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Abstract: Background: Atrial fibrillation (AF) is the most common cardiac arrythmia; 12.1 million
people are expected to be affected by 2030. Importantly, AF is associated with
increased risk for ischemic stroke, which is underestimated as AF can be
asymptomatic. Methods: To develop ML models for prediction of 1) AF in the general
population and 2) ischemic stroke in patients with AF we constructed XGBoost,
LightGBM, Random Forest, Deep Neural Network, Support Vector Machine and Lasso
penalised logistic regression models using UK-Biobank’s extensive real-world clinical
data, questionnaires, as well as biochemical and genetic data, and their predictive
performances were compared. Ranking and contribution of the different features was
assessed by SHapley Additive exPlanations (SHAP) analysis. The clinical tool
CHA2DS2-VASc for prediction of ischemic stroke among AF patients, was used for
comparison to the best performing ML model. Findings: The best performing model for
AF prediction was LightGBM, with an area-under-the-roc-curve (AUROC) of 0.729
(95% confidence intervals (CI): 0.719, 0.738). The best performing model for ischemic
stroke prediction in AF patients was XGBoost with AUROC of 0.631 (95% CI: 0.604,
0.657). The improved AUROC in the XGBoost model compared to CHA2DS2-VASc
was statistically significant based on DeLong’s test (pvalue=2.20E-06). In addition, the
SHAP analysis showed that several peripheral blood biomarkers (e.g. creatinine,
glycated haemoglobin, monocytes) were associated with ischemic stroke, which are
not considered by CHA2DS2-VASc. Low levels of albumin and increased levels of
alkaline phosphatase were associated with increased risk of ischemic stroke also in
European descent subjects and not only in East Asians as previously reported.
Interpretation: The best performing ML models presented have the potential for clinical
use, but further validation in independent studies is required. Our results endorse the
incorporation of some routinely measured blood biomarkers for ischemic stroke
prediction in AF patients. Funding: This work was funded from the National Institute of
Health Research (NIHR) Barts Biomedical Research Centre.
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 10 

Abstract 11 

Objective: Atrial fibrillation (AF) is the most common cardiac arrythmia, and it is associated with increased risk 12 

for ischemic stroke, which is underestimated, as AF can be asymptomatic. The aim of this study was to develop 13 

optimal ML models for prediction of AF in the population, and secondly for ischemic stroke in AF patients. 14 

Methods: To develop ML models for prediction of 1) AF in the general population and 2) ischemic stroke in 15 

patients with AF we constructed XGBoost, LightGBM, Random Forest, Deep Neural Network, Support Vector 16 

Machine and Lasso penalised logistic regression models using UK-Biobank’s extensive real-world clinical data, 17 

questionnaires, as well as biochemical and genetic data, and their predictive performances were compared. 18 

Ranking and contribution of the different features was assessed by SHapley Additive exPlanations (SHAP) 19 

analysis. The clinical tool CHA2DS2-VASc for prediction of ischemic stroke among AF patients, was used for 20 

comparison to the best performing ML model. 21 

Findings: The best performing model for AF prediction was LightGBM, with an area-under-the-roc-curve 22 

(AUROC) of 0.729 (95% confidence intervals (CI): 0.719, 0.738). The best performing model for ischemic stroke 23 

prediction in AF patients was XGBoost with AUROC of 0.631 (95% CI: 0.604, 0.657). The improved AUROC in 24 

the XGBoost model compared to CHA2DS2-VASc was statistically significant based on DeLong’s test 25 

(pvalue=2.20E-06). In addition, the SHAP analysis showed that several peripheral blood biomarkers (e.g. 26 

creatinine, glycated haemoglobin, monocytes) were associated with ischemic stroke, which are not considered 27 

by CHA2DS2-VASc.  28 

Implications: The best performing ML models presented have the potential for clinical use, but further 29 

validation in independent studies is required. Our results endorse the incorporation of some routinely 30 

measured blood biomarkers for ischemic stroke prediction in AF patients.  31 

 32 

Introduction 33 

Atrial fibrillation (AF) is the most common cardiac arrythmia, which is characterised by a rapid and irregular 34 

heartbeat [1, 2]. The incidence of AF is increasing rapidly with 12.1 million people expected to be affected by 35 

2030. This is mainly attributed to the ageing of the population, along with changes in lifestyle. AF, besides 36 

doubling the risk of cardiovascular mortality, is associated with increased risk of stroke, ischemic heart disease, 37 

heart failure and cognitive dysfunction. More specifically, AF quintuple the risk for ischemic stroke, 38 

independent of age. However, AF is sometimes asymptomatic, and thus remains undetected, and 39 

subsequently the ischemic stroke risk attributed to AF is under-estimated [1, 2].  40 

Revised manuscript file - highlighting revisions made Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www2.cloud.editorialmanager.com/heliyon/viewRCResults.aspx?pdf=1&docID=144657&rev=2&fileID=4866596&msid=a15952bb-4928-411e-82a0-3f9e2aeb359b
https://www2.cloud.editorialmanager.com/heliyon/viewRCResults.aspx?pdf=1&docID=144657&rev=2&fileID=4866596&msid=a15952bb-4928-411e-82a0-3f9e2aeb359b


Machine learning (ML) algorithms are promising to revolutionise disease prediction, classification of medical 41 

images and diagnosis revealing new features, which would have not been discovered using traditional 42 

statistical models [3]. ML models use a hypothesis-free approach with no prior assumptions either among the 43 

input features or between the features and the outcome. ML methods with varying degree of accuracy have 44 

been reported for the prediction of circulatory diseases. However, they have been limited from access to large-45 

scale cohorts with integrated clinical, biochemical and genetic data [3, 4].  46 

There have been several studies that employed ML methods for prediction of circulatory diseases. A recent 47 

study in Geisinger's clinical MUSE database with no history of AF, within 1-year of an ECG, employed deep 48 

neural networks and reported an area under the receiver operating characteristic (AUROC) of 0.85 for AF 49 

prediction [3]. They also reported that 62% of patients who had a stroke caused by AF within 3 years of an 50 

