based on the fact that in case of handover the manipulated container will

be offered, hence it will be the object in the scene closest to the fixed-frontal camera.

We select K candidate containers to be more robust to mistakes in the filtering, and

we average K mass values (one per-candidate) predicted by a custom model. The

model that predicts the mass regardless of the content is designed to combine the color

information with the average distance and aspect ratio information, since the color

provides hints about the material, while the average depth and aspect ratios about

the geometry. Our method can be combined with existing techniques for filling mass

estimation [123] to obtain the complete mass of the manipulated container, and is

divided into three phases (see Fig. 3.2):

1. Localisation: we locate the containers in the RGB sequence every n frames using

an instance segmentation model.

2. Patches selection: the method automatically selects the K-nearest containers

based on the average of depth values on the segmentation mask, assuming that

the manipulated container is the nearest with respect to the fixed frontal view.

3. Mass estimation: the mass estimation model predicts one mass value per patch

(K predictions in total). The container mass (m̂) regardless of the content (empty)

is computed as the average of the predictions.

3.1 Container localisation and mass estimation 35

Fi
g.

3.
2

B
lo

ck
di

ag
ra

m
of

th
e

pr
op

os
ed

ap
pr

oa
ch

.F
or

ea
ch

fr
am

e,
co

nt
ai

ne
rs

ar
e

de
te

ct
ed

,t
he

n
K

ne
ar

es
tp

at
ch

es
ar

e
se

le
ct

ed
le

ve
ra

gi
ng

th
e

ra
w

de
pt

h
m

ap
s

co
ns

id
er

ed
in

th
e

se
gm

en
ta

tio
n

m
as

k
co

or
di

na
te

s.
Th

e
em

pt
y

m
as

s
of

ea
ch

pa
tc

h
is

pr
ed

ic
te

d
by

th
e

m
od

el
w

hi
ch

ta
ke

s
as

in
pu

tt
he

R
G

B
pa

tc
h

an
d

tri
pl

et
s

of
va

lu
es

:a
sp

ec
tr

at
io

w
id

th
,a

,a
nd

he
ig

ht
,b

,a
nd

av
er

ag
e

di
st

an
ce

,d
.T

he
fin

al
em

pt
y

m
as

s
es

tim
at

io
n,

m̂
,i

s
th

e
av

er
ag

e
of

K
m

as
s

pr
ed

ic
tio

ns
.F

ig
ur

e
fr

om
[C

2]
.

36 Container mass estimation

Fig. 3.3 Localisation phase performed by a generic instance segmentation architecture.
In each frame, the model detects the objects through the detection head, and segments
them using the segmentation head.

3.1.1 Localisation

The localisation phase (visualised in Fig. 3.3) aims at processing the RGB frames

of the recording to detect objects. An instance segmentation model (more details in

Appendix A.6), is fed with every RGB frame It ∈ {0, ...,255}W×H×3 and outputs the

object class θt,o ∈N, the bounding boxes ψt,o ∈R4 where the dimensionality is the top

left corner coordinates of the rectangle, its width and height, and binary segmentation

masks St,o ∈ {0,1}Wo×Ho obtained thresholding the probability map, for each detected

object o. We employ an instance segmentation model that predicts also the objects

mask to isolate the pixels on the object region in the image. The instance segmentation

model can output several classes, but if the object categories are known in advance

they can be filtered to obtain only the categories of interest.

3.1 Container localisation and mass estimation 37

(a) Aspect ratio computation (b) Average depth computation

Fig. 3.4 Example of (a) aspect ratio and (b) average depth computation for a single
object in a frame. The aspect ratios (a and b) are computed as division between the
width and height of the patch and the width and height of the whole image. The average
depth d is computed as division between the sum of depth values in the object mask
pixels (obtained with the pixel-wise product ⊙) and the number of pixels belonging to
the object mask.

3.1.2 Patches selection

The patches selection phase aims at processing the output of the instance segmentation

model used in the localisation phase to extract patches of the frames and select a subset

of K detected objects in the frames sequence.

Given the RGB frame at time t (It), the outputs of the instance segmentation model

from the localisation phase are the bounding boxes ψt,o, and the binary segmentation

masks St,o for each detected object o. We generate the RGB patch It,o cropping It , the

corresponding depth patch I′t,o cropping I′t , in the regions delimited by the bounding

boxes. As visualised in Fig. 3.4a, we compute the aspect ratio between the width of

the crop and the original resolution of the image a = Wo
W , same for the height b = Ho

H .

We compute also the masked average depth (see Fig. 3.4b) dt,o as the average of the

depth values in the object mask:

dt,o =
∑x I′t,o(x)⊙St,o(x)

∑x St,o(x)
, (3.1)

where x is the pixel position in the crops having the same support, ⊙ is the Hadamard

product or pixel-wise product between the binary segmentation mask St,o and the

corresponding depth map I′t,o. The Hadamard product is used to consider only the

38 Container mass estimation

Fig. 3.5 Block diagram of the K-nearest candidates selection for a single recording.
The set of candidate containers, the tuples depth, RGB patch, and aspect ratios are first
sorted increasingly based on the average depth and the first K elements of the set are
selected. The K selected candidates represent the closest patches to the fixed-frontal
camera.

region of the depth map that is on the object surface, filtering out the regions of the

depth map that are outside the predicted object, through the segmentation mask. To

obtain candidate crops we repeat the operations of cropping, aspect ratio, and average

depth computation, for all the frames until the end of the recording.

We select K tuples from the set {(It,o,dt,o,at,o,bt,o)} based on the lowest masked

average distance dt,o, selecting the patches that are the closest to the fixed-frontal view.

As visualised in Fig. 3.5, first the tuples are ordered increasingly based on the value

of d, then the first K are selected representing the patches with the lowest average

distance. The assumption is that there are at least K detections in the frames sequence.

Based on the value of K the performance of the proposed solution may change. If K is

large, the algorithm includes most candidates detected by the instance segmentation

model, also the ones that are in the scene but are not manipulated by the human. If K

is too low, few candidates are included in the set, so the prediction could by affected

by the detection of objects that are not of interest in the scene.

3.1 Container localisation and mass estimation 39

Fig. 3.6 Mass estimation model. The input is the RGB crop of the object, the aspect
ratios a and b, and the average distance d, at the time instant t and for the second
object in the frame. Figure from [C2].

3.1.3 Mass estimation

The mass estimation model is run on the K outputs of the patches selection phase

and the average is computed to predict the container mass regardless of the content m̂.

Averaging the results allows to fuse the predictions and be less affected by potential

mistakes of the localisation and patches selection phases. Objects in the recordings that

are not manipulated could be detected in the localisation phase and could be part of the

set of K candidates in case the average depth is lower than other patches, influencing

the mass estimation phase.

The mass estimation model, shown in Fig. 3.6, takes as input RGB patches of

the container, the width and height aspect ratios with respect to the original image

resolution (a and b), and the average distance of the object from the camera (d). The

idea behind the features (f = [a,b,d]) is to consider the geometrical information of the

distance between the container and camera, along with the aspect ratios. Similarly to a

method for container capacity estimation [15], the model has four convolutional layers,

two Fully Connected (FC) layers, a concatenation of the output of the second FC layer

with f , and one FC layer after the concatenation. Batch normalization and ReLU

activations are used after each layer. Max Pooling is used after each convolutional

layer. The size of convolutional kernels is (3,3), paddings and strides are (1,1), and

40 Container mass estimation

channel dimensions are (32,64,64,128). The size of Max Pooling kernel is (2,2).

The output of the first two FC layers has dimension 64 and 6, respectively. Unlike the

mentioned method [15] that uses depth patches and their aspect ratios [a,b], our model

takes as input RGB patches and the features f .

3.2 Validation

3.2.1 Methods under comparison

We compare our method with two baselines and two other methods for container

mass estimation regardless of the content [72, 119]. Method 1 (M1) [119] employs a

MobileNetV2 [106] with Coordinate attention [50] to predict the mass from the object

crops extracted using YoloV55, while Method 2 (M2) [72] predicts the container mass

using a custom Neural Network that combines unoccluded segmentation mask and

geometric information. In M2 the container detection is performed using Localisation

and object Dimensions Estimator (LoDE) [126] with Mask R-CNN [46], while the

unoccluded object mask is obtained by symmetrically restoring the object mask [72].

In general, some similar features across the methods can be highlighted e.g., the

employment of two-stage approach (first detection then mass estimation) to tackle

the problem and the use of lightweight models to perform the mass prediction. As

baselines for comparison, we consider a pseudo-random generator that draws the

predictions from a uniform distribution in the interval [1,351] based on the Mersenne

Twister algorithm [73] (M4), and an average method that computes the average of the

mass annotations (M5).

3.2.2 Experimental setup

We evaluate our proposed model on the CORSMAL Containers Manipulation (CCM)

dataset consisting of 1140 audio-visual recordings [125]. During each recording, a

person interacts with a container (e.g., filling a cup with rice contained in a pitcher) and

then prepares for the handover. Videos differ in conditions such as lighting, person’s

3.2 Validation 41

Fig. 3.7 3-fold cross-validation setups (F1, F2, F3) of the CCM training set. Each
fold selects videos from one instance of each container type as testing set (), while
videos belonging to the other instances are used as training set (). Figure from [C2].

Fig. 3.8 Public testing sets containers. The containers instances are different from the
ones in the training set. Private testing set instances were not released.

clothing, hand occlusions. The total number of containers in the dataset is 15: 9

constitute the training set (684 recordings), the other 6 are evenly split into a public

testing set (228 recordings) and private testing set (228 recordings).

To assess the generalization performance of the method during training, we first

perform 3-fold cross-validation on CCM training set leaving one instance per category

(box, glass, cup) out [54], see Fig. 3.7. For each testing fold, the training set includes

containers belonging to the other two folds, which are split into training and validation

sets using 80% and 20% as respective percentages of data. The validation set is used

for model selection and the best model, the one with the lowest mean loss, is kept for

the testing fold. We compute the per-class mean absolute error using Eq. 2.1, summing

all the errors for a specific container type and dividing by the number of recordings

with the specific type. The per-class scores are obtained in an analogous way, using

Eq. 2.2.. The total score can be obtained using Eq. 2.2 and considering all the container

types or by multiplying per-class score by the number of recordings with the specific

type, summing, and then dividing by the total number of recordings.

Secondly, we evaluate the generalisation performance of our method on the CCM

public and private testing sets having container instances different than the training

42 Container mass estimation

ones (see Fig. 3.8). To train our model, we randomly split the whole training set in

training and validation with the 80% and 20% splits as before to include all available

containers in the training phase. In this case, the best performing model (based on the

lowest mean loss on the validation set) is tested through the CORSMAL Challenge

which provides the results for the public and private testing set, since the annotations

are private. In particular, we compare using our model, trained using the mentioned

training and validations splits, with the baselines and the methods from the state-of-

the-art considering the mass estimation score (see Sec. 2.6). On the public and private

testing sets, we perform an analysis per container type and an overall analysis on the

whole sets. We obtain the per-class score and the overall score as previously described

in case of assessing the generalisation to different folds.

3.2.3 Training details

The mass estimation model is trained using the container crops extracted using

the first two phases of our method (the localisation and patches selection) on the

CCM dataset [125]. We perform the container localisation phase using Mask R-

CNN [46] (more details about the architecture in Appendix A.6) pre-trained on COCO

dataset [66], selecting only the output classes cup, book, wine glass, and bottle [54].

Mask R-CNN is applied to the entire dataset, similarly to Crop-CCM [77]. The main

differences are that we use a single view of the scene, we do not restrict the model

solely to cup and glass cases, and we do not perform a manual check of the results. The

selection of the containers patches is indeed performed automatically during K-nearest

patches selection phase. Images resolution is 1280×720, the detection threshold is set

to 0.4 and every frame of the video is analysed (n = 1). In each frame, Mask R-CNN

could find in general more than one object e.g., the pitcher used to fill the cup and the

cup itself. The maximum number of considered containers candidates (K) is set to

5 (note that the model could also detect less patches in a recording). The rationale

behind the parameter value choice is to have a trade-off to obtain enough patches to

train the model and provide a more robust mass prediction, by averaging a number

of candidates, as well as minimizing computational overhead. Our extracted dataset

3.2 Validation 43

Fig. 3.9 Sample patches of the extracted dataset. Black padding is applied before
resizing to keep the same aspect ratio. Figure from [C2].

Table 3.1 Mass estimation model training details

Dataset Setup Aug. factor Epochs Loss Learning rate Batch

CCM crops
3-folds 3 100

MSE 0.0015 32
whole 4 300

consists of 3,408 patches, some of them are shown in Fig. 3.9. Almost 8% of these

patches extracted from the training set represent the pitcher used to fill containers,

which is not annotated in CCM dataset. This means that the first two steps of the

procedure (localisation and patches selection) are effective in selecting the correct

container to perform the mass estimation. The empty mass annotation of each video is

applied to each extracted patch.

The mass estimation model is trained on the regression task following the details

summarised in Tab. 3.1. The patches are resized to 112 × 112 resolution, using

zero padding on the shorter dimension in order to maintain the proportions, and are

normalized to [0, 1] range. The following transformations are employed to augment the

patches dataset: horizontal flip with probability 50%, vertical flip with probability 50%,

random rotation between 0 and 180 degrees without cropping the patch, color jitter

which consists in randomly changing the brightness into [0.8,1.2] range, contrast into

[0.8,1.2] range, saturation into [0.8,1.2] range and hue into [−0.2,0.2] range. During

the 3-fold cross-validation experiment the training set is augmented of 3 times using

the described transformations, and the mass estimation model is trained for 100 epochs.

To validate our model using the public and private CCM testing sets, every patch in

the cropped training set generates other 4 images using the described augmentation

techniques and the model is trained for 300 epochs, as the number of training images

increases with respect to 3-fold cross-validation. The aspect ratios, average distance

44 Container mass estimation

F1 F2 F3 VAL
0

20

40

60

80

Sc
or

e
s

(%
)

F1 F2 F3 VAL
0

2

4

6

8

10

M
ea

n
ε

Fig. 3.10 Analysis per container type of 3-fold cross validation and random cross-
validation of our proposed model for container empty mass estimation. Top: testing
score s in percentage. Bottom: mean of relative absolute error ε . The maximum y-axis
value is set to 10 for visualization purpose, the actual value for cup in F1 is 22.95.
Legend: cup, glass, box total

and empty mass labels are normalized using the minimum and maximum values

retrieved from the training set. The following setup is common to the experiments:

mean square error loss, batch size 32, Adam optimizer, learning rate 0.0015 with an

exponential decay rate of 0.9985 and with decay steps equal to 20; weight decay is set

to 0.001.

3.2.4 Results and discussion

Fig. 3.10 (top) analyses the per-class scores (colored based on cup, glass and box)

and the total score for the three fold splits (F1, F2, F3) and for the whole validation

set (VAL). The total score can be obtained using Eq. 2.2 or by multiplying per-class

score by the number of instances, summing and then dividing by the total number of

3.2 Validation 45

instances. Fig. 3.10 (bottom) provides a complementary analysis through the per-class

mean of relative absolute error ε . The trends in the scores are indeed opposite to the

ones in the mean relative absolute error qualitatively meaning that when the error is

low, the score tends to be high and vice-versa. Overall, Fig. 3.10 shows that the model

does not generalize to testing containers significantly different from the training ones.

