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1 Introduction

The geometry of the inflationary epoch of our early universe was approximately de Sitter [1–
5], and our universe is currently entering a de Sitter phase once again. It is thus of physical
relevance to examine how to deal with quantum effects in a de Sitter universe. Such is-
sues have been studied heavily in the past. The technical aspects of most calculations have
involved the in-in/Schwinger-Keldysh formalism which is reviewed in [6], and focus on com-
puting field correlations at a fixed time. Indeed, in the context of quantum cosmology we are
interested in correlations of quantum fields at a given time rather than scattering amplitudes
— which condition on events both in the far past as well as in the far future.

A complementary approach is to build a perturbation theory for solutions of the Schrö-
dinger equation itself. Knowledge of the wavefunction allows us to consider expectation
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values of a broad collection of observables, which in turn permits a richer characterization of
the state [7]. Thus, an understanding of the wavefunction and its time evolution is of interest.
Although generally complicated, there is one particular solution of the Schrödinger equation
in a fixed de Sitter background which exhibits a simplifying structure. This solution is the
Bunch-Davies/Hartle-Hawking wavefunction ΨBD [8–11], and its form strongly resembles that
of the partition function in a Euclidean AdS background upon analytic continuation of the
de Sitter length and conformal time. This observation led to the elegant proposal of a close
connection between dS and Euclidean AdS perturbation theory in [12] (see also [13, 14]).

It is our goal in this paper to exploit the connection between dS and AdS to develop
a more systematic perturbative framework for the construction of this wavefunction. We do
this by considering a series of examples. The perturbative framework in an AdS spacetime
has been extensively studied in the past [15–17] and is our primary calculational tool. Our
examples involve self-interacting scalar fields, both massless and massive, as well as gauge
fields and gravitons. We recast many of the standard issues involving infrared effects of
massless fields1 in the language of the wavefunction. Many of these infrared effects exhibit
correlations that grow logarithmically in the scale factor, as time proceeds and we display
how such effects appear in the wavefunction itself. It is worth noting that though most
calculations of ΨBD involve taking a late time limit, our approach requires no such limit and
we construct ΨBD perturbatively for any arbitrary time. For massless scalar fields, the finite
time dependence of the wavefunction at tree level is captured by the exponential integral
function Ei(z), whose small argument behavior contains the logarithmic contributions.

An interesting difference between the approach described in this paper and the in-in
formalism is that the two approaches use different propagators. For a massless scalar in
Euclidean AdS4, we use the Green’s function:2

GAdS(z, z′; k) = − 1

2k3L2

[
(1− kz)(1 + kz′)ek(z−z′)

− e2kzc(1− kzc)(1 + kz)(1 + kz′)

(1 + kzc)
e−k(z+z′)

]
, (1.1)

valid for z < z′. (For z′ < z, one simply exchanges the two variables.) The mathematical
purpose of the second term is to enforce the Dirichlet boundary condition at the cutoff zc.
It is perhaps more significant physically that the sum of the two terms is finite as k → 0.
Thus, loop integrals using (1.1) do not produce infrared divergences at small k. The Green’s
functions considered in the in-in formalism [33] are obtained by the continuation to dS4 of
the first term in square brackets. Its real part gives

GC(η, η′; k) =
1

2k3`2
[
(1 + k2ηη′) cos[k(η − η′)] + k(η − η′) sin[k(η − η′)]

]
, (1.2)

which is singular as k → 0.
One of the main motivations of our approach is to connect our results with the idea [12,

35, 36] that ΨBD (at late times) is holographically computed by the partition function of
a conformal field theory. If this correspondence, known as the dS/CFT correspondence, is
indeed true,3 infrared effects in de Sitter spacetime should be related to quantities in the

1See [18–34] for an incomplete list of references on the topic of infrared issues in de Sitter space.
2The Euclidean AdS metric is ds2 = L2(dz2 + d~x2)/z2 and we work in momentum space.
3Recently several concrete realizations of this proposal have emerged [37–39] for theories of four-dimensional

de Sitter space involving towers of interacting massless higher spin fields. Aspects of de Sitter holography are
reviewed in [40, 41].
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putative conformal field theory itself. This could lead to a better understanding of possible
non-perturbative effects. Moreover, in analogy with how the radial coordinate in AdS is
related to some (as of yet elusive) cutoff scale in the dual CFT [42–45], it is expected that
the scale factor itself is connected to a cutoff scale in the CFT dual to de Sitter space [46–
50]. Our calculations may help elucidate such a notion. Of further note, having a better
understanding of ΨBD at finite times allows us to compute quantum expectation values
of fields within a single cosmological horizon, rather than metaobservables inaccessible to
physical detectors.4

We begin in section 2 by explaining how solutions to the Schrödinger equation can be
captured by a Wick rotation to Euclidean time, hence establishing the connection between
de Sitter and anti-de Sitter calculations. We then proceed in section 3 to examine a self-
interacting scalar field with φ4 interactions in a fixed four-dimensional de Sitter background,
whose contributions to the wave function contain terms that depend logarithmically on the
conformal time η. In section 4 we discuss the case of gauge fields and gravitons. We argue
that, to all orders in the tree-level approximation, no logarithms are present for a pure
Einstein theory with a positive cosmological constant. We discuss our results in the context
holography in section 5. Finally, in section 6 we go to two-dimensional de Sitter space in
order to compute loop effects for a cubic self-interacting massless scalar. In appendix A
we set up a quantum mechanical toy model where the mathematics of our calculations is
exhibited in a simple context.

2 The Schrödinger equation in a fixed de Sitter background

The main emphasis of this section is to show that our method perturbatively solves the
functional Schrödinger equation for a scalar field in the Bunch-Davies state. We will first
provide the exact solution for a free field, and then show how the result can be obtained by
continuation from Euclidean AdS as in [12]. We then treat interactions perturbatively.

We use conformal coordinates for dS(d+1),

ds2 =
`2

η2
(−dη2 + d~x2) , ~x ∈ Rd, η ∈ (−∞, 0) . (2.1)

For simplicity we consider a self-interacting scalar but analogous equations will also hold for
other types of fields. The action is:

SL =
`(d−1)

2

∫
Rd
d~x

∫
dη

|η|(d−1)

((
∂ηφ(η, ~x)

)2 − (∂~xφ(η, ~x)
)2 − `2 V

(
φ(η, ~x)

)
η2

)
. (2.2)

We specify the potential later, but we envisage the structure of a mass term plus φn interac-
tions.

It is convenient to take advantage of the symmetries of Rd and work in momentum
space. Thus, we define:

φ(η, ~x) =

∫
Rd

d~k

(2π)d
ei
~k·~xφ~k(η) . (2.3)

Henceforth we denote the magnitude of the momentum by k ≡ |~k|. Upon defining the
canonical momenta π~k = −iδ/δφ~k conjugate to φ~k, we can write the Schrödinger equation

4A complementary approach would be to compute quantities directly in the static patch of de Sitter [55, 56].
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governing wavefunctions Ψ[ϕ~k, η] in a fixed dSd+1 background:

∑
~k∈Rd

(
1

2

|η|(d−1)

`(d−1)
π~k π−~k +

`(d−1)

|η|(d−1)

(
k2

2
ϕ~k ϕ−~k +

(
`

|η|

)2

Ṽ (ϕ~k)

))
Ψ[ϕ~k, η] = i ∂ηΨ[ϕ~k, η] .

(2.4)
The variable ϕ~k is the momentum mode φ~k evaluated at the time η where Ψ is evaluated.

The potential Ṽ (φ~k) is the Fourier transform of the original V (φ(η, ~x)); it has the structure

of a convolution in ~k-space.

2.1 Bunch-Davies wavefunction

In principle, we can construct solutions to (2.4) by considering Feynman path integrals over
the field φ. We are particularly interested in the solution which obeys the Bunch-Davies
boundary conditions. This state is defined by the the path integral:

ΨBD[ϕ~k, ηc] =

∫ ∏
~k∈Rd

Dφ~k e
iS[φ~k] , (2.5)

in which we integrate over fields that satisfy φ~k ∼ e
ikη in the kη → −∞ limit and φ~k(ηc) = ϕ~k

at some fixed time η = ηc. The natural generalization of this state to include fluctuating
geometry at compact slicing is given by the Hartle-Hawking wavefunction. The boundary
conditions resemble those defined in the path integral construction of the ground state of a
harmonic oscillator.