ECG, with no prior AF diagnosis, would have been identified by their prediction tool before the stroke occurred 51 

[3]. Another study employed four ML models to predict modified Rankin Scale (mRS) at hospital discharge and 52 

in-hospital deterioration for acute ischemic stroke patients enrolled on the Stroke Registry in Chang Gung 53 

Healthcare System (SRICHS) [4]. Random forest performed well in both outcomes; the AUROC was 0.83 for 54 

discharge mRS and 0.71 for in-hospital deterioration [4]. There have also been several studies using ML 55 

methods for the prediction of ischemic stroke in AF-patients. In the Korean National Health Insurance (KNHIS) 56 

dataset, the authors aimed to predict ischemic stroke occurrence in AF patients using ML models such as DNN, 57 

XGBoost and RF, for more than 150,000 AF patients. The best performing model was DNN with an AUROC of 58 

0.727, outperforming CHA2DS2-VASc with AUROC of 0.651 [5]. Another study using the Fushimi AF registry, 59 

showed that CatBoost ML method outperformed CHA2DS2-VASc, having AUROC 0.72 (95%CI, 0.66-0.79) and 60 

0.62 (95%CI, 0.54-0.70) respectively [6]. Using the Korean Atrial Fibrillation Evaluation Registry in Ischemic 61 

Stroke Patients (K-ATTENTION), the authors showed that LightGBM performed the best, with AUROC of 0.772 62 

(95% CI 0.715-0.829), for the prediction of early neurological deterioration (END) among AF-related stroke 63 

patients [7]. The studies mentioned above underlined the importance of ML methods, since besides the 64 

improved prediction performance that they display in contrast to current clinical tools, they exhibit the 65 

potential to unravel new and diverse risk factors associated with the disease.  66 

The aim of this study was to develop optimal ML models for prediction of: 1) AF in the population and 2) 67 

ischemic stroke in AF patients. We constructed ML models with six different algorithms in UK-Biobank 68 

(500,000 participants with extensive questionnaires, clinical, biochemical and genetic data – Tables S1-S3) and 69 

assessed their predictive performances. For ranking of feature importance and contribution to the prediction 70 

outcome we used SHapley Additive exPlanations (SHAP) [8].  71 

Methods 72 

Overview of the research framework 73 

We included clinical data, phenotypes, lifestyle, and medications from UK-Biobank. We imputed the missing 74 

values and employed a feature selection process, described in more detail at Data pre-processing, to reduce 75 

the number of features employed to the ones relative to the outcome. Six ML models were used to create 76 

predictive models as described at the ML methods below. Each model’s hyperparameters were optimised 77 

using 10-fold cross validation at the training dataset. The ML models were validated on the test dataset and 78 

their performances were compared. Lastly, we employed the SHAP explanations to reveal the features’ 79 

contributions to the prediction. 80 

Phenotype and participant selection 81 

Data pre-processing 82 
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We examined the UK-Biobank, a prospective cohort of 502,492 participants, aged 37-73 years old, recruited 83 

between 2006 and 2010. The dataset includes blood measurements, clinical assessments, anthropometry, 84 

cognitive function, hearing, arterial stiffness, hand grip strength, sociodemographic factors, lifestyle, family 85 

history, psychosocial factors and dietary intake [9]. Related individuals were removed, and the remaining 86 

dataset for analysis included 454,118 participants. Furthermore, we incorporated medications as features, 87 

derived from field 20003 (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20003). Additionally, clinical 88 

data were employed, coded in ICD10, derived from the Hospital Episodes Statistics (HES), which are linked to 89 

the UK-Biobank. From these, we constructed phenotype codes or “phecodes”, using a phecode map [10], 90 

which are aggregated ICD10 codes defining specific diseases or traits. We employed only the umbrella 91 

phecode categories. Detailed list of all the features that we examined can be found at Table_S1, Table_S2, 92 

Table_S3. Moreover, we created two polygenic scores (PGS) which were included as features for the prediction 93 

of ischemic stroke in people with AF. The first one is the AF score, based on 94 genome-wide variants derived 94 

from the Roseli et al. [11] genome-wide association study (GWAS) for AF. The second is the Ischemic STROKE 95 

score, based on 28 genome-wide variants derived from the Malik et al. [12] GWAS for ischemic stroke. The AF 96 

SCORE was also employed as a feature both for the prediction of AF and for the ischemic stroke in AF patients.  97 

The investigator phenotypes dataset from UK-Biobank includes 2,199 fields for 454,118 participants. We set 98 

answers “Do not know” and “Prefer not to answer” as NA and removed features that had more than 25% 99 

missingness, resulting in 390 investigator phenotypes. Afterwards, we imputed the missing values using a 100 

multivariate imputer that estimates each feature from all the others, using IterativeImputer from Python [13]. 101 

Then, we added 419 phecodes, available for 278,177 participants, derived from HES in UK-Biobank. Lastly, we 102 

added the medications from field 20003 (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20003), after 103 

applying one-hot-encoding, resulting in 1,289 medications for 294,698 participants (Figure 1).  104 

Next, we decided to balance the outcome sample size, since imbalanced data has a negative impact on ML 105 

procedures [14]. The classification algorithms have the tendency to get biased estimates towards the majority 106 

class, ignoring the minority class. This happens because most of the classifying methods aim to maximize the 107 

accuracy rate, meaning the number of correctly classified observations [15, 16]. Therefore, we employed the 108 

fixed under-sampling technique from Python [17], which is a process for reducing the number of samples in 109 

the majority class; the control group in this case. The algorithm randomly selects samples from the control 110 

group, in order to have equal representation of both classes. After balancing the outcome, we used 111 

VarianceThreshold from Python [13], which eliminates all features whose variance does not meet a threshold 112 

of 90%. Additionally, we removed the continuous correlated fields using Pearson correlation, at a 0.8 113 

threshold; features strongly correlated with the outcome were maintained. Next, we performed feature 114 

selection in order to reduce the computational cost via dimensionality reduction, achieve higher classification 115 

accuracy by eliminating the noise, and include the most relevant features for the disease prediction [18]. A 116 

recent paper by Ramos-Pérez et al. [19], suggests that the best practice is for the fixed under-sampling 117 

technique to precede the feature selection. Therefore, we filtered all the remaining features using recursive 118 

feature elimination with cross-validation from Python [13] in order to find the optimal number of features to 119 

include in the ML models. 120 

Create the AF outcome 121 

We removed participants from the UK-Biobank that had cardiac dysrhythmias before the time of enrolment, 122 

with one or more of the following codes: non-cancer illness code, self-reported (1471, 1483); operation code 123 