The model achieves the highest score and the lowest mean error for the class box,

probably due to the fact that they feature different colors and have a larger shape with

respect to other classes. The mean relative absolute error in the cup cases suggests that

the empty mass for this class is not properly learned. A possible explanation for the

low performance on the first test fold is that the training images contain colored and

opaque cups, whereas in the testing set cups are transparent, and the only transparent

containers in the used training folds are glasses. Other folds statistics point out that

the presence of similar containers between training and testing sets helps reducing the

error and improving the score. The value of mean relative absolute error for glass and

box classes falls in the [0,1] range, while for the cup class it decreases with respect

to fold F1, yet it remains higher than 1. The last group of bars in Fig. 3.10 shows the

results for the validation set predictions. The score value underlines that the chosen

model is able to learn from recordings having the same containers, yet in different

configurations, e.g., lighting conditions or filling. Also in this case, the class having

the lowest score is cup.

Fig. 3.11 (top) shows the per-container type scores colored based on methods for

the CCM public and private testing sets. Fig. 3.11 (bottom) provides a complementary

analysis through the per-class mean of relative absolute error ε of the methods. Also

in this case, the mean absolute error and the score have opposite behavior, qualitatively

a high score is caused by a low error and vice-versa a high error causes a low score. In

general, deep learning methods MobileNetV2 with Coordinate Attention [119] (M1),

custom neural network [72] (M2), and ours (M3), obtain the highest score s for the

class box in the public testing set, while cup in the private testing set. These models

have the lowest scores in the class box in private testing set, and cup in the public one.

M2 has lower results compared to M1 and M3 in the class box and cup (approximately

46 Container mass estimation

cup glass box
0

20

40

60

80

Sc
or

e
s

(%
)

cup glass box

cup glass box
0

2

4

6

8

10

M
ea

n
ε

(a) Public testing set

cup glass box

(b) Private testing set

Fig. 3.11 Comparison of models performance per container type on the two CCM
testing sets: (a) public and (b) private. Top: testing score s in percentage. Bottom:
mean of relative absolute error ε . The maximum y-axis value of the score s and of
the mean ε is set to 80 and 10 respectively for visualization purpose. In the public
testing set, the error of the random method is 21.43 and the error of the average
method is 12.25 for the class cup. In the private testing set, for the class cup the
error of the random method is 17.45. Legend: M1: MobileNetV2 with Coordinate
Attention [119], M2: custom neural network [72], M3 (Ours), M4: random
sampling, M5: average mass.

20 percentage points). M1 has the best generalisation capabilities to different container

instances. For both the public and private testing sets, random (M4) and average (M5)

provide higher score values than other methods and lower errors in the class glass. The

motivation behind this might be that mass values of glass instances are similar in the

training and testing sets. For the other classes, M4 and M5 have lowest scores (under

20%) and highest mean relative absolute errors (over 8). In the public testing set, our

method (M3) outperforms the others in the cup class, and is second best in the box

class. In the private testing set, our method is second best in all classes.

3.3 Summary 47

Public test Private test Combination
0

20

40

60

80
Sc

or
e

s
(%

)

Fig. 3.12 Public, private, and combined testing scores s of container mass estimation so-
lutions in percentage. Legend: M1: MobileNetV2 with Coordinate Attention [119],

M2: custom neural network [72], M3 (Ours), M4: random sampling, M5:
average mass.

The overall performance score of methods evaluated on private and public testing

set are shown in Fig. 3.12. Our method (M3) achieves a higher score with respect to

the custom neural network (M2), the random sampling (M4) and average mass (M5).

Contrary to M2, our method does not use LoDE during the container detection phase

and exploits only the fixed frontal view. The generalization properties on private testing

set show that M1 performs better than other models, probably due to the employment

attention mechanisms and the adopted augmentation technique. Compared to this

solution, our model is not pre-trained on other container properties estimation and

features less parameters than MobileNetV2 model. The difficulty of the container mass

estimation regardless of the content is highlighted by the fact that the combination of

scores is under 60% for each model.

3.3 Summary

This chapter described our proposed method to analyze an RGB-D video, detect the

container subject to manipulation based on its distance with respect to the fixed frontal

view, and estimate its mass regardless of the content. Our method can be combined

together with available models for the filling content mass estimation to obtain the

complete mass of the container. The low percentage of pitcher patches in the training

48 Container mass estimation

set suggests that the proposed method is able to locate the manipulated container in

CORSMAL Containers Manipulation (CCM) training recordings. In the experiments,

the model learns from similar containers, but due to the variability in appearance of

the different container instances gives a high estimation error with unseen containers,

especially cups. Results on testing sets with never seen object instances show that our

method outperforms most baselines; at the same time, the fact that values of scores

are on average lower than 60% highlights the difficulty of the task. Although our

method shows the second best results, it presents some limitations that we discuss in

the following proposing also potential improvements. The method works frame-by-

frame not considering the time dimension, and the patches selection phase is based

on the assumption that the human offers the container towards the camera, hence the

manipulated container will be the closest object to the fixed-frontal camera. Instead

of computing the average depth values and select the K-nearest candidates based

on the average depth, the manipulated container could be selected by analysing the

human activity using the human pose and the time dimension [1, 74]. In this case,

the model would predict the activity performed e.g., ‘filling container’ and ‘offering

container’ to combine the information of the detected objects with the information

of the arm offering the container. This is a potential improvement based on existing

works in similar contexts, hence the performance is unknown. Considering the method

as it is described in the chapter, during the container selection phase, the method

extracts the average depth (d) by averaging the cropped depth map of the object in the

object mask pixels predicted by the instance segmentation model. However the depth

information might be incomplete or corrupted in case of transparencies, hence affecting

the performance of the selection and also the subsequent mass estimation phase. To

obtain a complete depth map and improve the average depth computation, techniques

for depth estimation or completion could be used [58, 104, 136]. The generalisation

of the mass estimation model to other object categories (even not containers) should

be studied more in depth to understand its reliability. However, this might require to

collect new data since the number of datasets for object mass estimation is limited, as

discussed in Sec. 2.5.

Chapter 4

Affordance Segmentation of

hand-occluded objects

In this chapter, we describe the phases of object localisation and affordance segmen-

tation of the framework (highlighted in Fig. 4.1). We introduce the transfer learning

procedure (fine-tuning) of lightweight models to detect the objects regardless of their

category (objectness) targeting resource-constrained applications such as wearable

robotics (Sec. 4.1); we describe the proposed affordance segmentation model targeting

hand-occluded containers along with the annotation of the mixed-reality dataset used

to train models (Sec. 4.2); we analyse the fine-tuning performance of the object detec-

tors and their impact when used before lightweight affordance segmentation models,

finally we compare our affordance segmentation model with previous methods from

the literature (Sec 4.3); and we draw conclusions in Sec. 4.4.

50 Affordance Segmentation of hand-occluded objects

Fig. 4.1 Overall framework considering localisation and affordance segmentation
phases. The object detector identifies objects in the RGB image and extracts the
patches (image crops). Then, the affordance segmentation model identifies the gras-
pable regions separating them from the non-graspable ones. The other phases of the
framework (mass estimation, fusion, and control) are not considered.

4.1 Object detection for affordance segmentation

In semi-autonomous applications e.g., wearable robotic, the human is responsible

for the coarse movements of the robotic hand in the environment, while some fine

movements are controlled autonomously e.g., the finger movement [7, 116]. The active

role of a person helps simplifying the problem, for example by offloading some control

decisions, or leveraging human perception to retrieve useful information about objects

in the environment [24]. Moreover, the person is supposed to act in the scene, trying

to reach objects of interest to interact with them, hence (indirectly) moving the camera

mounted on the robotic hand toward the object of interest.

In wearable robotic applications, the computer vision processing can be performed

on board for example using dedicated hardware [83], to avoid the latency bottleneck of

sending the data to an external computing unit and receiving the processed information.

Due to costs and power consumption issues, resource-constrained devices are used,

impacting the trade-off between accuracy and computational load of computer vision

models. Table 4.1 shows hardware constraints of embedded systems that could be

employed in wearable robotic applications [22, 28, 83], in terms of volatile memory

4.1 Object detection for affordance segmentation 51

(RAM), non-volatile memory (Flash), and power consumption magnitude. The first

four embedded systems are embedded Graphical Processing Units (GPUs) and their

computational resources are orders of magnitude larger than the last two embedded

systems (micro-controllers) impacting their consumption. The adoption of lightweight

models in wearable applications becomes mandatory, because most models in the

literature focus on the accuracy and not the computational cost, hence they have too

many parameters to be stored or may require more memory than the one available to

run [10, 24, 82, 130].

Table 4.1 Embedded systems hardware specifics representing plausible hardware
constraints of wearable applications. Values are taken from the electronic systems
website.

Manufacturer Model RAM Flash Consumption

NVIDIA Jetson TX2 4 GB 16 GB + SD W

NVIDIA Jetson Nano 4 GB SD W

Intel Movidius NCS 4 GB - ≈ W

Google Coral 1-4 GB 8 GB ≈ W

Greenwaves Tech. GAP 8MB 64 MB mW

ST Stm32F7 512 kB 2 MB mW

KEY – B: Byte, SD: external storage, -: not available, W: Watt, ≈: approximately.

Lightweight affordance segmentation models assume the object to be central and

in foreground (framing issue) [90]. In general, this assumption cannot be guaranteed

in the targeted scenario, hence we use a detection stage before the affordance segmen-

tation. Our overall framework introduced in Sec. 1.1 (see Fig. 4.1) locates objects of

interest in the scene using an object detector, then segments their affordances using an

affordance segmentation model. The framework allows to consider localisation and

affordance segmentation separately, decreasing training convergence problems in case

of lightweight models. The employment of a single lightweight model to tackle the

detection of objects and affordance segmentation could lead to unsatisfactory training

52 Affordance Segmentation of hand-occluded objects

Fig. 4.2 Objectness fine-tuning block diagram. A model is pre-trained on a large
dataset (source domain) for object detection, then the parameters are updated to match
the target domain and distinguish between background and object minimising the loss
function L. The RGB images are from [66, 82].

minimum. Additionally, our method provides modularity: each model can be replaced

by a different architecture or an improved version (faster, more accurate or lighter).

4.1.1 Objectness fine-tuning

Since the human has an active role in the semi-autonomous applications and knows

the category of the target object, we propose to learn the object localisation regardless

of the class via fine-tuning (see Fig. 4.2). This process of separating background

from objects is called ‘objectness’ detection [17]. Although the objectness detection

was previously proposed in the affordance segmentation context, the focus was the

accuracy, and not the trade-off between accuracy and computational load, important

in resource-constrained scenarios. Moreover, the model performing objectness was

using RG-D input and a Mask R-CNN approach [17], while we use RGB input and

lightweight single shot detection. Given a lightweight object detection model we

initialise the weights using the values pre-trained on COCO dataset [66] and fine-tune

them on IIT-AFF [82] and UMD [80] obtaining two versions of the same model, one

per target domain. We used the same training loss of the pre-trained configuration:

4.1 Object detection for affordance segmentation 53

L = Ll +L f , (4.1)

where Ll is the localisation loss and the L f is the classification loss.

The localisation loss Ll is a smooth L1 loss, and compared to the usual L1 loss

reaches 0 more smoothly [96]:

Ll =


1
2(ψ − ψ̂)2 |ψ − ψ̂| ≤ η

η(|ψ − ψ̂|− 1
2η) otherwise

, (4.2)

where ψ is the annotation of the bounding boxes, ψ̂ is the predicted bounding box

η controls the intersection between the two curves, and is set to 1. We simplify the

notation writing ψ instead of the components of the bounding box vector.

The classification loss is a weighted sigmoid focal loss [65] that down-weights well

classified examples and focuses on the hard examples. Given the predicted probability

p of a class:

pt =

p ψ = 1

1− p otherwise
, (4.3)

αt =

α ψ = 1

1−α otherwise
, (4.4)

L f =−αt(1− pt)
γ log(pt) , (4.5)

where γ modulates the term multiplying the log value such that the easy examples (pt

close to 1) are down-weighted more than the hard ones (pt close to 0), reducing their

impact on the loss function, while α scales the values based on the annotation value.

We set the number of object categories to 1 (objectness), α = 0.75, and γ = 2.0.

54 Affordance Segmentation of hand-occluded objects

Fig. 4.3 ACANet, our proposed model for Arm-Container Affordance segmentation
of hand-held containers. The object segmentation branch predicts the object mask,
the arm segmentation branch predicts the arm mask, and the main branch fuses the
predicted arm and object masks with the feature maps (φa) to predict the arm and
affordances mask. The fusion block is highlighted in yellow. Figure from [C3].

4.2 The Arm-Container Affordance Network

In this section, we present our multi-branch architecture and the fusion module to

perform affordance segmentation (see Fig. 4.3). We name the model Arm-Container

Affordance Network (ACANet) as we consider containers for food and drinks, and

graspable and contain as affordance classes. Assuming the input image has an object

of interest, the model identifies the classes graspable, contain, arm, and background.

The assumption about the object presence could impact the performance of the model

in case the container is not in the image, predicting some affordance regions instead of

background.

4.2.1 Multi-branch architecture

We devise our multi-branch architecture starting from a UNet-like architecture [100]

that uses skip connections between the encoder and the decoder to preserve the infor-

mation and help the gradient flow during back-propagation. We replace the encoder

with a ResNet-18 [47] to include residual connections within the convolutional layers

4.2 The Arm-Container Affordance Network 55

of the encoder, easing the optimization problem [47]. Moreover, ResNet keeps the first

pooling layer and replaces the others using a stride 2 in convolutional layers, unlike the

original UNet encoder that halves the resolution of tensors using only pooling layers.

To double the resolution in the decoders, we replace the UNet convolutional layers

with non-trainable up-sampling layers based on nearest interpolation. For each de-

coder, we also modified the last convolutional layer from 1×1 kernel and no padding

(original UNet) to 3×3 kernel, stride 1, and padding. This allows the last convolution

to consider neighboring pixels information.

This architecture outputs a tensor S ∈ [0,1]W×H×C where each channel predicts

one of the classes independently, and each pixel in a channel map is a probability such

that ∑
C−1
c=0 Sc(i, j) = 1, with i ∈ {1, ..,W} and j ∈ {1, ...,H} being the width and height

indices, respectively. Including the class arm in S already handles the affordance

segmentation of hand-occluded containers. However, we experimentally observed

that the model first learns the classes with higher number of pixels in the annotation,

affecting the prediction accuracy of the other classes.

We include two additional decoder branches that specialise in the segmentation

of the arm and of the visible region of the object. Segmenting the object helps the

model learn the area of the image where the affordances are. For simplicity, we refer

to the three decoder branches as Arm, Object, and Affordance segmentation. The Arm

segmentation branch predicts a probability map, mh ∈ [0,1]W×H , that separates the

region associated to the arm (composition of forearm and hand) from all the rest. The

Object segmentation branch predicts a probability map, mo ∈ [0,1]W×H , that separates

the region associated to the visible object (held by the person hand) from all the rest.

