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The United Nations drafted an agenda for 2030 to achieve sustainable
development with 17 well-defined goals which are an urgent call for action
requiring collaboration and innovation across countries and organisations. The
year 2023marks themidpoint toward fulfilling the proposed agenda but the world
is still behind in attaining any of the set goals. This article discusses the
opportunities offered by the rise of the Internet of Things and advances in
artificial intelligence in ushering these goals with tangible use cases that relate
to health, energy, and cities. Moreover, the article exposes the challenges that
emerge from applying these technologies in the realisation of sustainable
development goals (SDG) with underlined risks related to bias, security, data
privacy, and the multi-objective optimisation of often competing SDGs.
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1 Introduction

In the latest report issued in 2022 by the United Nations (UN) on the progress made
toward sustainable development goals (SDG) an urgent ’code red’ warning was raised in
relation to global warming and climate change (United Nations, 2022a). This year, 2023,
marks the midpoint between the initial drafting of the UN agenda in 2015 and the targets
planned for 2030. The world is well behind in approaching the defined indicators and is
struggling to recover from the setback caused by the COVID-19 pandemic. In this aftermath,
practical and science-enabled solutions for SDGs are urgently needed and deemed key to
accelerating the transformation1.

It follows that innovation in science and technology to usher SDG goals has taken a central
role in the research community over the last decade. For instance, the potential of robotics for
achieving SDGs is examined in (Mai et al., 2022). Similarly, the role of blockchain disruptive
technology in the support of SDG goals is reviewed in (Jiang et al., 2022). Software is found to
play a crucial role in enabling SDG technologies whilst itself being at risk of lacking
sustainability (Calero et al., 2022). Within the ambit of technology innovation for SDGs,
one key area is enabling data/knowledge exchange platforms that support collaboration, joint
innovation, and technology transfer between countries/institutions (Zhao et al., 2022).

An overarching key component of these mentioned technologies is the intersection of the
Internet of Things (IoT) and artificial intelligence (AI). The IoT is a network of connected
physical objects embedded with sensors and actuators that can be used to remotely monitor and
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apply changes to the physical world through applications. The number
of connected IoT devices today exceeds 15 billion2 that cover a plethora
of devices and applications. The value of IoT is the promise of anytime-
anywhere access to information from the physical world and the ability
to take and implement immediate actions accordingly. The promise can
be realised when IoT is married to AI, creating Intelligent IoT, with the
ability to infer meaning from the collected data and to recommend

actionable insights (López-Vargas et al., 2021). Based on the latest study
by the UN, 95% of the world population is covered by a mobile-
broadband signal including 88% with fast 4G (Fourth generation of
mobile networks) (UnitedNations, 2022a). Such coverage is an essential
baseline to allow an almost ubiquitous IoT connectivity (Wu et al.,
2018); remaining coverage gaps can be serviced with alternative systems
such as non-terrestrial networks (Thangavel et al., 2023) (Feltrin et al.,
2021).

Leading works such as (Barakat et al., 2021) offer a
comprehensive review of a specific aspect of IoT systems; in this
case it is the IoT connectivity with the sixth mobile network
generation (6G) as enabling technology for SDG-related use cases

TABLE 1 17 sustainable development goals defined by the UN in 2015 (United Nations, 2022a).

Goals Objective Description

SDG 1 No Poverty By 2030, eradicate extreme poverty for all people everywhere

SDG 2 Zero Hunger End hunger, achieve food security and improved nutrition by 2030

SDG 3 Good Health and Wellbeing Ensure healthy lives and promote wellbeing for all at all ages by 2030

SDG 4 Quality Education Ensure that all girls and boys complete free, equitable and quality primary and secondary education by 2030

SDG 5 Gender Equality To achieve gender equality and empower all women and girls

SDG 6 Clean Water and Sanitation Ensure availability and sustainable management of water and sanitation for all by 2030

SDG 7 Affordable and Clean Energy Ensure access to affordable, reliable, sustainable and modern energy for all by 2030

SDG 8 Decent Work and Economic Growth Promote sustained, inclusive and sustainable economic growth

SDG 9 Industry, Innovation and Infrastructure Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation by 2030

SDG 10 Reduced Inequality Reduce inequality within and among countries by 2030

SDG 11 Sustainable Cities and Communities Make cities and human settlements inclusive, safe, resilient and sustainable

SDG 12 Responsible Consumption and Production Ensure sustainable consumption and production patterns

SDG 13 Climate Action Take urgent action to combat climate change and its impacts

SDG 14 Life Below Water Conserve and sustainably use the oceans, seas and marine resources for sustainable development

SDG 15 Life on Land Protect, restore and promote sustainable use of terrestrial ecosystems, combat desertification and halt biodiversity loss

SDG 16 Peace and Justice Strong Institutions Promote peaceful and inclusive societies for sustainable development; provide access to justice for all

SDG 17 Partnerships to achieve the Goal Strengthen the means of implementation and revitalize the global partnership for sustainable development

TABLE 2 Use cases discussed in this work and related challenges. †ECG = electrocardiogram, EDA = electrodermal activity, EMG = electromyogram.

Use case SDG Method IoT system Opportunities Challenges

Urban mobility 9,
11, 13

Section 3 AI for DAS signature
extraction Chiang et al. (2023)

Distributed
acoustic
sensors (DAS)

Privacy, very long range, re-uses existing
fibre, resilient to deepfake, resilient to
adverse conditions

Noisy data due to multiple
simultaneous movements, carry
limited information

Responsible Energy
Consumption

7, 9, 12 Section 4.1 Digital twin for
Energy peak shaving Fathy et al.
(2021)

Smart meters Reduce energy peak demands, reduce
energy cost per household, data privacy

Depends on large uptake of
technology to yield significant gains

Responsible Energy
Consumption

7, 9, 12 Section 4.2 AI for energy theft
detection Nadeem et al. (2023)

Smart meters Reduce the cost of energy theft by rapid
detection, reduce in-person visits and
related cost

Data imbalance results in low theft
detection rate, smart meter data
carries sensitive information

Intelligent IoT for
Wellbeing

3, 4, 10 Section 5 AI for Stress detection
Alshareef et al. (2022)

ECG, EDA, EMG† remote stress detection anywhere/anyone biometric data carries sensitive and
private information and is at risk of
leakage

2 https://www.statista.com/statistics/1183457/iot-connected-devices-
worldwide/
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including transport, smart grid, and healthcare. Other works explore
the role of IoT for a specific SDG target, such as (Salam, 2020), which
addresses the green energy paradigm. (Vinuesa et al., 2020).
investigate another aspect of IoT systems, that is AI and its
applicability for realising SDG targets; the authors find that AI
may indeed usher the progress of ~ 80% of these targets, but it may
also inhibit ~ 35% of the targets at the same time.

