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We use numerical simulations of scalar field dark matter evolving on a moving black hole background to
confirm the regime of validity of (semi)analytic expressions derived from first principles for both
dynamical friction and momentum accretion in the relativistic regime. We cover both small and large
clouds (relative to the de Broglie wavelength of the scalars), and light and heavy particle masses (relative to
the black hole size). In the case of a small dark matter cloud, the effect of accretion is a non-negligible
contribution to the total force on the black hole, even for small scalar masses. We confirm that this
momentum accretion transitions between two regimes (wave and particlelike) and we identify the mass of
the scalar at which the transition between regimes occurs.

DOI: 10.1103/PhysRevD.108.L121502

I. INTRODUCTION

The cold dark matter (CDM) paradigm provides the best
explanation to date of the missing mass we observe in
galaxies and of large-scale cosmological observations [1–6].
However, the fact that weakly interacting massive particles
have so far not been detected directly (despite ongoing
attempts [7]) and the apparent tension of CDM with small-
scale (galactic) observations (see, e.g., [8,9]) has sparked
some interest into alternative dark matter (DM) models that
still fit large-scale observations, but can show very different
behavior on smaller scales. Light bosonic degrees of free-
dom (like axions) provide a well-motivated extension of the
Standard Model [10–13] and are a possible alternative DM
candidate [9,14–17] (see [18–20] for reviews). If such light
bosons have massesm≲ 1 eV, their de Broglie wavelenght
λdB is larger than the typical DM interparticle separation

distances in galaxies, and they behave effectively as
classical waves, exhibiting new phenomenology on scales
≲λdB [20], which can be astrophysical for the lightest
candidates (e.g., λdB ∼ 1 kpc for m ∼ 10−22 eV). Some
important manifestations of this wavelike behavior are,
e.g., the development of stable long-lived configurations
around black holes (BHs) [21–25] due to accretion, or the
growth of gravitationally bound clouds powered by super-
radiance, in the case of spinning BHs [26–37].
Gravitational interactions with compact objects are one of

the most promising tools for investigating DM properties,
since they do not rely on any additional interactions with the
Standard Model. Extreme mass-ratio inspirals (EMRIs), in
particular, provide an optimal system for studying environ-
mental effects on the inspiral gravitational waveform, since
they may complete about 104–105 orbits before merger,
meaning that small dephasing effects are integrated over long
timescales. Since these kinds of systems typically reside in the
center of a galaxy, the smaller object is expected to pass
through the DM core, where densities are highest [38–40].
However, even with next-generation detectors, prospects of
observing a signal often rely on enhancements in the density
above those in the core, e.g., due to superradiance, accretion of
DM spikes, or self-interactions in the DM (see, e.g., [41–48]).
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Several effects are expected to give rise to dephasing in a
binary’s gravitational wave signal when additional matter is
present. A key one is dynamical friction (DF); a gravita-
tional drag force due to an overdensity (a “gravitational
wake”) that develops behind a massive object as it moves
through a medium. First described by Chandrasekhar [49]
for a nonrelativistic Newtonian perturber moving through a
cloud of noninteracting particles, it was then extended to
different media (such as fluids [50–52]), different geom-
etries (e.g., spherical or slablike [53–55]), and including
relativistic corrections [56–59]. In the context of scalar field
DM, the DF was first computed for a nonrelativistic
Newtonian perturber [9], and then extended to include
velocity dispersion [60,61], self-gravity [38,39] (see also
[62,63]), or self-interactions [41,64] for binary systems
[65,66], and relativistic perturbers [67,68]. It has recently
been shown that relativistic effects can play an important
role during the final few orbits of an EMRI, producing a
detectable effect on the evolution of the binary [69].
Another effect responsible for dephasing in the inspiral of

BH binaries is the accretion of matter (and its momentum)
onto the BHs as they move relatively to the medium, as
originally studied byBondi [70,71]. Inmost cases it results in
a smaller effect than DF (see, e.g., [72]), but it is nevertheless
important to characterize it, especially in the case of small
environments; while the strength of DF increases with the
medium (or, more precisely, the wake) size, the effect of
momentum accretion is roughly independent of it, and so
becomes more important for smaller environments (wakes).
In the context of light scalars this accretion was studied by
Unruh [73] (see also [41,42,68,74,75]).
In a previous work [67] some of us characterized the DF

effects for large scalar DM clouds, by evolving numerically
the scalar field around a BH in uniform linear motion, and
(based on fluid-media results [57,58]) suggested a phe-
nomenological model for the relativistic corrections which
included a pressure-like and Bondi accretion terms. Soon
after, analytic expressions for the drag force on the BH
were obtained for a similar setup [68], suggesting that our
phenomenological terms could be removed for very light
scalars (i.e., γMmc=ℏ ≪ 1, where γ ≔ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the

Lorentz factor of a BH of mass M and velocity v) by using
the analytic expression for Unruh accretion [73], without
the need of any free parameter.
In this work, we evolve numerically the scalar field on a

moving BH spacetime to confirm that, indeed, the phe-
nomenological relativistic corrections introduced in our
previous work can be accounted for by a better modeling of
the accretion process. In particular, we find that Unruh
accretion captures very well our numerical results for
sufficiently light scalars; this is particularly evident for
small clouds, which we first simulate in this work, where
the accretion of momentum gives a comparable (or dom-
inant) effect to DF. We also derive the drag force on the BH
in the geometrical optics limit (for a cloud of particles

following timelike geodesics), which is independent of the
particles’ spin and, in particular, applies to CDM. The
(semi)analytic expressions that we provide are shown to
describe our numerical results in the different regimes well.
Hereafter, we adopt the mostly positive metric signature

and use geometrized units in which G ¼ c ¼ 1. The scalar
field mass will be parametrized by the inverse (Compton)
length scale μ ≔ m=ℏ, and we will often use the dimen-
sionless quantity αs ¼ Mμ to present our results. For
reference, a value of αs ∼ 10−2 corresponds to a scalar
with m ∼ 10−12 eV for a solar-mass BH (M ∼M⊙), or to
m ∼ 10−22 eV for a supermassive BH (M ∼ 1010M⊙).

