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1 Introduction

The Bern-Carrasco-Johansson (BCJ) duality reveals deep connections between Yang-Mills
theory and gravity [1, 2], and provides remarkably powerful computational tools for calculating
scattering amplitudes including at loop level. See [3, 4] for recent reviews and the references
therein. A central aspect of the duality is the fact that BCJ kinematic numerators of
scattering amplitudes satisfy non-trivial relations, in particular the Jacobi identity associated
with the dual colour factors. This extremely intriguing fact has not been understood in full
generality. Given both the practical and theoretical implications of the duality, understanding
the kinematic algebra that is responsible for the duality remains an important open question.

As an abstract algebra, it is generally characterised in terms of fusion products for a
basis of generators. The generators can be realised from several different points of view, such
as differential operators [5–10], auxiliary fields [11–13], string worldsheet operators [14–16], or
BV-BRST formalism [17–23]. Recently a systematic framework for the kinematic algebra was
proposed in [24–26], where the generator is taken as the QCD current, or its heavy-mass limit.
Especially in the heavy-mass effective field theory [26–32], which had a wide phenomenological
applications in heavy quark and black hole physics [32–41], the kinematic algebra was found
to be isomorphic to an infinite dimensional combinatorial algebra [42, 43], i.e. a (generalised)
quasi-shuffle Hopf algebra [44–48]. This underlying kinematic algebra, which is called the
kinematic Hopf algebra, was further extended to scalar Yang-Mills theory with an arbitrary
finite mass in [49]. A geometrical perspective of this structure was also proposed in [50].

A natural question is to find out whether all theories that admit a colour-kinematic
representation also admit such a Hopf algebra structure. In this paper we target higher
derivative corrections to Yang-Mills theory and find the answer is positive. Specifically, we
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consider the subset of higher-derivative operators of the forms α′F 3 and α′2F 4 that are
compatible with adjoint type colour-kinematic duality, as discussed in [51]. Such higher-
derivative operators are relevant for the bosonic string amplitude in the low energy expansion.

We find the algebra structure (the fusion product rules, etc.) is in fact identical to the
previously studied cases, and the only modification required is to the map which turns the
algebraic generators into concrete functions of momenta and polarisation vectors — such
map is called the evaluation map [49]. We provide explicit expressions for the α′ corrections
to the evaluation maps due to α′F 3, α′2F 4 terms. The underlying Hopf algebra structure
enables us to write down extremely compact expressions for the BCJ numerators of the
higher-derivative theory for the amplitudes with any number of gluons and two heavy scalars.
The BCJ numerators of pure gluons can be also obtained from our results by an appropriate
factorisation limit in which the scalars decouple [42]. We have explicitly verified the BCJ
numerators obtained from the proposed kinematic algebra up to eight external particles.

The rest of the paper is organised as follows. In section 2 we introduce the relevant higher
derivative corrections to Yang-Mills with α′F 3 and α′2F 4 terms, and describe the procedure
resulting in the corresponding BCJ numerators with two heavy scalars. In section 3 we briefly
review the kinematic Hopf algebra construction of BCJ numerators by introducing fusion
product rules of Hopf algebra and the concept of evaluation maps. In section 4 we propose an
explicit expression for the evaluation maps that compute BCJ numerators of all multiplicity
up to the order α′2. We conclude in section 5 with a summary and possible future directions.
Finally, appendix A contains the explicit expression for the numerators with six particles,
and higher-point expressions can be found in the linked repository [52].

2 Higher-derivative corrections and BCJ numerators

In [51] it was pointed out that up to order α′2 there exists a unique combination of higher
derivative operators in Yang-Mills theory that is compatible with adjoint type colour-kinematic
duality. In fact, it was recently understood that the entire series of higher derivative correc-
tions is tightly constrained by demanding “double copy consistency” [53]. The Lagrangian
that is consistent with the adjoint type colour-kinematic duality up to order α′2 takes the
following form,

SYM+α′F 3+α′2F 4 =
∫

dDxTr
{

1
4FµνF µν + 2α′

3 F ν
µ F λ

ν F µ
λ + α′2

4 [Fµν ,Fλρ]
[
F µν ,F λρ

]}
, (2.1)

and this is the theory we will study in this paper.
An efficient method to compute the corresponding amplitudes based on Berends-Giele

recursion [54] was proposed in [55]. We will be interested in scattering amplitudes of gluons
coupled to two heavy scalars, which have been shown to play very important roles in the
study of gravitational wave emission and black hole physics [32–41]. One way to obtain these
gluon-scalar amplitudes is by performing a dimensional reduction of two gluons to two massive
scalars at the level of Lagrangian, starting from (2.1). Effectively, one can directly perform
the dimensional reduction at the level of scattering amplitudes using the transmutation
operator ∂ei ·∂ej following [56] (see also [57]), which turns two gluons into adjoint scalars. We
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then take the infinite mass limit for these scalars, which have the momentum mvµ, with m

and vµ being the mass and velocity of the heavy particle.
The corresponding BCJ numerators of these amplitudes can be obtained through the

KLT procedure [58]:

NBCJ(1α, v) =
∑

β∈Sn−3

S(1α | 1β)A(1β, v) , (2.2)

where A(1β, v) is the amplitude of n− 2 gluons and two heavy scalars which can be obtained
from the procedure outlined above, and S(1α | 1β) is the KLT matrix [59]. For example,
using (2.2), and taking the heavy mass limit, we find the numerators for the three and
four-point amplitudes determined by the Lagrangian (2.1) can be expressed as

NBCJ(1, v) = ε1·v , (2.3)

which cannot receive any high-derivative corrections when two of external particles are
scalars, and

NBCJ(12, v) = −v·F12·v
p1·v

+ α′tr(F12)p1·v + α′2p2
12tr(F12)p1·v , (2.4)

where F µν
i = pµ

i εν
i − εµ

i pν
i , and we have defined,

Fσ = Fi1 · Fi2 · · ·Fir , pσ = pi1 + pi2 + · · · + pir , for {i1, i2, . . . , ir} = σ , (2.5)

in particular F12 = F1·F2, p12 = p1 + p2. The higher derivative corrections are particularly
simple here, but naively they grow quickly in complexity at higher multiplicity. In the next
section, we will present a Hopf algebra that underlies the mathematical structures of these BCJ
numerators with higher derivative corrections. The understanding of the algebraic structures
allows us to write compact expressions for the numerators with arbitrary multiplicity.

It is worth mentioning that once the numerators are obtained, applying the double
copy procedure leads to potential higher derivative corrections in gravity [51, 55, 60]. In
particular, by squaring the four-point numerator given in (2.4), we find the contribution
arising from F 3 × F 3 is given by

α′2 (tr(F1·F2) p1·v)2

p2
12

, (2.6)

which agrees with the result given [61] for the gravitational amplitude of two gravitons and
two heavy scalars with one insertion of R3. The double copy of F 3 × F 3 should also include
the contribution from the insertions of two R2ϕ, which however is proportional to that of R3

at four points, which explains the agreement with the amplitude of a single R3 insertion.

3 Review of kinematic Hopf algebra

In this section we will give a brief review of constructing BCJ numerators based on the
Kinematic Hopf algebra [42, 43, 49]. The construction consists of two steps. The first step
is to introduce the quasi-shuffle Hopf algebra of algebraic generators, whereas the second
step is to determine the evaluation map that translates algebraic generators into functions
of kinematics (i.e. momenta and polarization vectors).
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3.1 Review of quasi-shuffle Hopf algebra

We begin by introducing the quai-shuffle Hopf algebra relevant for constructing BCJ nu-
merators, following the references [42, 43, 49]. More details can also be found in [44–48].
We first construct an abstract algebra numerator which is obtained directly from the fusion
product of the algebraic generators T(i) as follows,

N̂ (12 . . . n−2, v) = T(1) ⋆ T(2) · · · ⋆ T(n−2) , (3.1)

with the fusion product defined as the standard quasi-shuffle product. For instance, for the
cases with two, three, and four gluons, we have

N̂ (12, v) = T(1) ⋆ T(2) = −T(12) , (3.2)
N̂ (123, v) = T(1) ⋆ T(2) ⋆ T(3) = T(123) − T(12),(3) − T(13),(2) , (3.3)
N̂ (1234, v) = −T(1234) + T(123),(4) + T(14),(23) + T(124),(3) + T(12),(34) − T(12),(3),(4)

− T(12),(4),(3) − T(14),(2),(3) + T(134),(2) + T(13),(24) − T(13),(2),(4)

− T(13),(4),(2) − T(14),(3),(2) . (3.4)

In general, the fusion product is captured by the following formula,

T(1τ1),...,(τr) ⋆ T(j) =
∑

σ∈{(τ1),...,(τr)}�{(j)}
T(1σ1),...,(σr+1) −

r∑
i=1

T(1τ1),...,(τi−1),(τij),(τi+1),...,(τr) . (3.5)

It is important to stress that the fusion products, or more generally the algebra, are identical
to that given in the references [42, 43, 49], which was introduced to describe BCJ numerators
of Yang-Mills theory (i.e. without higher-derivative corrections).

Following [42, 43, 49], once N̂ (12 . . . n−2; v) is constructed in terms of the algebraic
objects T(1τ1),...,(τr) using the fusion product rules given in (3.5), to obtain the BCJ numerators,
we further introduce the evaluation maps which translate abstract generators into functions
of physical variables (such as momenta and polarisation vectors). The evaluation maps for
the BCJ numerators of scattering amplitudes in Yang-Mills theory (with two heavy massive
scalars) were written down and proved in [42], and further extended to more general cases
(with arbitrary numbers of scalars with general masses) [49]. As we emphasised previously
that the fusion rules of the Hopf algebra we propose for the BCJ numerators of the higher-
derivative theory (2.1) is the same as that for the Yang-Mills theory [42, 43, 49], therefore
the higher-derivative corrections can only arise in the evaluation maps, which we will discuss
in the next subsection.