Different from these existing studies, this work examines the
complete IoT system, including connectivity and AI (see Section 3.1)
that is applicable to any SDG. Emerging IoT-based SDG solutions
are presented and contrasted with the generic system to underline
the possibilities and threats from an SDG-perspective. To this end,
we first present a system model founded on the intersection of IoT
and AI that is proposed to facilitate SDGs (see full list of the 17 SDGs
in Table 1). Next, we present three applications that showcase the
opportunities offered by this model in transforming mobility in
cities (SDG 9, 11, and 13), responsible energy consumption (SDG 7,
9, and 12), and remote health and wellbeing (SDG 3, 4, and 10). The
risks and challenges that stem from this system are discussed next by
examining IoT security, data privacy, and the repercussions caused
by SDG-driven intelligent IoT such as delaying other SDGs.

2 System model of the IoT and ML
intersection

An IoT system is composed of IoT devices that connect to the
cloud-based servers through gateways, as shown in Figure 1. An IoT
system is essentially a network of connected devices that empower
the Hyper-Connected Intelligent World (HIW)3. SDG-driven HIW
use-cases include applications such as smart agriculture, smart cities,
smart homes, and smart health, among many others. These share a
similar architecture and connectivity protocols but use differing IoT
devices that measure application-specific data to enable particular
goal-driven automation. An IoT device is basically a sensor and/or
an actuator embedded with a microprocessor and communication
hardware that performs data collection from its environment,
transmission/reception to/from the server, and that takes action
based on the acquired data or instructions received from the server.
The IoT gateway acts as a data aggregation point that relays the
information acquired by the IoT devices to the server in the cloud for
processing. In some HIW applications, the IoT gateway hosts
edge intelligence and processes the data locally. Similarly, IoT
devices may communicate with each other directly and act on
gathered information. IoT devices are often low-cost and
lightweight in that they have limited computation power,
memory space, and energy source. Such characteristics allow
for SDG-driven HIW applications to be affordable and
deployable everywhere and anytime and enable full
automation with the possibility of human intervention where
and when needed. In this section, we examine the different
technologies that jointly form the IoT system as shown in
Figures 2, 3 (Lv, 2022).

• IoT devices: An IoT device is essentially a connected smart
sensor and/or actuator. It follows that these are devices
equipped with a processor and the ability for
communication (wired and/or wireless). Commonly used
IoT devices use sensors for scoping their environment: e.g.,
temperature, moisture, luminosity, motion, acoustic,
chemical, water level, presence, image, gyroscope, and
actuators to make a change in their environment. A feature
that is common tomost IoT devices is that they are designed to
be robust and low-cost to enable the widespread and deep
reach of SDG-driven HIW applications.

• IoT connectivity: Some IoT devices are connected through
wired technology but these are likely to be less than 7% of the
27 billion predicted connected devices in 20254. The rest are
wirelessly connected through a plethora of technologies that
can be categorised based on their coverage range as follows
(Vaezi et al., 2022):
• Short-range (~ 10 m): These include Bluetooth, ZigBee, and
WiFi that use unlicensed spectrum. The majority (more
than 82%) of forecast wireless IoT devices in 2028 are
expected to connect using short-range technology
(Ericsson, 2022).

• Wide-range (~ 5 km): There are two leading technologies in
this range and both use unlicensed bands; these are LoRa
and Sigfox. About 17% of wireless IoT devices in 2028 are
expected to connect using wide-range technologies
(Ericsson, 2022).

• Cellular (~ 100 km): IoT connectivity could be provided
with mobile network technologies ranging from the
second generation (2G) to the fifth generation (5G)
in addition to two cellular technologies designed to
connect IoT devices with narrow band and long-range:
NB-IoT and LTE-M. About 15.6% of wireless IoT devices
connect through mobile technologies with those using
legacy 2G and 3G decreasing to less than 4% of these, 35%
use NB-IoT or LTE-M, and the rest use 4G or 5G
(Ericsson, 2022).

• Non-terrestrial (~ 700 km): Release 17 of the 3GPP
standard improves support for NB-IoT and non-
terrestrial networks (NTN) which is embodied in the
definition Satellite Scenario. In this case, low-earth orbit
(LEO) satellites host 5G radio stations and channel NB-IoT
traffic without any change to the IoT devices. NTN is seen as
complementary to existing connectivity technologies and
promises to fill in the gaps thus achieving a global
ubiquitous communication network overage in the
ground, sea, and space (Ericsson, 2022). Satellite IoT
connectivity subscribers crossed 5 million in 2023 and
are expected to reach 21 million by 2028 (Mordor
Intelligence, 2023).

• Security and Privacy: IoT devices are deployed in remote
places with often difficult access whilst they carry the pivotal
tasks of sensing data and taking responsive action in critical
applications such as e-health, autonomous driving, and

3 https://www.forbes.com/sites/bernardmarr/2022/09/26/the-5-biggest-
technology-trends-in-2023-everyone-must-get-ready-for-now/ 4 https://iot-analytics.com/number-connected-iot-devices/
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industrial cases of human-robot co-working. It follows that the
data exchanged may carry private information (e.g.,
biometrics data) and, therefore the security of IoT
communication is paramount. IoT systems face various

security threats and the IoT device is often seen as the
weakest link due to their limited capabilities in terms of
computation, storage, and power in addition to their
remote and often exposed locations (Alrubayyi et al.,
2021a). The IoT communication network faces different
threats that include eavesdropping, private data leakage,
and false data injection. It follows that, in addition to the
coverage range requirements, considerations related to the
security of communication play a key role in the selection of
the technology for connectivity. Cellular solutions use the
licensed frequency bands and incorporate 3GPP security
functions including reciprocal authentication of terminal
devices and networks, cryptographic algorithms, and a high
level of security in creating and exchanging encryption keys
owing to the SIM card. In contrast, Wide-range solutions are
originally designed to operate SIM-less on unlicensed bands
which may compromise the level of security and encryption.

