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Abstract—The Fifth-Generation of Mobile Communications
(5G) is intended to meet users’ growing needs for high-quality
services at any time and from any location. The unique features
of Low Earth Orbit (LEO) satellites in terms of higher coverage,
reliability, and availability, can help expand the reach of 5G and
beyond technologies to support those needs. However, because
of their high speeds, a single LEO satellite is unable to provide
continuous service to multiple User Equipments (UEs) spread
over a large (potentially worldwide) area, resulting in the need for
LEO satellite constellations with a high number of satellites and a
consequent high amount of satellite handovers (HOs). Moreover,
UEs can only acquire partial information about the satellite
system and compete for the limited available communication
resources of the satellites, requiring the implementation of a
decentralized satellite HO strategy to avoid network congestion.
In this paper, we propose a decentralized Load Balancing Satellite
HO (LBSH) strategy based on multi-agent reinforcement Q-
learning, implemented within the software Network Simulator
3 (NS-3). LBSH aims to reduce the total number of HOs and
the blocking rate while balancing the load distribution among
satellites. Our results show that the proposed LBSH method
outperforms the state-of-the-art methods in terms of a 95% drop
in the average number of HOs per user and an 84% reduction
in blocking rate.

Index Terms—Reinforcement Learning, Satellite Handover,
NS-3, 5G Satellite-Terrestrial Integrated Networks

I. INTRODUCTION

5G and beyond communication technologies are driven by
the exploding demand for heterogeneous, reliable, secure, low-
latency, broadband, and high-speed services [1]. They are
dedicated to connect humans and machines at any time and
location. However, terrestrial networks cannot provide Internet
access to users on airplanes, ships, high-speed trains, high-
ways, or to very remote areas, such as mountains or islands,
or where it is too expensive to deploy terrestrial networks.
While on the other hand, Non-Terrestrial Networks (NTN),
which include satellites, Unmanned Aerial Vehicles (UAVs),
and High Altitude Platforms (HAPs), are the most effective
means to connect the world’s unconnected, unserved, and un-
derserved areas with high reliability as they are not limited by
geography and are not affected by natural disasters or wars [2].
Thus, NTNs can help expand the reach of the next-generation
communication technologies and achieve some of their Key
Performance Indicators (KPI), especially in terms of increased
coverage, reliability, and availability. In particular, Low Earth
Orbit (LEO) satellites, whose altitudes range from 500km to

1500km, have attracted the interest of many researchers since
they have the advantages of low propagation delay, low energy
consumption, reduced transmission power requirements, and
suppressed signaling attenuation [3]. However, LEO satellites
orbit Earth at high speeds, therefore, they typically operate
in multi-satellite constellations to simultaneously cover large
areas of the world. As a consequence, each satellite visibility
time from a ground user is limited and the implementation of
a flexible Handover (HO) strategy is needed in such networks.
In addition, without a centralized controller, User Equipment
(UE)s can only partially obtain information about the satellite
system and compete for the limited satellite communication
resources. This requires the implementation of a distributed
satellite HO strategy to avoid network congestion.

In this paper, we propose a decentralized Load Balancing
Satellite Handover (LBSH) strategy based on multi-agent
reinforcement Q-learning, that reduces the total number of
HOs and the blocking rate while balancing the load among
all the satellites in the network. The proposed LBSH is
proven to outperform state-of-the-art methods when these are
implemented in a realistic simulation setting using Satellite-
Terrestrial Integrated Network (STIN) simulator based on the
Network Simulator 3 (NS-3) which makes it close to the real
case scenario.

The rest of the paper is organized as follows. Section II
reports the main related works for implementing satellite HOs.
Section III describes the simulator used to implement the satel-
lite HO strategy and presents the HO optimization problem.
In Section IV, the optimization problem is transformed into
a reinforcement learning problem, starting with a single-agent
Q-learning followed by a multi-agent Q-learning. Simulation
results were discussed in Section V. Finally, Section VI
provides the conclusions of the presented work.

