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Abstract 

Despite recent advancements in using machine learning (ML) techniques to establish the 

microstructure-property linkage for composites’ representative volume elements (RVEs), 

challenges persist in effectively characterising the effect of microstructural randomness 

on material properties. This complexity arises from the difficulty of expressing 

randomness as definitive variables and its intertwined relations with other factors, such 

as material constituents. Such complexities result in limitations in generalising ML 

models across different material constituents. Conventional solutions to these challenges 

usually necessitate large datasets, which require considerable computational resources, 

for an accurate and generalisable ML models to be trained. This paper presents an 

innovative approach to tackling these challenges by integrating a high-accuracy 

convolutional neural network (CNN) with a novel microstructure-factored constitutive 

model (MCM). The MCM, rooted from classic empirical constitutive modelling, 

effectively segregates the microstructural and constituting material effects, extending the 

generalisability and thus significantly enhancing the efficacy of the CNN. This new 

approach enabled a CNN trained on the transverse stress-strain curves of one set of 

material constituents (CF/PEEK at 270 ºC) to be generalised for the rapid prediction of 

various sets of material constituents at different temperatures, unseen by the CNN during 

training, with an average mean absolute percentage error around 3%.  
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1 Introduction 

Fibre-reinforced polymers (FRPs) are gaining popularity in transportation industries due 

to their excellent mechanical properties, such as high strength-to-weight ratio. However, 

designing FRP components in these sectors often involves multiple iterations of finite 

element (FE) simulation to evaluate and enhance structural efficiency and 

manufacturability [1-3]. Modelling and simulating the heterogenous FRPs is usually 

computationally expensive due to the detailed representations needed to capture the 

complex microstructures of the fibres, matrix, and the fibre-matrix interface [4, 5].  

Homogenisation, a process that replaces the heterogeneous composites with a kind of 

equivalent material model [6], is commonly used to reduce the computational cost. The 

Rule of Mixture (ROM), among the oldest methods, can quickly estimate the upper and 

lower bounds of the composites’ elastic properties analytically[7]. Due to their simplicity, 

the ROM can capture only the fibre volume fraction of composite materials, and struggles 

with more complex microstructural features such as the random spatial distribution of 

fibres. In addition, the accuracy of ROM models, particularly in estimating non-linear 

plastic behaviours, is limited. To overcome these limits, numerical multi-scale modelling 

has been extensively studied. In a multi-scale modelling scheme, macroscopic structural 

simulations use homogenised effective material models that are derived from microscopic 

models [6]. A popular derivation method is finite element (FE) simulation using 

representative volume elements (RVEs) [8, 9]. The effective properties of an RVE, which 

is a finite microscopic region with similar characteristics to the macroscopic material 

sample, are used to approximate the homogenised properties of the entire sample. 

However, the effective properties of RVEs show considerable variation due to the 

randomness of microstructural features, particularly when the RVE size is relatively small 

[10, 11]. Although these variations can be adequately characterised through simulating a 

RVE of a larger size or a large amount of smaller RVEs, their utilisation demands 

substantial computational resources, especially when different material constituents are 

considered. This computational inefficiency imposes practical limitations, especially in 

design and optimisation phases, where rapid iterations are of particular importance.  

To facilitate a rapid prediction the RVEs’ effective properties, researchers have turned to 

machine learning (ML) models to capture the microstructure features and establish the 

microstructure-property linkage [12, 13]. Ding et al. [14] used a deep neural network 

(DNN) to find the correlation between the fibre volume fraction, fibre radius of RVEs 

and the effective elastic modulus and yield strength of the FRP. However, the DNN could 

not recognise or predict the effect of fibre spatial distribution. Pathan et al. [15] 

established the correlation between the effective elastic properties and RVE 

microstructures, including fibre diameter, volume fraction, and spatial distribution. In 

their study, two-point correlation function (TPCF) and principal component analysis 

(PCA) were used to reduce the input dimensionality from images to vectors of principle 

components (PCs). With the inputs being the PCs and targets being the elastic properties, 

a gradient boosting regressor (GBR) model was trained. The trained GBR model can 

effectively predict the elastic properties accurately for different fibre volume fractions. 

However, the prediction accuracy for fibre spatial distribution was not as satisfactory. Li 

et al. [16] pre-processed the input using similar dimension reduction techniques including 

TPCF and PCA. In the dataset, they used more complex input data by including the 

microvoids defect in the matrix when generating the dataset. The training targets were 
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also the elastic properties of the RVEs. They improved the prediction accuracy by using 

a genetic algorithm optimised back propagation (GABP) network, which optimised the 

initial network parameters of the network when the training started. Recently, 

convolutional neural network (CNN) has seen increasing use in capturing the image 

features in the domain of solid mechanics [17-19], especially in establishing the 

microstructure-property linkage.  Li et al. [20] fused a CNN and a multi-layer perceptron 

(MLP) model to captures features from both the microstructures and their TPCF outputs 

for predicting elastic properties of composite materials. Yang et al. [21] trained a CNN 

with a dataset comprising mosaic-like two-phase microstructures with the same volume 

fraction to predict the effective stress-strain curve. They performed PCA to reduce the 

dimensionality of the complex nonlinear stress-strain curves in the targets. The PCs 

predicted by the trained CNN were then used to reconstruct the stress-strain curve. The 

model had good prediction accuracy, although some detail features in the non-elastic 

region were not captured and predicted due to dimensionality reduction. Kim et al. [22] 

modelled the fibre-matrix interface when generating the dataset, which also led to 

nonlinear effective stress-strain curves. They trained a CNN with the generated dataset, 

which showed very high accuracy in the elastic region, although slight deviation can be 

seen in the plastic region. Xu et al. [23] used a knowledge input transfer learning (KITL) 

framework by training a CNN in two steps: pre-training and fine-tuning. This framework 

improved the training efficiency with a reduction of dataset size. Olivier et al. [24] used 

a Bayesian neural network to quantify the uncertainties of the effective stress-strain curve. 

Krokos et al. [25] used a Bayesian CNN framework to predict the stress field of RVEs.  

