
Neuro-Fuzzy Motion Planning
for Robotic Manipulators

Kaspar Althoefer

Thesis submitted for the Degree of Doctor of Philosophy
Department of Electronic and Electrical Engineering

King’s College London, University of London

1996

Abstractii

Abstract

On-going research efforts in robotics aim at providing mechanical systems, such as
robotic manipulators and mobile robots, with more intelligence so that they can operate
autonomously. Advancing in this direction, this thesis proposes and investigates novel
manipulator path planning and navigation techniques which have their roots in the field of
neural networks and fuzzy logic.

Path planning in the configuration space makes necessary a transformation of the
workspace into a configuration space. A radial-basis-function neural network is proposed to
construct the configuration space by repeatedly mapping individual workspace obstacle points
into so-called C-space patterns. The method is extended to compute the transformation for
planar manipulators with n links as well as for manipulators with revolute and prismatic
joints.

A neural-network-based implementation of a computer emulated resistive grid is
described and investigated. The grid, which is a collection of nodes laterally connected by
weights, carries out global path planning in the manipulator’s configuration space. In response
to a specific obstacle constellation, the grid generates an activity distribution whose gradient
can be exploited to construct collision-free paths. A novel update algorithm, the To&Fro
algorithm, which rapidly spreads the activity distribution over the nodes is proposed.
Extensions to the basic grid technique are presented.

A novel fuzzy-based system, the fuzzy navigator, is proposed to solve the navigation
and obstacle avoidance problem for robotic manipulators. The presented system is divided
into separate fuzzy units which individually control each manipulator link. The competing
functions of goal following and obstacle avoidance are combined in each unit providing an
intelligent behaviour. An on-line reinforcement learning method is introduced which adapts
the performance of the fuzzy units continuously to any changes in the environment.

All above methods have been tested in different environments on simulated
manipulators as well as on a physical manipulator. The results proved these methods to be
feasible for real-world applications.

Acknowledgements iii

Acknowledgements

Most projects involve the collaboration of people, composing this thesis has been no
exception.

I am thankful to David Fraser for his supervision. I appreciate the lively discussions we
had in which he supplied me with academic arguments that have aided the understanding of
my research. I value very highly the fact that he was always available to answer questions.
This thesis has benefited a great deal from his advice.

The suggestions and comments of Guido Bugmann have been a source of constant
reference and inspiration. For the guidance he provided whenever I tended to lose the path I
owe him more than I can express in words.

Robert Schwann patiently listened to many of my half-developed ideas and provided
useful advice to overcome many hurdles. His contributions are noted with sincere thanks.

I must also express my gratitude to Ton Coolen, Bart Krekelberg and Rasmus Strange
Petersen for their invaluable comments and suggestions with respect to questions on the
training of fuzzy controllers and the dynamics of Hopfield networks. Moreover, I am grateful
to Mark Plumbley for his contributions to the work on the workspace to C-space
transformation. I also would like to thank Rahul Jaitly for the contributions during our
collaboration on the vision-based workspace to C-space transformation. Thanks also go to
Henning Schmidt who gave lots of helpful comments on how to improve the description of
the fuzzy navigator. Furthermore, I have to thank Panos Zavlangas for the extremely
successful implementation of the fuzzy navigator. I also would like to thank Andreas
Wanitschek for proof-reading crucial parts of this document.

Thanks are also due to Trevor Clarkson, Tony Davies, Mark Sandler who watched my
progress with a vigilant eye and always had an ear for the questions I came up with during my
time at the Department of Electronic and Electrical Engineering.

The list of acknowledgements would be incomplete, if I did not mention my gratitude to
the Erasmus students Laurent Alluzen, Jörn Behrenroth, Marcello Fini, Gabriele Landi, and
the many colleagues in the Department, especially Ebi Agboraw, Jamil Ahmad, Shabbir
Bashar, Gabriela Castellano, Chris Christodoulou, Jane Croucher, Vassilios Dionissopoulos,
Terhi Garner, Tareq Hamdi, Tarig Hanif, Panos Kudumakis, Nilceu Marana, Allan Paul,
Georgi Petkov, Aubrey Sandman, Atif Sharaf, Fei Xia, Chengping Xu and Jia Hong Yin who
provided me with an environment which was enjoyable to work in. Thanks also for advice and
technical support by Peter di Cara, Terry Coleman, Peter King, Talat Malik, Mustaq
Mohammed and Maisie Payton.

My research was facilitated through the generosity of the Dr. Jost-Henkel- Stiftung,
Düsseldorf, Germany which supported me financially during 1993-1996.

My brother and my sister shared with me more than I could possibly express here and
were always there when I needed them. I also would like to thank my parents for their
unfailing financial support and endless moral encouragement.

Lito Apostolakou did not only help immensely to bring this thesis into its final shape but
also bravely endured my mood swings during this stressful time. Without her continuous
support this work would never have been possible.

Table of Contentsiv

Table of Contents

Abstract .. ii

Acknowledgments... iii

Table of Contents ... iv

List of Figures .. vii

List of Tables... ix

1 Introduction .. 1

1.1 Methodology ..2

1.2 Constructing the C-space, Global Path Planning, Local Navigation: An Overview4
1.2.1 Manipulator Motion Planning..4
1.2.2 The Computation of the C-space and the Building of Maps ..5
1.2.3 Global Path Planning in C-space ...6
1.2.4 Local Navigation ...8

1.3 Contributions made by this Thesis...10

2 Workspace to C-space Transformation ... 11

2.1 Introduction ...11

2.2 The Configuration Space in Context..13

2.3 The Configuration Space of a Robotic Manipulator ..15

2.4 The Mapping of Obstacle Points into their C-space Counterpart ..16
2.4.1 The Single Point Mapping ...16
2.4.2 The C-space of a 2-Link Revolute Arm...18
2.4.3 The C-space of a 2-Link Arm with Prismatic and Revolute Joints ..23

2.5 The C-space of an n-Link Arm...26
2.5.1.1 Comparison of configuration space representations...32
2.5.1.2 Reduction in Complexity ...33

2.6 A Radial Basis Function Network for the Workspace to C-space Transformation.............................35
2.6.1 The RBF-Network for the C-space Calculation ...35
2.6.2 The Training of the Network: Insertion of Nodes..37

2.7 A Three-link Manipulator ..39

2.8 Real-world Applications ...41
2.8.1 C-space Patterns for a Physical Manipulator ...41
2.8.2 Timing Considerations...45
2.8.3 A Real-World Planning System...47

2.8.3.1 Image Processing ...48
2.8.3.2 Input to the Radial-Basis-Function Network..50

2.9 Summary ..51

Table of Contents v

3 A Neuro-Resistive Grid for Path Planning...53

3.1 Problem Definition and Overview of the Algorithm ..53

3.2 Related Work...55
3.2.1 Resistive Grids for Path Planning..55
3.2.2 The Hopfield Network...56
3.2.3 Cellular Neural Network..57
3.2.4 Dynamic Programming..58

3.3 Path Planning in the Configuration Space..60

3.4 The Neuro-Resistive Grid ...61
3.4.1 Implementation of the Neuro-Resistive Grid...61
3.4.2 Functioning of the Resistive Grid ..63
3.4.3 Harmonic Functions ..66
3.4.4 Boundary Conditions - Dirichlet vs. Neumann..68
3.4.5 Convergence Criterion for the Neuro-resistive Grid..72

3.5 Enhanced Activity Propagation ...74
3.5.1 Methodology ...74
3.5.2 Higher Dimensions ..77
3.5.3 Global Extremum and Collision-free Path...78
3.5.4 A Non-Topologically-Ordered Grid ..82
3.5.5 Soft Safety Margin...83

3.6 Experiments ...84
3.6.1 Real-World Experiments with the MA 2000 Manipulator...84
3.6.2 A Planar Three-Link Manipulator ...94
3.6.3 A Three-dimensional SCARA Manipulator...101
3.6.4 A Mobile Robot in a 3D-Workspace ...101

3.7 Comparative Studies ...102
3.7.1 Comparisons to Other Update Rules ...102
3.7.2 Comparison to Other Update Sequences ...105
3.7.3 Comparison to the A*-Algorithm ..106

3.8 Summary ..108

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators110

4.1 Problem Definition and System Overview ..110

4.2 Local Navigation in Context...113
4.2.1 Artificial Potential Fields...113
4.2.2 An Overview of Fuzzy-Based Navigation Techniques for Mobile Robots..115
4.2.3 Unreachable Situations and Local Minima..116

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic Manipulators ..117
4.3.1 Introduction to Fuzzy Control ...117
4.3.2 Manipulator-Specific Implementation Aspects..121
4.3.3 The Fuzzy Algorithm...123

4.4 Computer Simulations ..128
4.4.1 Two-Link Manipulator ..128
4.4.2 Three-Link Manipulator ..132
4.4.3 Moving Obstacles ..134
4.4.4 Safety Aspects ...134

4.5 Fuzzy Navigation for the MA 2000 Manipulator ...135
4.5.1 Simulated MA 2000 and Comparison to the Resistive Grid Approach ...135
4.5.2 Real-World Results ...138

4.6 Reinforcement Learning...138

4.7 Summary and Discussion..144

Table of Contentsvi

5 Conclusions and Future Work .. 147

5.1 Conclusions ..147
5.1.1 Workspace to C-space Transformation for Robotic Manipulators ..147
5.1.2 A Neural Resistive Grid for Path Planning ..147
5.1.3 Fuzzy-based Navigation and Obstacle Avoidance for Robotic Manipulators....................................149

5.2 Future work ...150
5.2.1 Hybrid System ...150
5.2.2 Implementational Aspects..151
5.2.3 Sensors...152
5.2.4 Transformation of Complex Obstacle Primitives...152

Appendix A-1 ... 153

Appendix A-2 ... 155

Appendix A-3 ... 160

Appendix B... 165

Bibliography .. 169

List of Figures vii

List of Figures

Figure 2.1-1: (left) The MA 2000 manipulator; (middle) The Puma manipulator................... 13
Figure 2.4-1: The two-link manipulator in its workspace. ... 19
Figure 2.4-2: The configuration space which corresponds to the two-link arm....................... 20
Figure 2.4-3: C-space patterns at increments of d for a two-link manipulator......................... 20
Figure 2.4-4: Depiction of the four possible manipulator types... 25
Figure 2.5-1: Collision between obstacle point P and one of the subarms 27
Figure 2.5-2: The construction of subarms for a three-link arm with stick-like links. 28
Figure 2.5-3: A three-link manipulator colliding with point P .. 29
Figure 2.5-4: Schematic depiction of the C-space pattern of a three-link planar arm.............. 29
Figure 2.5-5: Depiction of the accessing of the look-up tables of a three-link arm 31
Figure 2.5-6: Tree structure representing the computation of the C-space patterns................. 32
Figure 2.5-7: The planar workspace of a three-link revolute manipulator............................... 32
Figure 2.5-8: Two configuration space representations of a three-link planar arm 33
Figure 2.5-9: The path planning problem is divided into three stages 34
Figure 2.6-1: The network is composed of the Q1-net and Q2-net ... 36
Figure 2.6-2: The dilated B-spline basis functions of the hidden layer nodes 37
Figure 2.6-3: This figure shows the error of Q2-net during training .. 38
Figure 2.7-1: The planar workspace of a revolute manipulator ... 39
Figure 2.7-2: Three-dimensional configuration space of the manipulator 40
Figure 2.8-1: The experimental arm, MA2000, equipped with three planar links................... 41
Figure 2.8-2: The measured C-space patterns of links K1 = l1 and L1 = f(l2/l3) 42
Figure 2.8-3: The measured C-space patterns of links K1 and L1 of the MA 2000.................. 43
Figure 2.8-4: Centre lines of C-space patterns ... 44
Figure 2.8-5: Centre lines of C-space patterns of points outside the range of link K1. 44
Figure 2.8-6: The MA 2000 in a workspace with work bench... 46
Figure 2.8-7: Flowchart of image pre-processing and neural network..................................... 48
Figure 2.8-8: Manipulator and workspace viewed by the CCD camera. 49
Figure 2.8-9: (a) Edge information of image in Figure 2.8-8, (b) thresholded image.............. 49
Figure 2.8-10: Result of the fast edge following algorithm ... 50
Figure 2.8-11: C-space obstacles which correspond to Figure 2.8-9 (b).................................. 51

Figure 3.2-1: Structure of a Hopfield network ... 56
Figure 3.2-2: The figure depicts the cost look-up table for a point-sized robot....................... 59
Figure 3.4-1: This figure shows the neural implementation of a 2-D resistive grid.. 61
Figure 3.4-2: The linear saturating function (left) and the tanh-function (right). 63
Figure 3.4-3: This figure shows the structure of a resistive grid.. 68
Figure 3.4-4: Corridors in resistive grids.. ... 70
Figure 3.4-5: This figure shows the potential distribution in a resistive grid 71
Figure 3.4-6: Equi-potential lines in a grid .. 72
Figure 3.5-1: Pseudo-code of the To&Fro algorithm... 75
Figure 3.5-2: Depiction of the update procedure according to the To&Fro algorithm. 76
Figure 3.5-3: Update order in a three-dimensional space... 78
Figure 3.5-4: Activity distribution in a 10×10-grid.. 81
Figure 3.5-5: A non-topological ordered grid. ... 83
Figure 3.5-6: The soft safety margin in a resistive grid.. 84