As usual, physical expectation values are given by integrating over the wavefunction
squared. For example, the n-point function of ϕ~k, all at coincident time ηc, is:

〈ϕ~k1
. . . ϕ~kn〉 =

∫ ∏
~k
dϕ~k |ΨBD[ϕ~k, ηc]|

2 ϕ~k1
. . . ϕ~kn∫ ∏

~k
dϕ~k |ΨBD[ϕ~k, ηc]|2

. (2.6)

As a simple example we can consider the free massless field in a fixed dS4 background.
In this case we can obtain ΨBD as the exact solution of the Schrödinger equation (2.4):

ΨBD[ϕ~k, ηc] =
∏
~k

(
2k3

π

)1/4

exp

[
i `2

2

(
k2

ηc(1− ikηc)

)
ϕ~k ϕ−~k

]
e−ikηc/2√
(1− ikηc)

. (2.7)

Although ηc can be considered to be an arbitrary point in the time evolution of the
state, we are ultimately interested in the late time structure of the wave function. At late
times, i.e. small negative ηc we find:

log ΨBD[ϕ~k, ηc] =
`2

2

∫
d~k

(2π)3

(
ik2

ηc
− k3

)
ϕ~k ϕ−~k + . . . . (2.8)

Notice that the small ηc divergence appears as a phase of the wavefunction rather than its
absolute value, i.e. it plays no role in the expectation values of the field ϕ~k. The late time
expectation value of ϕ~k ϕ−~k is given by:

〈ϕ~k ϕ−~k〉 =
1

2 `2 k3
, (2.9)

which diverges for small k. The divergence stems from the fact that ΨBD is non-normalizable
for the ~k = 0 mode.
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2.2 A Euclidean AdS approach

When computing the ground state wavefunction of the harmonic oscillator from the path
integral, one wick rotates time and considers a Euclidean path integral with boundary con-
dition in the infinite past. Similarly, for the dS wavefunction, we can continue to Euclidean
time z = −iη and consider a Euclidean path integral. Now, the path integral is over con-
figurations that decay in the infinite Euclidean past, defined here as the limit z → ∞. If in
addition we continue L = −i`, we see that the calculation becomes that of constructing the
Euclidean partition function in a fixed Euclidean AdS(d+1) background:

ds2 =
L2

z2
(dz2 + d~x2) , ~x ∈ Rd, z ∈ (0,∞) . (2.10)

In other words we have that: ΨBD[ϕ~k, ηc] = ZAdS[ϕ~k, izc] (with L = −i`) at least in the
context of perturbation theory in a fixed (A)dS background.

The Euclidean path integral calculation incorporates, in principle at least, both classical
and quantum effects. Let us ignore quantum effects temporarily and discuss how AdS/CFT
works at the classical level. To be concrete, consider a massive scalar with quartic self-
interaction. The classical action is

S =
L(d−1)

2

∫
Rd
d~x

∫ ∞
zc

dz

z(d−1)

(
(∂zφ)2 + (∂~xφ)2 +

m2L2

z2
φ2 +

λL2

4z2
φ4

)
. (2.11)

One seeks a solution φ(z, ~x) of the classical equation of motion that satisfies the boundary
condition φ(z, ~x) → ϕ(~x) as z → zc. The cutoff zc is needed to obtain correct results for
correlation functions in the dual CFT. The classical solution is then substituted back in the
action to form the on-shell action Scl[ϕ(~x)] which is a functional of the boundary data. In
the classical approximation the partition function is the exponential of the on-shell action i.e.
ZAdS = e−Scl[ϕ(~x)], and n-point correlation functions of the CFT operator dual to the bulk
field φ are obtained by taking n variational derivatives with respect to the sources ϕ(~x).

Let us now perform the Euclidean version of the calculation that gives the result (2.7).
For this purpose we ignore the quartic term in (2.11). In ~k-space, we wish to solve the
previously mentioned boundary value problem5 captured by the classical equation of motion:[

z2∂2
z − (d− 1)z∂z − (k2z2 +m2L2)

]
φ~k(z) = 0 , φ~k(z = zc) = ϕ~k . (2.12)

The exponentially damped solution of the ODE involves the modified Bessel function Kν(kz),
and the solution of the boundary value problem can be neatly written as

φ~k(z) ≡ K(z; k)ϕ~k =
zd/2Kν(kz)

z
d/2
c Kν(kzc)

ϕ~k ν =
1

2

√
d2 + 4m2L2 . (2.13)

This equation defines the important bulk-to-boundary propagator K(z, k).
We follow the procedure outlined above and substitute the solution (2.13) into the

action (2.11). After partial integration the on-shell action reduces to the surface term at
z = zc:

Scl[ϕ~k] = −1

2

∫
d~k

(2π)d

(
L

z

)(d−1)

K(z; k) ∂zK(z; k)ϕ~k ϕ−~k at z = zc . (2.14)

5There are many useful reviews of the AdS/CFT correspondence, including [51–53]. The present boundary
value problem is discussed in section 23.10 of [54].
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Let’s restrict to the case of a massless scalar in AdS4 which is the case d = 3, ν = 3/2 of the
discussion above. The Bessel function simplifies greatly for half-odd-integer index, and the
bulk-to-boundary propagator becomes:

K(z; k) =
(1 + kz)e−kz

(1 + kzc)e−kzc
. (2.15)

The on-shell action then becomes:

Scl[ϕ~k] =
1

2

∫
d~k

(2π)3

(
L

zc

)2 k2zc
1 + kzc

ϕ~k ϕ−~k . (2.16)

To discuss the AdS/CFT interpretation we need to take the small zc limit, which gives:

Scl →
1

2

∫
d~k

(2π)3

(
L

zc

)2(
k2zc − k3z2

c +O(z3
c )
)
ϕ~kϕ−~k . (2.17)

The first term is singular as zc → 0, but the factor k2ϕ~kϕ−~k is local in ~x-space. In fact it
contributes a contact term δ(~x− ~y) in the ~x-space correlation function. Such contact terms
are scheme-dependent in CFT calculations and normally not observable. The remaining
finite term has the non-local factor k3. It’s Fourier transform gives the observable part of the
2-point correlator, 〈O3(x)O3(y)〉 ∼ 1/|~x− ~y|6 which is the power law form of an operator of
scale dimension ∆ = 3. In AdS/CFT a bulk scalar of mass m2 is dual to a scalar operator
O∆ of conformal dimension ∆ = (d/2 + ν).

It is more pertinent to discuss the relation between the Lorentzian and Euclidean sig-
nature results. In the free Lorentzian theory we can write ΨBD = exp(iSL). Then upon
continuation L → −i`, z → −iη, zc → −iηc, the Euclidean on-shell action (2.16) and its
Lorentzian counterpart are related by

− SE ≡ −Scl → iSL . (2.18)

This is the expected relation for field theories related by Wick rotation.

Henceforth, the Euclidean signature AdS/CFT correspondence will be our primary
method of computation. In this way we will be using a well developed and well tested
formalism. After completion of a Euclidean computation, we will continue to de Sitter space
and interpret the results as contributions to the late time wave function ΨBD.

2.3 Interaction corrections to ZAdS

We now consider the effect of interactions in the bulk action, such as, for example, the
φ4 term in (2.11). We treat the quantum fluctuations using a background field expansion
φ = φcl + δφ. The classical field satisfies the non-linear classical equation of motion with
Dirichlet boundary condition limz→zc φcl(~x, z) = ϕ(~x), while the fluctuation δφ vanishes at
the cutoff. The partition function is then:

ZAdS[ϕ~k, zc] = e−Scl

∫
Dδφ e−S[δφ,φcl] . (2.19)

Exact solutions of the non-linear classical equation are beyond reach, but the reasonably
efficient perturbative formalism of Witten diagrams leads to series expansions in the coupling
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Figure 1. Witten diagrams for the order λ contributions to ZAdS[ϕ~k, zc] in the theory with φ4

interaction.

constant. For example, φcl = φ0 + λφ1 + . . ., where φ0 solves the free equation of motion
coming from the quadratic piece of the action and the full Dirichlet boundary condition.6

Witten diagrams without loops contribute to Scl, while those with internal loops appear
in the perturbative development of the fluctuation path integral. The basic building blocks of
Witten diagrams are the bulk-to-bulk Green’s function G(z, w; k) and the bulk-to-boundary
propagator K(z; k). It is significant that G satisfies the Dirichlet condition at the cutoff, i.e.
G(zc, w; k) = G(z, zc; k) = 0. In appendix B, these propagators are explicitly constructed for
the main cases of interest in this paper.

Witten diagrams for the order λ contributions to ZAdS[ϕ~k, zc] in the theory with φ4

interaction are depicted in figure 1.

3 Self-interacting scalars in four-dimenions

We now discuss several contributions to ΨBD from interactions, mostly in φ4 theory. As
previously mentioned, we carry out calculations in Euclidean AdS4, then continue to dS4 by
taking z = −iη, zc = −iηc and L = −i`. We use the metric (2.10) and action (2.11) in d = 3.

