
 

 

 

 

INTERPRETING AND PRUNING  
COMPUTER VISON BASED NEURAL NETWORKS 

 

School of Electronic Engineering and Computer Science 

Queen Mary, University of London 

 

PhD Thesis 

 

Woody Bayliss 

 

 

 
 

 

Supervisors: PROF. Ebroul Izquierdo, Dr Marta Mrak, Dr Qianni Zhang 



P a g e  2  |  2 0 2 3 A c k n o w l e d g e m e n t  o f  S u p p o r t  

 

2023ACKNOWLEDGEMENT OF SUPPORT 

 

 

 

This work was supported by the UKRI EPSRC, grant number 2246465. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  3  |  S t a t e m e n t  o f  o r i g i n a l i t y  

 

STATEMENT OF ORIGINALITY 

I, Woody Bayliss, confirm that the research included within this thesis is my own work or that where 

it has been carried out in collaboration with, or supported by others, that this is duly acknowledged 

below, and my contribution indicated. 

Previously published material is also acknowledged below. 

I attest that I have exercised reasonable care to ensure that the work is original and does not to the 

best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual 

Property Right, or contain any confidential material. 

I accept that the College has the right to use plagiarism detection software to check the electronic 

version of the thesis. 

I confirm that this thesis has not been previously submitted for the award of a degree by this or any 

other university. 

The copyright of this thesis rests with the author and no quotation from it or information derived 

from it may be published without the prior written consent of the author. 

Signature:  

Date: 21/08/2023 

 

Details of collaboration and publications: 

1. Bayliss, W., Murn, L., Izquierdo, E., Zhang, Q. and Mrak, M., 2022, May. Complexity 

Reduction of Learned In-Loop Filtering in Video Coding. In 2022 IEEE International 

Symposium on Circuits and Systems (ISCAS) (pp. 506-510). IEEE. 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  4  |  A b s t r a c t  

 

ABSTRACT 

Computer vision is a complex subject matter entailing tasks, such as, object detection and 
recognition, image segmentation, super resolution, image restoration, generated artwork, and many 
others. The application of these tasks is becoming more fundamental to our everyday lives. Hence, 
beyond the complexity of said systems, their accuracy has become critical. In this context, the ability 
to decentralise the computation of the neural networks behind cutting edge computer vision 
systems has become essential. However, this is not always possible, models are getting larger, and 
this makes them harder, or potentially impossible to use on consumer hardware. 
 
This thesis develops a pruning methodology called “Weight Action Pruning” to reduce the 
complexity of computer vision neural networks, this method combines sparsity pruning and 
structured pruning. Sparsity pruning highlights the importance of specific neurons and weights, and 
structural pruning is then used to remove any redundancies. This process is repeated multiple times 
and results in a significant decrease in the computing power required to deploy a neural network, 
reducing inference times and memory requirements. 
 
Weight Action Pruning is first applied to deblocking neural networks used in video coding. Pruning 
these networks with Weight Action Pruning allowed for large computational reductions without 
significant impacts on accuracy. 
 
To further test the validity of Weight Action Pruning on multiple datasets and different network 
architectures, Weight Action Pruning was tested on the generative adversarial U-Net used in a 
seminal paper in the field. This work showed that the ability to prune a neural network relies not 
only on the neural network’s architecture, but also the dataset used to train the model. 
  
Weight Action Pruning was then applied to image recognition networks VGG-16 and ResNet-50, this 
allowed Weight Action Pruning to be directly evaluated against other state of the art pruning 
methods. It was found that, models that were pruned to a set size had higher accuracies than 
models that were trained from scratch with the same size. 
 
Finally, the impact of pruning a neural network is investigated by analysing weight distribution, 
saliency maps and other visualizations. 

 
It must be noted that Weight Action Pruning comes at a cost at training time, due to the re-training 

required. Additionally pruning may cause networks to become less robust, as they are optimised by 

removing the learnt “edge cases”.  
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1 INTRODUCTION 

The progress of machine learning over the last 10 years has seen many improvements over a wide 

range of applications. We have seen algorithms that can drive vehicles [1], master the oldest and 

most computationally complex board game GO [2]. And now learning algorithms can even beat 

professional human players at modern computer games [3].  

The surge in machine learning applications has also seen models become too large and unwieldy for 

many researchers to interact with. This results in having to use smaller less accurate versions of the 

models or having to pay for expensive equipment. Neural network pruning allows for larger models 

to be condensed into smaller forms allowing them to be used more universally. 

There are methods that can interpret specific learning algorithms, helping to explain these systems 

to an extent. These include counterfactuals [4], Shapley values [5] and model simplification and 

summation methods [6]. However, these methods are not applicable across the whole suite of 

learning algorithms, and most are for very specific use cases. Additionally, some of these methods 

must be included in a machine learning model before training occurs. This is a compounding issue, 

meaning that models developed without interpretability in mind are exempt from these 

interpretation methods. 

Although similar, interpreting and explaining are different things in machine learning. 

“Interpretability is about the extent to which a cause and effect can be observed within a system”, 

whereas explaining is “The extent to which the internal mechanics of a machine learning system can 

be explained in human terms” [7]. This means that an interpretable machine learning algorithm is 

not necessarily explainable. 

Interpretability is an important aspect when it comes to pruning neural networks, but it is extremely 

difficult to build a universal system that can provide interpretability to all flavours of machine 

learning models. Instead, this work focuses on abstraction of this problem to subvert the issues 

associated with interpretability. This is done by inspecting weight values and neuron activity and 

deriving importance from these values. 

Pruning allows for a smaller model with similar accuracy to be derived from a larger model, reducing 

its size and complexity. This work lays out a 3-step process to achieve such a task:  

• Network sparsity reduction. 

• Insignificant Neuron Identification. 

• Network retraining.  

These processes are repeated in a loop until the network performance degrades to an unrecoverable 

state, or the neural network is reduced to a desired size. 
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1.1 MOTIVATION 

1.1.1 Neural Network Pruning 

Machine learning has allowed for vast improvements in many fields [1,2,3], this thesis will focus on 

computer vision machine learning systems. Recently large text to image models have been 

developed by companies like stability AI, these models are so large that most consumer grade 

graphics cards (GPUs) cannot run these models [164]. This poses an issue as the only solution is to 

pay a cloud supplier, like google, to host a GPU for you. Or to pay for a service that removes all 

access to edit the model and just provides you with a prediction of the model [165]. 

This is not an issue limited to text to image models, models from many niches are often 

overparameterized [167]. This overparameterization is what results in models with high memory 

usage and slow run times.  

Pruning allows for models to be reduced in complexity (in terms of size) whilst preserving 

performance. It must be noted that everything comes at a cost and when it comes to pruning this 

cost is at training time, as models will take longer to train and prune. The models also may not be 

able to deal with edge cases that they previously could, this is due to the pruning process optimising 

the knowledge contained in the model [168].  

1.1.2 Interpretability 

In society we do not accept that someone just knows something. When someone is especially 

talented at a certain task with seemingly no explanation, they are called a savant or a genius. The 

rest of humankind must study books and papers, and practice… and then have it all validated by an 

exam. By today’s standards most machine learning algorithms would be considered savants.    

To understand the need for interpretable, explainable, machine learning algorithms it is important to 

understand that deeper insights into ML algorithms have far reaching applications. For example, in 

the application of driverless vehicles, when a crash occurs, it is important to know how the algorithm 

will react. Why did it react in that way? Should it have done something different [8]?  

Another issue in machine learning is ascertaining whether an algorithm is biased, and understanding 

what makes it biased. By having more insight into a specific machine learning model, an engineer 

can tune and optimise said model for the application more effectively. Interpretability casts a wide 

net in terms of the potential ways it can help researchers and industry. More research into 

interpretability methods might change the way we fix and identify biased algorithms. It may also 

affect the underlying architecture and optimisation methods we use in machine learning algorithms. 

1.1.3 Video Compression as a Test Case 

Before a large neural network can be interpreted, a suitable network must be found. Many of the 

larger neural networks like VGG and AlexNET are already well understood, for this reason a different 

sufficiently large, but poorly understood network needed to be found. Video compression 

algorithms provide the perfect platform for this, machine learning methods have been applied to aid 

video compression however the method these techniques use is self-learnt. This means that without 

interpretation the learnt compression method remains a mystery.  

Video compression isn’t new. There has been an evolution of algorithms starting in 1991 with MPEG-

1 [10] to the latest published standard H265 finished in 2019 [11]. Each algorithm adds new 

techniques to reduce the amount of disk space and bandwidth used by video whilst keeping the 

visual quality the same.  
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With the recent boom in the applications of artificial intelligence, researchers turned to compression 

algorithms to see if it would be possible to use machine learning to aid in this process. This has 

produced a similar evolution of machine learning models used in combination with video 

compression algorithms, producing compression software that contains elements of machine 

learning [12]. 

Algorithms that are intrinsic to the compression process can be used to increase the performance of 

a video codec [13]. It has been shown that a neural network can be used to replace 3 hardcoded 

filters in the standard Versatile Video Codec (VVC), namely the Deblocking Filter, Sample Adaptive 

Offset filter, and the Adaptive Loop Filter [13]. But this work is not without issues. 

The key issues with the implementation of the current state of the art as follows.  

• Currently the method runs alongside the normal filters in VVC, meaning that the analysis of 

the images for video coding are performed twice.  

• Additionally, the neural filtered image is not used in its entirety. Instead, a Rate Distortion 

calculation is performed between the two methods and the best patch for a specific region is 

picked.  

• Since the neural network is processing images at the same time as the other filters. When 

tests are performed on the test set, the proposed method takes 30% longer to process when 

aided by a GPU, and over 1000% longer when processed on a GPU.  

The problem here is twofold, if the network is aimed at replacing the function of these filters, why 

are they still in the codec? It seems reasonable to assume that their function should at least be 

disabled when performing compression with the neural network. Secondly, the proposed network is 

very complex. This means that with state-of-the-art equipment, inference can be performed within 

arguably acceptable time increases. However, if a graphical processing unit is not present then this 

method is completely unfeasible. 

This sort of neural network fits our needs perfectly. 

• Its functionality is poorly understood. 

• It’s too large and complex to deploy at consumer level. 

• A decrease in complexity would aid industry and research in this field. 

Therefore, this work will initially focus on reducing the complexity of this network with the aim of 

reducing the time component and lowering the barrier of needing a graphical processing unit.  

1.1.4 Further Experiments 

As this research progresses so will the complexity and universality of the pruning algorithm 

developed. After establishing a performant pruning algorithm for deblocking networks this research 

will focus on testing different implementations of the pruning algorithm. Many models, datasets and 

pruning types will be tested to confirm the efficacy and adaptability of the algorithm. 

This work culminates in controlled experimentation against state-of-the-art pruning methods. This is 

done to create concrete conclusions about the usefulness of the pruning algorithm. 
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1.2 RESEARCH QUESTION 
Can sparsity pruning be used in combination with neuron activity as a guide for structurally pruning  

neural networks? Can this pruning improve the computational efficiency of these networks? 

1.3 THESIS STRUCTURE 
Chapter 2 – Literature Review 

This first chapter covers key topics in detail, focusing on neural networks, interpretability, pruning 

and video and image compression methods. The reader will gain a foundational understanding in the 

key techniques used throughout this research.  

Chapter 3 – Development of Pruning Algorithm and Interpretation Tools 

This chapter covers the initial development of an interpretation tool called Machine Learning 

Imaging and the development of the basic pruning algorithm. Additionally, the intuition behind the 

pruning is explained in detail, and justified through observation. This work provides the reader with 

a fundamental understanding of the pruning and interpretation methods used to prune neural 

networks in this thesis. 

Chapter 4 – JPEG Restoration using Convolutional Neural Networks 

This chapter uses machine learning methods originally developed to aid video compression methods 

and applies them to aid with JPEG compression instead. This was done to test the universality of the 

method. Additionally, these experiments serve to further confirm the observations found in chapter 

3. The technique shows that training a network in a universal fashion not only reduces the number 

of parameters required, but also creates a more coherent overall network. Additionally the reader is 

provided with an introduction to image processing in machine learning systems and proves the 

universal efficacy of using MLI when interpreting neural networks.   

Chapter 5 – Pruning a Video Deblocking Neural Network 

This chapter expands on the work in chapter 4 and prunes a neural network used to reduce blocking 

artefacts in video compression. The network was reduced in complexity, inference time and memory 

consumption. This work was published at the ISCAS 2022 conference. This exposes the reader to the 

first fully realised version of the pruning algorithm and demonstrates its benefits. 

Chapter 6 – Pruning an Image Translation Generative Adversarial Neural Network 

This chapter applies the pruning algorithm used in chapter 5 on a Generative Adversarial Network 

and on 3 datasets. These experiments provide an insight into dataset complexity and the role it plays 

when pruning neural networks. The universality of the pruning algorithm and capabilities and issues 

when pruning Generative Adversarial networks are also investigated.  

Chapter 7 – Pruning Classification Networks 

This chapter applies the pruning algorithm to classification networks, these networks were selected 

by replicating the test methodology used by state of the art pruning research. These methods are 

compared and depending on the scenario our pruning algorithm performs the same as if not better 

than other state of the art methods. This is true for all tests except when using the Res-Net50 model. 

Theories are investigated as to why the method failed for this network. This chapter gives clarity to 

the reader with regards to how the developed pruning algorithm compares to others that currently 

exist in the literature. 
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Chapter 8 – Impacts of Pruning Neural Networks 

This chapter asks the question “what does pruning a neural network do to the internal 

representations inside the network?”. Experiments explore this concept by examining saliency maps, 

XRAI maps, maximisation maps and weight distributions of the network. Additionally, suggestions 

are also made as to what is being removed from the network in terms of “knowledge”, when 

pruning is applied.   

Chapter 9 - Summary of Contributions and Future Work 

This final chapter provides the reader with a summarised version of the main conclusions from each 

chapter and suggests some future work, building on the most viable concepts developed throughout 

the thesis. 
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2 LITERATURE REVIEW 

This research focuses on three overarching tasks, firstly, a suitably abstract problem must be 

identified to solve with an existing machine learning model. Then this model will be analysed using 

established methods using ML interpretability, and this will hopefully identify areas where the model 

can be improved. For the purposes of this research this problem will initially focus on using ML to aid 

in video compression (specifically image filtering and de-blocking).  

Secondly, this research will try to identify new novel methods to perform interpretability and 

analysis on basic, well established machine learning models. Once new tools have been created 

through this method, they will then be applied to the video compression task and other tasks to see 

if the method is truly model and application agnostic. 

Because of the two aspects above, and because an in-loop filter replacement neural network was 

selected as a starting point, it will be important to have a deep understanding of video encoding, 

machine learning and interpretability methods. The literature review will cover these aspects in 

detail. 

Additionally, a knowledge of neural network pruning will be required, this will be used to leverage 

the understanding gained through interpreting networks. The final step of this thesis will focus on 

testing the developed pruning algorithm on an image translation task, and image classification. 

Efficacy of the pruning algorithm will be determined through comparison with SOTA classification 

pruning algorithms. Individual chapters will have expanded literature reviews where needed. 

2.1 NEURAL NETWORK PRUNING 
Network pruning is a process whereby unimportant parts of a neural network are identified and 

removed from a neural network. The aim is to reduce the level of complexity required to compute 

the output and generally lower the requirements when a model is deployed.  

2.1.1 Taxonomy of Pruning Methods 

Pruning neural networks is an incredibly large field, this field contains many techniques that can be 

applied in a modular fashion meaning that grouping pruning methods can be difficult. However, 

pruning will always fit into one of the following 3 categories Structured, Unstructured, Semi-

Structured.  

2.1.2 Structured Pruning 

Structured Pruning is the process of removing sets of channels, filters, or neurons in each layer of a 

neural network. These components are removed in their entirety and in fact structured pruning can 

remove layers entirely [81,82].  

This kind of pruning does not require any kind of special hardware or software optimisations to 

achieve computational complexity reduction, and results in neural networks that are faster and 

more memory efficient. However generally structural pruning is difficult to implement without 

affecting the accuracy of neural networks.  

This kind of pruning will be the target for this thesis as it achieves the goals set out in the research 

question. 
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2.1.3 Unstructured/Sparsity Pruning  

Unstructured or sparsity pruning focuses on a model’s weights, this pruning will select from a set of 

weights and set a certain percentage of these weights to 0 [22,85,86]. This optimisation can be built 

directly into the learning function and so pruning can happen in tandem with training. 

This kind of pruning can provide speed up to machine learning models [112], however this requires 

specialised hardware and or software to achieve [49]. Sparsity pruning does provide a decrease in 

the size of model files when saved to disk. This is achieved by exploiting the amount of 0’s that have 

been stored in the weights file with run length encoding. 

Overall, this process does not inherently tackle the issues laid out in the research question and 

therefore will not be used as a final solution. It must be noted however that sparsity pruning has 

much less impact on the accuracy of neural networks and so this method still might prove to be 

useful. 

2.1.4 Semi-Structured Pruning 

Semi structured pruning (sometimes called pattern-based pruning) is an advanced version of sparsity 

pruning. This technique uses pre-defined “patterns” in its convolutional layers to optimise 

throughput of a machine learning model [83,84]. 

A simple way to consider this guided version of sparsity pruning whereby the metric that guides the 

pruning process will also take these patterns into account when zeroing out weight values. 

Again, like sparsity pruning this method needs additional software to achieve any runtime increases, 

however it is still of interest. 

2.1.5 Neuron/Weight selection 

Deciding how to select a neuron, or a weight connection for removal is key when pruning neural 

networks. This selection broadly falls into one of the following 3 categories, Magnitude, Sensitivity, 

Loss Change. 

Magnitude based pruning simply selects the lowest magnitude weights and removes them from the 

model. Sensitivity has different definitions depending on the specific works, but generally the 

importance of a neuron or channel is derived from the magnitudes of the weight connections to that 

neuron. Finally, loss change is a process of trial and error whereby a neuron or weight is removed, 

and evaluation is performed. If the loss goes down or stays the same due to this change, then the 

change is made permanent. If the loss goes up, then the change is reverted. 

2.1.6 Leveraging 0 weight values for pruning 

Whilst the pursuit of neural network speedup may seem futile when considering sparsity pruning 

there are some situations where one of these techniques may help the other. It is possible that 0 

weight values could be leveraged to reduce inference time and memory use, below is the general 

form for neuron activation in a neural network. Assuming all weight values for one neuron are 0. 

𝑓 (𝑏 + (∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

)) = 𝐴𝑐𝑡 

Equation 1: Activation of a neuron given the activation function f the bias value b and the weights w and the activation of 
previous neurons x. 
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If the weight values here are 0 then Equation 2 can be simplified to Equation 3. 

𝑓(𝑏) = 𝐴𝑐𝑡 

Equation 2: Simplified representation of a neuron where all connected weights are 0. 

Because bias is normally small and insignificant to the overall activation calculation the bias can be 

completely ignored, resulting in Equation 3 simplifying to Equation 4. 

𝐴𝑐𝑡 = 0 

Equation 3: A further simplified representation of a neuron where all connected weights are 0 and bias values are assumed 
to be 0. 

Removing these weights makes sense, but it would require an adaption to the current sparsity 

pruning methods to identify and remove these neurons (this would combine both sparsity and 

structural pruning). It may be perhaps that once pruned it is not guaranteed that all weight values 

for a given neuron will become 0, in this case a different selection criterion must be decided upon.  

2.2 INTERPRETABILITY 

2.2.1 Current Methods 

There are already many ways of interpreting ML models but very few are model agnostic, and even if 

they are model agnostic, they are not application agnostic, and may for example be limited to 

interpreting only specific tasks. 

Additionally, there is also the issue of displaying the explanation of a model, for image recognition 

tasks this might take the form of highlighting the “interest” the algorithm has had in certain pixels 

[14]. But explaining and interpreting why an ML model can play a modern computer game is not as 

simple [3]. This is because the model is assumed to also have some inherent knowledge of the game, 

this knowledge is what we wish to interpret in that specific case.  

2.2.2 Decision Tree Summation and Simplification 

Decision trees are large structures that lead to an answer, called a leaf, with multiple decision points, 

these make up a subtree. When these trees are small the answers can be easy to track back and 

interpret, but often trees are combined and as this happens the complexity becomes too hard for a 

human to understand [16]. 

The basic way of simplifying and interpreting decision trees is to individually evaluate each decision 

point and give a summary of how each affected the result of the tree. But there are multiple ways to 

achieve this goal, and all have different benefits. 

One of these techniques is called cost complexity pruning [16], this is a two-stage process where 

many trees are generated from the original. These are the same as the original tree, however each 

subsequent tree generated has the subtrees of the original tree replaced with leaves, until the last 

one generated is just a leaf. Then each tree is evaluated, and a final one is picked as the “pruned” 

tree [15]. This gives a much more simplified tree that can be easily interpreted by a human. 

Another approach is reduced error pruning, this process uses the original tree and replaces each 

non-leaf subtree of the main tree with the best possible leaf; achieved by looking at the change in 

miscalculation of this new tree. If the new tree gives equal or fewer errors then this subtree is 

replaced with the leaf, this continues until the error only increases. This once again reduces the tree 

and makes interpretation easier. 
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Similarly, pessimistic pruning is where the initial error rate of the tree is determined from a training 

set. A subtree from the original tree is then replaced when a misclassified case is within one 

standard deviation error of the tree’s error rate. This method is faster, and it does not require a test 

set of trees to be generated, it also simplifies the tree for interpretation. 

Finally, there is a method called simplifying to production rules. This does not prune the original tree 

but replaces it with production rules [16], this involves first creating the rules and then grouping 

them together for evaluation. Rules are generated by finding only leaves that have a positive 

influence towards the solution, any solution with a negative leaf is not a production rule. This has 

the benefit of knowing the reasoning behind “true” cases for a given tree but erases all explanations 

for “False” cases. 

These are all good ways of evaluating decision trees, and can to an extent, be abstracted to neural 

networks, however, this can only apply to linear neural networks and many neural networks are not 

linear.  

2.2.3 Distillation 

This is a method of reducing a large ML model into a smaller model that is almost as accurate as the 

original model. The idea is that the original model will be too massive to interpret, but the smaller 

model that replaces the larger one may be easier to understand. Distillation is not a directly 

interpretable method for machine learning but can be applied to aid other techniques and remove 

any redundancy of large models [17]. Some would argue however that it is an interpretation method 

for machine learning because the smaller network extracts the interpretable features from the 

original model and therefore the new model is intrinsically interpretable. 

2.2.4 LIME 

Lime focuses on interpreting a model by approximating the model depending on the predictions of 

the model. Lime produces a local linear explanation model that produces simplified inputs 

considered “interpretable”. These simplified inputs are mapped onto the input space in different 

ways depending on the input space. This method has been proved to be very useful in revealing 

exactly what a classifier has learnt. For example, LIME has been used prove that a dog/husky 

classifier is just detecting snow instead of huskies, as the model only contained training data with 

huskies in snow [18].  

2.2.5 Shapley 

Shapley values were used very successfully for ML explanations in 2017 [19]. This method focuses on 

3 main things. 

- Explaining a model’s prediction as a model itself. 

- Calculating SHAP values which are a measure of feature importance. 

- New SHAP values are calculated from these initial values that are better aligned to human 

intuition. 

This explainer model can in some ways be compared to the simple model created in distillation, it 

also focuses on feature extraction. These SHAP (Shapley Additive explanation) values can be used as 

a measure of feature importance of the original model. The additive and negative values of these 

values are calculated for a given input and can be presented as such shown in Figure 1.  
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Figure 1-Visulisation of SHAP values showing how the importance of a certain feature can be visualised. [19] 

2.2.6 Symbolic Metamodels 

This work combines two previous methods of distillation and model summation [21], the idea is to 

create a “white box” model out of a “black box” by creating an approximate version of the black box 

contained within a Meijer G-function. This method is completely model agnostic. The approach is to 

use a trained neural network alongside an untrained network, then by varying the inputs to the 

trained network a smaller “meta model” is trained that contains the capabilities of the larger model. 

This is distillation, the larger model is reduced in these meta models that can perform the tasks of 

the larger model at similar accuracy. Because the structure and complexity of the meta models can 

be controlled, they are kept small and linear, this allows for a simple conversion of the meta models 

to a Meijer G-function. This aids simplification, the initial Meijer G-function that is created is very 

complicated with many terms, these can be exponential depending on the size of your network. 

However, because this function is now linear and in equation form, the process of removing complex 

hard to interpret parts becomes as simple as removing insignificant terms. Now this ML system 

becomes a formula that needs very little processing power and removes any doubt of the reason 

behind an output.  

Whilst this symbolic metamodeling is very powerful, there is the issue that it is not built into the 

neural network structure natively, meaning after a network is trained only then can this process take 

place. Additionally, so far this work has only been demonstrated on a clinical basis, diagnosing a 

patient, and it does well but there is a maximum of 100 datapoints on an individual. So, in some 

ways dealing with interpreting an image (which can have over 2 million pixels per frame for 1080p 

video), could be considered more difficult than interpreting the diagnosis of a patient. 

2.3 CODING METHODOLOGIES 
As mentioned, video codecs have seen a recent rise in use of machine learning models to aid in the 

encoding decoding process. These techniques range from frame interpolation to super-resolution, 

but the use case we are interested in is deblocking filters. Although focused on the machine learning 

aspect it is important to have a base knowledge of the encoder used. Versatile Video Coding (VVC) 

started development in April of 2018, the successor to H.265 [25]. Many of the techniques used in 

VVC are transferable to other codecs, and so perhaps too are the machine learning integrations they 

have made. It will be used as the codec for any tests in this thesis. 

2.3.1 YUV files 

For the purposes of this research the video file structure used for tests will be a .YUV file. These are 

uncompressed video files that use the specific colour space of YUV. Files are stored as Luminance Y, 

and chrominance U and V. This is different to the RGB colour space, instead of all the components 

containing aspects of colour, only two do. However it continued to be the norm because the human 

eye is more sensitive to the detail contained in the luminance (Y) than the colour components (U,V) 

[26]. This is mostly due to the fact the human eye has twenty times rods than cones, rods are cells in 

the eye responsible for black and white vision and cones are responsible for colour [27]. Because of 
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this the colour components can be exploited and have very different compression applied to them in 

comparison to the Y components of the video. 

2.3.2 Block structure in video compression 

When compressing a video many methods are used, for this first stage of research we are not 

concerned with the compression contained between subsequent frames, called inter prediction. I 

will only be focusing on the methods used in a single frame, called intra prediction. It is also 

important to note that the method used by the AI in this research does not differentiate in its 

approach to dealing with these coding methods. It deals with one frame at a time and does not take 

advantage of any inter-prediction. 

When processing a frame of video that frame is initially broken up into smaller blocks called a coding 

tree unit (CTU), in the case of VVC the size of these can be set between a max of 128x128 or a min of 

32x32. This size is set for the whole sequence of video and cannot change frame to frame. Once the 

initial size of the CTU has been set, the block will be further partitioned into smaller blocks using a 

quadtree (QT) split, the idea is to make blocks of similar content so a general coding mechanism can 

be applied to the block. Next these blocks are split further through a recursive multi-type tree (MTT) 

this is done through a process of binary or ternary splits, this process can be seen in Figure 2. 

                        

Figure 2: Example CTU at multiple stages of sectioning. 

Eventually when the block structure has been decided through the process above, a lot of coding 

units (CU’s) will exist over the whole image. These range from the size of the max CTU 128x128 and 

4x4. The blocks should now contain similar parts of the image in terms of frequency profile, amongst 

other things. It is also important to mention that two of these are made per frame, one is used for 

the Y components and the other is used for the U and V components. 

The reason why I have described these in detail is because they are used by the machine learning 

algorithm described later and give deeper information of the image being processed. The argument 

could be made that this process should be left to the algorithm, but this will be discussed later. 

2.3.3 Filters 

Finally, the last process before writing the file to disk is application of filters, these are aimed at 

addressing issues that are known to arise from the coding processes performed on the CTU’s. The 

algorithm discussed later aims at replacing 3 filters, namely, Deblocking Filter (DBLF), Sample 

Adaptive Offset Filter (SAO) and the Adaptive Loop filter (ALF).  

2.3.4 Deblocking Filter (DBLF) 

This filter focuses on removing blocky artefacts between the different CU’s, this can occur because 

very specific coding has been applied to each CU, when these are side by side the CU block structure 

can become visible shown in Figure 3. 
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2.3.5 SAO 

This filter adds to the work done by the DBLF filter, it further smooths the pixel intensity, it does this 

depending on the edge shape of the pixels. Depending on this edge shape one of 32 bands is 

selected, this then indicates how drastically to offset the pixels in question to reduce the edginess of 

the pixels. These bands can be different for Y, U and V. 

2.3.6 ALF 

This is the last processing stage for each picture and is the tool that can be considered as fixing all 

the artefacts created as a side effect of the previous filtering stages. Like with many coding methods 

a cost is associated with each CU called the rate distortion (RD) cost. This can be considered for this 

explanation a comparison between the coded frame in its current form and the original frame. This 

calculation is used to compare each 4x4 block structure of the CU’s, these are grouped into one of 25 

filters that attempt to reduce the RD cost (bringing the coded frames pixel values back to the true 

frames values as much as possible). This can be seen as minimizing the Peak signal-to-Noise Ratio for 

any individual frame, this is the metric that VVC use on their tests and validation, so it makes sense 

that it is the last and most valued step. However, there are other metrics used by other companies 

that may prove more useful when calculating the quality of a frame of video [28][29]. 

2.3.7 Artificial Intelligence (AI) and video 

When trying to leverage the benefits of AI for use in a video domain, it is important to bear in mind 

what AI is good at, prediction. And whilst it might not be initially obvious where prediction occurs in 

video coding, once the problem is broken down the benefit of AI in this space becomes obvious.  

AI has been used for facial recognition for years now, with the advent of software like YOLO [30], 

general object detection has become relatively trivial [115]. And although developing these methods 

highlighted key facts, like the importance of convolutional components in machine learning systems, 

when dealing with images, these methods do not directly relate to how AI is leveraged in video 

coding [116]. 

The key difference for video coding, is that generally the task consists of taking large high-quality 

video files. Then using techniques that shortcut human vision and perception, a much smaller file 

that is still agreeable for humans to view can be created. This is done by removing components in 

the video that we do not notice. This is key to keep in mind, our video coding systems are hyper 

focused on human perception, this is exhibited in the framerate and the colour space [117,118]. 

Video codecs have been engineered to take advantage of the adequacy and inadequacy of our sight, 

for instance if a Pigeon were to watch a movie it would perceive a slideshow, and a dog sees far 

fewer colours than humans [119,120]. They would have both created very different video coding 

conventions to us. 

Figure 3: Examples of blocking artefacts due to modern encoding techniques 
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2.3.8 Super resolution 

Super resolution is the task of taking a low-resolution image and using a neural network to predict 

the components of the image that are not there. This task lends itself well to AI because datasets can 

be created easily that consist of artificially generated lower and higher resolution images [121].  

2.3.9 Frame Per Second upscaling 

Frame per second (FPS) upscaling is when an AI system is used to predict extra frames in a video 

sequence. Once again, the reason AI lends itself well to this task is that creating a dataset is simple, 

one could remove frames from an existing sequence. Slow motion footage is often used, this is 

recorded at much greater frame rates than normal video [122]. This is currently not used in video 

coding systems however it could very easily be implemented, in video coding there are already the 

idea of different types of frames, typically called I, B and P [32]. These stand for Intra frame, Bi-

directional predicted frame, and Predicted frame. I frames contain the most data, predicted frames 

and Bi-directional frames, as the name suggests, are predicted from previous frames, and therefore 

contain less data. When streaming video or watching television you may see artefacts on the image 

that look like movement is still happening correctly, but the image of what is on screen is incorrect. 

This is because an I frame containing the grounding for the whole process has not been received 

properly, and the other frames have continued to predict with the information that was available. It 

makes sense with the success that has been had in this field, much like the prediction process used 

by I B and P frames, you could use AI to predict these frames. However, currently the research 

seems more focused at making super high framerate video. This produces slow motion sequences of 

video without the need for an expensive high framerate camera [33].     

2.3.10 In Loop filtering for video compression 

A network that performs well as an in-loop filter can take up to 72 times the amount of time the 

standard hand-coded algorithms take [13]. This makes these approaches completely unusable in a 

general use scenario. Machine learning methods leverage different information from the encoder, 

be that optical flow information [35,36] or CU map information [13].  

For the purposes of this research, it is important to understand the use and generation of a CU map. 

A CU map is generated by VVC during the encoding process. The CU map is a segmentation map of 

the frame that has been encoded. The map is used to identify to the decoder where to apply specific 

filters and to allow for the removal of harsh boarders between regions of the image that have had 

opposing filters applied to them. By leveraging the information in the CU map as a guide for the filter 

process though attention, large performance gains can be had [13]. 

One drawback of these approaches is the time component added when using a neural network to 

perform such processes on a CPU. These networks must therefore be shrunk, or the fundamental 

knowledge extracted so that they can be applied more generally. 
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2.3.11 AI Loop Filtering 

The final technique used in video coding that currently leverages AI, is that of replacing the manually 

coded loop filtering algorithms with AI systems. Much like the two previous techniques creating a 

dataset is trivial when one has access to the loop filters being replaced, because VVC is being used 

for this research and the code is open source this is a simple process. 

Video coding work in this thesis focuses on state-of-the-art deblocking networks [13]. Deblocking 

networks were chosen because they take some of the techniques mentioned above and use them to 

replace the filtering process in VVC, generally improving the filters that were already in place. 

Deblocking networks often use similar network architectures as super resolution networks [37], 

these networks are then combined with attention based neural networks and used to signal the 

network the regions it must pay attention to.  

In short, the network takes in raw Y, U, V components of the video after the normal VVC coding 

methods have been applied, but before any of the filter processes have been completed. It also 

takes a flat quantization parameter (QP), which indicates to VVC what level of compression to 

perform on the video. Additionally, the block structure of each frame is also input into the network 

and is used as the attention mechanism. The network then outputs YUV components and tries to 

achieve an image as close to the original image before VVC coding was applied. Figure 4 shows the 

inputs and output variables of such a NN, Figure 5 shows the NN structure developed to complete 

the deblocking task. 

