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FastEval Parkinsonism: an instant deep learning–assisted
video-based online system for Parkinsonian motor symptom
evaluation
Yu-Yuan Yang 1, Ming-Yang Ho 2, Chung-Hwei Tai3, Ruey-Meei Wu4, Ming-Che Kuo 3,4✉ and Yufeng Jane Tseng 1,2✉

The Motor Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is designed to assess bradykinesia, the cardinal
symptoms of Parkinson’s disease (PD). However, it cannot capture the all-day variability of bradykinesia outside the clinical
environment. Here, we introduce FastEval Parkinsonism (https://fastevalp.cmdm.tw/), a deep learning-driven video-based system,
providing users to capture keypoints, estimate the severity, and summarize in a report. Leveraging 840 finger-tapping videos from
186 individuals (103 patients with Parkinson’s disease (PD), 24 participants with atypical parkinsonism (APD), 12 elderly with mild
parkinsonism signs (MPS), and 47 healthy controls (HCs)), we employ a dilated convolution neural network with two data
augmentation techniques. Our model achieves acceptable accuracies (AAC) of 88.0% and 81.5%. The frequency-intensity (FI) value
of thumb-index finger distance was indicated as a pivotal hand parameter to quantify the performance. Our model also shows the
usability for multi-angle videos, tested in an external database enrolling over 300 PD patients.
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INTRODUCTION
The incidence of Parkinson’s disease (PD) increases markedly with
age, from 20/100,000 overall to 120/100,000 at age 701 and will be
continuously increasing across continents. Parkinsonism is a
syndrome of PD that includes resting tremors, rigidity, slowness
of movement (bradykinesia), uncontrollable hesitation or inter-
ruption in continuous movement, postural instability, and freez-
ing. The Movement Disorder Society PD (MDS-PD) criteria2 are
developed to guide clinicians in ruling out PD with other atypical
parkinsonism (APD). The examination of one of the cardinal
manifestations of PD, bradykinesia, is instructed in the MDS-
UPDRS part III, the Motor Examination section3. This aspect of the
clinical evaluation includes finger-tapping, hand open-close
movements, and pronation-supination movements, correspond-
ing to items 3.4, 3.5, and 3.6 in MDS-UPDRS part III, respectively.
Although there is a standard guideline for physicians to

evaluate the symptoms of Parkinson’s patients some protocol
instructions are found to be non-objective. For example, finger-
tapping in the MDS-UPDRS is defined as tapping the index finger
on the thumb ten times as quickly and as big as possible3.
Alternatively, a quantitative index, defined as the maximal number
of times a person can tap their fingers within 5 s as big and quickly
as possible, was used to evaluate the severity of the movement4.
However, this index does not fully consider the finger taps’
amplitudes and is relatively semi-quantitative. Even though the
instructions of this movement have mentioned to do it “as big as
possible,” people unintentionally reduce amplitudes to accelerate
the speed practically.
Digital biomarkers accessed by artificial intelligence (AI) provide

real-time noninvasive monitoring, diagnosing, and treating
various medical conditions5–11. For example, a smartphone’s
accelerometer and gyroscope have been used to examine those

with self-reported PD12. Consumer cameras combined with
skeleton extraction techniques, such as OpenPose13, are used to
quantify bradykinesia14–16. KELVINTM, built by Machine Medicine
Technologies14,17, and Tencent Medopad18 are two recently
developed systems for monitoring and examining PD patients’
status. However, current AI-assisted rating systems suffer from two
main flaws—in-clinic only monitoring and inherently subjective
system leading to inter- and intra-rater variability19,20. Further-
more, these systems have not yet addressed the potential bias
introduced by variations in camera angles during video record-
ings. Thus, an objective, at-home, easy-to-use system, capable of
accepting multiple camera angles and automatically accessing
analyzed digital biomarkers, is worth developing for detecting,
monitoring, and evaluating the severity of motor symptoms of
PD21.
Recently, a number of studies have explored the use of 3D

keypoint estimation for quantifying bradykinesia. While these
studies offer promising algorithmic advancements, a significant
gap remains in their practical application. The majority of these
studies have either not released their source code22,23 or failed to
provide an accessible, web-based system24,25. This lack of
availability and user-friendliness means that patients and physi-
cians are unable to derive tangible benefits from these tools.
Furthermore, while there has been an instance of a study releasing
a free online hand analysis system26, this solution falls short in
terms of functionality. Its stateless design does not allow for the
storage of patient records, which is a crucial feature for effective
long-term monitoring of bradykinesia. This omission represents a
missed opportunity for continuous patient care and hampers the
ability of healthcare providers to track the progression of
symptoms over time.

1Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Roosevelt Rd. Sec. 4, Taipei 10617, Taiwan, ROC. 2Department of Computer
Science and Information Engineering, National Taiwan University, No. 1 Roosevelt Rd. Sec. 4, Taipei 10617, Taiwan, ROC. 3Department of Neurology, National Taiwan University
Hospital, No. 1 Changde St., Zhongzheng Dist., Taipei City 100229, Taiwan, ROC. 4Department of Medicine, National Taiwan University Cancer Center, No. 57, Lane 155, Sec. 3,
Keelung Rd., Da’an Dist., Taipei City 106, Taiwan, ROC. ✉email: kuomingche0402@gmail.com; yjtseng@csie.ntu.edu.tw

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01022-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01022-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01022-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01022-x&domain=pdf
http://orcid.org/0000-0003-3689-6964
http://orcid.org/0000-0003-3689-6964
http://orcid.org/0000-0003-3689-6964
http://orcid.org/0000-0003-3689-6964
http://orcid.org/0000-0003-3689-6964
http://orcid.org/0000-0002-1767-7494
http://orcid.org/0000-0002-1767-7494
http://orcid.org/0000-0002-1767-7494
http://orcid.org/0000-0002-1767-7494
http://orcid.org/0000-0002-1767-7494
http://orcid.org/0000-0003-3688-0225
http://orcid.org/0000-0003-3688-0225
http://orcid.org/0000-0003-3688-0225
http://orcid.org/0000-0003-3688-0225
http://orcid.org/0000-0003-3688-0225
http://orcid.org/0000-0002-8461-6181
http://orcid.org/0000-0002-8461-6181
http://orcid.org/0000-0002-8461-6181
http://orcid.org/0000-0002-8461-6181
http://orcid.org/0000-0002-8461-6181
https://fastevalp.cmdm.tw/
https://doi.org/10.1038/s41746-024-01022-x
mailto:kuomingche0402@gmail.com
mailto:yjtseng@csie.ntu.edu.tw
www.nature.com/npjdigitalmed