Although using ML techniques to establish the microstructure-property linkage has 

advanced significantly in recent years, yet there remain two major challenges. The first 

challenge lies in accurately predicting the effective properties that account for the 

microstructural randomness. For FRP, variables like fibre diameter and volume fraction 

have definite values and clear impact on effective properties. However, it is far more 

challenging to ascertain an accurate relationship between the random fibre spatial 

distributions, which resemble real FRP materials, and their corresponding effective 

properties. This is particularly true for the non-elastic behaviours of RVEs. The second 

challenge concerns the generalisation capability of the ML models. Typically, to learn 

microstructure-property linkage, an ML model is trained on a dataset generated by 

simulation RVEs with diverse microstructures, using a fixed set of material constituents 

at a specific temperature. However, the model’s effectiveness may decline when the 

properties of these constituents change. For instance, this could occur if the polymer 

matrix switches from Poly-Ether-Ether-Ketone (PEEK) to Polyamide 6 (PA6), or if the 

material is used at a different temperature. This limitation necessitates the retraining the 

model on new datasets, which can impede the models’ practicality due to the substantial 

computational resources required for new simulations.  

This paper aims to develop an innovative approach to address the two aforementioned 

challenges. This approach integrates a convolutional neural network (CNN) with a novel 

microstructure-factored constitutive model (MCM), to enable the rapid prediction of 

effective properties of fibre reinforced polymers RVEs with random fibre distributions 

and to allow generalisation to new constituting materials. In particular, the MCM, rooted 

from classic empirical constitutive modelling, is a new concept proposed in this study, 

which can explicitly segregate the intertwined effect of material constituent properties 
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and the effect of fibre spatial distributions. The new approach enabled a CNN trained on 

the transverse stress-strain curves of one set of material constituents (CF/PEEK at 270 ºC) 

to be generalised for various sets of material constituents at different temperatures, which 

were unseen by the CNN during training. By incorporating the MCM, the CNN’s 

applicability when serving as a surrogate model in multi-scale simulation schemes can be 

significantly expanded, which is considered the main contribution of the work.  

In this paper, the generation of microstructures, characterising RVE’s properties using 

simulations, as well as post-processing, were discussed in section 2, followed by the 

implementation, training, and evaluation of a CNN in section 3. Section 4 discussed the 

development and validation of the MCM. In section 5, a rapid prediction framework was 

established by integrating the trained CNN with the developed MCM and was validated 

through testing on random RVEs with various constituting materials.  

2 Microstructure generation and microstructure-property characterisation 

To facilitate the development of the ML model and the microstructure-factored 

constitutive model (MCM), it is necessary to generate datasets consisting of RVEs with 

random microstructures and their corresponding effective stress-strain curves. This 

section details the process of creating such datasets, starting with the development of a 

novel microstructure generation algorithm. The generated microstructures were then 

statistically characterised before being modelled as RVEs using FE packages 

ABAQUS/CAE. Subsequently, the RVEs were simulated under the transverse tensile 

condition and the resulting data was extracted for the development of the ML model and 

the MCM. 

2.1 Microstructure generation algorithm and statistical characteristics analysis  

RVE simulations which investigate the effect of microstructure on the effective properties 

start with generating distinctive microstructures. These microstructures are often 

generated by microstructure generation algorithms, such as hard core model (HCM) [26], 

random sequential expansion (RSE) [27]. These algorithms utilised random number 

generators to generate the coordinates of fibres within a pre-defined space, thus preferred 

when distinctive microstructures are required. However, the probability of two 

microstructures randomly generated using these algorithms being nearly identical to each 

other is extremely low. This means the effect of minor microstructural differences, which 

can be introduced as observation error such as when capturing real-life FRP 

microstructures using microscopes, cannot be accounted for. Although the assumption of 

statistical equivalency [9] suggests that RVEs with similar microstructure should have 

similar effective mechanical properties,  discrepancies were found in this study. 

A new algorithm was proposed in this study to generate microstructures, combining both 

distinctive and similar fibre distributions. This algorithm was automated by a Python 

script to produce a considerable number of diverse microstructures and their variants. The 

automated generation process is given in Table 1. The input parameters given in step 1 

ensured a relatively small RVE size of 10, defined by the ratio between the side length of 

the RVEs and the fibre radius. Additionally, a total of 16 fibres was generated so that the 

fibre volume fraction in all generated microstructures was 51%. It should be noted that 

these definitive microstructural variables, including fibre diameter and number of fibres, 
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were deliberately kept constant so that the random fibre spatial distribution was the only 

microstructural variables in the dataset. This setup presented the most challenging 

scenario for training an accurate CNN. Step 2 used RSE algorithm with geometric 

periodicity [27, 28] to generate a distinctive random ‘base’ microstructure. To avoid fibre 

overlapping, 0.8 𝜇𝑚  was set as the minimum allowable fibre distance in the RSE 

algorithm, where the term ‘fibre distance’ was defined as the nearest distance between 

the outer edges of two fibres. Based on the ‘base’ microstructure, a variant could be 

generated through steps 3-7. In these steps, the coordinates of each fibre in the ‘base’ 

microstructure were randomly perturbed, and the perturbation range in both 𝑥  and 𝑦 

directions for each was defined as 0~0.49 𝜇𝑚. The minimum fibre distance in a variant 

microstructure was calculated using the nearest neighbour distance [29] and examined in 

step 8. If the minimum fibre distance was found to be smaller than 0, indicating fibre 

overlapping, the generated variant was rejected. Step 3-7 were then repeated until a 

variant microstructure with the minimum fibre distance larger than 0 was successfully 

generated. Figure 1a illustrates the perturbation process, while Figure 1b-d) shows an 

example of a ‘base’ microstructure and one of its variants. Using the introduced method, 

2000 ‘base’ microstructures, which are distinctive from each other, and 5 similar variants 

for each ‘base’ microstructure were generated.  

Table 1 Pseudocode of the new algorithm for generating similar microstructures. 

1. Input: RVE size = 33𝜇𝑚,  fibre diameter (𝑑𝑓) = 6.6 𝜇𝑚 [30], 

number of fibres(𝑁) = 16.  

2. Generate the coordinates of a ‘base’ microstructure 𝑿, 𝒀 using RSE, with 

𝑚𝑖𝑛(fibre distances)  = 0.8 𝜇𝑚 

3. FOR 𝑖 = 1: 𝑁 DO 

4.     ∆𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚(perturbation range (0~0.49 𝜇𝑚)) 

5.     ∆𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚(perturbation range (0~0.49 𝜇𝑚))  

6.    Perturbed fibre centre coordinates:  

        (�̃�[𝑖], �̃�[𝑖]) = (𝑿[𝑖] + ∆𝑥, 𝒀[𝑖] + ∆𝑦) 

7. End FOR 

8. If 𝑚𝑖𝑛(fibre distances) < 0: 

9.     Repeat step 3-7 

10. Else: 

11.     Output �̃�[𝑖], �̃�[𝑖]     
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Figure 1 a) The schematic illustration of perturbating a fibre; an example of b) a 

‘base’ microstructure and c) a variant microstructure after fibre perturbation, and d) 

overlay of the base and variant microstructures showing small differences. 