II. RELATED WORKS

Since the position of the base stations in terrestrial networks
is fixed, users typically perform HO due to users’ movements
and based on the measured received signal strength, reference
signal received power, or reference signal received quality [4].
However, LEO satellites move at a very high speed and rapidly
change their footprints on the Earth’s surface, which makes the
satellites’ movements the main reason for HO and the above
measurements not fully applicable. Thus, we must consider



other parameters, such as remaining service time, number of
available channels, and received signal strength. For example,
the number of available satellite channels was considered as
the basic HO criterion in [5] and [6]. The authors in [5] divided
the multimedia traffic into two types and the satellite HO
requests are addressed based on the queue state of each traffic
type to ensure a low drop blocking and forced termination
probability. The authors in [6] proposed a dynamic Doppler-
based HO prioritization scheme which employs Doppler shift
monitoring to estimate the actual number of HO requests
and the actual time of occurrence in order to avoid resource
reservation. The above HO criteria can achieve a balanced load
in the system, but they do not guarantee good communication
quality. On the other hand, the maximum elevation angle HO
criterion was proposed in [7] and [8]. Authors in [7] presented
a hard HO scheme and in [8] presented a hybrid channel
adaptive HO scheme for the satellite HO, both of which
considered the elevation angle as the satellite HO criterion.
However, the current elevation angle does not necessarily
reflect the actual performance of the network as it may lead
to channel congestion and thus increased blocking rate. A
graph theory-based satellite HO framework was proposed in
[9], where the authors set different weights for the edges in the
satellite-connected graph based on different satellite selection
criteria and then use the shortest path algorithm to obtain
the user’s optimal HO scheme. Authors in [10] considered
three HO criteria for the satellite selection (maximum elevation
angle, longest visible time, and maximum idle channels) aim
to provide users a low forced termination probability while
meeting Quality of Service (QoS) limits even in high traffic
conditions. Recently, authors in [11] proposed a multi-agent
reinforcement learning HO strategy that aims to minimize
the number of HOs in a load-aware manner. To this end,
the method considers the minimum elevation angle and the
available satellite channels in the UE-to-satellite allocation and
is shown to reduce the blocking rate compared to load-unaware
schemes.

Most of the state-of-the-art studies, either consider one HO
criterion for a specific optimization goal or provide a solution
that takes several criteria into account from the viewpoint of
a single user. Nevertheless, without a central controller, users
can only acquire partial information about the satellite system
with respect to themselves. Furthermore, because a satellite’s
channel budget is limited, competition for available channels
among users served by the same satellite may result in a highly
imbalanced satellite load. This necessitates the implementation
of a decentralized satellite HO strategy that takes into account
the users’ real-time resource competition. The use of multi-
agent reinforcement learning in [11] solved the decentralized
problem by considering each user as an agent that has a partial
view of the system, and therefore take individual actions. This
HO approach is load-aware which avoids connecting to a fully
loaded satellite, however, it does not prioritize the connection
to a satellite with higher available channels. Hence this method
does not promote load balancing among the satellites which
increases the probability of blocking per UE. In contrast, the

LBSH method proposed in this work is a load-balancing HO
scheme that successfully reduced the blocking rate, as will be
demonstrated in Section V.

III. 5G SATELLITE HANDOVER

The 5G STIN simulator proposed in [12] is used in this
work to evaluate the performance of leading HO schemes,
including the proposed LBSH method. This simulator is built
on top of NS-3 that simulates packet data networks with user-
defined traffic models [13]. In addition, the 5G-LENA module
[14] which is employed to model 5G New Radio (NR) cellular
networks [15] and the SGP4 mathematical model is used to
estimate the speed and position of LEO satellites [16].
A. Reference scenario and Network Assumptions

We implemented our network considering the satellite HO
problem over a specific period of time T , as illustrated in
Figure 1. The main components of the network are:

• 5G UEs: terrestrial or aerial nodes that can connect to
the Internet to send or receive data through a 5G Radio
Access Network (RAN). They are uniformly distributed
across the Earth’s surface. A set of K users is considered
and denoted by K = {1, 2, ...,K}.

• LEO Satellites: satellite nodes that make up the 5G RAN.
Each satellite can produce a 5G cell that provides direct
access to the 5G UEs. A set of N satellites was considered
and denoted by N = {1, 2, ...,N}.