II. THEORY

We consider a complex scalar φ minimally coupled to
gravity described by the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∇μφ
�∇μφ − μ2jφj2Þ; ð1Þ

which results in the Klein-Gordon equation

ð□g − μ2Þφ ¼ 0: ð2Þ

We assume a scalar field dilute enough that its backreaction
on the spacetime geometry is negligible at leading order;
so, effectively we consider that the scalar field evolves on a
(vacuum) Schwarzschild geometry. The scalar field energy-
momentum tensor is

Tμν ¼ ∇ðμφ�∇νÞφ −
1

2
gμν½∇δφ

�∇δφþ μ2jφj2�; ð3Þ

where AðμBνÞ ≔ 1
2
ðAμBν þ AνBμÞ denotes symmetrization.

III. COORDINATE SYSTEMS

We start with the Schwarzschild metric in isotropic
coordinates ðt̄; x̄; ȳ; z̄Þ, corresponding to the “BH frame,”
which we then boost by a factor γ in the ∂=∂x̄ direction; the
resulting coordinates ðt0; x0; y0; z0Þ correspond to the “scalar
field frame.” By adding a spatially-constant shift in the
x0-coordinate (i.e., x ≔ x0 − vt0), we obtain a time-invariant
metric in which the BH remains at a fixed coordinate
position—we call this coordinate system, in which we
perform the numerical evolution, the “simulation coordi-
nates” ðt; x; y; zÞ.
The 3þ1Arnowitt-Deser-Misner (ADM) decomposition

of the Schwarzschild metric in simulation coordinates is

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð4Þ

where the lapse, shift and nonzero components of the
spatial metric are, respectively,
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α2 ¼ AB
γ2ðB − Av2Þ ; βi ¼ δxi Av;

γxx ¼ γ2ðB − Av2Þ; γyy ¼ γzz ¼ B; ð5Þ

where

A ≔
�
1 −M=2r̄
1þM=2r̄

�
2

and B ≔
�
1þM

2r̄

�
4

;

with r̄2 ≔ γ2x2 þ y2 þ z2.
While we perform the numerical computations in simu-

lation coordinates, we will present the final gravitational
drag forces in the BH frame, where the analytic expressions
are more naturally derived. The rate of change of the ADM
momentum in the BH frame can be obtained from the one
in simulation coordinates using

dPADM
μ̄ ¼ ∂xμ

∂xμ̄
dPADM

μ ; ð6Þ

and dt̄ ¼ dt=γ, which results in

d
dt̄
PADM
x̄ ¼ d

dt
PADM
x þ vγ2

d
dt
PADM
t ;

d
dt̄
PADM
t̄ ¼ γ2

d
dt
PADM
t ;

d
dt̄
PADM
ȳ;z̄ ¼ γ

d
dt
PADM
y;z : ð7Þ

In Ref. [67] we assumed dPADM
t ≈ 0 for small dPADM

x , but
did not justify this further. Whilst, as suggested in Ref. [68],
this assumption is not necessarily valid, the treatment in
Ref. [67] was self-consistent. We provide a clearer and
more thorough justification of the assumptions relating
to this accretion term in Sec. A of the Supplemental
Material [76].

IV. NUMERICAL FRAMEWORK

Our numerical setup is substantially the same as in
Ref. [67]. For completeness, we briefly recap the main
elements of the methods in this section, and refer the reader
to [67] for more information. The technical details on
the numerical grid setup are given in Sec. D of the
Supplemental Material [76].
We evolve the scalar field by solving the system

∂tφ ¼ αΠþ βi∂iφ; ð8Þ

∂tΠ ¼ αγij∂i∂jφþ αðKΠ − γijΓk
ij∂kφ −m2φÞ

þ ∂iφ∂
iαþ βi∂iΠ; ð9Þ

on a fixed Schwarzschild geometry, where Π is the
conjugate momentum, as defined by Eq. (8), and K is
the trace of the extrinsic curvature of the background Kij,
which in simulation coordinates is simply given by

Kij ¼ α−1DðiβjÞ; ð10Þ

since the metric is time invariant.
We set homogeneous initial conditions for the scalar

field across the grid, with ReΠðt ¼ 0Þ ¼ 0, Reφðt ¼ 0Þ ¼
φ0, ImΠðt ¼ 0Þ ¼ μφ0, and Imφðt ¼ 0Þ ¼ 0. We use an
initial amplitude φ0 ¼ 0.1, but this is an arbitrary choice,
since we neglect the backreaction of the field onto the
metric and the system is linear, which implies that the final
result can be rescaled to different physical densities
(assuming that its backreaction remains negligible).