3.2 The evaluation maps

We denote the evaluation maps of the generator T as ⟨T ⟩ [42, 43, 49]. To expose the pole
structure of massive propagators, we propose that ⟨T ⟩ takes the following form

⟨T(1τ1),(τ2),...,(τr)⟩ :=
τ1 τ2 · · · τr1

= 1
n − 2

G1τ1(v)
v·p1

Gτ2(pΘ(τ2))
v·p1τ1

· · ·
Gτr (pΘ(τr))
v·p1τ1...τr−1

, (3.6)
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where the lines between red blobs are massive propagators, and the external lines are gluons,
which are grouped into sets, denoted as 1, τ1, τ2, . . . , τr. The τis are ordered non-empty sets
such that τ1 ∪ τ2 ∪ · · · ∪ τr = {2, 3, . . . , n−2} and τi ∩ τj = ∅, i.e. they constitute a partition.
The set Θ(τi) consists of all indices to the left of τi and smaller than the first index in τi:

Θ(τi) = ({1} ∪ τ1 ∪ · · · ∪ τi−1) ∩ {1, . . . , τi[1]} . (3.7)

The expression on the second line of (3.6) manifests the massive propagators in the large-mass
limit, which are given by v · p1τ1....

The BCJ numerator is determined from the pre-numerators via the following relation,

NBCJ(1α, v) = N ([1α], v) , (3.8)

where [•] stands for the left-nested commutator, defined as

[i1i2 · · · ir] = [. . . [[i1, i2], i3], . . . , ir] . (3.9)

For instance, NBCJ(12, v) = N (12, v) −N (21, v). This can also be expressed as [25]

N ([1 . . . n−2], v) = L(1 . . . n − 2) ◦ N (1 . . . n−2, v) , (3.10)

where the left-nested operator is defined as

L(i1, . . . , im) ≡
[
I− P(i2i1)

][
I− P(i3i2i1)

]
· · ·
[
I− P(im···i2i1)

]
(3.11)

and P(im···i2i1) denotes the cyclic permutations, i.e. P(i2i1) is (i2 → i1, i1 → i2), P(i3i2i1) is
(i3 → i2, i2 → i1, i1 → i3). Then N ([1α], v) is obtained through the evaluation map (3.6),

N (1α, v) = ⟨N̂ (1α, v)⟩ , (3.12)

with N̂ (1α, v) defined by the fusion product (3.1).
The kinematic algebra and the structure (3.6) together automatically induce a recursive

relation of the pre-numerator

N (1α, v) = (−1)n−3
(

G1α(v)
(n − 2)v·p1

)
+
∑

τL⊂α

(−1)|τR|
(

(n − 2 − |τR|)
N (1τL, v)GτR(pΘL(τR))

(n − 2)v·p1τL

)
, (3.13)

where again {1τL} ∪ {τR} = {1α} = {12 . . . n − 2} and |τR| denotes the number of gluons in
τR. It is straightforward to see that the number of terms of N (1, 2, . . . , n−2; v) is nothing
but the Fubini numbers [42]

Fn−3 =
n−4∑
i=0

(
n−3

i

)
Fi , (3.14)

where F0 = 1, F1 = 1.
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4 Evaluation maps with higher-derivative corrections

In this section, we will study the evaluation maps in the expression (3.6), namely the G-
function. We will constrain it using a variety of physical properties such as factorisation
behaviour, power counting, gauge invariance, and crossing symmetry, and then propose
our solution.

4.1 Factorisation behaviour

We first note, as for the Yang-Mills theory without higher-derivative corrections, for certain
special cases, the generators are mapped to 0. In particular, we have

⟨T(1),...⟩ = 0 , ⟨T...,(1...),...⟩ = 0 . (4.1)

In general, the G function is non-trivial. For a given ordered set of gluons, say τ , we propose
it takes the following universal form,

Gτ (x) =
(

x·Fτ ·v +
∑

σ1iσ2jσ3=τ

x·Fσ1 ·piW (iσ2j)pj ·Fσ3 ·v
)

, (4.2)

where the first term x·Fτ ·v is precisely the result of the heavy-mass effective field theory
(HEFT) [42] without higher-derivative operators. W (iσ2j) contains the information of
higher-derivative corrections, and is given by

W (iσj) = α′tr(F[iσ]Fj) + α′2 ∑
ρ∈[iσ]j

∑
ρ1j2ρ2j1=cyc(ρ)

pj1 ·Fρ1 ·pj2tr(F[j2ρ2]Fj1)

+ α′2 ∑
σ1j1σ2j2σ3=σ

tr(F[iσ1]Fj1)pj1 ·Fσ2 ·pj2tr(F[j2σ3]Fj) . (4.3)

The summation in (4.2) is over all the partitions of ordered τ in terms of three ordered
subsets σ1, {iσ2j}, σ3 (including empty σi). For example,

G12(x) = x·F12·v + x·p1W (12)p2·v (4.4)
G123(x) = x·F123·v + x·p1W (123)p2·v + x·F1·p2W (23)p3·v + x·p1W (12)p2·F3·v .

Below we will motivate the structure of Gτ (x), especially from the factorisation behaviour
on the massive poles, also which imposes strong constraints on the function W (iσ2j).