To evaluate the preservation of the statistical characteristics of the microstructures after 

perturbations, the two-point correlation function (TPCF) of the microstructures was 

calculated, and their outputs were compared. The TPCF is a statistical measure to describe 

matter distribution [31] and has been recently utilised to measure the fibre distribution in 

RVEs [15, 16]. It is defined as the probability of finding fibres on both ends of a vector, 

that is randomly thrown into the microstructure. The mathematic form of the TPCF is 

written as: 

𝑓(𝒓) =
1

𝑆
∑ 𝜔𝑠𝜔𝑠+𝒓

𝑆

𝑠=1

 

(1) 

𝜔 = {
1, material phase at subscripted pixel is fibre 
0, material phase at subscripted pixel is matrix

 
(2) 

where 𝒓 is a vector, 𝑆 is the total number of the pixels in the microstructure image space. 

The vector enumerates the whole pixel space to find the material phase 𝜔 at the starting 

pixel 𝑠 and the ending pixel 𝑠 + 𝒓.  The value of  𝜔 is defined in  Equation 2 [15]. The 

output of the TPCF is an array of the same size of the microstructure image, and it can 

also be visualised as an image, as demonstrated in Figure 2a). It is worth noting that when 

𝒓 is the zero vector, i.e., a vector with zero length, the materials on both ends of the vector, 

wherever the starting point 𝑠 is, are the same, i.e., 𝜔𝑠 = 𝜔𝑠+𝒓. Therefore, the value of 

𝑓(𝟎) is the fibre volume fraction of the microstructure. The fibre volume fraction can be 

observed in the centre (representing the zero vector) of the image representation of the 

TPCF output, as shown in Figure 2a).  
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Figure 2 a) Three example sets of microstructures (with the ‘base’ and a variant for 

each set) and their two-point correction function (TPCF) presentations, and b) their 

structural similarity (SSIM) when comparing to each other. 

Figure 2a) depicts three pairs of ‘base’ and one of their variant microstructures, with a 

pair of regular fibre distribution and two pairs of arbitrarily chosen random 

microstructures, along with their TPCF outputs. It is visually evident that each pair is 

distinctive, and for each pair, the ‘base’ microstructure and its variant microstructure are 

similar and have nearly identical TPCF outputs. The similarity was further examined 

quantitively by computing the structural similarity (SSIM) index. The SSIM index is a 

perceptual metric that quantifies the difference between images, ranging from -1 to 1, 

where 1 indicates that two images are identical. In this study, the SSIM index was 

computed using the ssim function from the Scikit-image package, and the algorithm is 

detailed in [32]. Figure 2b) shows the SSIM indices between the microstructures (upper 

diagonal) and their TPCF outputs (lower diagonal). The SSIM indices between each ‘base’ 

and its variant microstructure, as well as their TPCF outputs, are noticeably higher than 

those between distinctive microstructures. Moreover, the SSIM indices between the 

TPCF outputs of each ‘base’ and its variant microstructure are nearly 1, demonstrating 

that the statistical characteristics of the microstructures are well preserved in this 

perturbation process.  

2.2 Finite Element simulations of the RVEs and post-analysis  

The generated microstructures were modelled as RVEs and numerically simulated under 

transverse tensile conditions using the FE package ABAQUS/CAE. The resulting 

simulations were post-processed to obtain the effective stress-strain curves. To automate 

the simulation process, a set of Python scripts were developed, allowing for the simulation 

of a large batch of 10,000 variant microstructures. Additionally, to ensure consistency in 

the dataset, only ‘variants’ but not the ‘base’ microstructures were simulated, because 

their fibre distance criteria were altered from their respective ‘base’ microstructure due 

to the fibre perturbation.  

Figure 3 presents a typical RVE simulation process. The simulation commenced with the 

generation of the geometric model of the microstructure. Subsequently, the geometric 

model was meshed using a unified meshing strategy with an approximate mesh size of 

0.66 𝜇𝑚 . The fibre-matrix interfaces were assumed as perfect bonding interfaces 

modelled using a shared-nodes approach. This simplification was inspired by recent 

studies handling similar problems [21, 23, 24]. The plain strain CPE4R elements were 

used to model both fibre and matrix regions. The final step involved assigning 

constituting materials to the meshed model to create an RVE.  
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Figure 3 A typical representative volume element (RVE) simulation scheme. 

In this paper, the term “constituting material” refers to the set of material constituents of 

the RVE at a given working temperature. Each constituting material was treated as an 

individual material as their thermomechanical responses are different due to different 

temperatures, even though they represent the same matrix. To simplify the naming 

convention for the materials with their constituents, the format of Fibre/Matrix-

Temperature, e.g., CF/PEEK-270, is used hereinafter.  

The carbon fibre used in this study was reasonably taken as temperature-independent, and 

its properties are listed in Table 2. Two matrix materials, PEEK and PA6, were employed. 

Their material properties were obtained from in-house experiments [33] . It was found 

that the thermomechanical responses of the two matrix materials are highly temperature 

dependant and are insensitive to the strain rate. Therefore,  their behaviours were 

modelled with the Johnson-Cook plasticity model [34]: 

𝜎𝑓

= [𝐴 + 𝐵(𝜀̅𝑝𝑙)𝑛](1

− 𝜃𝑚) 

(3) 

where 𝜎𝑓 is flow stress, 𝜀̅𝑝𝑙 is plastic strain, and 𝐴, 𝐵, 𝑛, 𝑚 are material constants. 𝜃 is a 

normalised dimensionless term corresponding to working temperature defined as: 

𝜃 = {
0

(𝜃 − 𝜃𝑟𝑒𝑓) (𝜃𝑚 − 𝜃𝑟𝑒𝑓)⁄

1

    

𝑓𝑜𝑟 𝜃 < 𝜃𝑟𝑒𝑓

           𝑓𝑜𝑟 𝜃𝑟𝑒𝑓 ≤ 𝜃 ≤ 𝜃𝑚

𝑓𝑜𝑟 𝜃 > 𝜃𝑚

 

(4) 

where 𝜃  is the current temperature, 𝜃𝑚  is the melting point and 𝜃𝑟𝑒𝑓  is the reference 

temperature of the matrix. The elastic moduli and material constants that were determined 

from the experimental results are listed in Table 3. 