Our study aims to delineate an evaluation workflow considering
both the speed and amplitude of bradykinesia using a finger-
tapping task (FTT). The video-based dataset was collected from
patients and healthy subjects for deep-learning model training.
Digital biomarkers are accessed by a 3D keypoint extractor,
MediaPipe27, combined with two data augmentation methods—
3D keypoint rotation and video random cropping to overcome the
bias induced by the variations in camera angles. The AI-estimated
MDS-UPDRS item scores were compared with traditional evaluat-
ing indices (using frequency and intensity) in a validation cohort
with a public PD motor dataset (PDMotorDB)4. Finally, to achieve
the goals of the home-based system, we built up a website for the
self-evaluation and remote long-term monitoring of hand
movements.

RESULTS
Participant characteristics
210 patients’ visits from 186 participants (103 PD, 24 participants
with APD, 47 healthy controls (HCs), 12 elderly with mild
parkinsonism signs (MPS)28,29) were enrolled from one
community-based populations and two hospital-based cohorts
from National Taiwan University Hospital (NTUH) and National
Taiwan University Cancer Center (NTUCC) between October 19,
2020, and August 31, 2022. APD are a group of heterogeneous
neurological degenerative diseases with bilateral parkinsonism,
such as multiple system atrophy (MSA). A total of 840 video clips
recording finger-tapping for each hand separately were analyzed.
Figure 1 shows the workflows in this study. Due to the clinical
characteristics of APD, this group had a lower age and higher male
ratio compared to the other three groups (Supplementary Table
1).
To ensure accuracy in data assessment, the diagnosis and motor

scores for each patient were primarily evaluated independently by

a single movement disorder specialist (Dr. Ming-Che Kuo).
Additionally, to further validate these assessments, an extra
evaluator was involved, and the evaluations are detailed in
Supplementary Table 2, Supplementary Table 3, and Supplemen-
tary Table 4. However, to avoid inter-rater discrepancies and
maintain consistency in our analysis, only the labels from Dr. Kuo
were utilized in the final dataset. Finger-tapping clip scores for
each hand were averaged for each patient’s visit unless the
symptom asymmetry was investigated. However, due to limited
data in the MDS-UPDRS item scores of 3 and 4, we combined two
groups into a single group (score of 3+) when training deep-
learning models.
HCs typically had no clinical symptoms and were scored 0, but

some, due to natural aging, received a score of 1 for slower finger
tap performance (Supplementary Fig. 1). Participants in the MPS
group are those with MPS28,29, but did not meet the diagnostic
criteria of PD2 or MSA30, a subtype of APD. A small amount of
them reduced their hand movement functions; therefore, their
scores ranged from 0 to 1. The MDS-UPDRS scores of finger-
tapping during each subject’s visit showed more severe symptoms
in both hands for APD participants than typical PD patients
(Supplementary Table 1). Our findings indicate symmetrical hand
movement impairment in most APD participants, while PD
patients tend to have a more asymmetrical impairment with a
high ratio of asymmetry to symmetry (0.40).

Data quality control
We trained and tested the models with a dataset having a cutoff
threshold of the error frames ratio (TEFR) of 0.3 or 0.5. The
selection of these two TEFRs was based on our data distribution,
with 75% and 85% of clips achieving these respective TEFRs. Given
the number of available clips, we opted not to utilize a TEFR below
0.3. The results implied that the low TEFR would slightly reduce

Fig. 1 Overview of workflows for system-building, validation, and video analysis. For the system-building stage, each clip was scored
independently by a movement disorder specialist. At the same time, the hand skeleton in each clip was extracted using a combination of
MediaPipe and preprocessing methods (including normalization and null value processing) to ensure the quality of the hand keypoints for
model training and testing. Then, the hand keypoints can be used in deep learning model building and quantitative hand parameters
calculation. The hyperparameters were optimized by grid-searching and data augmentation (3D keypoint rotation and random cropping). A
well-trained model was picked to estimate the MDS-UPDRS item score. Furthermore, four hand parameters were calculated and compared
with the estimated MDS-UPDRS item score to verify and interpret the model. For the video-analyzing stage, an inferencing pipeline was built,
including the keypoint transformation, quantitative hand parameters calculation and MDS-UPDRS item score estimation. The model was also
verified by an outer validation dataset. Lastly, users can access the service to assess their motor movement via the website interface.
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the number of utilizable videos and further lessen model
performance (Supplementary Table 5). However, based on two-
tailed Student’s t-test (α= 0.05), there was only marginal
difference (p > 0.05). Namely, the TEFR had minimal effect within
a small range. For broader applicability, it was fixed at 0.5 for
following model training.

Training and tuning MDS-UPDRS item score subtasks with
binary classifiers
The performance of three architectures indicates that the original
PDHandNet by Ho31 and multichannel convolutional neural
network with the gated recurrent units (CNN-GRU) achieved a
higher validation Matthews correlation coefficient (MCC) (0.38)
compared to the modified PDHandNet (Supplementary Table 6).
The original PDHandNet and the multichannel CNN-GRU model by
Lu et al.32 had apparent advantages in our classification subtasks.
In this study, the original PDHandNet was chosen as the main
neural network architecture because of its applicability and
computing efficiency31.
The hyperparameter grid-search experiments demonstrate that

using a large batch size in the training of binary classifiers might
constrain the model to a specific local minimum in binary
classification tasks (see Supplementary Fig. 2). A larger learning
rate allows the model for faster convergence (Supplementary Fig.
3), while L2 regularization33 was added in the objective function to
prevent potential overfitting. Thus, we chose a smaller batch size
and a larger learning rate with L2 regularization policy in our
model training stage.