V. GRAVITATIONAL DRAG

To compute the relativistic drag force acting on the
moving BH we use the framework developed in Ref. [77],
which allows us to find the leading-order term in the scalar
rest mass density using the test field approximation. This
drag force includes both the effects of DF and momentum
accretion, and is defined as

Fi ≔
d
dt
Pg
i ; with Pg

i ≔
Z
Σo

d3x
ffiffiffiffiffiffi
−g

p
t0i ½g�; ð11Þ

where tνμ is the Einstein’s pseudotensor of the total
spacetime metric gμν, which includes the backreaction
from the scalar field (see, e.g., Ref. [77]). The “curvature
momentum” Pg

i (and the force Fi) depend on the slicing of
the spacetime ΣoðtÞ—they are well-defined once the
observers are specified.
For an asymptotically flat spacetime, the ADM momen-

tum can be decomposed into a curvature part and a scalar
field part,

PADM
i ¼ Pg

i þ Pφ
i ; ð12Þ

where, at leading order in ϵ (with jφj ∼ ϵ),

Pφ
i ≈

Z
Σo

d3x
ffiffiffiffiffiffi
−g

p
T0
i ½φ; gð0Þ�; ð13Þ

d
dt
PADM
i ≈ −

Z
∂Σo

dSjαT
j
i ½φ; gð0Þ�: ð14Þ

Here dSj ≔ d2x
ffiffiffi
σ

p
Nj, where σ is the determinant of the

induced metric on ∂Σ andNj its outward unit normal. Thus,
at leading order in ϵ, the drag force can be obtained directly
from an evolution of the scalar field on a fixed background,
sidestepping the actual computation of the backreaction on
the metric. That is,

Fi ≈ −
Z
∂Σo

dSjαT
j
i −

d
dt

Z
Σo

d3x
ffiffiffiffiffiffi
−g

p
T0
i : ð15Þ

Finally, as shown in Sec. A of the Supplemental Material
[76], the last expression implies that the steady-state drag
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force on the BH frame (i.e., in isotropic coordinates) can be
computed from

Fī ≈ −
Z
∂Σi

dSjαT
j
i −

Z
Σo−Σi

d3x
ffiffiffiffiffiffi
−g

p
Tμ
ν
ð4ÞΓν

μi; ð16Þ

where the right-hand side is to be evaluated numerically in
simulation coordinates, with Σi ⊂ Σo a 3-dimensional sur-
face outside the horizon, which contains the curvature
singularity.

VI. ANALYTIC EXPRESSIONS

The DF acting on a pointlike Newtonian perturber
moving at nonrelativistic velocities through a scalar field
cloud was first derived in Ref. [9]. These expressions were
extended to the case of a BHmoving at relativistic speeds in
Ref. [68], including also the drag force from accretion of
momentum. We summarize here the key results, which we
will validate against our simulations.
There are two important dimensionless parameters in this

problem: the ratio of the BH size to the reduced (relativ-
istic) Compton wavelength of the scalars

ᾱs ≔
M
ƛC

¼ γαs; ð17Þ

and the ratio of the characteristic scattering radius to the
reduced de Broglie wavelength

β ≔
ð1þv2

v2 ÞM
ƛdB

¼ ᾱs

�
1þ v2

v

�
: ð18Þ

These parameters control the wave effects, respectively, in
the accretion and scattering processes [68], with the field
behaving as particles in the semiclassical limits ᾱs ≫ 1 or
β ≫ 1, for large azimuthal numbers l ≫ 1 [78].1 Another
relevant dimensionless parameter is the ratio

Λ ≔
2r
ƛdB

¼ 2γμvr; ð19Þ

which characterizes the radius r of the cloud (or, more
precisely, of the wake) in units of the de Broglie wavelength
ƛdB. The drag force due to accretion of momentum is
independent of r and becomes increasingly important (as
compared to DF) for Λ≲ 1. Although we can find (semi)
analytic expressions for the steady-state drag force in all
regimes, they only take a simple closed form in particular

limiting cases; all the expressions in this section are given
in the BH frame (isotropic coordinates) and have the form

Fx̄ ≈ −
4πρM2

v2
γ2ð1þ v2Þ2½Dðᾱs; β;ΛÞ þAðᾱs; βÞ�; ð20Þ

with the coefficients D and A characterizing the contribu-
tion from DF and accretion, respectively.
Let us start with very light scalars (ᾱs ≪ 1). In the limit

of large scalar clouds Λ ≫ 1, the drag force on the BH
is [68]

Fx̄ ≈ −
4πρM2

v2
γ2ð1þ v2Þ2

�
lnΛ − 1 − ReΨð1þ iβÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Dðᾱs≪1;Λ≫1Þ

þ 4v3

ð1þ v2Þ2
eπβπβ

sinhðπβÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aðᾱs≪1Þ≡AUnruh

�
; ð21Þ

where ρ is the asymptotic rest-mass density of the medium
and Ψ is the digamma function. For smaller scalar field
clouds, but still much larger than the BH size (r=M ≫ 1),
we can also find a simple closed-form expression in the
wave limit β ≪ 1,

Fx̄ ≈ −
4πρM2

v2
γ2ð1þ v2Þ2

�
CinðΛÞ þ sinΛ

Λ
− 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Dðᾱs≪1;β≪1Þ

þ 4v3

ð1þ v2Þ2
eπβπβ

sinhðπβÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AUnruh

�
; ð22Þ

where CinðzÞ ≔ R
z
0 ð1 − cos tÞdt=t is the cosine integral. In

both expressions the terms in the first line are an extension
to relativistic velocities of the DF expression derived in
Ref. [9], while the term in the second line is due to (Unruh)
accretion of momentum.2

For heavier scalars ᾱs ≫ 1, the field behaves as colli-
sionless particles and one recovers geodesic results (see
Sec. B in the Supplemental Material [76]); using the
Wentzel-Kramers-Brillouin approximation one can show
that, for large clouds Λ ≫ β, the drag force is

Fx̄ ≈ −
4πρM2

v2
γ2ð1þ v2Þ2

�
ln

�
Λ
β

�
− 1þ χðvÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Dðᾱs≫1;Λ≫βÞ

þ v4

ð1þ v2Þ2
�
bcrðvÞ
2M

�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aðᾱs≫1Þ≡Aparticle

�
; ð23Þ

1Note that for ᾱs ≪ 1 only the mode l ¼ 0 contributes signifi-
cantly to accretion [73] and, independently of the value of β, the
result for the accretion rate does not have a particle analogue.On the
other hand, for ᾱs ≫ 1, the condition β ≫ 1 is necessarily verified
and both accretion and scattering are dominated by modes l ≫ 1,
meaning that the scalar field behaves as particles.