To prepare a dataset for the subsequent ML training, simulations were conducted for all 

10,000 RVEs using the CF/PEEK-270 constituting material, which will be detailed in 

section 3. In addition, a few RVEs with different constituting materials were simulated to 

develop the MCM, which will be detailed in section 4.  

Table 2 Material properties of carbon fibre [35] 

E11/E22 (GPa) E33 (GPa) v12 v13, v23 G13, G23 (GPa) 
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26 214 0.445 0.28 112 

Table 3 Material properties and constants of polymer matrices [33] 

Temperature-dependent elastic moduli 

PA6 Temp. (ºC) 160 180 200 220 

  

 

E (MPa) 180.13 152.77 78.02 27.79 

  

PEEK Temp. (ºC) 210 240 270 300 310 

 

 

E (MPa) 242.96 167.24 155.59 115.68 110.65 

 

Johnson-Cook material constants 

 

A (MPa) B (MPa) n m 𝜃𝑟𝑒𝑓 (ºC) 𝜃𝑚 (ºC) 

PA6 11.489 14.531 0.729 1.079 160 230 

PEEK 15.651 29.079 0.298 0.947 180 343 

After the geometric modelling and meshing of the RVEs, periodic boundary conditions 

(PBCs) were applied using the ABAQUS plugin easyPBC [36]. The PBCs allowed the 

simulation of an RVE under transverse tensile condition, where an effective transverse 

strain of 0.05 was applied. The deformation problem under these boundary conditions 

was solved, followed by the post-processing of the simulation result.  

A Python script was developed for post-processing the simulation results and extracting 

the true effective stress-strain curve of each RVE. The curve was then discretised into a 

vector of effective stress values at even intervals of true effective strain between 0 and 

0.046, obtained by cubic interpolation. The resulting stress vector had a size of 1×30 and 

will be referred to as such hereinafter. 

Figure 4 shows three example groups of variant microstructures, which is overlayed on 

the ‘based’ microstructures for distinction, and their corresponding effective stress-strain 

curves. Compared to the wide spread of the effective stress-strain curves for all 10,000 

RVEs, the variants of the same ‘base’ microstructure, including the regular ones, exhibit 

much more similar stress-strain responses. However, discrepancies can still be 

distinguished for some groups, especially in the plastic region.  
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Figure 4 Effective stress-strain curves of RVEs with three example groups of variant 

microstructures (pink shadow represents the range of stress-strain curves of all RVEs 

in the dataset).   

To quantify the discrepancies in the effective stress-strain curves caused by fibre 

perturbation for each group, the mean percentage error (𝑀𝑃𝐸𝑝) was calculated for each 

RVE using Equation 5:  

𝑀𝑃𝐸𝑝 =
1

30
∑

𝜎𝑖
𝑝

−𝜎𝑖
𝑎𝑣𝑒

𝜎𝑖
𝑎𝑣𝑒 ∙30

𝑖=1 100%  
(5) 

where 𝑖 denotes the strain point index of the effective stress vector of length 30, 𝜎𝑖
𝑝
 is the 

effective stress value of a variant RVE, and 𝜎𝑖
𝑎𝑣𝑒 is the averaged effective stress values 

of 5 variant RVEs in this group. An example is shown in Figure 5a).  

 

Figure 5 a) The discrepancies in the effective stress-strain curves of an example 

group of variant RVEs (pink shadow represents the range of stress-strain curves of 

all RVEs in the dataset), b) the probability distribution of the mean percentage error 

(𝑀𝑃𝐸𝑃) caused by perturbation for all RVEs. 

The 𝑀𝑃𝐸𝑃  were calculated for all simulated RVEs and their statistical distribution is 

presented in Figure 5b). The bin width used for the histogram is 1%. The histogram 

shows that the majority of RVEs have very small 𝑀𝑃𝐸𝑝 values in their effective stress-
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strain curves. Specifically, the effective stress-strain curves of 99.6% of the 10,000 RVEs 

have 𝑀𝑃𝐸𝑝 values within ±10%, and those of 90.3% within ±5%.  

These discrepancies in the effective stress-strain curves, resulting from minor 

microstructural difference, were relatively small. Nevertheless, there were still a few 

outliers with discrepancies up to 15.8%, measured by the absolute 𝑀𝑃𝐸𝑝. These outliers 

didn't display noticeably larger microstructural differences compared to other variants 

sharing the same ‘base’ but led to relatively larger discrepancies in effective stress-strain 

curves. It could potentially complicate the training of an accurate ML model. Therefore, 

the average of the stress-strain curves of each group of variant RVEs were deemed to be 

a suitable approximation for all variants sharing a same ‘base’ microstructure in the 

following study.  

3 Convolutional neural network:  learning the effect of random microstructural 

distributions for effective property predictions. 

3.1 Preparation of the dataset  

To train the ML model, RVEs with 2000×5 microstructures and their corresponding 

effective stress-strain curves when the constituting material was CF/PEEK-270 were used 

to create the dataset. The microstructures of the RVEs were discretised into binary arrays 

with the size of 128 × 128 as inputs to the ML model. This array size was proven to be 

sufficient in this study to train an accurate convolutional neural network (CNN). In these 

binary arrays, the numbers ‘1’s denote the fibres and ‘0’s denoted the matrix. The 

corresponding stress vectors, as described in section 2.2, were of a length of 30. These 

vectors were used as targets to train the ML model.  

The dataset was divided into training and testing sets, using a 90% training and 10% 

testing split. The training set was further divided into 9 folds for the cross validation 

during training, while the testing set remained unseen during the training process and was 

reserved to evaluate the final trained model.  

In addition, each batch in the training set consisted of 4 groups of variant microstructures 

and corresponding stress-strain curves, with a batch size of 20. An example batch is 

shown in Figure 6. As mentioned in section 2.3, the stress vectors used as targets were 

the average of 5 variant RVEs’, with each group of RVEs being assigned the same stress 

vector.  



12 

 

 

Figure 6 A batch from the training set, with the inputs being the microstructures of 

four groups of variants, and the targets being the discretised average effective stress-

strain curves of their corresponding groups of variants. 

3.2 CNN implementation and training  

A convolutional neural network (CNN) was developed to recognise the microstructures 

and predict the corresponding stress vectors. Figure 7 shows the architecture of the 

developed CNN.  

 

Figure 7 The architecture of the convolutional neural network (CNN) used in this 

paper.  