Estimation of MDS-UPDRS item score with 3D keypoint
rotation
When we introduced 3D keypoint rotation augmentation during
the model-picking stage, it had a detrimental effect on validation
performance, as shown in Supplementary Table 7. Specifically, the
validation and testing MCC for a model with 3D keypoint rotation
at training and model-picking stage (Model-w-3D-tp) were 0.60
and 0.28, respectively, which were lower than the corresponding
MCCs of 0.66 and 0.38 achieved by a model with 3D keypoint
rotation merely at training stage (Model-w-3D-t). Similarly, for a
model with 3D keypoint rotation at training, model-picking, and
inference stage (Model-w-3D-tpi), the validation and testing MCC
scores were 0.60 and 0.50, respectively, while a model with 3D
keypoint rotation at training and inference stage (Model-w-3D-ti)
achieved MCCs of 0.66 and 0.56. Upon closer examination of the
models with the testing MCC (Model-w-3D-tp versus Model-w-3D-
tpi or Model-w-3D-t versus Model-w-3D-ti), we observed a general
improvement, typically by approximately 0.20, after implementing
3D keypoint rotation at the inference stage.
When evaluating the performance of our models on the

multiple-label task, we noted that the most successful model for
estimating left-hand MDS-UPDRS item scores was Model-w-3D-tpi,
with a high acceptable accuracy (AAC) of 88.0% and a Cohen’s
kappa coefficient (Kappa) of 0.433 (Supplementary Table 8). The
confusion matrix, which serves as a prediction summary for
classification and illustrates both misclassifications and perfect
predictions34, indicates that the estimations were generally
reasonable and accurate with only a few exceptions (Fig. 2). For
right-hand finger-tapping testing videos, Model-w-3D-ti (AAC=
85.2%, Kappa = 0.281) and Model-w-3D-tpi (AAC= 81.5%, Kappa

Fig. 2 Confusion matrix of the MDS-UPDRS item scores assessed by the clinician and the best-selected model (Model-w-3D-tpi) for the
left and right-hand finger tapping task in non-testing and testing dataset. a Left-hand finger tapping task; b right-hand finger tapping task.
The numbers in the confusion matrix represent the count of files. These results indicate that the estimations were generally reasonable and
accurate, with only a few exceptions.
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= 0.381) performed better among all the models (Supplementary
Table 8). The confusion matrices of Model-w-3D-tpi- and Model-w-
3D-ti-estimated scores show that the models tended to over-
estimate MDS-UPDRS item scores (Fig. 2 and Supplementary Fig.
4).

Demonstration of hand parameters
The peak and the intensity in our dataset positively correlated
with an overall coefficient of determination (R2) of 0.784
(Supplementary Fig. 5). Notably, the arbitrary intensity from the
short-time Fourier transform (STFT) is associated with practical
length. Comparing HCs with patients having different MDS-UPDRS
item scores, an analysis of four hand parameters revealed
differences in frequency, intensity, frequency-intensity value (FI
value or intensity rate), and peak. Specifically, participants with
impairments scored 2 or 3+ showcased consistently lower values
across all four parameters in contrast to relatively healthier or
slightly impaired individuals (Supplementary Table 9). The
frequencies for scores 1 and 2 were indistinguishable, while the
intensity and peak patterns grouped scores 0 and 1 with scores 2
and 3+. Furthermore, we observed a negative correlation
between frequency and peak (or intensity) (Fig. 3). This observa-
tion reinforced our proposition that no singular parameter can
holistically capture the clinical nuances of hand movements,
inspiring the concept of AI-assisted presentation and concurrent
analysis of multiple hand parameters on our website.
Among these hand parameters, the FI value emerged as the

most discriminative one for distinguishing scores, effectively
encapsulating the speed of finger-tapping while duly accounting
for the intricate relationship between frequency and amplitude
(Fig. 4). The medians of the FI value in each group are separated
and increase with the decaying MDS-UPDRS item score. This
finding suggests that the FI value serves as a comprehensive
indicator of motor function, quantitating how big and quick the
movement is within a single index and offering valuable insights
into the clinical assessment of finger-tapping proficiency.
Furthermore, based on the conversion from intensity to peak (as

depicted in Fig. 4 and Supplementary Fig. 5 and Table 1), a subject
with an MDS-UPDRS item score of 0 moved their thumb and index
finger at a rate of approximately 1.4 thumb lengths per second for
the left hand and 1.3 thumb lengths per second for the right-
hand. In contrast, a patient with an MDS-UPDRS item score of 3+

could only move their fingers at a rate of approximately 0.4 thumb
lengths per second for both hands. Our conversion approach
provides a practical way to interpret and relate the FI values to
real-world lengths and speed, thus quantitating finger-tapping
performance.

Leveraging 3D keypoint rotation for estimating scores of
multi-angle videos with external data
We validated our model by using an external PD motor dataset
(PDMotorDB) provided by Yang et al. 4 With the original labels, the
results demonstrated unexpectedly low accuracy (left: AAC=
75.6%, Kappa= 0.058; right: AAC= 86.8%, Kappa= 0.087) com-
pared to our cohort dataset (left: AAC= 88.0%, Kappa= 0.433;
right: AAC= 81.5%, Kappa= 0.318) using Model-w-3D-tpi (Sup-
plementary Table 8 and Supplementary Table 10). To investigate
the cause and how the model estimated the MDS-UPDRS item
scores, we examined the hand parameters for each MDS-UPDRS
group in the PDMotorDB dataset.
First, we revealed an easily overlooked aspect of movement

assessment by exploring the relationship between frequency and
peak. Specifically, upon comparing the assessments of the original
evaluators with those generated by our deep learning model, it
became apparent that the former placed significant emphasis on
frequency as a primary determinant of scores (Fig. 5a, d). Our
clinical observations further underscored that individuals naturally
tend to exhibit subtle movements during rapid actions. Taking this
into consideration, we advocate for a comprehensive evaluation of
motor movements that simultaneously considers both frequency
and intensity, or peak, in order to provide a more precise
assessment. Figure 5b, d demonstrated that the scores based on
our clinician’s standards exhibit a similar tendency regarding
frequency and peak to those estimated by Model-w-3D-tpi.
Remarkably, whether employing the original labels or scores