(1524); diagnoses – main/secondary ICD10 (I44, I44.1-I44.7, I45, I45.0-I45.6, I45.8-I45.9, I46, I46.2, I46.8-I46.9, 124 

I47, I47.0-I47.2, I47.9, I48, I48.0-4, I48.9, I49, I49.0-I49.5, I49.8-I49.9, R00.0, R00.1, R00.2, R94.3, Z86.7, Z95.0, 125 

Z95.8-Z95.9); underlying (primary/secondary) cause of death: ICD10 (I44, I44.1-I44.7, I45, I45.0-I45.6, I45.8-126 

I45.9, I46, I46.2, I46.8-I46.9, I47, I47.0-I47.2, I47.9, I48, I48.0-4, I48.9, I49, I49.0-I49.5, I49.8-I49.9, I60-I61, I63-127 

I64 (NOT I63.6), R00.0, R00.1, R00.2, R94.3, Z86.7, Z95.0, Z95.8-Z95.9); diagnoses – main/secondary ICD9 128 
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(4273, 430, 431, 4339, 4340, 4341, 4349, 436); operative procedures – main/secondary OPCS (K57.1, K62.1-129 

4). In total, 20,584 participants were excluded, having at least one of the above conditions, before enrolment 130 

in the UK-Biobank.  131 

AF cases were defined when having one or more of the following codes: non-cancer illness code, self-reported 132 

(1471, 1483); operation code (1524); diagnoses – main/secondary ICD10 (I48, I48.0-4, I48.9); underlying 133 

(primary/secondary) cause of death: ICD10 (I48, I48.0-4, I48.9); operative procedures – main/secondary OPCS 134 

(K57.1, K62.1-4). In total, 21,279 people developed one of the conditions described above, after enrolment in 135 

UK-Biobank (Figure 1).  136 

 137 

Figure 1: Diagram depicting the data curation and feature selection process for the prediction of atrial 138 
fibrillation. 139 

Create the AF & Stroke outcome 140 

Cases were defined as participants who developed ischemic stroke after AF diagnosis in UK-Biobank with one 141 

or more of the following codes: diagnoses – main/secondary ICD10 (I63, I63.0-9, I64); diagnoses – 142 

main/secondary ICD9 (434, 436); underlying (primary/secondary) cause of death: ICD10 (I63, I63.0-9, I64). 143 

Thus, 3,150 people developed ischemic stroke after AF diagnosis and were included as cases, and the controls 144 

were people diagnosed with AF and did not develop stroke, as far as the data allow us to know. Based on the 145 

selection criteria for AF patients with and without ischemic stroke (Supplementary figure 1), 3,150 prospective 146 
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cases who developed ischemic stroke after AF diagnosis and equal number of controls, along with 129 147 

features, were included in the ML models (Table_S8).  148 

ML models 149 

XGBoost 150 

In more detail, XGBoost uses regression trees in a sequential learning process as weak learners into a single 151 

strong model, where each tree attempts to correct the residuals in the predictions made by previous trees. 152 

Regression trees include a continuous score on each leaf, which is the last node once the tree has grown. For 153 

a specific observation, the algorithm uses decision rules in the trees to classify it into the leaves. The sum of 154 

the scores on each leaf is the final prediction [20].  155 

LightGBM 156 

Machine learning methods relying on Gradient Boosting Decision Tree (GBDT) scan all the data instances, for 157 

all the features, to calculate the information gain for each possible split. As a result, the computational time 158 

and complexity will increase as the features accumulate. To this end, there are two techniques incorporated 159 

at LightGBM algorithm that contribute towards a faster implementation. Firstly, in the Gradient-based One-160 

Side Sampling (GOSS) technique, instances that have larger gradients contribute more to the information gain, 161 

and the instances with smaller gradients are randomly sampled to provide accurate and fast estimation. 162 

Secondly, the Exclusive Feature Bundling (EFB) technique reduces the number of effective features. For 163 

datasets that are sparse, many features are mutually exclusive; they will rarely take nonzero values at the 164 

same time, therefore such features are tied into one [21]. 165 

Deep Neural Networks (DNN) 166 

Deep learning is a subdomain of ML attempting to learn many levels of representation using multiple layers. 167 

These layers transform the data in a non-linear way, and as a result, more complex structure and relationships 168 

can be discovered. This method is inspired by the human brain, using a series of connected layers of neurons 169 

that constitute a whole network, including at least three layers: input, hidden and output. The input layer 170 

consists of multiple neurons, which use as input the original features. The hidden layers can be more than one, 171 

depending on the complexity of the dataset. Each layer includes multiple nodes, and each node from the 172 

previous layer is connected to each one from the next layer, constituting a fully connected network. Lastly, 173 

the output layer, using a sigmoid activation function, concludes in a number between 0 and 1, which 174 

represents the probability belonging to one of the two classes [22]. 175 

Support Vector Machine (SVM)  176 

SVM is a high accuracy ML model, which can deal with non-linear spaces. It maps the input data into a higher 177 

dimension feature space, using a kernel function. Then, a linear decision surface (hyperplane), is created to 178 

classify the outcome, with properties that satisfy the generalisation of the algorithm. The optimal hyperplane 179 

classifies the data by using its maximal margin, employing a small percentage of the training data, which are 180 

named support vectors. The authors support that if the optimal hyperplane is created from a few support 181 

vectors, then the algorithm can be generalised, even in a space with infinite dimensions [23].  182 