 

 

 

 

 

 

 

 

  

 

The network structure in Figure 5 splits up the processing of Y U and V. This is to allow the network 

to create separate processes for the colour processing and luma processing [13].  

The network was trained using the DIV2K dataset [38], the exact method behind making the dataset 

is not detailed. It is stated the network is trained at 4 QP settings and that the frames to be used for 

training were selected randomly from the whole dataset and cropped into 48x48 patches. The last 

main point to take away from this paper is that the loss function used is mean absolute error (MAE), 

additionally the weighting is such that Y values attribute 4 times the amount of loss than U and V 

shown in Equation 5. This is done because in the VVC test cases Y PSNR is valued much higher than U 

and V. 

Neural Net 

YUV 

Unfiltered 

Block 

Structure 

QP 
YUV 

Filtered 

Figure 4: Overview of neural network’s inputs and outputs used to 
implement the machine learning techniques [13]. 
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Figure 5: Simplified Neural network structure [13]. 

𝑙𝑜𝑠𝑠 = 4 × 𝑀𝐴𝐸(𝑌, Ŷ) + 𝑀𝐴𝐸(𝑈, Û) + 𝑀𝐴𝐸(𝑉, 𝑉 ̂)  

Equation 4: Loss equation used for training the network in Figure 3. 

This research shows that this neural net can successfully replace all the filters used in VVC and can 

even achieve better results than the standard filters. Additionally, the research suggests that while 

not essential, the QP value and the attention map aid the neural network train faster.  

2.3.12 Image restoration 

Image restoration is the task of taking a distorted version of an image and returning it to a state 

where these distortions cannot be perceived. There are many different forms of distortion that can 

be fixed. Noising, camera distortion and even littering the image with text can be removed with the 

use of one network [39]. The authors also set out a method whereby the ground truth does not need 

to be known to train the network. This allows potential for creating an image restoration workflow 

that can update its output whilst being deployed. 

Whilst not a traditional image restoration task (like de-noising), the network in figure 5 performs a 

very similar task. Essentially frames are intercepted before being fully decoded and the network 

attempts to restore the image at this intermediate point. Because the ground truth is known, the 

unfiltered, blocky image represents “noise”, and the aim is the original, ground truth frame that was 

fed into the encoder. 

When it comes to image restoration there are a few network architectures that lend themselves well 

to the task, residual networks seem to appear frequently [40]. The thought process behind this 

approach is that there is already a lot of information that you require for the output in the input 

image. This makes it possible to leverage a residual network, the network will incrementally add 

data back to the image. 
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Another type of network used in image restoration is a generative adversarial network (GAN) [123]. 

GAN’s are very good at this task as they create data where none existed before. This, combined with 

the adversarial nature of the network, allows for very specific tuning depending on the type of 

distortion being removed.  

Encoder decoder networks are often used in the similar task of image super resolution and are 

successful because of their ability to identify image features at different levels in the 

encoder/decoder architecture [39,41]. This allows for many textures and patterns to be learnt by the 

network and leveraged to restore the image. 

The network structure replicated for testing in chapter 3 is a residual network at its core, but it has 

an additional aspect of attention added to the residual blocks [13]. The attention implemented 

allows the network to adjust the contribution of individual filters depending on the input, this allows 

for residual filters to become highly specialised without penalising the network for learning edge 

case scenarios. 

2.4 VIDEO METRICS 
An important point that has not been addressed yet is that of video metrics, when comparing two 

images there are many metrics that can be used to compare the similarity between the two images, 

all these metrics are focused on measuring different specific aspects of the image, a list is below. 

Video metrics are often used directly by machine learning systems as part of the loss function. For 

example, the work in sections 4 and 5 both use MAE as a loss function. However, each metric 

accounts for different aspects of the image and so a model trained for MAE might perform poorly 

when measured using a different metric.  

2.4.1 Mean Squared Error  

Mean Squared Error (MSE) is a widely used metric for measuring the quality of a predictor, it 

represents the average of the squares of the errors between the predicted values and the actual 

values. The MSE quantifies the difference between the estimator and what is estimated, offering a 

way to measure the performance of a prediction model or estimator on a continuous scale. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − Ŷ𝑖)2

𝑛

𝑖=1

 

Equation 5: Mean squared error loss equation. A vector of n predictions, Y are ground truth values Ŷ are predicted values. n 
is the number of observations. 

2.4.2 Mean Absolute Error 

Mean Absolute Error (MAE) is a metric used to measure the accuracy of predictions, it calculates the 

average magnitude of errors in a set of predictions, without considering their direction. The MAE is 

the mean of the absolute values of the individual prediction errors on a set of predictions and their 

corresponding true values. This metric provides an idea of how far the predictions are from the 

actual values, on average. 

𝑀𝐴𝐸 =  
∑ |𝑌𝑖 − Ŷ𝑖|𝑛

𝑖=1

𝑛
 

Equation 6: Mean Absolute Error loss equation. A vector of n predictions, Y are ground truth values Ŷ  are predicted values. 
n is the number of observations. 
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2.4.3 Peak Signal to Noise Ratio  

Peak Signal-to-Noise Ratio (PSNR) quantifies the ratio of the maximum possible power of a signal to 

the power of corrupting noise that affects the fidelity of its representation. In essence, PSNR is a 

measure of how accurately an image or video has been reconstructed after compression, compared 

to the original. The higher the PSNR, the better the quality of the compressed or reconstructed 

image or video.  

𝑃𝑆𝑁𝑅 = 10 × log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) = 20 × log10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) = 20 × log10(𝑀𝐴𝑋𝐼) − 10 log10(𝑀𝑆𝐸) 

Equation 7: Peak signal to noise ratio equation. MSE is mean squared error, MAX is the maximum value possible in the 
dataset. 

2.4.4 Structural Similarity Index 

Structural Similarity Index (SSIM) is an advanced metric used to measure the similarity between two 

images. Developed to provide a more accurate and comprehensive way to assess the perceived 

quality of digital images and videos, SSIM considers changes in structural information, luminance, 

and contrast, rather than relying solely on pixel differences. This approach allows SSIM to align with 

human visual perception more closely. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1) + (2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

Equation 12: Structural Similarity Index equation. x and y are the two images being compared μx and μy are the average 

intensity values of x and y. 𝜎𝑥
2 𝜎𝑦

2are the variance of x and y. 𝜎𝑥𝑦 is the covariance of x and y. 𝑐1𝑐2 are constants used to 

stabilize the division. 

 

Figure 6: Visualization of PSNR maintaining a consistent value and SSIM changing, indicating how quantitative metrics and 
qualitative metrics can be disconnected from each other [158]. 
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3 DEVELOPMENT OF PRUNING ALGORITHM AND INTERPRETATION TOOLS 

3.1 EXPLANATION OF MACHINE LEARNING IMAGING M.L.I. 
Trying to explain the predictions of AI with the current interpretability methodologies has limited 

scope at best. The methods used are very arbitrary and hyper-focused on the task that the AI is 

trying to complete [124]. For example, in a text to speech model the metric used simply revolves 

around whether the AI has predicted the right word, right vs wrong is not explored because the 

concept of “correctness” of a word in this context is either right or wrong there is no grey area [125]. 

But the issue is never that simple, even humans often miss-hear things or even understand things 

very differently simply due to two words having the same pronunciation or spelling.  

The problem is best demonstrated in a simple image recognition task: often a confidence score is 

given to decide what is in a specific image. For example, an AI might be 20% sure a cat is in the 

image and 80% sure that a dog is in the image, in this case the highest “probability” is taken, and a 

dog would be selected. But what exactly does it mean to be 80% dog or 20% cat? It seems to be an 

accepted concept and used as an explanation, but it simply does not make any human sense. 

However, in the AI world it does. Much like in human perception, when one only has a sense of what 

the answer to a question could be, one guesses.  

Therefore, there is a case to completely rethink the way we currently understand the workings of AI 

systems. For this reason, this thesis contains development of Machine Learning Imaging MLI. MLI will 

be a software tool used to perform analysis on a neural network. Unlike many other methods it does 

not focus on the output and input of the model. This is to ensure this method will application 

agnostic and therefore have widespread applicability.  

MLI focuses on the structure of the neural network, basing all the analysis on the activation 

functions used, the weights between the layers and the types of structures used. This is particularly 

advantageous as mathematically all neural networks are just complex graphs. This is because graphs 

are defined mathematically as “a set of objects, that are related in some sense to each other” often 

“vertices, nodes and edges” [127]. Therefore, no matter how the field evolves and no matter how 

many more structures are devised, this form of analysis will always be applicable. 

The aim of this methodology is to provide an informative image that represents the usage of the 

neural network, this structure can be simulated for many different inputs, and the activations of 

individual neurons can be observed. The idea being that much like Magnetic Resonance Imaging 

(MRI) machines that are used to identify parts of the human brain that are specific for certain tasks, 

so too could MLI be used to identify parts of the graph network that are responsible for certain 

tasks. 
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3.1.1 Machine Learning Imaging Example Visualisation 

For now, the software is in a proof-of-concept stage and only creates a 2D visual representation of 

the model in question. Figure 7 shows the current visualisation. 

 

 

 

 

 

 

 

 

The visualisations in Figure 8 show the neuron activations for a given input image. This network was 

trained to identify drawn numbers between 0-9. Certain classes, 7 in this case, have a “fingerprint”, 

The term “fingerprint” is used because even though the 7’s drawn are of different shapes and sizes, 

they still elicit similar responses from the network. This suggests that the network has perhaps not 

learnt as many would expect in a cohesive way [128], but rather that there are specific sections of 

the network that are responsible for each number. The question arises would it be possible to 

extract these specific parts? Would it be possible to identify the parts of the network responsible for 

detecting a 7, remove it, and employ it separately from the rest of the network? This process could 

make neural networks reusable and recyclable, perhaps producing an AI system that are more a part 

of their sum than a sum of their parts.  

Additionally, as can be seen in Figure 8, it’s possible to identify “dead” parts of the network that do 

not perform any specific task. Perhaps by removing these parts of the network, models can become 

smaller and simpler to train and deploy. 

1st Hidden Layer 

2nd Hidden Layer 

Output Layer 

Figure 7: Initial examples of the Machine Learning Imaging visualisations. 

Figure 8: Machine Learning Imaging visualisations (upper row) changing depending on their input (lower row). Circled in red 
are regions of the network that do not activate for any classification of 7. (Full animation shown in appendix C.2) 
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MLI is a visualisation of the network activations and although useful for smaller networks, viewing all 

the activations of larger networks is impossible, there are too many. Therefore, this method will be 

used as a tool in the future to assign an importance value to a neuron or filter in a neural network. 

Low activation values indicate a low importance value and high activation values indicate a high 

importance value. 

3.2 INTERPRETING COMPUTER VISION NETWORKS 
This process is not as simple as it may first seem when trying to interpret an AI system that is based 

in vision. The standard approach is to use the activations in the neural network to create a map of 

“interest”, this is then visualised (normally as a heat map) back onto the input image. This kind of 

heat map is shown in Figure 9, in networks that perform classification tasks these maps can give 

confidence to the user. This is needed so that the user knows the neural network has detected 

certain characteristics that are important for the specific classification. 

 

Figure 9: A simple number detector explained by using red pixels to indicate more network interest for the given scenario 
and green less. 

These methods are very effective and can give a high confidence that the network has learnt exactly 

what differentiates the classifications. In Figure 9 when segmented, the network determines that the 

parts of the image that identify the three are the exact pixel values, although as this is not good 

enough as the same pixels would light up for an 8, 0 or 9 [129]. The metric on the far right uses what 

can be considered a counterfactual argument, by looking at the parts of the image that most 

strongly disagree with the image being a number that isn’t 3. The network has determined that the 

two parts of the three not being joined together towards the middle determine that it is most 

probably not an 8. Additionally, the top right not being joined to the middle also removes the 

possibility of the number being a 9. These regions can be seen in the far-right plot, highlighted by the 

red regions. 

This technique of proving why the network classifies in this way is effective but cannot be applied to 

all NN tasks directly, this is mainly because classification is commonly not the desired outcome. 

There is no way to trace importance through the network in the same way for a super-resolution 

network because the network does not have set “classifications” to compare against [130]. 

Other methods must therefore be developed, for pixel augmentation tasks like Super Resolution (SR) 

and Noise Reduction (NR), it is possible to compare the image before filtering and after filtering. This 

is traditionally done by directly comparing how much the pixel values have changed. This process 

could be repeated and compared to non-AI approaches that achieve the same task. By combining 

these visualisations, it may become apparent how a machine learning solution differs from a non-

machine learning method [121]. 

Additionally, an approach has been adopted recently where the convolutions of the neural network 

have been visually represented [43], this does not require the network to be a “classifier “. The 

rationale is that the convolutions in the network will inherently contain the structures that the 



P a g e  3 9  |  D e v e l o p m e n t  o f  P r u n i n g  A l g o r i t h m  a n d  
I n t e r p r e t a t i o n  T o o l s  

 
network is looking for in an image, shown in Figure 10. However, this approach will have to be 

refined if used for pruning. As there can be thousands of different and separate convolutional parts 

of a neural network. 

 

Figure 10: Convolutional filters that have been identified as important for a classification of a dog [43]. 

Another approach is visualisation of the network itself; this approach removes the issue of input and 

outputs to the network. This method aims to produce a representation of the structure of the neural 

network. The exact structure will be derived from the weights, biases, connections, and datatype 

presented to the neural network. The hope being that information can be directly extracted from 

this representation like overfitting, undertrained networks, redundant layers and neurons, 

unsuitable network structures [132]. The benefit of using this method is that this information can be 

learnt from any neural network from the structure, weights, and biases alone. Therefore, 

interpretation would not have to focus on the input and output of a specific network and could be 

more universally used. 

3.3 CONCLUSIONS 
This chapter introduces the interpretation method of MLI, this method aims at providing a model 

and data agnostic approach to determining the utilisation of a neural network. Whilst this kind of 

visualization is very informative for small networks, the usefulness of such a method will decrease 

exponentially with model size. 

Additionally, whilst this method clearly illustrates the neurons most utilised for a given prediction, it 

does not give a concrete explanation of what is happening. Sections of the network are specialised 

for a given class, but explaining the prediction of the network in detail still needs to be addressed. 

Because of these two facts, MLI will be used to give a “neuron importance score”, the observations 

in Figure 8 indicate that some neurons are more important than others. For a full visualization of the 

network on different classes please visit [1].  

This will help solve the issue of having to manually inspect neurons to identify “importance” when 

dealing with large networks. However, this does not directly assist with explaining the predictions of 

the network, this concept is tackled in chapter 8.  

The neuron importance score will consider how much a single neuron is utilised across multiple 

inputs by averaging the importance value. This score will be utilised to help guide the pruning 

process described in chapter 4. 

 

 

[1] - https://www.youtube.com/watch?v=Lw-WSmSzTJc&ab_channel=JustAVoice  

https://www.youtube.com/watch?v=Lw-WSmSzTJc&ab_channel=JustAVoice
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4 JPEG RESTORATION USING CNNS 

4.1 PREFACE 
This chapter aims to provide a stable and easily retrainable machine learning platform focused on a 

vision-based task to allow for interpretability and pruning tests. Additionally, these experiments test 

the ability of a state-of-the-art deblocking neural network [13], to adapt to different types of 

compression artefacts. 

4.2 TRAINING METHODOLOGY 

4.2.1 Introduction to JPEG Restoration 

Early on it was observed that the kind of image filtering performed by video coding algorithms such 

as H265 were very similar to the techniques used by the image compression standard JPEG [44]. 

However, there are some key differences that effect H265 and not JPEG compression. For instance, 

JPEG works with a fixed window size for processing, as do all previous video encoding techniques. 

One of H265’s innovations rely in part on the ability to vary the size and shape of the window when 

processing an image [134], this is achievable through the variability in CU size shown in Figure 11.  

 

 

 

 

 

 

 

Figure 11 – The left image shows H265 blocking artefacts that are blocky but vary in size. The right image shows JPEG 
compression artefacts that are consistent square boxes, indicating the difference in the techniques. 

JPEG compression works in a fixed 8x8 pixel grid, which is why the artefacts are so much easier to 

see, especially at a high compression rate. Whilst it is not in the scope of this work to rewrite the 

whole JPEG standard to use this variable block size for compression, it seems like a very simple way 

to vastly improve this image compression technique. However, a neural network is not limited to 

this block size limitation, meaning that filtering can be applied across the whole image and not just 

the small 8x8 sections. 

State-of-the-art deblocking neural networks use the CU map that is generated during the encoding 

process to aid with artefact removal, this map is not needed for JPEG compression removal [13]. This 

is because it is completely predictable and unchanging. The network would have nothing to learn by 

feeding in a segmented 8x8 CU map for the whole image because it would not ever change [135]. 

Because of this the network proposed for this work uses an Identical structure to that of the state of 

the art but removes the CU map as an input. 

By providing the compression ratio of an image as an input, the network may adapt and be able to 

process compression ratios that it wasn’t explicitly trained for, this is in stark contrast to the other 

methods developed that use individual networks for each compression level [45,46,47]. 

Redacted 
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4.2.2 Dataset 

To train the neural network the DIV2K dataset was used [38], this dataset was split into 48x48 

patches. To be comparable to other JPEG compression methods the dataset was compressed using 

JPEG compression at 6 different compression levels, 10,20,30,40,60 and 80, a lower number 

indicates a higher compression level.  

SET5 was used to evaluate the performance of the network as it is used in many publications related 

to JPEG compression and image noise removal [136]. 

DIV2K contains 800 train images which when encoded at the compression ratios of 10,20,30,40,60 

and 80 gave a total of 4800 potential images for training, Figure 12 shows the data processing to 

create this training set. The images were encoded using readily available JPEG compression libraries 

in python, and the PSNR measurements for SET5 under all compression ratios were compared 

against academic publications and confirmed to be identical [45]. 

 

 

 

 

 

 

 

These 4800 images were split into two datasets, one from now on referred to as “the low-end”, 

comprised of compression ratios 10,20,30 and 40. The other, from now on referred to as “the broad 

range”, comprised of the compression ratios 10,40,60 and 80. Each of these datasets contained 3600 

images each. 

The images were additionally converted into the YUV colour space, this was replicated to match the 

logic of other deblocking networks which highly valued the Y channel as it contains 2 times the 

information of the other two channels combined [13].  

The Compression Ratio (CR) was presented to the network as a decimal between 1 and 0, this was 

calculated by dividing the actual JPEG compression ratio, which can be any value between 1 and 100, 

and dividing by the maximum value of 100. This value was then made into a 2D array the same size 

as the input image and use as an input where normally the QP and CU maps would have been. 

 

 

 

4.2.3 Neural Network Structure 

For these tests a SOTA model was adopted, however a few changes were made to the inputs, the CU 

maps and QP were removed as inputs and replaced by CR [13]. 

JPEG Compression 

Software 
COMPRESSED 

.JPEG OUT 

COMPRESSION 

RATIO 

.PNG IN 

Figure 12: Dataflow in the image augmentation process for compressed 
JPEG images. 
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Figure 13: Separated luma (Y) branch of the network that will be replicated to achieve the task of JPEG artefact removal 
[13]. 

Additionally, the tests performed only included the Y branch of the original network.This is because 

the tests performed on JPEG artefacts commonly compared in papers are greyscale and hence have 

no colour information. This model structure is shown in Figure 13. 

4.2.4 Training   

The Adam optimiser was used with a learning rate of 1x10-3 and mean absolute error was selected as 

the loss function. The network was trained for 100 epochs with a batch size of 128 on the low-end 

dataset and then again from scratch on the board-range dataset. 

This resulted in 2 networks, one highly specialised at very compressed JEPG images and the other 

which could handle a broader range of compression ratios. 

The network was trained on two RTX2080’s, two additional models were trained on only one 

compression setting, this was trained on the compression rate of 10 and 40. This was to test if the 

model would perform better when only trained on one compression ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 RESULTS 
Below is a table of results compared to a few other current SOTA methods performing JPEG artefact 

removal on a greyscale version on the SET5 dataset. 

C
R
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Table 1: Comparison against SOTA methods of JPEG artefact removal at various compression ratios best results are in bold 
2nd best underlined 

QF Method PSNR 

10 JPEG 27.82 

 ARCNN [45] 29.03 

 MemNet [46] 29.69 

 RNAN [47] 29.63 

 Ours (Low-End) 29.67 

   

20 JPEG 30.12 

 ARCNN 31.15 

 MemNet 31.90 

 RNAN 32.03 

 Ours (Low-End) 31.90 

   

30 JPEG 31.48 

 ARCNN 32.51 

 MemNet 32.97 

 RNAN 33.45 

 Ours (Low-End) 33.17 

   

40 JPEG 32.43 

 ARCNN 32.68 

 MemNet 33.86 

 RNAN 34.47 

 Ours (Low-End) 34.02 

As it can be seen our results are beaten by RNAN methods for all the experiments except the 

compression ratio of 10, MemNet is better at compression ratios of 20 and 10 but is beaten by our 

method at ratios of 30 and 40.  

However, this is not an entirely fair comparison as these models all have vastly different model sizes 

as seen in table 2. Additionally, all the other approaches had individual models trained for each 

compression ratio, meaning 4 models were trained to achieve the same task of our singular model. 

Training times would still be identical as all models have a similar amount of total training data.  

Table 2: Parameter comparison for SOTA methods, the last column considers the fact that all other methods require a 
model for each compression ratio. 

Model Num of Parameters Num of Parameters for all models 

ARCNN 106k 424k 

MemNet 677K 2.7M 

Ours 879k 879k 

RNAN 7.4M 29.6M 

These results for all models suggest that whilst our network can perform with a similar accuracy to 

MemNet, there are less parameters in our network. Additionally, whilst RNAN has better results 

than our network it uses more than 7 times the number of parameters.  

Testing the network did raise another interesting question, what happens if you input in a different 

compression ratio to the ML model, than what you know the image to have been compressed at? 
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Figure 14: Results of applying the low-end model to reduce compression artefacts of images at compression ratios 
0,5,10,15,20,25,30 and 40. (Appendix G shows a similar plot with all compression ratios). 

 

Figure 15: Results of applying the low-end model to reduce compression artefacts of images at commonly used compression 
ratios

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45

P
SN

R
 G

ai
n

 O
ve

r 
JP

EG
 B

as
el

in
e

Simulated Compression Ratio

PSNR Improvement over baseline JPEG compression for simulated compression ratios 
of Classic 5 using the Low-End Model for enhancement

0 5 10 15 20

25 30 35 40

JPEG compression ratios 
used to compress SET5 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

P
SN

R
 G

ai
n

 O
ve

r 
JP

EG
 B

as
el

in
e

Simulated Compression Ratio

PSNR Improvement over baseline JPEG compression for explicity trained and simulated 
compression ratios of Classic 5 using the Low-End Model for enhancement

10 20

30 40

JPEG compression ratios 
used to compress SET5 



P a g e  4 5  |  J P E G  R e s t o r a t i o n  u s i n g  C N N s  

 

As can be observed from Figure 15 and 14 if an image is decoded at a PSNR ratio that it wasn’t 

encoded at, the neural network can produce worse results than the baseline JPEG compression. This 

is shown by the negative regions in the graphs. However, this is easily avoidable as all JPEG images 

have the compression ratio stored in the file structure, and this is easily retrieved and can be input 

to the machine learning system. 

The more perplexing result is Figure 15, this shows that even when the correct compression ratio is 

chosen (indicated by the thinner lines at compression ratios 10,20,30 and 40), it is not the ideal 

compression ratio to present to the network for best results. The thicker coloured line for each of 

the compression ratio shows the point at which the best PSNR results were obtained.  

For a compression ratio of 10, this ideal ratio occurs at a simulated ratio of 12, for 20, 21 for 30, 32 

and for 40, 46. It is also important to note that this simulated ratio was applied to decode the whole 

of the set5 test set. However, it can be assumed that each individual image has an ideal compression 

ratio associated with it, to be best decoded at by the neural network. 

Future research could predict the compression level presented to the neural network given an input 

image. Additionally, there is no reason to assume that the whole image will have the same ideal 

compression ratio, it is known that JPEG is better at compressing some features in images than 

others [48]. By training a small network that could learn this ideal value for sections of a whole 

image, it would not only remove the limitation of having to know the exact compression ratio of the 

image, but it would also maximise model performance.  

This phenomenon is even more pronounced when analysing the broad range results in figure 16, the 

images compressed at a ratio of 10, have the best result when processed with a simulated ratio of 2. 

40 has its best ratio at 33, 60 at 55 and 80 at 74. It’s interesting that all the best results are shifted 

backwards from their actual encoded number instead of forward like the low-end results. It’s also 

interesting that the shift seems to be far more pronounced. 

I hypothesise that the greater distance from the actual compression ratio shown by the low-end 

would indicate that the JPEG algorithm has specific techniques in place that operate in a cut off 

fashion instead of a slow additive one. This is confirmed by the JPEG standard [44] where the 

algorithms for the different levels of compression ratio are explained. 

It is also important to note that as a biproduct of this, the performance on the commonly tested 

compression ratios of 10 and 20 is notably worse, however the ability of the model to adjust to have 

good performance at 30 and 40 is impressive. The fact the model was not explicitly trained for these 

compression ratios but still has good performance confirms that the model does have the ability to 

learn the JPEG compression problem in a generic way. 

Table 3: Comparison of a model trained on a broader range of image compression ratios compared with a model trained on 
a more tightly grouped range of image compression ratios. 

QF Method PSNR 

10 Ours (Broad-Range) 29.45 

 Ours (Low-End) 29.67 
   

20 Ours (Broad-Range) 31.81 

 Ours (Low-End) 31.90 
   

30 Ours (Broad-Range) 33.14 

 Ours (Low-End) 33.17 
   

40 Ours (Broad-Range) 34.02 

 Ours (Low-End) 34.02 
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Figure 16: Results of applying the broad range model to reduce compression artefacts using the compression ratios that the 
model was trained for. 

Additionally, the models were tested that were trained for one specific compression ratio. The table 

below shows the results for two models compared to the low-end training results.  

Table 4: Comparing training a model for one specific compression ratio against training a model for multiple compression 
ratios. 

QF Method PSNR 

10 Ours (Specifically trained) 29.66 

 Ours (Low-End) 29.67 
   

40 Ours (Specifically Trained) 33.99 

 Ours (Low-End) 34.02 

 

The results for the specifically trained models were nearly identical but slightly worse than the 

results from the Low-End model. This suggests that the low-end model has learnt a better approach 

to restoring JPEG artefacts from observing multiple identical inputs at various compression ratios. 

This result was highly unexpected, it makes an extremely good argument that these kind of 

restoration networks should be trained on multiple compression ratios distilled into one model, 

instead of focusing on one compression ratio and training many models. 

Research has now moved in the direction of controllable restoration [137], the kind of methodology 

used in this new research is highly correlated with the research in this section. The fundamental idea 

of controllable restoration is training a model for multiple types of image degradation, be that noise 

or compression artefacts. These are all applied at different levels during the training so that the end 

user can decide the level of restoration they wish to apply [137].  
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4.4 INTERPRETING VISION BASED NEURAL NETWORKS WITH A VIEW TO NETWORK REDUCTION 
To test the hypothesis that some neural networks can be underutilised [139], reinforced by the 

previous tests on MNIST, it was decided that feature maps of the trained JPEG model should be 

checked to observe their utilisation. Feature maps shown in this section have a range of importance 

scores, these scores were calculated using MLI. 

 

Figure 17: Visualisations of multiple filters from the trained mode given one input image. Input image (Top Left) Filter 43 
(Top Right – Importance score 0.7) Filter 25 (Bottom Left – Importance Score 0.3) and Filter 30 (Bottom Right – Importance 

score 0.015) for conv layer 11 

By inspecting the feature maps, we found highly specialised filters at multiple levels in the neural 

network. In Figure 17 43 looks like a standard edge detector, whilst filter 25 looks like a basic hair 

detector.  

Figure 18 has vastly more specialised filters, filter 84 seems to be turning individual 8x8 blocks on or 

off based on some metric the network has found. This can be assumed to be because of the 8x8 

processing that JEPG applies, and the different approaches the algorithm has utilised depending on 

the contents of the image. And in Figure 18 filter 33 seems to be a highly specialised 45° hair 

detector.  
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Figure 18: Visualisations of multiple filters from the trained model, located deeper into the neural networks structure. Filter 
68 (Top Left – Importance Score 0.95), Filter 84 (Top Right – Importance Score 0.8), Filter 64 (Bottom Left – Importance 

Score 0.01) and Bottom Right Filter 33 at conv layer 107 – Importance Score 0.3. 

Additionally, we observe filters that are barely used, filter 30 in figure 18 and filter 64 in figure 19 

both indicate low utilisation by having little to no output. 

 

 

 

 

 

 

 

 

 

Figure 19: Input image that produces the filters in figure 20. 

REDACTED 
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Figure 20: Visualisations of two filters that were determined to be minimally activating from the input shown in figure 17. 
Filters 30 from layer 11 (bottom Left – Importance Score 0.015) and filter 64 from layer 107 (bottom right – 0.01) are once 

again shown to have little to no activations present when using the input in figure 19. 

The observations in Figure 20, confirm that the observations from the MNIST tests are present in 

larger vision based neural networks. These observations also show that non-classification networks 

are also underutilised, and hence redundant components may possibly be removed. 

4.5 CONCLUSION 
Primarily in this section we have proven that the network presented in previous works [13], in have 

an architecture that is transferable and can be used to reduce JPEG image compression artefacts. 

We achieve results that are comparable to SOTA models of a similar size, however larger SOTA 

models outperform our solution by a significant degree. 

However, whereas in other papers 4 models are trained for each individual compression ratios [46], 

we only train one network, and guide the level of restoration by using the compression ratio as an 

input. This means that our one model solution is far more applicable to real world scenarios, we also 

show that the model achieves a level of generality when trained over a larger range of compression 

ratios, allowing it to remove artefacts from images it wasn’t specifically trained for. Additionally, we 

show training for one compression ratio at a time as opposed to many has little to no impact on 

performance. 

We could make the claim that because of this our network is 4 times more efficient, however I think 

there is a more important takeaway. Instead, I would recommend that future networks of this type 

adopt this method and include the compression ratio in the input data. It has little to no impact on 

model performance and it shrinks the footprint of the models saved on hard drives by 4 times.  

Secondarily we have investigated the utilisation of non-classification computer vision-based models. 

We have found that these kinds of models are (like classification models) underutilised. This result 

suggests that pruning should be applied to large computer vision networks to reduce memory usage, 

inference time and achieve other savings possible through neural network pruning.  
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5 PRUNING A VIDEO DEBLOCKING NEURAL NETWORK 

5.1 PREFACE 
The following body of work aims at replicating the achievements of previous SOTA model ACDNN 

[13] and then pruning this replicated network to test the viability of a pruning algorithm developed 

alongside M.L.I. A streamlined version of this work was published in ISCAS2022 [111] and provides a 

robust method for pruning this type of network.  

5.2 PRUNING METHODOLOGY 
In the previous section describing MLI we showed that for certain classifications, specific neurons 

are not used and can be considered “dead”, this raised the question as to if there are neurons that 

generally do less work than others.  

5.2.1 Visualizing convolutional layers 

It is common in visual AI tasks to visualise the convolutional filters in the network to try and infer the 

structures, textures and ultimately the objects that have been learnt by the neural network.  

It was determined that most of the model’s filters were performing very few alterations to the 

output of the model, shown in Figure 21. 

 

 

 

 

This phenomenon is also found in the dense layers, shown in Figure 22, where some neurons in the 

layer are used much more than others.  

Figure 22: Comparison between 2 fully connected layers, the one on the left shows very small activations over a large 
output space, whereas the one on the right shows high activity over a smaller output space. 

Figure 21: A minimally activating feature map in the first convolutional layer of the model (Left) and a 
nominally activating feature map (Right). 
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It was found that there was an abundance of filters and neurons that did not seem to produce a 

large magnitude output. To test the hypothesis that these filters and neurons were redundant they 

were removed, but this approach was not fruitful. This was because even though the impact of these 

filters seemed small, they still were fundamental to the overall output of the neural network. 

To leverage these “dead” neurons and filters a more refined way to identify and remove filters and 

other structures in the network need to be developed, in a way that did not impact the performance 

of the model. 

5.2.2 Filter Pruning Methodology for Neural Networks 

The method used to aid with pruning in this case was sparsity pruning, for our purposes it made the 

most sense to use a readily available pruning library, and so the TensorFlow optimization toolkit was 

used [49]. This toolkit allows sparsity to be applied to any TensorFlow model, this was important 

because if this method would prove successful in reducing complexity of our neural network, then 

we wanted a platform that could easily be transferred to other networks. To check if this pruning 

method was limited to this model or if it was more far reaching.  

After the model has been trained to an acceptable accuracy level, standard TensorFlow sparsity 

pruning is applied. However, sparsity pruning is not applied “model wide”, for reasons explained 

later it may not be possible to apply pruning on certain layers. Additionally, there may be layers that 

do not make reasonable sense to prune, for example input and output layers. This is because the 

function of these layers is so directly linked to the data and task of the network. No useful network 

reduction can be achieved by pruning them unless the data is highly specific and sanitised [158]. 

As mentioned in the literature review, sparsity pruning does not guarantee all weights around a 

specific neuron will be zero. However, neurons that have a low importance score after sparsity 

pruning, can more easily be removed from the network without affecting accuracy.  

To identify specific neurons for removal, firstly the network was sliced at multiple stages. The points 

where the network was sliced was decided before this step was undertaken. This was done manually 

and was predicated on the structure of this specific network and would have to be decided by the 

architect of any complex neural network. The reason for slicing the network in this fashion was to 

easily obtain the activations of the neurons at the layers we were interested in pruning.  

 

 

Figure 23: Model slicing applied to aid with gathering neuron activations at predefined “pruning points”. 
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The slicing process produces N sub models, where N is the number of layers where we will attempt 

to physically remove neurons. Once the sub models have been created, neurons can be identified for 

removal. 

To identify the neurons that can be removed from the network 10% of the test set was passed into 

the network, the test set has also been patched and split in the same way that the train set has 

been. Then the filter activations for each channel at each cut point was recorded, these values were 

then added together and averaged over the total amount of patches and the size of the patch that 

were input into the model. This produced a patch at each cut point that indicated the amount on 

average that the filter was used. For fully connected layers this process was the same, however as 

the number of neurons in the layers do not change depending on patch size, like convolutional 

filters, the output was simply averaged for each neuron over the number of examples.  