3.1 Tree level contributions for the massless theory

First we focus on the massless case m2L2 = 0. The relevant bulk-to-boundary propagator
is given in (2.15). The tree-level contribution to ΨBD (left of figure 1) is captured by the
integral:7

− λL4

8

∫ ∞
zc

4∏
i=1

dz

z4
K(z; ki) =

− λL4

8

kΣ + k2
Σ zc + kΣ(3kπ − k2

Σ)z2
c + 3kP z

3
c − ekΣzckΣ kΣ3 z3

c Ei(−kΣzc)

3 kΣ z3
c (1 + k1zc)(1 + k2zc)(1 + k3zc)(1 + k4zc)

, (3.1)

where we have defined the following quantities:

kΣ ≡
4∑
i=1

ki , kπ ≡
4∑
i=1
j=i+1

kikj , kP ≡
4∏
i=1

ki , kΣ3 ≡
4∑
i=1

k3
i . (3.2)

6In appendix A we present and develop a quantum mechanical toy model. This model is instructive
because perturbative computations are quite feasible and their structure is closely analogous to those in our
field theories.

7The Ei(z) function is defined as Ei(z) = −
∫∞
−z dt e

−t/t. It has a branch cut along the positive real axis of
z ∈ C. We are primarily interested in this function along the negative real axis and the negative imaginary
axis, both away from the origin.

– 7 –
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We expand the result for small values of zc and analyze the divergent structure. In summary,
we find terms of order ∼ z−3

c as well as ∼ k2 z−1
c divergence but no ∼ z−2

c term. Furthermore,
we find a ∼ k3 log k zc term.

Upon analytic continuation to dS4 the power law divergences become phases of the
wavefunction. On the other hand, the logarithmic term contributes to the absolute value of
ΨBD[ϕ~k, ηc] at small ηc:

log |ΨBD[ϕ~k, ηc]| =
λ `4

24

∫
d~k1

(2π)3

d~k2

(2π)3

d~k3

(2π)3

(
kΣ3 log(−kΣ ηc) + . . .

)
ϕ~k1

ϕ~k2
ϕ~k3

ϕ~k4
,

(3.3)
where

∑
i
~ki = 0 due to momentum conservation. Thus we encounter contributions to

|ΨBD[ϕ~k, ηc]| that grow logarithmically in the late time limit, |ηc| → 0. In fact, at late
enough times the correction is no longer a small contribution compared to the λ = 0 pieces,
and all subleading corrections will also begin to compete. In this way one recasts several of
the infrared issues encountered when studying massless fields in the in-in/Schwinger-Keldysh
formalism [6, 20]; now from the viewpoint of the wavefunction.

Similar logarithmic terms are present at tree level in a cubic self-interacting massless
theory, and their effect was noted in the context of non-Gaussian contributions to inflationary
correlators in [60]. In this case one finds the late time correction:

log |ΨBD[ϕ~k, ηc]| = −
λ `4

6

∫
d~k1

(2π)3

d~k2

(2π)3

(
kΣ3 log(−kΣ ηc) + . . .

)
ϕ~k1

ϕ~k2
ϕ~k3

, (3.4)

where
∑

i
~ki = 0, and kΣ, kΣ3 are defined as in (3.2). In the case of slow roll inflation, these

infrared effects are suppressed by the small slow roll parameters [12].

As was mentioned in the introduction, the dS/CFT proposal connects ΨBD to the
partition function of a conformal field theory. Here, one envisions some theory in de Sitter
space that contains such light scalars in its spectrum, including the graviton (dual to the
stress tensor of the CFT) and so on. In section 5 we will explore this connection and in
particular, discuss a possible holographic interpretation of such divergences based on recent
analyses of 3d CFT’s in momentum space [58, 59].

3.2 Loop correction to the two-point function

It is of interest to understand the late time structure of loop corrections in the φ4 model.
We will calculate the diagram on the right in figure 1, which corresponds to the following
integral:

Iloop(k, zc) = −3λL4

4

∫ ∞
zc

dz

z4
K(z; k)2

∫
d~p

(2π)3
G(z, z; p) . (3.5)

To render the ~p-integral finite we must impose an ultraviolet cutoff. Recall that ~p is a
coordinate momentum, such that the physical (proper) momentum at a given z is given
by ~pph = z ~p/L. We impose a hard cutoff on ~pph, such that the ultraviolet cutoff of ~p
is z-dependent, i.e. |~pUV| = |ΛUVL|/z. A large ΛUV expansion reveals terms that diverge
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quadratically and logarithmcally in ΛUV:8

3λL2

8(2π)2

(
− |ΛUVL|2 + 2 log |ΛUVL|

)
. (3.6)

To cancel the quadratic divergence, we can add a local counterterm:

δ

∫
dz

z4

d~k

(2π)3
φ~k(z)φ−~k(z) , δ =

3λL2

8(2π)2
|ΛUVL|2 . (3.7)

Upon addition of the counterterm, the ~p-integral can be performed analytically rendering
an expression containing the Ei(z) function that is only logarithmically divergent in |ΛUVL|.
The remaining z-integral is complicated, but we are mainly interested in its small zc behavior,
which we can extract. We find the following terms divergent in the small zc expansion (to
leading order in ΛUV):

− λL2

2(2π)2
log |ΛUVL|

(
− 1

zc3
+

3k2

2zc
+ k3 log(zc k)

)
. (3.8)

The logarithmic term contributes to the absolute value of the wavefunction upon analytic
continuation to dS4:

log |ΨBD[ϕ~k, ηc]| = −
`2

2

∫
d~k

(2π)3
k3

(
1− λ

(2π)2
log |ΛUV`| log(−ηc k)+ . . .

)
ϕ~k ϕ−~k . (3.9)

Notice that at late times, the width of the |ΨBD[ϕ~k, ηc]| for a fixed k mode narrows, which
is physically sensible as the quartic part of the potential dominates compared to the kinetic
term. To order λ, the “cosmological two-point correlation function” can be obtained from
this wave function (including the contribution from (3.3)) via the general expression (2.6).
The result closely resembles the late time two-point function computed, for example, in [33].
Notice that there is no need to impose an infrared cutoff when considering loop corrections
of the wavefunction itself.

As a final note, we could have also considered a slightly different subtraction where our
counterterm also removes the logarithic divergence in |ΛUVL|. Evaluation of the integrals
proceeds in a similar fashion leading to the following result upon continuation to dS4:

log |ΨBD[ϕ~k]| = −
`2

2

∫
d~k

(2π)3
k3

(
1 + a1

λ

(2π)2
log(−ηc k) + . . .

)
ϕ~k ϕ−~k , (3.10)

where a1 = −(−5+4γE+4 log 2)/4 ≈ −0.02. The result is now independent of the ultraviolet
cutoff altogether.

8It is worth comparing the divergence structure in (3.6) to a coincident point expansion of the SO(4, 1)
invariant Green’s function: G(u) ∼ 1

L2 (2/u)3F (3, 2, ; 4;−2/u). The argument u = [(z − z′)2 + (~x− ~x′)2]/2zz′

is an SO(4, 1) invariant variable. Near u = 0, we write z = z′ and ~x = ~x′ + ~ε. In this limit G(u) ∼
1
L2 [−z2/ε2 + 2 ln(ε/z) + . . .]. This is precisely of the form (3.6), although the divergence is cut off by the
physical length ~xph,UV = ~εL/z. What we are suggesting is that the physical cutoff is a de Sitter invariant
cutoff.
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3.3 Tree level contributions to the conformally coupled case

We now analyze a conformally coupled scalar in a fixed Euclidean AdS4 background with
m2L2 = −2. This case is of particular interest as it arises in the context of higher spin
Vassiliev (anti)-de Sitter theories [61, 62]. The bulk-to-boundary propagator simplifies to:

K(z; k) =

(
z

zc

)
ek(zc−z), (3.11)

and the free quadratic on-shell classical action is given by:

Scl =
L2

2

∫
R3

d~k

(2π)3
ϕ~k ϕ−~k

(
k

z2
c

− 1

z3
c

)
. (3.12)

For the sake of generality, we consider a self-interaction of the form λnφ(~x, z)n/2n with
n = 3, 4, . . . For such a theory, the order λn tree level (ϕ~k)

n contribution requires computing
integrals of the form:

In(ki, zc) =

∫ ∞
zc

dz

z4

(
z

zc

)n
ekΣ(zc−z) =

1

z3
c

ekΣ zcE(4−n)(kΣ zc) , (3.13)

where En(z) is the exponential integral function9 and kΣ ≡ k1 +k2 + . . .+kn. Expanding the
integral reveals that logarithms will only occur in the small zc expansion for the case n = 3.
For n = 3 we find the following small zc expansion:

In=3(ki, zc) = −γE + log(kΣzc)

zc3
−
kΣ

(
− 1 + γE + log(kΣzc)

)
zc2

−
k2

Σ

(
− 3 + 2γE + 2 log(kΣzc)

)
4zc

− 1

36
k3

Σ

(
− 11 + 6γE + 6 log(kΣzc)

)
.