Cross-validation  183 

The ML models aim to optimise the general model performance on datasets different from the ones used to 184 

train them. Therefore, evaluating the generalisation of ML methods requires the data to be split in three non-185 

overlapping sets of training/validation/test, combined with stratified 10-fold cross-validation (CV), 186 

maintaining the same proportion of cases and controls in each fold. Grid search is performed using 9 sets for 187 

the parameter tuning, and the 1 remaining set is used for validation. This process is repeated 10 times, until 188 

every set is used once for training and once for validation. The best parameters for the model correspond to 189 
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the highest score, which is calculated by averaging the results from all repetitions. The test dataset is used to 190 

check for overfitting and unbiased evaluation of the final model [13].  191 

SHAP 192 

ML models, although accurate and capable of capturing the non-linear relationships, are complex to interpret. 193 

A more widespread method for interpretation is SHAP, employed to understand each feature’s contribution 194 

to the prediction, using cooperative game theoretic tools. The SHAP values are in theory the best solution up 195 

to now, however time-consuming, since all possible combinations need to be calculated. TreeExplainer is an 196 

expansion of SHAP, employing tree nodes instead of linear models for the estimation of Shapley values. The 197 

Shapley values of a tree-based algorithm are calculated as the weighted average of the Shapley values 198 

corresponding to individual trees. Thus, it is commonly used to explain tree-based machine learning models, 199 

reducing tremendously the computation time. In parallel, SHAP values seem to overcome the interpretability 200 

issue by employing both global and local interpretation. Global explanation relies on the effect of input 201 

features on the whole model, and local interpretation depicts the effect of input features on single predictions 202 

[8].  203 

For the methods described above, Python computer language was employed [24]. The code and libraries 204 

that were employed are described in Table_S5. 205 

Results 206 

Machine learning models can enhance prediction accuracy by utilising extensive datasets and incorporating 207 

potential predictors. In our present study, we demonstrated the improvement in prediction accuracy for 208 

ischemic stroke among AF patients, compared to current approaches, by employing machine learning 209 

modelling. The findings suggest inclusion of commonly measured blood biomarkers for prediction, while 210 

advocating for the incorporation of a genetic score for AF prediction. The approaches and modelling 211 

introduced in this study hold promise for clinical implementations. 212 

AF 213 

We examined 21,279 prospective AF cases and an equal number of controls in UK-Biobank. Baseline 214 

characteristics, along with comorbidities and medication, both overall and according to AF cases versus 215 

controls, are provided in Error! Reference source not found..  216 

Table 1:Baseline characteristics for the 21,279 prospective AF cases and equal number of controls.  217 

 Total AF cases AF controls Pvalue* 

Sex     

Females 20231 (47.5%)   8122 (38.2%) 12109 (56.9%) 
< 2.2E-16 

Males 22327 (52.5%) 13157 (61.8%)   9170 (43.1%) 

Age (mean, sd)       59 (8)        62 (6)        57 (8) < 2.2E-16 

Ethnicity     

EUR 41042 (96.9%) 20791 (97.7%) 20251 (95.0%) 

5E-03 
AFR     535 (1.2%)     154 (0.7%)      381 (1.8%) 

EAS     127 (0.3%)       31 (0.2%)        96 (0.5%) 

SAS      854 (1.6%)     303 (1.4%)      551 (2.7%) 

Comorbidities     

Diabetes   6434 (15.1%)   4423 (20.8%)   2011 (9.5%) < 2.2E-16 

Hypertension 22019 (51.7%) 14810 (69.6%)   7209 (33.9%) < 2.2E-16 

Smoking     

    Never 23273 (54.7%) 11627 (54.6%) 11646 (54.7%) 0.8804 
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    Previous 14791 (34.8%)   7389 (34.7%)   7402 (34.8%) 

    Current   4494 (10.6%)   2263 (10.6%)   2231 (10.5%) 

Cholesterol 
lowering 
medication 

  7459 (17.5%)   3712 (17.4%)   3747 (17.6%) 0.4799 

History of heart 
diseases 

21102 (49.6%) 11233 (52.8%)   9869 (46.4%) < 2.2E-16 

History of stroke 12317 (28.9%)   6581 (30.9%)   5736 (26.9%) < 2.2E-16 
Note. * P-values refer to chi-square test for dichotomous variables and to Mann-Whitney test for continuous data with non-parametric 218 
distribution. 219 

In total, 99 features (Table_S4) were employed, using five ML models to predict AF. The results presented in 220 

this section correspond to the optimal hyperparameters, derived after 10-fold cross-validation from the 221 

examined values included in Table_S6. SVM did not converge after running 10 days and utilising 16 cores in 222 

Queen Mary’s Apocrita HPC facility1.  223 

The best AUROC value was achieved with LightGBM (Table 2) albeit De-Long’s test (Table 3) showed that there 224 

is no evidence for significant difference in the AUROCs between LightGBM and XGBoost, DNN, or RF. In 225 

contrast, DeLong's test showed that there was statistically significant difference in the AUROCs between 226 

LightGBM and penalised LR (pvalue=1.38E-02), after considering multiple correction. The AUROC of penalised 227 

LR differed from the AUROC of all other examined ML models based on DeLong’s test and this was statistically 228 

significant. The AUROC curves for the five models in the test dataset are shown in Figure 2.  229 

Table 2: Performance of the ML models for AF prediction, on the test dataset, under various metrics.  230 

Models AUROC (95% CI) Accuracy Precision Recall F1 score 

LightGBM 0.729 (0.719-0.738) 0.73 0.72 0.74 0.73 

XGBoost 0.728 (0.718-0.737) 0.73 0.74 0.73 0.73 

DNN 0.716 (0.706-0.725) 0.72 0.71 0.73 0.72 

RF 0.715 (0.706-0.725) 0.72 0.71 0.74 0.72 

LR (L1 penalty) 0.622 (0.612-0.633) 0.62 0.63 0.60 0.61 

AUROC, the area under a receiver operating characteristic curve; Accuracy = (TP + TN) / (TP + TN + FP + FN); Precision = TP / (TP + FP), 231 
Recall = TP / (TP+FN) where TP stands for true positive, TN for true negative, FP for false positive, and FN for false negative; F1 score 232 
=2 (precision*recall) / (precision + recall).  233 