The Affordance segmentation branch fuses the feature maps with the arm and object

maps, and predicts the segmentation tensor S.

4.2.2 Feature separation and fusion

Object and arm segmentation alone are insufficient to improve the segmentation

accuracy under hand-occlusions. We therefore design a module that merges inter-

mediate feature maps φa ∈ RC′×W ′×H ′
, with the down-sampled masks extracted by

56 Affordance Segmentation of hand-occluded objects

the Arm segmentation branch (m̃h ∈ [0,1]W
′×H ′

) and the Object segmentation branch

(m̃o ∈ [0,1]W
′×H ′

), respectively. We compute the intermediate feature maps within the

Affordance segmentation branch by using two UNet blocks that process the feature

maps outputted by the backbone. The object and arm masks are down-sampled using

bi-linear interpolation to match the size of the intermediate feature maps.

Instead of directly combining the features maps with the segmentation masks,

we first learn specialised features in the object and arm regions. Specifically, we

convolve φa with a set of 1×1 filters to obtain the feature map related to the object,

φo ∈RC′×W ′×H ′
(where C′ is the number of filters), and with another set of 1×1 filters

to obtain the feature map related to the hand, φh ∈RC′×W ′×H ′
. We then perform a pixel-

wise weighting of the feature maps φo and φh with the corresponding segmentation

mask m̃o and m̃h. This highly penalises the features outside of the predicted object (or

arm) region. The merged feature maps are aggregated with the initial intermediate

features as

φ
′
a = φa +(φh ⊙ m̃h)+(φo ⊙ m̃o), (4.6)

where ⊙ is the Hadamard product, i.e., the element-wise product between each feature

map in φo, φh and the down-sampled segmentation masks m̃o, m̃h
7.

4.2.3 Predicting object affordances and the hand

The Affordance segmentation branch uses the fused feature maps, φ ′
a, as input to three

UNet blocks to predict the output segmentation tensor S. Note that the feature maps

φ ′
a are concatenated via skip connection with the corresponding intermediate feature

maps in the encoder before the first UNet block (see Fig. 4.3). We modify the first

UNet block after the fusion module to improve the processing of the feature maps.

Specifically, we increase the number of output channels of the first convolutional filter

from 64 to 128, and we add another convolutional layer to decrease the channels

from 128 to 64. Furthermore, we avoid concatenating low-level information (e.g.,

edges) from the backbone to the last three UNet blocks via skip connections. This

7Mathematical simplification as m̃o and m̃h should be repeated for each channel of the feature maps
φo and φh.

4.2 The Arm-Container Affordance Network 57

Fig. 4.4 Propagation of the features maps in the fusion module. The features φa are
specialised into φo and φh and weighted using the object mask (m̃o) and arm mask
(m̃h). Finally they are combined through the element wise sum. Feature maps are
normalised and colored for visualisation purpose.

design choice helps the model preserve the changes in the feature maps φ ′
a and predict

affordances in the object region. The final segmentation map is: S = argmaxc S.

4.2.4 Loss functions

To train ACANet, we use a linear combination of a Dice loss [76] and two binary

cross-entropy losses as:

L = La +λo Lo +λh Lh, (4.7)

where the Dice loss, La, operates on the affordance branch outputs, the binary cross-

entropy, Lo, operates on the object branch output, and the binary cross-entropy, Lh,

operates on the arm branch output. The hyper-parameters λo and λh ∈ R control the

impact of object and hand segmentation losses, respectively. L allows each branch to

specialize for their segmentation task and influences the backbone to learn a common

representation for all the branches.

The Dice loss, La, addresses the imbalance problem between classes, as the ma-

jority of pixels can be labelled as background [111]. Given a batch of B predicted

58 Affordance Segmentation of hand-occluded objects

segmentation masks and corresponding annotations, the Dice loss is8:

La = 1− 1
C

C−1

∑
c=0

2∑
B
i=1 ∑

WH
l=1 yc

l,iŷ
c
l,i

δ +∑
B
i=1 ∑

WH
l=1 ŷc

l,i + yc
l,i
, (4.8)

where ŷ∈ [0,1]WH×C and y∈ {0,1}WH×C are the reshaped predictions and annotations,

respectively, with ∑
C−1
c=0 yc

l = 1.

The binary cross-entropy loss is used in binary classification and semantic seg-

mentation tasks, considering each pixel as independent from the others. Given a batch

of B predicted object segmentation masks and corresponding annotations, the binary

cross-entropy loss for the object is:

Lo =− 1
B

B

∑
i=1

WH

∑
l=1

vl,i log(v̂l,i)+(1− vl,i) log(1− v̂l,i), (4.9)

where v̂ ∈ [0,1]WH is the reshaped vector of mo and v ∈ {0,1}WH is the reshaped

vector of the corresponding annotation. The binary cross-entropy for the hand, Lh,

is similarly computed using the reshaped vector of mh and corresponding reshaped

annotation.

4.2.5 Mixed-reality affordance annotation

Training ACANet requires a large dataset with (exocentric) images of hand-occluded

objects and segmentation annotation of both arm, object, and affordances. Such a

dataset was not available, and collecting and manually annotating a new dataset is

challenging, expensive, and time-consuming. We therefore complement an existing

dataset, which has mixed-reality images of hand-occluded containers for object pose

estimation [120], with visual affordance annotations. Using mixed-reality datasets

can easily scale the generation of a larger number of images under different realistic

backgrounds. Moreover, some existing works on hand-object reconstruction or object

pose estimation achieved good performance when training on mixed-reality datasets

despite the domain gap [45, 118].

8The margin ε = 10−7 avoids numerical issues when ŷ = y = 0.

4.2 The Arm-Container Affordance Network 59

Fig. 4.5 Samples of annotated CAD models in Blender. In the first row the original
CAD model with the texture, in the second row the affordance annotation on the
surface of the objects. Key: graspable, contain

We use the publicly available CORSMAL Hand-Occluded Containers (CHOC)

dataset that has 138,240 RGB images of 48 synthetic containers pseudo-realistically

rendered on top of 30 different real backgrounds [120]. The dataset has 8,640 images

with objects placed on top of a flat surface and 129,600 images of hand-held objects

rendered in various locations and poses above the flat surface in the scene. The

48 containers are evenly distributed among 3 categories (box, stem, non-stem) and

vary in their physical properties, such as size and shape, and appearance (textures,

transparency). Hand-held objects were generated using synthetic forearms that hold

the synthetic containers with three different visually plausible grasps and are orientated

towards the pointing direction of the camera to simulate a potential offering of the

object.

These characteristics and the available generation pipeline allows us to easily

extend CHOC with the annotation of the graspable and contain affordances in addition

to the existing annotations of the segmentation masks for the arm and object. We label

the affordances on the surfaces of the 3D CAD models of the 48 containers using

Blender [19]. In particular, we consider as graspable the external surface of boxes,

stem, and non-stem objects, while the internal surface of stem and non-stem as contain

(see some samples in Fig. 4.5). The internal surface of the boxes is not annotated

because boxes are closed. We then use the object poses annotated in CHOC to project

the CAD models with affordances on the image plane and render the affordance

60 Affordance Segmentation of hand-occluded objects

Fig. 4.6 Samples of cropped RGB images and segmentation maps of arms and object
affordances from the annotated mixed-reality dataset, CHOC-AFF. Key: back-
ground, graspable, contain, arm

maps. When rendering the object mask back to the image plane to get the annotation,

occlusions would not be considered, hence we perform a subtraction with the pixels

belonging to the hand. The arm mask is already available in CHOC annotation, so

in the affordance mask we replace the pixels of the object that are occluded by the

hand with the arm class. For simplicity, we refer to this version of the dataset with

annotations of the affordances as CHOC-AFF. Fig. 4.6 shows sampled images and

annotations of CHOC-AFF varying the pose of the object and of the hand. We use

CHOC-AFF for training and testing ACANet and other models, and we evaluate the

generalisation of the models to real images.

4.3 Validation

4.3.1 Methods under comparison

For the objectness detection, we analyse the performance of two versions of Mo-

bileNetV3 object detector [51] trained with the proposed fine-tuning procedure, since

these models are designed to target limited computational capabilities systems. Fig. 4.7

compares the main models for object detection and affordance segmentation through

the number of parameters (Params), and the number of Floating Point Operations

4.3 Validation 61

(FLOPs) indicating how many calculations are performed during an inference phase.

We chose these descriptors because they depend on the models, while other descriptors

such as the inference time depends on the hardware used. Most of the affordance

literature methods adapt powerful object detectors and instance segmentation models

like R-FCNResNet [82], Faster R-CNN [10], Mask R-CNN [14, 17, 24, 129]. Due

to the fact that some of the trained models for the affordance segmentation are not

publicly available, we used the reported descriptors in the original publications as a

proxy for the actual values. The employment of these models in a resource-constrained

scenario is practically impossible due to the number of parameters and required com-

putational power. On the contrary, MobileNetV3 models provide a suitable solution

working with constrained systems. The gain in terms of parameters with respect to

R-FCNResNet-101 is more than 77×, and more than 64× for FLOPs in case of Large

version. These numbers are more than doubled considering Small version. It is evident

the advantage in terms of memory footprint, since on-device memory store of the

model depends on the number of parameters. To analyse the impact of object detec-

tion models on the affordance segmentation problem in case of resource-constrained

scenario, we use lightweight affordance segmentation models [90] that use MobileNet

feature extractor: MobileNetV1_UNET (V1U) and a customized version of small

MobileNetV3_LRASPP (V3L). Fig. 4.7 shows that also in case of affordance segmen-

tation models that the computational cost of lightweight models is significantly lower

than the one of other models used in the literature like AffordanceNet [24, 17, 14], or

DRNAtt [38]. The number of parameters of V3L has a reduction factor 32x compared

to V1U, while 16x in terms of GFLOPs. This reflects in both memory footprint and

inference speed.

In case the target is different from resource-constrained systems, more compu-

tational demanding models can be employed. We compare our proposed model to

segment the arm and the affordances (ACANet) against a baseline and two state-of-

the-art methods: ResNet18-UNet (RN18-U), ResNet50-FastFCN (RN50-F) [53], and

DRNAtt [38]. RN50-F combines a ResNet-50 based encoder with a pyramid scene

parsing module [138]. We leave the auxiliary loss of the pyramid scene parsing module

62 Affordance Segmentation of hand-occluded objects

10−1 100 101 102 10310−1

100

101

102

103

Params [M]

FL
O

Ps
[G

]
FasterR-CNN [10]
R-FCN-101 [82]
SSDv3-L [51]
SSDv3-S [51]
AffNet [24]
RN18-U [100]
RN50-F [53]
DRNAtt [38]
V1U [90]
V3L [90]

Fig. 4.7 Number of parameters in millions [M] and Floating Point Operations (FLOPS)
in giga [G] of object detection and affordance segmentation models used in the
literature. Legend: • object detection model, ▲ affordance segmentation model.

to propagate the gradients, setting the weight to 0.2 [122]. RN18-U is the single-branch

baseline behind ACANet and has a UNet-like architecture with a ResNet-18 based

encoder. To reduce the dimensionality in the backbone, the first pooling layer is kept,

while the others are replaced with 1×1 convolutional layers with stride 2, to learn the

compression. The upsampling layers perform nearest interpolation and the last layer

is a 3×3 convolution with stride 1 and padding to maintain resolution. DRNAtt is

the best performing model on the UMD dataset [11]. The model is composed mainly

by three parts: the Dilated Residual Network (DRN) [132] for feature extraction,

a combination of Spatial Attention Module and Channel Attention Module [30] for

feature enhancement, and an upsampling layer based on pixel shuffling operation [108].

We implemented RN18-U and re-implemented DRNAtt to directly segment both the

object affordances and the arm. We changed the channels of the last layer in RN50-F9

to segment only affordances of objects as per the original implementation in case of

egocentric data [53]. We perform also an ablation study to assess the contribution

of the modified UNet layer and the missing skip connection in the performance of

ACANet:
9Original RN50-F implementation [122] is available at https://github.com/wuhuikai/FastFCN

https://github.com/wuhuikai/FastFCN

4.3 Validation 63

• -UNet is ACANet without the modified UNet layer. The UNet block is the same

block of the other branches.

• Skip is ACANet with an additional skip connection after the second last UNet

block to concatenate low-level information from the backbone.

4.3.2 Experimental setup

The proposed objectness fine-tuning is evaluated through three sets of experiments.

The first one concerns the object detection and compares the mean Average Precision,

mAP (discussed in Sec. 2.6), of models using all the object classes and the one-class

configuration on UMD and IIT-AFF testing sets. Additionally, a complementary

analysis is shown by collecting the percentage of images in which occurs at least one

detection to analyse the detection capabilities. The second group of experiments has the

purpose of linking object detection analysis to affordance detection application. Object

detection patches are extracted from the test sets and the histograms of affordance

class pixels are compared with the distribution obtained using ground truth bounding

boxes. The motivation of this test is to assess whether the object detector is able

to detect objects of interest in the scene. The focus is still on the object detection

capabilities. The third group of tests compares the affordance detection capabilities of

the pipeline with the baseline which consists in the employment of the sole affordance

detector [90]. In this way, both solutions are considered in the same distance and

framing conditions. The performance measure used to evaluate methods in the third

group of experiments is Fw
β

[71], that weights the prediction errors using the distance

to the annotation (additional information in Sec. 2.6).

For our experiments on hand-occluded affordance segmentation, we split CHOC-

AFF into training set and validation set to train the models, and two testing sets

to evaluate the models generalisation to different backgrounds and different object

instances. We also select and annotate images from two existing public datasets for

hand-object pose estimation or reconstruction to evaluate the models in real conditions.

For CHOC-AFF, the training set has 89,856 images with 26 out of 30 backgrounds and

36 out of 48 containers (12 per object category). The validation set has 17,280 images

64 Affordance Segmentation of hand-occluded objects

with all 30 backgrounds and 6 container instances (2 per object category) different

from the ones in training set. The first testing set has 13,824 images and evaluates

the generalisation performance of the models to the same training object instances in

4 backgrounds not seen during training. The second testing set has 17,280 images

and evaluates the generalisation performance of the models to 6 object instances (2

per object category) not seen during training in all 30 backgrounds [120]. For the two

testing sets in real conditions, we consider HO-3D [42] and CCM [125] due to the

presence of various challenges, such as presence of the human body, real interactions,

and different object instances and hand-object poses. HO-3D is a multi-view video

dataset of people manipulating different types of objects. We selected 150 frames of

mugs and boxes as containers from the lateral and frontal cameras (with respect to

the arm), keeping a diversity in object and hand poses. We used the segmentation

provided by the authors as annotation for the classes arm10 and graspable, whereas

we manually annotated the class contain. CCM is a dataset of multi-view sequences of

people manipulating containers with different contents, and then offering the objects

to a fixed robot arm. The offering phase allows us to evaluate the models under more

realistic human grasps and object poses in a human-robot collaboration scenario, and

more challenging conditions caused by different background and lighting settings.