List of Figuresviii

Figure 3.6-1: Trajectory found by the To&Fro algorithm in a 300×300 grid........................... 87
Figure 3.6-2: Trajectory found by the To&Fro algorithm in a 50×50 grid............................... 88
Figure 3.6-3: Three-D depiction of the activity distribution in the 50×50-grid........................ 89
Figure 3.6-4: Performance of the To&Fro algorithm. .. 90
Figure 3.6-5: A gradient ascent performed on the potential distribution.................................. 91
Figure 3.6-6: Depiction of the manipulator (MA 2000) ... 92
Figure 3.6-7: A 3D-depiction of the activities in the grid after five updates per node. 92
Figure 3.6-8: Comparison of paths. .. 93
Figure 3.6-9: Convergence times versus different grid sizes.. 94
Figure 3.6-10: (top) Path after 5 sweeps; (bottom) Path after 1400 sweeps............................. 95
Figure 3.6-11: The discrete configuration space as it is applied to the resistive grid............... 96
Figure 3.6-12: The workspace obstacles and the manipulator in motion. 97
Figure 3.6-13: Activity in a 3-D resistive grid after 5 updates per node. 98
Figure 3.6-14: Activity in a 3-D resistive grid after 1400 updates per node. 99
Figure 3.6-15: C-space obstacle with bounding box. ... 100
Figure 3.6-16: Depiction of the manipulator moving around obstacle points 100
Figure 3.6-17: A three-dimensional SCARA manipulator ... 101
Figure 3.6-18: This Figure shows the 3-dimensional workspace of a point robot. 102
Figure 3.7-1: Comparison of paths found by four different approaches................................. 103
Figure 3.7-2: Activity distribution found in the resistive grid.. 104
Figure 3.7-3: Activity distribution found by the DP algorithm. ... 104
Figure 3.7-4: Activity distribution in a randomly updated grid.. 105
Figure 3.7-5: Comparison of three planning strategies... 108

Figure 4.2-1: An example of Khatib’s potential field method.. 114
Figure 4.3-1: General depiction of a fuzzy control system... 118
Figure 4.3-2: Five fuzzy sets partition one of the input spaces of the control system............ 119
Figure 4.3-3: Schematic depiction of a fuzzy controller... 120
Figure 4.3-4: A three-link planar robotic manipulator connected to fuzzy units.................... 122
Figure 4.3-5: A more neural-network-like depiction of the controller 123
Figure 4.3-6: Schematic depiction of the fuzzy unit for link ln−1.. 126
Figure 4.3-7: The transfer function of a fuzzy controller ... 127
Figure 4.4-1: A two-link manipulator controlled by the fuzzy-based strategy. 129
Figure 4.4-2: The trajectory depicted here was found using the same rule base 129
Figure 4.4-3: The two-link manipulator with a more refined rule base.................................. 130
Figure 4.4-4: In contrast to previous experiments .. 131
Figure 4.4-5: The application of the fuzzy-based strategy to a 3-link manipulator................ 132
Figure 4.4-6: A three-link manipulator which avoids moving obstacles................................ 133
Figure 4.5-1: The MA2000-manipulator steered by the fuzzy-control system....................... 135
Figure 4.5-2: (top left) The manipulator is steered by the fuzzy navigator. 136
Figure 4.5-3: Depiction of the motion of the real manipulator... 137
Figure 4.6-1: Training of the fuzzy controller in the fuzzy unit of link l2. 141
Figure 4.6-2: Training of the fuzzy controller in the fuzzy unit of link l2. 142
Figure 4.6-3: A typical training sequence where the fuzzy navigator “learns” 144

List of Tables ix

List of Tables

Table 2.4-1: C-space co-ordinates and constants of the four manipulator types...................... 26
Table 2.4-2: The inverse kinematics equations for the four different arm types...................... 26
Table 2.5-1: The look-up table shows the list for subarm Si.. 30

Table 3.4-1: Two-dimensional neighbourhood template ... 65
Table 3.6-1: Comparison of running times. ... 85
Table 3.6-2: Execution times for grids of different sizes under MATLAB. 89
Table 3.7-1: Comparison of different update orders. ... 106
Table 3.7-2: Comparison of the A*-algorithm and the To&Fro algorithm............................ 107

Table 4.3-1: The fuzzy rule base for robot navigation. .. 119
Table 4.3-2: The fuzzy rule base for the most distal link ln . .. 126
Table 4.4-1: The fuzzy rule base for a two-link manipulator... 134
Table 4.6-1: Initial rule base based on common sense rules. ... 143
Table 4.6-2: Rule base after training. ... 143

List of Tablesx

Chapter 1

Introduction

A variety of definitions of the notions “robot” and “motion planning” can be found in
literature (see for example [Lee96 and references therein, Gupta92, Ralli94, Latombe91]). In
general terms, a robot is considered to comprise an intelligent, versatile mechanical structure
or body whose movements are steered by a controlling apparatus (nowadays usually a
computer). Robots are expected to accomplish their tasks in a real world, a fact that brings
about the important problem of motion planning which takes into account the inevitable
interactions between the robot and objects in its environment. Basically, motion planning is a
process which is concerned with finding a sequence of configurations from a start to a goal
configuration, thereby avoiding collisions with objects in the robot’s workspace.

Motion planning for robotic manipulators is a research field which has long fascinated
researchers from a diversity of backgrounds [Latombe91]. Mechanical and electrical
engineers, computer scientists, mathematicians, physicists, and more recently, neural
networkers, experts in fuzzy logic, biologists and brain scientists have been developing
algorithms and methods with the aim to create intelligent and autonomous robots. However,
so far emphasis has been mainly placed on theoretical and simulation-based studies, while
real-world research work is still in its infancy. The evaluation of developed methods in real-
world experiments is often neglected by scientists, leaving a niche for the more practically
oriented researcher.

Robotic motion planning can be divided into two areas: global path planning, and local
navigation.

Global path planning usually makes use of a state space or map which, for example,
describes valid and forbidden manipulator configurations (see [Lozano83, Latombe91] and
Section 1.2.2). A path planner is then concerned with the searching of a path inside the region
of valid configurations, thereby connecting a start state with a goal state. A global planner is
one which stops searching when either a path is found or it is shown that no such path exists
(see Section 1.2.3).

While global path planning strategies carry out their computation prior to the robot
movement, local navigation techniques commonly work on-line. The navigator is
programmed to compute an actuation command in reaction to the information acquired by
external sensors viewing the environment in the manipulator’s vicinity. Usually, a navigator
provides reactive behaviours, such as “avoid obstacles” and “reach target”. Due to their very
short response time, local navigation techniques are commonly used to steer robots in
dynamic or uncertain environments (see [Lee96, Brooks86] and Section 1.2.4).

This thesis proposes and investigates novel motion planning strategies for robotic
manipulators which fall within the areas of global path planning, and local navigation. This
document is structured into five chapters.

Chapter 1 - Introduction
The sections of this introductory chapter describe the methodology of the thesis and,

through an overview of research work conducted in the field of robot motion planning, place
the thesis in context. The introduction concludes with a summary of contributions made.

1.1 Methodology2

Chapter 2 - Workspace to C-space Transformation
Chapter 2 presents a novel technique based on a radial-basis-function (RBF) neural

network to compute the configuration space (C-space) of manipulators. This space which
contains the valid and forbidden manipulator configurations can serve as an input to a global
planning strategy. The neural network is trained to react with a so-called C-space pattern to an
obstacle point in workspace. Multiple accesses of the network allow the rapid construction of
the complete C-space. Experiments with real and simulated manipulators are presented.

Chapter 3 - A Neural Resistive Grid for Path Planning
Chapter 3 introduces a global path planning strategy which is based on a neural

implementation of a computer-emulated resistive grid. A new update method which is
particularly well suited for manipulator path planning is presented and compared to other
planning algorithms. Extensions of the original strategy include planning in non-topological
maps and the incorporation of a “soft” safety margin. The strategy has been applied to
different manipulators in a range of real and simulated environments.

Chapter 4 - Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators
Chapter 4 proposes a fuzzy-based navigator for robotic manipulators. This reactive

system combines goal directed behaviour with obstacle-avoidance behaviour to manoeuvre a
manipulator in static as well as dynamic environments. The rule base of the navigator has
been constructed using different methods - common sense, trial and error, and learning rules.
The navigator’s implementation and functioning is described and demonstrated by means of
simulations, and real-world experiments.

Chapter 5 - Conclusions and Future Work
Chapter 5 summarises and evaluates the results of this research work and, moreover,

suggests directions for further research.

1.1 Methodology
This thesis puts great emphasis on the development of algorithms which can be applied

to physical manipulators. Most of the techniques and strategies developed here have been
successfully tested on real manipulators.

The experimental robot system used was the MA 2000 manipulator1. The original
control unit had been replaced by a transputer network consisting of a number of transputers
arranged on separate boards [Graham90], and hosted by an IBM-compatible PC. One of the
boards, called the port, has been specifically designed to communicate with the manipulator
[Higgins88]. The port is connected via a two-directional interface with the manipulator. The
network transmits pulse-width-modulated control signals to the interface which amplifies
those signals and feeds them into the joint motors. The interface receives the analogue joint
potentiometer values, converts them into digital ones, and sends the latter to the port of the
transputer network. Since the user of the system can directly control the manipulator’s motors
and read the joint configurations, routines can be developed to do low level control [Azhar93,
Fraser93] as well as path planning [Althoefer95d, Althoefer95e]. Details on the control

1 The MA 2000 manipulator has been originally developed by TecQuipment Ltd. for Open University
courses in manufacturing and robotics.

1 Introduction 3

interface and the communication software in the port-transputer can be found in the appendix
of [Althoefer94b].

The path planning experiments, as described in Chapters 2 and 3, have been carried out
off-line on an IBM-compatible PC. The image of the workspace was acquired by a CCD-
camera which was connected to a specialised image grabbing board [Jaitly96c]. The resulting
trajectory has been then downloaded to the transputer network which steered the manipulator
(for results, see Chapters 2 and 3). The real-world experiments concerning the fuzzy-
navigation have been carried out entirely on the transputer network [Zavlangas96].

Notwithstanding the importance of real-world experiments, the advantages of
simulations should not be underestimated. New algorithms can be tested in a virtual
environment prior to the real test thereby avoiding unnecessary damage of expensive
equipment and often speeding up the development process. For example, the use of a
simulator was essential for the training of the fuzzy navigator. At the start of the training, the
navigator’s rule base was initialised with random values, and the manipulator performed
arbitrary movements which resulted in “virtual” collisions with the simulated obstacles.
Reinforcement learning rules were formulated in such a way that the navigator’s commands
quickly adapted to the environment and provided collision-free manipulator movements (see
Chapter 4).

Simulation experiments have been carried on an IBM-compatible PC using the software
package MATLAB, Version 4.0.2 Those simulations were on models of the MA 2000 as well
as on manipulators with “stick-like” links with zero-width. MATLAB is a powerful signal
processing tool which enables researchers quickly to convert their ideas into executable
programs and to visualise the results employing the advanced graphic routines. Moreover,
real-world data can be imported and computation results can be exported. Both these features
have been often utilised in this research work. This meant that data recorded from the
MA 2000 were incorporated into the simulations, while the results of the simulations
regarding the MA 2000 were depicted graphically, and applied without further modifications
to the real manipulator system. The MATLAB-add-on package, Simulink as well as the
Signal-Processing-WorkSystem by Alta Group of CADENCE Design Systems - both block-
oriented programming tools - were valuable to get acquainted with neural network and fuzzy
paradigms (see also [Althoefer93, Althoefer94a]).

The project concerning the image-based workspace to C-space transformation described
at the end of Chapter 2 was the result of a collaboration with R. Jaitly (Dept. of Electronic and
Electrical Eng., King’s College London). The neuro-resistive grid which has been thoroughly
investigated and further developed as described in Chapter 3 is based on work of and
collaboration with G. Bugmann (School of Computing, University of Plymouth). The real
world implementation of the fuzzy navigator (Chapter 4) was carried out during an MSc-
project under D. Fraser’s (Dept. of Electronic and Electrical Eng., King’s College London)
and the author’s supervision. The MSc-student was P. Zavlangas (Dept. of Mechanical Eng.,
King’s College London). The manipulator system had been improved by F. Azhar as well as
T. Higgins (both Dept. of Electronic and Electrical Eng., King’s College London).