2The momentum accretion was actually derived in Ref. [68],
but it can be obtained directly from the expression for the
accretion rate derived by Unruh in [73].
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where the critical impact parameter,

�
bcr
M

�
2

≔
−1þ 8v4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v2

p
þ 4v2ð5þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v2

p
Þ

2v4

ð24Þ

separates accretion (b < bcr) from deflection (b > bcr), and
χðvÞ is a general-relativistic correction to DF given in
Sec. B of the Supplemental Material [76]. As expected, the
contribution of DF to the total drag force is the same as in
Eq. (21), in the semiclassical limit β ≫ 1, modulo general-
relativistic corrections contained in χðvÞ, which originate
from particles with impact parameters b≳ bcr. For small
clouds we cannot find an analytic expression for the drag
force, since the integral in Eq. (S9) of the Supplemental
Material [76] for the DF contribution must be evaluated
numerically.

VII. NUMERICAL RESULTS

We focus our simulations on the boundaries between
different regimes of cloud sizes Λ and scalar masses αs,
validating the analytic expressions derived in Ref. [68] for
light scalars (ᾱs ≪ 1), and in Sec. B of the Supplemental
Material [76] for heavy scalars (ᾱs ≫ 1). These expressions
contain no free parameters. Our numerical results for the
drag force are obtained extracting all necessary quantities
from our simulations to evaluate Eq. (16). The masses we
consider are in the range αs ∈ ½0.025; 1� and, so, our
simulations could not really probe ᾱs ≫ 1. The numerical
limitation to probe this limit has to do with the increasingly
large frequency of the scalar field oscillations, which
becomes increasingly harder to resolve.
Figure 1 shows our numerical results along with the

plots of the analytic expressions discussed in the previous
section for large clouds with different scalar masses
ðμr; αsÞ∈ fð45; 0.05Þ; ð300; 0.5Þ; ð300; 1Þg. We confirm
that for the lightest scalar considered, αs ¼ 0.05 (top
panel), the total drag force on the BH is correctly accounted
for by the expression in Eq. (21). We can see from the
middle and bottom panels that, at larger masses, the (wave-
like) Unruh accretion significantly overestimates the total
force. In these cases, a better approximation for the drag
force from accretion is given byAparticle, the second term in
Eq. (23), although formally it was derived only in the
ᾱs ≫ 1 limit. Adding the DF from particle DM (general-
relativistic) deflection slightly overestimates the force (as
can be seen from the red dotted lines in the plots) for the
heavier scalars considered αs ¼ 0.5, 1, but we expect it to
become more accurate for heavier scalars (αs ≫ 1).
For intermediate scalar masses (αs ∼ 1), the best descrip-
tion of the drag force on the BH seems to be provided
by a combination of the DF expression derived for
ᾱs ≪ 1 with the (particle) accretion expression derived
for ᾱs ≫ 1 (black dashed lines). Note that the Unruh

accretion is fundamentally wave-like and it only includes
the l ¼ 0 mode, which explains why it becomes an
increasingly worse description of the numerical results
as we approach ᾱs ∼ 1; this is mainly due to the no
inclusion of higher-l modes, which become effective
precisely at ᾱs ∼ 1. On the other hand, the DF expression
derived for ᾱs ≪ 1 includes higher l modes and, so,
also captures the particle regime. In fact, the only diffe-
rence between Dðᾱs ≪ 1; β ≫ 1Þ and Dðᾱs ≫ 1Þ are

FIG. 1. Our numerical results for large cloudsΛ ≫ 1 (shown by
the vertical error bars) considering three scalar field masses
αs ¼ 0.05, 0.5 and 1, from top to bottom. The dot-dashed and
dotted curves represent, respectively, the analytic expressions for
the total force in the light (21) and heavy (23) scalar limits. Unruh
accretion reproduces the numerical results in the case of αs ≪ 1
(top panel), but overestimates them for the other cases where
αs ≲ 1 (middle and bottom panels). Interestingly, the numerical
results for these masses seem to be well described by the
combination Dðᾱs ≪ 1;Λ ≫ 1Þ þAðᾱs ≫ 1Þ (shown as black
dashed curves), that is, the accretion is in the particle limit, whilst
the dynamical friction is in the wave limit.
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general-relativistic corrections to DM particle deflection,
which we speculate to become effective only at ᾱs ≫ 1.
Our results show that the transition from wave to particle-
like regime occurs for scalar masses αs ∼Oð0.1Þ. However,
for the DF this transition appears to be much more gradual
than for accretion, and for αs ∼ 1 some (general-relativistic)
particle effects are still not active.
Figure 2 shows the comparison of our numerical results

with the analytic expression (22) for small clouds Λ≲ 1 in
the wave regime β ≪ 1. We confirm that this analytic
expression provides an excellent description of our simu-
lations for small clouds (μr ¼ 2.5) with scalar masses
αs ¼ 0.05 and 0.025. For these small clouds the contribu-
tion from accretion to the drag force is comparable or more
important than DF, and it is then crucial to model it well.
While our analytic expressions (based on Unruh accretion)
fit well the numerical results for Λ ∼ 1, the phenomeno-
logical ones used in Ref. [67] (based on Bondi accretion)
are not good enough (see Sec. C in the Supplemental
Material [76]).