Moreover, containers can vary in their physical appearance (e.g., transparency, texture)

or be affected by the presence of content. We selected the last frame (offering phase)

of 150 sequences from a side perspective, diversifying objects, hand poses, and scene

color settings. We manually annotated the affordance classes contain and graspable,

and the class arm of only the hand(s) in contact with the offered container.

4.3.3 Training details

In the training phase, UMD [80] one instance per each object is left out and reserved

to the test set (5135 images), while the rest of images is splitted in 85% for training

and 15% for validation. IIT-AFF [82] followed splits provided with the dataset (2651

images for test set). Both MobileNetV3 object detectors are fine-tuned starting from

10Note that the forearm is not annotated.

4.3 Validation 65

Table 4.2 Training details of object detection and affordance segmentation models.

Dataset Steps[k] Max epochs Batch Lr Schedule

UMD 800 -
20 .4 Cosine decay

IIT-AFF 650 -
CHOC-AFF - 100 2 .001 Linear decay

COCO dataset [66] checkpoints11. We use the input resolution of 320×320 that is

consistent with lightweight models. The training details are reported in Table 4.2.

In particular, in case of UMD 800,000 is the number of total steps, batch size is 20,

the learning rate parameters are left as default: cosine decay base is 0.4, the warmup

value is 0.13333 and 2,000 warmup steps. The training hyperparameters on IIT-AFF

dataset are the same of UMD with the exception of the number of steps that is set

to 650,000. The difference in number of steps between the two dataset is to avoid

overfitting, since the number of available images in IIT-AFF is lower than in UMD.

To avoid the distorsion of input images, especially in IIT-AFF case in which there

are different resolutions, images are padded with zeros to maintain the aspect ratios

while reducing width and height to fit models’ input. Additionally, we perform random

horizontal flip and random crop augmentation procedures to reduce the overfitting

phenomenon.

During training, we fine-tune all encoders, pre-trained on ImageNet [102], to start

from a better initialisation than random. For ACANet, we set the hyper-parameters

λo and λh to 1. For all models, we set the batch size to 2, the initial learning rate

to 0.001, and we use the mini-batch Gradient Descent algorithm as optimizer with

a momentum of 0.9 and a weight decay of 0.0001. For all models except RN50-F,

we schedule the learning rate to decrease by a factor of 0.5, if there is no increase

of the mean Intersection over Union in the validation set for 3 consecutive epochs.

For RN50-F, we set the learning rate schedule following the original setup. We use a

Dice Loss to penalise the errors for RN18-U. We use the standard cross-entropy loss

for DRNAtt and RN50-F (with auxiliary weight set to 0.2). We use early stopping

with a patience of 10 epochs to reduce overfitting, and set the maximum number

11https://github.com/tensorflow/models/tree/master/research/object_detection

https://github.com/tensorflow/models/tree/master/research/object_detection

66 Affordance Segmentation of hand-occluded objects

of epochs to 100. Images can be of different resolutions and therefore we apply a

cropping square window of fixed size to avoid distorsions or adding padding. To train

and test the affordance segmentation phase of the framework, decoupling it from the

object detection, we crop a W ×W window around the center of the bounding box

obtained from the object mask annotation to restrict the visual field and obtain an

object centric view. This cropping procedure is equivalent to assume a perfect object

detector. However, the cropping window can go out of the support of the image if

the bounding box is close to the image border. In this case, we extend the side of

the window that is inside the image support to avoid padding. In case the bounding

box is bigger than the cropping window, we crop the image inside the bounding box

and resize it to the window size. We apply this cropping procedure to all the images

both in training and testing phases. During training, we also use data augmentation

to further increase the diversity of the images. Specifically, for each input image, we

apply the following sequence of transformations: resize by a factor randomly sampled

in the interval [1,1.5] to avoid degrading quality; center crop the resized image with

a W ×H window to restore the original image resolution; and horizontal flip with a

probability of 0.5 to simulate the other arm. We set the window size to W = H = 480

(minimum resolution for RN50-F), as higher resolutions degrade the image quality.

4.3.4 Results and discussion

Fig. 4.8 compares the test set Mean average precision (mAP) of MobileNetV3 object

detectors Small (SSDv3-S) and Large (SSDv3-L) on UMD and IIT-AFF testing sets.

Models are tested using both setups: all classes or objectness (one class). We chose

two thresholds of Jaccard index, or Intersection over union, (J50 and J75) to analyse

how the performance varies. It can be expected that the higher the threshold the lower

the mean average precision because with higher threshold a lower number of predicted

boxes will overlap and have comparable size compared to the annotation. Focusing

only on object localisation improves significantly detection score in case of UMD

testing set. The mAP increases of more than 2 times for both model using J50 and J75.

Using the proposed objectness fine-tuning has different results on IIT-AFF testing

4.3 Validation 67

J50 J75 J50 J75
0

20

40

60

80

100

SSDv3-L SSDv3-S

M
ea

n
av

er
ag

e
pr

ec
is

io
n

(%
)

(a) UMD

J50 J75 J50 J75
SSDv3-L SSDv3-S

(b) IIT-AFF

Fig. 4.8 Mean Average Precision on affordance testing sets: (a) UMD and (b) IIT-
AFF. SSDv3-L and SSDv3-S indicate two versions of MobileNetV3 object detectors,
J50 and J75 denote the selected Jaccard index threshold. Legend: all classes,
objectness (one class).

set. The improvement in IIT-AFF test set is almost negligible in case of SSDv3-S,

while it is more substantial in case of SSDv3-L. IIT-AFF results are affected by the

partial clutter and occlusion conditions which characterise part of the images. The

perfect operating condition is offered by the clean framing of UMD dataset. In case

of wearable application, this condition could be obtained through a smarter camera

placing.

An additional way to measure the improvement of the detection capabilities of

the object detectors is to analyse in how many images there is at least one detection,

since there is at least one object in each image. The percentage of images in which

there is no detection is the complementary one. Fig. 4.9 shows the percentages of

UMD and IIT-AFF testing set images in which the object detector predicts at least one

object. For both SSDv3-L and SSDv3-S, the percentages increase passing from all

classes (ALL) to objectness (ONE) configuration. Consequently, the number of images

in which there is no detection decreases passing from all classes (ALL) to objectness

(ONE) configuration. The improvement is more evident in case of UMD testing set

due to the lower complexity of this dataset. The obtained results indicate that using

the proposed objectness fine-tuning leads to better object detection performance in the

targeted scenario.

68 Affordance Segmentation of hand-occluded objects

ALL ONE ALL ONE
70

80

90

100

SSDv3-L SSDv3-S

A
tl

ea
st

on
e

de
te

ct
io

n
(%

)

Fig. 4.9 Percentage of images with at least one detection. ALL and ONE indicate the
detection configuration, SSDv3-L and SSDv3-S the employed MobileNetV3 version.
Legend: UMD, IIT-AFF.

The previous set of experiments focused only on assessing the detection capa-

bilities of the pipeline using the proposed objectness fine-tuning. To understand if

the objectness detector locates objects useful for the affordance, we compare the

affordance classes distribution in ground truth bounding boxes with the distribution

affordance classes predicted by the whole pipeline. Fig. 4.10 shows the percentages of

patches pixels belonging to graspable, non-graspable, and to background in UMD test

set, Fig. 4.10 (a), and IIT-AFF test set, Fig. 4.10 (b). GT denotes the distribution of

pixels in the ground truth patches, SSDv3-L and SSDv3-S the distributions of patches

extracted by the two object detectors with the objectness fine-tuning. It is possible

to note that the distribution of classes in affordance segmentation problem is highly

imbalanced, even after grouping all non-graspable classes into one and considering

only object crops. The distribution remains almost the same in UMD case, confirming

that detected patches represent objects of interest (see Fig. 4.10(a)), while it slightly

changes in IIT-AFF test set, due to the more challenging characteristics of the dataset

e.g. presence of more than one object, and the fact that not all the instances present in

the images are annotated.

Fig. 4.11 shows the results of the last experiment to validate the objectness fine-

tuning in which we compare the per-class Fw
β

score obtained for both IIT-AFF and

UMD testing sets. We consider the affordance classes graspable (G), non-graspable

4.3 Validation 69

GT SSDv3-L SSDv3-S
0

20

40

60

80

100
Pe

rc
la

ss
di

st
ri

bu
tio

n
(%

)

(a) UMD

GT SSDv3-L SSDv3-S

(b) IIT-AFF

Fig. 4.10 Per class distribution of object detection pixels belonging to affordance
classes in testing sets: (a) UMD, (b) IIT-AFF. SSDv3-L and SSDv3-S denote the distri-
butions originated by the patches extracted using the two architectures of MobileNetV3-
based object detectors, while GT the ground patches present in the dataset. Legend:

background, graspable, non-graspable.

(NG), and the class background (B). As a baseline, we consider the case in which the

first part of the pipeline, the objectness detector, is missing and only the lightweight

affordance segmentation models [90] are used. Both object detector SSDv3-L and

SSDv3-S with objectness fine-tuning are tested, as well as both lightweight affordance

segmentation models MobileNetV1-UNET (V1U) and MobileNetV3 LR-ASPP (V3L).

The proposed solution outperforms the baseline on both testing sets in the affordance

classes. The high score in the background class indicates that affordance models are

more incline to predict the background, due to the imbalance distribution of affordance

classes. In UMD testing set the improvement in Fw
β

introduced by the objectness

detectors is more than 6 times compared to the baseline. The pipeline employing

SSDv3-S obtains a higher score compared to the one using SSDv3-L, which is in

contrast with mAP values in Fig 4.8. In IIT-AFF testing set the proposed pipeline

improves the affordance segmentation score compared to the baseline for graspable

and non-graspable classes. The fact that the improvement has a lower magnitude

compared to the UMD testing set is due to the characteristics of IIT-AFF. Some

images contain objects in foreground, hence the baseline is sufficient to predict the

affordance mask. Another phenomenon which influences IIT-AFF results is the fact

that in cluttered scenes also other objects may be present in the patches, affecting the

70 Affordance Segmentation of hand-occluded objects

B G NG
0

20

40

60

80

100

F
w β

(%
)

B G NG

(a) UMD testing set

B G NG
0

20

40

60

80

100

F
w β

(%
)

B G NG

(b) IIT-AFF testing set

Fig. 4.11 Fw
β

score on testing sets: (a) UMD, (b) IIT-AFF. SSDv3-L and SSDv3-S
are the two versions of MobileNetV3-based object detectors. V1U is the affordance
detector MobileNetV1-UNET and V3L is MobileNetV3 LR-ASPP. Segmentation
classes are background (B), graspable (G) and non-graspable (NG). Legend: No
detector, SSDv3-L, SSDv3-S.

score computation. The results of object detectors show that the objectness fine-tuning

improves the detection performance of lightweight object detectors on UMD and

IIT-AFF testing sets, and consequently the performance of affordance segmentation

models in cascade.

Fig. 4.12 and Fig. 4.13 compare the performance of the affordance segmentation

models on the mixed-reality and real testing sets. For the discussion and ranking of

the methods, we consider Jaccard index J as the reference performance measure. For

simplicity Recall and Precision will be referred to as R and P respectively. Overall, our

method (ACANet) outperforms the other models on all datasets and for most of the

4.3 Validation 71

graspable contain arm
60

80

100
Pr

ec
is

io
n

(%
)

graspable contain arm

graspable contain arm
60

80

100

R
ec

al
l(

%
)

graspable contain arm

graspable contain arm
60

80

100

Ja
cc

ar
d

in
de

x
(%

)

(a) CHOC-B

graspable contain arm

(b) CHOC-I

Fig. 4.12 Comparison of the affordance and arm segmentation results between the
models on the two mixed-reality testing sets: (a) CHOC-B, (b) CHOC-I. Legend:

RN50-F, RN18-U, DRNAtt, ACANet (ours).

classes. This means that ACANet achieves better generalisation to other backgrounds

and object instances in the testing sets.

The performance on the mixed-reality testing sets (see Fig. 4.12) is similar among

the models and J is higher than 90% for the classes graspable and arm. Models

predict a low number of false positives and false negatives, resulting in a high value

for precision and recall (R, P > 95%). The class contain is the most challenging and

J drops to the interval [79%, 85%] for the first testing set with unseen backgrounds

(CHOC-B) and to the interval [66%, 70%] for the second testing set with unseen object

instances (CHOC-I). ACANet outperforms the other models for the classes graspable

72 Affordance Segmentation of hand-occluded objects

and contain on both testing sets, whereas DRNAtt has the highest Jaccard Index for

the class arm. RN50-F has the lowest performance, except for J in contain and P in

graspable. This result shows that adding the arm class helps improve the performance.

In CHOC-B, models except DRNAtt predict more false positives than negatives for

the class contain (P ∈ [84%,91%], R > 90%). On the contrary, the number of false

negatives for the class contain is higher than false positives (R∈ [71%,76%], P> 88%)

in CHOC-I.

The HO-3D and CCM testing sets allow us to assess the generalisation capabilities

of the models to images acquired in real scenarios (see Fig. 4.13), given the known

problem of the gap between synthetic and real data. As expected, performance of the

models is lower in the real testing sets than in the mixed reality testing sets due to the

domain shift. This can be observed especially for the classes graspable and arm.

In HO-3D, ACANet outperforms the other models for the classes graspable and

arm. However, all models tend to predict the wrong class in the graspable and arm

regions (P > R), and even ACANet has a high number of false positives and false

negatives for the class arm (J = 40%). The performance for the class arm is penalised

for all models due to the lack of annotation of the forearm, and the presence of the

human body and challenging arm poses. For the class contain, DRNAtt predicts a high

number of false negatives that affect the final performance (J = 18.25%), whereas the

other models predict a lower number of false positives than DRNAtt, resulting in a

higher Jaccard index (J ∈ [73.07%,78.42%]).

In CCM, the tablecloth and the presence of the human body are the main challenges

for the models, causing a performance drop compared to the other datasets. In the

presence of the tablecloth, models tend to predict graspable in most regions of the

image. This results in a large difference between P and R (e.g., 76 percentage points for

ACANet). ACANet achieves the best performance for the classes contain (J = 25.83%)

and arm (J = 31%). DRNAtt does not generalise to the real images of CCM with

J ≤ 1% for the class arm and J = 6.35% for the class graspable, whereas the class

contain is not predicted. This is caused by a large number of false positives towards

the class graspable (P = 6.37%) and a large number of false positives and false

4.3 Validation 73

graspable contain arm
0

20
40
60
80

100
Pr

ec
is

io
n

(%
)

graspable contain arm

graspable contain arm
0

20
40
60
80

100

R
ec

al
l(

%
)

graspable contain arm

graspable contain arm
0

20
40
60
80

100

Ja
cc

ar
d

in
de

x
(%

)

(a) CCM

graspable contain arm

(b) HO-3D

Fig. 4.13 Comparison of the affordance and arm segmentation results between the
models on the two real testing sets: (a) CCM, (b) HO-3D. Legend: RN50-F,

RN18-U, DRNAtt, ACANet (ours).

negatives for the class arm (P = 4.47%, R = 0.24%). The higher performance of

ACANet compared to DRNAtt and RN18-U shows that learning arm and object

features separately is better than learning affordances directly.