• Data storage: The IoT data torrent demands special attention
to the data retrieval process and locations for storage and
processing. A three-tier architecture is often invoked in which
edge, fog, and cloud are jointly employed to enable an efficient
and sustainable solution for IoT data management (Aazam
et al., 2022). However, given the range of SDG-driven HIW
applications with differing requirements and challenges, there
is no one-solution-fits-all for data management. Instead, a
context-aware approach is beneficial in which a joint decision
for i) the best connectivity, ii) processing unit (e.g., device, fog,
and cloud), iii) the percentage of data to be offloaded is
optimised for a sustainable operation that prioritises

FIGURE 1
IoT system architecture.

FIGURE 2
Technology components enabling HIW through IoT systems.
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reducing energy consumption, reducing response time,
improving, security, and reducing monetary cost depending
on the context (Ozturk et al., 2022).

• Machine Learning: SDG-driven HIW systems that require
automation rely heavily on machine learning (ML) and AI
technologies to infer actionable insights from the gathered
data. A plethora of AI approaches has been proposed and
employed in conjunction with IoT to enable HIW systems.
The selection of the winning technology depends on the
application and its requirements. It may prioritise accuracy
over speed, energy consumption, explain-ability, data privacy,
or reproduce-ability, among many other (Bian et al., 2022).

In this work, we examine three SDG-driven HIW
applications: Urban Mobility (see Section 3), Responsible

Energy Consumption (see Section 4), and Intelligent IoT for
wellbeing (see Section 5). In each use case, we examine the IoT
system components with a focus on context-aware ML solutions.
Overarching challenges are discussed in Section 6 before
concluding in Section 7. These use cases are summarised in
Table 2.

3 Use case 1: urban mobility

Cities are the home of more than half of the population and are
expected to increase to 70% in 2050. Cities contribute to more than
80% of the global gross domestic product on one hand and 70% of
global greenhouse gas (GHG) emissions on the other. It is thus not
surprising that 99% of the urban population lives in poor air quality
areas as per the guidelines defined by the World Health
Organisation (WHO) (United Nations, 2022a). Transportation is
a major contributor to GHG emissions; in the UK transportation
sector is responsible for 24% of total GHG emissions and more than
50% of these are due to cars and taxis (Department for Transport,
2022). In 37% of global areas, no alternative public transport is
available which makes the realisation of the WHO air quality targets
impossible without addressing the transportation problem (United
Nations, 2022a). Active travel is a promising transportation solution
that is defined as any mode of transport that is based on physical
activity means and includes a range of modes such as walking,
cycling, micro-mobility, and skateboarding. Active travel is a form of
exercise that has been shown to improve physical and mental health;
hence, reduces the need for medical care and increases happiness
and productivity5. A 15-min city is an urban model that allows
everyone to meet most of their daily needs within a 15-min journey
from their home. Three levels of 15-min city concepts are defined:
active travel, public transport, and private transport, as shown in
Figure 4. The first strives to achieve the reach of daily needs within a
15-min active travel journey. The second extends the nucleus area to
reach further destinations within 15-min journey by public
transport. The last level covers a larger area within 15 min of
driving in a private car or taxi. Creating 15-min cities that are
connected by quality public transport and cycling infrastructure
addresses the SDG challenges related to transportation and related
emissions. For that, cost-effective investment in the urban
transformation that could foster active travel uptake and improve
public transport is of pivotal importance to reach 15-min cities and,
therefore, to usher SDGs related to Sustainable Cities and
Communities.

3.1 Modelling urban mobility for effective
transformation

Identifying a cost-effective investment strategy is not trivial
and it is likely to differ depending on the nature of the city and
its residents, thus, requires reliable modelling. The impact of

FIGURE 3
IoT system process.

5 Department of Health and Social Care, “Physical activity guidelines:
infographics,” Sep. 2019.
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surrounding factors on the effectiveness of proposed urban
mobility solutions is examined in (Tran et al., 2022) and
underlines the interrelation between government policies,
economic factors, transport infrastructure, urban planning,
and the readiness for the uptake of proposed mobility
solutions. IoT systems offer a means to collect and process
relevant information from anywhere at any time and, when
combined with AI (i.e., Intelligent IoT), could yield accurate
modelling of different aspects of the city with high fidelity and
in real-time (or right-time). Consequently, there has been a rise
in research and field trials that leverage Intelligent IoT to
address smart city-related challenges within SDG 11. (Bellini
et al., 2022) presents a recent review of important works in this
field in which the authors highlight the main trends and open
challenges of adopting Intelligent IoT for the development of
sustainable and efficient smart cities. In this work, eight
different SDG-driven HIW are discussed, including urban
mobility. Different types of traffic detectors are commonly
used for traffic flow monitoring, such as remote traffic
microwave sensors (Jin et al., 2019) and magnetic sensors
(Fomin and Braeunig, 2019), in addition to more traditional
sensors such as pneumatic road tubes (Liu et al., 2010).
However, the data generated by these sensors are mostly
limited in information and are suitable only for basic
applications such as counting vehicles (see Table 3). A
majority of mobility-related HIW solutions are based on
data collection from computer vision IoT devices such as
cameras. These are very rich in information and can be used
for multiple urban mobility applications including optimising
traffic (Worrawichaipat et al., 2021), surveillance for safety/
security remote monitoring (Shambharkar and
Goelcorresponding, 2023), and modelling multi-modal urban
mobility (Yasir et al., 2022) (Xiao et al., 2022). Nonetheless,
several challenges arise from relying on cameras for such HIW
solutions (see Table 3). It is extremely challenging and costly to
cover and analyse kilometres of road networks with video
cameras and there are inevitable limitations due to blind
areas and poor performance in adverse light and weather
conditions (Liu et al., 2023). Furthermore, privacy concerns
due to omnipresent cameras in urban spaces and related

regulations, such as the General Data Protection Regulation
(GDPR), have resulted in public reluctance to the spread of
video sensors (Al-Turjman et al., 2022). The advantages and
drawbacks of different IoT sensors employed in modelling
urban mobility are summarised in Table 3. In this section,
we present a pioneering line of research that employs
distributed acoustic sensor (DAS) systems as an alternative
data source for modelling urban mobility that addresses the
difficulties faced by cameras (see Figure 5).