(3.14)

When we continue to dS4 by taking zc = −iηc and L = −i`, the leading contribution to the
order (ϕ~k)

3 piece of the wavefunction at small ηc is given by:

log Ψ
(3)
BD = −λ3 `

4

6

∫
d~k1

(2π)3

d~k2

(2π)3
ϕ~k1

ϕ~k2
ϕ~k3

1

η3
c

(
− i γE − i log(−kΣηc) +

π

2

)
, (3.15)

with ~k1 +~k2 = −~k3 due to momentum conservation (see [57] for related calculations). We see
that the absolute value of the wavefunction receives a ∼ 1/η3

c divergent piece which is mo-
mentum independent (such that it becomes a contact term in position space). Interestingly,
the cubic self-interaction of the conformally coupled scalar is absent in the classical Vasiliev
equations [63, 64].

As another example, consider the quartic coupling which is conformal in four-dimen-
sions. We find:

In=4(ki, zc) =
1

z4
c kΣ

. (3.16)

Upon continuing to dS4 this gives a momentum-dependent contribution to the real part of
the exponent of the wavefunction, but none to the phase.

9The function En(z) =
∫∞

1
dte−zt/tn for z ∈ C. It has a branch cut along the negative real axis. We are

mostly interested in this function along the positive real axis and positive imaginary axis, both away from the
origin.
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One can also consider loop corrections analogous to those computed in section 3.2. As
an example we consider the one loop correction to the two-point function in the φ4 theory.
The relevant Green function is given by:

G(z, w; k) =
wz

2kL2
e−k(w+z) (e2kz − e2kzc) , z < w , (3.17)

and similarly for z > w. The relevant integral is (3.5), though in this case there is only a
quadratic divergence Λ2

UV to be cancelled. A small zc expansion of the regulated integral
reveals the following contribution to the wavefunction:

log |ΨBD[ϕ~k, ηc]| = −
`2

2

∫
d~k

(2π)3

k

η2
c

(
1− 3λ4

4(2π)2
log(−kηc) + . . .

)
ϕ~k ϕ−~k . (3.18)

Once again, we see that the wavefunction becomes narrower as time proceeds which is phys-
ically sensible.

3.4 Comments for general massive fields

We discuss the non-interacting case (with λ = 0) but non-zero mass. The solutions of the
Klein-Gordon equation are given by:

φ~k(z) =

(
z

zc

)3/2 Kν(kz)

Kν(kzc)
ϕ~k , ν ≡

√
9

4
+m2L2 . (3.19)

Once again we have imposed that the solution vanishes at z → ∞. We are interested in
the regime ν ∈ [0, 3/2], since this range corresponds to light non-tachyonic scalars in dS4

upon analytic continuation (such that ν =
√

9
4 −m2`2). Heavy particles in dS4 have pure

imaginary ν. The on-shell action is found to be:

Scl = −L
2

2

∫
d~k

(2π)3
ϕ~k ϕ−~k

(
(3− 2ν)

2 z3
c

− k

z2
c

K(ν−1)(kzc)

Kν(kzc)

)
. (3.20)

For generic values of ν we can expand the action at small zc and find:

Scl = −L
2

2

∫
d~k

(2π)3
ϕ~k ϕ−~k

1

z3
c

(
(3− 2ν)

2
− 2π csc(πν)

Γ(ν)2

(
kzc
2

)2ν

+ . . .

)
. (3.21)

The above diverges at small zc, in the region ν ∈ (0, 3/2), even for the ∼ k2ν piece. In the
context of AdS/CFT the boundary data for a scalar field with ∆− d = ν − d/2 6= 0 must be
“renormalized” via ϕ~k → zd−∆

c ϕ~k to achieve finite correlation functions as the cutoff zc → 0.
(See section 23.10 of [54] for a discussion.) In the conformally coupled case discussed in
section 3.3, ∆ = 2 and d = 3 such that ϕ~k → zc ϕ~k. This renormalization absorbs the 1/z2

c

divergence. Upon continuing to dS4 the ∼ 1/z3
c term in (3.20) becomes a phase and we find

a factor (i|ηc|)2(ν−3/2) which has a growing real part as |ηc| → 0.
A small zc expansion in the ν = 0 case reveals ∼ log kzc terms in addition to the

1/z3
c divergence. Only the logarithmic term contributes to the absolute value of ΨBD[ϕ~k, η]

upon continuing zc = −iηc and L = −i`. In addition, we have that for ν = 1 there are
also logarithmic terms in the small zc expansion. These become phases upon continuing
zc = −iηc.
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Tree-level diagrams. Once again, we can ask whether the presence of logarithmic con-
tributions to the late time wavefunction occur for more general values of ν. The general
bulk-to-boundary propagator is:

K(z; k) =

(
z

zc

)3/2 Kν(kz)

Kν(kzc)
. (3.22)

Consider again self-interactions of the simple form λnφ(~x, η)n/2n. The tree level integrals of
interest are:

I(ν)
n (zc, ki) =

L4 λn
2n

∫ ∞
zc

dz

z4

n∏
i=1

K(z; ki) . (3.23)

For generic ν, we will find that at small zc the non-local piece in momentum will be accom-

panied by a divergent factor z
n(ν−3/2)
c . Upon continuation to dS4, the local pieces which

go as 1/z3
c or 1/zc will become phases of the wavefunction. On the other hand z

n(ν−3/2)
c

will not contribute a pure phase to the wavefunction. However, upon computing a physical
expectation value of (ϕ~k)

n by integrating over the tree level |ΨBD|2 one finds that it decays

as |ηc|n(3/2−ν) at late times. That the correlations decay in time for massive fields makes
physical sense, since the particles dilute due to the expansion of space, and is consistent with
a theorem of Weinberg [18].

On the other hand, an examination of the small z behavior of the BesselKν(kz) function:

Kν(kz) =
(kz)ν Γ(−ν)

21+ν

(
1 +

(kz)2

2(1 + ν)
+ . . .

)
+

(kz)−ν Γ(ν)

21−ν

(
1 +

(kz)2

2(1− ν)
+ . . .

)
(3.24)

reveals that logarithmic terms can only occur of special values of ν. They can only appear
when the integrand of (3.23) contains terms that go as 1/z in its small z expansion, which
integrate to a logarithm. For n = 3, we have already discussed the massless ν = 3/2 and
conformally coupled ν = 1/2 cases at tree level, as well as the ν = 0 and ν = 1 cases at
the free level. For general n, ν = 3/2 will still give rise to logarithmic contributions, as will

ν = (3/2 − 3/n), where the logarithmic contributions are of the form ∼ log
(∑

i ki zc
)
/z

6/n
c

and ν = (3/2−1/n), where the logarithmic contributions are of the form ∼ log
(∑

i ki zc
)
/zc

(in the range ν ∈ [0, 3/2]). In the latter case, the logarithmic contribution always appears as
a phase upon analytic continuation to dS, not so for the former case. It would be interesting
if these are the only values of ν that give logarithms to higher order in perturbation theory.

4 Gauge fields and gravity in four-dimensions

In this section we consider classical contributions to the de Sitter wave function for massless
gauge fields and gravitons in a fixed dS4 background. Compared with scalars treated in
earlier sections, there are significant changes in the structure of the wave functions because
of the gauge symmetry.

4.1 SU(N) gauge fields

In the non-Abelian case, the Yang-Mills action is given by:

SYM =
L4

4

∫
R3

d~x

∫ ∞
zc

dz

z4
TrF aµνF

a
ρσg

µρgνσ, F aµν = ∂[µA
a
ν] + g fabcAbµA

c
ν , (4.1)
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where a = 1, . . . , N2 − 1 is the adjoint index and fabc are the SU(N) structure constants.
This action is conformally invariant at the classical level. This means that there will be
no singular terms in 1/zc in AdS vertex integrals and thus no terms in the de Sitter wave
function that are logarithmically sensitive to ηc. The reason for this is that the two inverse
metrics in the action (4.1) soften the vertex integrals by a factor of z4 and cancel the 1/z4

from the metric determinant.

We perform calculations in AdS4 in the Az = 0 gauge, so only transverse spatial com-
ponents of the gauge potential remain. In ~k-space these components are given by

Ai(z,~k) = K(z; k)ci(~k) , kici(~k) = 0 , ci(~k)∗ = ci(−~k) (4.2)

K(z; k) = e−k(z−zc). (4.3)

The bulk-to-boundary propagator is so simple because Ai obeys the same linearized equation
as in flat space. Although usually not written explicitly, the transverse projector Πij =
δij − kikj/k2 is understood to be applied to spatial vector modes.