Fig. 4.14 and Fig. 4.15 show and compare the affordance segmentation predictions

of the models on sample images from the mixed reality and real testing sets respectively.

We chose images with objects and hand poses that are challenging and never seen

in training, e.g., holding a box from the bottom; and with different backgrounds and

lighting or different object appearances. Visually, ACANet achieves the most accurate

segmentation for the arm and the object affordances. For CHOC-B (see Fig. 4.14), the

74 Affordance Segmentation of hand-occluded objects

predictions have more false positives in the background because the object instances

are seen during training, whereas there are false positives or false negatives in the

object region for CHOC-I because the object instances change with respect to training.

All models show a high number of false positives for the class graspable in the CCM

testing set (see Fig. 4.15), especially when there is a colorful tablecloth (4th, 5th, 6th

and 8th columns). In these cases, RN50-F and DRNAtt predict the widest regions

of graspable false positives in the image, over the tablecloth, the human body, and

also the wall behind the human. These results suggest that the learned features do

not generalise to the CCM dataset setting. The false positive regions predicted by

RN18-U and ACANet are mostly on the tablecloth and on the human body, but the

arm and contain regions are correctly predicted on the human hand and the cup.

Moreover, the predictions of RN18-U and ACANet are close to the annotation when

the setting is similar to the training one, i.e., there is no colorful tablecloth nor the

human body/face, but just the arm holding the container. We also chose to show the

results for a transparent cup as transparency can be a challenge for the models due to

the not clearly defined borders (2nd and 8th column). For example, the background

environment or the content in the container can influence the segmentation predicted

by the models. In the sampled image (2nd column), the cup is filled with a content, and

the models are able to correctly predict both the contain and graspable regions, except

for DRNAtt. For HO-3D, ACANet predictions show better affordance segmentation

and more complete masks compared to other models, but the number of false positives

of the class arm increases in presence of the human face (5th and 8th columns).

4.3 Validation 75

Fig. 4.14 Comparison of the predicted affordance and hand masks of the models on
sampled images from the mixed-reality testing sets. The segmentation masks are
overlayed on the RGB images. KEY - GT: ground-truth, graspable, contain,

arm.

76 Affordance Segmentation of hand-occluded objects

Fig. 4.15 Comparison of the predicted affordance and hand masks of the models on
sampled images from the real testing sets. The segmentation masks are overlayed on
the RGB images. KEY - GT: ground-truth, graspable, contain, arm.

4.3 Validation 77

Table 4.3 Hand-occluded affordance segmentation models: size and computational
cost.

ACANet RN18-U RN50-F DRNAtt

parameters 20.82 14.32 66.40 17.38
GFLOPs 85.17 38.28 239.33 149.90

KEY – # parameters: number of parameters (in millions),
GFLOPs: Giga Floating-point operations,
RN50-F: ResNet50-FastFCN [53], RN18-U: ResNet18-
UNET, DRNAtt [38].

We briefly discuss the complexity of the models measured in number of parameters

(in millions) and number of operations (as Giga Floating-point or GFLOPs). Table 4.3

shows that RN50-F has the highest amount of parameters and operations, but the

generalisation performance is worse than ACANet. DRNatt has 3 millions fewer

parameters than ACANet, but 1.7× more operations than ACANet and the performance

on real-data is worse in all classes. Finally, ACANet has an increased number of

parameters (6 millions) and GFLOPs (2.2 times) compared to the baseline RN18-U,

thus contributing to the higher performance in almost all classes and testing sets.

The optimisation of ACANet computational load is outside of the scope of this study,

however, one way to reduce the parameters and the number of Floating-point operations

of ACANet could be to perform the object and arm segmentation in the same branch.

Table 4.4 shows the results of the ablations Skip and -UNet, compared with

ACANet. In most testing sets, ACANet has the best results for the affordance classes,

while the modified version of the UNet block is responsible for a performance drop in

the arm class (-UNet has higher J values). For what concerns the CHOC-B testing

set, ACANet outperforms the variations in the affordance classes, while in CHOC-

I ACANet improves the graspable class. In HO-3D, ACANet outperforms other

methods in the affordance classes, while -UNet has an improvement in the arm class of

5 percentage points. In CCM, ACANet is the best performing model for the categories

contain, and in arm with a margin of 3.18 percentage points from the -UNet version,

while Skip improves of about 2 percentage points the graspable score. These result

78 Affordance Segmentation of hand-occluded objects

Table 4.4 Comparison of the affordance and arm segmentation results between ACANet
and its variations on the two mixed-reality test sets and on the two real test sets.

Test set Model graspable contain arm

P R J P R J P R J

CHOC-B
ACANet 97.09 96.60 93.88 89.46 94.67 85.17 96.48 96.52 93.24
- UNet 96.39 96.48 93.11 89.20 94.20 84.55 96.54 96.68 93.45
Skip 96.29 96.37 92.92 87.25 94.18 82.79 96.38 95.94 92.61

CHOC-I
ACANet 96.36 96.51 93.11 88.72 76.68 69.86 96.94 96.77 93.90
- UNet 96.25 96.55 93.04 88.97 76.02 69.47 96.83 96.93 93.95
Skip 96.09 96.43 92.79 86.71 78.85 70.35 96.99 96.36 93.57

HO-3D
ACANet 89.72 80.78 73.93 79.20 90.43 73.07 61.95 53.02 40.00
- UNet 87.58 81.33 72.92 79.67 87.84 71.75 59.96 64.35 45.01
Skip 87.05 72.36 65.33 79.35 86.56 70.65 58.84 37.26 29.55

CCM
ACANet 10.22 86.50 10.06 45.40 37.46 25.83 49.47 45.35 31.00
- UNet 10.34 83.66 10.13 44.76 34.03 23.97 43.80 40.89 26.82
Skip 12.41 80.79 12.05 25.81 43.72 19.37 54.72 31.49 24.98

Highlighted in bold the proposed model, and the best performing results.
KEY – P: per-class precision, P: per-class recall, J: per-class Jaccard Index,
CHOC-B: the CHOC-AFF testing set with new backgrounds,
CHOC-I: the CHOC-AFF testing set with new instances.

show that ACANet is on average the best performing version and that the ablations

Skip and -UNet changes provide worse results in most classes.

4.4 Summary

In this chapter, we tackled the visual affordance segmentation using our framework

targeting two settings: objects on a tabletop targeting semi-autonomous applications

and hand-occluded containers. In the former case, we considered the active role

of the human and we proposed a fine-tuning approach to locate the objects in the

scene without learning their classes (objectness detector). In the latter setting, we

proposed ACANet, a multi-branch convolutional neural network that fuses object

and hand segmentation mask with the affordance features to specialise filters for

object and hand regions. Experiments highlight that our approach helps increasing

the mAP score of lightweight object detectors in UMD and IIT testing sets. The

4.4 Summary 79

proposed pipeline consisting in the sequence of objectness detection and affordance

segmentation allows to improve performance with respect to the baseline which

considers only the lightweight affordance segmentation. This is due to the fact that

a small amount of objects in the datasets are in foreground, hence the assumptions

selected affordance models are not satisfied. Training ACANet on an annotated dataset

with mixed-reality images of hand-held containers leads to better generalisation to real

images with containers not seen in training and with new backgrounds (e.g., on the

HO-3D dataset or on-the-fly acquired images) compared to other models. Moreover,

ACANet outperforms alternative methods when segmenting the graspable area and

the person’s arm, and can achieve a more accurate segmentation even when the objects

are in more challenging poses caused by how the person holds the object.

Chapter 5

Conclusion

5.1 Summary of achievements

In this thesis, we tackled Visual Affordance Prediction i.e., the localisation of objects

of interest, the identification of object regions an agent can interact with, and the

prediction of the object mass. The mass estimation can be used by the agent to plan

the motion towards the object and to regulate the force to perform the intended action.

The other part of the framework is focused on identifying the functional regions of

objects that can guide the agent to reach the object and to perform the action. The

prediction of object properties and affordances from visual data presents challenges

due to the variations in object shape and material, and occlusions due to other objects

in the scene or human manipulation, that influence the appearance of objects, hence

performance of models.

In the following, we discuss the proposed contributions and the obtained results:

1. We designed a strategy to locate the objects of interest in the scene. In case

of human manipulation our procedure takes into account the eventual distance

of the object with respect to a fixed-frontal camera. Our strategy performs

instance segmentation in each frame of a recording using a pre-trained model,

stores the RGB crops, the depth crops, and the average distance of the object

obtained averaging the masked depth values. Finally, based on an heuristic, the

method selects the K candidates that are closer to the camera (lower average

82 Conclusion

depth). This strategy produces a low percentage of false positives (8%) when

used on the CORSMAL containers manipulation training set [125], allowing

for the collection of a small dataset to train a mass estimation model. In case

of wearable robotic application, we proposed a fine-tuning strategy to learn

the detection of objects regardless of the category (objectness) following the

rationale that the human already knows what is the object of interest. We targeted

lightweight object detectors to open up to the wearable applications in which

resource-constrained devices are employed. We showed that the objectness fine-

tuning improves the detection performance of lightweight models on two testing

sets for affordance segmentation.

2. We designed a mass estimation model that learns to combine color and geometric

(object crop aspect ratio compared to the whole image, and average depth) infor-

mation of object patches to predict the container mass regardless of the content.

Our mass estimation model shows high relative absolute error when predicting

the mass of objects substantially different from the ones in the training set (see

cup class of the first fold in Fig. 3.7), while the error is lower in case of similar

containers. Our model outperforms most baselines on the challenging CORS-

MAL Containers Manipulation testing sets consisting of people manipulating

container instances never seen during training.

3. We designed a pipeline composed by the sequence of objectness detection and

affordance segmentation models to restrict the input of affordance segmenta-

tion models to objects, instead of the whole scene. This cascade of models is

proposed to overcome the assumption of lightweight affordance segmentation

models that objects should be in foreground and completely visible. The pipeline

improves the performance of lightweight affordance segmentation model on two

affordance segmentation testing sets. We designed a multi-branch UNet-like

model (ACANet) to segment affordances tackling the hand-occluded setting. The

auxiliary branches separate the arm and object, while the fusion module weighs

the feature maps of the main branch penalising pixels outside those regions.

ACANet is trained using the extended annotation of mixed-reality images of

5.2 Future work 83

hand-occluded containers and shows better generalisation performance than pre-

vious models to unseen backgrounds and object instances on both mixed-reality

and real data.

4. We extended the annotation of a mixed-reality dataset consisting of synthetic

hands occluding synthetic containers over a real background to cover the lack of

a dataset tackling hand-occluded object affordance segmentation.

5.2 Future work

How to design a method that can accurately predict the object affordance in case

of hand occlusions is still an open challenge. In the affordance prediction literature

objects are mostly placed on a tabletop, hence considering hand-occluded objects

is still underexplored and can enable assistive and collaborative applications. The

hand-occluded setting poses additional challenges to vision models because objects are

partially visible. Indeed, almost no vision model trained without hand occlusion can

accurately predict the functional regions when the objects are occluded by the hand.

There are numerous examples of complete working systems that may benefit this thesis

contributions, mainly in the field of human-robot collaboration and wearable robotics.

In assistive robotics [39] and manufacturing applications [12], an autonomous robot

may take an object from the human hand and place it at a designated location (e.g.

a table) [105, 128] or perform an action with the exchanged object e.g. assembling

pieces [12]. The overall framework showed in Fig. 1.3 allows the vision system to

locate the object, predict the mass and the graspable regions since human may hold

the object in different ways. Then the robot plans how to interact with the object

avoiding the human hand and how to perform the action. Another example is in the

wearable robotics field, in which a human wears an additional robotic arm mounted

as an extension [117] or with a prosthetic hand [22, 83]. The use of our framework is

similar to the one described before, however these applications are semi-autonomous,

meaning that the human is responsible for the macro-movements in the environment,

84 Conclusion

while the autonomous part is in the control of micro-movements e.g., movements of

the fingers, or rotating the wrist.

In the following, we discuss future directions for our work to encourage research

in this area, mainly concerning: data collection, large-scale egocentric dataset, mass

and graspable regions fusion, and robotic experiments.

Containers are common objects in everyday life and they have high variability

in instances, materials and setting since they can be manipulated, filled, exchanged,

affecting their appearance. There are also other objects that could be of interest in

assistive applications, such as tools already present in other affordance dataset [40, 80,

82]: hammers, pans, scissors, forks, and knives. The collection of data through mixed-

reality [120] and fully synthetic techniques [14, 17] is a widely adopted approach, with

simulated images that are more and more realistic thanks to advancements in rendering

and the availability of new tools [19, 37]. One of the limitations of models trained

using synthetic data is the "reality gap" i.e., vision models can underperform on real

data which is the reason why we assessed the performance of models with real data

in Sec. 4.3.4. The main cause of the potential performance drop lays in the fact that

vision models process color information and the synthetic pixels may have different

color distribution than data captured from a real camera. Current methods that adopt

synthetic datasets apply augmentation techniques like domain randomisation [14]

that changes the colors and the texture patterns of images to potentially cover the

intensity changes in real images or replace the background with images taken from

other dataset [45], mitigating the effect of the reality gap. One direction for future

work could be to extend the study of hand-occluded setting also to different object

categories than containers, including techniques to render more realistic objects and

arms, and analysing the impact of the real backgrounds including more scenes and

lighting conditions to further improve the performance on real data. Alternatively,

some recent works proposed solutions to annotate real datasets using Neural Radiance

Field [27] techniques or 6D pose and object reconstruction techniques [40]. In these

cases the direction would be to adapt existing techniques to obtain the affordance

annotation e.g., annotating the affordance on CAD models, that still remains a time

5.2 Future work 85

consuming and expensive task. This approach would allow to obtain the annotation

only for the chosen object instances, so the generalisation to unseen instances or

different scenes would not be guaranteed.

Recently, some large-scale egocentric datasets were collected capturing people

that perform different actions in different environments and worlwide locations such

as EPIC-KITCHENS [21] and Ego4D [36]. EPIC-KITCHENS totals 55 hours (11.5

million frames) of recordings captured from a camera mounted on the head of a person

performing daily kitchen activities (almost 150 actions), from cleaning the dishes to

cooking, including natural interactions with kitchenware and appliances. Ego4D has

more than 3000 hours of recordings with the camera wearer performing daily-life

indoor and outdoor activities spanning scenarios like house-hold, workplace, leisure.

The egocentric viewpoint could be used to tackle applications involving humanoid

robots [114, 75], or also in case of augmented or virtual reality. The availability of a

large number of images captured all around the world allows to improve the models

generalisation properties increasing the variability of performed actions, objects in

the scene, and lighting. The large number of actions and objects allows to increase

the number of seen hand-object interactions during training, and increase the number

of object instances that may not be the same in different geographical locations.