2 MATLAB is produced by The Mathworks Inc.

1.2 Constructing the C-space, Global Path Planning, Local Navigation: An Overview4

1.2 Constructing the C-space, Global Path Planning, Local
Navigation: An Overview

1.2.1 Manipulator Motion Planning
Articulated machines have revolutionised industrial processes, especially in the

manufacturing sector. They are known for their indefatigable effort to assemble mass
products, such as cars or electronic equipment. Strictly speaking, these machines are not
considered robots, since they are not intelligent. Generally, they accomplish a task in a
structured environment by executing a pre-recorded sequence of motions that have been
previously taught by a human operator (see Chapter 3). With the need to increase the
flexibility of mass production equipment in order to be able to adapt more quickly to changing
consumer markets, but also with the desire to open up new application areas, research pursues
the goal to construct robots which ultimately carry out specific tasks without further human
interventions.

At present, one of the main areas research is focusing on is concerned with the operation
of robots in terrains where human access is restricted, mainly because of health risks.
Telerobotic is a research field which becomes increasingly important. New application areas
are hazardous environments such as nuclear decommissioning (for example in a nuclear plant
[Racz92]), manipulation of toxic chemicals or contagious medical samples, operation of toxic
waste tips, land mine disposal, painting tasks, subsea exploration, and space experiments
[Ralli96]). Telerobotic has experienced a tremendous boom with the development of the
Internet which supports the communication between computers world-wide. Some initial
installations running at the moment allows any Internet user to operate a camera equipped
mobile robot [http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/Xavier/], the manipulator
TeleRobot at the University of Western Australia [http://telerobot.mech. uwa.edu.au/cgi-
win/telerobt.exe], a robotic telescope at Bradford, UK [http://www.eia.brad.ac.uk/eia.html], a
remote live telerobotic camera in Almeda California, USA [http://citynight.com/camera], etc.
The user of a World-Wide-Web browser can send control commands to position the telerobot
and usually receives imagery data acquired by a camera mounted on the robot. Since the
user’s commands usually are high level commands path planning and sensory guided obstacle
avoidance plays an important role in those Internet experiments.

Path planning also becomes increasingly useful in areas, such as virtual reality
[Klawsky93], and computer controlled games.

Another field which is increasingly attracting interest from researchers is concerned
with the investigation of the close collaboration of humans and robots. In particular, the
application of robots in the domestic sector (for example cleaning services, support of the
disabled, delivery and distribution services) is gaining ground. In these applications, a very
precise motion [Morasso95] is often not necessary as a more coarse planning system which
provides a rough plan prior to the robot’s motion is generally sufficient. The computed motion
is adjusted to the environmental changes which are usually provoked by a human. Increasing
concern about safety issues has prompted the emergence of safety engineering [Redmill95,
Zicky95], and recent efforts in this field aim at proving the reliability and predictability of
neural networks, fuzzy controllers and expert systems in safety critical applications
[Morgan95, Helliwell95, Johnson93].

1 Introduction 5

1.2.2 The Computation of the C-space and the Building of Maps
Many path planning strategies developed so far make use of the robot’s configuration

space, a space where the robot is represented by a particle [Latombe91 and references therein,
Althoefer95d, Althoefer95e, Bugmann95, Ralli96, Glasius94, Connolly90, Tarassenko91]. To
employ the configuration space concept in a real-world path planning task mapping the
geometry of the task into the configuration space becomes necessary [Latombe91]. This
transformation process has been also denoted FindSpace [Lozano87]. A variety of methods
has been developed over the last two decades to accomplish this often highly non-linear
transformation of the workspace obstacles into the C-space counterpart [Lozano83, Lozano87,
Latombe91, Althoefer95c, Newman91, Branicky90, Maciejewski93, Gupta92]. Despite their
diversity, these methods have one thing in common: the C-space is a discretised map or a
graph whose nodes represent the manipulator’s configurations. Map nodes which represent
collision-free robot configurations contain a different value than those nodes which represent
collisions. Some approaches use a multi-valued logic incorporating a description of
configurations which are uncertain [Latombe91, Siemiatkowska94b]. Those maps can be
metric maps (as used in most experiments of this thesis) or topological maps [Lee96]. It has
been reported that solving the path planning problem in its generality is almost intractable (see
[Ralli94]). Every planning strategy has to be adapted to the particular problem. However,
employing the configuration space generates some kind of generalisation, since any strategy
which solves the planning problem for a point robot can be utilised in such a space.

There is a great difference between the approach to constructing a map for mobile robots
and to building a map for manipulators. Especially recently, explorative methods inspired
mainly by animal research have been found to be a good means of generating such maps
representing the environment of mobile robots [Sutton90, Lee96, Zimmer94]. These methods
assume that the environment is to a great extent static and the map is still valid when the robot
returns to an area visited earlier on. To be able to perform some movements while moving in
unknown terrain, the mobile agent is additionally equipped with a behavioural-based control
mechanism which supplies commands, like goal-directed commands, wall-following
commands, obstacle avoidance and similar (see for example [Lee96, Tschichold96]). Once the
map is built, the robot can invoke a planning strategy to find a path from its current position to
a goal position. One of the problems with this approach is that it is often difficult to decide
when to switch from one strategy to another [Lee96]. An alternative approach models robot
and environment. Instead of moving the physical robot, exploration and map building takes
place in the simulated world. The latter approach tends to be faster, but of course, presumes
that a model exists. Combinations of the two aforementioned approaches have been also
proposed (see for example [Sutton90]).

 However, the exploration of the robot’s workspace is a very time-consuming process.
Path planning can be performed reliably only if obstacles do not move after the map has been
built. In an extreme case, a moved obstacle may close the gap through which the planner
proposed a path, and another lengthy exploration phase may be required to construct a new
path. Most useful, as reported in [Lee96], is the combination of planning in the map and a
reactive behaviour with emphasis on the latter. Explorative strategies for manipulators are
only sensible in static environments [Ritter92] or useful in solving docking problems which
require fine movements that usually cannot be computed in discrete maps (see for example
[Rucci93]).

Intelligent manipulators are expected to manoeuvre in possibly changing environments.
Preferably, the time to execute tasks should not be drastically prolonged by the planning

1.2 Constructing the C-space, Global Path Planning, Local Navigation: An Overview6

program. It is an advantage that the manipulator’s workspace is confined to a relatively small
area, if compared to the possibly very huge workspace of a mobile robot. A representation of
this kind of workspace can be acquired for example by a camera or a multi-camera system.
From this information a C-space can be calculated [Lozano87, Jaitly96b].

Traditionally, the configuration space of manipulators is computed algebraically. In
order to facilitate the calculation of intersections between obstacles and manipulator links, all
objects involved are represented by simple polygonal or polyhedral objects (see for example
[Lozano87, Gupta92, Latombe91, Hwang90, Winkelmann96]). The constructed discrete C-
space is made up of cells for each joint denoting valid and forbidden configurations.

An alternative purely numerical approach was proposed by Newman et al. [Newman91].
Their method is based on the transformation of obstacle points in a discrete workspace
representation (for example the pixels in bitmap image acquired by a camera) into a discrete
C-space pattern. This method exploits the symmetry inherent to most modern manipulator
types (see also Chapter 2). Multiple computations allow the fast mapping of complex
obstacles. The advantage of the numerical approach over the analytical method is that the C-
space patterns can be constructed in such a way that they describe in exact terms the C-space
region which corresponds to all collisions between the manipulator in use and an obstacle
point. Any of these C-space patterns which are stored in a look-up table is accessed on the
occurrence of a point obstacle in workspace [Newman91]. The original method has been
extended by Althoefer et al. to allow the C-space construction for redundant planar
manipulators with a high degree of freedom (DOF) for manipulators with revolute as well as
prismatic joints, and for manipulators which comprise a combination of the two joint types
[Althoefer94, Althoefer95, Althoefer95b, Althoefer95c]. The storage of the patterns in a
neural network proved to need little memory (see [Althoefer95c] and Chapter 2).

Recently published research suggests the use of Kohonen networks (also called self-
organising feature maps) for robotic applications. Ritter et al. suggest an extension of the
Kohonen network which learns the inverse kinematics of a robotic manipulator just from the
output of cameras which observe the manipulator moving arbitrarily in workspace (see
[Ritter92] and see also [Kuperstein91, Mel95] for other neural network architectures which
learn the inverse kinematics of a manipulator by example). The network by Ritter et al. needs
many thousand training cycles until it successfully associates the positions of the
manipulator’s end effector with the appropriate joint configurations. Their work concerns
itself with simulated manipulators only. Further work has been proposed by Zimmer et al.
[Zimmer94, Zimmer94c]. Their work is mainly related to the constructing of maps for mobile
robots. An explorative phase is needed to build the map which automatically expands when
new regions are discovered. This method also suffers from long training cycles.

1.2.3 Global Path Planning in C-space
Having reviewed the work concerned with the computation of a configuration space,

this section presents an overview of planning methods in the configuration space, also denoted
FindPath [Lozano83].

The most popular methods which make use of a robot’s configuration space are road
map [Latombe91] and cell decomposition methods [Gouzenes84]. In the road map technique a
list of all possible paths between the given obstacles is generated and stored. After this list or
road map is created, it can be used as a set of the standardised paths. The path planning
procedure in this case entails choosing a subset of concatenated paths from the list which
connect start and goal configuration. The visibility graph method is based on road maps and

1 Introduction 7

usually applied to two-dimensional spaces where obstacles are represented by convex
polygons. The list contains all straight line connections between vertices of obstacles which
do not intersect with any obstacle. An extension of the visibility graph to 3D has been
proposed recently [Jiang94]. His method finds the shortest path, if any such exists, in 3D-
configuration space with convex polyhedral obstacles. Any found path leads along the edges
of obstacles, i.e., it is semi-free and therefore not safe for some implementations. The use of
this method for manipulators with three degrees of freedom is restricted owing to the fact that
C-space obstacles of manipulators have complex shapes which cannot be easily described by
polyhedral forms (see Chapter 2). Other road map methods are: Voronoi diagram, freeway net
and silhouette method (see [Latombe91] for an overview).

Cell decomposition methods decompose the free area of the configuration space into
small cells located between the obstacles. The cells are made so small that path finding inside
the cells can be contrived with a simple algorithm (usually along a straight line). The cells of
the free space are placed as nodes in a graph (connectivity graph) which represents the
adjacency relation between the cells [Latombe91]. Two nodes are connected via a link if the
link crosses one cell or one boundary. From the graph, a sequence can be easily extracted
which describes a collision-free path between start and goal configuration. Cell decomposition
methods can be either exact or approximate. Employing exact cell decomposition methods,
the free space is divided into cells of different shapes. The union of these cells covers the free
space completely. Two cells are adjacent if they share a boundary. Connectivity graphs are
usually constructed through the centre points of the shared boundaries. A path or channel can
be constructed along the stored graph nodes. Approximate cell decomposition is a numerical
method which produces cells of defined shape (for example rectangloids) whose union is
strictly included in the free space. A configuration space is initially bounded by a rectangloid.
In case of a two-dimensional C-space, the rectangle is recursively divided into four rectangles.
This type of decomposition is called quad-tree because it can be represented by a tree of
degree four (oct-trees are used for three-dimensional configuration spaces). Decomposition
continues until a path can be constructed through cells which lie entirely in the free space.
Usually, approximate cell decomposition methods are implemented in a hierarchical way. At
first the space is divided by means of a rather coarse resolution which is then increased until a
path is found or a resolution limit is attained [Latombe91]. Being not sensitive to obstacle
shapes, the approximate cell decomposition can be applied to a manipulator’s C-space.
However, its computational complexity is sensitive to the obstacle distribution; a crowded
obstacle distribution may be especially computational expensive. It has been reported that the
cell decomposition methods are only tractable for robots with small degrees of freedom
[Barraquand91].

The search for a path in the graph or tree generated by above methods is usually carried
out by employing a graph search method, such as the A*-algorithm. The neuro-resistive grid
presented in Chapter 3 can also be used to search such a graph.

Latombe et al. proposed numerical potential field techniques [Latombe91,
Barraquand92] and the “distributed representation approach” [Barraquand91] which make use
of the robot’s workspace and its configuration space. Since the basic potential field approach
[Khatib86] on which their work is based can get stuck in local minima, Latombe et al. added
some costly strategies (for example random search techniques) which turned the algorithm
into a global one. Although, the algorithm is able to handle robots with many degrees of
freedom, their planners seem sometimes to overlook the most obvious and seemingly shortest
route towards the goal. Their planners are very complex and specifically adapted to particular
robots [Latombe91]. Their published research results refer to line robots only.

1.2 Constructing the C-space, Global Path Planning, Local Navigation: An Overview8

Recently, the use of discrete harmonic functions have been suggested for solving the
path planning problem for robots and manipulators [Conolly90, Connolly93, Tarassenko91,
Bugmann95, Althoefer95e, Kim91]. These functions overcome the main disadvantage of
potential field methods by providing solutions with one unique solution only. Resistive grids,
those emulated on computers [Conolly90, Bugmann95, Althoefer95e] as well as those
implemented in hardware [Marshall94, Tarassenko91] can be employed to compute solutions
to harmonic functions (see also Chapter 3). The analytical computation of harmonic functions
has been studied by Tarassenko et al. [Tarassenko91]. This work is only applicable to very
simplified (for example circular) obstacles and, therefore, not useful to construct a path among
the highly-irregular shaped C-space obstacles of manipulators (see also [Wolf68]). Especially
the hardware implementations of a resistive grid is expected to provide a tremendous speed up
in planning time [Marshall94, Tarassenko91].