First, the term x·Fτ ·v, corresponding to Yang-Mills interactions with no higher derivatives,
is determined by mass dimension counting, gauge invariance, linearity in v (except for the
case x = v, when it is quadratic in v), and the ordering of gluons in the set τ . Next,
the term corresponding to the higher derivative corrections is the most natural way to
generalise the original term x·Fτ ·v by including extra powers of momenta, in a way consistent
with the ordering in τ . Corrections of order α′ require two extra powers of momenta, and
the simplest way to add two momenta is by inserting them inside the chain of Fτ . This
can be either adjacent to each other, x·Fσ1 ·pXpY ·Fσ2 ·v, with σ1σ2 = τ , or more generally,
x·Fσ1 ·pXW (Fσ2)pY ·Fσ3 ·v, with σ1σ2σ3 = τ . Finally, the labels X and Y should be related
to the location of the insertions. At order α′ W is only a function of field strengths, while at

– 6 –



J
H
E
P
0
2
(
2
0
2
4
)
0
9
6

α′2 it can include another two powers of extra momenta. Comparing this general expectation
to explicit low point examples, we indeed find they satisfy (4.2).

We will now further show that Gτ (x) defined in (4.2) gives the correction factorisation
behaviours of the numerators on the heavy mass propagators,

N (1 . . . n−2, v) → (n − 2 − |iτR|)|iτR|
n − 2

pΘL(iτR)·pi

v·p1τL

N (1τL, v)N (iτR, v) . (4.5)

Let us begin with the four-point case. The pre-numerator takes the following form,

N (12, v) = −G12(v)
2v·p1

= −v·F12·v + v·p1W (12)p2·v
2v·p1

. (4.6)

We see that the higher-derivative correction term has no pole, therefore the factorisation is
identical to that of Yang-Mills theory without corrections [42].

Terms containing W ’s in the G-function become relevant for higher-point numerators.
The first such example is the five-point pre-numerator, which is given as

N (123, v) = 1
3

(
G123(v)

v·p1
− G12(v)

v·p1

G3(p12)
v·p12

− G13(v)
v·p1

G2(p1)
v·p13

)
(4.7)

= v·F123·v + v·p1W (123)p3·v + v·p1W (12)p2·F3·v + v·F1·p2W (23)p3·v
v·p1

− (v·F12·v + W (12)p1·vp2·v) p12·F3·v
p1·vp12·v

− (v·F13·v + W (13)p1·vp3·v) p1·F2·v
p1·vp13·v

.

The factorisation behaviour can be sketched as below,

v H

1 2 3

v H

1 2 3

v H

1 3 2
. (4.8)

Since the factorisation of the leading-order terms in α′ (i.e. terms without W ) has already been
shown in [42], we will only focus on the terms beyond the leading order, It is straightforward
to see that from the explicit expression of N (123, v), at the three poles, p1·v → 0, p12·v → 0,
and p123·v → 0 (as shown in (4.8)), N (123, v) factorises as(

p1·p2
p1·v

)(
v·ε1

)(
− p2·vW (23)p3·v

p2·v

)
,

(
p12·p3
p12·v

)(
− p1·vW (12)p2·v

p1·v

)(
v·ε3

)
,(

p1·p3
p13·v

)(
− p1·vW (13)p3·v

p1·v

)(
v·ε2

)
. (4.9)

The above expressions agree with the general factorisation behaviour (4.5). Once again
importantly the term W (123) does not contribute in the factorisation limit. The factorisation
behaviour of six-point numerators can be analysed in a similar fashion. The explicit expression
for the six-point numerator is given in (A.1) of the appendix A. The factorisation behaviour
on most of the heavy massive channels is similar. The only non-trivial one is on the pole

1
p1·v , for which we find (for the terms with α′ corrections)

p1·p2v·ε1
p1·v

(
W (23)p3·F4·v − W (234)p23·v (4.10)

− W (23)p3·vp23·F4·v
p23·v

− W (34)p23·vv·F2·p3
p2·v

− W (24)p23·vp2·F3·v
p3·v

)
.
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The result again agrees with the factorisation behaviour (4.5). These examples show that
the evaluation maps (3.6) and (4.2) are sufficient to ensure the factorisation behaviours even
without knowing the explicit form of the W -function, and the analysis further confirms that
the function Gτ (x) has the correct form.

4.2 Crossing symmetry

In the following we will constrain the function W (iσ2j). The general properties of W (iσ2j) are

• It is manifestly gauge invariant without any poles, therefore it should composed of the
product of the factor tr(Fσ) or pX ·Fσ·pY

• By power counting, it should have mass dimension |σ2|, where |σ2| denotes the number
of the gluon labels in σ2.

• It is constrained by the full crossing symmetry of the BCJ numerators.