3.2 Distributed acoustic sensors (DAS)
system

A DAS system is an opto-electronic device sensitive to the
strain distributed over an optical fibre of the length of up to
40–50 km (Hartog, 2017). The technology is rooted in Optical
Time Domain Reflectometry (OTDR) where a pulse of coherent
light (laser pulse in Figure 5) is periodically injected into a fibre
and a fraction of the light reflected back via Rayleigh (elastic)
scattering mechanism is captured by a photodetector at the
launching end (see Figure 5. Each probing pulse results in a
continuous time series of back-scatter intensity, commonly
referred to as a fibre shot, with the time being proportional to
the distance that the pulse has travelled along the fibre. In a DAS
system, the intensity of the back-scatter signal (see Figure 5) is a
random function of fibre position and the cumulative phase of the
interference of light scattered back by the fibre within the
interrogating pulse. This fibre interval giving rise to the back-
scatter interference is called a resolution cell (see Figure 5).
Although the back-scatter phase from each resolution cell is
inherently random due to the random molecular structure of
the fibreglass, it stays constant as long as the state of fibre
within the corresponding resolution cell remains unchanged. If,
however, a fibre is subjected to dynamic strain or acoustic event
(e.g., passing vehicle or person in Figure 5), it would result in a
variation of the back-scatter phase and hence back-scatter
intensity. Therefore a series of back-scatter measurements at a
given fibre distance carries information about the evolution of the
strain applied at the corresponding fibre position.

TABLE 3 IoT/sensors for monitoring traffic (n/a: not affected, †additional measures may be added to improve privacy).

Resilient to

Privacy Level of information Range Occlusion Darkness Fog/
Rain

Comments

Pneumatic tube Liu et al. (2010) inherent detection of passing
traffic

Local n/a n/a n/a Easy to deploy and relocate

Remote TrafficMicrowave Sensors (RTMS)
Jin et al. (2019)

inherent number of passing
vehicles

Local strong n/a strong A network of RTMS can detect traffic
speed and direction

Magnetic field sensors Fomin and
Braeunig. (2019)

inherent number of passing
vehicles

Local n/a n/a n/a A network of sensors can detect traffic
speed and direction

Camera-based Shambharkar and
Goelcorresponding. (2023)

add-on† Very high 50–100 m weak weak weak A network of camera-based sensors
can cover a large area

DAS-based Chiang et al. (2023) inherent type, size, weight,
direction, speed

40–50 km strong n/a strong A single interrogator covers up to
50 km of road
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3.3 DAS for modelling urban mobility

3.3.1 Motivation
As mentioned in Section 3.1, DAS promises to overcome the

challenges posed by existing data sources for urban mobility
modelling, namely, cameras. For one, it is possible to cover up to
50 km of road with a single DAS interrogator attached to an
underground fibre line along the road (Hartog, 2017). It follows
that DAS offers an uninterrupted source of data for up to 50 km
using a single system. For instance, two DAS interrogators would be
sufficient to cover the road connecting London to Oxford (about
100 km) whereas at least 1,000 surveillance cameras would be
needed for the same distance (assuming 100 m separation
between two consecutive cameras). Moreover, unused optical
fibre cables, sometimes referred to as dark fibre, are often
purposely laid along lit fibre for future use. These can then be re-
used to enable a DAS system and impact positively the incurred cost
of deploying a DAS solution.

Cameras and computer vision suffer from adverse weather and
illumination conditions and obstructions due to moving objects
such as tree branches blown by the wind. In contrast, DAS signals
are much less, if at all, affected by these issues, as discussed in
(Chiang et al., 2023). Given the nature of the optical fibre line
underground, the illumination conditions do not impact the DAS
signal at night or during the day. Interruption in the DAS signal may
be caused by a fibre splice or a fibre break; however, the locations of

these are well known which makes overcoming their impact almost
trivial in comparison with unpredictable camera obstructions. As for
the weather conditions, the authors in (Chiang et al., 2023) posit that
the mitigation of potential impact from rainfall on the quality of the
DAS signal is manageable using basic signal processing techniques
that can block the periodic signal generated by the rain. However,
this concept has not been validated yet and would require more data
collection and processing to be confirmed.

HIW solutions driven by camera-based data are vulnerable to
malicious deepfake attacks in which the reality is altered to misguide
the application (Mitra et al., 2022). Despite research efforts to
mitigate the effectiveness of deepfake attacks such as (Güera and
Delp, 2018), these remain a threat and result in significant danger in
HIW applications related to intelligent transportation systems (may
cause fatal accidents), surveillance (may hide unlawful events from
surveillance), and modelling of urban mobility. In contrast, a DAS
signal representing a given moving object is extremely challenging, if
at all possible, to fake. At the European Geosciences Union general
assembly in 2023, authors in (Zitt et al., 2023) propose a novel
approach for denoising DAS seismic data using synthetic DAS data.
Nonetheless, it should be noted that faking a DAS signal to be
intentionally mistaken for a specific vehicle or travel mode is a much
more daunting problem than faking seismic signals, which leaves
DAS-based HIW solutions for urban mobility at no risk of malicious
fake attacks until such technology is developed.

As mentioned earlier, camera signals are rich in information and
could be used to inform multiple HIW applications simultaneously.
In the case of urban mobility, however, camera signals carry more
information than what is required for accurate modelling. More
importantly, the additional data is often private and personal such as

FIGURE 4
Toy example of 15-min city different levels using a-b street simulator6.

6 https://a-b-street.github.io/docs/software/abstreet.html
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the face of people (Doberstein et al., 2022), the colour of their skin
(Heh and Wainwright, 2022) and other (Al-Turjman et al., 2022).
Such intrusion into personal information and the risk of data privacy
breach represent obstacles in the way of widespread HIW solutions
for urban mobility in view of GDPR compliance and people’s
acceptance of invasive surveillance. In contrast, DAS signals are
intrinsically privacy-preserving as these do not carry personal
information and cannot identify an individual in isolation.