forecasted by our proficiently trained Model-w-3D-tpi, the FI value
consistently emerges as a continuous representative hand
parameter, offering clinical insight into the interplay between
motor movement speed and amplitude. This correlation is
substantiated by the PDMotorDB dataset (Supplementary Fig. 6).
The median FI value in each score group decreases with the
growth of the MDS-UPDRS item score, which means that the
clinician can quantify the severity with more than four levels
mentioned in the MDS-UPDRS guideline. It can solve the
ambiguousness of the severity between scores.
Furthermore, it has come to our attention that the orientations

of recordings in PDMotorDB differ from those in our collected
dataset, with the former employing a frontal visual angle. This
discrepancy becomes apparent in Fig. 5c, highlighting the
challenge that arises in precisely assessing the severity of scores
using a model lacking 3D keypoint rotation. In contrast, Model-w-
3D-tpi demonstrates resilience to clips from varying perspectives
and exhibits a consistent tendency between the internal and
external validation datasets (Fig. 5d).
Lastly, the statistical analysis of hand parameters within each

score group, estimated and classified by Model-w-3D-tpi, is
presented in Table 1 for our cohort dataset and Table 2 for the
PDMotorDB dataset. From a clinical standpoint, it was observable
that a healthy individual can execute rapid and expansive
movements35, whereas individuals with parkinsonism faced
difficulties in their execution, wherein the severity of their
condition directly influenced the extent of their struggle. Notably,
four hand parameters exhibit a discernible pattern that correlates
with the MDS-UPDRS item score in both our dataset and
PDMotorDB dataset. However, there exists a discrepancy in the
quantities between these two datasets. The average and median
frequencies in each subgroup of item scores within the
PDMotorDB dataset were lower than those in our cohort dataset.
In contrast, the intensity and peak values in the former dataset

Fig. 3 Relationship of the averaged frequency and peak for each
clip of finger taps for left and right hands in our dataset. Each
time-series dataset was subjected to averaging, presenting an
overall depiction of the motor movement status for each recording.
The correlation between the averaged frequency and peak was
exhibited, showcasing an escalating severity alongside a decline in
both frequency and peak. Moreover, the negative correlation
coefficient signifies the importance of simultaneously assessing
patients’ movement speed and amplitude.
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were relatively higher. It is also worth mentioning that the FI value
remained consistent across the datasets. Further elaboration on
this observation will be provided in the discussion section.

Functionality of FastEval Parkinsonism
FastEval Parkinsonism is publicly available at https://
fastevalp.cmdm.tw/, which has three main features: (1) multiple

evaluation indices for hand movements, (2) symmetric compar-
ison of hand movements, and (3) monitoring the status of hand
movements. All users must register an account to access the web
services. After signing up for an account, users can log in to the
system. For accurate results, it is recommended that the uploaded
side-view video meets certain criteria: exceeding 5 s, 720p
resolution, and 60 frames per second. Videos that do not meet
these criteria may have less reliable results, even after automatic
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conversion to the format for the Hand Predictor application
programming interface (API). The “Record at” column records the
user-defined timestamp of the recording. The end-to-end
estimated MDS-UPDRS item score and keypoint-based confidence
of the estimation are shown in respective columns.
The FastEval Parkinsonism system offers multiple evaluation

indices for hand movements. The uploaded video is analyzed
using the Hand Predictor API. An example of the FTT results is
shown in Fig. 6a. The user determines the evaluating hand’s side,
followed by file quality control. The deep learning model, Model-
w-3D-tpi, estimates the MDS-UPDRS item score. Scores of 4 are
excluded due to insufficient data and ease of assessment. The
evaluating indices, including frequency, intensity, FI value, and
peak, are displayed. A radar plot is provided to the users to visually
compare the left and right-hand clinical features. The scores and
hand parameters are linearly transformed to the 80-20 scoring
scale for comparison by using the medians of each hand
parameter in Table 1. The radar plot is only shown when both
left-hand and right-hand videos are uploaded, displaying the
latest records based on the timestamp (Fig. 6b). In this example,
the right-hand movement is poorer than the left hand, and the
symptoms were observed in the frequency, with a score of 20 on
the 80–20 scale for the right-hand. Considering the speed and
amplitude of the movement simultaneously, the right-hand FI
value showed a similar level compared to the estimated MDS-
UPDRS item score. Thus, the individual demonstrated in Fig. 6b is
indicated to have right-side dominant bradykinesia. By integrating
self-assessment capabilities for patients, we empower them to
actively participate in their health monitoring process (Fig. 6c).

DISCUSSION
The discrepancies in intensity, peak values, and smaller frequen-
cies in the PDMotorDB dataset are primarily due to the normal-
ization technique used, involving thumb-length as a standard for

hand size. This method caused misconceptions because of shorter
thumb lengths extracted by MediaPipe in front-view videos,
leading to potential underestimation of severity when relying
solely on intensity and peak values. Furthermore, the under-
estimation of frequency and consistent FI value is linked to our
deep learning model’s estimating mechanism, which inherently
estimates the severity and incorporates multiple features, includ-
ing peak, intensity, and frequency. The FI value, however, is
strongly associated with the severity, as mentioned in the result
section. The interconnected nature of the FI value formula
components meant that overestimating intensity led to under-
estimating frequency. Nonetheless, through the analysis of hand
parameters, we effectively showcased the model’s interpretability
and extended its applicability to videos recorded from different
recording angles and distances by the strategic implementation of
normalization and 3D keypoint rotation methods, addressing the
initial concerns.
To validate accuracy and applicability, our Model-w-3D-tpi

achieved high AAC rates of 88.0% for left-hand datasets and 81.5%
for right-hand datasets (Supplementary Table 8). While the
performance differs slightly between left and right hands due to
separate training and testing datasets, our results demonstrate
similar accuracy compared to previous studies14,36,37. We also
assess consistency by calculating Kappa, which were 0.433 and
0.318 for left and right-hand FTTs, respectively. These coefficients
align with the inter-rater consistency observed in Yang et al.’s
research, with a range of Kappa from 0.28 to 0.664. In the study by
Williams et al.38 22 neurologists rated the videos, and Kappa was
only 0.28 ± 0.28. These findings suggest that our deep-learning
model has reached a level of consistency comparable to human
assessment.
Furthermore, our end-to-end model’s estimations are supported

by clinical evidence-based hand parameters, such as frequency
and intensity. We observed a negative correlation between
frequency and intensity, both of which decreased as severity