As our first calculation, we obtain the contribution of the free gauge field. Metric factors
cancel and we have the gauge-fixed action

S =

∫
d~x

∫ ∞
zc

[
1

2
(∂zAi)

2 +
1

4
(Fij)

2

]
. (4.4)

After partial integration, as in section 2.2, the on-shell action reduces to the surface term in
~k-space:

S = −1

2

∫
d~k

(2π)3
K(z, k)∂zK(z, k)ci(~k)ci(−~k) (4.5)

=
1

2

∫
d~k

(2π)3
k(δij − kikj/k2)ci(~k)cj(−~k) . (4.6)

The result contains the ~k-space correlator of two conserved currents in the boundary 3d CFT.
This structure, which contains no dependence on zc may be compared with its analogue
in (3.11) for the conformally coupled scalar. The bulk fields φ and Ai are both dual to CFT
operators with ∆ = 2. There is only partial cancellation of metric factors for the scalar, so
the singular factor 1/z2

c remains. As discussed in section 3.4, this factor can be absorbed by
renormalization of sources in AdS, but it gives a late-time power law singularity in |ΨBD|.

Next consider the tree-level three-point function. The relevant integral is straightfor-
ward and gives a result with no dependence on zc, namely:

g fabc
Tijk

k1 + k2 + k3
(4.7)

where Tijk is the same antisymmetric tensor that appears in flat space, namely:

Tklm = (~k1)lδkm − (~k1)mδkl + (~k2)mδkl − (~k2)kδlm + (~k3)kδlm − (~k3)lδkm . (4.8)

Comparing (4.7) to the three point function of the conformally coupled scalar in (3.14) we
note the absence of logarithmic terms depending on zc.

– 13 –



J
C
A
P
1
1
(
2
0
1
5
)
0
4
8

4.2 Scalar QED

Consider now a massive charged scalar field coupled to a U(1) gauge field, with Euclidean
action:

SSQED = L4

∫
R3

d~x

∫ ∞
zc

dz

z4

[
gαβ(∂α + iAα)φ(∂β − iAβ)φ∗ +m2φφ∗

]
. (4.9)

Properties of this theory were also considered in [28]. Transverse modes in ~k-space thus have
the cubic interaction:

Sint = L2

∫
d~k1

(2π)3

d~k2

(2π)3

∫ ∞
zc

dz

z2
Ai(z,~k3) (~k1 − ~k2)i φ~k1

(z)φ∗~k2
(z) , (4.10)

where momentum conservation requires ~k3 = −~k1 − ~k2. Again, a transverse projector is
understood to be applied to spatial vector modes. Using this interaction vertex, we find the
following contribution to the partition function:

L2

∫
d~k1

(2π)3

d~k2

(2π)3
ϕ~k1

ϕ~k2
Ãi(~k3) (~k1 − ~k2)i Im2L2 , Ãi(~k) ≡ Ai(zc,~k) . (4.11)

For a scalar field of mass m2L2 and bulk-to-boundary propagator K(z; k) the radial integral is

Im2L2 =

∫ ∞
zc

dz

z2
e−k(z−zc)K(z; k1)K(z; k2) . (4.12)

We compare the two cases of massless and conformally coupled (m2L2 = −2) scalars with
bulk-to-boundary propagators:

Km2L2=0(z; k) =
(1 + kz)e−kz

(1 + kzc)e−kzc
, Km2L2=−2(z; k) =

(
z

zc

)
e−k(z−zc). (4.13)

Our motivation is to explore the appearance of log(kzc) terms in the 3-point function. For
the massless case we find:

Im2L2=0 =
1
zc

+ k1k2
k1+k2+k3

+ e(k1+k2+k3)zck3 Ei[−(k1 + k2 + k3)zc]

(1 + k1zc)(1 + k2zc)
(4.14)

whose series expansion reveals a logarithmic term from the Ei(z)-function. For m2L2 = −2,
the integral is elementary and gives:

Im2L2=−2 =

∫ ∞
zc

dz
e−(k1+k2+k3)(z−zc)

z2
c

=
1

(k1 + k2 + k3)z2
c

. (4.15)

As in the case of the conformally coupled self-interacting scalar, we can absorb the 1/z2
c

divergence into a renormalization of the boundary data.

After all is said and done, we find a ∼ log(kzc) term in the 3-point function of the
massless scalar but not in the conformally coupled case. The “practical” reason for the
absence is the cancellation of the ∼ 1/z factors in the integrand of (4.15) due to the softer
behavior of the scalar bulk-to-boundary propagators. It would be interesting to study the
loop corrections to the wave function for these theories.
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4.3 Gravity

It is a well known result that classical solutions in pure Einstein gravity with a positive
cosmological constant Λ = +3/`2 have a uniform late time (small η) expansion. In four
spacetime dimensions, this is given by [66]:

ds2

`2
= −dη

2

η2
+

1

η2

(
g

(0)
ij + η2g

(2)
ij + η3g

(3)
ij + . . .

)
dxidxj , |η| � 1 . (4.16)

The independent data in this expansion is the conformal class
(
g

(0)
ij , g

(3)
ij

)
∼ eω(~x)

(
g

(0)
ij , g

(3)
ij

)
.

The Einstein equations impose that g
(3)
ij is transverse and traceless with respect to the bound-

ary three-metric g
(0)
ij . Two of the phase space degrees of freedom reside in g

(0)
ij and the other

two in g
(3)
ij . The Einstein equations also require that the term linear in η inside the paren-

thesis is absent. If g(0) and g(3) are appropriately related, the above solution will obey the

Bunch-Davies boundary condition (this will require g
(3)
ij to be complex).

If Λ < 0 there is an analogous expansions of the same structure known as the Fefferman-
Graham expansion [65]. The on-shell action for such solutions satisfying the Bunch-Davies
boundary condition (i.e. that the three-metric vanishes at large z in EAdS) has been studied
extensively [67]. Indeed, the on-shell classical action is given at some fixed z = zc by:

Sgr =
3

8πGL2

∫
M
d~x

∫ ∞
zc

dz
√
g − 1

8πGL2

∫
∂M

d~x
√
hKi

i , (4.17)

where hij is the induced metric on the fixed zc slice and Kij is the extrinsic curvature,

Kij =
1

2
Lnαgij(z, ~x) , nα = (z,~0) . (4.18)

The second term in (4.16), known as the Gibbons-Hawking term, is required for a well defined
variational principle. For the first term we have used the on-shell condition R = −12/L2.

We can evaluate the classical action (4.17) on the classical solutions obeying the Eu-
clidean AdS4 analogue of (4.16):

ds2

L2
=
dz2

z2
+

1

z2

(
g

(0)
ij + z2g

(2)
ij + z3g

(3)
ij + . . .

)
dxidxj , z � 1 , (4.19)

and expand in small zc. The expansion of the on-shell classical action contains only diver-
gences of the form 1/z3

c and 1/zc at small zc, but no 1/z2
c or log zc divergences [68]. The

absence of a ∼ 1/z term in (4.19) is crucial for the logs to be absent in the small zc expansion
of the on-shell classical action.10 The divergent terms amount to pure phases in ΨBD[gij , η]
upon analytic continuation.11 (See [71] for a related discussion.) The important point is that
there are no logarithmic divergences for small zc, which translates to the statement that the
Bunch-Davies wavefunction exhibits no ∼ k3 log(−ηc k) growth at tree level.

Thus the Fefferman-Graham expansion for dS4 seems to explain the absence of loga-
rithms in the gravitational 3-point functions calculated, for example, in [69, 70]. This is in
stark contrast to the case of the massless scalar.

10Note that in odd space-time dimensions, there is a piece of the Fefferman-Graham expansion which
contributes logarithmic terms to the phase of the wavefunction as well as local terms to its absolute value [12].

11There is a slight subtlety in assuming that the full solution ds2/`2 = −dη2/η2 + gij(~x, η)dxidxj allowing
for the expansion (4.16) can indeed by analytically continued to z = −iη at the non-linear level. For small

enough deviations away from the flat metric g
(0)
ij = δij the bulk-to-bulk and bulk-to-boundary propagators

allow for such a continuation.
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5 3d CFTs and (A)dS/CFT

The dS/CFT correspondence proposes that the Bunch-Davies (or Hartle-Hawking) wave-
function of dS4 at late times is computed by the partition function of a three-dimensional
Euclidean conformal field theory. It is closely related to the Euclidean AdS/CFT proposal, as
we have tried to make clear above. In the AdS/CFT context the small zc cutoff is identified
with a cutoff in the dual theory. This is due to the manifestation of the dilatation symmetry
as the (z, ~x)→ λ(z, ~x) isometry in the bulk. For instance, bulk terms that diverge as inverse
powers of zc (with even powers of k) are interpreted as local terms in the dual theory. On
the other hand, the tree level zc-dependent logarithmic terms, such as those in the small zc
expansion of (3.1), are not local in position space and yet seem to depend on the cutoff. One
may ask whether they have an interpretation from the viewpoint of a putative CFT dual.