For all these reasons, DAS-driven urban mobility is a promising
emerging research direction that is cost-effective, uninterrupted,
resilient to adverse conditions and deepfake, and privacy-preserving.

3.3.2 DAS for modelling motorised mobility: A pilot
study

In the seminal work, (Chiang et al., 2023), present a proof of
concept research in which they demonstrate that these DAS
signals carry unique information about the moving object,
referred to as signature, that allows identifying the type of
moving vehicle with reliable accuracy. The authors formulate
two different problems based on real DAS data collected in a
controlled environment: 1) Identification of specific vehicle type,
and 2) Categorisation of the size of a vehicle. A snapshot of the
related DAS data is shown in Figure 6 where a fibre shot
designates the time component (1 shot represents 1/1,000.4 s)
and the fibre bin designates the location of the acoustic event
along the fibre (distance between two consecutive bins is equal to
0.68 m). The colour of each pixel indicates the phase intensity of
the backscatter signal in radians. In this figure, five vehicles drive
in a queue at the same speed from the end of the fibre line towards
the DAS interrogator.

A deep learning approach founded on a one-dimensional
convolution neural network (1D-CNN) is proposed to represent

the distinctive latent features in DAS signals generated by different
moving vehicles; these jointly constitute their unique signature. For
the first problem, the authors reach an accuracy between 83% and
92%, depending on the type of vehicle. For the second problem, the
accuracy of detecting large (or heavy) vehicles is 89% while that of
detecting a small (or light) vehicle is 92%. These are two important
problems in HIW applications related to intelligent transportation.
The first could apply to tracking and prioritising the flow of specific
vehicles (e.g., ambulances or firefighters) anywhere in the monitored
area by detecting their signatures in the DAS data. The second could
apply to monitoring and controlling areas in the city restricted to
small and emergency vehicles. In another work (Chiang et al., 2022),
a two-dimensional CNN (2D-CNN) is proposed instead of the 1D-
CNN to detect the occupancy of vehicles, knowing the type of
vehicle at hand, based on the analysis of the corresponding DAS
signal. It is shown that categorising heavy occupancy vehicles
(HOV) (more than two passengers) from light occupancy
vehicles (LOV) is possible with an accuracy of ~ 65% whereas
the detection of the exact number of passengers is more
challenging as it requires more training data to avoid overfitting.
The problem of distinguishing HOV/LOV at a large scale is pivotal
for ushering SDG goals related to sustainable mobility in which
maximising the utility of travel with minimum emissions is critical.
Two direct applications stem from this problem. The first relates to
modelling the occupancy of private vehicles and devising urban
transformation interventions and policies to foster sustainable
solutions such as ride-sharing (Diana and Ceccato, 2022). In this
regard, (Tavory et al., 2023), identify dedicated lanes for HOV as an
effective intervention to motivate ride-sharing given that it results in
reduced journey time. DAS-enabled HOV/LOV detection offers a
continuous, cost-effective, and privacy-preserving means to
control the usage of HOV lanes and ensure an improved

FIGURE 5
Distributed Acoustic Sensor system detecting acoustic events that may be generated bymoving objects including vehicles, cyclists, and pedestrians.
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experience for ride-sharers instead of camera-based or human-
based solutions. It should be noted that in this case, it may be useful
to use a camera sensor at the entrance of the HOV lane to detect the
type of vehicle for the DAS-enabled HOV/LOV detection to be
effective (since the type of vehicle is required a priori for reliable
results). The second application relates to optimising routes and
schedules of public buses to maximise occupancy and user
experience whilst reducing extended journeys with LOV (Lotze
et al., 2022). To this end, an essential requirement is the measuring
of the occupancy of public buses and DAS offers a continuous,
cost-effective, and privacy-preserving method given that the type
of vehicle is known a priori.

3.3.3 Remaining challenges
The results obtained in the twoworks presented in Section 3.3.2 are

evidence that the DAS signal carries unique signatures of moving
objects that can be extracted and used to distinguish between two
similar events (e.g., two cars of similar size). However, more work is
required to examine the applicability of DAS for informing HIW
applications in realistic environments with uncontrolled traffic and
with different types of roads and optical fibres. Indeed, both works rely
on DAS data collected from a controlled environment where traffic was
restricted to a single direction at any given time and to five pre-selected
vehicles. Moreover, the experiments were scripted which facilitated the
labelling of the training dataset (see Figure 6). It follows that, despite the
promising results obtained in these two pioneering works, some key
questions remain unanswered:

• Applicability of a model for roads and/or optical fibre
conditions different from those in the training dataset.

Indeed, the physical characteristics of the fibre used, the
road type, and the depth of the fibre are known to impact
the DAS signal. It follows that, for each deployed DAS system,
the model should be re-trained to account for these physical
characteristics and would yield a highly reliable method for
detecting and tracking vehicles along the roads spanned by the
system.

• Accuracy of the model in realistic traffic conditions with
uncontrolled vehicle flow. Although the pilot study is based
on a controlled experiment with limited unwanted
movements, the proposed method is still successful in
distinguishing the vehicle types despite external activities
such as those created by other cars as shown in Figure 6.
This was possible given the well-labeled data based on the a
priori knowledge of the wanted car and speed. In the absence
of such information, a distinct and uncontaminated DAS
signature of a target car would be needed beforehand. It
would then be possible to re-identify this signature in the
presence of other moving vehicles. Given the length of the
DAS system spanning tens of kilometres, this is a realistic
assumption to have in an urban environment.