The CNN consisted of three convolutional layer blocks, each using 16 kernels with a 

kernel size of 3, a stride of 1 and padding of 1, followed by a LeakyReLU and a 

BatchNormalization layers. A 2D MaxPooling layer was added to the last convolutional 

layer block’s BatchNormalization layer. A GlobalAveragePooling layer was placed after 

the convolutional layer blocks, followed by a fully connected layer with 30 nodes to 

match the length of the target stress vector. The Adam optimiser was used to train the 
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network with a learning rate of 1e-3 and weight decay of 1e-5. During training, the 

optimiser iteratively minimised the mean square error (MSE) loss function given in 

Equation 6. 

𝑀𝑆𝐸𝜎 =
1

30
∑(𝜎𝑖

𝑃𝐷 − 𝜎𝑖
𝐺𝑇)2

30

𝑖=1

 

(6) 

where 𝜎𝑖
𝑃𝐷 and 𝜎𝑖

𝐺𝑇 are the predicted (PD) and ground truth (GT) stress values at strain 

point 𝑖, respectively.  

The CNN was developed and trained using Pytorch on a NVIDIA Quadro RTX 5000GPU. 

A 9-fold cross validation technique was implemented during training. The network was 

trained for 1500 epochs for each fold with the folded validation set being used at every 

epoch to evaluate the network’s performance during the training. For each fold, the model 

parameters of the network were reset to avoid data leakage. Figure 8a) shows the training 

history of Fold 1, with epoch 376 exhibiting the lowest loss in the validation set. The 

model from this epoch was considered trained for Fold 1. This process was repeated for 

the other folds. Figure 8b) compares the model performance of each fold’s trained model, 

and the model from Fold 1 achieved the lowest validation loss across all folds. Therefore, 

model parameters of Fold 1 at epoch 376 were frozen and assigned to the network as the 

trained CNN model for the final evaluation using the withheld testing set.  

 

Figure 8 a) Training history of Fold 1, b) the performance of the trained model of 

each fold using a 9-fold cross validation technique.  

3.3 Evaluation of the prediction accuracy of the CNN 

Aside from the MSE loss function, additional metrics were used to evaluate the trained 

model, including the mean percentage error (MPE) and mean absolute percentage error 

(MAPE) of the stress vectors. These relative error metrics provide a clearer indication of 

the prediction accuracy. The MPE was calculated using Equation 7. 

𝑀𝑃𝐸𝜎 =
1

30
∑

𝜎𝑖
𝑃𝐷 − 𝜎𝑖

𝐺𝑇

𝜎𝑖
𝐺𝑇 ∙

30

𝑖=1

100% 

(7) 

𝑀𝑃𝐸𝜎 indicates both the magnitude and direction of errors, i.e., whether the prediction 

was overestimated or underestimated. While it is preferred for evaluating individual 
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predictions, 𝑀𝑃𝐸𝜎 may not be accurate when averaged to determine the overall model 

performance. Therefore, MAPE, defined in Equation 8, was also used as an evaluation 

metric.  

𝑀𝐴𝑃𝐸𝜎 =
1

30
∑

|𝜎𝑖
𝑃𝐷 − 𝜎𝑖

𝐺𝑇|

𝜎𝑖
𝐺𝑇 ∙

30

𝑖=1

100% 

(8) 

In both Equations 7 and 8, 𝜎𝑖
𝑃𝐷 and 𝜎𝑖

𝐺𝑇 are the predicted (PD) and ground truth (GT) 

stress values at strain point 𝑖, respectively.  

Four examples of the network prediction, arbitrarily selected from the test set, are shown 

in Figure 9. These examples illustrate the high accuracy of the model, as all predictions 

fall within the range of discrepancies caused by the fibre perturbation.  

 

Figure 9 Examples of the trained network predictions from the test set (pink shadow 

represents the range of stress-strain curves of all RVEs in the dataset). 

Figure 10 shows the overall performance evaluation of the trained network based on the 

𝑀𝑆𝐸𝜎, 𝑀𝑃𝐸𝜎  and 𝑀𝐴𝑃𝐸𝜎 metrics and computed on all data points from both the training 

and test sets. The similarities of the statistics between the test and training sets suggest 

that the network was trained without overfitting. The prediction accuracy on the test set 

was also quantitatively analysed. As shown in Figure 10a), 95.8% of the predictions have 

𝑀𝑆𝐸𝜎  less than 1 MPa. Figure 10b) shows the 𝑀𝑃𝐸𝜎  distribution is approximately 

normally distributed around 0. For the test set, 99.4% of the predictions fall within the 

error range of ±10%, and 80.7% within the error range of ±5%. These statistics suggest 

that the network prediction error was on par with the discrepancy caused by the minor 

microstructural differences. Figure 10c) shows the 𝑀𝐴𝑃𝐸𝜎  distribution. Additionally, 

the average 𝑀𝐴𝑃𝐸𝜎 of the prediction was 3.04%, and the maximum 𝑀𝐴𝑃𝐸𝜎 was 12.83%.  
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Figure 10 Performance of the trained network evaluated by a) 𝑀𝑆𝐸𝜎, b) 𝑀𝑃𝐸𝜎 and 

c) 𝑀𝐴𝑃𝐸𝜎. 

The findings demonstrate that the developed CNN is highly effective in accurately 

predicting the effective stress-strain curves by recognising microstructure images. This 

indicates the potential of using machine learning approaches to predict complex 

mechanical behaviours of RVEs with random fibre spatial distributions.  

4 Microstructure-factored constitutive model: segregating microstructural and 

material constituent effects 

The work presented in section 3 demonstrates the rapid and accurate prediction of 

effective stress-strain curves for RVEs with random microstructures using the trained 

CNN model. However, the model’s validity is limited to the CF/PEEK-270 constituting 

material. Retraining the model for a different constituting material or creating a more 

generalisable CNN on a dataset of various constituting materials would be costly in terms 

of data generation.  

To overcome this limitation, a Microstructure-factored Constitutive Model (MCM) was 

developed to segregate the intertwined effects of microstructural and constituting 

materials on the effective properties of a random RVE.  

The development and the validation of the MCM were based on analysing the effective 

stress-strain curves of the RVEs with 50 distinctive microstructures, arbitrarily chosen 

from the test set used in section 3, plus the regular microstructure. For each microstructure, 

RVEs were modelled using 9 different matrix material properties: PEEK at 210, 240, 270, 

300, and 310 ºC, and PA6 at 160, 180, 200, and 220 ºC. In the context of this paper, 

“constituting material” refers to the set of material constituents of an RVE at a specific 

working temperature. This means that 9 constituting materials, such as CF/PEEK-210, 

CF/PEEK-270 and CF/PA6-180, were adopted for the analysis of each microstructure 

and treated independently. 