Recent analyses of CFT correlation functions in momentum space [58, 59] give a sug-
gestive answer. Recall that the symmetries of CFTs have associated Ward identities, gov-
erning correlation functions. For concreteness we specifically consider the Ward identities,
expressed in momentum space, constrainging the three point functions of a scalar operator
O with weight ∆. The Ward identity for the dilatation symmetry is given by:(

6 +

3∑
i=1

(pj∂j −∆)

)
〈O(~p1)O(~p2)O(~p3)〉 = 0 , (5.1)

whereas for the special conformal transformations we have:

3∑
i=1

(~pi)
α

(
∂2
i +

4− 2∆

pi
∂i

)
〈O(~p1)O(~p2)O(~p3)〉 = 0 . (5.2)

The Latin index labels a particular momentum insertion, O(~pi), whereas the Greek index
labels a specific Euclidean component of ~pi. We have also removed the δ(~p1 + ~p2 + ~p3) con-
servation rule from the correlator. The solution to the above equations is most conveniently
expressed as an integral over an auxiliary coordinate:

〈O(~p1)O(~p2)O(~p3)〉 =

c3(p1p2p3)∆−3/2

∫ ∞
0

dz z1/2K∆−3/2(z p1)K∆−3/2(z p2)K∆−3/2(z p3) , (5.3)

where Kν(z) is the modified Bessel function of the second kind. The above integral should
look familiar; we have indeed encountered it in our previous analysis of massive fields. As
previously noted, from the bulk point of view the conformal weight of a scalar of mass m2L2

in AdS4 is ∆ = 3/2+ν where ν ≡
√

9/4 +m2L2. The case ν = 3/2, i.e. a massless scalar field
in AdS4, corresponds to a marginal operator with ∆ = 3. Thus, the auxiliary variable z can
be precisely identified with an AdS bulk coordinate, and the modified Bessel functions can be
thought of as bulk-to-boundary propagators (2.13). The integral (5.3) is of course divergent
for general ∆ near z = 0. Motivated by our bulk analysis, we chose a slightly different cutoff
procedure from [58], where we instead cut the integral off at some small z = zc. Now from a
CFT analysis, we find the appearance of logarithmic contributions, which will generally be
cutoff dependent, to the three-point function of a scalar operator (this observation remains
true even in the cutoff prescription chosen in [58]). Because these logarithmic terms contain
a dependence on the cutoff scale zc, they are consequently referred to as anomalies in [58].
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They may be present in the theory non-perturbatively. Thus, from the holographic point of
view, terms logarithmic in zc that are associated to anomalies in the 3d CFT, such as those
in the three-point function, will be present to all orders rather than part of a resummeable
series.

Let us note that we also observed such logarithms in higher point functions at special
values of ν (e.g. ν = 3/2), where the analogous general CFT analysis is more cumbersome. In
a similar fashion, the tree level logarithms we discussed for the Bunch-Davies wavefunction
in section 3.4 (for ν = 0 or ν = 1) are related to a divergence in the Fourier transform of the
two-point function of a weight ∆ = 3/2 or ∆ = 5/2 scalar operator [58, 72].

It is also possible, however, that the appearance of these logarithms are the result of
small shifts in the conformal weights of certain operators in the 3d CFT. For instance,
imagine that loop corrections (such as 1/N corrections in a large N CFT) shift ∆(0) by an
order ∼ 1/N amount, i.e. ∆ = ∆(0) +α/N+O(1/N2) with α ∼ O(1). The two point function
in momentum space will then have a large N expansion:

k2(∆−3/2) = k2(∆(0)−3/2)

(
1 +

2α

N
log k + . . .

)
. (5.4)

From the bulk AdS4 point of view, we must include the factors z
2(∆−3)
c to obtain the zc-

dependent bulk partition function, as we discussed in section 3.4, such that the expansion
becomes:

(zck)2(∆−3/2)

z3
c

=
(zc k)2(∆(0)−3/2)

z3
c

(
1 +

2α

N
log(zck) + . . .

)
. (5.5)

As we already noted, we can extrapolate the perturbative results in AdS to those in dS
by continuing zc = −iηc and L = −i`. From the point of view of a putative dual CFT of
dS, the zc = −iηc continuation corresponds to an analytic continuation of the cutoff itself.
Though unusual from the point of view of field theory, it may be interesting to consider general
properties of field theories with such imaginary cutoffs. Notice that the expansion (5.5) now
contains ∼ log(−kηc) pieces which are resummed to a power law behavior in ηc.

12 With this
interpretation we might view (3.10) as a small negative shift in the weight ∆ = 3 of the
relevant operator dual to the bulk massless field, such that it becomes slightly relevant. On
the other hand, the fact that the three-point function of a marginal scalar operator contains
an anomalous logarithm suggests that the wavefunction has a non-trivial time evolution. In
the case we consider, where it is due to a cubic self-interaction of a massless scalar (see (3.4)),
this might have been expected given that we are not perturbing about a stable minimum
of the bulk scalar potential. However, this anomalous logarithm may disappear should we
correct the propagators to reflect the negative shift in weight.

The CFT stress tensor operator Tij also weight ∆ = 3 and is thus also a marginal
operator. In (A)dS/CFT it is dual to the bulk graviton. Absence of a Weyl anomaly in three
dimensional CFTs can be expressed as the following property of the CFT partition function:

ZCFT[gij ] = ZCFT[eω(x)gij ] , (5.6)

12A concrete realization occurs in the conjectured duality between the three-dimensional Sp(N) critical
model [37, 75] and the minimal higher spin theory in dS4. The bulk scalar has a classical mass m2`2 = +2 and
is dual to a spin zero operator whose conformal weight is ∆ = 2 at N =∞, but receives 1/N corrections [73, 74]
(related by N → −N to those of the critical O(N) model). Similar corrections will also occur for the extended
dS/CFT proposals in [38, 39].
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where ω(x) is a smooth function and we are removing local counterterms. The above implies
that correlation functions of the stress tensor, given by variational derivatives with respect
to gij , cannot depend on the Weyl factor of gij (in the absence of any other sources) and in
particular cannot depend on the logarithm of the cutoff. This strongly suggests, if we are to
take the picture of dS/CFT seriously, that late time log ηc contributions to the wavefunction
ΨBD[gij ], such as the one describing pure Einstein theory, are absent to all orders in pertur-
bation theory. This agrees with several computations of the cubic contribution [69, 70], as
well as our general tree level argument in section 4.3, which are all devoid of such logarithmic
terms. These observations, however, do not preclude the possibility of ΨBD[gij , η] peaking
far from the de Sitter vacuum.

6 dS2 via Euclidean AdS2

We now proceed to study several perturbative corrections of the Bunch-Davies wavefunction
about a fixed dS2 (planar) background. We consider the massless scalar field in Euclidean
AdS2 whose action is:

SE =
1

2

∫
R
d~x

∫ ∞
zc

dz

((
∂zφ(~x, z)

)2
+
(
∂~xφ(~x, z)

)2
+
L2m2

z2
φ(~x, z)2 +

L2 λ

3 z2
φ(~x, z)3

)
. (6.1)

The reason for reducing to two-spacetime dimensions is that the integrals needed for order
λ2 calculations are far simpler that for AdS4, although their mathematical structure and the
physical issues are quite similar. We will focus on cubic interactions.

6.1 Tree level corrections for the massless theory

The simplest contribution to consider is the order λ (ϕ~k)
3 contribution. For massless fields,

the bulk-to-boundary K(z; k) and bulk-to-boundary G(z, w; k) propagators are given in ap-
pendix B. This correction is a tree level diagram involving three bulk-to-boundary propaga-
tors. In order to calculate it, we must evaluate the integral:

− L2 λ

6

∫ ∞
zc

dz

z2
K(z; k1)K(z; k2)K(z; k3) = −L

2 λ

6

(
1

zc
+ ezc kΣ kΣ Ei(−zc kΣ)

)
, (6.2)

where kΣ ≡ k1 + k2 + k3. In the limit of small zc we find a ∼ log(zc kΣ) contribution.
Continuing to dS2 by taking L = −i` and zc = −iηc, the Bunch-Davies wavefunction at late
times to order λ is given by:

log ΨBD =

∫
d~k1

2π

(
− k

2
ϕ~k1

ϕ−~k1
+
`2λ

6

∫
d~k2

2π
ϕ~k1

ϕ~k2
ϕ~k3

(
i

ηc
+ kΣ

(
γE + log(−ηckΣ)

)))
,

(6.3)
where we must impose ~k3 = −~k1 − ~k2 due to momentum conservation. Once again, we note
that the absolute value of the Bunch-Davies wave function receives a logarithmic contribution.