 

Figure 24: The upper filters are from the 3rd layer of the NN and can be seen identifying the vertical (left) and horizontal 
(right) CU components. Then the lower filter in the 4th layer combines both with parts of the original image to get a CU map 

that represents part of the image where deblocking needs to be applied. 

Once an average importance value had been obtained for both fully connected neurons and for 

convolutional filters, some could be selected for removal. For fully connected layers this process was 

trivial, as the position of these are always static and, in some ways, independent of the input. A 

simple thresholding value was set for these. If a neuron were to fall below this value, it would be 

removed from the dense layer. Convolutional filters were more of an issue, at first, L2 Norm was 

used as a metric, but because the outputs of these filters were so input dependent these approaches 

did not work.  
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Additionally, as seen in Figure 24, sometimes a filter can become very focused on an input to the 

network, in this case, a CU map. This is exactly the sort of behaviour we expected and wanted from a 

network performing a deblocking task, as often blocking artefacts are worse at CU boarders. We do 

not want to prune these filters as they seem essential for the task at hand. 

 

Figure 25: Input image use to generate the visualisations in figure 30. 

A method had to be created that did not accidently trim these advantageous filters. The realisation 

that eventually led to the correct method for trimming filters was that the network was dealing 

directly with pixel information. 

The network inputs and outputs pixels at a colour bit rate of 10. However, these have been scaled 

for the network between values of 1 and 0. Therefore it can be supposed that the lowest meaningful 

value in the network must be the lowest pixel representation available.  

𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 = 210  = 1024 

𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑃𝑖𝑥𝑒𝑙 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑎𝑡𝑖𝑜𝑛 =
1

1024
= 0.0009765625  

Equation 8: Maximum pixel value used to calculate the smallest meaningful pixel representation inside the model. 

For simplicity’s sake the value was rounded to 0.0001. Further research needs to investigate more 

refined methods to perform the final identification step, however for now, the averaged filter output 

is simply checked for values below 0.0001. If all values in the averaged filter are below this 

threshold, then the filter is removed, if the pruning loop runs and no filters or fully connected 

neurons are identified for removal then the threshold value is increased by 0.0001, but only if no 

filters are identified for removal, otherwise the value returns to 0.0001. This is done to not remove 

filters at an overly aggressive rate. 

5.2.3 Network Architectural considerations 

Because ideally, we would like this methodology to be transferable to other neural networks, a 

general case had to be developed of each layer-to-layer connection. Whilst we cannot predict how 

any amount of machine learning engineers might decide to form their networks, we can predict the 

most likely kinds of connections required. 
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5.2.3.1 Non-Learning Layers 

These layers are effectively ignored in our pruning process, these are layers like GAP, Gaussian 

Noise, Max/Min, Multiply and Add. These functions and ones like them represent unlearnable 

characteristics, they are simply added to models to combine outputs or to apply pre-defined 

processing. These layers cannot be controlled by the network’s learning process and as such it makes 

little to no sense attempting to interpret and leverage their output. We already know what they are 

doing, and they will exist in a network for a specific reason that has been identified by the 

researcher. 

5.2.3.2 Learning Layers 

These are any layer that the network’s learning process has direct control over, Convolutions and 

Dense layers are the main form of these layers. However, these have many subcategories that must 

be catered for, i.e., Dimensionality 2D,3D,4D.  

5.2.3.2.1 Dense Layers 

When removing a neuron from a dense layer it is required to remove all weight and bias references 

from the previous layer and the subsequent layer. This does change for dense layers, depending on 

the number of neurons in the subsequent and previous layer, the number of connections that need 

to be trimmed change.  

  Located Neuron        Removed Neuron 

 

Figure 26: Visualisation of the proposed method to remove a neuron in a dense layer (here the neuron is red) additionally all 
red weights shown were also removed. (Full animation shown in appendix B.5) 

5.2.3.2.2 Convolutional Layers 

Convolutional layers are more complicated, in a convolution you have a concept of a kernel. This is a 

2D grid of size X by X that has been predetermined by the network’s architect, this grid will have a 

set of values associated with it, and each make up a kernel. Each channel will have n kernels, where 

n is the amount of input channels of the convolution. Each of these kernels is passed over the input 

channels and summed together with a bias to give an output channel. This brings up some issues, 

because not only has the kernel overlapped multiple times with itself it has also been combined with 

other kernels and a bias value to give an output to the channel. Because of this kernel trimming is 

nearly impossible, not only because the number of kernels depends on the input to the layer. But 

also because of the sheer amount of data mixing between the layers and channels that occurs.  

Due to this fact we only attempt to trim entire channels from the output of convolutional layers. This 

simplifies the process immensely and allows for large gains in network calculations.  

5.2.3.2.3 Residual Layers 

Residual layers add another layer of complexity, this is because of the nature of residual layers. They 

aim to pass through most of the data that is passed to them. In networks that deal with pixel 
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augmentation it’s not needed to change the input that much; only small augmentations need to be 

made. However, this kind of architecture creates an issue, in that, the data input to the residual 

layer must be added to the output of the layer. This means that the dimensionality must match at 

the input and output. Normally this is not an issue, but when pruning is applied, it is possible that a 

convolutional or fully connected layer inside the residual layer is selected for pruning, this can cause 

dimensional mismatches. 

There is a very quick, and simple solution, which is to simply trim the same channel that was 

trimmed by the convolutional pruning from the input, but this isn’t without issue. In the case where 

many residual blocks are chained together, often standard in these sorts of networks, they will no 

longer be able to access this channel because it has been trimmed away. And whilst one specific 

residual block might not use one specific channel there is no guarantee that the next will not. 

Because of this we opted to retain the channels that were lost by any convolutional pruning and 

instead these channels were just re-concatenated back into the main branch. This allowed for 

trimming of these residual layers without heavily impacting the output of the model. 

5.3 PRUNING APPLIED TO A DEBLOCKING NEURAL NETWORK 
The network used in the SOTA [13], processes all 3 components of an image Y U and V. For the 

purposes of this work this network was split into 3 individual models. This was done because it was 

surmised that each component needs a different amount of processing applied to them, and so 

pruning a network to deal with all components individually would allow each individual network to 

adapt to the complexity of the data. 

 

Figure 27: General structure of the ADCNN model [13]. b) Network structure for a channel after separating the Y, U, V 
network into three UCLF networks. 

These three models were named Uni-Component Loop Filter (UCLF), shown in Figure 33 for the Y U 

and V channels, all of these have the same architecture. These architectures are separated into 

three stages, each stage consists of generalised residual and non-residual blocks. The residual block 

structure is displayed in Figure 34 with two convolutional layers (2DConv) followed by two dense 

layers. Non-residual blocks follow the same structure as residual ones, without the input being 



P a g e  5 6  |  P r u n i n g  a  V i d e o  D e b l o c k i n g  N e u r a l  N e t w o r k  

 

added to the output. Each model was individually pruned using the pruning algorithm that uses a 

combination of sparsity and structured network pruning. 

 

Figure 28: a) General structure of the residual blocks in each stage.  b) An example of the proposed structured pruning 
method applied to a residual block. 

5.3.1 Pruning Algorithm    

The algorithm takes a pre-trained model as a starting point, it was decided this was a good approach 

as future researchers would not have to re-train models to fit the mould. Sparsity pruning is applied 

with the same dataset that the original training used, after which a subsection of the validation set 

was passed through the model. This part of the validation set is not used for validation anymore and 

is only used to stimulate the model and identify redundant channels and neurons within the NN. 

PROPOSED PRUNING ALGORITHM V.1 

Input: Pretrained neural network T, number of parameters num_par, list of prunable layers pl, training samples x, 
validation samples v, sparsity_threshold st , channel_threshold ct, number of optimization epochs train_epochs , 
accuracy_threshold at and pruning_threshold pt 

Output: Pruned neural network P 

while True: 

for layer in T: 

 if layer in pl: 

             model = apply_sparsity_pruning(layer, T, st) 

       chan_to_remove = identify_redundant_channels(v, model, ct) 

 P = apply_structured_pruning(model, chan_to_remove) 

 P.train(x, train_epochs) 

 if P.accuracy < at or P.num_par / T.num_par < 1 - pt: 

P = T 

    break 

  else 

     T = P 
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5.4 PRUNING METHODOLOGY JUSTIFICATION 

5.4.1 Sparsity Pruning  

Sparsity pruning sets weight values within a layer to zero according to a specified sparsity threshold. 

For the pretrained UCLF network from Figure 34b, it is applied on both residual and non-residual 

blocks in all three stages. To retain network performance sparsity was only applied to specific layers 

within the model. Additionally, the first and last layer of the network are not pruned. The total 

number of prunable convolutional channels and dense units is presented in Table 5. The values listed 

in Table 5 indicate the initial numbers of filters and dense units in a UCLF network, these numbers 

will reduce as pruning progresses.  

5.4.2 Insignificant Channel Identification  

Sparsity pruning does not guarantee that all weights associated with a channel will be zero. When 

applied to a certain layer, magnitude-based weight pruning sparsifies the entire layer across 

channels, rather than within each channel individually. In convolutional layers, filters are considered 

as channels. In dense layers, neurons are also considered as channels. To identify which channels in 

a layer can be removed from the UCLF network, a data-driven approach is adopted. The validation 

set is used as an input to the network. Neuron activation and filter activation maps are stored at 

each prunable layer. The stored values are then averaged over the smaller validation sub-set. If the 

average channel value is below the channel threshold, then that channel is marked for removal.  

5.4.3 Structured Pruning  

Structured pruning removes channels that were identified as insignificant for a specific UCLF 

network. For channels within convolutional and dense layers, this means removing all associated 

weight and bias information. An example of a pruned residual block from a UCLF network is 

presented in Figure 34b. As each stage of the network consists of stacked generalised blocks from 

Figure 34a. the dimensionality at the input and the output must be retained. In this example, the 

input is set to 64 channels. The first convolutional layer, marked in blue, and the first dense layer, 

marked in green, can be pruned without restrictions. The second convolutional layer and the second 

dense layer need to have an equal number of channels, as they are multiplied together. Therefore, 

when a channel is removed from the second convolution it must also be removed from the second 

dense layer. The pruned channels are then added to the corresponding channels from the input to 

the block. Finally, these are concatenated to the rest of the input channels and constitute the output 

of the residual block. 

From this a pruned model is obtained by repeating this process and removing said redundant 

components at each iteration. These components are identified by a threshold value described in 

the previous section and is based around the filters and neurons capability to influence the output of 

the model, for this work this value was 0.0001. After the redundant channels have been removed 

the model is retrained for a fraction of the original training time so the model can adjust to the new 

structure. 

Models are complex and not all the connections between layers can be accounted for easily, 

because of this some layers cannot be pruned, the table below breaks down the prunability of a 

UCLF.  
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Table 5: The number of prunable channels in each layer of the UCLF model. Blank entries mean that because of the 
structure of the network there are no prunable layers at these points. 

Stage 
Block 

type 

No. of 

blocks 

Prunable channels per block 

2DConv 1 2DConv 2 Dense 1 Dense 2 

1 
Non-res. 2 48 -- 8 -- 

Residual 1  48 32 8 32 

2 Residual 5 96 64 16 64 

3 
Non-res. 2 48 -- 8 -- 

Residual 1 96 64 16 64 

 

5.5 TRAINING METHODOLOGY 

5.5.1 Introduction to deblocking neural networks 

Replication of previous SOTA [13], will be achieved using TensorFlow [49]. Because VTM is open 

source to its contributors, a lot of data that is not normally afforded to other approaches is available. 

In this case the network developed leverages 3 main datapoints, firstly, it processes the Y, U and V 

components of video both separately and in combination. Additionally, this approach uses the CU 

block structure to guide the deblocking process. Finally, the quantisation parameter (QP) is used to 

indicate to the ML algorithm the degree to which the video has been compressed. The reason why 

this is a clever approach is that the block structure must be calculated by the decoder/encoder 

whether the AI is using it or not. This also highlights that an approach like this would not be possible 

unless performed inside or with the aid of the decoder and encoder software, due to the block 

structure being required. However, it’s possible that development of another ML model could be 

used to generate the block structure too, meaning the process could be completely external from 

the current software. 

5.5.2 Dataset 

The dataset used for training was DIV2K [38], this dataset was chosen as it contains a good mix of 

landscapes, animals, humans, and mechanical objects, additionally, all images are of a high quality. 

The DIV2K dataset is made up of 900 2K images, 800 were used for training 100 were used for 

validation. 

Each image is converted into 4 versions of itself at 4 different QP values, this was done to allow the 

AI to train on a range of different quality images. So, in total the actual training dataset is 3200 

images, and there are 400 test images. Each image is then split into 48x48 pixel patches, this is done 

to make sure the data can fit onto the GPU for training. Special effort was made here to make sure 

the training set contained the patches at the edges of the images. This was essential because at the 

edges of encoded images there is a lot of complicated block structures that do not exist in the rest of 

the image. This is a side effect of the image not having a CU size that is wholly divisible by the length 

or height of the input image, for this reason extra patches are added to the dataset that contain only 

these overlapping regions seen in red in Figure 21. 

 

 

 

 

Normal block structure 

Complicated 

Block Structure 

Normal block structure 

Added 

patches 

Figure 29: Visualisation of the overlapping sections added to the dataset to ensure the neural network trains on 
complicated block structures. 
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This will inevitably cause some overlapping in the dataset, but it is important to include these 

regions as otherwise when having to deal with such block structures once deployed, the network 

would not know what to do. 

The process of obtaining the corresponding YUV files CU maps and QP values was done by extracting 

them directly from the VTM software and storing them as Numpy arrays on disk [50]. This was done 

so the VTM software did not have to be run during training as this would slow down training 

considerably. Figure 22 was repeated for each QP of 22,27,32 and 37. 

 

 

 

 

 

 

It was found that by using the same error calculations as previous works [13], (MAE) that an error 

would occur causing training to fail suddenly and inexplicably, Figure 23. 

 

Figure 31: Issues with exploding loss whilst training 

This was tested and repeated multiple times.  Eventually it was discovered that there were certain 

images in the dataset that were giving results of infinite PSNR readings, for U and V, when compared 

to the ground truth. These turned out to be black and white images which makes perfect sense as 

they have no colour information, meaning the network learnt to predict a value of 0 causing the loss 

function to tend towards 0. When this was repeated over many batches it would cause the gradients 

in the models to explode and the model would then not recover back to a normal state, this is well 

documented in machine learning tasks [140] 

This posed an issue as it seems that the training failure was caused by the loss measurement tending 

towards zero, however this is hard to address directly as it is a core component of this metric. The 

loss causing the gradients to explode, and by knock on effect the weights and biases too, needed to 

be addressed. To avoid this issue images 14,230,769 and 800 were replaced with 801-4 from the test 

set, these images were also removed from the test set.  

This does set a precedent for considering what will happen to your network when a perfect solution 

is found. In this case the perfect solution that was found and caused the network to irreversibly 

break was to just ignore the U and V components, this highlights the need to be more cognisant 

when picking the loss function for your machine learning model.  

VTM software .YUV IN 

UNFILTERED .YUV OUT 

CU MAPS 

Figure 30: Visualisation of the VTM software handles the inputs and output required 
for the neural network. 
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5.5.3 Neural Network Structure 

The same structure used in previous works [13], has been used for the experiments so far. A visual 

representation in Figure 24 shows how the network originally starts as separated parts (Y/U/V) 

before it is combined in the middle and then split apart again at the end of the network to produce a 

YUV output. 

 

 

Figure 32: Network structure implemented to replicate SOTA [13], shown using TensorFlow. 

5.5.4 Training   

When training the NN takes an unfiltered output of the VTM software, in a YUV format, the block 

structure, and the QP value, it uses all this information to generate a new output YUV file. This YUV 

file is then compared to a ground truth image that was used to generate the unfiltered output. 

A Batch size of 128 is used, 48x48 patches were also used, which reflects previous approaches [13]. 

To avoid small batch numbers when near the end of the dataset the last few overflow patches are 

thrown away. This is done because when a NN deals with small batches, the gradients heavily favour 

the data in that small batch, making the network optimise for an edge case that does not exist [141]. 

This process does result in the loss of some training data but the effects of having full batches far 

outweigh the few extra patches that would be gained otherwise. 

The ADAM optimiser [142] was used with TensorFlow’s [49] default settings, the Network was 

trained for 100 epochs and compared to the performance of the SOTA [13] Figure 25. 
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Whilst training this network some special considerations had to be made, when uncompressed on 

disk the dataset takes up a total of 300-400GB. Some of this data is redundant for ease of loading 

the files, but an estimated 250GB of RAM at least would be required to hold the full dataset in 

memory. In addition, TensorFlow seems to duplicate the data in memory, (this is probably due to 

TensorFlow changing the data’s format to a tensor), hence the RAM requirements for this 

experiment grow quickly. 

To circumvent this issue the data is loaded and trained on in sections, 100 images at a time. This cuts 

the RAM requirements to 50-70GB Max and makes the training process possible for most well-

equipped systems. For speed 2 RTX 2080 Ti’s were used for training. 

5.6 INTERPRETING A VIDEO CODING ALGORITHM 
To interpret computer vision neural networks tools had to be developed focusing on models which 

had available code and datasets for testing [13]. This network was developed to reduce the 

compression artefacts present when compressing video with the H265 codec. 

5.6.1 Visualizing the NN filter 

Figure 26 shows how the NN used by the SOTA [13], differs from the normal and coded non-ML 

approach used in H265. It can be seen in the output produced by the NN that there are large black 

boxes, these are related to a check that the ML software does. This check makes sure that the image 

produced by the ML image is of better quality than the one that is produced normally. If it is not, 

then the ML image is not applied, nothing is changed and this manifests as the black box. 

The image shows the difference in pixel intensity of the Y components when the NN filters the image 

and when normal VTM filters the image. Blue indicates a gain in intensity and red indicates a loss. 

The histogram shows the changes made over the whole image, overall the standard approach mostly 

changes values by -1, 0 or 1 magnitude. The NN changes less values in this range and instead prefers 

to change values more than 4 and less than -4. This is reflected in the output images as the NN 

output seems more “heavy handed”, having thicker brighter lines indicating it is applying different 

filtering approaches than that of standard VTM. 

There are many other aspects of these images that can be analysed but the problem is this kind of 

analysis is rather subjective. Further mathematical analysis must be done on these images to truly 

get an objective view of the difference between these approaches.  

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0 20 40 60 80

Figure 33: Left shows SOTA results [13], and the right shows my results from training. It is important to note the y axis, 
ours ranges from 2.2-3 SOTA from -0.1 to 0.6. This is because they are reporting the average PSNR per image whilst my 

results are cumulative over the test set. 
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5.7 REPLICATED RESULTS 

STANDARD VTM OUTPUT NN OUTPUT 

INPUT 
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Difference in pixel intensity Figure 34: Detailed visualisations of the output of the edited version of VTM [13] compared to vanilla version of the VTM software. (Full 
animation shown in appendix B.4)  

 

Standard VTM output 

NN aided VTM output 



P a g e  6 3  |  P r u n i n g  a  V i d e o  D e b l o c k i n g  N e u r a l  N e t w o r k  

 

To test the SOTA against the network developed in this work it was important to develop a test that 

was a fair comparison of the two. As discussed in the literature review the software has ways to 

detect particularly badly performing blocks that the neural network has filtered and turn them off, 

so they do not negatively impact the results. Because of this the network was removed from inside 

the software completely and tested both networks in TensorFlow 2. They had Identical data inserted 

into them and this data was the DIV2K Test set, there is no benefit to either network here as both 

used this network for training. The results can be seen below.  
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Each image of a test set of 97 images has been fed into both networks, the PSNR of the output is 

then calculated and the amount that the PSNR has changed from the input image has been plotted. 

The results from this work’s network are in blue and results from the SOTA [13], are in orange. 

This result shows that the network developed for this work has been trained to a similar level to the 

SOTA and is performing as expected. Additionally, when using SOTA models [13], the PSNR-V results 

in some neural network filtered images have worse PSNR values than the blocky image that was fed 

into the network (images 71 and 81). This is not true for the network we developed, and our results 

(blue dots) never go below 0 for Y, U and V results. 

Table 6: This shows the average PSNR gains across the whole DIV2k validation dataset when compared against the SOTA 
[13]. 

Network PSNR Y Gain PSNR U Gain PSNR V Gain 

SOTA [13] 0.475 0.967 0.747 

NN Trained for this research  0.564 1.186 1.081 
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Figure 35: The graphs above show how the network trains consistently and performs the same as if not better than the 
SOTA [13]. Each graph deals with one component of the image be that Y, U or V. Each point indicates an image in the test 

set.  
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5.7.1 Visual Examples 

Below shows how the network has smoothed out the blocky structures present in the input images. 

These results show that blocky artefacts are being removed from the input image. However, on close 

inspection of the eyebrow, some of the filters used to create the blocks in the previous step to this 

are not being successfully removed (circled in red). This leaves weird texturing on the image. 

These results indicate that the SOTA has been successfully replicated and the next stages will focus 

on interpreting and pruning this network. 

 

  

BLOCKY IMAGE FILTERED IMAGE 

BLOCKY IMAGE FILTERED IMAGE 

Figure 36: Visual examples of deblocking and smoothing of frames when the machine learning model has been applied. 
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5.8 PRUNING RESULTS 

5.8.1 Metric justification 

Before viewing the results, a metric had to be decided on, this was so models could be fairly 

compared that achieved different accuracy metrics and varied in compute requirements. For this 

reason, two metrics were combined.  

5.8.2 Timing Test 

Initially models were loaded and tested on the entire test set, the time taken for the test to 

complete was recorded for comparison later. Because consistency was important in this test, the 

test set was patched into 48x48 sections, this was done to maximize the number of samples 

presented to the network. A large amount of test patches ensured a true representation of the time 

taken for a specific iteration of the network to produce an output. The test set was stored in 

memory and no reading or writing to disc occurred, this was done so that timing metrics were a 

representation of the GPU compute time only. 2400 was then divided by time in seconds taken to 

compute these tests, this was because the test set contained 2400 patched images. This gave us a 

number that represented the number of images per second that that specific network could process. 

5.8.3 PSNR Test 

The second test was also conducted on the same test set, but this time the images being tested were 

not patched. Each input image was blocky, and the output was saved to disk, then PSNR was 

calculated for the blocky image with the ground truth unprocessed image as reference. The saved 

image was later reloaded from disk and an identical PSNR measurement was made. The values of 

the blocky image and the processed image’s PSNR were then subtracted from each other and hence 

a PSNR gain was obtained. The tests were split in this way because this test often produced wildly 

different timing metrics for the same model. This was attributed to time taken saving values to disk, 

and the variance in image dimensions passed to the model, causing it to have to re-deploy CUDA 

code to the GPU. 

This was not compared against the standard output of VTM at this stage because that was not the 

comparison we wanted to make in this part of the research. This metric was developed to track the 

model’s ability to be pruned and retain its abilities of deblocking. 

5.8.4 Combined Metric (PSNR/Sec) 

The PSNR gains over the blocky image were then multiplied with the value obtained by the timing 

tests, this gave a final metric of PSNR/sec. 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 =
2400

𝑡𝑖𝑚𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑠)
 

𝑃𝑆𝑁𝑅

𝑆𝑒𝑐
= 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 × 𝑃𝑆𝑁𝑅 

Equation 9: This shows how the PSNR/Sec metric was derived, as both PSNR and speed of inference is important for this 
kind of ML model. 
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5.8.5 PSNR Results 

 

Figure 37: PSNR performance of the network was affected over each prune attempt. The red line indicates a change in the 
learning rate from 1e-4 to 5e-4. PSNR does vary by at least 0.06 over the whole model set it does recover towards the end of 

the pruning attempts. 

5.8.6 Timing Results 

 

Figure 38: The network slowly reduced the amount of time it took to process images. The red line indicates a change in the 
learning rate from 1e-4 to 5e-4. This timing reduction is dramatic at first but becomes less and less impressive as the 

network becomes harder to prune. 

 

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0 5 10 15 20 25 30 35 40 45 50

∆
 P

SN
R

Prune Attempt

PSNR

240

245

250

255

260

265

270

275

280

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e 
(s

ec
o

n
d

s)

Prune Attempt

Time



P a g e  6 8  |  P r u n i n g  a  V i d e o  D e b l o c k i n g  N e u r a l  N e t w o r k  

 

5.8.7 PSNR/Sec 

 

Figure 39: The metric we developed to compare the speed of processing images against the performance of the network. 
The red line indicates a change in the learning rate from 1e-4 to 5e-4. The upward trend indicates that the network is 

performing its task quicker with comparable PSNR values to the unpruned network. The red circle indicates the model that 
scored highest with this metric. 

 

Figure 40: Pruning of UCLF Y component network. Each pruning attempt represents one pruning loop of Algorithm 1. Results 
are displayed as average PSNR and total inference time for the validation dataset. 
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5.8.8 Network Performance Comparison 

Whilst parameters of a model are not really a valid comparison of network performance when it 

comes to NNs it is still of interest. The initial Y model had 879,681 trainable parameters; the pruned 

network contained 667,265 trainable parameters. This is a reduction in parameters of 25%. 

The network unpruned would take 285 seconds to process the test set, we choose to compare this 

against prune attempt 44 as our fully pruned model. This is because at a score of 5.49 PSNR/Sec, this 

model performs best on our developed metric, circled in Figure 39. Prune attempt 44 processed the 

same test set in 243 seconds. This is a reduction of 42 seconds or is a 15% reduction in processing 

time. 

Prune attempt 44 performed with a PSNR performance of 0.557, the base model before pruning 

performed at 0.57. Therefore, the pruned model performed at a deficit of 0.013 PSNR over the 

whole test set, we view this as an acceptable impact for the performance gains. 

5.8.9 Ablation Study 

When reducing the number of residual blocks manually so that the network exhibited a similar 

number of parameters to that automatically obtained through our pruning method. The network 

could never reach the same level of PSNR performance as the original network. 

 

Figure 41: Ablation study comparing a manually reduced network. These results show that this kind of manual pruning 
never achieves the same PSNR performance as the original network. 

The grey line in Figure 41 shows the performance of a network that was manually pruned before 

training to reflect the same number of parameters as the automatically trimmed network. These 

results indicate that simply reducing the number of parameters of a neural network to reduce the 

computational complexity of the model is not a viable approach, and the method we developed is 

more applicable. 
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5.8.10 Network Architecture Over Time 

From prune attempt to prune attempt the nodes and channels that were removed were recorded, 

showing how pruning progresses over time. Interestingly pruning seems to be focused on removing 

filters in layers that contained more filters. Additionally, layers that were closer to the end of the 

network were pruned for more. This could be due to the final layers changing the data minimally, as 

they are the last components before output, they may only fine tune the image and hence be easily 

removed. This same logic also applies to layers with many filters. This visualisation can be seen in 

appendix A.  

5.8.11 Comparison to VTM baseline and original research 

So far, the comparisons of pruning have been against an altered version of the SOTA model [13]. This 

was done to compare two “like networks” as fairly as possible, however it is also important to 

compare the fully pruned network to the original network, these results can be seen below.  

Table 7: Improvement of inference time and U/V PSNR when tested on VVC common test conditions. The columns on the 
left show the models before pruning and the columns on the right show the pruned models. 

Class 

UCLF before pruning UCLF after pruning Time 

Reduction 

(50 

frames) 

BD-rate [%] BD-PSNR [dB] BD-rate [%] BD-PSNR [dB] 

Y U V Y U V Y U V Y U V 

B -3.53 -3.82 -2.58 0.13 0.07 0.06 -3.07 -4.75 -3.90 0.12 0.09 0.09 31% 

C -4.68 -5.16 -2.37 0.29 0.19 0.21 -4.52 -5.91 -5.30 0.28 0.22 0.21 36% 

D -6.57 -7.58 -8.68 0.47 0.30 0.35 -6.43 -7.93 -9.03 0.46 0.32 0.37 44% 

E -5.13 -2.35 -2.12 0.25 0.08 0.06 -5.09 -3.89 -3.49 0.25 0.14 0.11 59% 

Average -4.98 -4.73 -3.94 0.29 0.16 0.17 -4.78 -5.62 -5.43 0.28 0.19 0.20 42% 

#Par Y: 879,681; U: 879,681; V: 879,681 Y: 667,265; U: 293,811; V: 116,972 
Time [s] Y: 285; U: 120; V: 120 Y: 243; U: 84; V: 76 

In VTM encoder performance is compared with a suite of standard test conditions, above is the 

summary. The percentages show the BD gains of the two models when compared against the VTM 

anchor, which is a standard version of the VTM encoder. As it can been seen, the pruned model 

performs better if not very similarly to the original model. However, the big difference is in the time 

components shown below. 

Table 7 shows the number of parameters has been reduced significantly for every UCLF network, 

with the U and V networks being pruned the most. The U and V networks both increase in their 

performance when compared to their unpruned models, we believe this is due to the retraining 

steps in the pruning loop. The Y network decreases in performance slightly and reduces to a much 

lower degree than the other networks. We believe this is because the Y components of video 

contain 4 times the information of U and V and therefore this network is more highly saturated with 

information and subsequently harder to prune. 

Table 8: Speed up in inference time due to pruning on various classes in the common test conditions. 

Class 
Time taken pruned model 

to render 50 frames (s) 

Time taken original model 
to render 50 frames (s) 

speedup 

Class B 27.85 40.40 31% 

Class C 13.33 20.94 36% 

Class E 6.72 11.98 44% 

Class D 3.01 7.27 59% 
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5.9 CONCLUSION 
An initial approach to reduce complexity for learned in-loop filters was developed, by combining 

sparsity pruning and structured pruning, redundant parts of a neural network can be identified and 

removed without impacting its performance.  

Results show that this method can reduce the number of parameters by as much as 87 % and 

improve inference by up to 59 %. 

The presented method has the potential to reduce the size of neural networks used in other pixel 

augmentation tasks making all these types of networks more applicable for practical applications.  
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6 PRUNING AN IMAGE TRANSLATION GAN NEURAL NETWORK 

6.1 PREFACE 
After the success of applying pruning to a deblocking model it was important to test the capability of 

the method on another model and multiple datasets. 

To achieve this the Pix2Pix model [51] was chosen, this model was chosen because it is a GAN based 

model which is very different in operation to the residual model tested earlier. 

Additionally, Pix2Pix is an image translation task, and many datasets can be processed by the same 

network. In total there are 6 datasets that are readily available, 3 of which were selected for testing. 

6.2 PRUNING METHODOLOGY 
Using a GAN model adds an extra level of complexity when applying the pruning algorithm, this is 

because a GAN network is made-up of a discriminator and a generator [148]. In GAN networks these 

work in tandem, however it makes no sense to prune the discriminator in these networks because 

the discriminator Is not used when the model is deployed. 

When deployed GAN models are split and the generator is the only part of the model used, because 

of this pruning was only applied to the generator portion of the networks to save time. Additionally, 

due to restrictions of the GAN tools in the TensorFlow framework, the generator had to be pruned 

without the aid of the discriminator. However, this was only true for the sparsity pruning step. After 

pruning away entire channels, the generator and discriminator could be recombined and trained in 

tandem again. 

Additionally, the pruning method was changed slightly, the previous method relied on identifying 

“dead” neurons in the neural network. Although this was very effective it was slow, and it did not 

give complete control over the number of parameters removed from the original model. To address 

this the process was changed so that each pruning loop had to remove a minimum ratio of the 

overall filters within the generator model. For these tests this was set to 0.01, this is the decay rate 

of the pruning loop. Although this percentage may seem low, it’s important to consider that these 

filters will be removed for each iteration of the pruning loop, so, in total over 200 pruning loops, the 

model would reduce in size by over 80%. 

𝐹𝐹 = 𝐹𝐼 (1 −
𝐷𝑟

1
)

𝑥

 

𝐹𝐹 = 𝐹𝑖𝑛𝑎𝑙 𝐹𝑖𝑙𝑡𝑒𝑟 𝑎𝑚𝑜𝑢𝑛𝑡   𝐹𝐼 = 𝐼𝑛𝑖𝑡𝑎𝑙 𝐹𝑖𝑙𝑡𝑒𝑟 𝑎𝑚𝑜𝑢𝑛𝑡    𝐷𝑟 = 𝐷𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 𝑥 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 𝑙𝑜𝑜𝑝𝑠 

Equation 9: The following equation was derived from the formula for compound interest [58] to calculate the percentage of 

the model reduced at each pruning loop.  

lim
𝑥→∞

𝐹𝐼(1 − 𝐷𝑟)𝑥 = 0 𝑓𝑜𝑟 𝐹𝐼 ∈ ℝ ∧ log (1 − 𝐷𝑟) < 0 

Equation 10: Exploring the limit of the equation above shows that as the number of pruning loops tends towards infinity, 

the number of filters left in a model tends towards 0 for any given pruning rate (as Dr has to be a positive real number).  
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Figure 42: The effect of changing the decay rate when running the pruning loop 200 times. 

These parameters give finer control over the pruning of the network, one can choose to have a very 

high prune percentage, and low pruning loop iterations or vice versa. Logically the higher the 

number of pruning loops, the greater the possibility that the GAN model will fail. By analysing 

equation 9 in its limit, we find that if prune iterations are infinite, an infinite number of filters will be 

pruned, shown in equation 10. This is impossible as no neural network has an infinite number of 

filters, and instead the result would be no neural network remaining. It is ensured this outcome is 

never reached by taking a snapshot of the model at every pruning iteration. By taking snapshots of 

the model at every iteration, we ensure that when the model does fail, we can return to a point 

before the failure occurred. 

Another change was made that was crucial to make when identifying “dead” neurons. The data for 

the network in chapter 1 was scaled between 0 and 1, additionally the network in chapter 1 only 

contained ReLU activations. These two aspects meant that mathematically a value below 0 could not 

exist in the network (except for the last layer which was not pruned). However, the Pix2Pix data is 

scaled between -1 and 1, whilst ReLU is used in the decoder blocks of the network leaky ReLU is used 

in the encoder parts of the network.  