We will now analyse in details the constraints on W (iσ2j) due to the crossing symmetry
on the BCJ numerator, as in the case of no higher-derivative corrections [42, 43]. The crossing
symmetry results in a novel relation between the pre-numerator and BCJ numerator

L(1 . . . n − 2) ◦ N (1 . . . n−2, v) = (n−2)N (1 . . . n−2, v) , (4.11)

and we will refer this as the crossing symmetry relation.
At four points, the crossing symmetry relation requires that

L(1, 2) ◦ N (12, v) = 2N (12, v) . (4.12)

From (4.6), this implies that W (12) is a symmetric function under the swapping of label
1 and 2. The relative coefficient between these terms may be fixed using the factorisation
property of the amplitude for the massless poles, and we find the W (12) can only be a linear
combination of the following two terms

α′tr(F12), α′2p2
12tr(F12) , (4.13)

for the first two orders in the α′-expansion.1 The coefficients of these terms may be fixed
using the factorisation property of the amplitude for the massless poles, which turn out
to be simply 1, so we find

W (12) = α′tr(F12) + α′2p2
12tr(F12) . (4.14)

At five points, the crossing symmetry relation is

L(1, 2, 3) ◦ N (123, v) = N (123, v) −N (213, v) −N (312, v) + N (321, v)
= 3N (123, v) . (4.15)

1Other possibilities such as α′2p2·F1·F2·p1 are not independent. For example, α′2p2·F1·F2·p1 is proportional
to α′2p2

12tr(F12), so we do not include it.
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After using the crossing symmetry property for the W (i1i2), the above relation implies the
following relation on W (123),

L(1, 2, 3) ◦ (W (123)p3·v) = 3W (123)p3·v , (4.16)

under the on-shell condition p123·v = 0. Using the explicit definition of the operator L(1, 2, 3),
we find (4.16) yields following conditions

2W (123) + W (213) + W (321) = 0 , W (312) + W (321) = 0 . (4.17)

From power counting as well as manifest gauge invariance, we find W (123) should be
consisted of the following terms,

α′ : tr(F123) , (4.18)
α′2 : p1·p2tr(F123) , p1·p3tr(F123) , p2·p3tr(F123) ,

p1·F3·p2tr(F12) , p1·F2·p3tr(F13) , p2·F1·p3tr(F23) . (4.19)

We then find that there are only three solutions, which are consistent with the crossing
symmetric constraints (4.17),2

(1) : tr(F123) − tr(F213) , (4.20)
(2) : p2

123(tr(F123) − tr(F213)) ,

(3) : tr(F12)p2·F3·p1 + tr(F23)p3·F1·p2 + tr(F31)p1·F2·p3

− tr(F13)p3·F2·p1 − tr(F21)p1·F3·p2 − tr(F32)p2·F1·p3 .

Interestingly, all the three solutions have another extra common crossing symmetry under
reversing the indices {1, 2, 3} → {3, 2, 1}. So we also have

W (123) = −W (321). (4.21)

Under this relation, the first relation in (4.17) is not an independent one anymore and the
independent relations are

W (312) + W (321) = 0 , W (123) = −W (321) . (4.22)

By further comparing the factorisations on massless poles (or even the amplitude), we fix all the
coefficients for the terms in (4.20). Once again, we find all the coefficients are simply 1, and so

W (123) = α′tr(F[12]F3) + α′2 ∑
ρ∈[12]3

∑
ρ1j2ρ2j1=cyc(ρ)

pj1 ·Fρ1 ·pj2tr(F[j2ρ2]Fj1) , (4.23)

where F[12] = F1·F2 − F2·F1. Note when ρ1 is an empty set, the above expression leads
to the term (2) in (4.20).

2We write terms in this way to manifest the symmetries. For example, in fact tr(F213) = −tr(F123), so one
may write tr(F123) − tr(F213) = 2 tr(F123).
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At six points, the crossing symmetric condition implies

L(1, 2, 3, 4) ◦
((

W (1234) − W (12)W (34)p2·p3
)
p4·v

)

= 4
(
W (1234) − W (12)W (34)p2·p3

)
p4·v , (4.24)

where we have used the on-shell condition p1234·v = 0 and the symmetry property of W (i1i2)
and W (i1i2i3). For convenience, we define

W ′(1234) = W (1234) − W (12)W (34)p2·p3 , (4.25)

where the second term, which we subtract, can be viewed as a product of lower-point order-α′

terms. Then we have the relations

W ′(4312) + W ′(4321) = 0 , (4.26)
W ′(4123) − W ′(4213) − W ′(4321) = 0 , (4.27)

3W ′(1234) + W ′(2134) + W ′(3124) − W ′(3214) − W ′(4321) = 0 . (4.28)

Below are the terms that are consistent with power counting and manifest gauge invariance
at six points: at the α′ order, we have,3

tr(F1234), tr(F2134), (4.29)

and for the α′2 order

pi·pjtr(F1234), pi·pjtr(F2134), pi·F4·pjtr(F123),
pi·F3·pjtr(F124) , pi·F2·pjtr(F134) , pi·F1·pjtr(F234) ,

pi·F34·pjtr(F12) , pi·F24·pjtr(F13), pi·F23·pjtr(F14) ,

pi·F14·pjtr(F23) , pi·F13·pjtr(F24) , pi·F12·pjtr(F34) . (4.30)

Then the solutions of (4.26) are

(1) : tr(F1234) − tr(F2134) − tr(F3124) + tr(F3214) , (4.31)
(2) : p2

1234tr(F1234) − p2
1234tr(F2134) − p2

1234tr(F3124) + p2
1234tr(F3214) ,

(3) : tr(F[12]4)p1·F3·p4 − tr(F[13]2)p1·F4·p2 + tr(F[13]4)p1·F2·p4 − tr(F[14]2)p1·F3·p2