Table 3: DeLong’s test for the ML model comparisons for AF prediction.  234 

Models LightGBM XGBoost DNN RF 

LightGBM -    

XGBoost 8.28E-01 -   

DNN 3.67E-02 5.78E-02 -  

                                                           
1 This research utilised Queen Mary's Apocrita HPC facility, supported by QMUL Research-IT. http://doi.org/10.5281/zenodo.438045 
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RF 1.17E-02 2.44E-02 9.91E-01 - 

LR (L1 penalty) 1.38E-32 8.82E-32 2.41E-24 5.73E-27 

 235 

 236 

Figure 2: AUROC for each ML model for AF prediction in the test dataset. 237 

To estimate the contribution of each feature in each of the five models assessed for prediction of AF, we 238 

employed SHAP analysis, which is accurate, fast and stable. Figure 3 displays the top 20 features, ranked 239 

according to their SHAP value, for the LightGBM model; features are listed in descending order, starting with 240 

the most significant for AF prediction. SHAP values depict the distribution of the effect of each feature on the 241 

model output.  242 

Based on Figure 3, SHAP analysis reveals that the top 3 most important variables contributing to the model 243 

were “Records in HES inpatient diagnoses dataset” which is the number of times an individual has been 244 

hospitalised (fieldID 41234), “Age at recruitment” (fieldID 21022) and “AF SCORE”, using the unweighted sum 245 

of increasing alleles from Roseli et al. [11]. All the features’ contributions, based on SHAP analysis, can be 246 

found in Table_S7. 247 
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 249 

Figure 3: Summary plot of the SHAP values (x-axis) for the top 20 features (y-axis), in descending order, showing 250 
the distribution of the impact that each feature has for the AF prediction on the test dataset, employing 251 
LightGBM model. Each dot represents a participant. The red dots represent a high feature value and blue dots 252 
represent a low feature value for each participant. For example, the AF SCORE had a positive impact on the 253 
model output, i.e., a higher AF SCORE increased AF risk. 254 

AF & Stroke 255 

We examined 3,150 prospective cases who developed ischemic stroke after being diagnosed with AF, and an 256 

equal number of controls in UK-Biobank including 129 features (Table_S8) and using six models to predict 257 

ischemic stroke in AF cases. As indicated previously, results correspond to the optimal hyperparameters 258 

(Table_S9).  259 

The best AUROC value was achieved for XGBoost (Table 4). DeLong’s test (Table 5) showed that there is no 260 

evidence for significant difference in the AUROCs between XGBoost and all other examined ML models but 261 

the penalised LR model (pvalue=2.00E-02) (Figure 4).  262 

Table 4: Performance of the ML models for the prediction of ischemic stroke in AF patients, on the test dataset, 263 
under various metrics. 264 

Models AUROC (95% CI) Accuracy Precision Recall F1 score 

XGBoost 0.631 (0.604-0.657) 0.63 0.63 0.63 0.63 

LightGBM 0.620 (0.593-0.647) 0.62 0.62 0.61 0.62 

RF 0.599 (0.573-0.625) 0.60 0.61 0.56 0.58 
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SVM 0.599 (0.572-0.624) 0.60 0.63 0.50 0.55 

DNN 0.589 (0.562-0.615) 0.59 0.59 0.60 0.59 

LR (L1 penalty) 0.563 (0.536-0.591) 0.56 0.56 0.56 0.56 

AUROC, the area under a receiver operating characteristic curve; Accuracy = (TP + TN) / (TP + TN + FP + FN); Precision = TP / (TP + FP), 265 
Recall = TP / (TP+FN) where TP stands for true positive, TN for true negative, FP for false positive, and FN for false negative; F1 score 266 
=2 (precision*recall) / (precision + recall).  267 

Table 5: DeLong’s test for the ML model comparisons for ischemic stroke prediction in AF patients.  268 

Models XGBoost LightGBM RF SVM DNN 

XGBoost -     

LightGBM 5.65E-01 -    

RF 1.33E-01 3.45E-01 -   

SVM 1.71E-01 3.75E-01 9.80E-01 -  

DNN 1.34E-01 2.89E-01 7.54E-01 7.45E-01 - 

LR (L1 penalty) 2.00E-02 5.70E-02 2.56E-01 4.50E-01 2.54E-01 

 269 
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 270 

Figure 4: AUROC for each ML model for predicting the development of ischemic stroke in AF patients, on the 271 
test dataset. 272 

As shown in Figure 5, SHAP analysis revealed that the 3 most important variables contributing to prediction of 273 

ischemic stroke in AF cases in the model were “Records in HES inpatient diagnoses dataset” which is the 274 

number of times an individual has been hospitalised (fieldID 41234), “Age at recruitment” (fieldID 21022), and 275 

“Glycated haemoglobin (HbA1c)” which is a blood biochemistry measurement (fieldID 30750). Table_S10 lists 276 

the contribution of each of the 129 features in the model based on SHAP analysis. 277 
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 279 

Figure 5: Summary plot of the SHAP values (x-axis) for the top 20 features (y-axis), in descending order, showing 280 
the distribution of the impact that each feature has for the development of ischemic stroke in AF patients, on 281 
the test dataset, employing XGBoost model. Each dot represents a participant. The red dots represent a high 282 
feature value and blue dots represent a low feature value for each participant. 283 

Comparison with CHA2DS2-VASc 284 

The current tool used for prediction of ischemic stroke occurrence among AF patients is CHA2DS2-VASc which 285 

considers multiple risk factors; age, sex, heart failure, hypertension, stroke, vascular disease, diabetes [25]. 286 

Thus, we decided to compare the performance of the best ML model, XGBoost (Table 4), with CHA2DS2-VASc 287 

in UK-Biobank. To construct the CHA2DS2-VASc we employed the codes described in Table_S11. The AUROC 288 

and 95% CI for CHA2DS2-VASc and XGBoost was 0.611 (0.585 – 0.638) and 0.631 (0.604 – 0.657) in the test set, 289 

respectively. The improved AUROC in the XGBoost model compared to CHA2DS2-VASc was statistically 290 

significant based on DeLong’s test (pvalue=2.20E-06). Furthermore, the SHAP analysis for the XGBoost model 291 