The blue line in Figure 47 shows the ability for leaky ReLU to pass negative values at the output of a 

layer, because of this, the check for important neurons had to consider negative values to be just as 

impactful as positive values.  

𝑂𝑙𝑑 𝑁𝑒𝑢𝑟𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  
∑ 𝐴𝑐𝑡𝑉𝑎𝑙

𝑁𝑉𝑎𝑙
              𝑁𝑒𝑤 𝑁𝑒𝑢𝑟𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  

∑|𝐴𝑐𝑡𝑉𝑎𝑙|

𝑁𝑉𝑎𝑙
 

𝐴𝑐𝑡𝑉𝑎𝑙 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎               𝑁𝑉𝑎𝑙 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑙𝑖𝑡 

Equation 10: New method of identifying Neuron importance that considers negative and positive values. 
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Figure 43: ReLU Vs leaky ReLU activation functions 

Leveraging what was learned from pruning the model in the previous chapter, scores were 

calculated for each pruned model trained on the cityscape dataset from the pruning process. These 

metrics will be considered along with the reduction in FLOPs and Parameters for a given model. The 

metrics will be FCN, PSNR, SSIM and Inception scores where available. FCN segmentation score uses 

a model designed for sematic segmentation [59] trained on the cityscape’s dataset, trained by the 

original authors of Pix2Pix [51], where the output of the segmentation task is directly compared to 

the ground truth. 

The remaining datasets are difficult to mathematically quantify, as often with GAN models the 

output is subjective, and subjective testing is out of scope for this project as this time. The ‘Maps’ 

dataset is still difficult to perform analysis on due to it lacking a well-defined metric for the validity of 

a map image, for this analysis PSNR and SSIM was used. PSNR and SSIM were also used as metrics 

across other experiments to understand how they interact with pruning. 

6.2.1 Pruning Algorithm    

For this body of work, it was important that results were replicable and simple to obtain, because 

the source code for Pix2Pix was readily available and well documented it was decided that all models 

would be trained from scratch, datasets would be downloaded and processed automatically, and 

pruning would be performed on these models automatically. 

This work has been released in an open-source repository [60], this should provide anyone wishing 

to replicate the results of this body of work a solid starting point. 

The functions work the same way as described in the previous section with the changes to the 

identification of redundant neurons described in 6.3.  

 

 

 



P a g e  7 5  |  P r u n i n g  a n  I m a g e  T r a n s l a t i o n  G A N  N e u r a l  N e t w o r k  

 

PROPOSED PRUNING ALGORITHM V.2 

Input: Pretrained neural network T, list of prunable layers pl, training samples x, validation samples v, 
sparsity_threshold, number of optimization epochs opti_epochs, dataset to process python_args, dataset path 
location path_for_datasets , the amount of initial epochs initial_epochs, the number of times to run the pruning 
loop prune_loops 

Output: Pruned neural networks Pn 

 

dataset_selection = select_dataset(python_args) 

download_dataset(dataset_selection, path_for_datasets) 

process_dataset(dataset_selection, path_for_datasets) 

x,v = load_dataset(dataset_selection, path_for_datasets) 

UP = initalise_model() 

UP. train(x, initial_epochs) 

for n in prune_loops: 

      P,D= split_GAN_model (UP) 
for layer in P: 

 if layer in pl: 

             model = apply_sparsity_pruning(layer, T, st) 

      chan_to_remove = identify_redundant_channels(v, model) 

 P = apply_structured_pruning(model, chan_to_remove) 

      UP = recombine_GAN_model(P,D) 

 UP.train(x, opti_epochs) 

      UP.save_model() 

 

Additionally, two new functions were added, split GAN, and recombine GAN, these are true to their 

name sakes, one separates the GAN into its two constituent parts, the generator and discriminator, 

the other recombines them.   
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6.3 TRAINING METHODOLOGY 

Introduction to the Pix2Pix models 

The Pix2Pix model is a GAN model that performs image translation tasks, this means that the neural 

network takes an image of a given object and translates it to another version of itself. The Pix2Pix 

framework was developed to deal with multiple versions of these tasks without any change to the 

underlying architecture of the model.  

These tests aim to also provide information on the complexity of a task, related to the ability of a 

network to be pruned. The intuition would be that more complex tasks (datasets) will create models 

that contain more information and therefore will be harder to prune.  

6.3.1 Datasets 

To test the capability of the pruning algorithm to adapt to multiple datasets 3 were selected from 

the 6 available, the 6 datasets available for Pix2Pix are. 

• Cityscapes [52]   ✓ 

• Edges2Handbags [53]  ✗ 

• Edges2Shoes [54]  ✗ 

• Facades [55]   ✓ 

• Maps [56]   ✓ 

• Night2Day [57]   ✗ 

Edges to handbags Edges to shoes and Night to Day was excluded due to training inconsistencies and 

the inability to mathematically quantify the results. 

 

Figure 44: Pix2Pix dataset example pairs [56] 

Cityscapes is a pair of city images taken from a car dashcam, and a manually created segmentation 

map. The segmentation map identifies cars, vans, trees, and other objects commonly located on or 

around roads. The Facades dataset is a picture pair, one being the front of buildings in Paris, and the 

other a manually created segmentation map. This map Identifies doors windows balconies and other 

architectural features. Finally, the maps dataset is a satellite image taken from google maps, and the 

google map navigational map pair. 

The genius of the original Pix2Pix paper is that because the model architecture is so adaptable the 

datasets can be input into the network in any order. It’s possible, by reversing the datasets, to 

generate a satellite image from a map image, or to generate a map image from a satellite image. 
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Figure 45: Each dataset can be setup in 2 ways, here is an example of maps generating satellite imagery or satellite imagery 
generating maps. 

Because of this we can use each dataset twice, this gives us a total of 6 experiments to run, made up 

of each dataset with an A/B, B/A configuration, demonstrated in Figure 43. 

This will allow for intricate analysis of the pruning process, as discussed in the subsequent section 

Pix2Pix is a GAN, and the generative part of the network is a U-Net [144]. This structure has a 

decoder side and an encoder side. When selecting filters to prune, the pruning algorithm only 

identifies “importance”, meaning the model could be pruned at any point. Hopefully by reversing 

the datasets, and hence the tasks, we can identify the most essential layers for this kind of model. 

After each image pair was separated the RGB data was converted from values of 0 to 255 to -1 and 

1, then each image was then stored as an A/B tag. These were stored separately to allow for 

swapping of the dataset pairs in the future. 

6.3.2 Neural Network Structure 

A GAN has a generator and a discriminator, in Pix2Pix the generator is a U-NET with skip 

connections. The discriminator is a Convolutional PatchGAN Classifier [51], the discriminator, in this 

case, performs analysis on patches and not the entire output.  

GANs work by periodically presenting real and generated images to the discriminator, the 

discriminator tries to identify if the image is real or generated. The result of the discriminator can be 

combined with other metrics, like SSIM and PSNR, to create a loss fucntion to train the generator. 

Pix2Pix is a GAN network, specifically a conditional GAN [145], conditional GANs work in much the 

same way as conventional GANs, however, the loss is learned instead of hard programmed. They 

also have the addition of random noise introduced to the model, in the form of dropout layers. As 

such the target and the output can be better compared and errors corrected for. 

 

Figure 46: Architecture of the U-Net used in Pix2Pix [51] 
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Figure 47: Architecture of the PatchGAN classifier [51] 

The discriminator is not pruned when using our pruning method, figure 45 shows the structure of 

the discriminator. 

6.3.3 Training 

Each GAN was trained using the following hyper parameters. 

• Initial Training Epochs = 25 

• Initial Pruning Epochs = 25 

• Retraining Non-Pruning Epochs = 10 

• Retraining Pruning Epochs = 10 

• Optimiser = Adam 

• Learning rate = 2x10-4 

• Beta = 0.5 

• Batch Size = 32 

• Pruning Loops = 100 

• Decay Rate = 0.005 

 

When performing sparsity pruning, an initial sparsity target of 50% was chosen (this was the 

percentage of zeros the network had to achieve by the end of the first epoch). Sparsity pruning was 

set to have a final sparsity of 80%, which had to be achieved by epoch 25. Polynomial decay was 

used to control this over the pruning epochs.  

There were some considerable hurdles found when pruning the Pix2Pix model, mainly because of its 

size. The previous models tested were 800,000 parameters before pruning, the Pix2Pix model starts 

with 61,397,572 parameters. Because of this the method developed for deploying the model to 

memory had to be adjusted, previously all models were loaded into VRAM, whilst wasteful this 

never caused issues as the GPU’s available had ample space to store the redundant models. 

When dealing with models of this size it is imperative to load and unload all model information from 

the GPU, unfortunately the only way to do this currently is to either use separately launched python 

scripts or to use the python multiprocessing library. 
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By using the pseudo code below, it was possible to contain models within their own environment, 

when their training and pruning loop had finished, the model could be completely dropped from the 

GPU’s VRAM. Each model was pruned using the algorithm in section 6.3.1 for 50 epochs total. 

parent_conn, child_conn = multiprocessing.Pipe() 

reader_process  = multiprocessing.Process(target=Train_Model, args=(Training_Args)) 

reader_process.start() 

vars_returned_from_training = parent_conn.recv() 

reader_process.join() 

This approach is not without issues, multiprocessing does not allow python to pass “pickle” objects 

[147]. These are large variable types in python used for dealing with complex datatypes, 

unfortunately both TensorFlow models and TensorFlow dataset objects are pickle objects. This 

means that within the training and pruning loops the model and datasets must be reinitialised every 

time the loop is run, luckily this adds little to no overhead when training the models.  

6.4 INCEPTION SCORE 
Inception score had its inception in a paper analysing the output of a GAN network trained to 

replicate the MNIST, CIFAR and ImageNet datasets. The metric found inception score closely aligned 

with the subjective tests relating to the ‘realistic’ nature of the generated images [149].  

This metric has been adopted by the machine learning community as a measure of how real a set of 

images look, the higher the inception score obtained, the more “real world” the output is 

considered. The metric considers both the variety of the images and the amount that each image 

looks like an object, this ensures both a varied range of outputs, and the ability of the GAN to form 

coherent images. 

Inception score varies a lot depending on the image dataset used, each dataset contains different 

objects and variations in these objects. Therefore, it is important to obtain a baseline Inception 

score, this is used as a known score of “realism” for the GAN to aim for, for the given dataset. For 

our purposes the inception score of the network at prune loop 0 will be considered as the inception 

score to aim for. 

6.5 FCN SCORE 
FCN score is a metric designed to measure the accuracy of a segmentation map. This metric was 

selected as the original Pix2Pix used it as a metric to analyse their results, specifically of the 

cityscapes dataset. It cannot be used as a metric for the other 2 datasets, as it requires a deep 

learning model specific to the dataset. Only one was produced from the original paper, and this was 

for the cityscape’s dataset. 

This score is calculated by first training a separate fully connected network to perform the task of 

image segmentation on the original cityscape’s dataset. Once trained the model can perform the 

task of producing a segmentation map given an image from a car windscreen. 
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Figure 48: Segmentation map generated by the FCN model. 

This model can then be used on the generated output from the GAN to check if the same kind of 

segmentation map is produced when the original input is also presented to the FCN. 

 

Figure 49: Segmentation map generated by the Pix2Pix model 

This technique allows for many metrics to be produced, but for this work we will focus on mean pixel 

accuracy, mean class accuracy, and mean class IOU. 

Mean pixel accuracy is the average amount that a pixel in the generated image was segmented as 

the correct class. Per class accuracy is the number of times the correct number of classes were 

identified in the generated image. And mean class IOU is a number that quantifies the degree of 

overlap between the segmentation masks. 

Whilst this metric can only be applied to one of the datasets, it was considered important to 

replicate the tests seen across academic publications [51], the model used for segmentation [51] and 

scoring method were obtained from the relevant GitHub repositories. 
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6.6 CITYSCAPES A -> B RESULTS 
 

 

Figure 50: Ground truth example of the task undertaken, here the task is converting a segmentation map to an image for 
the A->B Cityscapes dataset. 

 

Figure 51: Final pruned model’s generated result for the A->B Cityscapes dataset. 
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Figure 52: These results compare the results for mean pixel accuracy, mean class accuracy and mean class IOU of the 
Pix2Pix model against the FCN model over multiple pruning loops for the A->B Cityscapes dataset. 

These results show that with consecutive pruning loops all three metrics improve from an initial low 

value, there isn’t any obvious accuracy fall off or disruption to the model performance. 

The initial low performance can be contributed to the original model, which on closer inspection, 

had experienced a mode collapse [150] close to the end of the training loop. The recovery of the 

performance suggests that this kind of pruning can perhaps avoid and correct for mode collapse, as 

although mode collapse occurred many times whilst training the original models, it doesn’t ever 

occur when pruning. 

 

Figure 53: Inception score of the pruned Pix2Pix model at different stages of the pruning loop for the A->B Cityscapes 
dataset. 

Once again, the poor results at pruning loop 0 can be attributed to the mode collapse of the model 

before pruning was applied, this additionally shows the greater refinement the FCN measurements 

provide. You can see the slower recovery in Figure 52, whereas the results in Figure 53 suggest the 

recovery is instant, but both metrics generally track in a similar manner. 
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Figure 54: FLOPs and Parameter metrics for the pruned model at different stages of the pruning loop for the A->B 
Cityscapes dataset. 

The decrease in the model’s parameters and flops generally mirror each other, this makes sense as 

the U-Net only contains convolutional layers, the model’s structure is shown in Figure 44. When 

models contain different layer types there can be a greater difference between these two metrics, 

this is because each layer type has a different parameter to flops ratio. 

Additionally, these plots don’t mirror the predicted decay rate of 0.005 in figure 46, this is because 

the decay rate is applied to the number of layers and not the number of parameters. Hence, we get 

a similar plot but not an exact match. 

The model that was selected as the final pruned model was pruning loop 100, this model was 

selected as the inception score does not seem to be impacted negatively by the pruning. All the FCN 

metrics also indicate that pruning isn’t negatively impacting the model performance and the model 

is at its most pruned at the end of the process. 

Table 9: Final pruned parameters and FLOPs and final metrics for the pruned model of the A->B Cityscapes dataset (Positive 
values are good negative values are bad) 

Pruned 
Parameters % 

Pruned 
Flops % 

Inception Score ∆ Mean Pixel 
Accuracy ∆ 

Mean class 
accuracy ∆ 

Mean class 
IoU ∆ 

64 64 -0.1 + 0.0483 + 0.0035 + 0.0082 
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Figure 55: Top left is the ground truth image, top right shows the initial trained model before pruning has been applied, 
bottom left shows the model at pruning step 33, and bottom right shows the model output at pruning step 99. 

The results in Figure 55 show what we would expect from our metrics, the images are becoming 

more detailed over time, the model at pruning loop 33 looks nearly identical to the model at pruning 

loop 99. It’s also interesting to analyse the layers in the model selected for pruning. 

Table 10 shows the encoder is pruned much more than the decoder side of the network. The 

encoder has a total of 1,042 channels when pruned, the decoder has 1,920 channels, it is interesting 

the pruning is asymmetric as encoder decoder models are traditionally symmetric. This suggests that 

there is potential for a more efficient model architecture based around a smaller encoder. 

Another interesting layer of note is the bottleneck, this is often referenced as the most important 

layer in a encoder-decoder architecture, however it has been pruned away to a layer size of 1. In 

fact, the layers either side have also been reduced significantly to 14 and 2, and if the pruning 

software had the capability the layers of size 1 would have been removed from the model entirely. 

Assuming these layers are no longer contributing to the model we can recreate the architecture 

from pruning as follows. 
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Table 10: Comparison of the number of filters in each layer of the Pix2Pix model before and after pruning for the A->B 
Cityscapes dataset. 

Layer Starting Number of Filters  Final Number of Filters 

Encoder Conv2D 64 47 

Encoder Conv2D 128 58 

Encoder Conv2D 256 143 

Encoder Conv2D 512 253 

Encoder Conv2D 512 317 

Encoder Conv2D 512 210 

Encoder Conv2D 512 14 

Bottleneck Conv2D 512 1 

Decoder Conv2D 512 2 

Decoder Conv2D 512 460 

Decoder Conv2D 512 501 

Decoder Conv2D 512 509 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 64 
 

Table 11: Final configuration of the pruned model with layers containing 1 filter removed for the A->B Cityscapes dataset. 

Layer End Number of Filters 

Encoder Conv2D 47 

Encoder Conv2D 58 

Encoder Conv2D 143 

Encoder Conv2D 253 

Encoder Conv2D 317 

Encoder Conv2D 210 

Encoder Conv2D 14 

Encoder Conv2D 2 

Decoder Conv2D 460 

Decoder Conv2D 501 

Decoder Conv2D 509 

Decoder Conv2D 256 

Decoder Conv2D 128 

Decoder Conv2D 64 

 

This does seem to mimic the hourglass design of a traditional U-Net network, but unlike the original 

architecture which creates “compression” of data by reducing the height and width at each layer. 

The pruned network adds to this compression by using an hourglass approach to the filter numbers. 

It also seems like a new bottleneck has also emerged with a much-reduced filter number of 2. 
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6.7 CITYSCAPES B->A RESULTS 

 

Figure 56: Ground truth examples for the B->A Cityscapes dataset. 

 

Figure 57: Selected pruned model example for the B->A Cityscapes dataset. 

 

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0 20 40 60 80 100

M
ea

n
 IO

U

Pruning Loop

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0 20 40 60 80 100

M
ea

n
 C

la
ss

 A
cc

u
ra

cc
y

Pruning Loop



P a g e  8 7  |  P r u n i n g  a n  I m a g e  T r a n s l a t i o n  G A N  N e u r a l  N e t w o r k  

 

 

Figure 58: These results compare the results for mean pixel accuracy, mean class accuracy and mean class IOU of the 
Pix2Pix model against the ground truth over multiple pruning loops for the B->A Cityscapes dataset. 

 

Figure 59: FLOPs and Parameter metrics for the pruned model at different stages of the pruning loop for the B->A 
Cityscapes dataset. 

These results are very different to the A->B results. The class and pixel accuracies were compared to 

the ground truth this time and not processed by the FCN segmentation model. This is because a 

reverse FCN model did not exist for this dataset.  

There is some initial poor performance, once again this can be contributed to mode collapse, and as 

it can be seen the pruned model recovers. However, the decrease in these metrics is significant,  

when compared as a percentage of the pre-pruned model’s performance the shift in model 

performance can be more easily observed. 

Table 12: Final pruned parameters and FLOPs and final metrics for the pruned model train on the B->A Cityscapes dataset 
(Positive values are good negtive values are bad) 

Pruned 
Parameters % 

Pruned Flops 
% 

Mean Pixel 
Accuracy ∆ 

Mean class 
accuracy ∆ 

Mean Pixel 
Accuracy ∆ 

Mean class 
accuracy ∆ 

Mean class 
IoU ∆ 

Mean class 
IoU ∆ 

64 64 - 0.0358 - 0.0204 - 5.67 % - 9.44 % - 10.84% - 0.0299 
 

 

 

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0 20 40 60 80 100

P
ix

el
 A

cc
u

ra
cc

y

Pruning Loop

0

10

20

30

40

50

60

0 20 40 60 80 100

M
o

d
el

 P
ar

am
et

er
s 

(M
ill

io
n

s)

Pruning Loop

0

20

40

60

80

100

120

0 20 40 60 80 100

M
o

d
el

 F
lo

o
p

s 
(M

ill
io

n
s)

Pruning Loop



P a g e  8 8  |  P r u n i n g  a n  I m a g e  T r a n s l a t i o n  G A N  N e u r a l  N e t w o r k  

 

The decrease in performance can be directly observed in the output in figure 60. 

 

 

Figure 60: Top left is the ground truth segmentation mask, top right shows the initial trained model before pruning has 
been applied, bottom left shows the model at pruning step 33, and bottom right shows the model output at pruning step 

99.  

Figure 60 shows that the pruned models are gradually becoming worse at the task of segmentation. 

It seems that in the A->B task the slow increase of details in the image benefited the metrics, 

however in the segmentation task this is not true. The segmentation outputs show that the model is 

trying to add more detail to the segmentation map (this can be seen in the red circled region). 

Unfortunately, by learning the complexity of these regions, the uniformity needed from a 

segmentation map has been lost, hence the decrease in the metrics matches the output we’re 

observing here. 

Table 13 shows that pruning left 1,105 filters in the encoder and 1,912 filters in the decoder, these 

are very similar to the pruning results shown in the A->B test, the only difference is the A->B 

network retains the use of one of the encoder convolutional layers by reducing the filters to 2 and 

not 1. 

These initial results indicate a limitation in the algorithm used to prune these neural networks, this 

limitation lies in the requirement to prune a set percentage of the network’s parameters every 

pruning loop. This approach may not allow for the neural network to fully adjust to its new 

architecture before it is pruned again, this will be investigated in the next iteration of the pruning 

algorithm. 
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Table 13: Comparison of the number of filters in each layer of the Pix2Pix model before and after pruning for the B->A 
Cityscapes dataset. 

Layer Starting Number of Filters  Final Number of Filters 

Encoder Conv2D 64 60 

Encoder Conv2D 128 101 

Encoder Conv2D 256 219 

Encoder Conv2D 512 389 

Encoder Conv2D 512 252 

Encoder Conv2D 512 78 

Encoder Conv2D 512 6 

Bottleneck Conv2D 512 1 

Decoder Conv2D 512 1 

Decoder Conv2D 512 453 

Decoder Conv2D 512 502 

Decoder Conv2D 512 509 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 64 
 

Table 14: Final configuration of the pruned model with layers containing 1 filter removed for the B->A Cityscapes dataset. 

Layer Final Number of Filters B->A Final Number of Filters A->B 

Encoder Conv2D 60 47 

Encoder Conv2D 101 58 

Encoder Conv2D 219 143 

Encoder Conv2D 389 253 

Encoder Conv2D 252 317 

Encoder Conv2D 78 210 

Encoder Conv2D 6 14 

Decoder Conv2D - 2 

Decoder Conv2D 453 460 

Decoder Conv2D 502 501 

Decoder Conv2D 509 509 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 64 
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6.8 FACADES A->B RESULTS 

 

Figure 61: Ground truth example for the A->B Facades dataset. 

 

Figure 62: Selected pruned model example for the A->B Facades data. 
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Figure 63: For this dataset an FCN model to provide IOU and segmentation map scores is not available, because of this 
PSNR and SSIM are included as extra metrics over multiple pruning loops for the A->B Facades dataset. 

 

Figure 64: FLOPs and Parameter metrics for the pruned model at different stages of the pruning loop for the A->B Facades 
dataset. 

For the results in table 15 an earlier model was selected for the final model. This was because the 

inception score of the model falls off after loop 76 (circled in red). Whilst PSNR and SSIM don’t see 

the same fall off, inception score is the most important metric for these generated images [151], and 

so it takes precedent. (An animation of the facades A->B test can be found in appendix B.3). 

Table 15:  Final pruned parameters and FLOPs and final metrics for the pruned model (Positive values are good negative 
values are bad) for the A->B Facades dataset. 

Pruned 
Parameters % 

Pruned 
Flops % 

Inception 
Score ∆ 

PSNR ∆ Inception 
Score ∆ 

PSNR ∆ SSIM ∆ SSIM ∆ 

52.47 52.47 -0.209 + 0.384 - 10.38 % + 0.78 % + 0.27 % + 0.002 

 

The pruned model has added a lot of detail from the initial trained model; however, this detail gets 

muddy. Shown in Figure 66, some of the façade (specifically the area towards the bottom of the 

image) becomes warped and does not resemble the form of a building anymore. At pruning loop 100 

this becomes even more of an issue shown in Figure 66. 
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Figure 65: Output of the model at pruning loop 100 for the A->B Facades dataset 

 

 

Figure 66: Top left is the ground truth facade, top right shows the initial trained model before pruning has been applied, 
bottom left shows the model at pruning step 40, and bottom right shows the model output at pruning step 76 (the selected 

model) for the A->B Facades dataset. 
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Table 16: Comparison of the number of filters in each layer of the Pix2Pix model before and after pruning for the A->B 
Facades dataset. 

Layer Starting Number of Filters  Final Number of Filters 

Encoder Conv2D 64 39 

Encoder Conv2D 128 75 

Encoder Conv2D 256 164 

Encoder Conv2D 512 356 

Encoder Conv2D 512 372 

Encoder Conv2D 512 365 

Encoder Conv2D 512 116 

Bottleneck Conv2D 512 1 

Decoder Conv2D 512 1 

Decoder Conv2D 512 490 

Decoder Conv2D 512 508 

Decoder Conv2D 512 512 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 63 
 

Table 17: Final configuration of the pruned model with layers containing 1 filter removed for the A->B Facades dataset. 

Layer End Number of Filters 

Encoder Conv2D 39 

Encoder Conv2D 75 

Encoder Conv2D 164 

Encoder Conv2D 356 

Encoder Conv2D 372 

Encoder Conv2D 365 

Encoder Conv2D 116 

Decoder Conv2D 490 

Decoder Conv2D 508 

Decoder Conv2D 512 

Decoder Conv2D 256 

Decoder Conv2D 128 

Decoder Conv2D 63 

 

Table 16 shows that pruning leaves 1,487 filters in the encoder and 1,957 in the decoder, this is 

more than all the previous loops as these results are taken 25 pruning loops earlier than the 

previous two experiments. Interestingly there are many more layers still in the encoder which would 

show that each training loop does not necessarily prune the same ratio from the decoder and 

encoder with each iteration. 
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6.9 FACADES B->A RESULTS 

 

Figure 67: Ground truth example for the Facades B->A dataset. 

 

Figure 68: Selected pruned model example for the Facades B->A dataset. 
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Figure 69: These results compare the results for mean pixel accuracy, mean class accuracy and mean class IOU of the 
Pix2Pix model against the ground truth over multiple pruning loops for the B->A Facades dataset. 

 

Figure 70: FLOPs and Parameter metrics for the pruned model at different stages of the pruning loop for the B->A Facades 
dataset. 

Table 18: Final pruned parameters and FLOPs and final metrics for the pruned model (Positive values are good negative 
values are bad) for the B->A Facades dataset. 

Pruned 
Parameters % 

Pruned 
Flops % 

Mean Pixel 
Accuracy ∆ 

Mean class 
accuracy ∆ 

Mean Pixel 
Accuracy ∆ 

Mean class 
accuracy ∆ 

Mean class 
IoU ∆ 

Mean class 
IoU ∆ 

64 64 - 0.06 - 0.03 - 16.78 % - 20.66 % - 20.62 % - 0.04 

 

This pruning has the biggest impact on performance observed yet, this is reflected in the visual 

results too. These results are using the model at pruning loop 100, as although the performance 

decreases dramatically, there is no sudden drop off, the performance decrease is gradual. This may 

suggest that this is a harder task than the others tested so far. 
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Figure 71: Top left is the ground truth segmentation mask, top right shows the initial trained model before pruning has 
been applied, bottom left shows the model at pruning step 33, and bottom right shows the model output at pruning step 99 

for the B->A Facades dataset. 

Indeed, the visual outputs suggest that the initial model never sufficiently represented the 

segmentation maps in the first place, furthering the idea that this task is more complex. 

Table 19: Comparison of the number of filters in each layer of the Pix2Pix model before and after pruning for the B->A 
Facades dataset. 

Layer Starting Number of Filters Final Number of Filters 

Encoder Conv2D 64 60 

Encoder Conv2D 128 101 

Encoder Conv2D 256 219 

Encoder Conv2D 512 389 

Encoder Conv2D 512 252 

Encoder Conv2D 512 78 

Encoder Conv2D 512 6 

Bottleneck Conv2D 512 1 

Decoder Conv2D 512 1 

Decoder Conv2D 512 453 

Decoder Conv2D 512 502 

Decoder Conv2D 512 509 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 64 
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Table 20: Final configuration of the pruned model with layers containing 1 filter removed for the B->A Facades dataset. 

Layer End Number of Filters 

Encoder Conv2D 60 

Encoder Conv2D 101 

Encoder Conv2D 219 

Encoder Conv2D 389 

Encoder Conv2D 252 

Encoder Conv2D 78 

Encoder Conv2D 6 

Decoder Conv2D 453 

Decoder Conv2D 502 

Decoder Conv2D 509 

Decoder Conv2D 256 

Decoder Conv2D 128 

Decoder Conv2D 64 
 

Table 21: Comparison of the number of filters in the final pruned models for the facades dataset. 

Layer Final Number of Filters B->A Final Number of Filters A->B 

Encoder Conv2D 60 39 

Encoder Conv2D 101 75 

Encoder Conv2D 219 164 

Encoder Conv2D 389 356 

Encoder Conv2D 252 372 

Encoder Conv2D 78 365 

Encoder Conv2D 6 116 

Decoder Conv2D 453 490 

Decoder Conv2D 502 508 

Decoder Conv2D 509 512 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 63 

 

Table 20 shows pruning left 1,105 filters in the encoder and 1,912 in the decoder. This is the poorest 

result in terms of channels removed so far and shows that this pruning method is dependent 

somewhat on the dataset used to train the model. 
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6.10 MAPS A->B RESULTS 

 

Figure 72: Ground truth example for the Maps A->B dataset. 

Selected model output 

 

Figure 73: Selected pruned model example for the Maps A->B dataset. 
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Figure 74: For this dataset an FCN model to provide IOU and segmentation map scores is not available, because of this 
PSNR and SSIM are included as extra metrics over multiple pruning loops for the A->B Maps dataset. 

 

Figure 75: FLOPs and Parameter metrics for the pruned model at different stages of the pruning loop for the A->B Maps 
dataset. 

Table 22 shows the pruning results of model 81, this model was selected because it exhibited the 

best inception score performance whilst still being a highly pruned network. The decrease in the 

inception score is comparable to the other real world generative tasks in this section, pruning was 

stopped prematurely because of the drop off in performance, this reflects the similar result in the   

A->B results for facades. 

Table 22: Final pruned parameters and FLOPs and final metrics for the pruned model (Positive values are good negative 
values are bad) 

Pruned 
Parameters % 

Pruned 
Flops % 

Inception 
Score ∆ 

PSNR ∆ SSIM ∆ 

58 58 - 0.132 + 0.252 + 0.004 

 

It seems that all the real-world generative examples have a similar decrease in inception score and 

can be effectively pruned using this method. However due to the complexity of the task changing 

with each experiment the point at which an optimal model is achieved also changes. 

This makes perfect sense, as that models undertaking a more complex task require more 

computation to achieve their task effectively, I believe this is the phenomena being observed with 

these results. 
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Figure 76: Top left is the ground truth satellite image, top right shows the initial trained model before pruning has been 
applied, bottom left shows the model at pruning step 33, and bottom right shows the model output at pruning step 99. For 

the A->B Maps dataset. 

Once again, the trade-off between generality and detail is easily observed in Figure 76, the metrics 

reflect this as inception score does decrease and arguably the results at step 99 are not a good 

representation of a satellite image shown in Figure 76. 
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Table 23: Comparison of the number of filters in each layer of the Pix2Pix model before and after pruning for the A->B Maps 
dataset. 

Layer Starting Number of Filters Final Number of Filters 

Encoder Conv2D 64 16 

Encoder Conv2D 128 53 

Encoder Conv2D 256 109 

Encoder Conv2D 512 266 

Encoder Conv2D 512 268 

Encoder Conv2D 512 365 

Encoder Conv2D 512 179 

Bottleneck Conv2D 512 1 

Decoder Conv2D 512 3 

Decoder Conv2D 512 468 

Decoder Conv2D 512 506 

Decoder Conv2D 512 510 

Decoder Conv2D 256 256 

Decoder Conv2D 128 128 

Decoder Conv2D 64 63 
 

Table 24: Final configuration of the pruned model with layers containing 1 filter removed for the A->B Maps dataset. 

 

 

 

 

 

 

 

 

 

 

By inspecting the structure, we once again see that the bottle neck layer has disappeared, but the 

general hourglass shape of the encoders has arisen again. 

One thing of note is the level to which the first Conv2D has been pruned, this has been pruned away 

to 16 filters, the lowest of all the tests so far. This might be due to the sparsity of the map 

information, the images used to generate the satellite images have by far the smallest amount of 

information so far. There are only 4 colours used and all the shapes are blocky or lines, because of 

this lack in detail the first layers of the network don’t have much information to extract, this results 

in them being pruned away much more aggressively. 

 

Layer Final Number of Filters 

Encoder Conv2D 16 

Encoder Conv2D 53 

Encoder Conv2D 109 

Encoder Conv2D 266 

Encoder Conv2D 268 

Encoder Conv2D 365 

Encoder Conv2D 179 

Decoder Conv2D 3 

Decoder Conv2D 468 

Decoder Conv2D 506 

Decoder Conv2D 510 

Decoder Conv2D 256 

Decoder Conv2D 128 

Decoder Conv2D 63 
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6.11 MAPS B->A RESULTS 
Ground Truth Examples 

 

Figure 77: Ground truth example for the B->A Maps dataset. 

 

Figure 78: Selected pruned model example for the B->A Maps dataset. 

 

Figure 79: FLOPs and Parameter metrics for the pruned model at different stages of the pruning loop for the B->A Maps 
dataset. 
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Figure 80: PSNR and SSIM metrics over multiple pruning loops for the A->B Maps dataset. 

Table 25: Final pruned parameters and FLOPs and final metrics for the pruned model (Positive values are good negative 
values are bad) for the A->B Maps dataset. 

Pruned 
Parameters % 

Pruned Flops 
% 

PSNR ∆ SSIM ∆ 

64 64 - 0.79 - 0.0001 

This experiment proved extremely hard to evaluate, there is not a mature measurement for satellite 

images to road map accuracy. However, PSNR and SSIM seem to be a good indicator of the model’s 

performance and so are used to gauge accuracy over time. 

 

Figure 81: Top left is the ground truth map image, top right shows the initial trained model before pruning was applied, 
bottom left shows the model at pruning step 33, and bottom right shows the model output at pruning step 99. for the A->B 

Maps dataset. 
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These results in Figure 81 clearly show the degradation of the model’s performance the further 

through the pruning process. But it also highlights the mediocre performance before pruning had 

occurred, this once again shows the differences in the complexity of the datasets and how that 

affects pruning. 