Fig. 4 Distribution and the cumulative percentage of the averaged FI value in each MDS-UPDRS item scored by the clinician and Model-
w-3D-tpi in our dataset. a Left-hand finger taps; b right-hand finger taps. To facilitate hand parameter comparison between files, we averaged
the time-series FI value to depict its characteristics. We utilized kernel density estimation to visualize the distribution within each score group.
On the x-axis, you can find the FI values for each score group, while the corresponding number of values is expressed as a density on the y-
axis. Notably, the MDS-UPDRS item scores serve as indicators of motor movement severity, exhibiting a strong correlation with the averaged FI
value. A higher FI value signifies an individual’s proficient performance in finger taps during recording. Furthermore, the cumulative
percentage plot unveils the distinctions among score groups while also highlighting the median and quantile within each group. Remarkably,
the cumulative percentage plot pattern for each MDS-UPDRS item estimated by our model closely mirrors that of each MDS-UPDRS item
scored by the clinician. Furthermore, the FI value (arbitrary units per second, A.U./s) can be converted to a frequency-peak value (thumb
lengths per second, thumb-length/s) using the formula provided in Supplementary Fig. 5. For instance, the median FI value (as depicted in
Table 1) for individuals with an MDS-UPDRS item score of 0 for left hand is 0.267 (A.U./s), which corresponds to a converted value of 1.42
(thumb-length/s). Similarly, in the case of individuals with an MDSUPDRS item score of 3 for left hand, the value can be converted from 0.042
(A.U./s) to 0.35 (thumb-length/s).

Table 1. Hand parameters statistics in each score group in our cohort dataset (MDS-UPDRS item scored by Model-w-3D-tpi)

Hand side MDS-UPDRS Frequency (Hz) Intensity (arbitrary unit,
A.U.)

FI value (A.U./s) Peak (distance/thumb-
length)

item score Average Median Average Median Average Median Average Median

Left-hand finger taps 0 3.203 ± 0.653 3.211 0.086 ± 0.039 0.082 0.272 ± 0.117 0.267 0.546 ± 0.161 0.525

1 2.750 ± 0.783 2.635 0.089 ± 0.048 0.074 0.222 ± 0.093 0.218 0.561 ± 0.209 0.516

2 2.310 ± 0.766 2.170 0.066 ± 0.040 0.059 0.136 ± 0.069 0.069 0.459 ± 0.173 0.431

3+ 1.928 ± 0.779 1.775 0.058 ± 0.031 0.048 0.096 ± 0.042 0.042 0.417 ± 0.132 0.397

Right-hand finger taps 0 3.255 ± 0.874 3.206 0.078 ± 0.033 0.076 0.247 ± 0.112 0.238 0.539 ± 0.143 0.531

1 2.452 ± 0.764 2.440 0.080 ± 0.044 0.074 0.181 ± 0.084 0.185 0.525 ± 0.161 0.475

2 2.623 ± 0.942 2.366 0.054 ± 0.032 0.044 0.122 ± 0.065 0.116 0.420 ± 0.135 0.392

3+ 1.867 ± 0.854 1.707 0.043 ± 0.028 0.031 0.065 ± 0.037 0.056 0.401 ± 0.120 0.366
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increased, consistent with clinical observations of bradykinesia.
We also highlighted the use of 3D keypoint rotation in our
estimation model to prevent overfitting and ensure accurate
estimations across different recording angles.
From a clinical standpoint, Chen et al. previously demonstrated

that quantitative hand parameters are related to clinical
features35. Specifically, they found that calculated hand para-
meters obtained from tasks such as finger-tapping, open-closing,
and pronation-supination can provide valuable insights into the
patient’s disease status. Four notable clinical characteristics can be
observed in the frequency and intensity evolution over time:
hesitation and interruption (both frequency and intensity dip and
recover during the task), amplitude decrement (the intensity
decreases during the task), slowing (the frequency remains small
over the whole time), and freezing or incapability to perform the
task (the frequency is unchanged and small over time, and the
patient cannot complete the task within a given time). Our
analysis aligns with these findings and provides similar clinical
feature insights through the utilization of time-series graphs.

These graphs effectively portray the temporal dynamics of
movement over a specified duration, allowing for comparisons
with estimated scores to elucidate the predominant types of the
motor impairment. While the FI value serves as a robust gauge of
movement severity, it alone struggles to capture the intricacies of
these four clinical characteristics. Presenting both frequency and
intensity within a time-series plot, complemented by a keypoint-
annotated video, offers an improved approach to aid clinicians in
comprehending the individual’s real-time movement dynamics.
In terms of the pros and cons in the previous analysis

frameworks for PD compared to our designs, previous commer-
cialized AI-based evaluated systems, KELVINTM 39 and Clou-
dUPDRS40, were developed to assist self-monitoring for PD.
Machine Medicine Technologies Ltd. (London, UK) developed an
all-in-one vision-based platform called KELVINTM (https://
KELVIN.machinemedicine.com/) to assess PD patient movements
with the MDS-UPDRS. This platform analyses hand movements
and qualifies gait and rising from a chair in PD patients14,17,41,42.
The computer-assessed scores with this platform have also been