(Figure 5), shows that there is a significant number of peripheral blood markers associated with ischemic 292 

stroke, which are overlooked from CHA2DS2-VASc.  293 

Discussion 294 

Comparison of the performance of ML models for prediction of AF or ischemic stroke in patients with AF 295 

We assessed six ML models in total for prediction of AF (XGBoost, LightGBM, RF, DNN, LR) or ischemic stroke 296 

in AF patients (XGBoost, LightGBM, RF, DNN, SVM, LR) and employed SHAP analysis to rank features for 297 

predictive importance. SHAP analysis was successful in the visualisation of non-linear relationships between 298 

the features used for prediction and the outcome. Additionally, the direction of the SHAP values for the top 299 

20 features agrees with what has been reported so far in the literature. We found that the ensemble learning 300 
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models LightGBM (best for AF prediction) and XGBoost (best for prediction of ischemic stroke in patients with 301 

AF) achieved higher AUROCs compared to the other examined models, suggesting that these models have 302 

better generalisation. DeLong’s test showed that penalised LR model had a lower AUROC compared to all 303 

other models and these differences were statistically significant (Table 3), indicating that ML models capture 304 

useful information by modeling non-linear associations, leading to the discovery of new features.  305 

AF results 306 

Advancing age has been shown to be one of the most important risk factors for AF [26], which is corroborated 307 

by the present study and ranked as the second most important feature. The third most important feature in 308 

the model was the AF SCORE, a set of 94 genome-wide variants associated with AF and explaining 42% of the 309 

heritability in Europeans [11], which as expected had a positive impact on the model output, i.e. the higher 310 

the AF score the higher the risk of developing AF. Thus, the present results endorse the likely clinical utility of 311 

an AF score in disease prediction. However, an optimised AF score for prediction in multi-ethnic populations 312 

such as the UK population will be required prior to considering clinical use. Interestingly, standing height was 313 

ranked as the fourth most significant feature in LightGBM, which was the best performing model for AF 314 

prediction. Greater height has been identified as a risk factor for AF in several studies and in both males and 315 

females [27], and it is in agreement with the present analysis. Some studies report that taller people have 316 

greater heart chamber size [27], meaning a larger left atrial size, which may be potential explanation albeit 317 

not a very robust one as AF is driven by left atrial stretch and fibrosis. Two other anthropometric traits, weight 318 

and waist circumference, ranked just below standing height. Obesity is associated with increased risk of left 319 

atrial enlargement, atrial fibrosis, electrical derangements of the atria, impaired diastolic function, 320 

inflammation and accumulation of pericardial fat, which are all key mechanisms in the pathogenesis of AF [28], 321 

and it is supported by the present analysis. The ranking of sex as the seventh most significant feature in the 322 

model is also in agreement with epidemiological studies reporting sex differences in AF; males are at higher 323 

risk which is in agreement with the results, along with the electrophysiologic properties of the atria and 324 

structural remodelling [29]. The analysis presented here also found that participants with lower albumin levels 325 

had an increased risk of AF. This is in agreement with a meta-analysis revealing that an increase in albumin 326 

level decreased the risk of AF [30]. However, low albumin levels are associated with poor health overall and 327 

therefore we cannot exclude confounding. Among the remaining 20 most significant features in the model it 328 

is worth noting that (i) direct bilirubin has been reported as an important independent risk factor for AF 329 

development in both thyrotoxic patients [31] and a study in postoperative cardiac surgery [32], (ii) urate has 330 

been reported to increase the risk of AF and be causally associated to AF through MR analysis in Koreans [33], 331 

and (iii) the positive effect of increased testosterone on risk of AF has been reported in males but not in 332 

females in the ARIC study [34]; the present study corroborates these results. Finally, only two of the 20 top 333 

features have some conflicting data in the literature. FEV-1 levels have an increased risk of AF as shown in 334 

other studies [35], and it is corroborated by the present analysis, but the Korean National Health and 335 

Nutritional Examination Survey reported an adverse association between FEV-1 and AF development [36]. 336 

Decreased levels of triglycerides contribute to increased risk of AF, but a study in Chinese participants 337 

contradicts the present analysis, showing no evidence of association between triglycerides and incidence of 338 

AF [37].  339 

AF & Ischemic stroke results 340 

In the present study, XGBoost model was the best in predicting ischemic stroke in AF patients and showed 341 

that it performs better than CHA2DS2-VASc, albeit marginal this result was statistically significant. Consistent 342 

with a recent French study for prediction of incident AF in a post-stroke population [38], the best performing 343 

ML model was DNN with a C index of 0.77 (95% CI 0.76-0.78) on the test set, performed better than CHA2DS2-344 

VASc. In this study, XGBoost was identified as the best ML model for prediction of ischemic stroke in AF 345 

patients, with AUROC 0.631 (95% CI 0.604-0.657), in contrast to another two US studies that use more than 346 
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3.4 [39] and 6.4 [40] million participants, and reported c-index above 0.8. The lower performance of the ML 347 

model could be attributed to the fact that we used 6,300 participants in contrast to the million that were used 348 

in the US studies [39, 40], thus leading to less power.  349 

Unexpectedly, the genetic risk score for ischemic stroke, based on 28 genome-wide variants, was not among 350 

the top 20 features of the model, although ischemic stroke is highly heritable [41]. In the top 20 most 351 

significant features, medium to high feature values of HbA1c ranked third after sex and was associated with 352 

increased risk of stroke in AF patients. This agrees with the Clalit Health Services electronic medical records 353 

Israelian database, where participants with diabetes and AF were found to have an increased risk of stroke 354 

when their HbA1C levels were ranging from medium to high [42]. The fourth most significant feature was 355 

albumin which ranked ninth in the AF prediction model, suggesting a stronger relationship with ischemic 356 

stroke in AF patients than AF per se. This is corroborated by a Japanese study, which reported that lower 357 

albumin levels were associated with an increased risk of ischemic stroke in both sexes independently of AF 358 

status [43]. Four other blood biomarkers, creatinine, alkaline phosphatase, LDL cholesterol, and Lipoprotein A 359 