At order λ2 we have a ∼ (ϕ~k)
4 contribution to the wave function which also involves an

integration over the bulk-to-bulk propagator. The integrals can also performed to obtain a
result that behaves (schematically) in the small zc limit as ∼ λ2k log2 kzc. The integral we
need is:

λ2 L4

8

∫
D

dz

z2

dw

w2
G(z, w, ~q)K(z; k1)K(z; k2)K(w; k3)K(w; k4) , (6.4)
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where the domain of integration is D = [zc,∞]2. In the small zc limit, we find:

λ2 L4

8

{
1

zc
− 1

2
(s+ q)

(
log[(s+ q)zc]

)2 − 1

2
(t+ q)

(
log[(t+ q)zc]

)2
+ . . .

}
, (6.5)

where s ≡ |~k1|+ |~k2| and t ≡ |~k3|+ |~k4| and q ≡ |~q| = |~k1 +~k2| = |~k3 +~k4| (note that s, t > q
by the triangle inequality).

6.2 Loop corrections for the massless theory

A tadpole diagram contributes to the wavefunction at order λ. The relevant integral is
given by:

L2 λ

2

∫ ∞
zc

dz

z2
K(z, k = 0)

∫
d~p

2π
G(z, z; p) . (6.6)

Note that K(z, k = 0) ≡ 1. To render the integral finite we impose a physical ultraviolet
cutoff, which becomes a z-dependent cutoff pUV = ΛUVL/z for the coordinate momentum
over which we are integrating. We can add a counterterm to the action of the form:

Sct = δ L2

∫
R
d~x

∫ ∞
zc

dz

z2
φ(~x, z) . (6.7)

The constant δ can be selected to cancel the logarithmic divergence in ΛUV rendering the
following result for the full integral (6.6):

L2 λ

4π

(
−1 + γE + log 2

zc

)
. (6.8)

Upon continuation to dS2 this contributes only to the phase of the wavefunction.
At order λ2 we have two distinct loop corrections to the ∼ (ϕ~k)

2 term. One involves
attaching a tadpole to the tree level propagator whose ultraviolet divergence can be treated
as above. The relevant integral is given by:

Itadpole(k, zc;L) =
L4 λ2

4

∫
D

dw

w2

dz

z2

∫
d~p

2π
G(w,w; p)G(z, w; 0)K(z; k)K(z; k) . (6.9)

At small zc the above integral contains a finite term plus a logarithmic piece in zc. The
result is:

Itadpole(k, zc;L) =
L4 λ2

2π

(
−12 + π2 + 6(γE + log 2)

24zc
− (γE + log 2)

4
k (log kzc)

2 + . . .

)
,

(6.10)
where the subleading pieces are at most logarithmic in zc.

The other order λ2 contribution comes from a ‘sunset’ diagram, which is ultraviolet
finite in two-dimensions and thus requires no regularization. It involves an integral of the
form:

Isunset(k, zc;L) =
L4λ2

4

∫
D

dz

z2

dw

w2

∫
R

d~p

2π
G(z, w; p)G(z, w; |~p+ ~k|)K(z; k)K(w; k) . (6.11)

For ~k = 0, the above integral can be performed analytically and we find:

Isunset(0, zc;L) =
L4 λ2

4 zc

(
π2 − 8

8π

)
. (6.12)
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We were not able to perform the full integral analytically, however a numerical evaluation
reveals the following small zc expansion:

Isunset(k, zc;L)− Isunset(0, zc;L) =
L4 λ2

2
(a1 k log kzc + a2 k + . . .) , (6.13)

with a1 ≈ +0.261 . . . and a2 ≈ +0.58 . . . The (ϕ~k)
2 piece of the late time (absolute value of

the) wavefunction to order λ2 is then:

log |ΨBD[ϕ~k, ηc]| =
∫
d~k

2π

(
− k

2
+ Isunset(k,−iηc;−i`) + Itadpole(k,−iηc;−i`)

)
ϕ~k ϕ−~k .

(6.14)
Thus we see that at loop level there are logarithmic corrections to the (ϕ~k)

2 piece of the
wavefunction. For the sunset diagram, the loop correction required no ultraviolet cancelation
and so the logarithmic term present in the result is free of any potential scheme dependence.

7 Outlook

In this paper we have explored the late time structure of ΨBD in a de Sitter background, by
computing its quantum corrections employing a perturbative framework heavily used in the
AdS/CFT literature. We have identified several types of behavior, including the logarithmic
growth in conformal time. Logarithmic growth commonly appears in the correlators com-
puted in the in-in formalism. Furthermore, we have connected the late time properties of
ΨBD to certain anomalies and shifts in conformal weights of a CFT putatively dual to a bulk
de Sitter theory containing the types of fields and interactions we studied. There are several
interesting avenues left to explore.

• Graviton loops. One would like to firmly establish the absence (or presence) of loga-
rithmic growth for pieces of the wavefunction that depend on the metric only, both for
a pure Einstein theory and more general theories of gravity, such as those with higher
derivative terms.

• Higher spin holography. We found that cubic interactions for conformally coupled
scalars lead to an additional local cubic piece of ΨBD that was intricately related to a
logarithmic phase. Such scalars are present in the higher spin Vasiliev theory, but the
cubic scalar coupling is absent at the classical level [63, 64]. At loop level, however,
there may be a contribution to the cubic piece of |ΨBD|, which can be computed in the
dual CFT. The presence of such additional local contributions may give interesting new
contributions to ΨBD for large field values. Similar considerations may also interesting
for the alternate boundary condition dual to a ∆ = 1 scalar operator in the CFT.

• Resummation. We discussed a possible interpretation of the logarithmic growths as
pieces of a series corresponding to a small shift in the conformal weight ∆ of an op-
erator in the dual CFT. For a massless scalar with φ4 self-interactions, we saw that
such a shift would cause the dual operator to be marginally relevant, ∆ < 3, rather
marginally irrelevant. It would be interesting to relate this picture of resummation to
other proposals involving dynamical renormalization group methods (see for example
the review [20]).
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• Stochastic inflation. It would be interesting to relate our calculations/interpretations
to the framework of stochastic inflation [25] which proposes a non-perturbative ap-
proach for interacting fields in a fixed de Sitter background. Another approach to
study strongly coupled (conformal) field theories in a fixed de Sitter background is
using the AdS/CFT correspondence where AdS has a de Sitter boundary metric, on
which the CFT resides (see for example [77]).
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A A quantum mechanical toy model

We consider a simple quantum mechanical toy model that captures some of the essence and
mathematics of our (A)dS calculations. The Hamiltonian governing the system is given in
the x̂-eigenbasis by:

Ĥ = −1

2

d2

dx2
+
m2x2

2
+

λ

6 t2
x3, ~ = 1 , (A.1)

where x ∈ R and the time parameter t ∈ (−∞, 0) with t→ 0 as the infinitely late time limit
of the system. The cubic interaction term is taken to be small and the dimensionless quantity
α ≡ λm−1/2 will serve as the small parameter in our perturbative analysis. The system has
a scaling relation: x→ ν1/2x, t→ νt, m→ m/ν and λ→ λ/ν1/2, which we could use to set
m = 1. Note that the cubic term is smaller than the quadratic term whenever:

λ� m2〈x2〉−1/2 t2. (A.2)

The above Hamiltonian is unbounded from below, but this will be of no concern at the
perturbative level. Moreover, if the state of interest is normalizable at a given time, the
Hermiticity of the above Hamiltonian is enough to ensure that it will remain normalizeable
for all times. The Schrödinger equation governing the time evolution of a quantum state ψ
is given by:

i ∂t ψ(x, t) = Ĥ ψ(x, t) . (A.3)

At λ = 0, we have that the ground state of the system is given by:

ψg(x, t) =

(
π

m

)1/4

exp

(
− im

2
t− m

2
x2

)
. (A.4)

The above state can be built from a Euclidean path integral with vanishing boundary condi-
tions for x(t) in the infinite Euclidean past τ →∞, where τ ≡ −it. For such a state we have
that 〈x2〉1/2 ∼ 1/m1/2.