Chapter 3 of this thesis focuses on aspects of path planning in a resistive grid. A variety
of planning strategies based on discrete maps have been developed by other researchers which
prove to be very similar to the grid-based approach. Those strategies can be described as
extensions of the dynamic programming method proposed by Bellman (see [Bellman57] and
Chapter 3). One offshoot commonly employed in robotics is the A*-algorithm [Latombe91
and references therein]. Further path planning methods with similar properties are called:
Hopfield-type networks [Glasius94, Kassim95], cellular neural networks
[Siemiatkowska94b], numerical potential field techniques [Ralli94], distance transforms
[Lee96, Boult90, Mckerrow91]. Different update methods are employed to generate an
activity distribution over the map. The gradient of this distribution can be exploited to
construct a path from a start configuration to a goal configuration. All these techniques are
resolution complete, that is, a path is found, if one exists in the discrete space (for details see
Chapter 3).

Path planning strategies which make use of a configuration space representation have
been criticised for their complexity and exorbitant memory requirements for high-dimensional
robots. Recent papers, however, show that C-space-based path planners can be used to
effectively plan paths for 6 DOF-manipulators on single-processor computers [Ralli94]. With
the on-going developments in the area of parallel computers, further improvements in terms of
transformation speed are expected. Parallel processing is especially suitable for the
transformation technique proposed in Chapter 2 of this thesis.

1.2.4 Local Navigation
Ideally, a robot should perform its tasks quickly and the speed of its moving parts should

be only limited by the robot’s inherent properties (like torque of actuators, friction in joints
and gears, weight and inertia, etc.). This challenging aim can (if at all) be reached in an
environment where not only the initial locations of obstacles are precisely known, but also
their locations versus time. This is rarely the case in non-industrial applications. On-line
navigation and obstacle avoidance techniques represent an interesting approach to tackle this
problem. These techniques can deal with moving obstacles as well as uncertain environments.

Khatib pioneered the artificial potential field methods implementing a collision
avoidance algorithm for mobile robots and manipulators operating within a dynamic
environment [Khatib86]. This method has been mainly employed as an on-line method for
local navigation and obstacle avoidance, but has been also influential to planning
[Latombe91]. For example, offsprings of this method are the path planning techniques
designed by Latombe et al. (see previous section and [Barraquand92]). Khatib’s algorithm

1 Introduction 9

essentially uses two potential fields which are superimposed: the first field surrounds the
target and its gradient can be interpreted as an attractive force on a point-sized robot, while the
second field which is active in the vicinity of obstacles exerts a repelling force on the point.
Superimposing the two fields creates a potential distribution (not to be confused with the
potential distribution in a resistive grid) which can be employed for moving a robot without
collision towards a goal state when the geometry of the problem does not contain local
minima [Khatib86, Latombe91].

Brooks initiated the research in the field of behaviour-based or reactive navigation
[Brooks86]. His well known navigation system is called subsumption architecture. The main
principles of his work (which should be employed to produce simple, robust and cheap robots,
as he has said) are a collection of modules which are interconnected on different layers with
different hierarchies. These modules are for example wall following, obstacle avoidance, goal
reaching, etc. Depending on sensory input, a module becomes active and generates a
command for the robot. His work and the one of his successors is almost exclusively applied
to mobile robots (see for example [Handelman90]).

Fuzzy-based obstacle avoidance and navigation for mobile robots can be seen as an
extension of Khatib’s and Brook’s work [Althoefer96, Reignier93, Tschichold96]. In a fuzzy-
based robot navigator, rules such as those suggested by Brooks are integrated into the
navigator’s rule base. The similarity to Khatib’s approach becomes clear when one considers
that some of these rules exert an attracting influence on the robot, while others exert a
repelling influence.

While Brooks’ system resembles an expert system where for any input signal one
specific reaction module or a specific combination of modules is active, the fuzzy approach is
a parallel processing approach and each input contributes to the final decision [Kosko92,
Tschichold96, Althoefer96]. Additionally, owing to the fuzzyfication stage inherent to all
fuzzy controllers, a mode of approximate reasoning is introduced which allows the controller
to deal with vague and incomplete input data. This becomes particularly important when
dealing with imprecise information from sensors [Hoffmann96, Lee96].

 Neural network learning methods ([Reignier94, Kosko92] and Chapter 4)) and genetic
algorithms [Hoffmann96] have been adapted to train the parameters of fuzzy navigators. In
contrast to neural network approaches, including those used for robot navigation [Sharkey96],
the rule base of a fuzzy controller is interpretable. Two main advantages follow from this.
Firstly, training can start from a rule base which has been set up by common sense rules. This
reduces training time and provides a reasonably good behaviour of the controlled system
already at the beginning of the training. The latter aspect is important, if training is to be
carried out on a real-world system, since any damage of equipment should be avoided.
Secondly, the rule base is humanly understandable even after training and can be further
modified if necessary.

Reports on recent advances in fuzzy and neural-network based navigation and obstacle
avoidance for mobile robots can be found in the following publications [Reignier93,
Tschichold96, Roth93, Maier95, Song92, Maties94, Hoffmann96, Skubic93, Mitchell96].

The disadvantage of local navigation methods in general is the occurrence of local
minima, a fact which occasionally causes them to fail to reach the goal configuration
[Millan92]. One possibility of overcoming this problem is to construct a hybrid system where
a path planner and a navigator are combined [Latombe91, Tschichold96]. For example, a
global planning strategy provides off-line a coarse trajectory prior to the executed motion,

1.3 Contributions made by this Thesis10

while on-line a local navigation is employed to refine this trajectory and to adapt to a changing
and uncertain environment. Another approach is to initially attempt to find a path using a local
method and to switch to a more global strategy only in cases where this method fails.

1.3 Contributions made by this Thesis
This thesis describes an experimental investigation into the complementary issues of

global path planning and local navigation for robotic manipulators. The contributions of this
research are:

• The development of a neural-network-based workspace to configuration space
transformation technique for robotic manipulators with revolute joints; the extension
of the technique to compute the transformation for planar manipulators with n links
as well as for manipulators which with revolute and prismatic joints;

• The development of an effective update method which rapidly generates an activity
distribution in a computer emulated resistive grid in order to plan paths in the
configuration space of manipulators;

• The design of a novel fuzzy-based navigation system for robotic manipulators;

• Application of above methods to a physical manipulator and thorough evaluation of
their real-world feasibility in different environments.

Chapter 2

Workspace to C-space Transformation

This chapter proposes a novel neural network architecture based on asymmetric second-
order B-spline functions to rapidly transform the representation of a manipulator's workspace
into a configuration space (C-space) representation. This transformation becomes necessary
in real-world path planning applications which employ the manipulator’s configuration space.
The C-space of a manipulator is usually the space spanned by the arm’s joint parameters. Any
point in this space represents a configuration which either denotes a collision between the
manipulator and a workspace obstacle or is collision-free. Many path planning strategies
developed up to today make use of the C-Space, since the motion planning for the complex
manipulator structure is transformed into the planning for a single point in C-space.
(Figure 2.4-1 and Figure 2.4-2 show a typical C-space for a single point.)

The B-spline functions network, which is a offshoot of the family of radial-basis-
function (RBF) networks, transforms obstacle primitives occurring in the robot's workspace
representation into a corresponding C-space representation, called C-space pattern. The focus
of this chapter is on the transformation of the most fundamental primitive, the point obstacle.
The complete configuration space representing all valid and all forbidden configurations can
be obtained by repeatedly computing C-space patterns for these elementary obstacle points.
The neural network is trained to recognise those obstacle primitives and to respond with the
associated C-space patterns. During training the network's output is compared to new,
unknown patterns, and wherever the interpolation error is too high, the network structure is
expanded by new nodes. The interpolating features of the B-spline function network are
exploited to achieve a good approximation for untrained patterns.

 This chapter is organised as follows: Section 2.1 gives an introductory description of
the workspace to configuration space transformation technique. An overview of related work
in Section 2.2 is followed by a description of the general aspects of the configuration space of
robotic manipulators in Section 2.3. Section 2.4 describes the mapping of obstacle primitives
situated in the workspace of two-link manipulators into a configuration space representation.
In Section 2.5 the technique is expanded to include manipulators with n links. A neural
network implementation is presented in Section 2.6. A simulation of a three-dimensional
manipulator is presented in Section 2.7. The application of the network-based technique to
real-world data recorded from an experimental manipulator is described in Section 2.8. A
summary of this chapter is given in Section 2.9

2.1 Introduction
Moving a manipulator from a start configuration to a goal configuration in a workspace1

cluttered with obstacles demands path planning. Path planning can be carried out effectively
in the configuration space (C-space). The C-space of a manipulator is generally the space
described by the variable joint parameters, such as the rotation angle or slide position. The C-
space is divided into two subspaces: the C-obstacle region and the C-free region. The C-
obstacle region represents the constraints imposed on any part of the manipulator

1 The workspace is the description of the area which can be reached by any part of the manipulator.

2.1 Introduction12

[Newman91, Latombe91]. This region which can be regarded as a forbidden region describes
collisions between the robot and obstacles as well as collisions between parts of the robot. The
C-free region is the region in which the robot can navigate safely. In C-space, each of the
robot’s configurations is represented as a single point, thus, the path planning for the complex
structure of a robot is transformed into the planning for a point [Lozano83, Lozano87,
Latombe91, Branicky90, Newman91, Maciejewski93, Fox92, Fox94]. Many path planning
and obstacle avoidance techniques which make use of the C-space have been developed (For
example see [Latombe91, Barraquand91, Bugmann95, Althoefer95e, Ralli94] & Chapter 3).

Any real-world path planning system that makes use of the configuration space depends
inevitably on a transformation process which maps the workspace representation, usually
acquired by sensors (such as range finders or camera systems [Indyk94, Jaitly96b]) into a C-
space representation. The overall planning time of such a path planning system depends not
only on the time spent on planning, but also on the time spent on transforming the workspace
into the configuration space. The configuration space transformation can be a time consuming
process [Newman91, Lozano87, Latombe91]. To perform path planning in a real-time
application, a fast and efficient transformation method becomes necessary (see Section 2.6.1).

This chapter presents a technique by which a workspace representation is rapidly
transformed into its C-space counterpart. This technique is based on the most fundamental C-
space transformation which originates from avoiding a workspace obstacle point
[Branicky90]. The C-space obstacle (see Section 2.4.2) that corresponds to a workspace
obstacle point is called here a C-space pattern. An obstacle in a workspace can be described
by the union of a set of points. The corresponding C-space obstacle is the union of the C-space
patterns corresponding to all those obstacle points. Thus, multiple point transformations allow
the transformation of any workspace obstacle into the corresponding C-space obstacle
[Newman91].

The transformation of workspace obstacle points into C-space patterns is highly
nonlinear for manipulators with revolute joints2 [Althoefer95, Althoefer95c]. This chapter
focuses on the obstacle point transformation for two-link revolute robot arms. This basic arm
type is part of commonly used industrial manipulators (see [Newman91] and Figure 2.1-1
(middle) and (right)) and can be expanded to compute the C-space patterns for redundant
manipulators with n planar links (see Figure 2.1-1 (right) and Section 2.5). Due to the
symmetrical properties of such manipulators, any obstacle point on a circle around the
manipulator’s base causes a C-space pattern with identical shape. Thus, the shape of C-space
patterns depends only on one feature: the distance between the manipulator’s base and the
obstacle point. Here, each such C-space pattern is discretised into a set of vectors where each
vector denotes a forbidden configuration in C-space (Section 2.5).

Section 2.6 of this chapter proposes a neural network architecture to transform
workspace obstacle points into distinct C-space patterns [Althoefer95, Althoefer95b,
Althoefer95c]. This network architecture is a radial-basis-function (RBF) neural network
[Brown94, Bishop95, Bose96]. Instead of using Gaussian functions in the “receptors” of this
network type as commonly done, the network here employs triangular (second order B-spline)
functions which allow a piece-wise linear interpolation of the input space (see Section 2.6 and
[Brown94, Althoefer95c]). The neural network receives at its input a stimulus which
represents the distance between the manipulator and the obstacle point in workspace. The
network is trained to output a discretised C-space pattern in response to such an input

2 Revolute joints represent a rotatory connection between two manipulator links.

2 Workspace to C-space Transformation 13

stimulus. A newly developed training procedure adapts the network size to the underlying
problem (see Section 2.6.2 and [Althoefer95c]). The RBF network interpolates smoothly for
those input points which are not part of the stored data set [Althoefer95, Althoefer95c,
Brown94].