4.1 Elastic-plastic behaviours and effective material constants of the RVEs 

The development of the MCM started with extracting characteristic material constants, 

which can also be used for higher-scale simulations, from the effective stress-strain curves 

of the RVEs based on elastic-plastic material model. For the elastic region, the effective 

elastic modulus was used. The yield strength was determined by the commonly used 0.2% 

offset yield strength (OYS). For the plastic region, as each constituting material was 
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treated independently, the Johnson-Cook plasticity model provided in Equation 3 can be 

simplified by removing the temperature-dependant term, given as:  

𝜎𝑓 = 𝐴 + 𝐵(𝜀̅𝑝𝑙)𝑛 (9) 

The material constant 𝐴 presents the yield strength. The strain hardening exponent 𝑛 was 

set to 0.5 for simplicity. The fitting of 𝐵 was achieved by finding the optimal 𝐵 value that 

minimised the mean square error (MSE) between the effective stress-strain curve from 

the simulation and the curve constructed with the elastic-plastic material model. The 

least_squre function from the Scipy package was employed for the fitting process. Using 

the method described above, the effective material constants for all 51×9  RVEs, 

representing 51 microstructures and 9 constituting materials, were determined.  

The fitting quality is generally satisfactory. Figure 11a) shows an example of the regular 

RVEs with varying CF/PEEK constituting materials, with the constructed stress-strain 

curves showing slight overestimation compared to the simulation results. Figure 11b) 

shows the statistics of the fitting errors in RVEs for all 50 random microstructures and 9 

constituting materials, measured by calculating the 𝑀𝑃𝐸𝜎 between the constructed stress-

strain curves and the simulation results. Overall, a fitting error of around 2~3.5% was 

introduced when modelling the stress-strain curves with the traditional material 

constitutive model. These errors were smaller than either of those caused by fibre 

perturbation or CNN prediction and will nevertheless be introduced when used in higher-

scale simulation with material constitutive models. Therefore, they were deemed 

insignificant, and the effective materials constants, which were fitted from the simulation 

results, along with the stress-strain curves constructed using these effective material 

constants, were henceforth taken as the ground truth (GT).  

 

Figure 11 a) Fitting material constants for the regular RVEs using varying 

constituting materials (markers ‘+’ are the simulation results and solid curves are 

constructed with fitted material constants); b) violin plots depicting the 𝑀𝑃𝐸𝜎 of the 

material constant fitting.  

4.2 The development of the MCM 

The effective material constants of random RVEs were analysed, by using those of the 

regular RVEs as the benchmark. RVEs with two arbitrarily chosen microstructures 

(denoted as 𝛼 and 𝛽) were analysed first with the results illustrated in Figure 12.  
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Figure 12 The relationships between random RVEs and the regular RVE with respect 

to a) 𝐸, b) 𝐴, and c) 𝐵, represented across a range of different constituting materials. 

Despite the non-linear behaviours of the constituting materials and intricate deformation 

patterns in RVEs attributed to random fibre distributions, a noteworthy observation was 

made. It was observed that the effective material constants of a given random RVE, 

including 𝐸, 𝐴 and 𝐵, have approximately positively proportional relationships with the 

respective effective material constants of the regular RVEs. Proportional trendlines were 

fitted as shown in Figure 12. These trendlines are distinctive characteristics of the 

microstructures, which are independent from the constituting materials. This significant 

finding helps to segregate the effects of the microstructure and the constituting material, 

which are previously complex and intertwined factors governing the effective behaviours 

of the RVEs.   

It is worth noting that in Figure 12c), the markers slightly deviate from the trendline, 

possibly due to fitting errors when obtaining the plastic material constants. The analysis 

of the impact of this error is detailed in section 4.3. 

These positively proportional relationships can be described mathematically as:  

𝐸𝑚𝑎𝑡
𝜙

= 𝑟𝐸
𝜙

∙ 𝐸𝑚𝑎𝑡
𝑟𝑒𝑔

 

(12) 

𝐴𝑚𝑎𝑡
𝜙

= 𝑟𝐴
𝜙

∙ 𝐴𝑚𝑎𝑡
𝑟𝑒𝑔

 

(13) 

𝐵𝑚𝑎𝑡
𝜙

= 𝑟𝐵
𝜙

∙ 𝐵𝑚𝑎𝑡
𝑟𝑒𝑔

 

(14) 

where 𝐸  is the elastic modulus, 𝐴  and 𝐵  are material constants for the simplified 

Johnson-Cook model. The superscripts are identifiers for the microstructures, where 𝑟𝑒𝑔 
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presents the regular microstructure and 𝜙 presents a random microstructure, such as 𝛼 or 

𝛽, as shown in Figure 12. The subscript 𝑚𝑎𝑡 is the identifier of constituting materials, 

such as CF/PEEK-270. 𝑟𝐸
𝜙

, 𝑟𝐴
𝜙

 and 𝑟𝐵
𝜙

 are the slopes of the trendlines, corresponding to 

𝐸, 𝐴 and 𝐵 respectively, for a RVE with a random microstructure 𝜙. They are defined as 

microstructure effect factors hereinafter.  

These relationships, in conjunction with traditional elasticity and the simplified Johnson-

Cook model, constitute the microstructure-factored constitutive model (MCM).  As a 

novel concept, the MCM employs microstructure effect factors to encapsulate the 

influence of microstructure, while the effective material constants of the regular RVE are 

utilised to represent the impact of the constituting material.  

Table 4 outlines the workflow of applying the MCM to predict the effective stress-strain 

curves of RVEs whenever there is a change in microstructure or constituting material. 

Figure 13 demonstrates an example. As illustrated by the red dotted arrows (Step 1), the 

process starts with obtaining the ground truth (GT) effective material constants for 

CF/PEEK-270 RVEs with both microstructures, i.e., 𝑟𝑒𝑔 and 𝛼. With these constants, the 

microstructure effect factors for microstructure 𝛼 can be determined based on Equations 

12-14 (Step 2). Following the dark red dotted arrow (Step 3), the GT effective material 

constants of the regular CF/PEEK-210 RVE were obtained. With the microstructure 

effect factors for microstructure 𝛼 and the effective material constants for the regular 

CF/PEEK-210 RVE known, the effective material constants for CF/PEEK-210 RVE with 

microstructure 𝛼 can be predicted by calling Equations 12-14 again (Step 4). Finally, by 

plugging the predicted (PD) effective material constants into the elasticity model and 

simplified Johnson-Cook model, the stress-strain curve can be constructed, as depicted 

by the solid dark red curve (Step 5). This PD curve shows a good agreement with the GT, 

as can be seen from the figure.   