We are interested in perturbations of the above wavefunction, i.e. solutions to the
Schrödinger equation that are continuously connected to ψg in the limit λ→ 0.
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A.1 Path integral perturbation theory

The quantum states of interest can be constructed via a Euclidean path integral:

ψ(λ)
g (x̃, τc) = N

∫
Dx e−SE(x), (A.5)

where SE is the Euclidean action governing the path integral:

SE =

∫
dτ

(
1

2
ẋ2 +

1

2
m2x2 +

λ

6

x3

τ2

)
. (A.6)

As in the unperturbed case, the path integral is supplemented with the boundary conditions
that x(τ) → 0 in the limit τ → ∞, and x(τc) = x̃ (where τc > 0 is a late time cutoff). We
consider a solution to the classical equations of motion xcl obeying the prescribed boundary
conditions, supplemented by a quantum fluctuation δx. The path integral then splits as:

ψ(λ)
g (x̃, τc) = e−SE [xcl]

∫
Dδx e−SE [δx] . (A.7)

Perturbatively, the solution can be expanded as xcl = x0 + λx1 + λ2x2 + . . . We absorb the
boundary dependence fully into the x0 term. Thus we have:

x0(τ) = x̃ em(τc−τ), x1(τ) = −1

2

∫ ∞
τc

dτ ′

(τ ′)2
x0(τ ′)2G(τ, τ ′) , (A.8)

and so on. The ‘bulk-to-bulk’ propagator G(τ, τ ′) obeys:(
− d2

dτ2
+m2

)
G(τ, τ ′) = δ(τ − τ ′) . (A.9)

Explicitly:

G(τ, τ ′) = − 1

2m

(
e2mτc e−m(τ+τ ′) − em(τ−τ ′)) , τ < τ ′, (A.10)

and similarly for τ > τ ′. The classical action on such a solution is given by:

− SE [xcl] =
1

2
x0ẋcl|τ=τc −

λ

12

∫ ∞
τc

dτ

τ2
x3

cl . (A.11)

It captures the tree-level diagrams of the perturbative expansion.
As a concrete example, at order λ, the cubic in x̃ contribution to the exponent of the

(Euclidean) wavefunction is given by:

λ

6
x̃3

∫ ∞
τc

dτ

τ2
K(τc, τ)3 =

λ

6
x̃3

(
1

τc
+ 3e3mτcmEi(−3mτc)

)
, (A.12)

where we have defined the ‘bulk-to-boundary’ propagator:

K(τc, τ
′) ≡ lim

τ→τc
∂τG(τ, τ ′) = em(τc−τ ′) . (A.13)

A late time expansion of the cubic correction yields:

λ

6τc
+
λm

2

(
γE + log(3mτc)

)
+ . . . (A.14)
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We see that there are 1/τc terms and log τc that grow and eventually violate the perturbative
assumption. To make contact with the ordinary Schrödinger equation, we must analytically
continue τc = −itc. The ∼ 1/τc term then becomes a contribution to the phase of the
wavefunction and plays no role in its absolute value. On the other hand, the logarithmic
term retains real part upon analytic continuation of the time and thus contributes to the

absolute value of ψ
(λ)
g (x̃, tc). Furthermore, for times tm ∼ e−1/α the cubic correction of the

wavefunction becomes comparable to the λ = 0 piece.

As another example, we can consider a diagram involving a loop, namely a tadpole
diagram contributing a linear in x̃ piece to the exponent of the wavefunction. The correction
is given by:

λ

2

∫ ∞
τc

dτ

τ2
K(τc, τ)G(τ, τ) =

emτc

4

(
3 e2mτc Ei(−3mτc) + Ei(−mτc)

)
. (A.15)

As for the cubic correction, a small τc expansion reveals logarithmic terms. The presence
of a non-vanishing tadpole also implies that the vev of x̂ is non-vanishing and in fact time
dependent. A small t expansion renders to order λ:

〈ψ(λ)
g |x̂|ψ(λ)

g 〉 =
λ

4m

(
γE + log(−mt)

)
+ . . . (A.16)

Thus, for λ > 0 and m > 0 and at small enough t the vev of x̂ drifts to negative values where
it will become sensitive to the unbounded part of the potential.

In this fashion, using as the basic propagators of our perturbation theory G and K, we
can build the quantum corrections of the ground state ψg(x̃, tc) at some time tc = −iτc. In
this simple example, one can explicitly check that the corrected wavefunction indeed solves
the time dependent Schrödinger equation (A.3) to the appropriate order in λ.

B The bulk-to-bulk propagator

The Green’s function for the massless scalar in Euclidean AdS(d+1) satisfies the partial dif-
ferential equation:

∂µ
(√
g gµν∂νG(z, w)

)
= −δ(d+1)(z − w) . (B.1)

In this form the right side contains the naive δ-function, no 1/
√
g. The derivatives are taken

with respect to the observation point zµ while wµ is the source point. We will enforce the
symmetry G(z, w) = G(w, z). We really need the Green’s function in momentum space:

G(z, ~x;w, ~y) =

∫
dd~k

(2π)d
ei
~k·(~x−~y)G(z, w, k) . (B.2)

This satisfies the second order ordinary differential equation:(
L

z

)(d−1)(
∂2
z −

(d− 1)

z
∂z − k2

)
G(z, w, k) = 0 z 6= w . (B.3)

First we choose a simple basis for the homogeneous modes of this equation. The basis
contains exponentially damped modes, called φ2(z) below, as z → ∞, and exponentially

– 23 –



J
C
A
P
1
1
(
2
0
1
5
)
0
4
8

growing modes, called φ1(z), obtained using the reflection symmetry z ↔ −z of the ODE.
For the two cases D = 2, 4 we write:

D = 2 φ1(z) = ekz φ2(z) = e−kz, (B.4)

D = 4 φ1(z) = (1− kz)ekz φ2(z) = (1 + kz)e−kz. (B.5)

In [78] the bulk Green’s function was constructed using a different choice of basis modes.
The Green’s function for a second order ODE is commonly treated in texts on differential
equations, and we have used chapter 9 of [79]. The Green’s function is the product of modes
in the two sectors z < w and z > w:

G(z, w, k) = Aφ1(z)φ2(w) + cφ2(z)φ2(w) z < w , (B.6)

= Bφ2(z)φ1(w) + cφ2(z)φ2(w) z > w . (B.7)

Note that we always choose the exponentially damped mode for the larger of the two variables.
The coefficients A, B are determined by the following conditions at the “diagonal” point
z = w:

• G(z, w, k) is continuous at z = w,

• the first derivative ∂zG(z, w, k) decreases by (z/L)(d−1) as z increases through z = w.

For the ODE in the form (B.3), [79] specifies that the jump is the reciprocal of the leading
coefficient as we have written. These conditions uniquely determine A, B, but not c since it
multiplies a product of modes that is smooth across the diagonal.

• c is determined by enforcing the Dirichlet boundary condition G(z = zc, w, k) = 0 at
the cutoff.

It is easy to see that these conditions completely determine the Green’s function. In two
bulk dimensions we have the expression:

G(z, w, k) =
1

2k

[
φ1(z)φ2(w)− φ1(zc)φ2(z)φ2(w)

φ2(zc)

]
z < w , (B.8)

=
1

2k

[
φ2(z)φ1(w)− φ1(zc)φ2(z)φ2(w)

φ2(zc)

]
z > w , (B.9)

and in four bulk dimensions we have:

G(z, w, k) = − 1

2k3L2

[
φ1(z)φ2(w)− φ1(zc)φ2(z)φ2(w)

φ2(zc)

]
z < w , (B.10)

= − 1

2k3L2

[
φ2(z)φ1(w)− φ1(zc)φ2(z)φ2(w)

φ2(zc)

]
z > w . (B.11)

One very good check of these results comes enforcing the correct relation between the
bulk-to-bulk and bulk-to-boundary propagators. This follows from the application of Green’s
formula to the boundary value problem:

∂µ
√
ggµν∂ν φ(z, ~x) = 0 , φ(zc, ~x) = ϕ(~x) . (B.12)
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Green’s formula reads (note zc = wc)∫ ∞
wc

dw

∫
dd~y
√
g(w)

(
φ(w)�wG(w, z)−G(w, z)�wφ(w)

)
=∫ ∞

wc

dw

∫
dd~y ∂µ

(√
g(w)gµν

(
φ(w)∂νG(w, z)−G(w, z)∂wφ(w)

))
, (B.13)

and thus:

− φ(z, ~x) = −
∫
dd~y

(
L

wc

)(d−1)

∂wG(w = wc, ~y; z, ~x)ϕ(~y) . (B.14)

To reach the last expression we use (B.1) and the fact that the PDE (B.12) has no bulk source,
and we evaluate the second line at the boundary w = wc where the Dirichlet Green’s function
vanishes. The main point is that the bulk-to-boundary propagator K(z, ~x) is the properly
normalized radial derivative of the bulk-to-bulk Green’s function; the specific relation is

K(z, ~x− ~y) =
√
g(wc)g

ww∂wG(wc, ~y; z, ~x) . (B.15)

After Fourier transformation, the last expression of (B.13) exactly reproduces the solution of
the linearized solution of the k space EOM (2.12) for both D = 2, 4.
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