Finger (l3)

Elbow link (l2)

Shoulder
link (l1)

Axis of
joint g1

Axis of
joint g3

Axis of
joint g2

joint 3

joint 6
joint 5

joint 4

joint 2

joint 1

joint 1

joint 4

joint 3

joint 2

400

400

650

Figure 2.1-1: (left) The MA 2000 manipulator; (middle) The Puma manipulator (from
[Chien95]); (right) Redundant SCARA robot RedRob (from [Risse95]).

The feasibility of the proposed technique is demonstrated by considering the workspace
to C-space transformation for the experimental manipulator, MA 2000 (see Figure 2.1-1 (left)
and Appendix A). The MA 2000 has a kinematic structure which is similar to the structure of
many standard industrial manipulators, such as Unimation Puma robots (see Figure 2.1-1
(middle)). In particular, the B-spline functions network has been used to calculate the
configuration space of the shoulder and elbow link of the MA 2000 (Section 2.8.1).
Furthermore, the network has been applied to a planar three-link revolute manipulator (see
Section 2.7). The latter experiment clearly shows that the technique can be extended to
manipulators with more than two links (see also Section 2.5). Section 2.4.3 demonstrates that
the technique can be also applied to manipulators with prismatic joints3, and to manipulators
with a combination of prismatic and revolute joints (see also [Althoefer95b]).

2.2 The Configuration Space in Context
Obviously, each configuration of a physical manipulator with n links can be represented

by a single point, or particle, in an n-dimensional C-space; this means that a robot of the size
of a particle moves among transformed C-obstacles. This change of representation makes
possible the use of path planning strategies which mimic physical events like the distribution
of an electrical field in a charge-free space or a current flow through a conductive medium
(Chapter 3).

3 Prismatic joints constrain the links to a translational motion.

2.2 The Configuration Space in Context14

The concept of shrinking a complex robot to a point in a suitable space has been
originally proposed by Udupa (see [Latombe91 and references therein]). Lozano-Pérez and
Wesley further developed this idea and established the name “configuration space”
[Lozano79]. The work of Lozano-Pérez et al. is often referred to as the first contribution to
exact motion planning [Latombe91]. Based on the C-space approach, Lozano-Pérez developed
path planning algorithms for robots among polygonal and polyhedral obstacles, and,
furthermore, introduced the principles of approximate cell decomposition [Lozano83,
Lozano87]. Since the introduction of the C-space approach many researchers have contributed
to this area. For an overview see [Latombe91].

Lozano-Pérez distinguishes between two subproblems in his path planning approaches:
(1) the FindSpace problem and (2) the FindPath problem [Lozano87]. The former is about
generating collision-free or safe configurations, while the latter is concerned with finding a
series of safe configurations which represent a collision-free path for the manipulator. C-space
is a valuable tool to do path planning [Newman91, Latombe91, Lozano87]. However, its
construction usually entails a great computational effort, often neglected by research. Thus,
the development of fast methods to transform a workspace representation into its C-space
counterpart is an important issue of research [Branicky90, Newman91, Althoefer95c,
Latombe91].

The construction of the C-space is distinct from path planning. However, the
transformation of the workspace into C-space can be used as a pre-processing step in many
motion- or path-planning strategies (for example see Chapter 3 and [Althoefer95e,
Bugmann95, Latombe91, Lozano87, Gupta90, Gupta92, Ralli96]). Not every path planning
strategy calls for an explicit calculation of the configuration space. Collision detection might
be evaluated along paths found in a non-complete C-space representation (see for example
Chapter 4 and [Khatib86, Barraquand91]). The technique suggested in this chapter is most
applicable to path planning strategies which require a precise and explicit representation of the
C-space. Obstacle-free regions in this C-space can be then searched for a path.

A common approach in constructing the configuration space is to use a simplified
workspace representation as a base for the transformation [Gupta92, Lozano87, Latombe91
and references therein]. Usually, obstacles and manipulator are replaced by simple polygonal
objects which enclose the original. Algebraic methods are employed to determine the
borderline between C-free space and C-obstacle space. Due to the crude representation of
manipulator and obstacles, this approach might produce an incomplete C-space which, for
example, does not contain a possible path which leads through a narrow gap between two
obstacles.

The C-space transformation suggested here is based on numerical calculations and
makes use of the correct geometry of the physical manipulator. It produces discrete C-space
patterns for obstacle points at varying locations. These C-space patterns have been acquired in
a pre-processing step where the manipulator is moved in such a way around a “point-sized”
obstacle, a circular rod, that there is at all times at least one contact point between the rod and
the manipulator. While tracing the rod, the manipulators internal joint sensors are constantly
read and the acquired values are stored by the connected computer system. The result is a list
whose entries denote all those joint angles which represent an almost-collision between the
manipulator and the rod, or in other words, the perimeter of the C-space pattern. Thus, the
recorded C-space patterns accurately reflect the shape of the particular manipulator. Since
each C-space pattern corresponds to an obstacle point in workspace, the quality of the
constructed C-space mainly depends on the resolution with which the workspace obstacles are

2 Workspace to C-space Transformation 15

discretised. The accuracy of the transformation also depends on the resolution of the discrete
C-space patterns.4 The proposed technique allows manoeuvring also in areas of the workspace
where obstacles are lying close to each other.

Although to a certain extent similar to the one described by [Newman91, Branicky90],
the technique suggested in this chapter uses a different method to store C-space patterns.
Newman et al. report that in one experiment the boundaries of the computed C-space patterns
were approximated by polygon boundaries and stored as a linked list of vertex co-ordinates; in
another experiment the discretised C-space patterns were stored in a bitmap-like fashion using
standard image compression techniques to reduce the memory requirements [Newman91].
The C-space patterns produced by the transformation technique proposed here is a list of
vectors. For a two-link manipulator such as the MA 2000 (Figure 2.1-1), a vector pair denotes
the centre line of the C-space pattern, while a third vector describes the width of the C-space
pattern which reflects the width of the manipulator links. This storage method results in a very
compact representation with little memory requirements. A further memory reduction is
achieved by employing a neural network to “store” the obstacle-point-to-C-space-pattern
relationship. The network is able to interpolate for C-space patterns which are not part of the
training set.

Since the shape of a C-space pattern only depends on the distance of an obstacle point
but not on its absolute location in workspace, the memory requirements for the look-up table
are extremely low compared to an approach which is based on a look-up table which contains
the C-space obstacle for every point in workspace [Chen92, Graf88].

Newman et al. report that their technique can be only applied to manipulators with
revolute joints [Newman91]. This chapter will show that the workspace to C-space
transformation technique can be also applied to manipulators with prismatic links and those
with a combination of revolute and prismatic links. Moreover, in contrast to the approach of
Newman et al., the technique described in this chapter can be extended to planar manipulators
with n links.

This chapter concentrates on the workspace to C-space transformation for planar
manipulators. However, the technique can be expanded and applied to certain types of three-
dimensional manipulators (for example Puma robots, SCARA robots etc.). These
manipulators have joints with parallel axes and a further joint whose axis is perpendicular to
the others. The expanded technique has been described by Newman et al. [Newman91,
Branicky90]. An example which shows the functionality of this approach is given in
Chapter 3, Section 3.6.

Since the transformation technique presented here transforms individual obstacle points,
it is especially suitable for workspace scenarios with a small number of obstacle points in it.
Changes in the workspace representation caused by a small number of moving obstacles in an
otherwise static environment can be dealt with in a particularly fast manner.

2.3 The Configuration Space of a Robotic Manipulator
A robotic manipulator A can be considered to be composed of n rigid links, with joint

connections between adjacent links. The algorithms presented in this chapter are applicable to
types of manipulators which have branching sections. However, for the sake of easier

4 The quality of the subsequent planning process also depends on the resolution of the discrete map
into which the generated C-space patterns are loaded (see Chapter 3).

2.4 The Mapping of Obstacle Points into their C-space Counterpart16

presentation, any manipulator type investigated here has a non-branching structure where li

(i ∈ [1, 2, ..., n-1]) is only connected to one following link lj (j ∈ [2, 3, ..., n]) via a joint
[Latombe91]. The first link, link l1, is connected via a joint to the manipulator base which is
fixed to the workspace. The free tip of the last link, ln, is called the end effector. The number
of joints as well as the number of links of such a manipulator A is n.

Since revolute and prismatic joints are the most commonly used types of joints in
modern manipulators, the investigation in this chapter will focus on those joint types. Other
joint types can be treated similarly, as reported in [Latombe91].

An element of a C-space C is denoted by q and represents a configuration which
uniquely determines the position and orientation of each manipulator link. More precisely, a
configuration q consists of a list of n parameters, (, ,)q qn1 , where each parameter
q i ni ([, ,...,])∈ 1 2 determines the configuration of link li relative to its parent link li-1 (see
[Latombe91]). For all manipulators studied here, link l1 is connected via a joint to the origin
of the workspace.

In view of the manipulator which is used in the real-world experiments described in
Section 2.8, each configuration qi for any manipulator discussed here varies in a bounded
interval I q qi i i= − +[,]. Configurations qi

− and qi
+ denote a lower and an upper mechanical joint

stop, respectively. That is, no two links li and lj are supposed to collide with each other, thus,
only collisions between links and obstacles are investigated.

The manipulator’s workspace can be divided into two subsets. The first subset is the
obstacle workspace and is denoted by WB . It describes the space which is occupied by
obstacles. The second subset which is the complement of the first one is denoted as free
space. It describes the area which is free of obstacles. The obstacles in the manipulator’s
workspace are assumed to be rigid and are denoted by B Br1 , , . Every point of
B k rk ([, ,...,])∈ 1 2 has a fixed position relative to the workspace origin.

2.4 The Mapping of Obstacle Points into their C-space
Counterpart

2.4.1 The Single Point Mapping
The transformation technique suggested here maps single obstacle points which are

situated in workspace into a corresponding C-space obstacle. This section describes the
properties of the single point mapping.

Any obstacle in a discretised workspace is considered to be composed of a union of
elementary obstacle units, so-called primitives. For each of these primitives a C-space
representation can be calculated. The main purpose for using this approach is that a look-up
table (Section 2.5) or associative map (Section 2.6) can be constructed which contains in each
row a unique feature specifying a primitive as well as the corresponding C-space
representation. Thus, any entry to the look-up table which is equal (or similar, if a neural
network is used) to a stored primitive feature will cause the retrieval of the associated C-space
representation which describes the C-obstacle region of the particular primitive. Different
types of primitives can be used for this approach, examples include obstacle points, circular
obstacles and line segments.

2 Workspace to C-space Transformation 17

The investigation of the C-space representation of point obstacles is of special interest,
because a point can be interpreted as the smallest unit of a discretised workspace. This unit is
either a pixel in a 2-dimensional workspace or a voxel in a 3-dimensional workspace
[Newman91].

From this it follows that any obstacle B k rk ([, ,...,])∈ 1 2 in the manipulator’s workspace
can be discretised by a set of those elementary obstacle points. The discretised obstacle is

denoted by ʹBk . It follows that ʹ ≡ ∪
=

B Pk j

p

j

k

1
, where pk is the number of obstacle points Pj

contained by ʹBk . The union of discretised obstacles ʹBk describes the complete area of the
workspace which is covered by discretised obstacles:

ʹ ≡ ∪ ʹ
=

WB k

r

kB
1

. (2.4-1)

Due to the fact that the workspace is discretised, any obstacle Bk is only described up to
a precision which depends on the resolution of the workspace. To assure that no collision
between the manipulator and any real obstacle Bk can occur, any discretised obstacle ʹBk must
be constructed in such a way that it engulfs Bk completely, thus: ʹ ⊇B Bk k . Consequently, the
real free space which is the complement of WB is either equal to the discretised free space or a
subset of it.

It has been shown that the C-obstacle region of any workspace obstacle is the union of
the C-space transforms of all the point obstacles which constitute the workspace obstacle
[Newman91, Branicky90]. Thus, the C-space for the set of points which describes the discrete
obstacle Bk is the union of C-space transforms of all point obstacles which constitute it. This
can be expressed in equational form:

CO B CO P CO Pk j

p

j j

p

j

k k

A A A() () ()ʹ ≡ ∪ ≡ ∪
= =1 1

. (2.4-2)

Eq. (2.4-2) shows that the C-obstacle region of manipulator A due to the obstacle ʹBk is
equivalent to the union of the C-space obstacles caused by each obstacle point Pj , for all
j pk∈ [, ,...,]1 2 . The configuration space representation of a single obstacle point Pj is denoted
by CO PjA () and is called here C-space pattern.

Equivalently, the C-space of the entire obstacle region of discretised workspace ʹWB can
be computed by unifying all the C-space representations of the individual obstacles. Consider
the discretised workspace to be cluttered by obstacles ʹ ∈B rk , [, ,...,] k 1 2 , then, as reported in
[Newman91, Branicky90]:

CO CO B CO BB k

r

k k

r

kA A AW() () ()ʹ ≡ ∪ ʹ ≡ ∪ ʹ
= =1 1

. (2.4-3)

This means, the C-space due to ʹWB , which is the union of all obstacles in the discrete
workspace of manipulator A is equivalent to the union of the C-obstacles of the individual
obstacles. The complement of ʹWB is the free space of the discretised workspace; the
complement of CO BA W()ʹ is the C-space representation of the discretised free space
[Newman91, Branicky90]. The fact that CO COB BA AW W() ()ʹ ⊇ assures that the robot particle
which is allowed to navigate in the discretised C-free space does not collide with any C-
obstacle and consequently the physical manipulator does not collide with any obstacle.