Table 26: Comparison of the number of filters in each layer of the Pix2Pix model before and after pruning for the A->B Maps 
dataset. 

Layer Starting Number of Filters Final Number of Filters 

Encoder Conv2D 64 6 

Encoder Conv2D 128 27 

Encoder Conv2D 256 46 

Encoder Conv2D 512 211 

Encoder Conv2D 512 277 

Encoder Conv2D 512 293 

Encoder Conv2D 512 134 

Bottleneck Conv2D 512 1 

Decoder Conv2D 512 1 

Decoder Conv2D 512 473 

Decoder Conv2D 512 508 

Decoder Conv2D 512 510 

Decoder Conv2D 256 255 

Decoder Conv2D 128 128 

Decoder Conv2D 64 63 
 

Table 27: Final configuration of the pruned model with layers containing 1 filter removed for the A->B Maps dataset. 

Layer Final Number of Filters 

Encoder Conv2D 6 

Encoder Conv2D 27 

Encoder Conv2D 46 

Encoder Conv2D 211 

Encoder Conv2D 277 

Encoder Conv2D 293 

Encoder Conv2D 134 

Decoder Conv2D 473 

Decoder Conv2D 508 

Decoder Conv2D 510 

Decoder Conv2D 255 

Decoder Conv2D 128 

Decoder Conv2D 63 

 

This final model also exhibits the hourglass shape of the previous pruning; however, it has by far the 

lowest number of filters in the first Conv2D encoder block. This is a confusing result, as the input 

image is far more complex than the previous experiment, but this layer has been pruned more.  

This could be due to the model’s architecture, the skip connection is not additive, it is concatenated, 

meaning the filter at the beginning of the network is presented unchanged at the end of the 

network. Because this dataset has a large discrepancy between the information of the two sets of 

images, this could simply be a side effect of the model attempting to stop the propagation of the 

input image to the output. 
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By limiting the number of filters, the output images has less of the input propagated to it, however 

this has the side effect of limiting the number of extractable features. This explains why the 

performance of this model is so poor after pruning and explains the low filter numbers. 

Table 28: Comparison of the number of filters in the final pruned models for the Maps dataset. 

Layer Final Number of Filters B->A Final Number of Filters A->B 

Encoder Conv2D 6 16 

Encoder Conv2D 27 53 

Encoder Conv2D 46 109 

Encoder Conv2D 211 266 

Encoder Conv2D 277 268 

Encoder Conv2D 293 365 

Encoder Conv2D 134 179 

Decoder Conv2D - 3 

Decoder Conv2D 473 468 

Decoder Conv2D 508 506 

Decoder Conv2D 510 510 

Decoder Conv2D 255 256 

Decoder Conv2D 128 128 

Decoder Conv2D 63 63 
 

6.12 CONCLUSIONS 
This work highlights the importance of the dataset when pruning neural networks, better 

performance when pruning GAN based neural networks can be achieved [152]. However, this 

chapter was not intended to create the best GAN pruning mechanism, it was intended to provide 

comparisons using one network architecture that can do many tasks, this allowed for the 

comparison of dataset complexity, and reveals the role that the dataset plays when pruning neural 

networks.  

All these trained networks used identical hyperparameters, this was to remove any discrepancies 

between the level to which any one network was trained. This was done because a network trained 

for 100 epochs and a network trained for 1000 epochs will be at very different states in terms of 

“useful” network utilisation. Training these networks to a pre-defined performance level that didn’t 

take epochs into account was considered but was ultimately not used. For this body of work the 

initial performance of the network is not massively important, the affect pruning has on 

performance is of much more interest. 

This is why the full set of results up to loop 100 are shown, as commented in the results, models 

should be selected considering a balance between performance and hardware usage. 

The cityscapes A->B test shows excellent results, maximum level of pruning was achieved and a 

minimal reduction in performance. However, the B->A tests show 10% reduction in performance 

metrics, this is also reflected visually in the results. This effect is noticeable from the beginning of 

pruning and each step gives a decrease in performance. 

This is the first indication that the dataset or task is important when it comes to pruning. Although 

this is the same dataset and the same number of examples, this result suggests that the A->B task is 

easier for an ML system to learn than the B->A task. 
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Intuitively this does not make much sense, as generating a segmentation map seems like a more 

“machine friendly” task then generating real world images. But in fact, this may reflect that the 

metrics used to gauge the “realism” of an image are not sufficiently mature [151]. 

The tests on the Façade dataset shows poor performance on both A->B and B->A tests but once 

again the segmentation task performs worse. 

The tests on the map’s dataset are also interesting, once again the model performs better on the 

task of generating real world images from a map. Whilst a metric to measure a map’s “correctness” 

does not exist, it can be seen from the visual examples that the model performs poorer the further 

through the pruning loop we get. 

The other thing to consider is that although the Pix2Pix methodology is reversible, as proved in this 

work, it may not be optimal to do so. The general poorer performance on all tasks that generate a 

representation of the real world (segmentation maps), suggests that the Pix2Pix learning method 

may be more optimised for generation of real-world images. This could be an optimisation in the 

model architecture, or the datasets or the learning metrics used. 

The pruning algorithm seems to have heavily suffered from pruning a set % of the parameters of a 

model regardless of how essential they are for the performance of the model. Additionally training 

GAN networks is difficult, and the discriminator was not pruned. Meaning that there is a high chance 

that pruning has created an imbalance between the capacity of the generator and the discriminator, 

cancelling out any gains in training from using these types of networks.  

Lack of specific comparisons in literature make it imperative that this pruning method must be 

tested on generic models and datasets, used to test the efficacy of neural network pruning. This will 

be the focus of the next chapter of the thesis. 
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7 PRUNING CLASSIFICATION NETWORKS 

7.1 PREFACE 
This thesis has investigated a method to prune vision based neural networks, and whilst successful 

when pruning deblocking networks, the results when pruning Pix2Pix were inconclusive. This was 

due to a lack in similar works and issues with metric stability. This has made our method extremely 

hard to evaluate against other methods and hence the efficacy of the pruning method, universally, 

cannot yet be conclusively proved.  

To directly address this issue the pruning method will be updated, and applied to classification tasks, 

the pruning algorithm will be referred to as the Weight Action Pruning (WAP) from here on in. This is 

an essential set of experiments because leading pruning methods [61,62,63] are all tested on 

common models and datasets. By directly comparing these methods and ours, it is possible to 

achieve the quantitative tests to gauge the effectiveness of WAP. 

7.2 PRUNING METHODOLOGY 

7.2.1 Network Arch Considerations 

Many of these networks are simple in terms of their connections between each layer in the network, 

LeNet-300, LeNet-5 and VGG-16 all have directly connected layers. If you ignore the task of locating 

poorly utilized neurons in these networks, then structurally pruning these networks is trivial. This is 

because in these networks, layer A connects to layer B, layer B connects to layer C and so on, this 

makes it easy to identify weights that need to be removed when given a neuron that needs to be 

removed. Additionally, the impact of removing a single neuron is much easier to infer when dealing 

with single layer-to-layer connections. 

The main issues arise when pruning ResNet-50, Res-Net is a highly residual network, this means it 

has many connections that “skip” through the network and propagate both the training gradients 

and the activation maps at the early stages of the networks towards the output of the network. 

This allows for better training and accuracy; however, these networks create an issue when 

structurally pruned. Res-Net’s require the channel dimensionality to match at every residual 

connection in the network, and in ResNet-50 there are 16 residual connections throughout the 

model. Much like in the work published in ISCAS2021, these kinds of models can be carefully pruned 

to preserve the dimensionality and for this body of work we wanted to take what we had done there 

and increase its scope. 

Shown in Figure 92, the right-hand block, called the identity block, is repeated a specific number of 

times depending on the location in the model. Then the dimensionality is reset by the block on the 

right, called the conv block.  

The colours of the boxes, of the identity block, indicate the level to which that layer is prune-able. 

The green block, in the middle, can be pruned at its input, and at its output. This is because the 

dimensionality of the data at this layer does not need to match any other connection in the model. 

The blue block can have its output pruned, but its input dimensionality must remain identical to the 

skip connection. In the opposite fashion, the red block can have its input pruned freely, but its 

output must match the dimensionality of the skip connection. 
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Figure 82: Visual representation of the structural difference between convolutional blocks (left) and identity blocks (right). 

The conv block has the effect of resetting this dimensionality, as the purple blocks in Figure 92 sets 

the channel dimensionality from all subsequent identity blocks. This means, that if the network was 

to be structurally pruned, without any extra layers being added to the model, the output of these 

two purple blocks, and the output of the red blocks, in all subsequent identity layers would all have 

to be identically pruned. 

In our previous work we had success with splitting channel data, where dimensionality did not 

match, and weaving this data back into the main branch, using concatenate and add functions. This 

method was initially assumed as a good approach to the same issue, however there were some 

severe complications with this method when applied to ResNet-50. 

 

Figure 83: Recombination required for identity blocks due to mismatched filter numbers.  
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Figure 84: Impact of adding recombination logic to ResNet50. 

It was decided to allow for the network to be pruned in its entirety, and not some select channels 

like in the previous work. To achieve this, a more complex method was implemented, joining 

outputs which had different dimensionalities. In the example in figure 93, we split not only the 

output of the side branch, but also the output of the main branch. This allowed for finer pruning of 

all convolutional layers in the network. However, this had unexpected effect on the inference time 

of the network. 

It was found the addition of the extra components (four concatenation layers and three split layers 

and two adds) made for a nearly 2x increase in inference time, shown in Figure 94. This is 

contradictory to the previous set of work, and so to test this we tried splitting the channels 

identically to the original work [60]. However, this still resulted in a significant inference time 

increase shown in Figure 94. This is also contradictory to the FLOPs measurements made on the 

network, as the additional layers showed no increase in the number of parameters or FLOPs. We 

believe this is down to two main differences, namely, the input data size, and the network structure. 

The network this method was first applied to had residual blocks, like ResNet-50. However, the 

channel size within these blocks was a lot lower, the maximum channel size for the previous network 

[60] was 96. In contrast, the minimum channel size in a residual block for ResNet-50 is 64, however 

this is only true in the first identity block. All subsequent blocks (that make up more than 90% of the 

network) have at least 128 channels, with the majority having 256 and finally topping out at 2048. 

This means that adding the split and concatenate layers was adding orders of magnitude more 

complexity than with the previous model. Instead of splitting 96 channels, now 2048 channels had to 

be split. Meaning that the last layer alone of ResNet-50, had more computation dedicated to this 

step than all the residual blocks in the ISCAS2021 work. 

However, this was not the end of the issues, ResNet-50 and most other neural networks used for 

image recognition tasks compress data. Meaning they start with a large input space, in this case 

150,528 pixels and reduce it down to a smaller output space, in this case 1000. This is in stark 

contrast to the work done on filter-based networks [60]. These networks keep the same input and 

output dimensionality. In image translation networks, the computation time is mostly spent on 

convolutional layers, processing these images in full resolution. This meant that when the overhead 
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from the extra layers was added, it was so miniscule in terms of computation compared to the 

overall model, they had no measurable impact on inference time. Additionally, image filtering 

networks process 1080p inputs, meaning on average they must process approximately 3,110,400 

pixels, this is vastly more than classification networks are expected to process. 

ResNet-50 models can process upwards of 100 images per second on modern hardware. When 

compared with the models used to perform image filtering, that can only process one 1080p frame 

every 0.5 seconds.  

This fact is the easiest way to understand the issue, if you were to add 0.01 seconds of overhead to 

processing a single filtered frame then this would have a negligible effect on the inference overall  

[60]. However, if you add 0.01 seconds of overhead to each classified image then 100 images per 

second turns into 50 images per second, essentially doubling inference time. 

Because of this we decided to prune the network where possible, meaning no removal of any of the 

output channels of the purple and red blocks, the only blocks pruned were the internal green blocks. 

Whilst this might at first seem to remove a huge amount of the network that can be pruned, there 

are still 52 blocks that can be pruned, leaving only 20 that can’t. 

7.2.2 Global Vs Local 

This work also explored the differences in pruning globally or pruning locally. This means that the 

importance of a filter within a layer was compared with importance of the filters in the rest of the 

network (global). Or the filter’s importance was evaluated by comparing filters in the same layer 

(local). 

This became essential when dealing with networks that had both convolutional and fully connected 

layers, as the magnitude of the importance values was vastly different between the two. This 

difference could result in either the convolutional layers, or the fully connected layers not being 

pruned. 

7.2.3 Stimulation Dataset 

Additionally, a review of how the data was selected to stimulate a response from the filters was 

undertaken. This was essential as the biggest critiques of the work so far was that “using a section of 

the validation/test set to identify importance values in filters means the pruning is biased” [60].  

This comment was taken from one of the reviewers of the work completed on filter-based networks 

[60], and whilst the comment is not completely valid as there was never any mixing of datasets, it is 

described ambiguously in the paper, and so, to be clear.  

For all the following experiments there were 3 distinct dataset splits. 

• training data 

• stimulation data 

• validation data 
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The training and validation data remained identical to the original experiments; stimulation data was 

obtained by sampling a set % per class of the training dataset. For our experiments this value 

changed depending on the dataset used. However, any value that represented more than 0.1% of 

each class was deemed valid. This percentage is proposed as it adequately represents the dataset 

without biasing the pruning towards the training set [110]. This 0.1% per class simulation data was 

used to generate the filter importance values, indicating which sections of the network needed to be 

removed.  

Additionally, an experiment was conducted to identify if passing Gaussian white noise at the input of 

the neural network would identify filter importance. The logic being that this white noise will simply 

highlight the most highly connected sections of the network. This also had a nice side effect of 

removing the possibility of bias in the simulation dataset. 

7.2.4 Pruning Algorithm V3 

This version of the pruning algorithm was far more complex than all other methods up to this point 

and aimed to combine and test many of the methods developed so far. 

7.2.4.1 Inputs in Detail 

Global Pruning (GP) – This is a Boolean value to indicate whether global pruning is required or not. 

Sparsity Pruning Percentage (SPP) – This is a percentage value that indicates the number of weights 

that must be zero by the end of the sparsity pruning step. 

Layer Percentage Consideration (LPC) – This is a percentage value that indicates the percentage of 

neurons within a given layer that will be considered for pruning. Ie an LPC of 10% on a layer with 100 

neurons will mean 10 are considered for pruning, this is used to reduce computational requirements. 

Maximum Layer Deviation (MLD) – This is a float value that is used to control which neurons are 

pruned, a deviation within MLD from the minimally activating neuron in each layer will select it for 

pruning. 

Re-Training Epochs (ReTEp) – This is an integer value that indicates the number of epochs the 

network is retrained for when accuracy falls below a given value. 

Re-Pruning Epochs (RePEp) – This is an integer value that indicates the number of pruning epochs the 

network is retrained for when accuracy falls below a given value. 

Accuracy Drop before Retraining (ADR) – This is a percentage value that indicates the amount of 

accuracy the pruned model is allowed to lose before retraining is applied. 

Accuracy Drop before Stopping (ADS) – This is a percentage value indicating the accuracy the pruned 

model is allowed to lose before the pruning process stops due to poor model performance. 

Pruned With Signal or Noise (PrSig) – This is a Boolean value indicating whether noise-based or signal-

based simulation data should be used.  

Dataset Percentage for Stimulated Signals (DatPerSig) – This is a percentage value identifying how 

much of the dataset should be used for data-based stimulation data. 

Initial Training Epochs (ITrEp) – This is an integer value indicating the initial training epochs. 

Initial Pruning Epochs(IPrEp) – This is an integer value indicating the initial pruning epochs. 

Pretrained model location(PrMLoc) – This is a string that points to the pretrained model on disk. 
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7.2.4.2 Functions in Detail 

apply_sparsity_pruning(model,sparsity_percentage) – This function uses the TensorFlow backend to 

apply magnitude-based sparsity pruning to the model and a sparsity_percentage for the model to 

achieve during training. This was setup for our purposes in such a way that sparsity pruning would 

only be applied to specific layers that had been pre-selected for pruning. This was done by adding 

“sparse_prune” to the layer name when defining the model, the function returns a model that is 

ready to be pruned using the standard model.fit functionality in TensorFlow. 

get_sim_data(signal,percentage) – This function creates a dataset used for stimulation data, this 

data is either signal based (from real data) or noise based. In the case of real data, the percentage is 

used to identify the number of samples from each class to add to the dataset. This happens for each 

class in the dataset and is returned as the stimulation data. In the case of noise data, the standard 

deviation and mean is gathered from the real stimulation dataset and white noise is generated with 

these values, this dataset is the same size and shape as the one that would have been generated 

from real examples. 

find_neurons_2_prune(Pruned_model, Stimulation_Dataset, MLD, LPC) – This function firstly splits 

the pruned model into lots of smaller models, these splits happen at layers that were defined 

containing the string “structure_prune” in the layer name. This was done prior to pruning by the 

user of the software, this created lots of sub models, each having an output corresponding to its 

filters.  

For each of these sub models the stimulation data was passed through the models and the outputs 

of the filters were recorded and the importance value was obtained in the same fashion as the V2 

algorithm. These values were then shortlisted using the LPC, this was used to select the lowest 

activating filters in any given layer, the exact amount selected depends on the value of LPC. These 

values are then compared against the MLD and checks if they are within a deviation of the MLD 

value, further reducing the number of neurons for pruning, but crucially leaving at least one neuron 

per layer to prune. 

These filters and layers are then returned as the output of the function and used to guide the 

removal of neurons. 

globally_trim_neurons(MLD, Trim_Locs) – This function checks if the user has requested the network 

to be globally pruned or not, if it has, each neuron returned by find_neurons_to_prune is compared 

in importance regardless of the layer it is contained in. Only if the neuron importance value is within 

one deviation of the MLD value does it remain in the pool for pruning. This returns the smaller list of 

neurons to prune. 

remove_neurons_n_eval(Trim_Locs) – This function takes the list of neurons marked for removal 

and removes them from the current model. The model is then tested against the evaluation set and 

the model is returned to be pruned further. 

compare_and_store_models() – This function simply stores the current model and records the 

number of parameters, FLOPS and VRAM use. It also records accuracy, loss and inference time, these 

are they key variables to observe when pruning models and deciding on the best trade-off for the 

task. 
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7.2.4.3 General pruning loop process 

The algorithm starts by identifying if the process is starting from a pre-trained model, like ResNet or 

VGG. If the model is not pre-trained an initial training is performed, then the model is sparsely 

pruned, the performance of these models is recorded for reference later. 

The stimulation dataset is then generated considering the percentage of the dataset required by the 

user, and if the user has selected noise-based simulation or data-based stimulation. 

Then the pruning loop begins, each loop starts by identifying neurons to prune, this is done using the 

stimulation dataset, the current sparsely pruned model, and finally the input variables layer 

percentage consideration and maximum layer deviation. This gives a list of filter numbers that need 

to be removed from the network, at a given layer. 

Next a function checks if the user has requested to globally prune the network or not, if so then all 

values are compared and only the lowest returned, otherwise nothing is changed. 

These filter locations are used by the following function to remove the neurons, and, additionally 

evaluate the performance of the pruned model. 

Next an if statement checks if the model’s performance has fallen below the threshold set by the 

ADR. If it has then the model is retrained and re-pruned. If the model is still performing well nothing 

happens and the loop restarts. 

The second if statement checks if the model’s performance has fallen below the ADS threshold. If 

this block is triggered it means, even with retraining, the model hasn’t recovered enough 

performance, and so the pruning process stops. 

The block checking the regen_sim_data simply checks if it’s time to regenerate the stimulation data 

presented to the network. This can be done on a set schedule pre-defined by the user. When the 

pruning loop ends the final model is stored and evaluated. 
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PROPOSED PRUNING ALGORITHM V.3 

Inputs: Global Pruning (GP), Sparsity Pruning Percentage (SPP), Layer Percentage Consideration (LPC), 

Maximum Layer Deviation (MLD), Re-Training Epochs (ReTEp), Re-Pruning Epochs (RePEp), Accuracy Drop 

before Retraining (ADR), Accuracy Drop before Stopping (ADS), Pruned With Signal or Noise (PrSig), Dataset 

Percentage for Simulated Signals (DatPerSig), Initial Training Epochs (ITrEp), Initial Pruning Epochs(IPrEp), 

Pretrained model location(PrMLoc). 

Outputs: Pruned Networks (Pn) 

If model is not pretrained: 

 Initial_model = model.fit(ITrEp) 

Else: 

 Initial_model = load_pretrained_model(PrMLoc) 

Pruned_model = apply_sparsity_pruning(Initial_model, SPP) 

Pruned_model = Pruned_model.fit(IPrEp) 

Initial_performance = Initial_model.eval() 

Sparsity_Pruned_Performance = Pruned_model.eval() 

Stimulation_Dataset = get_sim_data(PrSig, DatPerSig) 

Pruning = True 

While Pruning: 

 Trim_Locs = find_neurons_2_prune(Pruned_model, Stimulation_Dataset, MLD, LPC) 

 Trim_Locs  = globally_trim_neurons(MLD, Trim_Locs) 

 pruned_model, pruned_model_accuracy = remove_neurons_n_eval(Trim_Locs) 

 if pruned_model_accuracy < Initial_performance – ADR: 

  pruned_model_rt = pruned_model.fit(RetEp) 

  pruned_model_accuracy = pruned_model_rt.eval() 

  pruned_model = apply_sparsity_pruning(pruned_model_rt, SPP) 

 if pruned_model_accuracy < Initial_performance – ADS: 

  break 

 compare_and_store_models(pruned_model,pruned_model_rt) 

 if regen_sim_data: 

  Stimulation_Dataset = Get_Sim_Data(PrSig, DatPerSig) 

store_final_model(pruned_model_rt) 
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7.3 INTRO TO CLASSIFICATION NETWORKS 
Classification neural networks are responsible for some of the first widespread successful 

applications of machine learning [64]. These networks have a visual input, normally a small image, 

images often go under heavy pre-processing, even before reaching the input neurons of the neural 

network. Once processed by the neural network the image is classified as a single class indicated by 

the output of the network, e.g., Dog or Cat. 

This pre-processing can be essential in reducing the amount of information needed to successfully 

classify an image, pre-processing is also used to normalise the inputs so that networks can later 

handle inputs of varying size and colour spaces [154]. Many different leading methods use vastly 

different pre-processing techniques [65]. For this body of work, we are going to focus on 4 networks 

and 5 datasets, the models are below, when possible, the image pre-processing from the original 

model’s implementation will be used. 

• LeNet300 [64] 

• LeNet5 [64] 

• VGG16 [66] 

• Resnet50 [67] 

And the following datasets 

• MNIST [68] 

• Fashion-MNIST [69] 

• CIFAR 10 [70] 

• Birds [71] 

• ImageNet [72] 

These networks were chosen specifically as they are represented far more frequently than other 

networks and datasets in the field, as shown in this review paper [73].  

These datasets range in the number of classes from 10 to 1000 and the size of the image from 28x28 

to 224x224. Additionally, the models range in processing requirements from 266.2k FLOPs to 15.3b 

FLOPs. For this reason, some specific tests were performed to highlight the differences in dataset 

size and complexity, to see how datasets impacts pruning neural networks. The decision behind 

these pairings is fully explained in their specific sections, the final model/dataset pairings are below. 

• LeNet300 on MNIST 

• LeNet5 on MNIST and Fashion-MNIST 

• VGG16 on CIFAR-10 and Birds 300 Kaggle 

• Resnet50 on ImageNet 
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7.4 DATASETS 

7.4.1 MNIST 

The Modified National Institute of Standards and Technology (MNIST) database is a collection of 

70,000 handwritten digits [68]. The images are single channel i.e., black, and white and contain the 

digits 0-9, no image contains more than one digit. Each image is 28x28 pixels, a sample of the 

dataset is shown below. This dataset was selected because it was used in 5 out of 10 prominent 

pruning papers since its creation in 1994 [73]. 

 

Figure 85: Example of handwritten MNSIT digits [68] 

The dataset is perfectly balanced and has 7,000 examples of each class. 

7.4.2 Fashion-MNIST 

Fashion MNIST was designed as a drop-in replacement for the standard MNIST dataset. The 

characteristics of dataset are identical to MNIST, i.e., single channel, 28x28 images, 70,000 examples, 

10 classes and perfectly class balanced at 7,000 examples per class [69]. This dataset was created 

because MINST was considered “too easy” for convolutional neural networks to learn [74].  

 

Figure 86: Examples of all 10 Fashion MNIST classes [69]. 
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These are considered harder to learn than digits, which share similar shapes and structures to each 

other, an example of the dataset is shown below. 

This dataset was selected because it is also featured in pruning papers, but additionally to explore 

the impact of “difficulty” on neural network pruning. Intuitively a simpler task should be easier to 

prune… by directly testing MNIST digits against MNIST fashion it is possible to draw some initial 

conclusions on the difficulties of pruning neural networks that are already optimal for the task. 

7.4.3 CIFAR-10 

Canadian Institute For Advanced Research (CIFAR–10) is a collection of 60,000 images of size 32x32 

pixels, the images are colour and contain 3 channels. There are 10 class types, and they are 

Airplanes, Cars, Birds, Cats, Deer, Dogs, Frogs, Horses, Ships and Trucks. Again, the classes are 

equally balanced at 6,000 examples per class and an example of the dataset is shown below. 

 

Figure 87: Examples of the 10 classes present in CIFAR-10 [70] 

This dataset is once again considered a step up in complexity of the classification task. MINST – 

Fashion contained objects of 3 main groups, namely, worn clothing, footwear, and bags. CIFAR - 10 

contains Animals, Road vehicles, Ships and Planes, a whole extra group to learn.  

7.4.4 Birds 300 Kaggle 

Birds 300 Kaggle is a subset of the larger Birds 510 Kaggle dataset [71] this dataset contains 300 

species of birds from many areas of the globe. Each species is its own class, this includes such bird 

species as Ostrich, Crow, Wood Duck and more obscure species like Bobolink, Kagu and Sora.  

Each image is of size 224x224 pixels, which is the standard input size for VGG16 and RESNET-50. 

These images have been pre-processed to this size, each bird has been centred in the image, and the 

image is in colour format. Figure 85 shows some examples from the dataset. 
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Figure 88: Example of 6 selected classes from the Birds Kaggle dataset [71]. 

7.4.5 ImageNet 

ImageNet is an “image database organised according to the WordNet [75] hierarchy” [72], it 

contains over 14 million images in total and more than 20,000 classes. Because ImageNet uses a 

hierarchy to organise the data within, the dataset can be organised in many ways. This is done by 

selecting different nodes in the hierarchy to define as a class. For instance, a cat is an animal but so 

is a dog and a frog, in the case that “animal” was chosen as a class, every example from these nodes 

would be contained within the class. However, if mammal was chosen instead then frog would be 

excluded, and if corgi was selected both cat and frog would be excluded. 

For the purposes of this research the configuration used for the competition in 2012 called 

ILSVRC2012[72] will be used, this contains 1000 classes and contains 1,281,167 images total. The 

dataset is unbalanced as shown in Figure 87 there are 732–1300 training images available per class.  

 

Figure 89: Distribution of the number of examples in the training dataset for ImageNet that contain less than 1300 
examples. 
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7.4.6 Dataset Summaries 
Table 29: Summaries of all the datasets used for training. 

Dataset Resolution Colour Classes Nb. Examples Balanced 

MNIST-Digits 28x28 No 10 70,000 Yes 

MNIST-
Fashion 

28x28 No 10 70,000 Yes 

CIFAR-10 32x32 Yes 10 60,000 Yes 

Birds-300 224x224 Yes 300 50,000 No 

ImageNet Varied Yes 21,841 14,197,122 No 

ILSVRC2012 Varied Yes 1,000 1,281,167 No 
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7.5 NEURAL NETWORK STRUCTURES 

7.5.1 LeNet-300 

LeNet300 [64] is a fully connected network with one hidden layer. The first layer is made from 300 

neurons and the second layer 100, each layer has a ReLU activation function applied after each layer, 

the input is of size 28x28.   

 

Figure 90: A simplified representation of LE-NET 300 

The network was designed to be computationally efficient in processing data when compared to 

LeNet-5. This network was originally designed to detect hand-written MNIST digits. Images were 

flattened so that the network has an input shape of 784 float values. Digits were normalised to make 

sure the mean input was zero and variance was one. This is a well-established approach to aid with 

the learning process. The network has 265,400 FLOPs and 265,600 parameters, this is broken down 

by layer in Table 30.  

This network was found to be able to achieve a 3.05% top 1 error when tested on MNIST digits, 

some papers since have claimed higher accuracy for this same architecture [76]. This is a pervasive 

issue in the field of neural network pruning, it seems sometimes pruning methods are comparing the 

efficacy of re-training neural networks, rather than the pruning capabilities of the method they have 

developed.  

Table 30: The number of FLOPs and parameters in each layer of LE-NET 300 

 

 

Because of the accuracy issue laid out above, where possible pruned neural networks will be 

compared using an accuracy difference from the original un-pruned model. This will hopefully show 

the effectiveness of the pruning method and not the improvements through any new training 

techniques.  

7.5.2 LeNet-5 

LeNet-5 is a convolutional neural network comprised of seven layers not including the input layer 

which is of size 32x32 pixels [77]. The network was used to achieve an error rate of 0.95% on the 

MNIST digits dataset, the input size is obviously more than the 28x28 pixels of standard MNIST, this 

was done to centre the digit and to achieve this the digit was padded with zeros on all sides. Digits 

are also normalised so that the mean input is zero and the variance is one, this is used once again to 

aid with the speed of learning. 

Layer Flops Parameters 

Dense 1 235350 235500 

Dense 2 30050 30100 
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The other four layers are listed in Table 31 with their flop and parameter amount, tanh is used as an 

activation function at every layer, and a sigmoid activation function is used after every pooling layer. 

 

Figure 91: A simplified representation of LE-NET 5 [77] 

Table 31: The number of FLOPs and parameters in each layer of LE-NET 5 

Layer Flops Parameters 

Conv1 307200 208 

Conv2 1228800 3216 

Dense1 138240 69240 

Dense2 20160 10164 

These measurements are with the channel configuration of 6,16,120,84. Other methods use a 

starting channel configuration of 20, 50, 800, 500. This configuration is now considered overkill for a 

problem such as MNIST. 

7.5.3 VGG-16 

VGG-16 is a configuration of a neural network “ConvNet” developed for the ImageNet 2014 

challenge [66] the 16 indicates that the model has 16 weight layers. This model was originally 

trained on a subset of ImageNet containing 1000 classes and an input size of 224x224 coloured 

images. 

For this work we will focus on two versions of the VGG-16 model. One that was fine-tuned from this 

original VGG-16 model. This fine-tuned model has been trained on CIFAR-10 meaning that the input 

size has been reduced to 32x32 pixels and the number of output classes has been reduced to 10. The 

other is the model that was trained on ImageNet, however the final, classification layers will have 

been removed and replaced with new layers to tune the network to a new dataset. 

Whilst this is a commonly used test in the field of neural network pruning, I struggle to understand 

why it is so widely adopted. This model was designed to classify 1000 classes, from a much more 

complex dataset. By reducing the number of classes by 100 times it can be expected that the 

network can be reduced in complexity through pruning easily. This might be to show how a large 

network can distil its knowledge into a smaller model for a smaller task, however the idea that you 

would begin with a model that is 100 times too complex for the task is questionable at best. In any 

case, it is a widely used test amongst pruning papers and so I have included it. 

Table 32 shows the breakdown of VGG-16’s FLOPs and parameters, and Figure 90 shows a simplified 

representation of the structure. 
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Table 32:The number of FLOPs and parameters in each layer of VGG-16 

Layer Flops Parameters 

Conv1 3538944 1792 

Conv2 75497472 36928 

Conv3 37748736 73856 

Conv4 75497472 147584 

Conv5 37748736 295168 

Conv6 75497472 590080 

Conv7 75497472 590080 

Conv8 37748736 1180160 

Conv9 75497472 2359808 

Conv10 75497472 2359808 

Conv11 18874368 2359808 

Conv12 18874368 2359808 

Conv13 18874368 2359808 

Dense1 524288 262656 
Figure 92: A simplified representation of VGG-16 generated using [78]. 

7.5.4 ResNet-50 

ResNet-50 is a configuration of the Res-Net family of neural networks which attempts to overcome 

the issue of vanishing gradients [155]. This is done in deep neural networks by adding many residual 

connections to the network [67]. Res-Net was trained on the ImageNet subset ILSVRC2012 in its 

standard configuration, meaning coloured images of 224x224 pixels, additionally the dataset 

contains 1000 classes in this format. 

Res-Net’s are made from convolutional blocks and identity blocks, the number of filters in these 

blocks differ depending on the configuration, the configuration for ResNet-50 is shown in Table 33. 

Table 33: Different configuration modes for Res-Net, the Selected model used in the research is highlighted in green. 

 

The original model for this work is taken from the Keras applications webpage [79], this model was 

then pruned using the same image pre-processing techniques as the original Res-Net paper. Pruning 

a model and keeping the task the same is a good test of how well a pruning method can extract and 

transfer knowledge to a smaller model. 

 

Layer 
Name 

Output 
Size 

18-Layer 34-Layer 50-Layer 101-Layer 152-Layer 

Conv1 112x112 7x7, 64, stride 2 

Conv2_x 56x56 3x3 max pool, stride 2 

[
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3 
[

3 × 3, 64
3 × 3, 64

3 × 3, 256
] × 3 [

3 × 3, 64
3 × 3, 64

3 × 3, 256
] × 3 [

3 × 3, 64
3 × 3, 64

3 × 3, 256
] × 3 

Conv3_x 28x28 [
3 × 3, 128
3 × 3, 128

] × 2 [
3 × 3, 128
3 × 3, 128

] × 4 
[
3 × 3, 128
3 × 3, 128
3 × 3, 512

] × 4 [
3 × 3, 128
3 × 3, 128
3 × 3, 512

] × 4 [
3 × 3, 128
3 × 3, 128
3 × 3, 512

] × 4 

Conv4_x 14x14 [
3 × 3, 256
3 × 3, 256

] × 2 [
3 × 3, 256
3 × 3, 256

] × 6 
[

3 × 3, 256
3 × 3, 256

3 × 3, 1024
] × 6 [

3 × 3, 256
3 × 3, 256

3 × 3, 1024
] × 23 [

3 × 3, 256
3 × 3, 256

3 × 3, 1024
] × 36 

Conv5_x 7x7 [
3 × 3, 512
3 × 3, 512

] × 2 [
3 × 3, 512
3 × 3, 512

] × 3 
[

3 × 3, 512
3 × 3, 512

3 × 3, 2048
] × 3 [

3 × 3, 512
3 × 3, 512

3 × 3, 2048
] × 3 [

3 × 3, 512
3 × 3, 512

3 × 3, 2048
] × 3 

 1x1 Average pool, 1000 Dropout Fully connected, Softmax 

FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109 
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Figure 93:A simplified representation of ResNet-50 generated using [78]. 