Moreover, large scale datasets usually are captured from multiple sources to open the

potential application, hence multiple modalities are captured e.g., eye-gaze, text, audio,

kinetic measures (e.g. accelerations and rotations of cameras). Training models in

the multi-modal setting or multi-tasking indeed leads to improvements in the learned

representation [89, 98]. Compared to the third-person perspective, the egocentric

perspective introduces additional challenges e.g., self-motion and a higher degree of

occlusions during the manipulation of objects.

The final phases of the overall framework i.e., fusing the mass and the graspable

regions information was not addressed in this thesis. The fusion between the graspable

region and the mass provides the information about where the agent is supposed to

interact with the object to perform the intended action, guiding the motion planning, the

force regulation hence the end effector grasping. The integration of mass and graspable

86 Conclusion

regions information could be learned from human demonstration, since humans interact

differently based on the objects mass [63]. Humans have different ways of grasping

objects depending on the action they want to perform and how the mass influences

the action through the physics of the interaction. A recent trend is the intersection of

physics and machine learning [59] that consists in embedding the physics knowledge

of a phenomenon in a machine learning model. In this case, the direction would be to

design a model that embeds the physics of the object manipulated by the human hand

to predict the most appropriate region of interaction taking into account the mass, with

the aim of using such model on a robot. Alternatively, the vision based grasping could

be learned through reinforcement learning techniques [84], through the sequence of

actions and the regions that lead to the success of the interaction. This last approach

could require a long time due to the number of trial the robot needs to perform to

train the model, or it could be run in simulations to speed up the training, in any case

requiring a proper definition of success metric to reward the model.

Real robotic experiments could show the improvements that the presented frame-

work has with respect to the existing solutions for example in collaborative applica-

tions [105, 101, 128] and more importantly show the failure cases that will highlight

aspects to work on to further improve the framework. The affordance segmenta-

tion models can be used with existing models for grasping with the additional depth

map [3, 29, 35] to select the end effector poses that lay inside the predicted graspable

regions. Potential limitations of this approach could be in presence of transparent

objects that cause noisy depth maps, however some works that study how to recon-

struct the depth map of transparent objects could be integrated in the method [58].

Moreover, the integration of computer vision models in robotics may be subject to

runtime constraints to obtain reactive systems. While fully autonomous robots can

employ powerful Graphical Processing Units (GPUs) to run computer vision mod-

els [24, 82, 129, 130], in semi-autonomous applications like prosthetics the available

computational capability of electronic systems is reduced due to cost, consumption,

and weight issues [83]. When the computation is performed on-board, the constraints

are similar to the ones of smartphones, embedded GPUs, or even microcontrollers.

5.2 Future work 87

To scale down the models computational load different directions can be explored

either at design level or deployment level, and they are not mutually exclusive. At the

design level, Neural architecture search techniques adds to the parameters optimisation

problem also the problem of finding the combination of neural network layers [26].

By penalising the computational cost in the loss function some resource-constrained

solutions can be found. Alternatively, knowledge distillation techniques can be used to

train more lightweight student models with the supervision of cumbersome teacher

models [49]. At the deployment level there are different ways of reducing the com-

putational load of models such as quantisation that reduces the number of bits used

to represent the weights and the operations of models, hence impacting the memory

required to store the model. In this case, the processing speed improves only if the

quantisation is supported by the hardware [56]. Lastly, pruning techniques select keep

some of the model parameters based on the performance measures, discarding the

remaining ones, hence impacting both storage and speed [43].

References

[1] D. Ahn, S. Kim, H. Hong, and B. C. Ko. Star-transformer: a spatio-temporal
cross attention transformer for human action recognition. In IEEE Winter Conf.
Appl. Comput. Vis., 2023.

[2] S. Ainetter and F. Fraundorfer. End-to-end trainable deep neural network for
robotic grasp detection and semantic segmentation from RGB. In IEEE Int.
Conf. Robotics Autom., 2021.

[3] U. Asif, J. Tang, and S. Harrer. Graspnet: An efficient convolutional neural
network for real-time grasp detection for low-powered devices. In International
Joint Conferences on Artificial Intelligence, 2018.

[4] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[5] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed and
accuracy of object detection. In arXiv:2004.10934v1 [cs.CV], 2020.

[6] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis—a
survey. IEEE Trans. Robotics, 30(2):289–309, 2013.

[7] M. N. Castro and S. Dosen. Continuous semi-autonomous prosthesis control
using a depth sensor on the hand. Frontiers in Neurorobotics, 16:814973, 2022.

[8] K. Chaudhary, K. Okada, M. Inaba, and X. Chen. Predicting part affordances of
objects using two-stream fully convolutional network with multimodal inputs.
In IEEE Int. Conf. Intell. Robot Syst., 2018.

[9] A. Chemero. An outline of a theory of affordances. Ecological Psychology,
15:181 – 195, 2003.

[10] D. Chen, D. Kong, J. Li, S. Wang, and B. Yin. Adosmnet: a novel visual
affordance detection network with object shape mask guided feature encoders.
Multimedia Tools and Applications, pages 1–25, 2023.

[11] D. Chen, D. Kong, J. Li, S. Wang, and B. Yin. A survey of visual affordance
recognition based on deep learning. IEEE Trans. Big Data, pages 1–20, 2023.

[12] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse. Collaborative
manufacturing with physical human–robot interaction. Robotics and Computer-
Integrated Manufacturing, 40:1–13, 2016.

90 References

[13] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv:1409.1259v2
[cs.CL], 2014.

[14] A. D. Christensen, D. Lehotskỳ, M. W. Jørgensen, and D. Chrysostomou.
Learning to segment object affordances on synthetic data for task-oriented
robotic handovers. In Brit. Mach. Vis. Conf., 2022.

[15] G. Christmann and J. Song. 2020 CORSMAL Challenge - Team NTNU-
ERCReport, 2020. https://corsmal.eecs.qmul.ac.uk/resources/challenge/2020.
11.30_CORSMAL_NTNU-ERC_Report.pdf.

[16] F. Chu, R. Xu, and P. Vela. Learning affordance segmentation for real-
world robotic manipulation via synthetic images. IEEE Robotics Autom. Lett.,
4(2):1140–1147, 2019.

[17] F.-J. Chu, R. Xu, L. Seguin, and P. A. Vela. Toward Affordance Detection
and Ranking on Novel Objects for Real-World Robotic Manipulation. IEEE
Robotics Autom. Lett., 4(4):4070–4077, 2019.

[18] F.-J. Chu, R. Xu, and P. A. Vela. Real-world multiobject, multigrasp detection.
IEEE Robotics Autom. Lett., 3(4):3355–3362, 2018.

[19] Blender Online Community. Blender - a 3D modelling and rendering package.
Stichting Blender Foundation, Amsterdam, 2018. Blender Foundation.

[20] L. Cui, X. Chen, H. Zhao, G. Zhou, and Y. Zhu. Strap: Structured object
affordance segmentation with point supervision. arXiv:2304.08492v1 [cs.CV],
2023.

[21] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, et al. Scaling egocentric vision:
The epic-kitchens dataset. In Eur. Conf. Comput. Vis., 2018.

[22] J. DeGol, A. Akhtar, B. Manja, and T. Bretl. Automatic grasp selection using a
camera in a hand prosthesis. In Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc.,
2016.

[23] S. Deng, X. Xu, C. Wu, K. Chen, and K. Jia. 3D affordancenet: A benchmark for
visual object affordance understanding. In Conf. Comput. Vis. Pattern Recognit.,
2021.

[24] T. Do, A. Nguyen, and I. Reid. AffordanceNet: An end-to-end deep learning
approach for object affordance detection. In IEEE Int. Conf. Robotics Autom.,
2018.

[25] S. Donaher, A. Xompero, and A. Cavallaro. Audio classification of the content
of food containers and drinking glasses. In Eur. Signal Process. Conf. IEEE,
2021.

[26] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey.
The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

https://corsmal.eecs.qmul.ac.uk/resources/challenge/2020.11.30_CORSMAL_NTNU-ERC_Report.pdf
https://corsmal.eecs.qmul.ac.uk/resources/challenge/2020.11.30_CORSMAL_NTNU-ERC_Report.pdf

References 91

[27] F. Erich, N. Chiba, Y. Yoshiyasu, N. Ando, R. Hanai, and Y. Domae. Neural-
labeling: A versatile toolset for labeling vision datasets using neural radiance
fields. IEEE Int. Conf. Comput. Vis., 2023.

[28] J. Fajardo, V. Ferman, D. Cardona, G. Maldonado, A. Lemus, and E. Rohmer.
Galileo hand: An anthropomorphic and affordable upper-limb prosthesis. IEEE
access, 8:81365–81377, 2020.

[29] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale
benchmark for general object grasping. In Conf. Comput. Vis. Pattern Recognit.,
2020.

[30] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu. Dual attention network
for scene segmentation. In Conf. Comput. Vis. Pattern Recognit., 2019.

[31] J. J. Gibson and L. Carmichael. The senses considered as perceptual systems,
volume 2. Houghton Mifflin Boston, 1966.

[32] R. Girshick. Fast r-cnn. In IEEE Int. Conf. Comput. Vis., 2015.

[33] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Conf. Comput. Vis.
Pattern Recognit., 2014.

[34] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[35] M. Gou, H.-S. Fang, Z. Zhu, S. Xu, C. Wang, and C. Lu. RGB matters: Learning
7-DoF grasp poses on monocular RGBD images. In IEEE Int. Conf. Robotics
Autom., 2021.

[36] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Ham-
burger, H. Jiang, M. Liu, X. Liu, et al. Ego4D: Around the world in 3,000 hours
of egocentric video. In Conf. Comput. Vis. Pattern Recognit., 2022.

[37] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth, D. J. Fleet,
D. Gnanapragasam, F. Golemo, C. Herrmann, et al. Kubric: A scalable dataset
generator. In Conf. Comput. Vis. Pattern Recognit., 2022.

[38] Q. Gu, J. Su, and L. Yuan. Visual affordance detection using an efficient
attention convolutional neural network. Neurocomputing, 440:36–44, 2021.

[39] Y. Gu, A. Thobbi, and W. Sheng. Human-robot collaborative manipulation
through imitation and reinforcement learning. In IEEE International Conference
on Information and Automation, 2011.

[40] A. Guo, B. Wen, J. Yuan, J. Tremblay, S. Tyree, J. Smith, and S. Birchfield.
Handal: A dataset of real-world manipulable object categories with pose anno-
tations, affordances, and reconstructions. In IEEE Int. Conf. Intell. Robot Syst.,
2023.

[41] D. Hadjivelichkov, S. Zwane, L. Agapito, M. P. Deisenroth, and D. Kanoulas.
One-shot transfer of affordance regions? affcorrs! In Conference on Robot
Learning. PMLR, 2023.

92 References

[42] S. Hampali, M. Rad, M. Oberweger, and V. Lepetit. Honnotate: A method
for 3D annotation of hand and object poses. In Conf. Comput. Vis. Pattern
Recognit., 2020.

[43] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. In
International Conference on Learning Representation, 2015.

[44] M. Hassanin, S. Khan, and M. Tahtali. Visual affordance and function under-
standing: A survey. ACM Computing Surveys (CSUR), 54(3):1–35, 2021.

[45] Y. Hasson, G. Varol, D. Tzionas, I. Kalevatykh, M. J. Black, I. Laptev, and
C. Schmid. Learning joint reconstruction of hands and manipulated objects. In
Conf. Comput. Vis. Pattern Recognit., 2019.

[46] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE Int. Conf.
Comput. Vis., 2017.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In Conf. Comput. Vis. Pattern Recognit., 2016.

[48] K. Hedvig, R. Javier, and K. Danica. Visual object-action recognition: Inferring
object affordances from human demonstration. Computer Vision and Image
Understanding, 2011.

[49] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
Adv. Neural Inf. Process. Syst., 2015.

[50] Q. Hou, D. Zhou, and J. Feng. Coordinate attention for efficient mobile network
design. In Conf. Comput. Vis. Pattern Recognit., 2021.

[51] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, et al. Searching for mobilenetv3. In Conf. Comput. Vis.
Pattern Recognit., 2019.

[52] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861v1 [cs.CV], 2017.

[53] S.M Hussain.S, L. Liu, W. Xu, and C. Lu. FPHA-Afford: A domain-specific
benchmark dataset for occluded object affordance estimation in human-object-
robot interaction. In IEEE Int. Conf. Image Process., 2020.

[54] V. Iashin, F. Palermo, G. Solak, and C. Coppola. Top-1 CORSMAL Challenge
2020 Submission: Filling Mass Estimation Using Multi-Modal Observations
of Human-Robot Handovers. In IEEE Conf. Pattern Recognit. Workshops and
Challenges, 2021.

[55] R. Ishikawa, Y. Nagao, R. Hachiuma, and H. Saito. Audio-Visual Hybrid Ap-
proach for Filling Mass Estimation. In IEEE Conf. Pattern Recognit. Workshops
and Challenges, 2021.

References 93

[56] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Conf. Comput. Vis. Pattern Recognit.,
2018.

[57] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater, and
J. Santos-Victor. Affordances in psychology, neuroscience, and robotics: A
survey. IEEE Trans. Cogn. Dev. Syst., 10(1):4–25, 2016.

[58] J. Jiang, G. Cao, T. Do, and S. Luo. A4t: Hierarchical affordance detection
for transparent objects depth reconstruction and manipulation. IEEE Robotics
Autom. Lett., 7(4):9826–9833, 2022.

[59] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440,
2021.

[60] Z. O. Khalifa and S. A. A. Shah. Towards visual affordance learning: A
benchmark for affordance segmentation and recognition. arXiv:2203.14092v2
[cs.CV], 2022.

[61] S. Kumra and C. Kanan. Robotic grasp detection using deep convolutional
neural networks. In IEEE Int. Conf. Intell. Robot Syst., 2017.

[62] S. R. Lakani, A. J. Rodríguez-Sánchez, and J. Piater. Towards Affordance
Detection for Robot Manipulation using Affordance for Parts and Parts for
Affordance. Autonomous Robots, 43(5):1155–1172, 2019.

[63] L. Lastrico, N. F. Duarte, A. Carfì, F. Rea, A. Sciutti, F. Mastrogiovanni, and
J. Santos-Victor. Expressing and inferring action carefulness in human-to-robot
handovers. IEEE Int. Conf. Intell. Robot Syst., 2023.

[64] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. Int.
J. Robot. Res., 34(4-5):705–724, 2015.

[65] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense
object detection. In Conf. Comput. Vis. Pattern Recognit., 2017.

[66] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft COCO: Common Objects in Context. In Eur. Conf.
Comput. Vis., 2014.

[67] Q. Liu, F. Feng, C. Lan, and R. H. M. Chan. VA2Mass: Towards the Fluid
Filling Mass Estimation via Integration of Vision and Audio Learning. In IEEE
Conf. Pattern Recognit. Workshops and Challenges, 2021.

[68] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
Ssd: Single shot multibox detector. In Eur. Conf. Comput. Vis. Springer, 2016.