• Expanding the model to represent all vehicles on the road. The
dataset studied so far is limited to five vehicle models and thus
cannot be readily generalised to distinguish any vehicle model
roaming the streets today. Expanding the list of vehicle models
in the dataset would likely result in a more representative
model but would require massive data collection and costly
model training. Some applications that require identifying a
specific vehicle, such as airports, manufacturing sites, energy
plants, and similar confined environments entail a well-

FIGURE 6
Section of DAS data collected over 600 mover 1 min. The five parallel diagonal lines indicate the tracks of 5 cars in a queuemoving at a steady speed
of 40 km/h. The start and stop points for the first car are shown in green and blue, respectively while it moves from the start point about 600 m away from
the DAS interrogator (stop point). The colour intensity at each pixel in the figure indicates the phase of the backscatter signal. The disturbance of phase
caused by themoving vehicles carries information about the vehicle. The section of the fibre line highlighted in red fails to detect the acoustic event
(the tracks of the cars are invisible within the red rectangle). This may be due to an interruption in the fibre. Two other lines can be seen, these are the
tracks of cars external to the experiment, one is seen driving in the same direction whereas the other drives away from the interrogator.
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determined list of authorised vehicles. In these cases, the
proposed DAS-driven approach would be effective in
modelling area-specific mobility.

4 Use case 2: responsible energy
consumption

Responsible energy consumption is a pillar for attaining SDG 7:
Affordable and Clean Energy. Within the defined SDG 7 targets,
Target 7.3 is described as doubling the global rate of improvement in
energy efficiency to reach 2.6% by 2030 in comparison with values
recorded in 2010. This is measured using the energy indicator
Energy intensity (EI) in terms of primary energy and GDP which
was 5.6 MJ/USD in 2010 and 4.7 MJ/USD in 2019 (United Nations,
2022b). Although early estimates of EI for 2020 indicate a substantial
decrease, this is primarily due to the pandemic. The 2021 levels
suggest an improvement of only 1.9%, well below the levels needed.
It follows that an accelerated annual improvement of 3.2% is
required to achieve the SDG 7.3 target. In 2022, the International
Energy Agency drafted a roadmap to reach Net Zero Emissions by
2050; to meet this stringent target an even faster (and possibly
disruptive) EI annual improvement of 4% is necessary (International
Energy Agency, 2022).

The residential sector is responsible for nearly a third of energy
consumption worldwide and is the only sector to witness decreased
acceleration between 2010 and 2019 (see Figure ES10 in (United
Nations, 2022b)). This drawback is a result of the growing demand
for cooling, heating, and appliances in residential buildings. It
follows that innovation controlling residential energy demand
and consumption plays a pivotal role in improving energy
efficiency at scale. In this regard, advances in smart grids as an
embodiment of intelligent energy IoT systems offer a means to
monitor, control, and regulate residential energy consumption
(Zhang T. et al., 2022).

In this section, we present two use cases within the
archetype of energy-driven HIW. The first is discussed in
Section 4.1 and aims to manage the residential energy
demand to flatten the collective demand and avoid peaks
that are linked to energy production wastage. The second is
described in Section 4.2 and addresses energy theft detection,
another direct cause of energy wastage and under-par efficient
energy production.

4.1 Digital twin for residential energy
demand control

Energy peak demands are a major hindrance to achieving cost-
effective energy production (Rana et al., 2022). The surge of smart
meters and smart grids offer an unprecedented potential for
controlling/nudging energy consumption to effectively flatten the
collective demand; otherwise referred to as peak shaving. There are
two standard methods for peak shaving. The first relies on storing
unused energy during low energy demand periods and tapping into
stored energy when more is needed (Grubler et al., 2018). The
secondmethod is based on a time-of-use tariff approach designed by
energy providers to motivate consumers into changing their habits

toward operating their appliances during off-peak hours (Amiri-
Pebdani et al., 2022). Time-of-use tariff is a billing mechanism in
which the energy cost rate (i.e., cost per Joules) depends effectively
on the time of the day that the energy is consumed: the low rate
applies during low energy demand and the high rate during peak
energy demand periods. Traditional time-of-use pricing designates a
priori the time band of each energy cost rate and thus results in
under-par energy shaving in view of differing collective energy
consumption habits of different residential areas.

A challenge common to both described methods is the need for
transmitting frequent and specific energy consumption (EC) data to
the server/energy provider in order to enable effective optimisation
of extra energy supply and rescheduling of energy demand.
Residential EC data holds personal information about the
occupants which could reveal their habits and patterns.
Transmitting this data over the smart grid exposes such
information to unlawful access and could be exploited for timed
burglary or targeted marketing. The level of privacy risk that is
associated with leaked EC data increases with a higher temporal and
spatial resolution of the smart meter data. For instance, minute-
based and room-based EC data could reveal the existence of children
in the household, inform of their habits, and expose them to abuse
(De and Métayer, 2016). In view of these risks, the uptake of smart
meters is very slow; in the UK only ~ 50% of electric meters are smart
in 20227 partially due to the unwillingness to accept smart meters
(Gosnell and McCoy, 2023).

Another challenge resides in the complexity of the peak shaving
problem in view of the underlying multi-objective optimisation and
inter-dependencies between the multi-agents involved (Su et al.,
2022) (Wynn et al., 2022). It follows that solving optimisation
problems related to peak shaving is computationally expensive
and requires lengthy processes. As a result, such systems are
unable to react timely to manage the collective energy demand
on one hand and jeapordise the stability of the smart grid due to
false/delayed adjustments on the other hand. To this end, a digital
twin approach is adopted in (Fathy et al., 2021) which allows
conducting the optimisation in a virtual replica before applying
the outcomes to the actual grid. A digital twin is a virtual replica of
physical assets that enables data-driven modelling of the status and
behaviour of physical components in the system and of the
interrelation between these. In this context, a smart meter data-
driven digital twin is successfully employed to optimise the
formulated complex system of peak shaving and is shown to
achieve reliable and cost-effective anticipatory solutions. In
(Fathy et al., 2021), a multi-layer digital twin of the energy
system aims to mirror households’ actual EC in the form of a
household digital twin (HDT). When linked to the energy
production digital twin (EDT), HDT empowers the household-
centric energy optimisation model to achieve the desired
efficiency in energy use. The model intends to improve the
efficiency of energy production by flattening the daily energy
demand levels. This is done by collaboratively reorganising the
EC patterns of residential homes to avoid peak demands whilst

7 https://assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/1099629/Q2_2022_Smart_Meters_
Statistics_Report.pdf
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accommodating the residents’ needs and reducing their energy
costs. Indeed, the proposed system incorporates the first HDT
model to gauge the impact of various modifications on the
household energy bill and, subsequently, on energy
production. A distributed reinforcement learning method is
proposed that runs in the virtual replica to optimise the
scheduling of the household appliances before applying the
end result to the physical assets. The HDT shelters all
sensitive data about the household and would only escalate
the aggregated information to the central controller within the
Energy DT (EDT) as shown in Figure 7. The energy provider EDT
comprises the central controller and multiple local transformers.
The former interacts with various local transformers to obtain the
aggregated energy demand of each area and returns the optimised
hourly energy cost rates based on the peak-to-average energy
production ratio. EDT and HDT are interlinked and equipped
with machine learning algorithms to dynamically optimise the
energy supply–demand from both perspectives of providers and
consumers. To this end, HDT would optimise the residential
energy cost based on the area-specific time-of-use energy rate
determined by the EDT.