Fig. 5 Relationship between the peak and frequency in each MDS-UPDRS group for both hands in the PDMotorDB dataset. All four plots
elucidate the associations between averaged peak and averaged frequency, derived from short-time Fourier transform (STFT), within each
MDS-UPDRS group, while MDS-UPDRS item scores were appraised by different assessors. a The MDS-UPDRS item was evaluated by original
evaluators. The primary assessment criterion is the frequency of finger taps, with rough boundary values set at 1.25, 2.0, and 2.5 Hz. b The
MDS-UPDRS item was re-evaluated following our criteria, revealing a trend of severity growth with decreased peak and frequency. c The MDS-
UPDRS item was evaluated by Model-wo-3D. Absent the 3D keypoint rotation, the model encountered challenges in estimating accurate
scores for frontal-view videos, thereby struggling to exhibit the pattern of severity growth aligned with decreased peak and frequency.
Additionally, no estimation was provided for a score of 3. d The MDS-UPDRS item was assessed by Model-w-3D-tpi. Benefitting from 3D
keypoint rotation techniques during training, model selection, and inference stages, this model mirrors a similar decision-making approach to
that of the clinician’s evaluation. The trend of severity growth with decreased peak and frequency is notably preserved.
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compared with clinical raters’ scores, and the platform showed
acceptable consistency in multiple tasks39. In their recent research,
they pooled over 10,000 videos from multiple sites and raters to
improve model robustness14. However, limitations arise from
using 2D keypoints extracted by OpenPose, such as the inability to
perform 3D rotation and the requirement for the full human body
in video analysis, making self-recording and immediate uploading
challenging. On the other hand, the CloudUPDRS app was
developed to address the challenge of home monitoring, using
16 smartphone-based tests to estimate subitems from the MDS-
UPDRS part III, including rest tremor, hand postural tremor, finger
tap, and leg agility. Jha et al. cross-validated the estimated score
against blinded human raters by the app43, with the accuracy
variably ranging from 53.2% to 97.0%. Although the CloudUPDRS
provided several tests to assess each user’s motor functionality,
there is no video of the movement that can be referenced as
ground truth in the system. From the perspective of visualization,
a video provides a user-friendly experience and more details than
a curve of signals for clinicians. The physicians are also more
familiar with the original tests in the MDS-UPDRS than with the
tests used for the new system.
Compared with KELVINTM and CloudUPDRS, FastEval Parkinson-

ism provides a non-contactable video-based solution to estimate
the severity of the motor movement remotely and instantly. We
have demonstrated how our system deals with the issue of
recording angles, thus providing multiple evaluation metrics,
including MDS-UPDRS item score, frequency, intensity, intensity
rate, and peak. Although we have not validated our findings in a
large dataset, such as KELVINTM, the outer validation by the
PDMotorDB dataset alternatively confirms the validity with high
AAC and the correlation between intensity and frequency. Unlike
CloudUPDRS, our analysis is derived from the MDS-UPDRS test,
making it easy for physicians to adapt and reduce their workload.
The system allows independent viewing of files with raw video,
evolving parameters, and evaluation metrics, enabling cross-
validation and accurate diagnosis. Our radar plots compare the
difference between left- and right-hand movements, aiding in the
early detection of APD diseases. While KELVINTM and CloudUPDRS
use multiple features, FastEval Parkinsonism focuses on finger taps
but is ready to expand to additional parkinsonian features.
Regularly monitoring patients with our system and correspond-

ing digital biomarkers allows us to vigilantly observe the
possibility of clinical conversion from the diagnosis of PD to
APD. Furthermore, our system holds the potential to contribute to
the early detection of MPS or “mild motor signs” among the
elderly population. This is of particular significance considering the
elevated risk of neurodegenerative conditions in the elderly,
extending beyond typical PD alone29. This approach lays the
groundwork for the future development of personalized
treatment plans.

While there are some limitations to acknowledge, we have
opportunities for improvement. Firstly, enhancing accuracy
remains a priority, and this can be achieved by expanding the
size of our datasets. Fortunately, the collection of videos has
become more efficient, thanks to the user-friendly system
accessible through consumer-grade smartphones. Consequently,
we are able to significantly enlarge our cohort dataset and
improve our models by training them with a more extensive
dataset. Second, our dataset was evaluated by only one clinician
rater, which resolves the issue of the inter-rater discrepancy and
benefits learning accurate mapping relationships among model-
generated parameters, clinician-evaluated scores, and clinical
observation. Nevertheless, the model might be more robust by
including multiple raters at multiple sites in the future, as we
found in the previous study14. Third, the demographics of the
participants were older individuals who primarily spoke local
languages, so the English version website was challenging for
some users. To address this, a multi-language website should be
developed to cater to different language preferences. Finally, we
only cover one of the MDS-UPDRS tasks, finger taps. More
parkinsonian features, such as hand open-close, hand
protonation–supination, or gait performance, need to be auto-
mated and analyzed in the near future using a similar or updated
platform as FastEval Parkinsonism. Despite the limitations, the
adopted framework in our website provided a flexible and
scalable to further new updates.
In conclusion, we developed FastEval Parkinsonism, a publicly

accessible website that uses deep learning and quantitative
calculation to analyze one of the parkinsonism movements, finger
taps in patients with PD compared to participants with APD,
healthy individuals, or elderly with MPS. Our findings showed that
data augmentation techniques were useful in building the deep
learning model and estimating scores for multi-angle videos. The
optimized model accurately and effectively distinguished Parkin-
son’s symptom severity. FastEval Parkinsonism integrates analysis
protocols into the Hand Predictor API, providing a valuable tool for
self-assessment and assisting physicians in objectively monitoring
the severity and symmetry of clinical symptoms over time.

METHODS
Study design and data collection
Patients and healthy subjects participating in this study were
recruited from two hospitals, NTUH and NTUCC, during the period
from October 19, 2020, to August 31, 2022. The patients with PD,
MSA, mild cognitive impairment (MCI), Alzheimer’s disease (AD)44,
and HC were diagnosed and classified by Dr. Ming-Che Kuo. The
patients with MSA were categorized as the participants with APD,
while those with MCI and AD were classified as the elderly with
mild parkinsonian signs (MPS)28,29. HCs were defined as those with

Table 2. Hand parameters statistics in each score group in the PDMotorDB dataset (MDS-UPDRS item scored by Model-w-3D-tpi)

Hand side MDS-UPDRS Frequency (Hz) Intensity (arbitrary unit,
A.U.)