VIII. DISCUSSION

Future detections of EMRIs by space-based detectors
like LISA, TianQin and Taiji [79–82] will open up new
windows on BH environments. It has been suggested that
superradiant clouds may be detectable by LISA [83–87]

and, moreover, distinguishable from other environments
[85,88], such as DM spikes, which may cause a similar GW
dephasing [89–98]. To assess the detectability of such
effects it is crucial to have a good model of the relativistic
drag force acting on BHs in these environments. In this
work we have calculated numerically the force resulting
from DF and accretion on a BH boosted through a
uniformly dense scalar field medium, and validated the
analytic expressions derived from first principles in their
different regimes of validity. In particular, we have shown
that the total relativistic drag force has the form given in
Eq. (20), where the coefficients D and A contain, respec-
tively, the contributions from DF and momentum accretion.
The different regimes for which analytic expression are
known are summarized in Fig. 3.
As discussed in Ref. [68] and confirmed here, the

additional “pressure” correction that we had considered
in our previous work [67] is not necessary when the
accretion is correctly accounted for (by using Unruh’s
expression instead of Bondi’s), which becomes particularly
evident for the smaller clouds (Λ≲ 1) we have considered
here. Interestingly, we found that at intermediate masses
ᾱs ≲ 1 the accretion process transitions between a wave
description to a particle one (though the latter expression is
formally derived in the ᾱs ≫ 1 limit). The general-relativ-
istic effects on particle DF are expected to become effective
only at ᾱs ≫ 1, larger than the masses considered in our
simulations.
Having established the methods for extracting and

quantifying the relativistic drag forces on BHs moving
though scalar field DM clouds, our simulations can now be
extended to more complex cases, such as those including
DM self-interactions or BH spin, and other fundamental

FIG. 2. Our numerical results for small clouds Λ≲ 1 (indicated
by the vertical error bars) for the scalar masses αs ¼ 0.05 (top
panel) and αs ¼ 0.025 (bottom panel). The dashed curves show
the analytic expression for the total force in Eq. (22). We see that
the wave-like expressions for the accretion and dynamical friction
are an excellent fit.

FIG. 3. Summary of the different DF and accretion regimes,
showing the regions of validity of the expressions inEqs. (20)–(23).
In the case of a scalar fieldwavelength comparable to the size of the
BHand smaller andvery small scalar field clouds (shaded region on
the bottom left of this graph), there is no valid analytic expression
for the DF force. Here we can only calculate the drag force on the
BH numerically, but as one can see from our results, the analytic
expressions give a good order of magnitude estimate even in this
regime.
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fields such as massive bosons of spin 1 and 2. Another
interesting extension of our work is to go beyond the test
field approximation. All our results were obtained under
the assumption that the diluted cloud has a mass much
smaller than one of the BH. If that assumption holds, the
subleading corrections can be captured by a similar
approach to the one used here (but more complicated).
Systems for which that assumption does not hold need a
different (semi)analytic approach (e.g., [39,99]).

ACKNOWLEDGMENTS

We thank V. Cardoso for helpful conversations. We
thank the GRChombo Collaboration ([100]) for their
support and code development work. R. V. was supported
by Grant No. FJC2021-046551-I funded by MCIN/AEI/
10.13039/501100011033 and by the European Union
NextGenerationEU/PRTR. R. V. also acknowledges sup-
port by Grant No. CERN/FIS-PAR/0023/2019. K. C.
acknowledges funding from the UKRI Ernest Rutherford
Fellowship (Grant No. ST/V003240/1). P. F. acknowledges
support from STFC, the Beecroft Trust and funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme

(Grant Agreement No. 693024). E. B. and T. H. are
supported by NSF Grants No. AST-2006538, No. PHY-
2207502, No. PHY-090003 and No. PHY-20043, and
NASA Grants No. 20-LPS20-0011 and No. 21-ATP21-
0010. L. H. acknowledges support by the DOE DE-
SC0011941 and a Simons Fellowship in Theoretical
Physics. The numerical computations presented in this
paper used the Sakura cluster at the Max Planck
Computing and Data Facility (MPCDF) in Garching,
Germany, DiRAC resources under Projects No. ACSP218
and No. ACTP238 and resources at theMaryland Advanced
Research Computing Center (MARCC). We used the
DiRAC at Durham facility managed by the Institute for
Computational Cosmology on behalf of the STFC DiRAC
HPC Facility ([101]), equipment funded by BEIS capital
funding via STFC capital Grants No. ST/P002293/1 and
No. ST/R002371/1, Durham University and STFC oper-
ations Grant No. ST/R000832/1. DiRAC is part of the
National e-Infrastructure. The authors also acknowledge the
Texas Advanced Computing Center (TACC) at The
University of Texas at Austin for providing HPC, visuali-
zation, database, or grid resources that have contributed to
the research results reported within this paper [102,103].

[1] P. J. E. Peebles, Astrophys. J. Lett. 263, L1 (1982).
[2] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J.

Rees, Nature (London) 311, 517 (1984).
[3] M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin,

L. David, W. Forman, C. Jones, S. Murray, and W. Tucker,
Astrophys. J. 606, 819 (2004).

[4] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279
(2005).

[5] R. Adam et al. (Planck Collaboration), Astron. Astrophys.
594, A1 (2016).

[6] D. B. Thomas, M. Kopp, and C. Skordis, Astrophys. J.
830, 155 (2016).

[7] M. Schumann, J. Phys. G 46, 103003 (2019).
[8] D. H. Weinberg, J. S. Bullock, F. Governato, R. Kuzio

de Naray, and A. H. G. Peter, Proc. Natl. Acad. Sci. U.S.A.
112, 12249 (2015).

[9] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys.
Rev. D 95, 043541 (2017).

[10] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977).