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Fig. 1. Satellite Handover Scenario

The elevation angle between user k and satellite n is repre-
sented by θk,n and can be calculated based on the position
information of the user and its covering satellite as follows:

θk,n =
arcsin(H2

n + (2×Re ×Hn)−D2
k,n)

2×Re ×Dk,n
(1)

where Hn is the altitude of satellite n, Re the Earth radius,
and Dk,n the distance between user k and satellite n. The
minimum elevation angle θ0 is a design parameter used to
ensure threshold link quality. As a result, a satellite n is
considered a good candidate for user k only if:

θk,n ≥ θ0, ∀k ∈ K,∀n ∈ N (2)

At time t, Ct
k,n is the coverage indicator between satellite n

and user k, and it is defined as follows:

Ct
k,n =

{
1 if user k is covered by satellite n at time t,
0 otherwise

(3)



Moreover, Xt
k,n indicates if user k is served by satellite n at

time t, and is defined as follows:

Xt
k,n =

{
1 if user k is served by satellite n at time t,
0 otherwise

(4)

We assume that each satellite’s total bandwidth is partitioned
into Ln channels of equal bandwidth and that each user can
only use one channel to transmit/receive. Following that, the
channel budget limitation is given by:∑

k∈K

Xt
k,n ≤ Ln, ∀n ∈ N (5)

B. Problem Formulation

At any time t in T , the selection from candidate satellites
(Ct

k,n = 1) is optimized to minimize the number of HOs. In
this case, any decision that results in Xt

k,n ̸= Xt−1
k,n at any

time t during T causes the HO count to increase by 1. The
average number of HOs is thus given by:

HOavg =

∑
k∈K HOk

K
(6)

Our goal is to decrease the average number of HOs while
enhancing channel utilization efficiency in the LEO satellite
system during the considered time period T .

The optimization problem is therefore defined as follows:

minHOavg (7a)

s.t
∑
k∈K

Xt
k,n ≤ Ln, ∀n ∈ N , Xt

k,n ∈ {0, 1}, (7b)

θk,n ≥ θ0, ∀k ∈ K,∀n ∈ N (7c)

where (7b) is the constraint of the total number of available
channels of a satellite n given the two possible states of
connection between user k and satellite n represented by Xt

k,n,
which ensures channel utilization efficiency, and (7c) is the
constraint for the minimum acceptable elevation angle that
guarantees a good communication link quality. Problem (7)
is an NP-hard combinatorial integer optimization problem in
general and we convert it into a Reinforcement Learning (RL)
optimization problem based on a stochastic game.

IV. 5G SATELLITE HANDOVER BASED ON
REINFORCEMENT LEARNING

RL is a computational method for understanding and au-
tomating goal-directed learning and decision-making. It differs
from other computational approaches as it focuses on an
agent learning through direct interaction with its environment,
rather than requiring ideal supervision or entire models of the
environment. It can learn anything from scratch by pursuing a
goal that can be defined as the maximization of the expected
value of a cumulative sum of a received scalar signal called
reward. RL defines the interaction between a learning agent
and its environment in terms of states, actions, and rewards
by using the formal framework of Markov decision processes.
This framework is intended to be a straightforward way of
representing key aspects of the artificial intelligence problem.
These characteristics include a sense of cause and effect,

uncertainty, non-determinism, and the presence of explicit
goals [17]. The main components of our RL framework are:

• Agent: The component that makes the decision of what
action to take at each step which may cause a transition
to a new state. We consider each user to be an agent, i.e.,
the set of agents A is equal to the set of users K.

• Environment: The world in which the agent lives and
interacts by taking some actions, but those actions cannot
influence the environment’s rules or dynamics In this
paper, the environment is the NS-3-based 5G satellite
integrated network.

• State: The observations that the agent receives from
the environment. We define the state of agent k at
time t as the 3-tuple, stk =< Ct

k, l
t, V t

k >, where
Ct

k, lt, and V t
k are all vectors of size N , such that,

Ct
k = [Ct

k,0, C
t
k,1, ..., C

t
k,n, ..., C

t
k,N ] contains the cov-

erage indicators between user k and each satellite n ∈
N , lt = [lt0, l

t
1, ..., l

t
n, ..., l

t
N ] indicates the number of

loaded channels of each satellite n ∈ N at time t,
and V t

k = [V t
k,0, V

t
k,1, ..., V

t
k,n, ..., V

t
k,N ] includes the

Remaining Visibility Time (RVT) between user k and
each satellite n ∈ N at time t. S indicates the set of
states.