Table 4 The workflow of applying the microstructure-factored constitutive model (MCM). 

1. Obtain the GT effective material constants of RVEs of the same constituting 

material, with a) the regular microstructure and b) a random microstructure 

2. Determine the microstructure effect factors of the random microstructure, using 

the two sets of material constants obtained in Step 1based on equation [12-14] 

3. Obtain the GT effective material constants of RVE of a target constituting 

material with the regular microstructure 

4. Calculate the PD the effective material constants of RVE of the target 

constituting material with a random microstructure based on Equation [12-14] 

again 

5. Construct the PD stress-strain curve using the PD effective material constants  
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Figure 13 An example of applying the microstructure-factored constitutive model 

(MCM). GT denotes ‘ground truth’ and PD denotes ‘predicted’.  

The illustrated example effectively showcases the efficacy of the proposed MCM in 

explicitly segregating the intertwined effect of microstructure and the constituting 

material on the effective properties of random RVE. Consequently, this allows the MCM 

to predict the effective material constants for any random RVE, given a known 

microstructure and constituting material. Furthermore, the prediction can be expedited by 

utilising CNN predictions, instead of FE simulations, to determine the microstructure 

effect factors, a process which will be detailed in section 5.  

4.3 Evaluation of the prediction accuracy using the MCM 

To evaluate the MCM’s applicability to a wider range of microstructures and constituting 

materials, it was tested on the collection of 50 random microstructures with each of the 9 

constituting materials. For each random RVE in this collection, the workflow in Table 4 

was repeated to predict its effective material constants. These PD effective material 

constants were then compared with the GT values, across all 50 × 9 RVEs, as shown in 

Figure 14.  

 

Figure 14 The prediction accuracy of a) E, b) A and c) B, by comparing PD results 

using the MCM against GT values. 

To quantitatively measure the average errors in the predicted effective material constants 

for each constituting material, the mean absolute percentage error, 𝑀𝐴𝑃𝐸𝜓, was defined 

as given in Equation 15.  
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𝑀𝐴𝑃𝐸𝜓 =
1

𝑛
∑ |

𝜓𝜙
𝑃𝐷 − 𝜓𝜙

𝐺𝑇

𝜓𝜙
𝐺𝑇 | ∙

𝑛

𝜙=1

100% 
(15) 

where 𝜓 can be 𝐸, 𝐴 or 𝐵. 𝜙 is the microstructure identifier. 𝑛 presents the total number 

of random microstructures and 𝑛 = 50 here. The values of 𝑀𝐴𝑃𝐸𝜓 are listed in Table 5. 

Prediction errors were expected to be 0 for CF/PEEK-270 RVEs, because the 

microstructure effect factors were determined based on simulations of CF/PEEK-270 

regular and random RVEs. 

Table 5 𝑀𝐴𝑃𝐸𝜓 (%) of prediction with microstructure effect factors determined with CF/PEEK 

at 270 ºC. 

CF/PEEK Temp. (ºC) 210 240 270 300 310 

 𝐸 0.72 0.12 0 0.48 0.35 

 𝐴 1.34 2.48 0 1.18 3.06 

 𝐵 4.15 7.03 0 3.54 7.91 

CF/PA6 Temp. (ºC) 160 180 200 220  

 𝐸 0.26 0.02 0.55 0.95  

 𝐴 0.78 0.70 1.34 3.78  

 𝐵 3.95 2.29 5.94 10.50  

Both Figure 14a) and Table 5 demonstrate the high accuracy of the developed MCM in 

predicting the elastic modulus, 𝐸, with all errors less than 1%. The prediction accuracy 

for the yield strength, 𝐴, is fair with all errors less than 4%. However, the accuracy for 𝐵 

is relatively less satisfying, with the highest error being around 10%. This discrepancy 

may be attributed to the fitting error for plastic properties. To further validate the 

effectiveness of the MCM, the stress-strain curves constructed using the PD and GT 

effective material constants were compared. 𝑀𝐴𝑃𝐸𝜎, introduced in Equation 8, was used 

to measure the prediction error.  

Figure 15 shows an example which had the largest prediction error on 𝐵  when the 

constituting material was CF/PEEK-210. Despite the relatively large prediction error on 
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𝐵, the stress-strain curves constructed using PD and GT effective material constants were 

very close, resulting in a small 𝑀𝐴𝑃𝐸𝜎. 

 

Figure 15 An example of MCM prediction for a CF/PEEK-210 RVE with a random 

microstructure 

Figure 16 shows the statistics of the prediction errors the statistics of the MCM prediction 

errors, which are less than 1%, as measured by 𝑀𝑃𝐸𝜎. The average values of the 𝑀𝐴𝑃𝐸𝜎 

for all predictions are also below 1%. These results further validate the effectiveness of 

the developed MCM.  

 

Figure 16 Violin plots of the 𝑀𝑃𝐸𝜎 and the average values of the 𝑀𝐴𝑃𝐸𝜎 of the 

stress-strain responses predicted using the MCM. 

It is worth noting that while the development and validation of the MCM were based on 

changes to matrices and working temperatures, the applicability of the MCM can also be 

extended to changing fibres, such as glass fibres. This is because the fibres can be treated 

as rigid bodies due to their high stiffness, which is typically orders of magnitude higher 

compared to the matrix.  

The successfully developed MCM can now be integrated with the trained CNN to 

construct a rapid prediction framework, in which the CNN can replace the simulations 

for obtaining the microstructure effect factors in real time. The framework and its 

streamlined implementation are detailed in the next section.  
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5 A rapid effective property prediction framework integrating the CNN and 

MCM 

Figure 17 shows the rapid effective property prediction framework integrating the trained 

CNN and the developed MCM. This framework bypasses the need for expensive 

simulations for diverse microstructures and enables the prediction of the effective 

properties of random RVEs with various constituting materials.  

 

Figure 17 Rapid prediction framework for predicting the effective properties of 

random RVEs with diverse microstructures and various constituting materials. 

Figure 18 illustrates an example of implementing the proposed framework, using the 

same microstructure as in Figure 13. The estimation process is the same, except for one 

crucial difference:  in Step 1b, instead of using simulation results, the stress-strain curve 

predicted by the CNN is used, to obtain the effective material constants for CF/PEEK-

270 RVE 𝛼 and the subsequent determination of the microstructure effect factors. The 

PD effective material constants are then used to construct the effective stress-strain curve.  