[11] R. D. Peccei, Lect. Notes Phys. 741, 3 (2008).
[12] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[13] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[14] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,

127 (1983).
[15] L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983).
[16] M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).

[17] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,
1158 (2000).

[18] E. G. M. Ferreira, Astron. Astrophys. Rev. 29, 7 (2021).
[19] J. C. Niemeyer, Prog. Part. Nucl. Phys. 113, 103787

(2019).
[20] L. Hui, Annu. Rev. Astron. Astrophys. 59, 247 (2021).
[21] L. Hui, D. Kabat, X. Li, L. Santoni, and S. S. Wong,

J. Cosmol. Astropart. Phys. 06 (2019) 038.
[22] K. Clough, P. G. Ferreira, and M. Lagos, Phys. Rev. D 100,

063014 (2019).
[23] J. Bamber, K. Clough, P. G. Ferreira, L. Hui, and M.

Lagos, Phys. Rev. D 103, 044059 (2021).
[24] J. Bamber, J. C. Aurrekoetxea, K. Clough, and P. G.

Ferreira, Phys. Rev. D 107, 024035 (2023).
[25] V. Cardoso, T. Ikeda, R. Vicente, and M. Zilhão, Phys.

Rev. D 106, L121302 (2022).
[26] Y. B. Zel’Dovich, Sov. J. Exp. Theor. Phys. Lett. 14, 180

(1971).
[27] Y. B. Zel’Dovich, Sov. J. Exp. Theor. Phys. 35, 1085

(1972).
[28] A. A. Starobinskil and S. M. Churilov, Sov. Phys. JETP 65,

1 (1974).
[29] S. L. Detweiler, Phys. Rev. D 22, 2323 (1980).
[30] V. Cardoso and S. Yoshida, J. High Energy Phys. 07

(2005) 009.
[31] S. R. Dolan, Phys. Rev. D 76, 084001 (2007).
[32] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112,

221101 (2014).

RELATIVISTIC DRAG FORCES ON BLACK HOLES FROM … PHYS. REV. D 108, L121502 (2023)

L121502-7

https://doi.org/10.1086/183911
https://doi.org/10.1038/311517a0
https://doi.org/10.1086/383178
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1051/0004-6361/201527101
https://doi.org/10.1051/0004-6361/201527101
https://doi.org/10.3847/0004-637X/830/2/155
https://doi.org/10.3847/0004-637X/830/2/155
https://doi.org/10.1088/1361-6471/ab2ea5
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1007/s00159-021-00135-6
https://doi.org/10.1016/j.ppnp.2020.103787
https://doi.org/10.1016/j.ppnp.2020.103787
https://doi.org/10.1146/annurev-astro-120920-010024
https://doi.org/10.1088/1475-7516/2019/06/038
https://doi.org/10.1103/PhysRevD.100.063014
https://doi.org/10.1103/PhysRevD.100.063014
https://doi.org/10.1103/PhysRevD.103.044059
https://doi.org/10.1103/PhysRevD.107.024035
https://doi.org/10.1103/PhysRevD.106.L121302
https://doi.org/10.1103/PhysRevD.106.L121302
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1088/1126-6708/2005/07/009
https://doi.org/10.1088/1126-6708/2005/07/009
https://doi.org/10.1103/PhysRevD.76.084001
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.112.221101


[33] A. Arvanitaki, M. Baryakhtar, and X. Huang, Phys. Rev. D
91, 084011 (2015).

[34] A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026
(2011).

[35] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1
(2015).

[36] S. Ghosh, Mod. Phys. Lett. A 36, 2130024 (2021).
[37] L. Hui, Y. T. A. Law, L. Santoni, G. Sun, G. M. Tomaselli,

and E. Trincherini, Phys. Rev. D 107, 104018 (2023).
[38] L. Annulli, V. Cardoso, and R. Vicente, Phys. Lett. B 811,

135944 (2020).
[39] L. Annulli, V. Cardoso, and R. Vicente, Phys. Rev. D 102,

063022 (2020).
[40] V. Cardoso, T. Ikeda, Z. Zhong, and M. Zilhão, Phys. Rev.

D 106, 044030 (2022).
[41] A. Boudon, P. Brax, and P. Valageas, Phys. Rev. D 106,

043507 (2022).
[42] D. Baumann, G. Bertone, J. Stout, and G.M. Tomaselli,

Phys. Rev. Lett. 128, 221102 (2022).
[43] V. Cardoso, K. Destounis, F. Duque, R. Panosso Macedo,

and A. Maselli, Phys. Rev. Lett. 129, 241103 (2022).
[44] K. Destounis, A. Kulathingal, K. D. Kokkotas, and G. O.

Papadopoulos, Phys. Rev. D 107, 084027 (2023).
[45] E. Berti, V. Cardoso, Z. Haiman, D. E. Holz, E. Mottola, S.

Mukherjee, B. Sathyaprakash, X. Siemens, andN. Yunes, in
2022 Snowmass Summer Study (2022), arXiv:2203.06240.

[46] F. Foucart, P. Laguna, G. Lovelace, D. Radice, and H.
Witek, arXiv:2203.08139.

[47] M. Baryakhtar et al., in 2022 Snowmass Summer Study
(2022), arXiv:2203.07984.

[48] H. Kim, A. Lenoci, I. Stomberg, and X. Xue, Phys. Rev. D
107, 083005 (2023).

[49] S. Chandrasekhar, Astrophys. J. 97, 255 (1943).
[50] M. A. Ruderman and E. A. Spiegel, Astrophys. J. 165, 1

(1971).
[51] Y. Rephaeli and E. E. Salpeter, Astrophys. J. 240, 20 (1980).
[52] E. C. Ostriker, Astrophys. J. 513, 252 (1999).
[53] S. Tremaine and M. D. Weinberg, Mon. Not. R. Astron.