FI value (A.U./s) Peak (distance/thumb-
length)

item score Average Median Average Median Average Median Average Median

Left-hand finger taps 0 2.207 ± 0.571 2.210 0.126 ± 0.045 0.122 0.271 ± 0.118 0.255 0.807 ± 0.203 0.765

1 1.743 ± 0.426 1.731 0.108 ± 0.047 0.105 0.180 ± 0.084 0.175 0.695 ± 0.193 0.678

2 1.624 ± 0.461 1.528 0.091 ± 0.054 0.080 0.134 ± 0.078 0.126 0.633 ± 0.202 0.597

3+ 1.413 ± 0.455 1.246 0.080 ± 0.024 0.078 0.107 ± 0.033 0.094 0.494 ± 0.138 0.483

Right-hand finger taps 0 2.327 ± 0.539 2.269 0.137 ± 0.046 0.134 0.316 ± 0.124 0.301 0.882 ± 0.212 0.862

1 1.993 ± 0.476 1.934 0.121 ± 0.042 0.120 0.237 ± 0.090 0.232 0.763 ± 0.166 0.765

2 1.783 ± 0.520 1.593 0.082 ± 0.037 0.082 0.127 ± 0.053 0.129 0.619 ± 0.149 0.593

3+ 1.534 ± 0.546 1.459 0.074 ± 0.039 0.063 0.093 ± 0.041 0.090 0.665 ± 0.180 0.666
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no neurogenerative disease but with the same age and sex
distribution as the other patient groups. All subjects provided
consent for data management and usability prior to data
collection. Each subject performed a FTT twice for each hand,
which was recorded by a ZED camera with 720p (width: 720 pixels,
height: 1280 pixels) and 60 frames per second (fps) in a side-view.

Every person continuously performed finger taps for approxi-
mately 10 s in this study; this approach differs slightly from that
used for the MDS-UPDRS. The MDS-UPDRS item score for the FTT
was evaluated by an experienced movement disorder specialist,
considering speed, amplitude, and parkinsonism features. Each
video received an independent score from 0 to 4. The scores were

a one-click analysis results

b radar plot 

c evaluation index (e.g., Frequency) evolving with time

Finger tapping
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then transformed into multiple binary subtasks for simplification.
Due to limited data, MDS-UPDRS item score 3 and 4 were
combined into a single group (score of 3+) in this study.

Ethics approval. All subjects provided written informed consent,
and the study was approved by Research Ethics Committees at
NTUH (201809022RINA and 202108149RINA).

Dataset splitting and cross-validation
The dataset was split based on patients to avoid bias. The non-
testing and testing datasets were uniformly randomly divided
with a ratio of 0.85 to 0.15 using a Python package, Random,
resulting in 362 video clips in the former and 58 clips in the latter
dataset for each hand side. The non-testing dataset was further
divided into training and validation datasets. Hyperparameter
optimization involved 3-fold cross-validation for classifier perfor-
mance assessment and 5-fold cross-validation for training binary
classifiers. A lower cross-validation fold was used for performance
assessment to expedite the process of grid-searching hyperpara-
meters. However, once a set of optimal hyperparameters was
identified, we switched to a higher cross-validation fold to train
models with a more extensive dataset, thereby expanding the
feature spaces. The classifier with the highest validation MCC was
chosen for MDS-UPDRS item score estimation.

Data processing
There are various tools for human keypoint detection, including
OpenPose13, Detectron245, MMPose46, AlphaPose47, and Media-
Pipe27. MediaPipe was chosen for this study due to its superior
performance in 3D hand keypoint estimation48. The MediaPipe
Hands API49 was used with specific configurations to extract 21 3D
hand keypoints from each video frame.
To address potential misunderstandings and malfunctions regard-

ing the extracted 3D keypoints, we introduced the “error frames ratio
(EFR)” as a measure of video quality. This concept is inspired by the bit
error rate and frame error rate (FER) used in data processing for
communication systems50,51. The EFR is defined as the proportion of
frames in which hand keypoints were not successfully extracted,
relative to the total number of frames in the video. Three categories
were established to indicate video confidence: high (EFR < 0.16),
moderate (EFR between 0.16 and 0.5), and low (EFR≥ 0.5).
Keypoints with low confidence were discarded, and each video

was assumed to contain one person or one hand. Raw keypoints
were normalized using the length of the thumb as a factor. Thumb
length was determined by summing the Euclidean distances
between the four thumb keypoints and one palm keypoint. The
missing values would be supplied by tracking back to find the
nearest valid hand keypoints to fill in the missing values and make
hand parameter analysis more reasonable. The processing method
reduced the programming jitter and promoted the continuity
of data.

Deep learning modeling
The MDS-UPDRS item score estimation was a multi-label (score 0,
1, 2, 3+) classification task, whereas some classes had less than
enough data to train well in an end-to-end model. Thus, this study
used a binary estimation approach by classifiers with different
boundaries, which improved the overall accuracy of the estimated
MDS-UPDRS item score by combining the estimations from
different classifiers with different boundaries, providing a more
robust and unbiased final score.
Three neural network architectures were compared to find a

suitable and efficient to reach the goal of instant score estimation.
First, we considered the original PDHandNet proposed by Ho31,
which is lightweight and demonstrates good performance,
making it well-suited for our web platform that aims to provide
rapid results. Second, we evaluated a modified PDHandNet,
enhanced with an additional dilated convolutional block, linear
layer, and ReLU layer (see Supplementary Fig. 7), to determine if a
slightly deeper version could offer improved performance. Lastly,
we examined the multichannel convolutional neural network with
gated recurrent units (CNN-GRU) model, proposed by Lu et al.32

known for its outstanding performance in classification tasks
involving time-series data. We did not consider the traditional
LSTM model due to its inferior performance, nor did we consider
the prevalent transformer-based architecture because of its
complexity and the difficulty in training it with our limited dataset.
Among these three architectures, we initially filtered out the

most efficient model architecture suitable for our score classifica-
tion subtasks, using the left-hand finger-tapping dataset. The MCC
metric was chosen for this primary performance comparison, as it
is more effective than accuracy and the F1 score in evaluating the
performance of a binary task52.
Subsequently, we focused on hyperparameter grid-searching to

identify an optimal model for the binary subtask with item scores
of 0 and 1+ (scores: 1, 2, 3+). We conducted searches with batch
sizes of 16 and 64, learning rates of 1e-3 and 1e-4, and L2
regularization values of 5e-4, 5e-5, and 5e-6. All training was
optimized using stochastic gradient descent (SGD) with a
momentum of 0.9 and a cross-entropy loss function.