The benefits of edge-distributed reinforcement learning
techniques are threefold. First, HDT edge computing protects
people’s privacy and hence would encourage the adoption
among residential customers of such smart energy solutions.

Secondly, reinforcement learning is a self-learning method that
adjusts to the changing propensities of a household to use
electric appliances. For instance, in the case of new tenants,
new appliances, or new family members, the algorithm can self-
adjust and rapidly yield optimised results. Similarly, the
changing energy cost rates that the EDT may define will
automatically impact the algorithm and adjust the resulting
scheduling to minimise the energy cost for the household.
Thirdly, the optimisation takes place in the virtual replica
and would only be applied to the physical assets if the results
are satisfactory; thus, there is a minimal risk of unstable
behaviour or undesired outcome.

The proposed energy system is applied to a real-world IoT
dataset that spans over 2 years and covers seventeen
households. The conducted experiments show that the model
effectively flattened the collective energy demand by 20.4%. At
the same time, the average energy cost per household was
reduced by 17.7%.

4.2 Energy theft detection

Energy theft exacerbates the energy crisis causing increased
market volatility, revenue loss, surging costs, and risks to public
safety (such as fires and electric shocks). Energy theft is primarily

FIGURE 7
Multi-layered Digital Twin (DT) representation of the systemmodel and data exchange. Each house has an EDT that comprises its local transformer
connected to a central energy controller. Reproduced from Fathy et al. (2021), licensed under CC-BY-4.0.
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caused by bypassing or tampering with the electricity meter,
direct tapping from feeders, injecting magnetic material to slow
down metering and high line losses, and cyber-attacks for
altering smart meters. Conventional methods for energy theft
detection require conducting physical onsite inspections which
are time-consuming, costly, labour-intensive, and prone to
human error.

HIW energy applications comprising smart grids and smart
meters avail EC data energy providers in near-real time and with
very high granularity. EC data carries information about
consumers’ trends and energy theft EC data can be seen to
have distinct features that delineate it from normal EC as shown
in Figure 8.

Authors in (Nadeem et al., 2023) propose a deep learning
approach for detecting theft based on incoming EC data. EC
data collected from real residential consumers are naturally
skewed as the number of honest users outweighs the number of
theft (ten to one in (Nadeem et al., 2023)). To this end, the
authors define an energy-aware multi-objective metric that
accounts for the incurred revenue loss from misclassified EC
data. There are two forms of misclassifications: a missed theft
detection and an honest sample mistaken for theft. According
to the latest published report by Ofgem (Smarter Markets,
2013), energy theft could go unnoticed for 1.4 years and
costs more than eight times that of investigating a falsely
identified theft. The severe data bias and the competing
objectives of detecting theft without causing false
accusations led to an energy-aware deep model with
weighted loss that outperformed all previous models in
reducing the loss caused by energy theft by 30.4%.

5 Use case 3: intelligent IoT for
wellbeing

Based on the latest study by the WHO, the global prevalence of
anxiety and depression mostly affects young people and women
(World Health Organisation, 2023). In 2019, 86 million
adolescents aged 15 to 19 and 80 million adolescents aged 10 to
14 were suffering poor mental health (United Nations, 2022a).
Following the pandemic, the overall number of anxiety and
depression cases increased by an estimated 25% in 2020.
Tragically, this increase was met with significant disruption to
the services for mental conditions, which widened gaps in mental
healthcare. Since 2021, minor improvements have been recorded
however many people remain unable to get the care and support
they need for both pre-existing and new mental health conditions.

The Global Action Plan for Healthy Lives and Wellbeing for All
(SDG3 GAP) is a set of commitments that play significant roles in
health, development and humanitarian responses to help countries
accelerate progress on the health-related targets. These are
championed but different accelerator working groups who
collaborate towards meeting these commitments. Among these,
the Data and Digital Health accelerator working group has
contributed significantly to successes reported in World Health
Organisation (2023).

In this context, Intelligent IoT for pervasive mental health support
falls within the ambit of the Data and Digital Health efforts and
promises to bridge the gap by reaching those that have been failed by
existing mental health services. Intelligent stress monitoring assistant
is examined in (Alshareef et al., 2022) in which affective computing is
employed to detect stress levels based on biological signals. The

FIGURE 8
Energy consumption data sample comparing theft to normal behaviour.
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authors formulate two different problems. The first aims to detect
stress in a predefined and well-known group of people; this may be
useful for monitoring the wellbeing of a team providing a critical
service such as air control or medical staff. The second targets the
wider population with the objective of detecting stress in any unseen
person; such a model could support understaffed service providers to
reach school children and other affected groups effectively. The
authors use an open-source dataset and train an attention-based
transformer network to extract the stress-specific features with an
encouraging accuracy of 96%.

Detecting stress is a problem of critical importance when three-
quarters of people in our society feel unable to cope due to stress
(Foundation, 2018). Despite the promising benefits of developing
Intelligent IoT systems for remote and pervasive stress detection and
the dire need for support in view of the rising conditions of mental
health, some issues need to be addressed before deploying such
solutions. The use of HIW in healthcare raises concerns regarding
the security of sensitive patient data, which when transferred and stored
could be exposed to unauthorised access and misuse. Furthermore,
training a model on sensitive data, such as (Alshareef et al., 2022),
involves significant privacy risks. In this work, multiple sensors are
employed including electrocardiogram (ECG), electrodermal activity
(EDA), and electromyogram (EMG). It follows that the model might
potentially memorise or learn certain characteristics of individual
patients, allowing for re-identification or inference of sensitive
information (Nadas et al., 2020). As a result, it is critical to integrate
strong security and privacy measures throughout the development and
deployment of machine learning models for healthcare applications.