Soc. 209, 729 (1984).
[54] T. Muto, T. Takeuchi, and S. Ida, Astrophys. J. 737, 37

(2011).
[55] R. Vicente, V. Cardoso, and M. Zilhão, Mon. Not. R.

Astron. Soc. 489, 5424 (2019).
[56] D. Syer, Mon. Not. R. Astron. Soc. 270, 205 (1994).
[57] L. I. Petrich, S. L. Shapiro, R. F. Stark, and S. A.

Teukolsky, Astrophys. J. 336, 313 (1989).
[58] E. Barausse, Mon. Not. R. Astron. Soc. 382, 826 (2007).
[59] M. Correia, Phys. Rev. D 105, 084041 (2022).
[60] L. Lancaster, C. Giovanetti, P. Mocz, Y. Kahn, M. Lisanti,

and D. N. Spergel, J. Cosmol. Astropart. Phys. 01
(2020) 001.

[61] B. Bar-Or, J.-B. Fouvry, and S. Tremaine, Astrophys. J.
871, 28 (2019).

[62] Y. Wang and R. Easther, Phys. Rev. D 105, 063523
(2022).

[63] D. Dutta Chowdhury, F. C. van den Bosch, V. H. Robles, P.
van Dokkum, H.-Y. Schive, T. Chiueh, and T. Broadhurst,
Astrophys. J. 916, 27 (2021).

[64] S. T. H. Hartman, H. A. Winther, and D. F. Mota, Astron.
Astrophys. 647, A70 (2021).

[65] R. Buehler and V. Desjacques, Phys. Rev. D 107, 023516
(2023).

[66] G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone,
J. Cosmol. Astropart. Phys. 07 (2023) 070.

[67] D. Traykova, K. Clough, T. Helfer, E. Berti, P. G. Ferreira,
and L. Hui, Phys. Rev. D 104, 103014 (2021).

[68] R. Vicente and V. Cardoso, Phys. Rev. D 105, 083008
(2022).

[69] N. Speeney, A. Antonelli, V. Baibhav, and E. Berti, Phys.
Rev. D 106, 044027 (2022).

[70] H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).
[71] H. Bondi and F. Hoyle, Mon. Not. R. Astron. Soc. 104, 273

(1944).
[72] V. Cardoso and A. Maselli, Astron. Astrophys. 644, A147

(2020).
[73] W. G. Unruh, Phys. Rev. D 14, 3251 (1976).
[74] M. de Cesare and R. Oliveri, Phys. Rev. D 106, 044033

(2022).
[75] M. de Cesare and R. Oliveri, Phys. Rev. D 108, 044050

(2023).
[76] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevD.108.L121502 for tech-
nical details on derivation of the analytic expressions,
comparison to previous results and our numerical set-up.

[77] K. Clough, Classical Quantum Gravity 38, 167001 (2021).
[78] L. D. Landau and E. M. Lifshits, Quantum Mechanics:

Non-Relativistic Theory, Course of Theoretical Physics
Vol. 3 (Butterworth-Heinemann, Oxford, 1991).

[79] P. Amaro-Seoane et al. (LISA Collaboration), arXiv:
1702.00786.

[80] W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
[81] J. Luo et al. (TianQin Collaboration), Classical Quantum

Gravity 33, 035010 (2016).
[82] E. Barausse et al., Gen. Relativ. Gravit. 52, 81 (2020).
[83] C. F. B. Macedo, P. Pani, V. Cardoso, and L. C. B.

Crispino, Astrophys. J. 774, 48 (2013).
[84] M. C. Ferreira, C. F. B. Macedo, and V. Cardoso, Phys.

Rev. D 96, 083017 (2017).
[85] O. A. Hannuksela, K. W. K. Wong, R. Brito, E. Berti, and

T. G. F. Li, Nat. Astron. 3, 447 (2019).
[86] J. Zhang and H. Yang, Phys. Rev. D 101, 043020 (2020).
[87] D. Baumann, G. Bertone, J. Stout, and G.M. Tomaselli,

Phys. Rev. D 105, 115036 (2022).
[88] P. S. Cole, G. Bertone, A. Coogan, D. Gaggero, T.

Karydas, B. J. Kavanagh, T. F. M. Spieksma, and G. M.
Tomaselli, Nat. Astron. 7, 943 (2023).

[89] K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Phys. Rev. Lett.
110, 221101 (2013).

[90] K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Phys. Rev. D
91, 044045 (2015).

[91] X.-J. Yue and W.-B. Han, Phys. Rev. D 97, 064003 (2018).
[92] X.-J. Yue and Z. Cao, Phys. Rev. D 100, 043013 (2019).
[93] G. Bertone et al., SciPost Phys. Core 3, 007 (2020).
[94] O. A. Hannuksela, K. C. Y. Ng, and T. G. F. Li, Phys. Rev.

D 102, 103022 (2020).
[95] T. D. P. Edwards, M. Chianese, B. J. Kavanagh, S. M.

Nissanke, and C. Weniger, Phys. Rev. Lett. 124, 161101
(2020).

[96] B. J. Kavanagh, D. A. Nichols, G. Bertone, and D.
Gaggero, Phys. Rev. D 102, 083006 (2020).