2.4 The Mapping of Obstacle Points into their C-space Counterpart18

Obviously, the discretised workspace can be also described as follows:

ʹ ≡ ∪ ʹ ≡ ∪
= =

WB k

r

k j

p

jB P
1 1

, (2.4-4)

where p represents the total number of point primitives in the discretised workspace ʹWB .
It follows:

CO CO B CO P CO PB k

r

k j

p

j j

p

jA A A AW() () () ()ʹ ≡ ∪ ʹ ≡ ∪ ≡ ∪
= = =1 1 1

. (2.4-5)

The transformation of obstacles into C-space obstacles can be accelerated, if only those
pixels (or voxels) which represent the perimeter (or surface) of the workspace obstacles are
transformed. It has been shown that the C-space patterns that correspond to those pixels or
voxels which surround an obstacle enclose also the corresponding C-space obstacle
[Newman91]. In a 2-D application, the obstacles’ perimeters can be extracted from camera
images using edge-detection and thresholding techniques, as proposed in Section 2.8.3.1 (see
also [Jaitly96b]).

Since the main concern of this section is to describe how to transform a particular
workspace setting or scenario, obstacles in the discrete workspace are considered to be an
agglomeration of obstacle primitives, each of which are transformed into the corresponding C-
space pattern individually. The notion of an obstacle Bk is not so important for the further
discussion, though it might have been in a pre-processing step in the image acquisition system
(Section 2.8.3.1 and [Jaitly96b]). Carrying out repeatedly the described single obstacle point
mapping, the complete C-space representation of any workspace scenario can be achieved.

2.4.2 The C-space of a 2-Link Revolute Arm
The basic kinematic performance of a physical manipulator in relation to obstacles

located in its range can be investigated by analysing the kinematics of a “stick-like”
manipulator. This kind of manipulator, as understood in this thesis, is a simplified robot arm
whose links have zero width. Equivalently, the joints of this skeleton arm have zero
expansion. Section 2.8 shows how these fundamental considerations can be also applied to
real manipulators.

This section describes the calculation of the C-space representation for a two-link
manipulator with parallel, revolute joints. Many industrial manipulators have this link-joint-
link structure as part of the whole system. SCARA designs match this structure (Figure 2.1-1
(right)). Industrial manipulator of this type are: Adept manipulators, Panasonic H series, IBM
7535, GMF A-510/A-600, and RedRob [Newman91, Risse95]. The same structure can be
found in the class of widespread robot types which are based on a design with three major
revolute joints. This type of robot has two or three joint axes which are parallel to each other
and perpendicular to the joint axis at the robot’s base. Examples of this class include: all
Unimation Puma manipulators (Figure 2.1-1 (middle)), all GMF S and P series manipulators,
all Asea manipulators, Motoman L-series robots, most Cincinnati Millicron manipulators, and
most General Electric manipulators [Newman91, Meyer88, Latombe91]. The work described
here is applied to the experimental manipulator MA 2000 which has three major revolute
joints (see Figure 2.1-1 (left), Section 2.8 and Appendix A-1).

2 Workspace to C-space Transformation 19

q1θ

l2

obstacle point P

α

y

x

δ
γβ

ε joint

Q’2
q2

l1

d

Q’1

workspace
boundary

obstacle point P

g2

g1

Figure 2.4-1: The two-link manipulator in its workspace. The manipulator is colliding
with obstacle point P whose distance to the base is d and whose angular position is θ.
Postures “α” to “ε” transform into separate configurations in C-space as shown in
Figure 2.4-2. The inset on the left hand side of the figure highlights the angular variables
which are used in the equations of this section. The variables q1 and q2 describe the
configuration of the two-link arm. Variable q1 represents the angle between link l1 and
the x-axis, while variable q2 represents the angle between link l1 and link l2. The variables
Q’1 and Q’2 are two intermediate variables which are used to derive q1 and q2 (see Eqs.
(2.4-6) to (2.4-9)).

The two-link revolute manipulator under study in this section is depicted in
Figure 2.4-1. Its first link l1 is connected via joint g1 to the manipulator’s base which is by
itself fixed to the workspace. The other end of link l1 is connected to the succeeding link l2

via joint g2 . In this section the mapping of a single obstacle point into the corresponding C-
space pattern is investigated. This obstacle point is denoted P and is one of those pixels which
describe the workspace obstacles (Section 2.4.1). Its distance to the base is denoted d.

A commonly chosen configuration space of a revolute manipulator is the joint space
with parameters, q1 and q2, representing the angular displacements of the joints g1 and g2.
This C-space can be depicted in a two-dimensional chart (see Figure 2.4-2). The parameters of
this chart are for example chosen to be (,) [,) [,)q q1 2 ∈ − × −π π π π using modulo 2π
arithmetic if an unbounded motion of each joint has to be taken into account. Without
restrictions, the chart can be also used for manipulators whose joint parameters qi are limited
to an interval Ii ∈[-π, π] due to mechanical joint stops, as done in these experiments here.

Two further variables, Q1 and Q2, are introduced to describe a so-called centralised C-
space which contains the unshifted C-space pattern (Figure 2.4-2). The parameters of this C-
space are independent of the angular position of obstacle point P in workspace. To get the
configuration space of an obstacle point in workspace, angle θ is added to the C-space pattern
in the centralised space, and, hence, (q1, q2) = (Q1, Q2)+(θ, 0) (see inset of Figure 2.4-1 and
Figure 2.4-2). While pre-computed values of Q1 and Q2 are stored in a look-up table or neural
network for fast access, the addition of θ is done in a separate step (Section 2.5).

2.4 The Mapping of Obstacle Points into their C-space Counterpart20

-1 -0.5 0 0.5 1-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
q2 (×π)

q1 (×π)

θ

C-space pattern for P

Q2

Q1 actual configuration of arm
(as shown in above Figure)

ε

β

γ

δ

α

Figure 2.4-2: The configuration space which corresponds to the two-link arm in its
workspace shown in Figure 2.4-1. The collision with obstacle point P in workspace
transform into an s-shaped C-space pattern. The configurations “α” to “ε” correspond to
the different arm positions in Figure 2.4-1. The space spanned by the co-ordinates
(Q1,Q2) is called the centralised C-space and contains the C-space pattern. To achieve the
final position of the C-space pattern in configuration space, the pattern has to be shifted
by θ.

d

π

0 Q1

Q2

l1l1 - l2 l1 + l2

d < l1 d > l2

0

Figure 2.4-3: This figure shows C-space patterns at increments of d for a two-link
manipulator like shown in Figure 2.4-1. Straight bold lines depict collisions between
obstacle point and link l1. Curved lines are patterns representing a collision caused by
link l2. The C-space patterns shrink to points at d = l1+l2 and d = l1-l2, respectively. Note
that the d-axis indicates the distance between the base of the manipulator and an obstacle
point P.

2 Workspace to C-space Transformation 21

As one can see in Figure 2.4-3, the C-space caused by the collision between an obstacle
point in workspace and any part of the stick-like manipulator is a curve or a combination of a
curve and a straight line. The calculation of the curved part of a C-space pattern can be
derived from the inverse kinematic equations for robotic manipulators (Eqs. (2.4-10) and
(2.4-11)) which describe in their basic form the collisions of the manipulator’s end effector
with an obstacle point. Thus, those equations determine the value of the joint parameters q1
and q2 for an end effector position given by Cartesian co-ordinates x and y. The solutions of
these equations correspond to the two end points of the C-space patterns. The following
paragraphs will explain how one can derive the complete C-space pattern.

The inverse kinematic equations (Eqs. (2.4-10) and (2.4-11)) are based on the law of
cosines for triangles (see also inset of Figure 2.4-1):

l d l dl Q2
2 2

1
2

1 12= + − ʹcos() (2.4-6)

and

d l l l l Q2
1
2

2
2

1 2 22= + − ʹcos() , (2.4-7)

where d d dx y= +2 2 describes the distance between manipulator base and obstacle
point P and where variables ʹQ1 and ʹQ2 denote the two angles in the triangle formed by the
two links l1 and l2 (see inset of Figure 2.4-1). The desired joint parameters q1 and q2 have the
following relationship with the angles ʹQ1 and ʹQ2 :

q elbow Q1 1= + ⋅ ʹθ , (2.4-8)

and

q elbow Q2 2= ⋅ ʹ −()π , (2.4-9)

where elbow is equal to +1 and -1 corresponding to the elbow link (l2) being up (left-
handed) and down (right-handed), respectively [Maciejewski93, Fox92]. The angular
parameters q1 and q2 can be derived from Eqs. (2.4-6) and (2.4-7), as follows:

q elbow
d l l

l d1
1

2
1
2

2
2

12
= + ⋅

+ −
−θ cos

(2.4-10)

and

q elbow
l l d

l l2
1 1

2
2
2 2

1 22
= ⋅

+ −
−−(cos)π ,

(2.4-11)

where ()θ = arctan2 y x, . The function arctan2 is the four-quadrant inverse tangent of
the real parts of the elements of y and x. The resulting θ is in the range: θ π π∈ − +[,]. The
function arctan2 is derived from the inverse trigonometric function arctan, as follows:

2.4 The Mapping of Obstacle Points into their C-space Counterpart22

()

()

()
()

arctan2 y x

arctan y x x
x y
x y
x y

arctan y x x y

arctan y x x y

, =

>

∧

∧

− ∧

< ∧ ≤

< ∧

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 = >

 = =
 = <

-

+ >

0
2 0 0

0 0 0
2 0 0

0 0

0 0

π

π

π

π

 .

(2.4-12)

The two Eqs. (2.4-10) and (2.4-11) allow the calculation of the configurations for which
the manipulator’s end effector touches obstacle point P. However, the C-space pattern
describes all possible collisions between any part of the manipulator and the obstacle point.
To compute the C-space pattern, two main cases can be distinguished: firstly, collisions with
link l1, secondly, collisions with link l2. Firstly, whenever a collision between link l1 and an
obstacle point occurs the corresponding C-space pattern is a vertical strip which includes all
possible values of q2:

q1 = θ ,

q q q2 2 2= − +[,].

Note, a collision between link l1 and an obstacle results in a forbidden area regardless of
the configuration of link l2 (see Figure 2.4-3). Secondly, collisions between link l2 and
obstacle point P can be derived by considering link l2 to be a variable [Maciejewski93]. Thus,
there are not only two solutions for Eqs. (2.4-10) and (2.4-11), but a one-dimensional infinity
of solutions prarameterized by the variable, ʹl2 [Maciejewski93]. Varying ʹl2 in the range
[l1

 - l2, l1 + l2] the C-space pattern for any obstacle point in the distance d can be calculated (see
Figure 2.4-3). This process corresponds to a motion of the manipulator while link l2 is sliding
through obstacle point P in distance d, with d∈[l1 - l2, l1 + l2] (see also Figure 2.4-1). Start and
end configuration of this motion are described by Eqs. (2.4-10) and (2.4-11) with link l2 being
fixed to its original length.

For any revolute manipulator, the shape of a C-space pattern depends only on distance d
between the manipulator base and the obstacle point [Newman91]. The position of a C-space
pattern in the configuration space depends on θ which causes a shift along q1 (see
Figure 2.4-2). The centre of any pattern lies at Q1 = 0, Q2 = 0 in the centralised C-space. This
centre configuration describes the arm being in a fully stretched pose pointing horizontally in
the direction of the positive x-axis. Figure 2.4-1 and Figure 2.4-2 show how different poses of
a manipulator, which is in contact with obstacle point P, are transformed into a C-space
pattern. The extreme points in the C-space pattern “α” and “ε” correspond to the two
configurations where only the end effector of the arm is in contact with the point P. For all
intermediate configurations link l2 is “sliding through” point P. C-space patterns stored in a
look-up table can be employed to quickly construct the configuration space for a given
workspace scenario (see Section 2.5).

2 Workspace to C-space Transformation 23

2.4.3 The C-space of a 2-Link Arm with Prismatic and Revolute Joints
Most research work concerning the workspace to C-space transformation deals with

manipulator types whose links are connected by revolute joints (for example see [Latombe91,
Lozano87, Gupta92]. The treatment of manipulator types with prismatic joints or a
combination of revolute and prismatic joints is not discussed widely in the robotics research
community. Newman et al. report that a workspace to C-space transformation is only possible
for manipulators with revolute joints [Newman91].

This section here shows an extension of the technique calculating the C-space patterns
for revolute-revolute manipulators (Section 2.4.2). The extension permits the calculation for
manipulator types with a combination of prismatic-revolute joints, revolute-prismatic joints
and prismatic-prismatic joints (see also [Althoefer95b].