• Action: Represents the decision taken by an agent which
is to connect to one of the satellites n ∈ N . In this paper,
an action of an agent k at time t is defined as atk where
atk is equal to one of the satellites n ∈ N such that
Ct

k,n = 1.
• Reward: A motivation mechanism that uses reward or

penalty. The instantaneous reward of an agent k, after
an action atk was taken knowing that it is in state stk,
is represented by rtk(s

t
k, a

t
k). Considering that agent k

chooses to connect to satellite n at time t (ie. atk = n):

rtk(s
t
k, a

t
k) =



−p1 if Ct
k,n = 1, Xt

k,n = 0,
−p2 if Ct

k,n = 1, Xt
k,n = 1,

ltn <
∑

k∈K Xt
k,n,

f(t, n, k) if Ct
k,n = 1, Xt

k,n = 1,
ltn ≥

∑
k∈K Xt

k,n

(8)

A high penalty is associated with the instantaneous
reward function when an action results in a HO, and
a lower penalty when the action results in blocking.
However, when the action avoids HO and blocking, a
positive reward is given such that it is higher when the
agent chooses to connect to a satellite with higher RVT
and lower load. p1 = 300, p2 = 100 and f(t, n, k) =
vtk,n + wt

n, where wt
n = ltn −

∑
k∈K Xt

k,n represents the
number of available channels of satellite n at time t.

• Policy: A strategy used by the agent to achieve its goal.
The policy directs the agent’s actions based on the agent’s
current state. The goal of agent k is to find an optimal
policy π∗

k that maximizes the expected cumulative reward:

π∗
k = argmax

π
Rk(s, π) (9)

where Rk(s, π) =
∑T

t=0 γE{rtk|s0 = s, π} is the
expected cumulative reward of agent k and γ ∈ [0, 1) is



the discount factor used to increase/decrease the weight of
new rewards in comparison to previously stored rewards.

The goal of the proposed LEO satellite HO optimization
problem, is equivalent to Eq. (9), which aims to find an optimal
policy to maximize the expected cumulative reward over time.

A. Single-Agent Q-learning Algorithm

Q-learning is a model-free RL algorithm that can be used
to learn the value of an action in a given state. It can han-
dle problems with stochastic transitions and rewards without
requiring adaptations [18]. Q can be learned through trial-and-
error interactions with the environment by running through a
large Number of Episodes (NEP) (training duration in which
a sequence of states, actions, and rewards is considered), and
thus through as many state/action pairs as possible. “Q” refers
to the function that involves a simple updating procedure in
which the agent starts with arbitrary initial values of Q(s, a)
for all s ∈ S, a ∈ A, and updates the Q-values as follows:

Qt+1(s
t, at) = (1−αt)Qt(s

t, at)+αt[r
t+γmax

a
Qt(s

t+1)] (10)

where αt ∈ [0, 1) is the learning rate.
When designing an action selection policy in RL, it is

critical to balance exploitation and exploration. Exploitation
occurs when agents choose the best action based on the
current Q-values, also known as a greedy policy. Exploration
entails the agents attempting more actions that have not been
exploited yet in order to explore a larger action space. To make
better random actions, we combine Boltzman exploration and
ϵ-greedy policy. An action’s selection probability, denoted by
πt(a

t) is weighted by its associated Q-value as follows:

πt(a
t) =

exp
Qk(stk, a

t)

τ∑
at exp

Qk(stk, a
t)

τ

(11)

where τ is called the temperature factor. It controls the amount
of exploration, i.e., the probability of executing actions other
than the one with the highest Q-value. When τ is high,
all actions will be explored equally; when it is low, high-
rewarding actions will be chosen with higher probability.