DINA TRAYKOVA et al. PHYS. REV. D 108, L121502 (2023)

L121502-8

https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1142/S021773232130024X
https://doi.org/10.1103/PhysRevD.107.104018
https://doi.org/10.1016/j.physletb.2020.135944
https://doi.org/10.1016/j.physletb.2020.135944
https://doi.org/10.1103/PhysRevD.102.063022
https://doi.org/10.1103/PhysRevD.102.063022
https://doi.org/10.1103/PhysRevD.106.044030
https://doi.org/10.1103/PhysRevD.106.044030
https://doi.org/10.1103/PhysRevD.106.043507
https://doi.org/10.1103/PhysRevD.106.043507
https://doi.org/10.1103/PhysRevLett.128.221102
https://doi.org/10.1103/PhysRevLett.129.241103
https://doi.org/10.1103/PhysRevD.107.084027
https://arXiv.org/abs/2203.06240
https://arXiv.org/abs/2203.08139
https://arXiv.org/abs/2203.07984
https://doi.org/10.1103/PhysRevD.107.083005
https://doi.org/10.1103/PhysRevD.107.083005
https://doi.org/10.1086/144517
https://doi.org/10.1086/150870
https://doi.org/10.1086/150870
https://doi.org/10.1086/158202
https://doi.org/10.1086/306858
https://doi.org/10.1093/mnras/209.4.729
https://doi.org/10.1093/mnras/209.4.729
https://doi.org/10.1088/0004-637X/737/1/37
https://doi.org/10.1088/0004-637X/737/1/37
https://doi.org/10.1093/mnras/stz2526
https://doi.org/10.1093/mnras/stz2526
https://doi.org/10.1093/mnras/270.1.205
https://doi.org/10.1086/167013
https://doi.org/10.1111/j.1365-2966.2007.12408.x
https://doi.org/10.1103/PhysRevD.105.084041
https://doi.org/10.1088/1475-7516/2020/01/001
https://doi.org/10.1088/1475-7516/2020/01/001
https://doi.org/10.3847/1538-4357/aaf28c
https://doi.org/10.3847/1538-4357/aaf28c
https://doi.org/10.1103/PhysRevD.105.063523
https://doi.org/10.1103/PhysRevD.105.063523
https://doi.org/10.3847/1538-4357/ac043f
https://doi.org/10.1051/0004-6361/202039865
https://doi.org/10.1051/0004-6361/202039865
https://doi.org/10.1103/PhysRevD.107.023516
https://doi.org/10.1103/PhysRevD.107.023516
https://doi.org/10.1088/1475-7516/2023/07/070
https://doi.org/10.1103/PhysRevD.104.103014
https://doi.org/10.1103/PhysRevD.105.083008
https://doi.org/10.1103/PhysRevD.105.083008
https://doi.org/10.1103/PhysRevD.106.044027
https://doi.org/10.1103/PhysRevD.106.044027
https://doi.org/10.1093/mnras/112.2.195
https://doi.org/10.1093/mnras/104.5.273
https://doi.org/10.1093/mnras/104.5.273
https://doi.org/10.1051/0004-6361/202037654
https://doi.org/10.1051/0004-6361/202037654
https://doi.org/10.1103/PhysRevD.14.3251
https://doi.org/10.1103/PhysRevD.106.044033
https://doi.org/10.1103/PhysRevD.106.044033
https://doi.org/10.1103/PhysRevD.108.044050
https://doi.org/10.1103/PhysRevD.108.044050
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L121502
https://doi.org/10.1088/1361-6382/ac10ee
https://arXiv.org/abs/1702.00786
https://arXiv.org/abs/1702.00786
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1007/s10714-020-02691-1
https://doi.org/10.1088/0004-637X/774/1/48
https://doi.org/10.1103/PhysRevD.96.083017
https://doi.org/10.1103/PhysRevD.96.083017
https://doi.org/10.1038/s41550-019-0712-4
https://doi.org/10.1103/PhysRevD.101.043020
https://doi.org/10.1103/PhysRevD.105.115036
https://doi.org/10.1038/s41550-023-01990-2
https://doi.org/10.1103/PhysRevLett.110.221101
https://doi.org/10.1103/PhysRevLett.110.221101
https://doi.org/10.1103/PhysRevD.91.044045
https://doi.org/10.1103/PhysRevD.91.044045
https://doi.org/10.1103/PhysRevD.97.064003
https://doi.org/10.1103/PhysRevD.100.043013
https://doi.org/10.21468/SciPostPhysCore.3.2.007
https://doi.org/10.1103/PhysRevD.102.103022
https://doi.org/10.1103/PhysRevD.102.103022
https://doi.org/10.1103/PhysRevLett.124.161101
https://doi.org/10.1103/PhysRevLett.124.161101
https://doi.org/10.1103/PhysRevD.102.083006


[97] A. Coogan, G. Bertone, D. Gaggero, B. J. Kavanagh, and
D. A. Nichols, Phys. Rev. D 105, 043009 (2022).

[98] G.-L. Li, Y. Tang, and Y.-L. Wu, Sci. China Phys. Mech.
Astron. 65, 100412 (2022).

[99] V. Cardoso, F. Duque, C. F. B. Macedo, and R. Vicente (to
be published).

[100] www.grchombo.org.

[101] www.dirac.ac.uk.
[102] http://www.tacc.utexas.edu.
[103] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas,

and D. K. Panda, in Practice and Experience in Advanced
Research Computing, PEARC ’20 (Association for
Computing Machinery, New York, NY, USA, 2020),
pp. 106–111.

RELATIVISTIC DRAG FORCES ON BLACK HOLES FROM … PHYS. REV. D 108, L121502 (2023)

L121502-9

https://doi.org/10.1103/PhysRevD.105.043009
https://doi.org/10.1007/s11433-022-1930-9
https://doi.org/10.1007/s11433-022-1930-9
www.grchombo.org
www.grchombo.org
www.grchombo.org
www.dirac.ac.uk
www.dirac.ac.uk
www.dirac.ac.uk
www.dirac.ac.uk
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
http://www.tacc.utexas.edu