[69] H. Luo, W. Zhai, J. Zhang, Y. Cao, and D. Tao. One-shot affordance detection.
International Joint Conference on Artificial Intelligence, 2021.

[70] L. Manuelli, W. Gao, P. Florence, and R. Tedrake. kpam: Keypoint affordances
for category-level robotic manipulation, 2019.

94 References

[71] R. Margolin, L. Zelnik-Manor, and A. Tal. How to evaluate foreground maps?
In Conf. Comput. Vis. Pattern Recognit., 2014.

[72] T. Matsubara, S. Otsuki, Y. Wada, H. Matsuo, T. Komatsu, Y. Iioka, K. Sugiura,
and H. Saito. Shared Transformer Encoder with Mask-Based 3D Model Esti-
mation for Container Mass Estimation. In IEEE Int. Conf. Acoustics, Speech
and Signal Process., 2022.

[73] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM Trans.
Modeling Comput. and Simulation, 8(1):3–30, 1998.

[74] V. Mazzia, S. Angarano, F. Salvetti, F. Angelini, and M. Chiaberge. Action
transformer: A self-attention model for short-time pose-based human action
recognition. Pattern Recognition, 124:108487, 2022.

[75] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Von Hofsten,
K. Rosander, M. Lopes, J. Santos-Victor, et al. The icub humanoid robot: An
open-systems platform for research in cognitive development. Neural networks,
23(8-9):1125–1134, 2010.

[76] F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In Int. Conf. 3D Vision,
2016.

[77] A. Modas, Alessio Xompero, R. Sanchez-Matilla, P. Frossard, and A. Cavallaro.
Improving Filling Level Classification with Adversarial training. In IEEE Int.
Conf. Image Process., 2021.

[78] A. Mousavian, C. Eppner, and D. Fox. 6-DOF graspnet: Variational grasp
generation for object manipulation. In IEEE Int. Conf. Comput. Vis., 2019.

[79] L. Mur-Labadia, R. Martinez-Cantin, and J. J. Guerrero. Bayesian deep learning
for affordance segmentation in images. In IEEE Int. Conf. Robotics Autom.,
2023.

[80] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos. Affordance detection of
tool parts from geometric features. In IEEE Int. Conf. Robotics Autom., 2015.

[81] A. Nguyen, D. Kanoulas, D. Caldwell, and N. Tsagarakis. Detecting object
affordances with convolutional neural networks. In IEEE Int. Conf. Intell. Robot
Syst., 2016.

[82] A. Nguyen, D. Kanoulas, D. Caldwell, and N. Tsagarakis. Object-based af-
fordances detection with convolutional neural networks and dense conditional
random fields. In IEEE Int. Conf. Intell. Robot Syst., 2017.

[83] A. T. Nguyen, M. W. Drealan, D. K. Luu, M. Jiang, J. Xu, J. Cheng, Q. Zhao,
E. W. Keefer, and Z. Yang. A portable, self-contained neuroprosthetic hand with
deep learning-based finger control. Journal of neural engineering, 18(5):056051,
2021.

[84] C. Oh, Y. L. Pang, and A. Cavallaro. Ohpl: One-shot hand-eye policy learner.
In IEEE Int. Conf. Intell. Robot Syst. IEEE, 2021.

References 95

[85] F. Osiurak, Y. Rossetti, and A. Badets. What is an affordance? 40 years later.
Neuroscience & Biobehavioral Reviews, 77:403–417, 2017.

[86] Y. L. Pang, A. Xompero, C. Oh, and A. Cavallaro. Towards safe human-to-
robot handovers of unknown containers. In IEEE Int. Conf. Robot and Human
Interactive Comm., 2021.

[87] A. Pieropan, C. H. Ek, and H. Kjellström. Functional object descriptors for
human activity modeling. In IEEE Int. Conf. Robotics Autom. IEEE, 2013.

[88] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese. Keto: Learning keypoint
representations for tool manipulation. In IEEE Int. Conf. Robotics Autom.,
2020.

[89] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from
natural language supervision. In Int. Conf. on Machine Learning, 2021.

[90] E. Ragusa, C. Gianoglio, S. Dosen, and P. Gastaldo. Hardware-aware affordance
detection for application in portable embedded systems. IEEE Access, 9:123178–
123193, 2021.

[91] J. Raskin. The humane interface: new directions for designing interactive
systems. Addison-Wesley Professional, 2000.

[92] J. Redmon and A. Angelova. Real-time grasp detection using convolutional
neural networks. In IEEE Int. Conf. Robotics Autom., 2015.

[93] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Conf. Comput. Vis. Pattern Recognit.,
2016.

[94] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Conf. Comput.
Vis. Pattern Recognit., 2017.

[95] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. In
arXiv:1804.02767v1 [cs.CV], 2018.

[96] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Adv. Neural Inf. Process. Syst.,
2015.

[97] S. Rezapour Lakani, A. Rodríguez-Sánchez, and J. Piater. Towards affordance
detection for robot manipulation using affordance for parts and parts for affor-
dance. Auton. Robots, 43:1155–1172, 2019.

[98] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models. In Conf. Comput. Vis. Pattern
Recognit., 2022.

[99] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio.
Fitnets: Hints for thin deep nets. International Conference on Learning Repre-
sentation, 2014.

96 References

[100] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for
biomedical image segmentation. In Int. Conf. Med. Image Comput. Comput.
Assist. Interv., 2015.

[101] P. Rosenberger, A. Cosgun, R. Newbury, J. Kwan, V. Ortenzi, P. Corke, and
M. Grafinger. Object-independent human-to-robot handovers using real time
robotic vision. IEEE Robotics Autom. Lett., 6(1):17–23, 2020.

[102] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. Int. J. Comput. Vis., 115(3):211–252,
2015.

[103] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
Labelme: a database and web-based tool for image annotation. Int. J. Comput.
Vis., 77:157–173, 2008.

[104] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song. Clear
grasp: 3D shape estimation of transparent objects for manipulation. In IEEE
Int. Conf. Robotics Autom. IEEE, 2020.

[105] R. Sanchez-Matilla, K. Chatzilygeroudis, A. Modas, N. F. Duarte, A. Xompero,
P. Frossard, A. Billard, and A. Cavallaro. Benchmark for human-to-robot
handovers of unseen containers with unknown filling. IEEE Robotics Autom.
Lett., 5(2):1642–1649, 2020.

[106] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In Conf. Comput. Vis. Pattern
Recognit., 2018.

[107] J. Sawatzky, A. Srikantha, and J. Gall. Weakly supervised affordance detection.
In Conf. Comput. Vis. Pattern Recognit., 2017.

[108] W. Shi, J. Caballero, F. Huszár, J. Totz, A. Aitken, R. Bishop, D. Rueckert, and
Z. Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Conf. Comput. Vis. Pattern Recognit.,
2016.

[109] T. Standley, O. Sener, D. Chen, and S. Savarese. image2mass: Estimating the
mass of an object from its image. In Conference on Robot Learning. PMLR,
2017.

[110] T. A. Stoffregen. Affordances as properties of the animal-environment system.
Ecological Psychology, 15(2):115–134, 2003.

[111] C. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmenta-
tions. In Int. Conf. Med. Image Comput. Comput. Assist. Interv., DLMIA and
ML-CDS Workshops. Springer, 2017.

[112] J. Sun, J. L. Moore, A. Bobick, and J. M. Rehg. Learning visual object categories
for robot affordance prediction. Int. J. Robot. Res., 29(2-3):174–197, 2010.

References 97

[113] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le. Mnasnet: Platform-aware neural architecture search for mobile. In Conf.
Comput. Vis. Pattern Recognit., 2019.

[114] N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere, V.-G.
Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino, et al. Walk-man: A
high-performance humanoid platform for realistic environments. Journal of
Field Robotics, 34(7):1225–1259, 2017.

[115] C.-Y. Tsai, H.-P. Lin, and Y.-C. Chiu. An esp-based lightweight model for joint
object detection and affordance segmentation. In Asia-Pacific Conference on
Intelligent Robot Systems. IEEE, 2021.

[116] F. Vasile, E. Maiettini, G. Pasquale, A. Florio, N. Boccardo, and L. Natale.
Grasp pre-shape selection by synthetic training: Eye-in-hand shared control on
the hannes prosthesis. In IEEE Int. Conf. Intell. Robot Syst., 2022.

[117] V. Vatsal and G. Hoffman. Design and analysis of a wearable robotic forearm.
In IEEE Int. Conf. Robotics Autom. IEEE, 2018.

[118] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas. Nor-
malized object coordinate space for category-level 6D object pose and size
estimation. In Conf. Comput. Vis. Pattern Recognit., 2019.

[119] H. Wang, C. Zhu, Z. Ma, and C. Oh. Improving Generalization of Deep
Networks for Estimating Physical Properties of Containers and Fillings. In
IEEE Int. Conf. Acoustics, Speech and Signal Process., 2022.

[120] X. Weber, A. Xompero, and A. Cavallaro. A mixed-reality dataset for
category-level 6D pose and size estimation of hand-occluded containers.
arXiv:2211.10470v1 [cs.CV], 2022.

[121] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Müller, A. Evans, D. Fox, J. Kautz,
and S. Birchfield. Bundlesdf: Neural 6-dof tracking and 3d reconstruction of
unknown objects. In Conf. Comput. Vis. Pattern Recognit., 2023.

[122] H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yu. FastFCN: Rethinking dilated
convolution in the backbone for semantic segmentation. arXiv:1903.11816v1
[cs.CV], 2019.

[123] A. Xompero, S. Donaher, V. Iashin, F. Palermo, G. Solak, C. Coppola,
R. Ishikawa, Y. Nagao, R. Hachiuma, Q. Liu, et al. The corsmal benchmark for
the prediction of the properties of containers. IEEE Access, 10:41388–41402,
2022.

[124] A. Xompero, Y. L. Pang, T. Patten, A. Prabhakar, B. Calli, and A. Cavallaro.
Audio-visual object classification for human-robot collaboration. In IEEE Int.
Conf. Acoustics, Speech and Signal Process. IEEE, 2022.

[125] A. Xompero, R. Sanchez-Matilla, R. Mazzon, and A. Cavallaro. CORSMAL
Containers Manipulation, 2020. (1.0) [Data set]. Queen Mary University of
London. https://doi.org/10.17636/101CORSMAL1.

https://doi.org/10.17636/101CORSMAL1

98 References

[126] A. Xompero, R. Sanchez-Matilla, A. Modas, P. Frossard, and A. Cavallaro.
Multi-View Shape Estimation of Transparent Containers. In IEEE Int. Conf.
Acoustics, Speech and Signal Process., 2020.

[127] R. Xu, F.-J. Chu, C. Tang, W. Liu, and P. A. Vela. An affordance keypoint de-
tection network for robot manipulation. IEEE Robotics Autom. Lett., 6(2):2870–
2877, 2021.

[128] W. Yang, C. Paxton, A. Mousavian, Y. Chao, M. Cakmak, and D. Fox. Reactive
human-to-robot handovers of arbitrary objects. In IEEE Int. Conf. Robotics
Autom., 2021.

[129] C. Yin and Q. Zhang. Object affordance detection with boundary-preserving
network for robotic manipulation tasks. Neural. Comput. Appl., 34(20):17963–
17980, 2022.

[130] C. Yin, Q. Zhang, and W. Ren. A new semantic edge aware network for object
affordance detection. J. Intelligent & Robotic Systems, 104(1):1–16, 2022.

[131] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features
in deep neural networks? In Adv. Neural Inf. Process. Syst., 2014.

[132] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks. In Conf.
Comput. Vis. Pattern Recognit., 2017.

[133] P. Zech, S. Haller, S. R. Lakani, B. Ridge, E. Ugur, and J. Piater. Computational
models of affordance in robotics: a taxonomy and systematic classification.
Adaptive Behavior, 25(5):235–271, 2017.

[134] W. Zhai, H. Luo, J. Zhang, Y. Cao, and D. Tao. One-shot object affordance
detection in the wild. Int. J. Comput. Vis., 130(10):2472–2500, 2022.

[135] H. Zhang, X. Lan, S. Bai, X. Zhou, Z. Tian, and N. Zheng. Roi-based robotic
grasp detection for object overlapping scenes. In IEEE Int. Conf. Intell. Robot
Syst., 2019.

[136] Y. Zhang and T. Funkhouser. Deep depth completion of a single RGB-D image.
In Conf. Comput. Vis. Pattern Recognit., 2018.

[137] Y. Zhang, H. Li, T. Ren, Y. Dou, and Q. Li. Multi-scale fusion and global
semantic encoding for affordance detection. In Int. Joint Conf. on Neural
Networks, 2022.

[138] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In
Conf. Comput. Vis. Pattern Recognit., 2017.

[139] X. Zhao, Y. Cao, and Y. Kang. Object affordance detection with relationship-
aware network. Neural. Comput. Appl., 32(18):14321–14333, 2020.

[140] X. Zheng, Z. Zeng, and J. Zhang. High-level object affordance recognition. In
IEEE Int. Conf. Robot. Autom., 2018.

Appendix A. Background

In this appendix, we present some concepts that are useful to understand the thesis.

We outline the concepts that are taken for granted in the intersection between machine

learning and computer vision (Sec. A.1), and we dive more deeply in the modules

(Sec. A.3) and architectures that are used either in the baselines or in the proposed meth-

ods. In particular, we discuss the main architectures to tackle semantic segmentation

(Sec. A.4), object detection (Sec. A.5), and instance segmentation (Sec. A.6).

A.1 Preliminaries

In this section, we briefly highlight some concepts that are taken for granted in the

thesis and we refer the reader to machine learning books for additional details [4, 34].

In this thesis, we consider computer vision models (neural networks) i.e., the

composition of parametric functions that maps the input image to a prediction. These

functions are also called layers and can perform different operations such as con-

volution that is a weighted sum between the weights of a filter and the values of a

feature map obtained sliding the kernel on the featrue map, pooling that reduces the

features resolution, feed-forward a weighted sum among the all inputs of the layer and

the weights of the layer. Models are trained using the supervised machine learning

paradigm i.e., the parameters are learned through a cost function (loss) that evaluates

the error between the model prediction and the annotation. The annotation could be for

example a number m ∈ R>0 representing the mass of the object in the image. During

the training phase the backpropagation procedure updates the model parameters in a

certain layer through the chain rule based on the current value, the learning rate, and

100 Appendix A. Background

the gradient of the loss function with respect to the current layer. During the inference

phase, the weights of the model are kept constant (frozen) and the information flows

from the first layers of the model to the last one that outputs the prediction.

A.2 Transfer learning

Transfer learning consists in using the features of a model learned in a source task

on a target task, assuming that the two tasks are similar. An example of similar

tasks are scene segmentation (source) [138] and affordance segmentation (target) [81].

Transfer learning is a widely used practice because it offers the possibility of using

the representation of the source domain in which the training set may have millions

of images in domains where the size of the training set is not large enough to train

a model from scratch limiting the overfitting phenomenon. Models pre-trained on

large datasets (millions of images) learn feature representations that are indeed general

enough to be used for similar tasks in vision [131]. In general, the representation can

be transferred either from an architecture to another one, or maintaining the same

architecture.