Despite the fact that this policy is viewed as a random action
selection policy, the agents have a greater chance of choosing
good actions due to the property of the probability function.
Thus, given an exploration parameter ε ∈ [0, 1), we have:

at
∗ =

{
argmaxat πt(a

t) if ϵ < ε,
argmaxat Qt

k(s
t
k, a

t) otherwise
(12)

In this subsection, a single agent is considered (only one UE).
During each episode, at each time step, the agent observes the
state s and selects an action a based on a policy π. The Q-table
of this agent is then updated following Eq. (10). Since satellites
are continuously moving, the covering set of satellites for the
user, along with the corresponding RVT, changes at each time
instance, causing a transaction to a new state independently
by the taken action, while, at the same time, the action of the
agent may alter each satellite load, causing the transition to

a new state too. This results in a huge number of possible
states that is hard to predict and define at the beginning of
the learning. To solve this problem, the procedure shown in
Algorithm 1 is used.

At the beginning of the learning (t = 0), there is only one
state in the set of states (S = {s0}). Then, at each time step,
after an action is taken, the load allocation of each satellite,
the RVT and the set of covering satellites of the user, changes
accordingly, causing the agent to move to a new state s′. If
s′ is already included in the set of states, its Q-value will
be updated, otherwise, s′ is added to the set of states (S =
{s0, s1, ..., s′} with an initial Q-value of zero.

Algorithm 1 Single-Agent Q learning
Initialize:
t = 0, S = {s0} =< C0, l0, V 0 >;
Q0(s

0, a0) = 0
while ep < NEP do

while t < T do
observe st =< Ct, lt, V t >;
choose action at based on policy π(st);
move to a new state st+1 =< Ct+1, lt+1, V t+1 >;
get the reward rt;
if st+1 ∈ S then

update the Q-value Qt(s
t, at) by Eq. (10);

else
add the new state st+1 to S;
initialize the Q-value of the new state to zero;

end if
end while

end while

B. Multi-Agent Q-learning

In this subsection, we will define our multi-agent LBSH
method considering six UEs. Each UE is a RL agent that
interacts with the environment based on its partial view of
its current state. Considering Eq. (12), instead of having a
constant ϵ throughout the learning process, a variable ϵt that
increases linearly with time is considered to encourage the
agents to explore more at the beginning of the learning and
then, as ϵt increases, the agents start to explore with lower
probability. Note that ϵt stops increasing when it reaches a
value of 0.8 to let the agents still explore with a certain
probability. As shown in Algorithm 2, at each time step,
the agents observe their current state stk and select an action
atk based on a policy π, acquire a corresponding reward rtk,
and update their own Q-table following Eq. (10). The agents
are considered to take actions successively one after another,
where the sequence of learning for the agents is randomly
chosen at each instant. After agent k chooses an action, the
load of the satellites will change accordingly, which can be
obtained by the other agents before the latter takes its action.
It is assumed that each agent has no knowledge about the
reward function of other agents, however, they can get each
other actions.



Algorithm 2 Multi-Agent Q learning
Initialize:
t = 0, Sk = {s0k} =< C0

k , l
0, V 0

k > ∀k ∈ K;
Satellites-Load= l0;
Q0

k(s
0, a0) = 0

while ep < NEP do
while t < T do

for k ∈ K do
choose random agent k;
observe stk =< Ct

k, l
t, V t

k >;
choose action at

k based on policy π(stk);
move to a new state st+1

k =< Ct+1
k , lt+1, V t+1

k >;
get the reward rtk;
update Satellites-Load to lt+1;
if st+1

k ∈ Sk then
update the Q-value Qt

k(s
t
k, a

t
k) by Eq. (10);

else
add the new state st+1

k to S;
initialize the Q-value of the new state to zero;

endif
endfor

end while
end while

V. SIMULATION RESULTS

A. Single-Agent Q-Learning

We test the single-agent learning by considering one UE
whose position is fixed on the Earth’s surface and 48 LEO
satellites continuously moving around the Earth following the
SGP4-module [16]. Table I summarizes all the simulation
parameters considered in our approach for both single-agent
and multi-agent tests.