 

Figure 18 An example of implementing the rapid prediction framework integrating 

the CNN and MCM, GT denotes ‘ground truth’. 

Figure 19 shows the stress-strain curves of RVEs of all 9 constituting materials, with 

microstructure 𝛼  (first row) and 𝛽  (second row), predicted using the rapid prediction 

framework. The 𝑀𝑃𝐸𝜎  for each RVE was calculated between the stress-strain curves 

constructed using the GT and the PD effective material constants and is given in the figure.  
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Figure 19 Rapid predictions made by integrating the CNN and MCM for 

microstructure a) 𝛼 and b) 𝛽 with corresponding 𝑀𝑃𝐸𝜎 provided (dots present GT, 

curves present PD, and different colours represent different constituting materials 

grouped as CF/PEEKs and CF/PA6s). 

Figure 20 shows the statistic distribution of 𝑀𝑃𝐸𝜎 and the average values of the 𝑀𝐴𝑃𝐸𝜎 

of the stress-strain curves, as predicted by the rapid prediction framework integrating the 

CNN and MCM, across all 50 random microstructures for each constituting material. The 

results reveal that the maximum absolute value of 𝑀𝑃𝐸𝜎  is less than 10%, and the 

average values of 𝑀𝐴𝑃𝐸𝜎 for all 9 constituting materials are around 3%.  

 

Figure 20 Violin plots of the 𝑀𝑃𝐸𝜎 and the average values of the 𝑀𝐴𝑃𝐸𝜎 of the 

stress-strain response predicted by the rapid prediction framework integrating the 

CNN and MCM. 

While the CNN prediction may introduce errors, resulting in slightly higher error levels 

shown in Figure 20 than that in Figure 16, the overall errors remain small. Furthermore, 

the errors for all studied constituting materials were at the similar level as the CNN 

prediction with one constituting material, CF/PEEK-270, which it was trained on. This 

proves that the introduction of MCM extends the CNN’s generalisation capability. 

It is worth noting that these 50 microstructures were arbitrarily taken from the test set 

used in the CNN training, which represent unseen microstructures, and were employed 

here to evaluate the performance of the proposed rapid prediction framework. The 

applicability of this framework is, therefore, not limited to these 50 microstructures but 
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extends to any unseen microstructures. This means, the effective stress-strain curve of a 

CF/PEEK RVE with any random microstructure distribution can now be predicted in real 

time without needing to run a FE simulation. Moreover, for a new constituting material, 

instead of rerunning 10,000 FE simulations to generate a new database for training a new 

CNN model, only a single simulation on the regular RVE with the new constituting 

material is required. Once done, this framework integrating the already trained CNN with 

the novel MCM can be generalised to predict the effective stress-strain responses of RVEs 

with any unseen microstructures for this new constituting material in real time. Thanks to 

this new generalisable approach, the computational cost of dataset generation is 

significantly reduced while maintaining the accuracy. The developed framework 

significantly expanded the applicability of a CNN when serving as a surrogate model in 

multi-scale simulation schemes as seen in process simulation and accommodating 

considerations for diverse materials or working temperatures for process optimisation. In 

such applications, once the microstructure effect factors are determined based on local 

microstructures, the effective material constants can be calculated and assigned as local 

material properties in upper-scale simulations using the Johnson-Cook model, which is 

readily available in most FE packages. 

6 Conclusions  

This study presents a framework that integrates a high-accuracy convolutional neural 

network (CNN) with a novel microstructure-factored constitutive model (MCM), 

enabling the rapid prediction of effective properties of fibre reinforced polymers RVEs 

with random fibre distributions and, for the first time, generalisation to new material 

constituents at different temperatures. The main conclusions are drawn as below:  

1) A new algorithm was introduced to generate both distinctive microstructures 

and their similar variants through fibre perturbation. Its efficiency was 

demonstrated by assessing the generated microstructures and their statistical 

characteristics (two-point correlation function) using the structural similarity 

(SSIM) index. These enabled the effective creation of microstructure-property 

data through RVE simulations. 

2) A CNN was developed and trained using a dataset, which consists of images 

of variant microstructures and their corresponding stress vectors representing 

effective stress-strain curves. The CNN, trained using a 9-fold cross validation 

technique, was found to effectively predict the stress-strain responses of any 

given microstructures, with a maximum mean absolute percentage error 

(𝑀𝐴𝑃𝐸𝜎) of 12.83% and average (𝑀𝐴𝑃𝐸𝜎) of around 3% on the test set. 

Moreover, 99.4% of the predictions have their mean percentage error (𝑀𝑃𝐸𝜎) 

within the range of ±10%.  

3) An MCM was developed to explicitly segregate the intertwined effects of 

constituting material and microstructure on the effective material properties 

of RVEs. The model innovatively introduces a new term, microstructure effect 

factors, to characterise the impact of microstructure. The set of factors of a 

given microstructure can be determined by comparing the effective material 

constants of a RVE with the given random microstructure with those of a 

regular RVE, based on any constituting material. For a random RVE with a 
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specific constituting material, the impact of the constituting material was 

determined by the effective material constants of its regular RVE. With the 

microstructure effect factors and the effective material constants of the regular 

RVE determined, the effective properties of a random RVE can be predicted 

using the MCM. The MCM prediction errors on the effective stress-strain 

curves measured by both absolute 𝑀𝑃𝐸𝜎  and average 𝑀𝐴𝑃𝐸𝜎  were below 

1%. 

4) A rapid effective property prediction framework was constructed utilising the 

CNN to capture the effect of random microstructure features and the MCM to 

integrate the effects of microstructures and constituting materials. This 

framework extended the generalisation capability of the trained CNN, 

enabling real time prediction of the effective material properties of RVEs with 

diverse constituting materials. With this framework, only one simulation is 

needed with the regular RVE when changing the constituting materials. The 

maximum absolute 𝑀𝑃𝐸𝜎  and average 𝑀𝐴𝑃𝐸𝜎   of the rapid framework 

prediction for all tested RVEs were below 10% and around 3%, respectively. 

The innovative approach of integrating classic constitutive models with machine learning 

(ML) models showcases potential and points towards a promising direction for enhancing 

the generalisability and thus applicability of ML models. Future work can be focused on: 

extending the developed approach to more sophisticated homogenisation modelling, 

considering factors such as fibre-matrix interface and micro-defects; broadening the 

application of the developed approach to a more comprehensive context of material 

characterisation, encompassing history-dependent material behaviours and different 

deformation modes. 
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