(Lp(a)) ranked among the top 20 features. These results are in agreement with the China National Stroke 360 

Registry reporting an association between high levels of alkaline phosphatase with recurrent stroke [44] and 361 

the Copenhagen General Population Study showing that high levels of Lp(a) were associated with increased 362 

risk of ischemic stroke [45]. It is worth noting that the latter although true for all examined ancestries it varies 363 

in strength e.g. higher in African than European Americans [46]. Interestingly, the use of creatinine as marker 364 

for increased risk of ischemic stroke in AF patients has not been previously reported and will merit further 365 

investigation. Lastly, the twentieth feature identified from the SHAP analysis – time spent watching television 366 

– could be considered as a surrogate marker for luck of sleep and physical inactivity; a recent study showed 367 

that physical inactivity increases the risk of stroke risk [47]. 368 

Conclusion 369 

To conclude. there is a plethora of studies using ML methodology to predict circulatory diseases such as AF 370 

[3], cardiovascular disease [48], stroke [4, 5], however none of them has the breadth and richness of electronic 371 

health record data that UK Biobank offers, including disease diagnosis, medications and laboratory tests. The 372 

strength of the present study is that makes use of the UK Biobank dataset, including up to 2,199 variables. The 373 

present study supports the incorporation of a few routinely measured blood biomarkers, whereas the results 374 

endorse the inclusion of a genetic score only in the model for AF prediction. The standardization of big data, 375 

along with the wide application of machine and deep learning methodologies, enables the identification of 376 

previously unknown risk factors for disease prediction. In the current study, the use of creatinine as marker 377 

for increased risk of ischemic stroke in AF patients has not been previously reported, however it requires 378 

further investigation. Machine learning models that employ large datasets, including potential predictors, can 379 

improve prediction accuracy, as presented in the current study, for the prediction ischemic stroke in AF 380 

patients using ML models in comparison to CHA2DS2-VASc, and provide graphical interpretation of the results 381 

using SHAP analysis. The models presented here have the potential for clinical use, but validation in further 382 

independent studies is required, since the models were developed and assessed in the UK Biobank and might 383 

not reflect other datasets with respect to age, sex, socio-economic status [49]. The models would need to be 384 

validated across all ancestries as some features vary by ethnicity e.g., Lp(a) and AF genetic score.  385 
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Data availability 391 

Individual level data could be accessed upon request and approval from UK Biobank. All the results discussed 392 

in this manuscript are available in the Supplementary Material.  393 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



References 394 

1. Benjamin, E.J., et al., Heart Disease and Stroke Statistics-2019 Update: A Report From the American 395 
Heart Association. Circulation, 2019. 139(10): p. e56-e528. 396 

2. Khurshid, S., et al., Performance of Atrial Fibrillation Risk Prediction Models in Over 4 Million 397 
Individuals. Circ Arrhythm Electrophysiol, 2021. 14(1): p. e008997. 398 

3. Raghunath, S., et al., Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-399 
Lead ECG and Help Identify Those at Risk of Atrial Fibrillation-Related Stroke. Circulation, 2021. 400 
143(13): p. 1287-1298. 401 

4. Su, P.Y., et al., Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute 402 
Ischemic Stroke: Registry-Based Study. JMIR Med Inform, 2022. 10(3): p. e32508. 403 

5. Jung, S., et al., Predicting Ischemic Stroke in Patients with Atrial Fibrillation Using Machine Learning. 404 
Front Biosci (Landmark Ed), 2022. 27(3): p. 80. 405 

6. Nishi, H., et al., Predicting cerebral infarction in patients with atrial fibrillation using machine 406 
learning: The Fushimi AF registry. J Cereb Blood Flow Metab, 2022. 42(5): p. 746-756. 407 

7. Kim, S.H., et al., Interpretable machine learning for early neurological deterioration prediction in 408 
atrial fibrillation-related stroke. Sci Rep, 2021. 11(1): p. 20610. 409 

8. Lundberg, S.M. and S.-I. Lee. A unified approach to interpreting model predictions. in Proceedings of 410 
the 31st international conference on neural information processing systems. 2017. 411 

9. Millard, L.A.C., et al., Searching for the causal effects of body mass index in over 300 000 participants 412 
in UK Biobank, using Mendelian randomization. PLoS Genet, 2019. 15(2): p. e1007951. 413 

10. Wu, P., et al., Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial 414 
Evaluation. JMIR Med Inform, 2019. 7(4): p. e14325. 415 

11. Roselli, C., et al., Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet, 2018. 416 
50(9): p. 1225-1233. 417 

12. Malik, R., et al., Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci 418 
associated with stroke and stroke subtypes. Nat Genet, 2018. 50(4): p. 524-537. 419 

13. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of machine Learning 420 
research, 2011. 12: p. 2825-2830. 421 

14. Lemaître, G., F. Nogueira, and C.K. Aridas, Imbalanced-learn: A python toolbox to tackle the curse of 422 
imbalanced datasets in machine learning. The Journal of Machine Learning Research, 2017. 18(1): p. 423 
559-563. 424 

15. Krawczyk, B., et al., Evolutionary undersampling boosting for imbalanced classification of breast 425 
cancer malignancy. Applied Soft Computing, 2016. 38: p. 714-726. 426 

16. AlJame, M., et al., Ensemble learning model for diagnosing COVID-19 from routine blood tests. 427 
Inform Med Unlocked, 2020. 21: p. 100449. 428 

17. Aridas, G.L.F.N.C.K., Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets 429 
in Machine Learning. Journal of Machine Learning Research, 2017. 18(17): p. 1-5. 430 

18. Berisha, V., et al., Digital medicine and the curse of dimensionality. NPJ Digit Med, 2021. 4(1): p. 153. 431 
19. Ismael, R.-P., et al., When is resampling beneficial for feature selection with imbalanced wide data? 432 

Expert Systems with Applications, 2022. 188: p. 116015. 433 
20. Chen, T. and C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM 434 

SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, Association for 435 
Computing Machinery: San Francisco, California, USA. p. 785–794. 436 