Table 34: Describing each layer in a table would create a massive table therefore this table records each identity and 
convolutional block’s FLOPs and parameters of ResNet-50. 

Block Flops Parameters 

Conv Block 1 463,224,832 74,624 

Identity Block 1 437,534,720 70,304 

Identity Block 2 437,534,720 70,304 

Conv Block 2 745,414,656 377,392 

Identity Block 3 437,534,720 278,864 

Identity Block 4 437,534,720 278,864 

Identity Block 5 437,534,720 278,864 

Conv Block 3 745,213,952 1,507,608 

Identity Block 6 436,932,608 1,114,280 

Identity Block 7 436,932,608 1,114,280 

Identity Block 8 436,932608 1,114,280 

Identity Block 9 436,932,608 1,114,280 

Conv Block 4 745,113,600 6,029,452 

Identity Block 10 436,832,256 4,456,532 

Identity Block 11 436,832,256 4,456,532 

 

7.6 HYPERPARAMETERS 
Table 35: Hyperparameters used for training and pruning all the models in the experiments in the following sections. 

Dataset Batch 
Size 

Initial 
Training 
Epochs 

Initial 
Pruning 
Epochs 

Global 
Pruning 

Learning Rate Optimiser Loss Function Sparsity 
Pruning 
Percentage 

LeNet-300 
MNIST 

256 75 75 True Init 0.01 
Drop 0.94 /5 epochs 

SGD Sparse Categorical 
Cross entropy 

Init 50% 
Final 90% 

LeNet-5 
MNIST 

256 75 75 True Init 0.01 
Drop 0.94 /5 epochs 

SGD Sparse Categorical 
Cross entropy 

Init 0% 
Final 40% 

LeNet-300 
Fashion 

256 75 75 True Init 0.01 
Drop 0.94 /5 epochs 

SGD Sparse Categorical 
Cross entropy 

Init 0% 
Final 40% 

VGG-16 
CIFAR-10 

256 70 70 True Init = 0.001 
Epoch 50 = 0.0001 

SGD Categorical Cross 
entropy 

Init 50% 
Final 80% 

VGG-16 
Birds 

64 15 10 True Pre-warm up  
0.0001 
Post-warm up 
0.00001 
 

Adam Categorical Cross 
entropy 

Init 50% 
Final 80% 

Resnet-50 
ImageNet 

128 - 10 Both Init = 0.001  
Epoch 25 = 0.0001 
Epoch 50 = 0.00001 

SGD Sparse Categorical 
Cross entropy 

Init 30% 
Final 60% 
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Dataset Layer 
Percentage 
Consideration 

Maximum 
Layer 
Deviation 

Re-
Training 
Epochs 

Re-
Pruning 
Epochs 

Accuracy 
Drop before 
Retraining 

Accuracy 
Drop before 
Stopping 

Pruned 
With Signal 
or Noise 

Dataset Percentage 
for Simulated Signals 

LeNet-
300 
MNIST 

20 % 0.01 50 50 0.1 % 1.5 % Signal 4 % 

LeNet-5 
MNIST 

10 % 0.01 50 50 0.1 % 1.5 % Signal 4 % 

LeNet-
300 
Fashion 

10 % 0.01 50 50 0.1 % 3 % Signal 4 % 

VGG-16 
CIFAR-10 

10 % 0.01 45 45 0.3 % 1.5 % Both 0.2 % 

VGG-16 
Birds 

5 % 0.01 10 10 0.5 % 2.7 % Signal 3.3 % 

Resnet-50 
ImageNet 

5 % 0.001 15 10 0.5 % 2.7 % Signal 0.4 % 
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RESULTS  

7.6.1 LeNet-300 on MNIST 

The model was trained to an initial accuracy of 98.4%, after which, initial sparsity pruning was 

applied, the sparsely pruned model also achieved 98.4% accuracy.  

 

Figure 94: The accuracy results using the Adam optimiser over multiple pruning loops.  

 

Figure 95: Results for the ADAM optimiser, here MACS were plotted as the FLOPS and parameters match so closely it would 
look as if only one plotted (MACS is just FLOPS x 2). 

7.6.1.1 Comparison to Similar Techniques 

Comparing to other methods is difficult because pruning is a broad field and there are many 

techniques, most focus on pruning weights in the network. Whilst this is a form of pruning 

commonly used for reducing the size of the model on disk, or reducing the computation required on 
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a CPU by using other additional techniques [80], this is not the type of pruning WAP achieves. 

Comparisons will therefore focus mostly on techniques that prune entire neurons and filters 

(structured pruning), this technique mirrors ours and provides inherent gains in computation time 

on CPU and GPU devices.   

Table 36: SOTA pruning methods using the model LeNet-300 and dataset MNIST, best result in bold second best underlined. 

Method Parameters Flops Error Pruning Type 

Ours ADAM 66,453 66,282 2.05% (∆- 0.45%) Structured 

Ours SGD Global 25,947 77,384 1.89% (∆- 0.3%) Structured 

Ours SGD Local 24,807 74,133 1.99% (∆- 0.4%) Structured 

Auto Prune [81] - 23,978 1.82% (∆- 0.22%) Structured 

Corset [82] 26,000 - 2.03% (∆- 0.13%) Structured 

MIXP [83] 3,199 19,982 - %      (∆ -0.3%)  Semi * 

NeST [84] 7,844 14,900* 1.29% (∆- 0.31%) Semi * 

GrowPrune [85] 12,200 - 1.4% (∆-) Sparse 

EffNN [86] 22,000 - 1.59% (∆- 0.05%) Sparse 

DiffEvo [87] 10,000 - 2.07% (∆- 0.19%) Sparse 

PartSwarm [88] 44,369 - 2.2% (∆+ 0.06%) Sparse 

NoiseOut [89] 11,225 - 3.05% (∆-) Sparse 

These results show that our technique performs worse than all other techniques except when 

compared by parameters, for some examples. However, all other techniques use input pruning, this 

is where connections are cut to the input layer. This provides a huge gain that is unachievable with 

our current approach. The second thing to consider in these results is that we found the SGD 

optimiser with local pruning (in green) performs much better on average than the Adam optimiser. 

Table 37: Comparison of using Adam and SGD optimisers and using Global/Local pruning. 

Our Method 1st Layer Neurons  2nd Layer Neurons Flops Parameters 

ADAM Global 75 88 66,282 66,453 

SGD Global 32 19 77,384 25,947 

SGD Local 31 11 74,133 24,807 

 

 

Figure 96:Number of neurons pruning in each layer over multiple pruning loops for the three different approaches; Adam 
Global, SGD Global and SGD local. 
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As Figure 97 shows, the main difference between the optimisers is the speed of pruning the second 

layer’s neurons. When pruning using the ADAM optimiser, the 2nd layer isn’t pruned much at all until 

the first layer has far fewer neurons. In stark contrast when SGD is used the layers are pruned 

uniformly, and at the selected model locations (indicated by the lines) there are still more neurons in 

the first layer than second.  

7.6.1.2 Input Pruning 

Input pruning is a technique used when the input to a neural network is highly sanitised and 

normalised, this is the case with MNIST as most numbers are centred in the middle of the image and 

are normalised in greyscale [83]. 

When this is the case, you can assume that a large proportion of the input data is redundant. For 

example, in the MNIST dataset the highly centred region of interest, shown in Figure 98, means that 

the periphery of the input may be ignored. 

Tests were run with different pixel thresholds to see at which point each the model was impacted by 

this reduction in the number of input neurons. The training data was extracted, and each class was 

gathered and averaged on top of each other, this can be seen in Figure 98. 

 

Figure 97: Total average output of the whole of the MNIST dataset. 

This produced an average input, immediatley it’s possible to identify regions that contain less data 

on average than the rest of the image. The next step was to provide a threshold to limit the input 

based on the averaged values. Figure 98 shows the averaged data over the whole dataset, Figure 99 

shows how changing this threshold value changes the averaged image and the mask created for 

training. 
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 Thresh – 0   Thresh – 0.05   Thresh – 0.1 

 

 Thresh – 0.2   Thresh – 0.3   Thresh 0.4 

 

Thresh – 0.5 

Figure 98: The image on the left in each example shows the averaged input that the network will train on, and the image on 
the right shows the mask that is applied. The black region is the area that will be used as an input for all numbers in the 

dataset. The text underneath indicates the threshold applied for that specific set of images. 

Each threshold results in a different number of input neurons shown in table 38, interestingly a 

threshold of 0 already removes a significant number of pixels. This indicates there are regions with 

no pixel information in the whole of the training dataset. Each threshold has a different effect on the 

input and will result in a different accuracy from the trained network. Each threshold was trained 

from scratch using identical hyperparameters. 

When training, a subset of the training data was extracted, 1000 examples of each class were 

gathered and averaged on top of each other to find the correct threshold mask. This was not done 

over the entire training set to keep a portion of the training data independent of the threshold data. 

Table 38: Comparison of different threshold rates used and the effect that this has on the number of input pixels used for 
training. 

Threshold Value Original 0 0.05 0.1 0.2 0.3 0.4 0.5 

Number of remaining pixels 784 673 396 343 285 237 198 139 

Percentage of remaining pixels 100% 85% 50% 44% 36% 30% 25% 18% 

Accuracy of model 98.3% 98.3% 98.3% 98.4% 98.1% 98.0% 97.8% 96.6% 
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Figure 99: Detailed analysis on how varying the number of input neurons effects the accuracy achieved by LeNet-300 on 
MNIST. 

The results in Figure 100 are interesting, not only because the number of inputs required for high 

accuracies on MNIST seem low (below 50%), but there is also an improvement in accuracy around 

the threshold of 0.1 over the baseline tests. This could be due to many things; however, it is most 

likely due to a specific style of digit or handwriting being overrepresented in the training set. By 

limiting the input, and hence some of the more unusual styles of written digits, this reduces 

confusion in the neural network and increases accuracy.  

 

Figure 100: The pruning test was repeated, an input pruning threshold of 0.1 was used, using the SGD optimiser. 
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Figure 101: MACs and model parameters recorded over multiple pruning loops with an input threshold of 0.1 applied. Once 
again MACS are reported for readability. 

Table 39 shows that the addition of input pruning, with the original technique, reduces the number 

of flops and parameters significantly. This brings our results more in line with other state of the art 

methods. It makes sense that most sparse only methods, are beaten by methods that employ both 

pruning methods, with regards to the number of parameters and FLOPs removed. A reasonable 

assumption to make is that the simple stacking of structured, and sparse pruning, squeezes as much 

information from the model as possible.  

Table 39: Comparison to SOTA methods pruning LeNet-300 with an input trim of 0.1 and 0.3 with parameter counting 
applied, best result in bold second best underlined. 

Method Parameters Flops Error Pruning Type 

Ours SGD Global – Inp Trim - 0.3 11,068 11,055 2.01% (∆ -0.42%) Structured 

Ours SGD Global – Inp Trim - 0.1 + 5,025 12,279 1.89% (∆- 0.3%) Both 

Ours SGD Global – Inp Trim - 0.1 12,286 12,279 1.89% (∆ -0.3%) Structured 

Ours SGD Local – Inp Trim - 0.1 14,994 14,982 1.99% (∆ -0.4%) Structured 

Auto Prune - 24,346 1.82% (∆- 0.22%) Structured 

Corset 26,000 - 2.03% (∆- 0.13%) Structured 

MIXP 3,199 19,982 - %      (∆ -0.3%)  Semi 

NeST 7,844 14,900 1.29% (∆- 0.31%) Semi 

GrowPrune 12,200 - 1.4% (∆-) Sparse 

EffNN 22,000 - 1.59% (∆- 0.05%) Sparse 

DiffEvo 10,000 - 2.07% (∆- 0.19%) Sparse 

PartSwarm 44,369 - 2.2% (∆+ 0.06%) Sparse 

NoiseOut 11,225 - 3.05% (∆-) Sparse 

With regards to accuracy, there is an important issue across all pruning papers, in that there is no 

agreed accuracy to achieve. Most papers do not even start at the same baseline model performance. 

This is clearly shown in Table 39, and in fact, in the MIXP paper the accuracy of the model is never 

given, only the degradation due to the applied pruning is provided.  
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In our experiments, even before pruning was applied the maximum accuracy achieved was 98.4%, 

NeST claims an accuracy of 98.71% from their pruned model. Whilst 0.3% might not seem significant, 

these last few percent are extremely hard to achieve, whilst the paper does provide detail of the 

hyperparameters regarding training LE-NET-300 it does not provide any GitHub implementations. 

Nor any post-pruned models, replicating the hyperparameters from the paper exactly could not 

replicate the accuracy claims, even on a non-pruned model. 

Luckily when pruning more complex models like VGG and Res-Net, pre-trained models exist, and 

accuracy metrics are well established, however as discussed later this issue is largely unsolved and 

prevalent in the pruning community. 

Ours SGD Global – Inp Trim - 0.1 + shows the best result from our experiments. The + indicates the 

result from both structurally pruning and sparsely pruning LE-NET-300. 

7.6.1.3 Confusion Matrix 

 

Figure 102: The confusion matrix on the left shows the un-pruned LE-NET-300 network and the confusion matrix on the right 
shows the confusion matrix of the pruned model highlighted in green in the table 39. 

Figure 103 shows that the ability of the network to correctly identify the number 8 to be vastly 

decreased from the original model, and interestingly other numbers seem to have increased in the 

number of correct predictions. This is most likely because 8 is a digit that contains the constitute 

parts of many other digits. 9 6 3 and 0 all share curves and lines in very similar places to the digit 8, 

whilst the model may have previously used other input information as a process of elimination, to 

combat this, it can no longer do so. This theory will be further explored in the following section on 

saliency maps. 

7.6.1.4 Ablation Studies 

The model’s architecture changes over time, but the final pruned model has 343 input neurons, 33 

neurons in the first hidden layer and 21 in the second. A model was trained from scratch using the 

same number of hidden layer neurons. This was to see if a model with the same accuracy as the 

pruned model, could be achieved without the iterative pruning process. 
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Figure 103: Testing to identify if a model of the same architecture as the pruned model can achieve the same accuracy 
being trained from scratch. 

The model was retrained 10 times, and an average of the results were taken, Figure 104 clearly 

shows that the model performance of the pruned model is vastly higher. Even when considering the 

error bars, the highest performing model is still the pruned model. This shows that the pruning 

process has managed to preserve the knowledge learnt by the initially trained model and transfer it 

to the smaller pruned model. 

 Table 40: Results proving the efficacy of the sparsity pruning step. 

Additionally, it was imperative to prove the utility of the sparsity pruning within the proposed 

method. To achieve this the experiment was re-run with the removal of the sparsity pruning steps. 

The results in table 40 and Figure 105 show that without the sparsity pruning step, the model cannot 

achieve the same performance.  

If we inspect how the model layers were pruned over time, there is also a big difference in the rate 

of pruning of both hidden layers, when sparsity pruning is not used. This shows that sparsity pruning 

step is aiding the structural pruning step by zeroing out weights.  

96.8

97

97.2

97.4

97.6

97.8

98

98.2

Retrained From Scratch Pruned Model

A
cc

u
ra

cy

Accuracy Comparison Pruned Model Vs From Scratch

Method Parameters Flops Error Pruning Type 

SGD Global – Sparsely Pruned 12,286 12,279 1.89% (∆ 0.3%) Structured 

SGD Global – W/O Sparsity Pruning 19,506 19,479 1.95% (∆ 0.4%) Structured 



P a g e  1 3 3  |  P r u n i n g  C l a s s i f i c a t i o n  N e t w o r k s  

 

 

Figure 104: Pruning profile using sparsity pruning (blue line) and not (red line) 

The accuracy graphs in Figure 106, show that after the initial 40 pruning loops the accuracy with 

sparsity pruning outperforms the accuracy without sparsity pruning (from loop 40-85). This the 

addition of these two techniques better retains the accuracy of a model once structurally pruned.   

 

Figure 105: Accuracy pruning profile of the pruning method using sparsity pruning (blue line) and not (orange line) 

Another important consideration is the number of retraining steps required by both techniques. To 

get to the pruned model the sparsity pruning technique must be fine-tuned 29 times, the technique 

without sparsity pruning must be fine-tuned 55 times. This re-enforces the evidence for the efficacy 

of the sparsity pruning technique. Additionally, the fine-tuning occurs much later in the process 
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when applying sparsity pruning. This means that the sparsity pruning technique can be initially 

applied and then no fine-tuning needs be applied, this is not possible without sparsity pruning.  

7.6.1.5 Resource Usage 

To test the inference time of the pruned and baseline model, each model was tested 20 times on a 

test set of 250,000 image samples with a batch size of 16,384. This was done to maximise the 

utilisation of the GPU. This model is so small that on small batch sizes the CPU can outperform the 

GPU in terms of inference time. This highlights the parallel nature of GPUs. All tests were performed 

on a RTX 2080 SUPER GPU and an Intel(R) Core(TM) i7-9700K CPU. 

7.6.1.5.1 Speedup GPU 
Table 41: Model speedup on a GPU. 

Model Time (s) Error 

Baseline 0.45 1.59% 

Pruned 0.23 1.89% 

 

 

Figure 106: Model speedup on a GPU showing a speedup of 48.45% was achieved. 

7.6.1.5.2 Speedup CPU 
Table 42: Model speedup on a CPU. 

Model Time (s) Error 

Baseline 0.64 1.59% 

Pruned 0.25 1.89% 
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Figure 107: Model speedup on a CPU showing a speedup of 60.84% was achieved. 

7.6.1.5.3 Memory Use 

The size of these models is so small the GPU memory usage was not affected by the pruning, 

however the size on disk was, the model was reduced from 1,082 KB to 68 KB for the SGD Global – 

Inp Trim - 0.1 + model. 

7.6.1.6 Arch evolution 

 

Figure 108: Model architecture evolution over multiple pruning loops showing the number of neurons in each layer. 

This shows how the architecture of the model changes over time, if you match this to the parameter 

and FLOPs plots from earlier you can see they are all directly correlated for LeNET-300. A removal of 

a neuron results in a similar drop in FLOPs and parameters, as shown in figure 110 this also results in 

a reduction of inference time. 
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Figure 109: Inference reduction due to pruning recorded for each pruned model. 

Inference testing for Figure 110 was performed on the CPU, with such small models it is hard to 

control the variability in inference time when testing on the GPU as the GPU is underutilised in such 

scenarios. It is hard from these results to draw a conclusion as to whether the parameters or FLOPs 

play more of a role in inference time, as they are directly correlated in this model. 

7.6.1.7 Conclusion 

Overall, these results show the best results for reduction in FLOPs when compared to other SOTA 

methods, importantly this reduction is also realised in the code and isn’t a theoretical increase. Our 

model performs well when compared to SOTA pruning on parameters when measured in the same 

way as the other techniques (non-zero weight values). However, our method underperforms when 

compared MIXP, this could be due to the optimisation differences between the two methods. Our 

method deliberately targets FLOPs by identifying neuron and filter utilisation, MIXP focuses on 

weight utilisation and therefore inherently prunes parameters more than FLOPs. 

These first set of results clearly demonstrate the importance of the sparsity pruning step, allowing 

the model to have a higher accuracy for longer whilst pruning. Additionally, these results show that 

the model structure developed cannot be trained from scratch to the same accuracy as the one 

“discovered” through the pruning process. 

It is important to note, the sparsity pruning step is just a means to an end, that being non-zero 

weight parameters being reduced. This can be achieved through any of the sparsity pruning methods 

listed in this section and could potentially improve results of the method overall. However, this 

would add too much complexity and too many methodologies to test at this time, therefore the 

standard magnitude-based sparsity method from TensorFlow will remain as the sparsity pruning 

step method for WAP. 
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7.6.2 LeNet-5 on MNIST 

7.6.2.1 Comparison to Similar Techniques  

After testing the model on in the previous section, it was identified that the best set of results were 

achieved when using SGD with global focus. However, for completeness and because this network is 

convolutional as well as fully connected, we included the results for both global and local pruning. 

Table 43: SOTA pruning methods using the model LeNet-5 and dataset MNIST 

Method Parameters Flops Error Pruning Type 

Original Model 430,000 2.29M 0.8 % None 

Ours SGD Global + 3,351 78,170 1 % (∆ -0.2 %) Both 

Ours SGD Global 16,649 78,170 0.9 % (∆ -0.1 %) Structured 

Ours SGD Local 27,782 66,087 0.9 % (∆ -0.1 %) Structured 

Ours SGD Global (HA) 20,315 81,827 0.8 % (∆ 0%) Structured 

MIXP 2,580 73,280 - %     (∆ -0.3 %)  Semi 

NeSt 5,772 105,000* 0.77 % (∆ +0.3 %*)  Semi* 

HRel [91] 8,686 80,000 1.22 % (∆ -0.53%) Structured 

AUTO  2,580 160,300 0.80 % (∆ -0.2%) Structured 

GSM [90] 3,440 135,110  0.78% (∆ -0.01%) Structured 

PartSwam 8,504 - 0.91 % (∆ -0.03%) Sparsity 

GrowPrune 7,900 - 0.83 % (∆ -) Sparsity 

EffNN 36,000 - 0.77 % (∆ -0.03%) Sparsity 

DiffEvo 3,444 - 1.41 % (∆ -0.46%) Sparsity 

Some results have been highlighted with an asterisk, MIXP is highlighted due to the discrepancy with 

its accuracy. However, Nest’s FLOPs result is also highlighted. This is because the paper uses so 

called “partial area convolutions” to reduce FLOPS. These are convolutions that use a mask to reduce 

the amount of input to a given filter in a neural network. They claim in the paper that this causes a 

reduction in FLOPs, however the only implementation that exists employs a mask of zeros to block 

the input from the previous activation map [84]. This increases the number of operations required 

for a conv operation, it is a misconception by the authors (and others in the field) that multiplying by 

0 somehow requires no computation, this is not the case. 

This also begins to show the difference in approaches, overall, I believe our best result is highlighted 

in green in Table 43. This result is the result before sparsity pruning is applied, I think it is a good 

middle ground showing the 2nd best results after MIXP in FLOPS but higher accuracy. 

The result in blue shows the model selected by highest accuracy, this is comparable to other results 

that lose no accuracy when pruning. However, our result out-performs all 0% ∆ models on FLOPs 

metrics, additionally the Local pruning model performs even better when reducing FLOPs. 

Our results look bad when compared using number of parameters however this is expected, our 

method does not contain a complex sparsity pruning process, it is simply doing magnitude weight-

based pruning. All the sparsity pruning techniques could be applied to the models marked in red, 

blue, and green here and achieve significant reductions in the number of parameters. The SGD 

Global + demonstrates this and is a sparsely pruned version of the network highlighted in green. 
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Figure 110: Accuracy of pruned model at all points in the pruning process using the model LeNet-300 and dataset MNIST. 

 

Figure 111: FLOPs and parameters of each pruned model at each pruning loop using the model LeNet-300 and dataset 
MNIST. 

This shows a stark difference in relationship to the previous experiment on LE-NET300, parameters 

and FLOPs are not directly proportional, this can be observed by the distinctive staircase like drops in 

FLOPs shown by the blue line. 
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7.6.2.2 Confusion Matrix 

 

Figure 112: The confusion matrix on the left shows the un-pruned LE-NET-5 network and the confusion matrix on the right 
shows the confusion matrix of the pruned model highlighted in green in the table in the previous section. 

As the reduction in accuracy is lower than that of the previous experiment the confusion matrices 

are very similar in their layout shown in Figure 113. 

Recognition of 7,6 and 8 have been most affected by the change, the only other significant change is 

5’s being miss-classified as 3’s. This is something that the fully connected network did not have 

issues with, this is probably because there is no spatial information when training with a fully 

connected network, as all inputs are flattened. All the pixels could be randomly jumbled into 

different locations and if this is kept the same for training and inference the accuracy of the model 

should be the same as an unjumbled input. However, a convolutional network takes advantage of 

this spatial information and hence the accuracy is higher. This results in the most “confusing” digits 

are very different for LE-NET5. 
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7.6.2.3 Resource Usage 

For the inference tests the model was timed predicting 50,000 samples at a batch size of 4096 this 

was repeated 20 times using a GTX2080 Super and an Intel Core i7-9700K CPU @ 3.60GHz. 

7.6.2.3.1 Speedup GPU 
Table 44: Model speedup on a GPU 

Model Time (s) Error 

Baseline 0.26 0.8% 

Pruned 0.11 0.9% 

 

 

Figure 113: Model speedup on a GPU showing a speedup of 57.08% was achieved. 

7.6.2.3.2 Speedup CPU 
Table 45: Model speedup on a CPU 

Model Time (s) Error 

Baseline 0.37 0.8% 

Pruned 0.26 0.9% 

 

 

Figure 114: Model speedup on a CPU showing a speedup of 28.76% was achieved. 
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7.6.2.3.3 Memory Use 

The GPU VRAM usage was reduced from the baseline at 7951MB to 6662MB for the pruned model 

meaning a reduction of 16.21%. 

Additionally, the size on disk was reduced from the baseline 275KB to 101KB for the pruned model, a 

reduction of 63.27%. 

7.6.2.4 Arch evolution 

Here it is possible to see how the model layers are pruned over time, however, Figure 116 is 

misleading. Some layers start with more neurons and filters (units for short) than others, Layer 1 

Conv only contains 6 filters but is reduced to 1 by pruning loop 48, however it looks like its barely 

pruned in this visualisation. 

 

Figure 115: Number of neurons remaining in each layer over multiple pruning loops. 

 

Figure 116: In this plot the remaining filters were plotted as a percentage of their original amount, this gives a better 
indication of what is being pruned and the magnitude of the pruning applied relative to the individual layer. 
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So, to best represent the pruning of a layer in comparison to its original state, units in any given layer 

will be represented as a percentage of their original number of units. This is an important change, 

looking back at Figure 112 you can see that the significant stepping down in FLOPs early in pruning is 

due to the pruning of the Layer 1 Conv when considering Figure 117. This behaviour is not easily 

seen when looking at Figure 116. Additionally Figure 117 shows the lack of pruning convolutional 

layers from loop 48 to 86 shown with a straight line, and this is reflected in Figure 112 with a straight 

line for FLOPs. It seems that this confirms that convolutional layers are heavy in FLOPs whilst Dense 

layers are heavy in parameters. 

Interestingly this also shows that after the model prunes layer one to contain only one filter (at loop 

45), the accuracy of the model can never recover to an error rate of 0.8%. For this reason, the test 

was re-run with a minimum filter pruning size set to two, the results can be seen in the ablation 

study section. 

 

Figure 117: Inference time for each pruned model at the end of the respective pruning loop. 

The test of inference time Figure 118 shows a strong correlation to the FLOPs metric as expected. 

There is also a small increase in inference time towards the end of pruning, but as shown by the 

error bars this is within the error margin and can be considered noise. 
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7.6.2.5 Ablation Studies 

 

Figure 118: Comparing pruning a model that has a hard limit on the number of filters that can be removed from the 
convolutional layers (blue) against an unrestricted model (orange) 

Table 46: Performance increase due to limiting the number of filters that can be pruned by the pruning process, best result 
in bold second best underlined. 

Method Parameters Flops Error Pruning Type 

Original Model 430,000 2.29M 0.8 % None 

Ours SGD Global + 3,351 78,170 1 % (∆ -0.2 %) Both 

Ours SGD Global 16,649 78,170 0.9 % (∆ -0.1 %) Structured 

Ours SGD Local 27,782 66,087 0.9 % (∆ -0.1 %) Structured 

Ours SGD Global (HA) 20,315 81,827 0.8 % (∆ 0%) Structured 

Ours SGD Global LIM 1719 57,587 0.9 % (∆ -0.1 %) Structured 

Ours SGD Global LIM (HA) 3923 69,878 0.8 % (∆ 0%) Structured 

MIXP 2,580 73,280 -% ∆ -0.3 %  Both 

Figure 119 shows that by limiting the number of prune-able channels to a minimum of two, the 

accuracy of the model is preserved further into the pruning process. Specifically, you can observe 

this in Figure 119 from loop number 50 onwards, where the limited pruning method is always more 

accurate. Giving our two final and best results. However, the approach of hard limiting prune-able 

layers was not updated into the algorithm, for this simple model the key layer to limit pruning was 

easy to spot. However, for this to be implemented into the algorithm a general case needs to be 

discovered. The final model configuration is listed below for SGD Global LIM. 

Table 47: Final model configuration for SGD Global LIM. 

Layer Number of units 

Conv - Layer 1 2 

Conv - Layer 2 5 

Dense - Layer 3 21 

Dense - Layer 4 30 
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The model was once again trained from scratch to test the efficacy of the pruning method. Again, 

Figure 120 shows that the accuracy achieved via pruning cannot be achieved via training alone. 

 

Figure 119: Testing to identify if a model of the same architecture as the pruned model can achieve the same accuracy 
being trained from scratch. 

7.6.2.6 Conclusion 

These results are interesting because at first glance the MNIST results look to have been beaten by 

most other methods, however this is where the intricacies of NN pruning come into play.  

It is true that the default method underperforms slightly on FLOPs and majorly on parameters. But 

our ablation studies show that by limiting the number of filters that can be pruned in specific layers 

the results can be vastly improved. This is shown in table 46, where the GLOBAL LIM results in green, 

beat all SOTA methods when compared on both FLOPs and parameters. However, I think this result 

to be misleading, because limiting the number of filters to be pruned was only implemented after 

spotting a significant layer. And after analysing a similar pruning method (HREL), which also hard 

limits the number of filters pruned in each layer. 

However, many other methods have a similar approach and give each layer different “weightings” 

before pruning has been applied to guide how much to prune one layer in comparison to others. For 

example, in the MIXP paper this value is obtained through “random search”. This is a troubling 

direction for a pruning technique to take, as it assumes that you know the pruning profile of the 

dataset and model before pruning is applied. This kind of search may be possible for smaller models 

and datasets, like LeNET-5 and MNIST, but this search method for hyperparameters becomes more 

difficult with larger models. This is due to the increase in layer size and the increase in training time 

for larger datasets like ImageNet. 

As the reasoning for this is not given to a satisfactory level in the literature; I would suggest that the 

reasoning for these limits could be due to the parameter to FLOPs disparity in fully connected layers 

when compared to convolutional layers. This does make an argument for limiting pruning of 

convolutional layers when they are vastly outnumbered by other layers in a network, and vice versa. 

Overall, the LIM results in the ablation section perform better than all other SOTA methods. 

However, the process of limiting the number of filters pruned in a specific layer needs to be refined 

in future implementations of the pruning method before fully implemented. 
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7.6.3 LeNet-5 on Fashion-MNIST 

For this set of results a comparison to similar techniques was not shown as it is not normally a test 

run by other researchers, however I thought it was important.  

This experiment shows what happens to pruning when the dataset has been replaced by an identical 

dataset in terms of input size and number of examples. However, the classification task is considered 

“harder”. The idea is to learn how more complex datasets affect pruning neural networks. 

For these experiments identical pruning and hyperparameters were used as the SGD Global LIM 

from the last section. 

7.6.3.1 Comparison to Unpruned Model 
Table 48: Pruning results for the model LeNet-5 on dataset Fashion MNIST 

Method Parameters Flops Error Pruning Type 

Original Model 430,000 2.29M 9.9 % None 

Ours SGD Global LIM 18,133 119,414 10.7 % (∆ -0.8 %) Structural 

Ours SGD Global LIM (HA) 29,755 151,216 10.0 % (∆ -0.1 %) Structural 

 

 

Figure 120: Accuracy of pruned model at all points in the pruning process. 
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Figure 121: FLOPs and parameters of each pruned model at each pruning loop. 

The first thing of note is that this dataset is much more complex than MNIST-digits. The maximum 

accuracy reached by the neural network before pruning was 90.1% shown in Table 48. This is a 

whole 9% less than the previous MNIST tests, additionally the number of FLOPs and parameters 

pruned is significantly less than the tests on MNIST-Digits. Here the maximum number of pruned 

FLOPs was 119,414 compared to the previous section that reached 57,587 (more than half). 

7.6.3.2 Confusion Matrix 

 

Figure 122: The confusion matrix on the left shows the un-pruned LE-NET-5 network and the confusion matrix on the right 
shows the confusion matrix of the pruned model highlighted in green in the table in the previous section. 

Once again in Figure 123 it can be observed that it’s not as simple as the neural network getting 

generally worse across the board. For instance, class 4 being identified as class 2 reduces from 24 to 

18. However, there are some classes that get worse everywhere, class 6 is a good example of this, 

and leads to the following issue when pruning neural networks.  

Because the pruning process is tuned for highest accuracy there is a “loophole” that the neural 

network can take, and that is essentially by making a “dump class”. Here the accuracy of the system 

is below 90%, the dataset contains 10 classes meaning that by focusing on 9 of the classes and 

tuning to them, and ignoring the final class, you can achieve an accuracy of 90% whilst miss 

identifying a whole class.  
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More investigative tests will be run in the final chapter of the thesis to test the internal 

understanding in pruned neural networks. However initial signs of this can be seen here in class 6. 

This might not seem like an issue when dealing with a dataset containing 10 classes, but this issue 

becomes much more important when dealing with datasets of 1000’s of classes. For these larger 

datasets a whole unlearnt class would only impact the model accuracy by 0.1%. 

7.6.3.3 Arch evolution 

 

Figure 123: Percentage of neurons remaining in each layer over multiple pruning loops. 

Table 49:Final configurations for the model trained and pruned on Fashion MNIST and classic MNIST. 