+ tr(F[21]3)p2·F4·p3 + tr(F[23]1)p1·F4·p2 + tr(F[24]1)p1·F3·p2 + tr(F[24]3)p2·F1·p3

− tr(F[31]2)p2·F4·p3 − tr(F[31]4)p3·F2·p4 − tr(F[32]4)p3·F1·p4 − tr(F[34]2)p2·F1·p3

+ tr(F[41]3)p3·F2·p4 − tr(F[42]1)p1·F3·p4 + tr(F[42]3)p3·F1·p4 − tr(F[43]1)p1·F2·p4 ,

(4) : tr(F12)p1·F43·p2 − tr(F13)p1·F24·p3 + tr(F13)p1·F42·p3 − tr(F14)p1·F23·p4

− tr(F21)p1·F34·p2 − tr(F23)p2·F14·p3 − tr(F24)p2·F13·p4 + tr(F24)p2·F31·p4

− tr(F31)p1·F24·p3 + tr(F31)p1·F42·p3 + tr(F32)p2·F41·p3 + tr(F34)p3·F21·p4

+ tr(F41)p1·F32·p4 − tr(F42)p2·F13·p4 + tr(F42)p2·F31·p4 − tr(F43)p3·F12·p4 ,

· · · three other solutions · · · .

3We have omitted double-trace terms (i.e. terms proportional to tr(F12)tr(F34)) in writing down possible
terms for W ′(1234), since they are already contained in W (12)W (34), and furthermore they are inconsistent
with the relations (4.26).
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The coefficients of these terms are fixed by massless poles (or directly the amplitude). It turns
out, the terms of (1 − 4) that are shown in the above have coefficient 1, while “three other
solutions” that we did not show explicitly have vanishing coefficients. In conclusion, we find,

W ′(1234) = α′tr(F[123]F4) + α′2p2
1234tr(F[123]F4)

+ α′2 ∑
ρ=[123]4

(
pρ4 ·Fρ1 ·pρ2tr(F[ρ2ρ3]Fρ4) + pρ1 ·Fρ2 ·pρ3tr(F[ρ3ρ4]Fρ1)

+ pρ2 ·Fρ3 ·pρ4tr(F[ρ4ρ1]Fρ2) + pρ3 ·Fρ4 ·pρ1tr(F[ρ1ρ2]Fρ3)
)

+ α′2 ∑
ρ=[123]4

(
pρ4 ·Fρ1ρ2 ·pρ3tr(Fρ3Fρ4) + pρ1 ·Fρ2ρ3 ·pρ4tr(Fρ4Fρ1)

+ pρ2 ·Fρ3ρ4 ·pρ1tr(Fρ1Fρ2) + pρ3 ·Fρ4ρ1 ·pρ2tr(Fρ2Fρ3)
)

, (4.32)

which can be recast nicely as

W ′(1234) = α′tr(F[123]F4) + α′2 ∑
ρ∈[123]4

∑
ρ1j2ρ2j1=cyc(ρ)

pj1 ·Fρ1 ·pj2tr(F[j2ρ2]Fj1) , (4.33)

where ∑ρ=[123]4 f(ρ) ≡ f(1234) − f(2134) − f(3124) + f(3214) and F[123] ≡ F123 − F213 −
F312 + F321.

Interestingly, from the explicit expression of W ′(1234), we note it obeys an extra relation
by reversing the indices

W ′(1234) − W ′(4321) = 0 . (4.34)

Combined with this additional relation, the relations in (4.26) for W ′-function become

W ′(4312) + W ′(4321) = 0 , W ′(4123) − W ′(4213) − W ′(4321) = 0 ,

W ′(1234) − W ′(4321) = 0 . (4.35)

From the W ′, we get the form of W function

W (1234) = W ′(1234) + W (12)p2·p3W (34) . (4.36)

The first term can be understood as the primary contact terms which are constrained from
the simple crossing symmetry. The contact terms contain two factors of W functions arise
from lower-point BCJ numerators, which can be viewed as the descendant contact terms.

Let us now consider the general case. Up to the α′2 order, we find the W (12 . . . r)
function has the following structure

W (12 . . . r)
∣∣∣
α′2

=
(

W ′(12 . . . r) +
∑

2≤i<j≤r−1
W (12 . . . i)pi·Fi+1...j−1·pjW (j . . . r)

)∣∣∣∣
α′2

, (4.37)

where the contact terms with two W -functions are constructed to preserve the ordering of
gluons. The primary contact term (i.e. W ′(12 . . . r)) satisfies the crossing symmetry

L(1, 2, . . . , r) ◦
(
W ′(12 . . . r) pr·v

)
= r W ′(12 . . . r) pr·v , (4.38)
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valid under the on-shell condition p12...r·v = 0. This leads to the following symmetry
properties of the W ′-function ∑

σ∈[ρ]
W ′(σir) − (−1)|ρ|W ′(irρrev) = r W ′(i1i2 . . . ir) , (4.39)

∑
σ∈[ρ]

W ′(ir . . . ir−j−1σir−j) − (−1)|ρ|W ′(ir . . . ir−j−1ir−jρrev) = 0 , (4.40)

where [ρ] denotes left-nested commutators, and |ρ| is the size of ρ and ρrev denotes the
reversing of ρ. The second relation is valid for j ∈ {2, 3, . . . , r − 1}.