21. Ke, G., et al., LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 2017. 437 
22. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-44. 438 
23. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297. 439 
24. Van Rossum, G. and F.L. Drake, The python language reference manual. 2011: Network Theory Ltd. 440 
25. Lip, G.Y., et al., Refining clinical risk stratification for predicting stroke and thromboembolism in atrial 441 

fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest, 442 
2010. 137(2): p. 263-72. 443 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26. Chung, M.K., et al., Lifestyle and Risk Factor Modification for Reduction of Atrial Fibrillation: A 444 
Scientific Statement From the American Heart Association. Circulation, 2020. 141(16): p. e750-e772. 445 

27. Johansson, C., et al., Weight, height, weight change, and risk of incident atrial fibrillation in middle-446 
aged men and women. J Arrhythm, 2020. 36(6): p. 974-981. 447 

28. Feng, T., et al., Weight and weight change and risk of atrial fibrillation: the HUNT study. Eur Heart J, 448 
2019. 40(34): p. 2859-2866. 449 

29. Westerman, S. and N. Wenger, Gender Differences in Atrial Fibrillation: A Review of Epidemiology, 450 
Management, and Outcomes. Curr Cardiol Rev, 2019. 15(2): p. 136-144. 451 

30. Wang, Y., et al., Relationship Between Serum Albumin and Risk of Atrial Fibrillation: A Dose-Response 452 
Meta-Analysis. Front Nutr, 2021. 8: p. 728353. 453 

31. Sun, D., et al., Direct bilirubin level is an independent risk factor for atrial fibrillation in thyrotoxic 454 
patients receiving radioactive iodine therapy. Nucl Med Commun, 2019. 40(12): p. 1289-1294. 455 

32. Turkkolu, S.T., E. Selcuk, and C. Koksal, Biochemical predictors of postoperative atrial fibrillation 456 
following cardiac surgery. BMC Cardiovasc Disord, 2021. 21(1): p. 167. 457 

33. Hong, M., et al., A mendelian randomization analysis: The causal association between serum uric 458 
acid and atrial fibrillation. Eur J Clin Invest, 2020. 50(10): p. e13300. 459 

34. Berger, D., et al., Plasma total testosterone and risk of incident atrial fibrillation: The Atherosclerosis 460 
Risk in Communities (ARIC) study. Maturitas, 2019. 125: p. 5-10. 461 

35. Au Yeung, S.L., et al., Impact of lung function on cardiovascular diseases and cardiovascular risk 462 
factors: a two sample bidirectional Mendelian randomisation study. Thorax, 2022. 77(2): p. 164-171. 463 

36. Lee, S.N., et al., Association between lung function and the risk of atrial fibrillation in a nationwide 464 
population cohort study. Sci Rep, 2022. 12(1): p. 4007. 465 

37. Li, X., et al., Lipid profile and incidence of atrial fibrillation: A prospective cohort study in China. Clin 466 
Cardiol, 2018. 41(3): p. 314-320. 467 

38. Bisson, A., et al., Prediction of incident atrial fibrillation in post-stroke patients using machine 468 
learning: a French nationwide study. Clin Res Cardiol, 2023. 112(6): p. 815-823. 469 

39. Lip, G.Y.H., et al., Improving Stroke Risk Prediction in the General Population: A Comparative 470 
Assessment of Common Clinical Rules, a New Multimorbid Index, and Machine-Learning-Based 471 
Algorithms. Thromb Haemost, 2022. 122(1): p. 142-150. 472 

40. Lip, G.Y.H., et al., Improving dynamic stroke risk prediction in non-anticoagulated patients with and 473 
without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms. 474 
Eur Heart J Qual Care Clin Outcomes, 2022. 8(5): p. 548-556. 475 

41. O'Sullivan, J.W., et al., Combining Clinical and Polygenic Risk Improves Stroke Prediction Among 476 
Individuals With Atrial Fibrillation. Circ Genom Precis Med, 2021. 14(3): p. e003168. 477 

42. Kezerle, L., et al., Relation of Hemoglobin A1C Levels to Risk of Ischemic Stroke and Mortality in 478 
Patients With Diabetes Mellitus and Atrial Fibrillation. Am J Cardiol, 2022. 172: p. 48-53. 479 

43. Li, J., et al., Serum Albumin and Risks of Stroke and Its Subtypes- The Circulatory Risk in Communities 480 
Study (CIRCS). Circ J, 2021. 85(4): p. 385-392. 481 

44. Zong, L., et al., Alkaline Phosphatase and Outcomes in Patients With Preserved Renal Function: 482 
Results From China National Stroke Registry. Stroke, 2018. 49(5): p. 1176-1182. 483 

45. Kamstrup, P.R., Lipoprotein(a) and Cardiovascular Disease. Clin Chem, 2021. 67(1): p. 154-166. 484 
46. Kumar, P., et al., Lipoprotein (a) level as a risk factor for stroke and its subtype: A systematic review 485 

and meta-analysis. Sci Rep, 2021. 11(1): p. 15660. 486 
47. Katzmarzyk, P.T., et al., Physical inactivity and non-communicable disease burden in low-income, 487 

middle-income and high-income countries. Br J Sports Med, 2022. 56(2): p. 101-106. 488 
48. Joo, G., et al., Clinical Implication of Machine Learning in Predicting the Occurrence of Cardiovascular 489 

Disease Using Big Data (Nationwide Cohort Data in Korea). IEEE Access, 2020. 8: p. 157643-157653. 490 
49. Fry, A., et al., Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank 491 

Participants With Those of the General Population. Am J Epidemiol, 2017. 186(9): p. 1026-1034. 492 

 493 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

Supplementary Material

Click here to access/download
Supplementary Material

Supplementary Figures.docx

https://www2.cloud.editorialmanager.com/heliyon/download.aspx?id=4866592&guid=755f459f-69fc-4dcb-bdd2-281f76918135&scheme=1


  

Supplementary Tables

Click here to access/download
Supplementary Material

Supplementary_material.xlsx

https://www2.cloud.editorialmanager.com/heliyon/download.aspx?id=4866612&guid=bc0bdb02-4b30-485b-927f-5e476a41e729&scheme=1