TABLE I
SIMULATED SCENARIO PARAMETERS

Parameter Single-Agent Multi-Agent
Number of satellites 48 48

Number of UE 1 6
Satellite altitude 600 km 600 km

Orbital planes eccentricity 0 (circular) 0 (circular)
Orbital planes inclination i 88◦ 88◦

Orbital planes argument of perigee 90◦ 90◦

Minimum elevation angle between
UE and gNB for transmissions 20◦ 20◦

Number of satellite available
channels 1 5

α 0.1 0.1
γ 0.95 0.95
ϵ 0.82 0.1-0.8
τ 10 10

NEP 5000 2500
Duration of an episode (T ) 600 s 600 s

Figure 2 shows the number of HOs as a function of
NEP. As NEP increases from 0 to 5000, the number of
HOs significantly decreases from about 190 to about only 3
HOs. This proves the optimization of the HO problem when
considering only one agent.
B. Multi-Agent Q-Learning

We test the proposed multi-agent LBSH optimization ap-
proach and compare it to different approaches in a real case
scenario within the developed NS-3 based 5G STIN simulator

Fig. 2. Single-Agent: Average number of handovers as a function of NEP

Fig. 3. Multi-Agent: Average Cumulative Reward as a function of NEP

[12]. For the LBSH approach proposed in this paper, ϵ is
assumed to increase linearly from 0.1 to 0.8 while NEP
increases. The reward function defined in Eq. (8) is adopted.
Figure 3 shows the average cumulative rewards as a function
of the NEP. As NEP increases from 0 to 2500, the cumulative
reward increases from -60000 to about 950000, starting to
converge after 1000 episodes. The reason is that in the first
episodes the agents explore more, and then start to exploit
more following Eq. (12). The grey shade in Figure 3 represents
the range of the cumulative reward for all the six agents
during learning. We first compare our work with a non-smart
HO strategy where the HO decision is taken based only on
the minimum distance between the UE and its associated
satellite and the RVT between them. The minimum distance
and the RVT between each UE-satellite pair are continuously
traced. Accordingly, at each instant, each UE chooses to be
connected to the satellite closest to it with higher RVT. The
second approach is a Load Aware Satellite Handover (LASH)
proposed in [11]. The reward function in LASH follows the
same structure as in Eq.8, with p1 = 20, p2 = 10, and
f(t, n, k) = vtk,n which is limited to the remaining visibility
time vtk,n, thus rendering LASH a load-aware HO strategy. In



contrast, in the LBSH, f(t, n, k) = vtk,n+wt
n accounts for the

actual load of the satellite, and therefore, is a load-balancing
scheme.

Moreover, at each instant, the action in [11] is chosen based
on a fixed exploration parameter ϵ rather than an adaptable ϵt.
Figure 4 shows the average number of HOs as a function of
the NEP for the three different approaches.

Fig. 4. Multi-Agent: Average Number of Handovers as a function of NEP

The LBSH approach proposed in this paper outperforms
the LASH approach implemented in [11] when implemented
in a realistic simulator, as the final number of HOs per user
is 95% lower. Besides, the proposed LBSH converges to the
same average HOs value of the Minimum distance approach
which is around 3.7 HOs in the 600 s episode duration.

The blocking rate of the user k at time t is denoted by Brtk
and defined as follows:

BRk =

∑
t BNk

t

T
(13)

where BNk
t indicates whether user k was dropped at time t:

BNk
t =


1 if user k chooses to connect to satellite n and

ltn <
∑

k∈K Xt
k,n,

0 otherwise
(14)

As shown in Figure 5, the minimum distance approach results
in the maximum blocking rate since it does not take the load
constraint of each satellite into consideration. Moreover, the
proposed LBSH approach results in the minimum blocking
rate which converges to a value of 0.0042 (0.42%) and hence
outperforms the LASH approach by around 84%. These results
suggest that a load balancing scheme avoids allocating UEs to
loaded satellites, and therefore, mitigates the risk of blocking.

VI. CONCLUSION

We presented a novel load balancing satellite HO scheme,
LBSH, that is suitable for 5G STIN. The strategy has been
implemented and tested within a simulation environment based
on the software NS-3 and the obtained results show that it
outperforms state-of-the-art solutions by reducing the average
number of HOs by 95% and the blocking rate by 84%.
This implies that LBSH is a promising technique to manage
5G STIN HOs whilst still effectively exploiting the available
channels of satellite-generated 5G cells.

Fig. 5. Multi-Agent: Average Blocking Rate as a function of NEP
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