Following the patterns of five- and six-point examples, given in (4.23) and (4.33), respec-
tively, it is straightforward to show that the following general solution is consistent with (4.38),

W ′(123 . . . r) = α′tr(F[1...r−1]Fr) + α′2 ∑
ρ∈[1...r−1]r

∑
ρ1j2ρ2j1=cyc(ρ)

pj1 ·Fρ1 ·pj2tr(F[j2ρ2]Fj1) .

(4.41)
Once again, the explicit expression for W ′(123 . . . r) given in (4.41) has an extra reversing
symmetry

W ′(ρ) − (−1)|ρ|W ′(ρrev) = 0 . (4.42)

Combining all the discussion above, we obtain a closed formula for the W -function

W (iσj) = α′tr(F[iσ]Fj) + α′2 ∑
ρ∈[iσ]j

∑
ρ1j2ρ2j1=cyc(ρ)

pj1 ·Fρ1 ·pj2tr(F[j2ρ2]Fj1)

+ α′2 ∑
σ1j1σ2j2σ3=σ

tr(F[iσ1]Fj1)pj1 ·Fσ2 ·pj2tr(F[j2σ3]Fj) . (4.43)

We have further checked explicitly the correctness of the BCJ numerators up to eight points
against the amplitudes computed from the action (2.1) using Berends-Giele recursion [55].
This completes our proposal of the kinematic Hopf algebra for the BCJ numerators with
higher-derivative corrections, α′F 3 and α′2F 4.

The leading correction (the term proportional to α′) is due to the F 3 term in the action
SYM+α′F 3+α′2F 4 as defined in (2.1). By power counting and the gauge invariance condition,
the linear α′ term can only be the trace of the strength tensors. The particular combination
in the nested commutator is related to the full crossing symmetry for the BCJ numerators.
The subleading α′2 corrections contain two distinct structures. This is indeed expected,
since this order receives contributions from the α′2F 4 operator, and also from an operator
of the type (α′F 3)2.

4.3 Summary and pure gluon amplitudes

Here we briefly summarise our final results of constructing BCJ numerators using the
quasi-Hopf algebra:

NBCJ(1α, v) = N ([1α], v) , (4.44)

where [•] denotes left-nested commutators, and N ([1α], v) is obtained through the evalu-
ation map,

N (1α, v) = ⟨N̂ (1α, v)⟩ . (4.45)
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The algebraic numerator N̂ is defined as,

N̂ (12 . . . n−2, v) = T(1) ⋆ T(2) · · · ⋆ T(n−2) , (4.46)

with fusion product rules given in (3.5). The evaluation map is defined as

⟨T(1τ1),(τ2),...,(τr)⟩ = 1
n − 2

G1τ1(v)
v·p1

Gτ2(pΘ(τ2))
v·p1τ1

· · ·
Gτr (pΘ(τr))
v·p1τ1...τr−1

, (4.47)

where
Gτ (x) =

(
x·Fτ ·v +

∑
σ1iσ2jσ3=τ

x·Fσ1 ·piW (iσ2j)pj ·Fσ3 ·v
)

, (4.48)

and the W (iσj) term gives α′ corrections and is given by

W (iσj) = α′tr(F[iσ]Fj) + α′2 ∑
ρ∈[iσ]j

∑
ρ1j2ρ2j1=cyc(ρ)

pj1 ·Fρ1 ·pj2tr(F[j2ρ2]Fj1)

+ α′2 ∑
σ1j1σ2j2σ3=σ

tr(F[iσ1]Fj1)pj1 ·Fσ2 ·pj2tr(F[j2σ3]Fj) . (4.49)

Finally, as argued in [42], by a simple factorisation limit as shown below,

×

1 2 · · ·n−2

−→
n−1

1 2 · · ·n−2

, (4.50)

one can simply decouple the heavy-massive scalars and obtain the BCJ numerators of pure
gluons from N ([1α], v). Explicitly, the BCJ numerators of (n−1) gluons can be deduced
from the numerators with scalars as a limit,

N gluon([1 . . . n−1]) = N ([1 . . . n−2], v)
∣∣v→ϵn−1
p2

1...n−2→0 , (4.51)

where p2
1...n−2 → 0 is used to impose the on-shell condition for the (n−1)-th gluon that arises

through the factorisation limit, as shown in (4.50).
Once we obtain the BCJ numerators, using the inverse of (2.2), the gluon and graviton

amplitudes (with two heavy particles) can be constructed as

A(1α, v) =
∑

β∈Sn−3

m(1α, 1β)N ([1β], v) , (4.52)

M(1α, v) =
∑

α,β∈Sn−3

N ([1α], v) m(1α, 1β)N ([1β], v) , (4.53)

where m(1α, 1β) is the propagator matrix [62] which equals to the inverse of the KLT matrix
S that appears in (2.2). The summation is over all the permutation of the n − 3 massless
particles. The KLT formulas (4.52) and (4.53) also apply to pure-gluon and pure-graviton
amplitudes, which can be achieved by imposing the condition (4.51) on the formulas.
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5 Conclusions and outlook

We have demonstrated that higher-derivative operators that are compatible with colour-
kinematics also admit a Hopf algebra representation. To be specific, we have considered
higher-derivative operators of the form α′F 3 and α′2F 4 that were first studied in [51] in
the context of colour-kinematics duality. Understanding the underlying algebraic structure
leads to a very compact formula for the BCJ numerators of any number of particles. Our
results strongly suggest that the Hopf algebra may in fact underlie all instances of the colour-
kinematic duality, which is known to apply to a wide range of theories. Our construction
also hints on the possibility of observing the kinematic algebra at the Lagrangian level. In
particular, the structure of the evaluation maps suggests that there is a direct connection
between higher-derivative operators and terms in the evaluation maps.