Layer Number of units - FASHION Number of units - DIGITS 

Conv - Layer 1 2 2 

Conv - Layer 2 12 5 

Dense - Layer 3 51 21 

Dense - Layer 4 34 30 

Here is the final configuration for the Global LIM results for both MNIST experiments. The first thing 

to notice is the number of conv units in layer 2 that were preserved over the MNIST-digits results. 

And the number of units in dense layer 3 show a similar near double relationship. Figure 124 also 

seems to show the FASHION results have a slightly quicker pruning profile. The pruning of the 2nd 

conv layer starts at loop number 69 for FASHION, when pruning on the Digit - MNIST network this 

started at loop 86. 

7.6.3.4 Conclusion 

The Fashion results show that the method can easily adapt to other datasets and is inherently aware 

of the complexity in a model. This can be seen through a different architecture evolution with more 

pruning of the fully connected layers at the start of pruning and less towards the end when 

compared with the pruning results for MNIST. 

Additionally, the final network structure is vastly different, showing many more convolutional filters 

being retained and overall, more FLOPs and parameters being preserved. This is most likely because 

this dataset has more detail in its images and therefore requires more filters to properly separate 

the classes. 
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7.6.4 VGG-16 on CIFAR-10  

 

Figure 124: Accuracy of pruned model at all points in the pruning process 

 

Figure 125: FLOPs and parameters of each pruned model at each pruning loop 

Figure 125 shows good accuracy over time, with the process having to reach pruning loop 2580 

before any significant degradation in the model accuracy can be observed. Also, clearly observable in 

Figure 126 is the significant reduction in the parameters near the start of pruning. Comparing this to 

Figure 125 shows that this reduction in parameters has a minimal impact of model performance. 

Whilst the reduction in parameters is initially faster than FLOPs Figure 133 shows that the fully 

connected layer was not significantly pruned until loop 1750, meaning the conclusion drawn 

previously cannot be used for VGG-16.  
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It seems that each network has its own unique relationship between FLOPs and parameters which 

depends on the input data dimensionality, the type of layers and their connections. 

These results indicate that FLOPs are more indicative of “intelligence” of a neural network, or at 

least FLOPs are a better indication of learnt characteristics than parameters. This conclusion comes 

from the rate of change of these two parameters with relation to accuracy. The FLOPs decrease at 

an increased rate after loop 2200 seen in Figure 126. Also observed in Figure 125, loop 2200 is where 

the results move away from the 93% accuracy that had been retained since the original training. 

7.6.4.1 Comparison to Similar Techniques  
Table 50: SOTA pruning methods using the model VGG-16 and dataset CIFAR-10 , best result in bold second best underlined. 

 

 

 

 

 

 

 

 

 

These results show that when pruning VGG-16 all the way down to 70 million FLOPs the accuracy 

stays within a reasonable range of all other approaches. However, when inspecting networks past 

this point, we can see that our approach begins to get out performed.  

Unfortunately, there is no contest when it comes to comparisons with HRel. They achieve higher 

accuracy with 20 million less FLOPs and an equal number of parameters to our 70 million FLOP 

model. 

HRel is slightly different from our method as it selects which filters to prune by comparing how 

similar each filter is. Our approach does not take into consideration the similarity of filters, and this 

is probably the reason for the gap in performance. This is also the first indication of an unfortunate 

truth when pruning neural networks, and that is your pruning technique is only as good as your 

retraining technique. 

7.6.4.2 Base Models and Retraining 

When structurally pruning neural networks, it is essential to retrain or “fine tune” the network after 

pruning has been applied [101,100,99,96]. Fine tuning raises the following questions. 

• Is everyone using the same training techniques? 

• Is everyone starting from the same model accuracy? 

• Is everyone using the same model architecture? 

The unfortunate answer to the first two questions is no, and the answer to the third is not always. 

This can be plainly seen in some of the results published in HRel [101] shown in table 51. 

Model Flops Params Top 1% 

Original (Ours) 314.59M (0%) 14.73M (0%) 93.02 

VC NNP [92] 190M (60.40%) 3.92M (73.34%) 93.18 

GAL [93] 171.89M (45.2%) 2.67M (82.2%) 93.42 

FPC [94] 107.85M (66.00%) 0.71M (95.17%) 94.08 

OAS [95] 106.23M(66.23 %) 1.02M (93.05%) 93.79 

EZCrop [96] 104.78M (66.60%) 2.50M (83.3%) 93.70 

AACP [97] 94.37M (70.00%) - 93.39 

AEF [98] 74.42M (76.34%) 1.65M (88.80%) 93.08 

HRANK [99] 73.70M (76.50%) 1.78M (92.00%) 91.23 

Ours Global (HA) 70.00M (77.00%) 750.0K (94.91%) 93.03 

GBIP [159] 60.53M (80.76%) 2.50M (83.03%) 93.70 

HBFP [100] 51.90M (83.42%) 2.40M (83.77%) 91.99 

Ours Global (HP) 50.99M (83.79%) 450.0k (96.94%) 91.78 

HRel [101] 47.98M (84.85%) 750.0K (94.91%) 93.54 
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Table 51: This table highlights the disparity in the accuracy of the initial models used by SOTA pruning papers. 

Paper Baseline Accuracy  Pruned Accuracy  Acc  

ℓ1-norm 93.25 93.40 ∆ + 0.15 

Ayinde et al. 93.80 93.67 ∆ - 0.13 

GAL 93.96 90.78 ∆ - 3.18 

ABCPruner [102] 93.02 93.08 ∆ + 0.06 

MINT [103] 93.98 93.43 ∆ - 0.55 

CFP [104] 93.49 92.90 ∆ - 0.59 

HRel 93.90 93.54 ∆ - 0.46 

Here you can see the large spread of baseline models used by these papers, some are available 

online and some have been trained from scratch by the paper authors. The main discrepancy comes 

in the training and retraining of these models. For instance, below is HRel’s training parameters for 

VGG-16. 

• Training epochs 300 

• Learning Rate 0.1 reduced by 10 at epoch 80,140 and 230 

Importantly batch size and image pre-processing are not mentioned in the paper, however from the 

attached GitHub we know the following was applied. 

• Random 32x32 crop with 4 padding pixels 

• Random horizontal flip 

• Normalised using values ((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) 

• Momentum 0.9 and weight decay of 5x10-4 

• Batch Size = 100 

In contrast GBIP [159] uses the following. 

• Training epochs 160 

• Batch size = 64 

• Learning Rate 0.1 reduced by 10 at 80 and 120  

• Momentum of 0.9 and weight decay of 1x10-4 

And GBIP does not mention any image augmentation techniques and does not have a GitHub 

associated with it. 

Additionally, sometimes the network architecture is also changed, for example the standard 

configuration for VGG16 has max pooling layers after each block of similarly sized convolutional 

layers. However, in the HRel implementation of the VGG-16 model the final max pooling layer is 

replaced by an average pooling layer, this is not mentioned in the paper and the implications of a 

differing model structure are unknown. 

These techniques need to be far more clearly laid out than they currently are by the neural network 

pruning research community. Hiding an inferior pruning technique behind a better training 

technique or longer training cycles or a superior network structure is misleading and arguably makes 

all these results somewhat incomparable. 

However, these are the best metrics the pruning community has, so I will continue to compare these 

models pointing out inconsistences where I believe relevant. 
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7.6.4.3 Confusion Matrix 

 

Figure 126: The confusion matrix on the left shows the un-pruned VGG-16 network and the confusion matrix on the right 
shows the confusion matrix of the pruned model highlighted in green in the table in the previous section: 

These confusion matrices are the most interesting so far, this shows the biggest increase in error of a 

single class, looking at class 5 misidentified as 3 the number of examples increase from 68 to 191. 

The rest of the confusion matrix shows that the model does not change much other than this one 

class, this suggests that these two classes are very similar in structure and need fine-tuned 

convolutional filters to differentiate between the two. 

Interestingly class 5 and 3 correspond to cat and dog, which seem quite different, however in the 

CIFAR dataset they may represent the most similar classes. As a reminder the classes in order are 

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. 

Additionally, there may be some issues with the CIFAR dataset, for example Figure 128 is entered 

into the dataset as a cat, however I can understand how it has been identified as a dog. 

 

Figure 127: Example of an ambiguous image in the CIFAR-10 dataset 

This is just one example however, it shows that the task of separating a cat and dog in this dataset 

may in fact represent one of the harder tasks. 
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7.6.4.4 Resource Usage 

For the inference test the model was tested on predicting 10,000 samples at a batch size of 64, this 

was repeated 20 times. All the following results are performed on the HA model using a GTX2080 

Super and an Intel Core i7-9700K CPU @ 3.60GHz. 

7.6.4.4.1 Speedup GPU 
Table 52: Model speedup on a GPU 

Model Time (s) Error 

Baseline 0.09 6.98% 

Pruned 0.06 6.97% 

 

 

Figure 128: Model speedup on a GPU showing a speedup of 31.34% was achieved. 

7.6.4.4.2 Speedup CPU 
Table 53: Model speedup on a CPU 

Model Time (s) Error 

Baseline 1.38 6.98% 

Pruned 0.72 6.97% 

 

 

Figure 129: Model speedup on a GPU showing a speedup of 47.35% was achieved. 
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7.6.4.4.3 Memory Use 

Whilst the model was pruned the amount of VRAM used also reduced, this will differ depending on 

the hardware being used, in this case it was deployed on a NVIDA A100 GPU. 

 

Figure 130: Plot showing how pruning affects VRAM usage. 

The model starts using 552MB of VRAM and the pruned model uses 182MB of VRAM, this is a 

reduction of 67.03%, the model size on disk reduced from 58.7MB to 6.1MB a reduction of 89.60%. 

7.6.4.5 Arch evolution 

 

Figure 131: Inference reduction of pruned models deployed on an A100. 

Figure 132 shows the inference time decrease, the times here are GPU inference per sample and 

were tested on an A100 GPU. This shows the benefit of pruning is highly hardware dependent. 

Figure 132 shows the reduction is on average 0.000275s -> 0.00025s which only represents a 10% 

inference reduction. 
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At the time of writing an A100 GPU is the 2nd most powerful GPU for machine learning applications, 

and whilst the impacts of pruning are still statistically significant the inference reduction is far less 

than on devices with lower compute power.  

 

Figure 132: Percentage of neurons remaining in each layer over multiple pruning loops. 

Figure 133 shows the number of filters pruned over time. Contrary to past experiments, where there 

has been a strong correlation between pruning fully connected layers and the rate of pruning 

parameters. This link does not exist in these results. 

The pruning of the dense layer is primarily contained between loops 1500-2000 and 2250-2600, this 

does not correspond to the parameter graph in the previous sections. This could be because the fully 

connected layer in VGG-16 represents a small portion of the overall model. It’s still true that 

proportionally fully connected layers contain more parameters than FLOPs, however, the pruning in 

the rest of the model dwarfs the previous effect we have been observing. 

There is a sharp increase in the rate of FLOPS pruned at loop 2200, this looks to be closely linked to 

the pruning of convolutional layers 6 and 5. At this point in training these two layers represented the 

highest concentration of information in the network. Both layers are directly connected to each 

other and still had more than 80% of their original filters whilst most other layers had been reduced 

to less than 30%. This is why the pruning of FLOPs seems to speed up. It is just a side effect of the 

fact that there are not many other layers left to prune, and these layers were pruned at a high rate, 

shown by the plunge in their respective lines over a small period. 
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Table 54: Final configuration of the model at two specific points; The "inflection point" and the "high accuracy model". 

Model Layer Original Units Pruned Units (Inflection point) Pruned Units (HA) 

Conv1 64 41 36 

Conv2 64 56 56 
    

Conv3 128 119 118 

Conv4 128 92 78 
    

Conv5 256 205 131 

Conv6 256 238 105 

Conv7 256 71 36 
    

Conv8 512 83 58 

Conv9 512 34 74 

Conv10 512 135 126 
    

Conv11 512 31 30 

Conv12 512 119 99 

Conv13 512 117 113 
    

Dense1 512 354 284 

The pruned model seems to have discovered a new form of filter organisation, shown in table 54 

and Figure 134. “Funnels” have been created at multiple points in the network. Looking at layers 

conv1, 7 and 11 you can see all units are around the same value of 30-36. After each of these layers 

there is a slow expansion of the number of units in subsequent layers until it is reset again. The 

location of Max pooling layers is indicated by black bars in table 54. These layers were highlighted to 

check if there was a correlation. However, there does not seem to be any corelation between the 

two. This experiment was repeated multiple times, and “funnel” structures were found every time. 

Table 54 also has another model named “inflection point”, this model indicates the point at which 

accuracy begins to drop and re-training increases. This could indicate that at this point a part of the 

network is being restricted too much, and perhaps some kind of pruning limitation on the most 

pruned layers needs to be enforced.  

 

Figure 133: Visualisation of the number of units in each layer in a cascading fashion. This visualisation is taken from the very final model 
before pruning is stopped which shows the phenomenon to the greatest extent. (An animation of this structure forming can be found in 

appendix B.1)  
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7.6.4.6 Ablation Studies 

7.6.4.6.1 Training From Scratch 

 

Figure 134: Testing to identify if a model of the same architecture as the pruned model can achieve the same accuracy 
being trained from scratch, multiple optimisers were used after low retraining accuracy was noticed. 

Figure 135 shows the HA model retrained from scratch cannot achieve the same accuracy as the 

pruned model. These models were originally retrained using the same parameters as the original 

model, however, when the accuracy training with SGD was extremely low ADAM was adopted to 

properly represent the capabilities of the network. 

This is an indication that the model structure has changed drastically enough so that the previous 

hyperparameters no longer work to appropriately train the model. 

Additionally, to test the changes made in the HRel paper the model was trained from scratch using 

the same image augmentation techniques and replacing the final max pooling layer with an average 

pooling layer. 

This model achieved a peak accuracy of 93.04%. This doesn’t come close to the 93.90% used as a 

baseline in their paper. It was therefore assumed that some other unmentioned technique was 

responsible for the improvement seen in their results. 
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7.6.4.6.2 Using Noise instead of data 

The following results show the impact of using noise to prune the model instead of data. 

 

Figure 135: Accuracy of pruned model at all points in the pruning process, using noise instead of signal to locate 
insignificant neurons.  

 

Figure 136: FLOPs and parameters of each pruned model at each pruning loop, using noise instead of signal to locate 
insignificant neurons. 

Figure 137 shows the drastic pruning at the beginning of the pruning loop, by loop 21 this process 

has reached the same point that takes the data driven approach 550 iterations. The accuracy of this 

approach whilst on average lower than the data driven approach shown in Figure 136, does recover 

to a comparable accuracy all the way till loop number 600. 
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These results make a strong argument that these two stimulation methods should be combined in 

some way to achieve an overall faster process. 

To make a fair comparison to the data driven tests, models were selected using a similar number of 

FLOPs as the data driven results test. 

Table 55: Comparison of Noise or Signal techniques to prune VGG-16. 

 

 

 

 

Table 55 shows a consistent .5% deficit to the pruning with data results. Additionally, even though 

both graphs show that the accuracy for noise and data varies, there is more variance in the results 

for noise, this can be seen in the jagged accuracy profile in Figure 136. 

This indicates that whilst pruning with noise may work, albeit at a deficit to the data driven method, 

it is not correctly identifying which parts of the network to remove. Or at least it is not performing 

this process with the same efficiency as the data driven method. This also has the side effect of 

triggering more model retraining, which makes both methods similar in total pruning time. Put 

simply, although this approach takes 1200 less pruning loops to achieve a pruned model, the total 

pruning time is balanced out by the increase in retraining. 

Interestingly the model also has a very different configuration than when using a data driven 

approach. 

Table 56: Comparison of the final configuration of the pruned models for VGG-16, using Noise or Signal pruning methods. 

Model Layer Original Units Pruned Units Data (HA) Pruned Units Nosie (HA) 

Conv1 64 36 41 

Conv2 64 56 56 
    

Conv3 128 118 91 

Conv4 128 78 84 
    

Conv5 256 131 120 

Conv6 256 105 90 

Conv7 256 36 26 
    

Conv8 512 58 61 

Conv9 512 74 54 

Conv10 512 126 59 
    

Conv11 512 30 69 

Conv12 512 99 233 

Conv13 512 113 128 
    

Dense1 512 284 172 

 

Table 56 suggests that these two approaches are optimised for different goals. Whilst the noise 

pruning method is demonstrably faster to prune in the early stages, it seems to slip out of the local 

minima quicker than the data driven pruning. 

Model Flops Params Top 1% 

Original (Ours) 314.59M (0%) 14.73M (0%) 93.02 

Ours Data Global (HA)  70.00M (77.00%) 750.0K (94.91%) 93.03 

Ours Noise Global (HA) 68.01M (78.38%) 892.3K (93.94%) 92.52 

Ours Data Global (HP) 50.99M (83.79%) 450.0K (96.94%) 91.78 

Ours Noise Global (HP) 52.48M (83.31%) 629.2K (95.72%) 91.28 
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7.6.4.7 Conclusions 

Overall, our results show that up until a model size of 70 million FLOPs our pruning method is 

comparable to all other SOTA methods, however when the model is pruned further to 50 million 

FLOPs HRel beats out our method by nearly 2% in accuracy metrics. 

When results are compared on the number of parameters, our results are closer to HREL with only a 

.5% decrease in accuracy for the same number of parameters.  

The ablation results show using noise instead of data as a stimulus to the neural network results in 

worse pruning than if data was used. This is no doubt since the network needs to be excited in a 

similar fashion to the training data, to properly highlight the true utilisation of a given filter. 

However, if data is lacking for this purpose, or the network needs to be pruned quickly, the noise 

method can be used to achieve similar (yet slightly degraded) results. 

Again, when the HREL code is inspected there are unmentioned pruning limits provided for the first 

2 layers of VGG-16. Limiting the amount of pruning to 57 units in these convolutional layers, this is 

once again not justified in the paper. 

However, it must be noted that despite this HREL seems to outperform most other SOTA methods 

and our own, this is most likely down to the underlying method of HREL, which instead of locating 

“redundant” filters or neurons in a vacuum. HRel locates the most “similar” filters. Assuming that 

these similar filters are the most important because they have been generated twice by the model 

seems to preserve the pruning performance. 

For future research a dual-purpose pruning system that considers similar filters and unimportant 

filters would most likely produce the best results. 

7.6.5 VGG-16 on Birds 300 Kaggle 

This example was used as a case study to show collaborators at the BBC, how neural network 

pruning can be useful in the real world. This work focuses on a scenario that is already using 

deployed neural network models to aid with video production. 

7.6.5.1 Real world example and use-case for the BBC 

The BBC covers many topics from football, to elections, it aims to provide quality content to the UK 

public and beyond [156]. As the BBC grows the ability to take advantage of automation for ease of 

video production has grown.  

The main news studios in London, and in many other locations, now use automated cameras, 

replacing the need for manual camera operators [157]. Additionally, this makes shows like the news 

much more predictable, with set camera shots that are 100% repeatable, every time the show is 

filmed. 

This case study will focus on the BBC family of shows under the umbrella name Bird Watch, Bird 

Watch is a shorthand to describe the specific shows of Winter watch, Summer watch, Autumn watch 

and Spring watch.  

Birdwatch has an issue when it comes to content, birds are not actors, they cannot be paid to appear 

on set when summoned. Because of this birdwatch uses 32 cameras, recording 24/7 for 3 weeks 

whilst filming. 
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In total that’s 672 days of raw footage that needs to be analysed, and birds identified for editors to 

use the footage in an efficient way. Currently machine learning systems are used to aid in the 

process, these systems help identify birds in live footage. However, performing analysis on all the 

footage is considered unfeasible. Additionally, the infrastructure to return 32 camera feeds to one 

central live location is also unfeasible. This is because birdwatch is normally filmed in woods and 

rural areas, meaning the camera feeds must be switched between and cannot all be monitored at 

once. To combat this, the BBC have suggested a low power machine learning device, this would be at 

the location of the camera and send a much lower bandwidth, detection signal, when an animal of 

interest is detected. This allows operators to know which cameras to switch to, without having to 

send the whole camera feed 24/7. 

This problem forced an expansion of the pruning technique to include a transfer learning step. this 

expansion was necessary as the BBC takes responsibility very seriously and this would allow them to 

use their own dataset to tune any detection algorithms to the mammals and birds that they wish. 

7.6.5.2 Transfer Learning Step 

The base network used for the following experiment was VGG-16, however the top was removed, 

this means removing the final prediction layer and the fully connected layer before it. These two 

layers were replaced with 3 new layers, 2 which were fully connected dense layers of size 4096 and 

one more of size 300 for classification. 

The weights from a pretrained VGG-16 model on the ImageNet dataset were loaded into the top of 

the model. The top of the model was then frozen, and the three new layers were trained for 15 

epochs using the ADAM optimiser at a learning rate of 1x10-4, the model was then unfrozen, and the 

learning rate was reduced to 5x10-5 and trained for a further 15 epochs.  

This completes the transfer learning step and achieves an accuracy of 93.7%. 

7.6.5.3 Pruning Results 

 

Figure 137: Accuracy of pruned model at all points in the pruning process. 
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Figure 138: FLOPs and parameters of each pruned model at each pruning loop. 

Figure 138 is of interest here as it is the first time that model retraining is obvious through this 

metric. Retraining can be seen in the graph as a sharp vertical increase in accuracy, this highlights 

how many pruning loops can occur before any retraining is required. This high accuracy is followed 

by a slow decrease in accuracy over many pruning loops creating a “shark fin” shape in the graph. 

The frequency of this “shark fin” gives an indication of how often retraining is required by the 

pruning process, this starts off at a low frequency and increases to a point where eventually the fin is 

no longer visible. At the point where the fin disappears it can be assumed that the model is having to 

re-train nearly every pruning loop and the accuracy soon falls below the given threshold ending the 

pruning process. 

Additionally, the pruning process seems to significantly boost the accuracy of the model, this seems 

to be a direct impact of the model being over parametrised. the initial pruning produces a decrease 

in accuracy from loop 0 to 614. However, at this point retraining occurs and 35% of the neurons 

have been removed from both dense layers. This causes a significant boost in accuracy up to 95.53%, 

this increase in performance could also be an indication that the transfer learning step is not very 

robust. The removal of convolutional and dense units may have allowed the model to move out of a 

local minimum, overall making the model more cohesive improving accuracy by 1.8%. 

Table 57: Selected models at various points in the pruning process 

Network % Accuracy ↑ Flops ↓ Params ↓ 

Unpruned 93.7 150B 15M 

Pruned_1 94.1 78.7B 6.1M 

Pruned_2 93.6 65.8B 4.8M 

Pruned_3 92.1 35.1B 2.1M 

Pruned_4 91.4 31.3B 1.9M 
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Table 57 shows the importance of selecting a final model, depending on if accuracy is more 

important, or the memory usage or compute power. Ultimately further tests would be required 

before a model was selected for an end user, these tests would be performed on edge compute 

devices to conclude the “best” model for the scenario. Luckily because this pruning method is 

iterative, and models can be stored at the end of every loop, a bespoke model for the situation can 

be found. 

7.6.5.4 Confusion Matrix 

 

Figure 139: The confusion matrix on the left shows the un-pruned VGG-16 network and the confusion matrix on the right 
shows the confusion matrix of the pruned model highlighted in green in the table in the previous section 

Because the validation set only contains 5 examples per class the confusion matrices in Figure 140 

are not very enlightening in this case, I have changed the colour scheme to try and highlight in as 

much detail as possible the differences. 

7.6.5.5 Resource Usage 

For the inference tests the model was timed predicting 1,500 samples at a batch size of 8, this was 

repeated 20 times using a GTX2080 Super and an Intel Core i7-9700K CPU @ 3.60GHz. 

For the following comparisons I will focus on the results of the 65.8B FLOP model, this model has 

very similar accuracy to the original model but has significant savings on resources. 
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7.6.5.5.1 Speedup GPU 

 

Figure 140: Model speedup on a GPU showing a speedup of 46.64% was achieved. 

7.6.5.5.2 Speedup CPU 

 

Figure 141: Model speedup on a CPU showing a speedup of 49.04% was achieved. 

7.6.5.5.3 Memory Use 
Table 58: VRAM and Disk usage for multiple pruned models 

Model VRAM Size On Disk Accuracy 

Unpruned Model 6654 MB 516 MB 93.7 

78.5B – Model 4806 MB 23.5 MB 94.1 

65.8B – Model 4806 MB 18.5 MB 93.6 

35.1B – Model 2790 MB 8.20 MB 92.1 

31.3B – Model 2790 MB 7.30 MB 91.4 

 

VRAM usage was reduced by 27.77% for the first two models and 58.07% for the second two, the 

65.8B FLOPS model was reduced in size on disk by 98.41%. 
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7.6.5.6 Arch evolution 

 

Figure 142: Percentage of neurons remaining in each convolutional layer over multiple pruning loops. 

 

Figure 143: Percentage of neurons remaining in each dense layer over multiple pruning loops. 
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Of note in Figure 143 the process prunes convolutional layers at a higher rate towards the end of the 

pruning loops. Additionally, Figure 144 shows the initial parameter reduction can be attributed to 

the early pruning of dense layers again. The later reduction of FLOPs once again matches the 

increased in reduction of convolutional units in Figure 143. As with the previous pruning of VGG16 

there seems to be an inflection point at 5500 where pruning of all convolutional layer’s increases, 

this increase triggers more retraining by the pruning process seen by an increase in frequency of the 

“shark fin” shape in the accuracy graphs. And eventually results in a loss of accuracy. 

Table 59: Final configuration for the optimal 65.8B parameter model. 

Model Layer Original Units 65.8B - Model 

Conv1 64 29 

Conv2 64 46 
  89 

Conv3 128 89 

Conv4 128 93 
  214 

Conv5 256 183 

Conv6 256 214 

Conv7 256 158 
  154 

Conv8 512 389 

Conv9 512 373 

Conv10 512 154 
  405 

Conv11 512 224 

Conv12 512 168 

Conv13 512 30 
   

Dense1 4069 405 

Dense2 4069 335 

 

A reduced validation set was used to perform the following inference test, models were tested every 

15 pruning loops to produce Figure 145. 
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Figure 144: Inference time of each pruned model 

Figure 145 shows the general decrease in model inference time as the pruning process is performed, 

however there are a few occasions where inference time seems to increase. This can be attributed 

to TensorFlow’s automated GPU deployment, as discussed previously a model must be parallel to be 

fast and sometimes this automated deployment can result in a more optimised model by pure luck. 

Because each pruning loop changes the number of filters in each layer, this has a direct effect on the 

automated TensorFlow CUDA deployment, and hence results in some slight increases in inference 

time even when the model is decreasing in size. 

7.6.5.7 Conclusions 

We found that by pushing this model to its limit it was possible to reduce inference time on a CPU by 

50% whilst only reducing the accuracy of the model by 1.5%. Whilst I cannot reveal the exact 

amount of money that the BBC currently spends on image recognition tasks this reduction could 

either represent a saving of 50% on current costs, or a decrease in processing time of 50%. 

The team at the BBC has taken this work onboard and continues to develop efficient low-power 

machine learning solutions. 
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7.6.6 Resnet-50 on ImageNet 

 

 

Figure 145: Accuracy of pruned model at all points in the pruning process. 

 

Figure 146: FLOPs and parameters of each pruned model at each pruning loop 

Figure 147, at point 97 a stark increase in pruning rate can be observed, this was triggered by the 

pruning method being changed from global to local. This was done because the time to re-train 

ResNet50 was much longer than previous experiments and changing the pruning to local increases 

the amount of the network pruned per loop. 

This does however have the side effect of reducing the efficacy of pruning, this is because when local 

pruning is used instead of global pruning, more assumptions about unimportant neurons are made. 
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7.6.6.1 Comparison to Similar Techniques 

Table 60: SOTA pruning methods using the model ResNet-50 and ImageNet dataset, best result in bold second best 
underlined. 

There are a few obvious differences in table 60, the largest difference is that of the starting accuracy. 

This is caused by a divergence in the machine learning backends used to test the methods, 

TensorFlow 2 is used throughout this work, however PyTorch is used by many competing methods. 

Here all methods that use PyTorch start with an accuracy of 76.15% this is 1.25% ahead of any 

TensorFlow model before pruning has been applied. This is unfortunate because the pruning 

methods developed in this work are not easily transferable to PyTorch, and the PyTorch model is not 

easily transferable to TensorFlow. 

For this reason, we will focus once again on the % difference between the trained and pruned 

models. Regardless of this difference, it is plainly obvious from the results that our model 

underperforms when compared with any method below it in the table. Even after considering the 

discrepancy in original model accuracy, the pruned model is either outperformed in every reported 

metric, or out pruned. DCMP and HREL-1 both outperform our results, Meta pruning has a -0.1% 

accuracy difference when compared to our method, but prunes 40M more FLOPs. Outliers at the 

bottom of the table (ABC and HRel-2) have a bigger accuracy drop, however they both prune 70M 

and 80M more FLOPs respectively. 

Additionally, results that reported parameter reduction also show more of a decrease in overall 

parameters. This is most likely since ResNet50 contains 1 fully connected layer at its output, and this 

cannot be pruned. Our method prunes all layers in the network, whilst other methods focus on 

convolutional filters only. In this scenario, our method cannot take advantage of being able to prune 

both layer types, and because as we have previously observed fully connected layers are parameter 

dense, we observe this deficit. 

Model Original 
Top 1% 

PrunedTop 1% Flops Remaining 
(Removed %) 

Params Remaining 
(Removed %) 

SFP [105] 76.15 62.14 (∆ -14.01%) 41.80 % DNR 

GAL 76.15 71.95 (∆ -4.20%) 2.33B (43.03 %) 21.20M (16.86%) 

HRank 76.15 74.98 (∆ -1.17%) 2.30B (43.76 %) 16.15M (36.80 %) 

Ours 74.90 72.80 (∆ -1.10%) 2.39B (44.80 %) 19.71M (23.00 %) 

DMCP [106] 76.60 76.20 (∆ -0.40%) 2.20B (46.47 %) DNR 

HRel-1 76.15 75.47 (∆ -0.68%) 2.11B (48.66 %) 13.23M (48.24 %) 

MetaPruning [107] 76.60 75.40 (∆ -1.20%) 2.00B (51.33 %) DNR 

ABCPruner 76.01 73.52 (∆ -2.49%) 1.79B (56.61 %) 11.24M (56.01%) 

HRel-2 76.15 74.54 (∆ -1.61%) 1.69B (58.88 %) 10.82M (57.67%) 
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7.6.6.2 Confusion Matrix 

 

Figure 147: The confusion matrix on the left (HQ version in appendix D) shows the un-pruned ResNet-50 network and the 
confusion matrix on the right (HQ version in appendix E) shows the confusion matrix of the pruned model highlighted in 

green in the table in the previous section. A high quality version of the image can be found in appendix 

 There are red squares plotted in the confusion matrices in Figure 148, these are to highlight areas of 

confusion. Because of the nature of confusion matrices there are often rectangular areas of 

“confusion”. This is simply because if A is misclassified as B, then B will also tend to be misclassified 

as A. This causes a symmetry around the diagonal forming rectangular areas.  

Of note in Figure 148 the general shape and location of these areas are the same, however they are 

slightly larger in the pruned model, and some of the smaller regions of high confusion have merged 

into a larger area of sparse confusion. These plots show that the areas of confusion have generally 

grown in size which we would expect given the lower accuracy of the pruned model. 

7.6.6.3 Resource Usage 

For the inference tests the model was timed predicting 50,000 samples at a batch size of 256, this 

was repeating 10 times using a GTX2080 Super and an Intel Core i7-9700K CPU @ 3.60GHz. 

7.6.6.3.1 Speedup GPU 

 

 

 

Figure 148: Model speedup on a GPU showing a speedup of 2.39% was achieved. 
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The unpruned model had an average inference time of 68.14s and the pruned model 66.51s 

representing a 2.39% decrease, far less than all other models and perhaps indicates that ResNet50 

was already well optimized for this task. 

7.6.6.3.2 Memory Use 

Overall, the reduction in GPU memory usage was negligible however the reduction in the size on disk 

was reduced from 98.2MB 79.3MB a reduction of 18.9MB. 

7.6.6.4 Arch evolution 

For the following plot I have excluded layers that didn’t change in their number of layers 

 

Figure 149: Ratio of neurons remaining in each layer over multiple pruning loops. 

Interestingly most layers in Figure 151 remain unpruned until the pruning method was changed from 

global to local, other than block3 – 11 and block4 – 6 which continue to prune at a similar rate. This 

is expected, as when local comparisons are made, at least 1 unit per layer will be removed from the 

model each pruning loop. This is indicated by the straight red lines. A potential future improvement 

would be for local pruning to only remove filters from a layer, when two have been located for 

removal within the same layer. 

This change would limit the removal of important filters, whilst still only making a comparison within 

the same layer, however, this also creates a possibility that no filters are pruned in a pruning loop. 
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7.6.6.5 Conclusion 

These results show that our method unfortunately vastly underperforms in all metrics, this could be 

blamed on several things from original model performance to hard layer pruning limits. To better 

and longer retraining techniques, or local vs global pruning. However, I think in this case the problem 

is more fundamental to the structural pruning applied. This is reinforced by the observation of a 

falloff in accuracy before any changes were made to local vs global pruning. 

For our method pruning was applied internally in the side branches of the convolutional blocks, this 

was done to provide higher control over the pruning process. This is in stark contrast to other 

pruning methods that prune these blocks in parallel removing many filters at a time. Unfortunately, 

this caused the side effect of pruning taking vastly longer due to all the filter comparisons needed. 

Additionally, the filters located had less of an impact in the reduction of FLOPs and parameters as 

they represent a smaller ratio of the overall network. 

This is very different to the results from the original research that this method is based on, where it 

was found pruning these blocks internally preserved performance and reduced inference time [60]. 

It seems that this is due to the different tasks being performed by the neural networks, in the 

previous work the flow of data from input to output was very important as the output was an edited 

image based on the input. In addition, previous work [60], dealt with images of size 1920x1080 these 

are much larger than the size for image recognition 224x224, this has the side effect that filters 

pruned in a classification model have vastly less impact on the runtimes of the model than when the 

model is performing an image-to-image task. 

Here it seems that when doing recognition tasks this deliberate preservation of data is not needed 

and may in fact be detrimental to the neural network’s predictions. Unfortunately, this did not show 

up in any previous tests as this is the first classification residual neural network that this method has 

been applied to. 