As in the above considerations (Section 2.4.2), each of the investigated manipulator
types has two stick-like links l1 and l2. The first link l1 is connected via joint g1 to the base of
the manipulator. The other end of link l1 is connected to the succeeding link l2 via joint g2. The
axes of the joints are parallel. Four different manipulator types with the following joint
combinations are discussed:

R-R: a manipulator with two revolute joints,

P-R: a manipulator with a prismatic joint at the base and a revolute joint between links l1 and l2,

R-P: a manipulator with a revolute joint at the base and a prismatic joint between links l1 and l2,

P-P: a manipulator with two prismatic joints.

As shown in Section 2.4.2, the co-ordinates of the C-space of the revolute-revolute
manipulator were the two angular parameters q1 and q2. For this manipulator type the length
of the links are the constant values l1 and l2.

The prismatic-revolute type has a prismatic joint at the base, thus, the first co-ordinate
is the now variable l1. The second co-ordinate is q2 representing the joint parameter of the
revolute joint. This manipulator type has a fixed angle q1 at the base and a constant link l2.
Since angle q1 is fixed, the C-space of this manipulator type is independent of q1, and the
manipulator could be also depicted in a workspace whose x-axis coincides with link l1. For
this case the inverse kinematic equations can be simplified as shown in Table 2.4-2 (P-R). The
shape of the C-space patterns for this manipulator depends only on distance dy between link l1
and obstacle point P, while dx describes a shift of the C-space pattern in the configuration
space (see Figure 2.4-4 (P-R)).

The revolute-prismatic type has a C-space with the co-ordinates q1 and l2, while angle
q2 and link l1 are fixed. The C-space patterns representing collisions between link l2 of this
manipulator type and an obstacle point are interconnected straight lines shifted by angle θ in
C-space (Figure 2.4-4 (R-P)). Although the angle of q2 in Figure 2.1-1 (R-P) is set to π/2,
other values for q2 would also produce straight line patterns.

The prismatic-prismatic type has two prismatic joints, thus, its C-space is spanned by
the co-ordinates l1 and l2, and angles q1 and q2 are fixed. As was the case with the prismatic-
revolute manipulator, the prismatic-prismatic manipulator can be depicted in a workspace
whose x-axis coincides with the link l1 resulting in a simplification of the kinematic equations
(Table 2.4-2 (P-P)). The C-space patterns are straight lines whose shape depends only on dy
and the location of the patterns in configuration space depends on dx. The two fixed

2.4 The Mapping of Obstacle Points into their C-space Counterpart24

manipulator angles, q1 and q2, depicted in Figure 2.4-4 (P-P) are π/2; other angle values would
also result in straight line C-space patterns.

The co-ordinates of the C-space for each manipulator and the constant parameters are
summarised in Table 2.4-1.

α

δ

ε

θ

0

P

ε

δ

γ
βα

θ

x

y

d

q2

q1

Q2

Q1

q1

q2

Revolute-Revolute manipulator

β

γ

Prismatic-Revolute manipulator

α

δ
ε

0

β

l1

α
β

γ
δ

ε

x

y

P
dx

d
q2

q1

dx

q2

γ

L1

L1

Q2

l1

prismatic
joint

dy

(See caption next page)

2 Workspace to C-space Transformation 25

q1

l1

1

l2

θ
x

y
C-Space pattern

α

γ

δ

θ

0

β

d

P
β

δ

α

γ

l2

l2

q2

Q1

q1

Q1

 Revolute-Prismatic manipulator

d

Prismatic-Prismatic manipulator

q2

q1 x

y

P
0

0 l1

l2
C-Space pattern

l2= dy
l1= dx

dx

Figure 2.4-4: Depiction of the four possible manipulator types in workspace and C-space.
The revolute-prismatic type as well as the prismatic-prismatic type produce C-space
patterns which are straight lines vertical to the abscissa. Point P is an obstacle point at
distance d from the base. The set of all possible collisions with point P transforms into a
C-space pattern. The C-space parameters depend on the joint variables of the manipulator
type (refer to Table 2.4-1).

2.5 The C-space of an n-Link Arm26

R-R P-R R-P P-P
C-space co-ordinates q1, q2 l1, q2 q1, l2 l1, l2

constants l1, l2 q1, l2 l1, q2 q1, q2

Table 2.4-1: C-space co-ordinates and constants of the four manipulator types. All
constants are positive values (see also Figure 2.4-4).

R-R q
d l l

l d1
1

2
1
2

2
2

12
= ±

+ −
−θ cos

q
l l d

l l2
1 1

2
2
2 2

1 22
= ±

+ −
−−(cos)π

P-R *) l d Q l d Q d l q

q
l l d

l l
d
l

x

y

1 1 2
2 2 2

1 2 2

2
1 1

2
2
2 2

1 2

1

22

= ⋅ ± − = − ⋅

= ±
+ −

=− −

cos() sin () cos()

(cos sin

- π)

R-P q
d l l

l d1
1

2
1
2

2
2

12
= ±

+ −
−θ cos

l l Q d l Q2 1 2
2

1
2 2

2= ⋅ ± −cos() sin ()

P-P *) l d Q l d Q

l l Q d l Q

x

y

1 1 2
2 2 2

1

2 1 2
2

1
2 2

2

= ⋅ ± − =

= ⋅ ± − =

cos() sin ()

cos() sin ()

 d

 d

Table 2.4-2: The inverse kinematics equations for the four different manipulator types.
*) Without loss of generality, the angle q1 which is a constant for the P-R-type and the
P-P-type is set to zero.

Eqs. (2.4-6) and (2.4-7) (see Section 2.4.2) can be used to describe the geometrical
properties of all four manipulator types. Rearranging those equations, one obtains the inverse
kinematics equations for the four arm types (see Table 2.4-2).

As one can see from Figure 2.4-4, the prismatic-revolute manipulator produces C-space
patterns which are shaped similarly to those of the revolute-revolute manipulator. Thus, a
look-up table which stores C-space patterns for obstacle points in varying distances is useful
for this manipulator type to provide a rapid workspace to C-space transformation
[Althoefer95b]. The two other manipulator type produce rather simple C-space patterns. For
these types, an analytical computation of the C-space patterns might be more suitable.

2.5 The C-space of an n-Link Arm
This section shows that employing the 2-link transformation technique (Section 2.4.2) in

a recursive manner, C-space patterns for planar manipulators with n revolute joints can be
composed.

2 Workspace to C-space Transformation 27

A non-branching robotic manipulator A with n planar links is considered here.
Manipulator A is composed of n-1 elementary subarms S i , i n∈ −[,]1 1 , where each subarm
S i consists of two links, Ki and Li (see Figure 2.5-1). Those subarms have C-space patterns
like the two-link arms described in Section 2.4.2. Link K i represents link li of manipulator A,
while link Li is a straight link which is composed of all succeeding links, l li n+1 , , , with joint
parameters qi+1 ,..., qn set to 0. This means, links l li n+1 , , are fully stretched and resemble a
straight line. The length of Li is the sum of the length of its components, l li n+1 , , . A subarm
S i has only two active joints, Fi and Gi. The first joint Fi connects link Ki to a virtual base.
The second joint Gi connects link Ki with link Li (see Figure 2.5-1).

qi

 subarm Si colliding with
obstacle point P

bi,k

lower
links

P

K li
i=

qi+1

L f l li
i n= +(, ,)1 !

0

One C-space pattern
for subarm Si

Qi+1

Qi

di,k

Qi+1

Qi Gi

Fi

Figure 2.5-1: Collision between obstacle point P and one of the subarms (comprising Ki

and Li) of a redundant planar manipulator. The base bi,k is a virtual base as described in
the text.

For a better understanding of the concept “subarm”, this section describes how the
subarms are constructed from the first link of manipulator A to its last link. The first subarm
S1 is composed of K1 (which is equal to l1) and L1 (which incorporates in the above described
manner links l ln2 , ,). The second subarm S2 consists of K2 (which is equivalent to l2) and L2

(which embodies links l ln3 , ,). This process can be continued until subarm Sn-1 is reached.
This last subarm consists of Kn-1 (which is equivalent to ln−1) and Ln-1 (which is equivalent to
the last link, ln). For each of those two-link subarms the C-space patterns due to point
obstacles can be computed or recorded (see also [Althoefer94, Althoefer95c, Newmann91]).
The technique described in the following paragraphs actually calculates C-space patterns only
for collisions between links Li and the obstacle point. Collisions between Ki and the obstacle
point result in straight lines which are calculated in a separate stage.

2.5 The C-space of an n-Link Arm28

To calculate the C-space pattern for one obstacle point with regard to an n-link arm, the
following procedure which makes use of the subarm concept is invoked. The process starts
with subarm S1. The collisions between S1 and obstacle point P result in a two-dimensional C-
space pattern. As already stated, the shape of the C-space pattern only depends on the distance
between obstacle point and the manipulator base, b1. The pattern is comprised of discrete
configurations (see Figure 2.5-3). The pattern is discretised so that it can be stored in a look-
up table or neural network, as explained in a later part of this section. For each of these
configurations the distance between the position of G1 (which is the joint between link K1 and
link L1) and obstacle point P can be calculated. Thus, the positions of G1 become the virtual
bases bi,k for subarm S2. For each of these virtual bases a new two-dimensional C-space
pattern with respect to subarm S2 is calculated. Each of the multiple C-space patterns of
subarm S2 is placed in configuration space in such a way that the pattern’s centre coincides
with the corresponding configuration of the previous C-space pattern (Figure 2.5-4). (The
corresponding configuration is the one which is associated with the position of G1 calculated
earlier.) The C-space patterns of subarm S2 are placed perpendicular to the previous C-space
pattern thereby spanning a now three-dimensional space. Informally, the C-space patterns of
subarm S2 grow perpendicular out of the discrete configurations of the previous C-space
pattern (Figure 2.5-4). The newly generated C-space patterns are also made up of discrete
configurations. Again, for each of these configurations the subarm’s joint positions can be
used as virtual bases for the following subarm. The process continues in the above described
manner adding with each subarm a new dimension to the configuration space. The last C-
space patterns to be calculated are those of subarm Sn-1.

l3

three-link
manipulator

subarm S1 subarm S2

xb1

b1 b2

K1=l1

L2=l3

L1=f(l2, l3)

K2=l2l1

l2

y

Figure 2.5-2: The construction of subarms for a three-link manipulator with stick-like
links.

2 Workspace to C-space Transformation 29

P

x

y

K1=l1

d i=1

d i=2,k=1
d i=2,k=k~d 2,k2

d 2,k1 d 2,k3

bi=2,k=1 bi=2,k=k~

L1=f(l2, l3)

discrete C-space pattern
produced by subarm S1

Q1

Q2

first joint

Figure 2.5-3: A three-link manipulator colliding with point P. The figure shows the first
stage of the subarm procedure. Collisions of subarm S1 produce the discrete C-space
pattern on the right. At each of the configurations of the discrete C-space pattern, a C-
space pattern of subarm S2 is placed, as schematically depicted in Figure 2.5-4. The new
C-space patterns are due to collisions between obstacle point P and subarm S2 being
placed successively at bases b2,k.

Q1

Q3

Q2

Figure 2.5-4: Schematic depiction of the C-space pattern of a three-link planar
manipulator due to a collision with obstacle point P (see Figure 2.5-3). This C-space
pattern describes a surface (shaded area) in a three-dimensional space. The “spine” of the
C-space pattern (denoted by larger black points) describes the collisions between
obstacle point and subarm S1 (see Figure 2.5-3). The “ribs” are the C-space patterns due
to collisions of subarm S2 and obstacle point P. Subarm S2 is consecutively fixed to the
virtual bases bi,k shown in Figure 2.5-3.

2.5 The C-space of an n-Link Arm30

To avoid lengthy computations it is useful to create a list in which the C-space patterns
for elementary obstacle points at increments of d are stored. The creation of this list is done in
a pre-processing stage. For each subarm such a list has to be established. The list contains two
columns (see Table 2.5-1). The first column contains a set of scalar parameters di,k which
cover the range of subarm Si along one axis. This range is discretised by resolution
~, ([, , ~])k k k ∈ 1 ! , also referred to as resolution of input space (see also Section 2.6). A
parameter di,k represents the distance between bases bi,k of subarm Si and an obstacle point P.
The second column holds in each row a triple of vectors Q Q d1 2

1i k i k i k, ,, , + , which is associated
with the parameter di,k. Hence, the list can be used as a look-up table: for any distance
parameter being the entry to the list or look-up table, one can retrieve the corresponding
vector triple containing a 2-dimensional C-space pattern (Q1,Q2) and a vector of distances
whose elements are pointers to the list of the following subarm. The proposed list can be
easily extended for manipulators with non-zero link widths by adding another column which
reflects the widths of C-space patterns (compare to the C-space patterns in Section 2.8.1 and
Appendices A-2 and A-3).

column 1 column 2
d i k, =1 Q 1

1i k, = Q 2
1i k, = d i k+ =1 1,

. . . .

. . . .