There are two other natural research directions we could investigate in the future. The first
one is to understand the evaluation maps for the theories with higher-derivative operators be-
yond the α′2 order. Particularly, our ansatz for the G-function may be valid even in the higher
orders of α′, and the structure of the W -function is very suggestive hinting on possible higher-
order generalisations. Such generalisations could then complement studies on higher derivative
operators from positivity conditions on EFT’s that satisfy double copy (such as gravity), or
monodromy relations (in the case of string theory) [63–70]. It would be fascinating if the Hopf
algebra reveals any further structure or relations between these operators. We may also obtain
BCJ numerators of other theories, in particular for scalars, from our results using the trans-
mutation procedure [56] and compare with other recent bootstrap approaches (e.g. [71–76]).

The second one is to generalise the construction beyond purely kinematic numerators
following [77, 78]. By allowing colour factors (for example, colour traces) to non-trivially
combine with kinematic factors, it was found that all operators present in the low energy
expansion of string theory can be written in colour-kinematic dual form. It would be
interesting to see if the kinematic Hopf algebra is still present in this case, and to understand
the modification of the evaluation maps to incorporate more general colour structures. If this
is possible, it would allow re-writing the complete string EFT in terms of this novel algebra.
Similarly, one can attempt to modify the Hopf algebra even beyond adjoint type numerators,
as the colour-kinematic duality is not necessarily tied to adjoint type constructions, as
recently explored in [79].

The BCJ numerators encoding higher dimensional corrections to Yang-Mills can be
double-copied to obtain corresponding corrections to gravity [51, 60], which could be relevant
to black hole scattering [61, 80]. Furthermore, given that the close connection between the
Hopf algebra and the geometrical perspective described in [50], it is interesting to see if a sim-
ilar permutohedra construction also exists for the higher-derivative operators discussed in this
paper. Finally, it was already noted [42, 50] in the case of Yang-Mills theory that BCJ numer-
ators obtained using kinematic Hopf algebra have very similar structures of BCJ numerators
from the so-called covariant double-copy approach [7]. Recently, this approach was also ex-
tended to the higher-derivative theories [81]; it would be very interesting explore more precise
connections between these two approaches, with or without higher-derivative corrections.
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A Six-point pre-numerator

At six points, the pre-numerator is given by

N (1234,v)= 1
4 (A.1)

×
[
− p1·F2·vp132·F4·v(v·F13·v+p1·vp3·vW (13))

p1·vp13·vp132·v
− p1·F2·vp13·F4·v(v·F13·v+p1·vp3·vW (13))

p1·vp13·vp134·v

− p1·F2·vp12·F3·v(v·F14·v+p1·vp4·vW (14))
p1·vp14·vp142·v

− p1·F2·vp1·F3·v(v·F14·v+p1·vp4·vW (14))
p1·vp14·vp143·v

− p12·F3·vp123·F4·v(v·F12·v+p1·vp2·vW (12))
p1·vp12·vp123·v

− p12·F3·vp12·F4·v(v·F12·v+p1·vp2·vW (12))
p1·vp12·vp124·v

+ (p12·F34·v+p3·p12p4·vW (34))(v·F12·v+p1·vp2·vW (12))
p1·vp12·v

+ (v·F14·v+p1·vp4·vW (14))(p1·F23·v+p1·p2p3·vW (23))
p1·vp14·v

+ (v·F13·v+p1·vp3·vW (13))(p1·F24·v+p1·p2p4·vW (24))
p1·vp13·v

+ p123·F4·v(v·F123·v+p1·vp2·F3·vW (12)+p3·vv·F1·p2W (23)+p1·vp3·vW (123))
p1·vp123·v

+ p12·F3·v(v·F124·v+p1·vp2·F4·vW (12)+p4·vv·F1·p2W (24)+p1·vp4·vW (124))
p1·vp124·v

+ p1·F2·v(v·F134·v+p1·vp3·F4·vW (13)+p4·vv·F1·p3W (34)+p1·vp4·vW (134))
p1·vp134·v

− 1
p1·v

(
v·F1234·v+p1·vp2·F34·vW (12)+v·F1·p2p3·F4·vW (23)+p4·vv·F12·p3W (34)

+p1·vp3·F4·vW (123)+p4·vv·F1·p2W (234)+p1·vp4·vW (1234)
)]

.

One can generate more examples of the BCJ numerators and explicit form of the W functions
in kinematicHopfAlgebra GitHub repository [52].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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