7.7 CONCLUSIONS 
Overall, the pruning method developed performs the same as, if not better than SOTA methods on 

smaller neural networks. The method also shows good adaptability to different datasets and models. 

The method slightly underperforms when compared to the top SOTA method when pruning VGG-16 

and vastly underperforms many SOTA methods when pruning Resnet-50. 

This process has highlighted a few issues in the literature of pruning neural networks and has also 

highlighted that each application requires slightly different considerations, when pruning there is not 

a “one size fits all”. All the following influence the results. 

• Model architecture  

• Model size 

• Dataset size 

• Dataset shape 

In all cases where tested, when models were trained from scratch, with identical model 

architectures as the final pruned models, they would perform with lower accuracies than the pruned 

models. This would indicate that WAP performs better when optimising a model than simply 

reducing the model size manually and retraining. 
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7.8 FUTURE WORK 
These are suggestions for any future development on the pruning algorithm. 

• The methodology of pruning convolutional blocks internally for classification networks 

seems flawed, if the pruning method was applied, instead, in parallel. Results for the current 

method may improve.  

• Hard limits on the number of units pruned in a layer need to be addressed and a more 

refined version deciding on these values should be included in future versions. 

• A method for identifying the most alike filters [91] and combining this with the current 

method of identifying the least used filters may produce even better results for pruned 

models. 
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8 IMPACTS OF PRUNING NEURAL NETWORKS 

8.1 PREFACE 
Previous sections in this thesis have developed and applied a pruning algorithm to multiple different 

neural networks and datasets. However now that we have established that learning more about the 

inner computation of a neural network can aid in the pruning process, we must ask… What has 

changed? 

Especially in situations where models have been pruned, however no accuracy has been lost we 

could assume that the learnt information has changed. But perhaps this is not the case, perhaps 

once a solution is found that only consumes a small computational proportion of a neural network 

the remaining parts do nothing of use? These are the questions we hope to answer with the 

following tests. 

8.2 EXPERIMENTS  
Three experiments will be conducted, one will simply look at the changes in the saliency maps of a 

pruned network and an unpruned network. Although inspecting all the feature maps in our networks 

would be eye opening, after a certain network size this kind of investigation becomes far too large to 

draw any meaningful conclusions from. Saliency maps work better in this regard, they show which 

pixels in the input image have most contributed to the given classification, saliency maps will 

therefore be test number one. 

The second experiment will run a “Xrai test”, this test was devised to identify the sections of the 

image that matter the most for the classified class using circular regions and outputs a heat map 

[108]. The heat map can then generate a mask, the mask’s shape can be varied based on the 

different contributions of the regions of the heat map, for our tests we will use the top 30% of 

contributing regions. 

A test will also be conducted to determine the maximal input for a given output class. This 

experiment will show the most “cat like cat” or “dog like dog” image, this will hopefully shed light on 

the knowledge that the pruned model is retaining. 

Finally, an inspection of the weights of the networks will be conducted, by inspecting the statistical 

distribution of weight values we can more deeply understand the optimal structure that the pruning 

process is trying to achieve. 

8.3 LENET-5 MNIST 
For these evaluations relevant models have been selected from the previous section’s pruning 

results. For this first evaluation the unpruned model has been selected and the optimal model from 

pruning was also selected. 

8.3.1 XRai and Gradient Maps 

There are many ways we could evaluate these results; however, we will focus on 5 main cases. 

• When both networks predict the correct class. 

• When both networks predict the wrong class, but the class is identical. 

• When the original network is correct, but the pruned network is wrong. 

• When the pruned network is correct, but the original network is wrong. 
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8.3.1.1 Correct Classification 

8.3.1.1.1 Xrai Plots 

 

Figure 150: Both models predicting the correct class and the corresponding XRAI and the 30% most important pixel plot 

8.3.1.1.2 Saliency Plots 

 

Figure 151: Both models predicting the correct class and the corresponding saliency plots 
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8.3.1.2 Both Wrong Classification – Same 

8.3.1.2.1 Xrai Plots 

 

Figure 152: Both models predicting the incorrect class and the corresponding XRAI and the 30% most important pixel plot 

8.3.1.2.2 Saliency Plots 

 

Figure 153: Both models predicting the incorrect class and the corresponding saliency plots 
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8.3.1.3 Correct Classification for original model 

8.3.1.3.1 Xrai Plots 

 

Figure 154: Original model predicting the correct class and the pruned model predicting the incorrect class and 
corresponding XRAI and the 30% most important pixel plot. 

8.3.1.3.2 Saliency Plots 

 

Figure 155: Original model predicting the correct class and the pruned model predicting the incorrect class and 
corresponding XRAI and the corresponding saliency plots. 
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8.3.1.4 Correct Classification for pruned model  

8.3.1.4.1 Xrai Plots 

 

Figure 156: Original model predicting the incorrect class and the pruned model predicting the correct class and 
corresponding XRAI and the 30% most important pixel plot. 

8.3.1.4.2 Saliency Plots 

 

Figure 157: Original model predicting the incorrect class and the pruned model predicting the correct class and 
corresponding XRAI and the corresponding saliency plots. 
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8.3.1.5 Discussion 

Looking at the first examples when both models predict the correct number, you can see that the 

models are focusing on identical parts of the image, shown by the XRAI plots Figure 152.  

The saliency plots Figure 153 show both blur Integrated gradients and SmoothGrad blur integrated 

gradients. These are two ways to visualise saliency maps and help with identifying how each model 

differs. For the first example the gradients are so similar, that to seven decimal places there is no 

difference in the blur saliency plot. The SmoothGrad plot shows some differences in the tail of the 

number 9, showing that there are some small differences in how the model is interpreting the 

image. However, all tests run here make it seem this model’s understanding of this number 9 has 

changed minimally. 

The next example shows that when both models are wrong, they are wrong in nearly identical ways, 

the XRAI plots in Figure 154 show that both models focus on the same parts of the image, however 

the saliency plots in Figure 155 show more variation. Both the bur and SmoothGrad saliency plots 

show differences, and these differences are also noticeable even without the difference plots. 

This result shows that when the models are incorrect in the same way, they are less similar than 

when they are correct. 

When the original model is correct and the pruned model wrong, the first thing to notice is that the 

XRAI heatmaps, in Figure 156, are very different from each other. Whilst the combination of these 

heatmaps does produce the same top 30% of important pixels, the regions of high attention are 

vastly different, highlighted by red circles. 

The saliency maps in Figure 157, show that the pruned model has a much broader saliency plot for 

the blur saliency plot. This shows that the model was widely activated but, did not focus enough on 

the parts of the image that make up the digit three, and this backs up the findings from the XRAI 

tests. 

When the pruned model is correct and the original model is wrong in Figures 158 and 159, these 

observations are reversed, with the pruned model now showing a far more focused saliency map, 

and this makes intuitive sense.  
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8.3.2 Maximising Neuron Output 

In this section we will be looking at checkpoints of the model in the following states: Unpruned, 

pruning loop 20 and pruning loop 60. This should give a good spread of model performance from 

slightly pruned to fully pruned. 

Unpruned 

 

Pruning Loop 20 

 

Pruning Loop 60 

 

Figure 158: Maximisation maps for all classes for the unpruned model, the model at pruning loop 20 and the model at 
pruning loop 60. 
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8.3.2.1 Discussion 

These maximisation maps shown in Figure 160 output the result that maximally activates the output 

neuron for each digit. The results are the inputs that produce these results. Where obvious I have 

highlighted the input in red to show the shapes for the digits you would expect. 

As is clearly visible the structures in these inputs diminish the more the model is pruned, this is 

because as the model is pruned, the specificity of an individual class is reduced. When no pruning 

has occurred the exact shape for a single digit class is very well defined. However, as pruning 

progresses, the size of the network is reduced, and the network holds fewer representations of each 

digit. This means that this maximisation process is much easier for the optimiser, given the smaller 

model. Therefore, the input required to produce a high confidence value has a far less meaningful 

digit structure. 

This is an interesting finding, as it suggests that even though the model is still performing at a high 

level of accuracy, a deeper level of understanding about the classification problem has been 

forgotten. 

8.3.3 Weight Analysis 

One very interesting observation from these results is that the sparsity pruning process seems to 

prioritize dense layers when zeroing out weights in LE-NET5 shown in Figure 161. 

 

Figure 159: Weight values of all filters individually in the second convolutional layer of the original trained model (left) and 
pruned original model (centre left) first dense layer of the original trained model (centre right) and pruned original model 

(right). 

This means that inherently dense layers are much easier to prune using the data driven approach 

developed in this thesis. 

  

Figure 160: Weight values of all filters summed together in the second convolutional layer of the original trained model 
(left) pruned model 30 (centre left) pruned model 60 (centre right) and pruned model 90 (right). 

As the histograms show in Figure 162 the model generally maintains the same shape in the 

convolutional layers. However, as the model reaches the best performance to model size ratio the 

histograms shift, and individual weight values begin to hit extremes. This can also be observed in the 

range of weight values, here they increase from -0.4 to -1.5, -2 and finally -3.5, and 0.4 to 1 and 1.5. 

The general shape of the distribution is maintained, but it’s stretched over a much wider range as 

pruning continues.  
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Figure 161: Weight values of all filters summed together in the second dense layer for the original sparsely pruned model 
(right), pruned model 90 (middle) and the individual filters for pruned model 90. 

Figure 163 demonstrates that it’s not one filter that shifts the results. In fact, the unsymmetrical and 

wider range of weight values is displayed even within individual filters. Both results also show that 

slight offsets in symmetry in the unpruned weights seems to become amplified in the pruned model. 

This can be seen in Figure 162, where the original model weights are close to a normal distribution, 

however slightly shifted to the left of 0 (shown with a red line). This initial condition results in a 

much more exaggerated shift in the pruned model. This is also shown in Figure 163 highlighted with 

a circle, indicating where the two lobes of the pruned model are very similar however the left-hand 

side lobe is slightly larger, resulting in the pruned model once again having weights shifted towards 

the same direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  1 8 2  |  I m p a c t s  o f  P r u n i n g  N e u r a l  N e t w o r k s  

 

8.4 VGG-16 BIRDS 

8.4.1.1 Correct Classification 

8.4.1.1.1 Xrai Plots 

 

Figure 162: Both models predicting the correct class and the corresponding XRAI and the 30% most important pixel plot. 

8.4.1.1.2 Saliency Plots 

 

Figure 163: Both models predicting the correct class and the corresponding saliency plots 
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8.4.1.2 Both Wrong Classification – Same 

8.4.1.2.1 Xrai Plots 

 

Figure 164: Both models predicting the incorrect class and the corresponding XRAI and the 30% most important pixel plot 

8.4.1.2.2 Saliency Plots 

 

Figure 165: Both models predicting the incorrect class and the corresponding saliency plots 
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8.4.1.3 Correct Classification for original model 

8.4.1.3.1 Xrai Plots 

 

Figure 166: Original model predicting the correct class and the pruned model predicting the incorrect class and 
corresponding XRAI and the 30% most important pixel plot. 

8.4.1.3.2 Saliency Plots 

 

Figure 167: Original model predicting the correct class and the pruned model predicting the incorrect class and 
corresponding XRAI and the corresponding saliency plots. 
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8.4.1.4 Correct Classification for pruned model 

8.4.1.4.1 Xrai Plots 

 

Figure 168: Original model predicting the incorrect class and the pruned model predicting the correct class and 
corresponding XRAI and the 30% most important pixel plot. Red and blue circles show a change in the models focus. 

8.4.1.4.2 Saliency Plots 

 

Figure 169: Original model predicting the incorrect class and the pruned model predicting the correct class and 
corresponding XRAI and the corresponding saliency plots. 
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8.4.1.5 Discussion 

Firstly, focusing on the XRAI plots when the pruned and original model both produce the same 

correct prediction in Figure 164, the same behaviour is shown as the MNIST results. The models have 

an identical XRAI plot, and this translates to the same top 30% of pixels being selected too.  

Additionally, the saliency plots are also so similar in Figure 165 that they produce no difference plot 

for the blur integrated gradients, and only have extremely small differences when looking at the 

SmoothGrad plot.  

Focusing on the result where both models are incorrect in Figure 166, the results are very similar to 

the MNIST visualisations, both models seem to focus on the same parts of the image. Both models 

are also similar down to the saliency plots again shown in Figure 167, and the same conclusions can 

be drawn again, when the models are wrong in the same way they are wrong for similar reasons and 

when they are right, they are right for similar reasons. 

In the correct prediction the XRAI plots show how both models are focusing on the bird in the image 

and specifically the defining features of the bird, in the face, crest on the top on the head, and legs 

shown in Figure 164. It’s also obvious that when the models are incorrect, they have failed to 

identify key features of the bird, whilst the beak has been identified, the breast of the bird is 

ignored, and both models have heavily focused on a rock in the background shown in Figure 166. 

This shows that sometimes it may not be the ability of the model to find the correct bird features, 

that results in the correct class prediction, but also the ability to exclude non-bird information. 

When the original model is right and the pruned model is wrong, the reason is clear, the model has 

failed to focus on the bird, or put another way, the model has become distracted by the background. 

This is most clearly seen in the XRAI heatmaps seen in Figure 168, although it is obvious that the 

pruned model is still generally focused on the bird slightly more than the rest of the image. You can 

see by the scale on the right of the image that the focus on the bird is orders of magnitude less than 

the original model. 

The saliency maps shown in Figure 167 also show that the original model is more focused on the bird 

in the image shown by higher values across the whole area the bird takes up. The pruned model 

does seem to focus specifically on the bird’s eye, this may indicate a shortcut that the pruned model 

has had to rely on to identify birds using fewer features. However as demonstrated with this result, 

if it is a shortcut, it doesn’t always work. 

When the pruned model is correct the XRAI plots show in Figure 170 that the pruned model has a far 

lower value than the original model, meaning that the overall confidence is a lot lower. However, 

the strongest area of confidence is in the beak, circled in blue. Observing the unpruned model there 

is a highlighted region around the eye and the feather colouration around the eye highlighted with a 

red circle. This is another example of a potential shortcut being used, however this time the shortcut 

works. Additionally, this is an example of feature selection, the model has potentially learnt that it is 

more efficient to store beak shapes in filters than plumage patterns.  

This makes intuitive sense as beaks often share similar general shapes, where small variations 

indicate big differences in species [109]. This is a much smaller information space to represent than 

the plumage patterns of all birds. It also makes intuitive sense as to why larger models would not 

rely solely on beak information, as there is no guarantee that a bird’s beak would be visible in an 

image. 
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It seems that the pruned model is in this constant battle to maintain the most efficient filters at each 

pruning step. It also helps to answer the question as to why models that are architecturally identical, 

cannot be trained from scratch to achieve the same degree of accuracy. Some of the learnt filters 

must rely on previous filters before they can exist in a helpful way in the model. Smaller models 

don’t have the capacity to learn these more refined “efficient” filters and therefore they cannot 

perform at the same level. The only way to have these “efficient” filters present in models of smaller 

sizes is to prune models in a gradual and deliberate fashion like the methods developed in this 

thesis. Data driven pruning ensures these efficient filters by focusing on filter utilization and 

removing the ones least used. 

8.4.2 Maximising Neuron Output 

 

        

Example Birds 

 

Original Model 

 

Model 2000 
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Model 4000 

 

Model 6000 

Figure 170: Maximisation maps and example inputs for the classes Flamingo, Robin, Spoonbill and Hornbill for the unpruned 
model, the model at pruning loop 2000,4000 and 6000. 

8.4.2.1 Discussion 

The maximisation task was undertaken focusing on 4 classes, Flamingo, Robin, Spoonbill and 

Hornbill. These classes were specifically selected as 3 represent extremely unique bird species, the 

fourth class of Robin was selected to represent a less unique species. All results are shown in Figure 

172. 

Focusing on the results of the original model, shapes, and colours important to the classifications of 

each species are clearly visible. This can be seen in the flamingo plots, with clear repetitions of the 

neck and bill throughout the image. The robin plots seem to show a high interest in the eye of the 

bird, this structure is repeated many times. The Spoonbill plots show many rounded circular shapes 

with long protrusions indicative of the head and bill arrangement of the species. Finally, the Hornbill 

once again has many repetitions of the beak and seems to have a few repetitions of the appendages 

both above and below the head of the bird. 

The subsequent maximisation maps clearly show a gradual decline in the structures created through 

this process. The number of repetitions of the bird parts reduces, and the definition in these 

structures also decreases. There also seems to be a loss in the number of repeated elements, for 

instance the Hornbill appendages seem to disappear from the original model, even by model 2000. 

By model 4000 the flamingo plot has lost most representations of the neck of the flamingo. 

Interestingly the Robin plot stays the most similar from the original model until model 4000, this 

could be because the robin is a more “normal” bird, therefore it shares more features with other 

classes, and as such the internal model representation does not change much pruned model to 

pruned model. 
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By model 6000 the representations have become extremely sparse in information, this is caused by 

the optimisation process finding it easier to produce a “perfect” input. This might seem counter 

intuitive, but, as a model is pruned and information removed, the number of possible “perfect” 

inputs increases. This is simply due to the model being smaller, and having less filters and less 

constrained classes, it simply becomes easier to create the perfect class input. 

This decrease in the difficulty needed to optimise for a specific class, results in regions where 

essentially the input does not matter. This is most pronounced in the Robin plot where 80% of the 

image looks like noise, the other classes at this stage retain more information in their plots. This is 

most probably caused by these classes having very specific features, due to the unique visual 

characteristics of the species.  

8.4.3 Weight Analysis 

The first analysis was to identify if this model showed the same characteristics as the previous when 

sparsity pruning is applied, so similarly below are plots of the first convolutional layer and the first 

dense layer’s weight distribution both before, and after, sparsity pruning was applied Figure 173. 

 

Figure 171: Here the weight distribution of the first convolutional layer of the unpruned model (left) the pruned version of 
this (left of centre). Similarly, the unpruned first fully connected layer at the end of the network (right of centre) and the 

pruned version of the (right). 

Figure 173 shows that contrary to the previous set of results the convolutional layers seem to prune 

a similar amount to the fully connected layers. Both seem to double in the number of weights close 

to zero. This difference is most likely because in the previous weight analysis, the convolutional 

layers contained a very small proportion of the total weights of the model. Whereas in this model 

(VGG-16), the number of weights in each type of layer are much more balanced in their distribution, 

due to there being many more convolutional layers.  

 

Figure 172: These plots show the weight distribution of the last convolutional layer of the network for the initially pruned 
model (left) pruned model 3000 (left of middle) pruned model 5500 (right of middle) pruned model 6500 (right). 

Figure 174 shows similar characteristics to the previous results, as the pruning progresses the 

distribution of the weights becomes wider, and weights have more extreme values. Here increasing 

from -0.1 and 0.3 to -0.35 and 0.4. to show this phenomenon exists throughout the model 

convolution 10 is also shown in Figure 175. 
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Figure 173: These plots show the weight distribution of convolutional layer 10 of the network for the initially pruned model 
(left) pruned model 3000 (left of middle) pruned model 5500 (right of middle) pruned model 6500 (right). 

Once again, the extremes in Figure 175 increase from -0.15 and 0.25 to -0.45 and 0.4 respectively. 

  

Figure 174: These plots show the weight distribution of the prediction layer of the network for the initially pruned model 
(left) pruned model 3000 (left of middle) pruned model 5500 (right of middle) pruned model 6500 (right). 

Figure 176 shows how the distribution of the last layer of the model changes minimally in its weight 

distribution between each pruned model, however much like the deeper layers in the model the 

magnitude of the weights increases to much higher extremes than the original model. 

8.5 ROBUSTNESS INVESTIGATION USING T-SNE 
T-distributed Stochastic Neighbor Embedding (t-SNE) is a machine learning algorithm for 

visualization developed by Laurens van der Maaten [161] and Geoffrey Hinton [160]. It is a nonlinear 

dimensionality reduction technique that is particularly well suited for embedding high-dimensional 

data into a space of two or three dimensions, which can then be visualized in a scatter plot. 

Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a 

way that similar objects are modelled by nearby points and dissimilar objects are modelled by 

distant points. 

The t-SNE algorithm accomplishes this by taking a set of high-dimensional objects and creating a 

probability distribution over the pairs of objects, such that the probability of picking a pair of objects 

is high if the objects are similar and low if they are dissimilar. It then creates a similar probability 

distribution over the pairs of resulting two- or three-dimensional points in the low-dimensional 

space and it minimizes the Kullback–Leibler divergence [162] between the two distributions with 

respect to the locations of the points in the map. 

While the original algorithm measures the similarity between objects using the Euclidean distance, 

this can be replaced with any other metric that suits the data. 

Because t-SNE can accurately represent the divergence in any embedding space it is possible to 

represent the embedding space of a neural network.  
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By comparing the embedding space of an unpruned model to a pruned version of the same model at 

multiple points we can ascertain how well the model can separate this embedding space given the 

pruning applied. The following visualisations focus on the model from section 7.6.2, this is an LE-

NET-5 model trained on MNIST digits. 

 

Figure 175:t-SNE plots for the original model (top left) the selected pruned model (97) (top right) an over pruned model 
(127) (bottom) 

The results in figure 178 show that the initial model and the model that was selected from the 

pruning process have similarly sized clusters for each of the digits (this model was selected by 

analysis of accuracy and FLOPs/Parameters). t-SNE is created in such a way that the location of the 

groups does not matter, the relationship between the distance of the groups and the size of the 

groups is most important. 

The group for digit 2 (Green) has grown slightly in the pruned model and so has 4 (purple). Overall, 

the groups show similar separation from each other meaning confusion between numbers has not 

increased dramatically. 
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The shapes of the clusters has changed between these two plots and this is expected to happen with 

a t-SNE plot, the pruned plot shows well defined shapes within groups (seen as an S for digit 7, or a ? 

for digit 4). The clusters in the plot for the original model are more spread-out, this would indicate 

that although the pruned model is still grouping similar digits the number of representations for 

each digit in the embedding space has decreased, resulting in coarser predictions.  

Finally, the bottom plot shows what happens if you take pruning to the extreme, this model was the 

last model before accuracy fell below 2% of the original model. It can be observed that no clusters 

are represented by polygons anymore, the clusters are more representative of lines. This reflects the 

embedding space being reduced too far and the model no longer being able to represent enough 

variety of each digit. Because the clusters have become lines this means they are closer to other 

clusters which will be causing confusion between numbers being classified. 

Finally looking at the groups 7 and 9 (cyan and grey) and 8 and 0 (yellowy green and blue) you can 

see they are almost touching, there are also multiple classifications that are incorrect at the edges of 

these clusters (represented by a minority colour in another cluster). It makes sense that these 

numbers are confused with each other before any others as they share a similar pixel space making 

them the hardest to differentiate given the reduced embedding space. 

This result shows that pruning models will affect the ability of a model to deal with edge cases due 

to a shrinking embedding space. However, this behaviour does not become a significant issue until 

pruning is taken to the extreme. 

8.6 CONCLUSIONS 
Both sets of results show that there is an interesting phenomenon with the weights of a pruned 

model, weights seem to become larger in magnitude and weight values at the extremes seem to 

become more frequent. 

Pruned model weights show that when convolutional layers represent a small proportion of the 

entire network, they are sparsely pruned less than the fully connected layers. This suggests a reason 

as to why limiting the number of convolutional layers being pruned, increases the accuracy of 

pruning overall. This is because, if the model is storing many of it’s non-zero values in the 

convolutional layers, and these layers are removed. Not only does the model have to move the 

knowledge stored here to another layer, but it also must “wake up” connections in subsequent 

layers that had previously been turned off. This points towards very disruptive pruning, and as such, 

perhaps weight values should also be considered when pruning. 

Saliency and XRAI maps show that pruned models change as minimally as possible in their internal 

focus from the original trained model.  

Maximisation activation maps show that whilst the internal focus of the model stays similar, the 

overall representation of a specific class changes drastically. Whilst being pruned the number of 

definable features a model has about a given class decreases, and obviously if taken to the extreme 

would eventually reduce to nothing.  
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8.7 SUGGESTIONS FOR A FUTURE PARADIGM IN NEURAL NETWORKS 
This work shows that a neural network requires a certain number of weights close to 0, this is 

consistent in original models, pruned models and sparsely pruned models. This can be observed 

either by a normal distribution around 0 in the unpruned case or a large spike in 0 weight values in 

the sparsely pruned case. 

These findings suggest that 0 weight values should be built into model design from the start, 

deliberately limiting the number of connections to the previous layer to mimic these 0 values, and 

that this distribution of connections should broadly follow a normal distribution. 

By building this into a network before training, the process of identifying filters and neurons and 

pruning can be circumvented. 

This would also mean that the speed up due to pruning is immediately realised in the training 

process, as the connections are already removed reducing FLOPs and parameters at runtime. 

Unfortunately, this method would need a model to be trained from scratch, and that does limit the 

applicability of this paradigm, however implementation would be much easier. 
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9 SUMMARY OF CONTRIBUTIONS AND FUTURE WORK 

9.1 SUMMARY OF CONTRIBUTIONS 

9.1.1 MLI 

This chapter outlines a process to visualise a simple neural network. These visualisations provide a 

deeper insight into the inner workings of the neural network, the visualisations indicate that some 

neurons may be considered redundant. 

This chapter also concedes that this kind of visualisation is not possible for larger networks due to 

their sheer size. Because of this an “importance score” is suggested, this score is used to aid when 

pruning a neural network. The score is derived from the same data used for the visualisations and 

indicates the utilisation of a singular neuron or convolutional filter. 

9.1.2 JPEG Restoration 

In this chapter a network designed to remove video deblocking artefacts was applied to remove 

JPEG artefacts. This achieved results that were competitive with SOTA artefact removal CNN’s. This 

chapter showed that the deblocking network’s architecture is effective and transferable to other 

types of compression algorithms.  

This chapter provides strong evidence that models trained on multiple compression strengths are 

more efficient in terms of the number of parameters. This process also creates a model that is more 

useful to the end user. There is also strong evidence that each image has an “ideal” decompression 

level. This “ideal” is not the actual compression level used to create the image and is instead within 

some range of the original compression level.  

Finally, this chapter identifies whole convolutional filters that are universally underutilised by the 

neural network. This was achieved by manual inspection of the activation maps of the model, 

initially identified using the neuron importance score developed as a part of MLI. 

9.1.3 Pruning a Deblocking Neural Network 

This chapter begins by replicating SOTA video deblocking techniques, this is verified through 

accuracy metrics. The SOTA ML technique is compared against the vanilla VTM specification and was 

found to be superior. It was found that the ML techniques generally edit more pixel values in the 

filtering stages, and these pixels are edited at higher magnitudes. 

The initial pruning algorithm was developed, experiments proved that sparsity pruning was required 

to further isolate neurons making it possible with the aid of structural pruning to guide the selection 

and removal of neurons from a neural network. This reduced run times and memory usage.  

It was found that pruning the main branch of the network heavily reduced the performance of the 

filtering, because of this a sophisticated structural pruning technique was developed. This technique 

allowed for a large reduction of FLOPS and Parameters but preserved the performance of the 

network. 

Ablation studies showed that a model that had been manually reduced in size could not reach the 

same performance as the original model and therefore also the pruned model. 

This work vastly improved upon the SOTA ML deblocking technique, reducing inference time and 

VRAM usage significantly and was published in ISCAS 2022. 



P a g e  1 9 5  |  S u m m a r y  O f  C o n t r i b u t i o n s  A n d  F u t u r e  W o r k  

 

9.1.4 Pruning Generative Adversarial Networks 

Pruning was applied to a GAN based model, aiming at comparing datasets against each other using 

the same model architecture for training. Overall, pruning was more successful when datasets were 

configured in such a way to produce a real-world image.  

This suggests one of three things, either the metrics to measure the quality of real-world images are 

insufficient, Pix2Pix has a bias towards generating real-world images or real-world images are easier 

to produce than segmentation maps. 

This section demonstrated that pruning is highly dependent on the dataset used to train the model. 

It also showed that reversing the modality of a dataset does not result in an equally complex task, 

each dataset should be considered individually and at length when pruning neural networks. 

Additionally, the pruning algorithm was expanded, pruning based on a schedule was explored and 

found to be detrimental to the pruning process. This was because it was too aggressive and removed 

fundamental components of the neural network too early in the pruning process. 

When training GAN networks mode collapse is a big issue, however experiments seem to show that 

a model can recover from mode collapse by undergoing a sparsity pruning step. Additionally, whilst 

some model diversity was observed due to differences dataset complexity, all models seemed to 

conform to a general “hourglass” shape. The hourglass shape is in reference to the number of filters 

in a layer. This is a different structure than currently proposed GAN models and perhaps hints at a 

better architecture for said neural networks. 

9.1.5 Pruning Classification Networks 

Finally, the efficacy of the pruning method needed to be compared against other SOTA pruning 

algorithms. To achieve this the pruning algorithm was tested on a comprehensive list of neural 

networks and datasets used in the field of neural network pruning.  

Additionally, the algorithm was improved again. Sophisticated ways of simulating input data were 

added along with the ability to prune globally or locally. Noise-based pruning was also added and the 

role that optimisers have when training and pruning was explored. These additions finalised the 

pruning algorithm and it was named “Weight Action Pruning”, this was used to conduct all 

experiments in this section. 

Issues were found with the proposed structural pruning of ResNet-50. This was due to the 

assumption that classifications networks would benefit from the same kind of structural pruning 

applied to the deblocking network in previous chapters, this was not the case. The difference in the 

dataset’s dimensionally is primarily to blame for this issue, WAP could be adapted to make 

exceptions for such cases. 

Overall, when compared against SOTA methods the pruning algorithm achieves the lowest FLOP 

metrics when pruning LE-NET 300 and 5. Whilst also achieving the lowest number of parameters on 

LE-NET 5. Pruning VGG-16 shows comparable results when compared on the number of parameters 

but falls short on the number of FLOPS. ResNet-50 prunes extremely poorly, mainly due to the 

phenomena explained above. 

As part of this work another network structure was discovered from the pruned model. This 

architecture was a VGG-16 structure but contained multiple “funnels”, or multiple layers of deeper 

compression. This achieved through an increase in the number of filters. This occurred at each 

subsequent layer before being seemly being reset every 3 to 4 layers and the process repeating. 
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Finally, a case study was performed for the BBC where a transfer learning step was added to the 

pruning process to help create a customised, prunable model for any dataset. This was envisioned to 

initially aid with metadata tagging of birds. However, this method could be used to help identify any 

number of objects in the BBC archive, in an efficient and controlled manner. 

9.1.6 Impacts of Neural Network Pruning 

The final chapter asks, “what is lost?” when pruning neural networks. The results initially suggest, 

not much! Models seem to change their internal hidden functions minimally; this is proved by 

inspecting saliency and XRAI maps of pruned and unpruned models. 

However, whilst the internal functions used to identify an animal or number seem to remain similar, 

the overall “knowledge” in the system decreases. The pruning process selectively removes filters 

that do not affect accuracy. This work therefore provides evidence that pruning does indeed 

decrease the “knowledge” in the network overall, but redundant “knowledge” is targeted before all 

else, to preserve accuracy. 

Finally, weight distributions for pruned networks are inspected, and it was found that the 

distributions stay similar in shape throughout pruning. However, as pruning progresses weights 

become spread across a wider range of values, and any small differences in the symmetry of the 

weight distributions is exacerbated. 

Of note, values near zero are always the most prevalent in every step of the pruning process. This 

indicates a fundamental need for a neural network to have a majority of zero weight values 

irrelevant of the model’s size. This might suggest that models should have deliberately partially 

connected neurons throughout the model, to simulate zero weight values and provide a 

FLOP/Parameter reduction inherently before any training occurs. 

9.2 FUTURE WORK 
I believe that the best direction for future research should be based on the findings of the final 

sections of this thesis, that indicate, neural networks require a percentage of 0 weight connections 

to function. 

Additionally, I believe that revisiting the pruning of ResNet50, but pruning in a parallel nature will 

yield much better results for WAP. Also adding the functionality to search for “similar” filters and 

pruning based on this will help with WAP’s efficacy. 

Finally, testing WAP on other well established image translation tasks, like super-resolution, 

colourisation, and frame interpolation. And perhaps even newer tasks like text to image generation 

would be highly interesting and produce fruitful research.   
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11 APPENDIX 

11.1 A 

 

Evolution of the layer pruning over time, red blocks indicate a channel was pruned, the number in 

the box shows how many filters have been removed at that point. 

On the left is the name of the layer and its type, additionally it has the number of nodes associated 

with the layer, these are normally of the magnitude 8/16/32/48/64/96. The red boxes show where 

nodes/channels have been removed from the network, and the white number inside shows the 

number of layers removed. Purple lines indicated layers that did not have any channels or nodes 

removed, even though it was possible for the algorithm to remove them. Yellow lines indicate layers 

where layers were removed on the first iteration of the loop but were then left unpruned for the 

rest of the pruning loop.  

 

 

11.2 B 
Below is a list of animations relevant to the thesis. 

1 - https://youtu.be/csCM9fInltk - Birds VGG16 pruned model over time 

2 - https://youtu.be/Lw-WSmSzTJc - MLI first visualisations 

3 - https://youtu.be/X7QL8ZWhIbo - Pix2Pix Pruning Over time 

4 - https://youtu.be/4BSp1deTwgs - Vanilla VTM Vs NN aided VTM 

5- https://tinyurl.com/2sk2y9j9 - Pruning algorithm explained visually 

https://youtu.be/csCM9fInltk
https://youtu.be/Lw-WSmSzTJc
https://youtu.be/X7QL8ZWhIbo
https://youtu.be/4BSp1deTwgs
https://tinyurl.com/2sk2y9j9
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11.3 C 
Repository of all code used for the creation of the thesis. 

https://github.com/Woodyet/Thesis_Code_Dump 

To request access please email woody.bayliss@sky.com  

11.4 D – UNPRUNED CONFUSION MATRIX 

 

https://github.com/Woodyet/Thesis_Code_Dump
mailto:woody.bayliss@sky.com
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11.5 E – PRUNED CONFUSION MATRIX 
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11.6 G. JPEG SET5 ENCODED AT ALL COMPRESSION RATIOS 

 

PSNR of processed images at all compression ratios. 
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