6Challenges ofmeetingmulti-objective
SDGs

In each of the use cases discussed in Sections 3, 4, and 5, we’ve
highlighted the governing challenges that are specific to the
application. There are two overarching concerns that affect all
SDG-driven HIW applications: 1) Security and data privacy and
2) the interconnectivity and interdependence of different SDGs.
Overarching open challenges and promising research directions
are listed in Table 4. Data privacy is discussed in the context of
each of the use cases and is directly related to security threats

that may expose private data (mobility, energy, or health) to
unlawful access. Malware attacks target vulnerable IoT devices
or gateways (see Figure 1) and may be used to leak personal data
and cause a privacy breach. There are multiple methods to
combat/detect malware attacks but these are often too
complex to run on lightweight IoT devices (Alrubayyi et al.,
2021a). An artificial immune system method for malware
detection is proposed in (Alrubayyi et al., 2021b) which is
highly effective and suitable for Intelligent IoT systems as it
has low complexity and the ability to detect unseen malware.
However, malware detection does not address the risk of man-
in-the-middle, a security breach that targets the communication
network for eavesdropping or altering the transmitted data; in
this context, private/personal data. There are various methods in
the literature for mitigating this risk; these involve avoiding data
transmission, protecting transmitted data, or both. The multi-
layer digital twin with distributed reinforcement learning in
(Fathy et al., 2021) is an example in which the personal data is
kept at the edge (or client), thus protecting it from man-in-the-
middle attacks. There are various other methods for avoiding
private data transmission over the IoT, these involve edge
computing and include replacing real data with synthetic data
that carries the required latent features, or federated and
distributed learning. Given the risk of inferring real data from
synthetic data or model parameters, these methods are often
combined with data protection methods such as (Issa et al.,
2023) which employs blockchain in conjunction with federated
learning for intelligent IoT systems. Other methods for data
protection against man-in-the-middle attacks include data
anonymisation (Yang et al., 2023), differential privacy (Wu
et al., 2022), and encryption (Zhang L. et al., 2022).

The other overarching challenge stems from the
interconnectivity and interdependency between different
SDGs. To this end, (Caldarelli et al., 2023), argue that the
theories and methods drawn from complexity science are
urgently needed to guide the development and use of digital
technologies, digital twins in this case, for sustainable
development of cities. The most common pitfall when using
intelligent IoT for ushering an SDG such as SDG 11 or SDG 3 is
that these incur energy consumption in the process and thus risk
delaying SDG 7. For instance provisioning an effective

TABLE 4 Overarching challenges delaying the progress of IoT-based solutions for SDG-driven HIW applications.

Overarching open challenges Possible solutions

Complexity of modelling interconnectivity and interdependence of multiple SDGs Complexity analysis Caldarelli et al. (2023)

Malware attacks targeting IoT devices/gateways Artificial Immune Systems Alrubayyi et al. (2021a)

Man-in-the-middle attacks Keeping the data at the edge with distributed Fathy et al. (2021)

Keeping the data at the edge with blockchain and federated learning Issa et al. (2023)

Data anonymisaiton Yang et al. (2023)

Data encryption Zhang et al. (2022b)

Differential privacy Wu et al. (2022)

Energy consumption of IoT systems Improve energy efficient of communication system Liu et al. (2022)

Carbon footpring of AI Maximise model’s reproducibility or exportability Schwartz et al. (2020)
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communication system for IoT systems, an essential component
in all HIW applications, is a major contributor to energy
consumption. Nevertheless, communication provisioning is
often geared by energy-unaware objectives such as latency,
data rate, and resilience. As a result, recent attention to
designing future wireless technologies prioritises energy
efficiency. Authors in (Liu et al., 2022), for instance, use
reinforcement learning to maximise energy efficiency in the
user-beamform selection mechanism in non-orthogonal
multiple access systems. Similarly, other works propose a
reinforcement learning approach for enabling context-aware
connectivity with multi-objectives, including energy efficiency
(Ozturk et al., 2022).

AI, which includes reinforcement learning and deep
learning, has witnessed great success in multiple areas, not
the least in enabling Intelligent IoT. However, this was
achieved at a very high price in terms of computation time
and related emissions footprint. In their seminal work, (Strubell
et al., 2019), demonstrated that training a single model for
natural language processing can emit as much carbon as five
cars in their lifetimes. A surge of research has followed in which
new stringent efficiency requirements are demanded from AI
models, in addition to the importance of accuracy measures.
Efficiency is measured in terms of model training lead-time and
related carbon footprint and the model’s reproducibility or
exportability (Schwartz et al., 2020). Such requirements would
firstly ensure that the utility of a model is maximised at the
minimum energy cost. Moreover, reducing the computational
cost of AI directly impacts the monetary cost and renders the
technology available to a wider population.

7 Conclusion

This work examines pioneering research that leverages the
Internet of Things (IoT) systems and harnesses advances in
artificial intelligence to create intelligent IoT systems within the
hyper-connected intelligent world to usher in sustainable
development goals (SDG). To this end, key components of the
IoT system are first discussed. Next, three critical SDGs are studied
and emerging related state-of-the-art Intelligent IoT solutions are
summarised. The remaining challenges in each of the use cases are
exposed in addition to overarching obstacles affecting all SDG-
driven Intelligent IoT solutions.

This study demonstrates that Intelligent IoT systems are
paramount for any hope of reaching the set SDGs in 2030,
specifically following the slow progress achieved since 2015.
Despite that, Intelligent IoT systems can be crippled with security
and data privacy risks. It follows that mitigating these risks is an
essential milestone in paving the way toward effective SDG
solutions. Moreover, the interdependencies between different
SDGs complicate the design of Intelligent IoT systems. In
particular, the connectivity of IoT systems and the carbon
footprint of artificial intelligence model training may cause
negative repercussions toward the SDG target of responsible
energy consumption.
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