Data augmentation. Data augmentation could enhance the
robustness of the models and make models more generalized. It
was applied at three stages: training, model-picking, and
inference. Adding data augmentation at the training stage could
be regarded as expanding the training space and giving more
features for building a generalized model, reducing overfitting,
and then improving the validation performance53,54.
Two data augmentation techniques, 3D keypoint rotation and

random video cropping, derived from a previous study31, were
employed to expand the training dataset. First, we implemented
3D rotation for hand keypoints since target users of this system
might upload their videos from different angles. Second, since the
designed model only accepted the fixed length of the data, the

Fig. 6 Examples from the FastEval Parkinsonism system. a The illustration depicts the outcome of a one-click analysis. Keypoint skeletons
were generated using MediaPipe to annotate the provided video. In the upper middle position, the evolving frequency and intensity over
time are showcased, effectively capturing the motor movement dynamics during recording. In the middle, the normalized distances between
the index finger’s tip and the thumb tip are illustrated, with annotated detected peaks. The middle’s bottom plot exhibits the absolute
frequency difference, serving as a potential indicator of interruptions or hesitations. This is due to the noticeable frequency change in case of
motor movement interruptions. On the right panel, additional digital details are presented, encompassing the assessed hand, confidence
level, estimated MDS-UPDRS item score, and hand parameters (evaluation indices). b The showcased radar plot serves as a clear example,
vividly depicting the contrast in motor movement severity between the left and right hands. This distinction is achieved by employing four
distinct hand parameters alongside a label estimated by a deep-learning model. Notably, both the hand parameters and the label undergo
linear transformation to an 80–20 scale, using the median of our cohort dataset as the reference point. This visualization, displaying both
hands simultaneously, proves instrumental for clinicians in conducting a rigorous quantitative evaluation of severity. Additionally, it holds the
potential to facilitate the early diagnosis of atypical parkinsonism cases. c This example offers a representative illustration of time-dependent
tracking on a finger-tapping hand parameter, frequency. Through this visualization, clinicians can effectively assess the progression between
two clinical visits and potentially adjust medication dosages to enhance the efficacy of treatment plans.
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raw training data should be cropped before being used to model
training. Random video cropping was used not only to solve the
issue of the input data length but also to enlarge the dataset for
model training. Gaussian random sampling was proposed to
extract the middle clips of the whole videos and reduce recording
error without manual trimming.
Random cropping augmentation applied during inference can

further improve model performance, akin to ensembling. This
method allows the model to make predictions on different data
segments, which are then aggregated to produce the final output.

Evaluation metrices
For binary classification tasks, several indices were included in this
study to evaluate the model performance. The definition of the
evaluation metrics for binary classification tasks are shown in Eqs.
(1) to (6). Compared to the F1 score, the MCC is regarded as a
more informative and truthful score for a binary task52.

Accuracy ¼ TPþ TN
TPþ FPþ FNþ TN

(1)

Sensitivity ðRecallÞ ¼ TP
TPþ FN

(2)

Specificity ¼ TN
TNþ FP

(3)

Precision ¼ TP
TPþ FP

(4)

F1score ¼ 2 ´
Sensitivity ´ Precision
Sensitivityþ Precision

(5)

Matthews correlation coefficient ðMCCÞ ¼
TP ´ TN� FP ´ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp

(6)

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.
Three evaluation metrics were used in this study for multiple-

label classification—the number of significant error files (NSE),
acceptable accuracy (AAC)36, and Cohen’s kappa coefficient55.
These are detailed in Eqs. (7) to (9).

The number of significant error filesðNSEÞ ¼ Njy�ŷj�2 (7)

Acceptable accuracy ðAACÞ ¼ Njy�ŷj�1

N
(8)

Cohen’s kappa coefficient ðKappaÞ ¼ po � pe

1� pe

where po ¼ N y�ŷj j¼0

N
;pe ¼

1

N2

X

k

nk;ynk;ŷ
(9)

where N is the number of observations, y is the label, ŷ is the
estimated result, and nk,i is the number of times rater i estimated
category k.

Hand parameters
For the FTT, the representative parameter is the Euclidean distance
between the tips of the thumb and index finger. This study used a
5-frame moving average filter on the hand parameter to reduce
the jitter error from the keypoint extractor, MediaPipe. The
keypoints were initially standardized based on each patient’s
thumb-length to optimize for hand size variations within video
clips, which could arise from diverse real-world recording settings.
The peak of the hand parameter was extracted with a prominence
of 0.1 (10% of the thumb’s length of the subject), whereas
frequency and intensity were extracted by the STFT. Furthermore, a

more comprehensive metric, FI value, was calculated by finding the
dot product of frequency and intensity in each time step,
representing their transient combined motor performance.

Website design
We combined MDS-UPDRS estimation and hand parameter
calculation in an API referred to as Hand Predictor to obtain
results from the raw video. The statistics of each hand parameter
were calculated to represent the performance of the hand
movement, which was displayed on the FastEval Parkinsonism
webpage. The FastEval Parkinsonism website was built using Ruby
on Rails (version 7.0.4) with a model-view-controller framework,
following the principles of Don’t Repeat Yourself and Convention
Over Configuration. The account management system utilized the
devise package (version 4.8.1) for efficient development. Addi-
tionally, a queuing system was implemented using Sidekiq
(version 7.0.2) and Redis (version 7.0.7) to handle data processing
and resource allocation efficiently for multiple users.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Due to the patient data privacy policy, the original dataset (video clips) would not be
publicly accessed. The de-identified data that support the findings of this study are
available from the corresponding author upon reasonable request, with the
permission of the institution, and after approval of a proposal.

CODE AVAILABILITY
Custom codes were implemented in Python 3.8.12 with PyTorch 1.11.0 and run on an
Ubuntu 18.04 or 22.04 system with NVIDIA GTX 1080 Ti and RTX 3060 Ti. Source
codes are available at a GitHub repository (https://github.com/yuyuan871111/
fast_eval_Parkinsonism) under an Apache-2.0 license.
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