An example of transfer learning from an architecture to another one is knowledge

distillation [49]: a pre-trained model (teacher) is used to supervise the training of

another model (student) for example by adding a penalisation term in the loss that

takes into account the matching between the output of the last layer of the teacher and

the student, or also outputs of intermediate layers if they are compatible in size [99].

Knowledge distillation can be used for example to obtain a student model that is

smaller with respect to the teacher, increasing the inference speed and reducing the

computational cost without a minor drop in performance than training the smaller

model from scratch.

Another common transfer learning approach, used in this thesis, is the fine-tuning

that transfers the representation in the same architecture [131]. Fine-tuning is the

process of adjusting the weights of a model on the target domain starting from the

pre-trained version on the source domain. Fine-tuning is widely adopted when the

A.3 Feature extraction 101

(a) (b)

Fig. A.1 Feature extraction blocks: (a) Residual block [47], (b) MobileNetV3
block [51].

target domain is similar to the source one and when pre-trained weights are available,

because it can help reducing the amount of computations during training and improve

the performance [131]. After the initialisation with pre-trained weights, the first layers

of the model can be frozen to avoid the update during the backpropagation phase,

leaving only the last layers that are more task specific to update their weights. An

alternative approach consists in updating all the layers but starting from the pre-trained

initialisation. In this way also the first features are adapted to the target domain,

however the computational cost of this procedure is higher than in the former case.

A.3 Feature extraction

The backbone of a model is the part that performs feature extraction from the input

image. Due to numerical reasons, the image could be pre-processed e.g., by scaling

the pixel values based on the mean value and the standard deviation, or mapping the

pixel values in the [0,1] range. The features extracted by applying the weights of the

model on the image are used by the head of the model (the last layers) to predict the

output.

Residual Network

Residual Network (ResNet) is one of the most used models in the computer vision

community, and is composed by a stack of residual blocks [47]. A residual block

102 Appendix A. Background

(see Fig. A.1a) consists of a skip connection that combines the input of the block

with its processed verision φ ′ = φ +ω(φ), where x′ is the output of the block, ω

can be a stack of convolutional layers with non-linear activation. In the original

paper, the combination is an element-wise sum, and the skip connection avoids adding

parameters to the block. Residual blocks are useful to increase the number of layers

(hence parameters) limiting the accuracy degradation problem that was observed when

increasing the number of stacked layers. Residual connections ease the optimisation

problem, compared to models that do not employ them, exhibiting lower training error

increasing the number of stacked layers. As a consequence, ResNets obtained higher

accuracies than the compared models [47].

Mobile Network

Mobile Network (MobileNet) is a family of convolutional neural networks designed

to perform on systems that are resource-constrained e.g., smartphones [51, 52, 106].

The first MobileNet version (MobileNetV1) is based on the depthwise separable

convolutions idea, that allows to save computations hence gaining in speed with

a reduced accuracy drop on common benchmarks [52]. In particular, instead of

performing the standard convolution operation between a feature map and the kernels of

a layer that filters and combines the feature maps, the depthwise separable convolution

splits the computation into two layers, one layer for filtering and the other layer for

combining. The depthwise convolution applies a single filter to each input channel,

while the pointwise convolution then applies a 1× 1 convolution to combine the

outputs the depthwise convolution. The second MobileNet version (MobileNetV2),

introduced the inverted residual bottleneck layer to remove non-linearities in the layers

performing a reduction of feature maps dimensionality to maintain the representation

capability [106]. First, a point-wise convolution expands the number of channels of the

input feature map, applying also a nonlinear activation. Next, a depth-wise convolution

performs spatial filtering using 3×3 kernels, followed by non-linear activation. Finally,

the spatially-filtered feature map is projected back to a lower number of channels using

another point-wise convolution. When the depth-wise uses a stride 1 the output

A.4 Architectures for semantic segmentation 103

feature map and the input feature map have the same dimensionality and a residual

connection is added to ease the optimisation during training. The third MobileNet

version (MobileNetV3) is the result of a Neural Architecture Search that trades-

off accuracy and latency combining MNasNet lightweight attention modules [113]

based on squeeze and excitation in MobileNetV2 bottleneck blocks (see Fig. A.1b).

Additionally, MobileNetV3 introduces new non-linear activation function (h-swish)

that improves the computational cost with respect to the swish activation function

based on the sigmoid [51].

A.4 Architectures for semantic segmentation

The semantic segmentation task associates each pixel in the input image to a class

belonging to a pre-defined set. Most of the architectures can be divided into the

backbone that performs feature extraction, and the head that maps the extracted

features to the input space (or a fraction). The backbone can be replaced by any

feature extractor, such as the ones introduced in Sec. A.3, as long as the feature map

dimensions are compatible.

UNet

UNet is an encoder-decoder model for semantic segmentation (see Fig. A.2a) [100].

The first part of the network is called encoder because it extracts the features using

convolutional layers with non-linear activations, and downsampling layers (pooling),

compressing the input image to a tensor of lower width and height, but higher number

of channels. The decoder maps the compressed representation back to the input space,

using a symmetric structure to the encoder. The feature maps flowing in the decoder

are processed using convolutional layers with non-linear activations and upsampling

layers. The outputs of the encoder layers are forwarded through skip connections

and concatenated with the corresponding outputs of the decoder layers to avoid the

information loss when reconstructing the information. The concatenation is performed

along the channel dimension.

104 Appendix A. Background

(a) UNet

(b) DANet

(c) PSPNet

Fig. A.2 Block diagrams of semantic segmentation architectures: (a) UNet, (b) DANet,
(c) PSPNet. Block diagrams are simplified to visualise the main architecture blocks.
In UNet, the encoder block contains also a downsampling layer, while the decoder
block the upsampling one to match tensor dimensionality.

Dual Attention Network

Dual Attention Network (DANet) combines a position attention module to learn the

spatial interdependencies of features and a channel attention module to model channel

interdependencies in the extracted features (see Fig. A.2b) [30]. In the former module,

the self-attention mechanism captures similarity between any two positions of the

feature maps through matrix multiplication and softmax activation. At a given channel

of the output feature map, each pixel position is obtained by aggregating features at

A.5 Architectures for object detection 105

all positions using the attention map values as weights. Therefore, any two positions

with similar features can contribute mutual improvement regardless of their distance

in spatial dimension. In the channel attention module, the self-attention mechanism

captures the channel dependencies between any two channel of the feature maps, and

processes each channel using a sum weighted with the attention map values. Finally,

the outputs of the two attention modules are processed with a convolutional layer, and

they are fused with an element-wise sum. At last a convolution layer predicts the

segmentation mask.

Pyramid Scene Parsing Network

Pyramid Scene Parsing Network (PSPNet) is based on the pyramid parsing module

that processes the feature map after the feature extraction phase, working on different

sub-regions (see Fig. A.2c) [138]. The pyramid pooling module fuses features under

four different scales to learn both global and local information at different resolutions.

The coarsest level is a global pooling that produces the lowest resolution feature map.

The following pyramid levels separate the feature map into different sub-regions and

forms pooled representation for different locations. The output of different levels in the

pyramid pooling module contains the feature map with varied sizes. 1×1 convolution

layer after each level maps the number of channels to 1. An upsample layer modifies

the resolution of the feature maps to match the width and height of the pyramid pooling

module input. The upsampled feature maps are concatenated with the pyramid pooling

module input along the channel dimension to form the output of the pyramid parsing

module, carrying both local and global information. The convolutional layer maps the

final feature representation into the per-pixel prediction.

A.5 Architectures for object detection

The task of object detection associates each object in an image with a category label

and a bounding box. The feature extraction can be performed using any backbone.

Object detection method based on convolutional neural networks can be divided into

106 Appendix A. Background

(a) Faster R-CNN

(b) Yolo

(c) SSD

Fig. A.3 Block diagrams of object detection architectures: (a) Faster R-CNN,
(b)YOLOv1, (c) SSD. Block diagrams are simplified to visualise the main archi-
tecture blocks. KEY – NMS: Non-maximum suppression.

two sets: single stage and double stage. This division depends on how the feature maps

of the backbone are processed. Two stage detectors consider only some regions of

the feature maps based on a proposal phase [96], while single stage detectors process

the whole feature map in the detection head, without a proposal phase. Single stage

detectors are more efficient and faster than double stage detectors, but less accurate.

A.5 Architectures for object detection 107

Region-based Convolutional Neural Network

Region-based Convolutional Neural Network (R-CNN) is a family of two stage object

detectors [33]. The first version of R-CNN uses existing methods to propose regions of

interest and then crops and warps the regions in the image to the same fixed resolution.

A convolutional neural network with a classifier on top processes the RGB images

crops to predict the class. The second version is Fast R-CNN network that processes

the whole input image with a Convolutional Neural Network instead of processing

only the proposed regions [32]. Also in this case the proposed regions boundaries

are assumed to be given by another algorithm e.g. selective search. The regions

of interest are cropped in the feature map and resized to the same fixed resolution

using a pooling layer. Two different fully connected heads process the pooling layer

output to predict the class of the object (or background) in the region of interest and the

bounding box offsets to adjust the proposed region boundary. Faster R-CNN completes

Fast R-CNN with a fully convolutional region proposal network that processes the

feature maps extracted from the input image, introducing the anchor boxes concept

(see Fig. A.3a) [96]. Anchor boxes are fixed-size bounding boxes having various

shapes and sizes to cover the likely locations of objects in the image and are used as

priors. The Region Proposal Network uses a 3×3 convolutional layer that slides on

the extracted feature maps, and two 1×1 convolutional layers, one for bounding boxes

prediction (more precisely the offset with respect to the anchor boxes), the other for

an objectness score i.e., if the box contains an object or not. The Fast R-CNN that

comes after the Region Proposal Network evaluates the predicted regions of interest as

previously described.

You Only Look Once Network

You Only Look Once (YOLO) is a family of convolutional neural networks designed

to perform one shot object detection processing the feature map extracted from the

input image without a region proposal phase [93]. The convolutional feature extraction

phase outputs a feature map that is processed by the fully connected head of the

model. Since the backbone preserves the locality of the input image, the feature

108 Appendix A. Background

map can be seen as a grid divided into cells, where each cell corresponds to a patch

in the input image. The head predicts for each position of the feature map (hence

each cell in the original image) the bounding boxes center, the height and width

of the bounding box, normalised with respect to the image, a confidence score and

the object class. Non-maximum suppression and the confidence scores can be used

to improve the robustness of the predictions discarding overlapping predictions(see

Fig. A.3b). Successive versions of YOLO gradually updates parts of the existing model,

integrating the mechanism of anchor boxes in the model (YOLOv2) [94]; predicting

bounding boxes from different feature maps scales (YOLOv3) [95]; integrating batch

normalisation, residual connections and updating the training strategy (YOLOv4) [5];

and tuning the anchor boxes to the data (YOLOv5)5.

Single-Shot Multibox detector

Single-Shot Multibox detector (SSD) is another example of single stage object de-

tection model predicting the class and the bounding boxes with a single forward

pass of feature maps in the network(see Fig. A.3c) [68]. At prediction time, the

network generates scores for the presence of each object category in each anchor

box and adjustments to the box. Additionally, the network combines predictions

from multiple feature maps with different resolutions to handle objects of various

size. To target resource-constrained systems, the computational cost of SSD can be

reduced by replacing standard convolutions with depthwise separable convolutions

(SSDLite) [106].

A.6 Architectures for instance segmentation

The task of instance segmentation associates each detected object with a segmentation

mask. The input is an RGB image and the outputs of the model are the class, the

bounding box, and the mask.

A.6 Architectures for instance segmentation 109

Fig. A.4 Mask R-CNN block diagram. The diagram is simplified to visualise the main
architecture blocks.

Mask R-CNN

Mask R-CNN is one of the most used models for instance segmentation [46], and

extends the object detector Faster R-CNN to perform instance segmentation (see

Fig. A.4). The backbone outputs a feature map that is first processed by region

proposal network. Faster R-CNN detection branch processes the cropped regions

of interest of the feature map predicting the class and the bounding box offset for

non-background regions, while an additional convolutional branch predicts a fixed-size

binary segmentation mask. Authors introduced RoI average pooling that crops the

feature map in the detected regions using bi-linear interpolation to limit the quantisation

of the feature map introduced by the pooling operation. The mask segmentation branch

is composed by convolutional and upsample layers.

Appendix B. Other research merits

Journal Papers

[J1] E. Ragusa, T. Apicella, C. Gianoglio, R. Zunino, and P. Gastaldo. Design

and deployment of an image polarity detector with visual attention. Cognitive

Computation, 1-13, 2021

[J2] V. Pandelea, E. Ragusa, T. Apicella, P. Gastaldo, and E. Cambria. Emotion

recognition on edge devices: Training and deployment. MDPI Sensors, 21(13),

4496, 2021.

Conference papers

[C4] A. Albanese, T. Taccioli, T. Apicella, D. Brunelli, and E. Ragusa. Design and

Deployment of an Efficient Landing Pad Detector. International Conference on

System-Integrated Intelligence, 2022.

[C5] T. Apicella, E. Ragusa, A. Canepa, and Paolo Gastaldo. A Data-Driven Method

for Reliability Estimation of Auxiliary Power Consumption Prediction in Com-

mercial Electric Vehicles. International Conference on Applications in Electron-

ics Pervading Industry, Environment and Society (ApplePies), 2021.

	Table of contents
	Published work
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Problem formulation
	1.3 Contributions
	1.4 Organisation of the thesis

	2 Literature review
	2.1 Literature search criteria
	2.2 Preliminaries
	2.3 Mass Estimation
	2.4 Visual affordance segmentation
	2.5 Datasets
	2.6 Performance measures
	2.7 Summary

	3 Container mass estimation
	3.1 Container localisation and mass estimation
	3.1.1 Localisation
	3.1.2 Patches selection
	3.1.3 Mass estimation

	3.2 Validation
	3.2.1 Methods under comparison
	3.2.2 Experimental setup
	3.2.3 Training details
	3.2.4 Results and discussion

	3.3 Summary

	4 Affordance Segmentation of hand-occluded objects
	4.1 Object detection for affordance segmentation
	4.1.1 Objectness fine-tuning

	4.2 The Arm-Container Affordance Network
	4.2.1 Multi-branch architecture
	4.2.2 Feature separation and fusion
	4.2.3 Predicting object affordances and the hand
	4.2.4 Loss functions
	4.2.5 Mixed-reality affordance annotation

	4.3 Validation
	4.3.1 Methods under comparison
	4.3.2 Experimental setup
	4.3.3 Training details
	4.3.4 Results and discussion

	4.4 Summary

	5 Conclusion
	5.1 Summary of achievements
	5.2 Future work

	References
	Appendix A. Background
	A.1 Preliminaries
	A.2 Transfer learning
	A.3 Feature extraction
	A.4 Architectures for semantic segmentation
	A.5 Architectures for object detection
	A.6 Architectures for instance segmentation

	Appendix B. Other research merits