. . . .
d i k k, ~

= Q 1
i k k, ~

= Q 2
i k k, ~

= d i k k+ =1, ~

Table 2.5-1: The look-up table shows the list for subarm Si. Each distance value in
column 1 is associated with the vector triple in the same row. The distance vector in the
very last column can be used as entry to the look-up table of the next subarm, Si+1.

The vectors of the vector triple Q Q d1 2
1i k i k i k, ,, , + , can be denoted as follows:

Q 1 1
1

1
i k i s i s sQ Q, , , ~(, ,)= = =

! ,

Q 2 2
1

2
i k i s i s sQ Q, , , ~(, ,)= = =

! , (2.5-1)

d i k i s i s sd d+ + = + ==1 1 1 1, , , ~(, ,)! ,

where s s∈ [, ,...,~]1 2 and ~s is the resolution of the output space (see also Section 2.6.1).

The first two vectors Q Q1 2
i k i k, ,, represent the two-dimensional C-space pattern that is

caused by the collision between link Li of subarm Si and the obstacle point which is at a
distance di,k from base bi,k. This C-space pattern is sampled by the elements of the vectors
Q Q1 2

i k i k, ,, . In other words, each pair of angles Q Qi k i k
1 2

, ,, of vectors Q Q1 2
i k i k, ,, describes a single

subarm configuration; the set of those configurations represents the discretised C-space
pattern for subarm Si due to a collision with obstacle point P. Every configuration (or pair of
joint parameters) is associated with one of the distance parameters di+1,s in the third vector
d i k+1 , . Each parameter di+1,s describes the distance between bi+1,s and the obstacle point, while
the subarm Si is in configuration Q Qi s i s

1 2
, ,, . Each parameter di+1,s functions as an entry to the

list of the next two-link subarm, Si+1. This process can be continued until the last subarm, Sn-1,

2 Workspace to C-space Transformation 31

is reached, thus, the C-space pattern of an n-link planar manipulator can be constructed by
accessing recursively or in parallel the look-up tables for all subarms of the manipulator
[Althoefer94]. This process is depicted for a three-link manipulator in Figure 2.5-5. The
presented technique is especially fast for manipulators with a low degree of freedom, but it
can cope with n degrees of freedom as well. The order of complexity of this technique is
O(an), where a is a constant representing the calculation for one manipulator link and n is the
number of manipulator links.

Col. 1

d2,5=3

d2,4=2.5

d2,3=2

d2,2=1.5

d2,1=1

Column 2

d3,1

Subarm S2

Col. 1

d1,6=6

d1,7=7

d1,5=5

d1,4=4

d1,3=3

d1,2=2

d1,1=1

Column 2

d2,6

d2,5

d2,1

d2,3

d2,2

d2,1

d2,7

3
2
1
2
3

Subarm S1

Col. 1

d2,5=3

d2,4=2.5

d2,3=2

d2,2=1.5

d2,1=1

Column 2

d3,3

d3,2

d3,1

Col. 1

d2,5=3

d2,4=2.5

d2,3=2

d2,2=1.5

d2,1=1

Column 2

d3,1

Col. 1

d2,5=3

d2,4=2.5

d2,3=2

d2,2=1.5

d2,1=1

Column 2

Col. 1

d2,5=3

d2,4=2.5

d2,3=2

d2,2=1.5

d2,1=1

Column 2

d3,5

d3,4

d3,3

d3,2

d3,1

Figure 2.5-5: Depiction of the accessing of the look-up tables of a three-link manipulator.
At first a distance value d = 5 is fed to the look-up table of subarm S1. This triggers the
retrieval of the corresponding C-space pattern and the vector d 2,5 which contains
distance values d 2,k for subarm S2. Each of these distance values triggers a C-space
pattern in the table of subarm S2. Note that there exists only one look-up table for each
subarm, but the table of subarm S2 is accessed five times in this figure. The depicted
process can be carried out recursively or in a parallel manner (see Figure 2.5-6). The
neural network presented in Section 2.6 can be used to “store” the data of these look-up
tables.

2.5 The C-space of an n-Link Arm32

S

S

S

i

i+

i+

S i-1

1

2

Figure 2.5-6: Tree structure representing the computation of the C-space patterns. Each
node depicts the single access to a subarm look-up table. If the computation is done
recursively, the nodes are accessed in the order the half-arrows indicate (from top to
bottom and from left to right). In a parallel implementation the nodes on one level could
be substituted by processors which share the memory.

2.5.1.1 Comparison of configuration space representations

l1

l3

l2

Obstacle

 x

 y

Figure 2.5-7: This figure depicts the planar workspace of a three-link revolute
manipulator. One obstacle point is placed at x1 = 3.98, y1 = 2.01. The robot manipulator is
a simulated arm with revolute joints and stick-like links. Length of the three links:
l1 = 4 units, l2 = 2 units, l3 = 1 unit.

To check whether the technique proposed in Section 2.5 produces the desired output, the
following test has been carried out. The manipulator’s links (Figure 2.5-7) have been moved
in small angular increments covering the whole range of the joints. Every time a collision
between arm and obstacle occurred, the corresponding configuration was marked in the C-
space chart with a small pixel. This simple and well-known, but time consuming technique is

2 Workspace to C-space Transformation 33

an exhaustive workspace scan whose resolution and execution time depends on the size of the
angular increments. This technique is used here to show the functioning of the technique
presented in Section 2.5.

q1(×π)

q3(×π)

q2(×π)

q1(×π)

q3(×π)

q2(×π)

Figure 2.5-8: This figure depicts two configuration space representations of a three-link
planar manipulator in its workspace (see Figure 2.5-7). The configuration space on the
left is produced by rotating the manipulator’s links through a sequence of configurations
at angular increments. Whenever a collision with the obstacle point (placed at x1

 = 3.98,
y1

 = 2.01) occurs, the corresponding configuration (q1, q2, q3) is marked in C-space. The
right figure shows the configuration space obtained by using the subarm technique
proposed in Section 2.5. Obviously, the C-space obstacle of both figures cover a similar
area; variations are due to the different methods of working of the two approaches.

Figure 2.5-8 compares the C-space representations generated by the two different
techniques. The pattern on the left was generated by the test technique, and the pattern on the
right shows the C-space pattern of the manipulator produced by the workspace to C-space
transformation technique proposed in Section 2.5. The latter technique does not scan the
workspace for the occurrence of collisions by moving the manipulator, but maps each
workspace obstacle point into C-space patterns stored in look-up tables. Its resolution depends
on the resolution of the stored C-space patterns, and its execution time mainly depends on the
number of obstacle points in workspace. As one can see in Figure 2.5-8, the two C-space
patterns cover a similar area. Variations are due to the different techniques of working of the
two approaches.

2.5.1.2 Reduction in Complexity

The workspace to C-space transformation method described has one main disadvantage.
It is applied to the entire n-dimensional C-space and therefore suffers from the inherent
dimensionality problem. The extended approach which is outlined in this section for a planar
manipulator allows the decoupling of the n-dimensional configuration space into lower
dimensional ones. This idea is based on what is described as “slicing in configuration space”
[Latombe91].

2.5 The C-space of an n-Link Arm34

virtual basevirtual base

base

start
conf.

goal
conf.

l1=K1

l3

l2

obstacle

L1

Figure 2.5-9: The complexity of this path planning problem is reduced. Instead of using a
3-dimensional C-space, the planning problem is split into three stages - each stage carried
out in a 2-dimensional C-space. First stage: subarm S2 which is made up of links l2 and l3

and which is fixed to the left virtual base moves until completely stretched. Second stage:
subarm S1 which is made up of links K1 and L1 and which is fixed to the main base moves
until link K1 has reached its final configuration (indicated by the arrow) and L1 has
reached a configuration near the desired goal configuration. Third stage: subarm S2

which is now fixed to the right virtual base moves until it reaches the goal configuration.

For example, a 3-link manipulator has to move from a start configuration to a goal
configuration in a fairly uncluttered environment, as shown in Figure 2.5-9. The path planning
process can be divided into three subprocesses. At first, planning is carried out for link l2 and
link l3. The C-space patterns for the subarm S2 containing link l2 and link l3 can be retrieved
from the appropriate look-up table (see Section 2.5). Joint parameters q2 and q3 change
starting from their initial configuration until an intermediate configuration where q3 is equal to
zero is reached thereby avoiding collision with the obstacle(s). At this stage of planning,
subarm S2 is fully stretched. Path planning for the simplified manipulator with q3 being fixed
can be carried out until parameter q1 is at its desired goal configuration and parameter q2 is
near its desired goal configuration. The C-space patterns due to collisions between the
simplified manipulator and obstacle points are stored in the list of subarm S1. After the goal
configuration of q1 is reached, parameters q2 and q3 are changed until they reach their final
configurations. To calculate the C-space patterns for the final part of the planning, the list of
subarm S2 can be utilised again.

Obviously, to construct the second link of subarm S1, link L1, as a straight line which is
comprised of l2 and l3 with the configuration of the connecting joint fixed at zero, is not
necessarily the best approach to tackle this planning problem. Alternatively, the configuration
of the joint which connects l2 with l3 could be set to 2⋅π. Then, l2 and l3 would overlap and
link L1 would be represented by a short straight line. (Note, this works only if |l3| ≤ |l2|, because
otherwise link l3 would stick out on the other side of the joint between link l1 and l2.) This
case could be also treated by the subarm approach, since any link which is smaller than L1 is a
subset of L1 and is available in the look-up table. However, most physical manipulators can
achieve a completely stretched posture, but most of them cannot completely bend without
collision between links. Presumably, there is a best configuration to be fixed for each joint of
the robot that is least likely to make a collision. This would optimise finding some path, but
there may be still better paths which can be only found searching the complete C-space.

2 Workspace to C-space Transformation 35

This extension to the original approach brings about a reduction in complexity, hence,
the calculation is faster and less memory consuming. However, the decoupling of the three-
dimensional configuration space into two two-dimensional subspaces means that the
conducted path planning is not complete anymore and possible paths might be overlooked
(see also [Gupta92]).

2.6 A Radial Basis Function Network for the Workspace to C-
space Transformation

This section describes the structure and training of a Radial Basis Function (RBF)
network which carries out the workspace to C-space transformation for a two-link planar
manipulator with revolute joints (see [Althoefer95, Althoefer95c, Jaitly96b]). The network
can be easily adapted to generate C-space patterns for other manipulator types (see
Section 2.4.3 and [Althoefer95b]) and can also be integrated into a more complex system to
calculate C-space patterns for manipulators with more than two links (see Section 2.5). The
network is an implementation of the subarm look-up tables proposed in Section 2.5. It
interpolates for those input values which are not part of the training data.

2.6.1 The RBF-Network for the C-space Calculation
The RBF-network used for the workspace to C-space transformation has a single input

node through which it receives a scalar value representing the distance between the
manipulator base and an obstacle point in workspace. The manipulator here is a two-link
stick-like manipulator with revolute joints as shown in Figure 2.4-1. To an input stimulus, the
network is trained to respond with a two-dimensional vector representing a discretised C-
space pattern.5

The RBF-network is used as a universal function approximator [Reignier93]. Like the
look-up table presented in Section 2.5, it maps point obstacles into C-space patterns. In
contrast to the look-up table, the network interpolates for inputs which are not members of the
stored data [Hush93]. This reduces the memory requirements because only a few data points
need to be stored to achieve a good performance with a small error. To achieve a similar
performance with a look-up table without interpolation capabilities as described in Section 2.5
and [Newman91, Branicky90], more data points have to be stored (see also Section 2.8.1).

The network has ~s pairs of output units, which represent ~s configurations (Q1, Q2) in
the centralised C-space (see Section 2.4.2). To get the actual configuration space of an
obstacle point in workspace, the angle θ is added to the Q1-outputs, and, hence, (q1, q2) =
(Q1, Q2) + (θ, 0) (see Figure 2.4-1 and Figure 2.4-2). This calculation is done in a separate
step.

The network is a two-layer structure whose nodes in the output layers form a linear
combination of the basis functions computed in the hidden layer nodes:

5 Only the nonlinear C-space patterns produced by collisions between link l2 and obstacle primitives
are considered for the training data. Collisions between link l1 and the obstacle primitive result in
straight, vertical stripes which are calculated at a different stage.

2.6 A Radial Basis Function Network for the Workspace to C-space Transformation36

Q w f d cm,s m,sk k k
k

k

= ⋅ −
=
∑ ()

~

|| ||
1

,
(2.6-1)

where Qm,s represents the angles Qm,s , m∈[1, 2] at discrete points s∈[1, 2, ..., ~s] with
resolution ~s (see Section 2.5). The weights in the hidden and the output layer are ck and wm,sk ,
respectively, while d represents the network input. The shown two-dimensional problem can
be easily expanded to incorporate a vector which denotes the width of C-space patterns of a
physical arm whose links have a non-zero width (see Section 2.8.1).

 shared

output
layer Q1

input
node

d

Q1 net

Q2 net

0

Q2

Q1

C-Space pattern

 hidden layer

output
layer Q2 discretised

1
1

s

1

s

k
~

~

~

W net

Figure 2.6-1: The network is composed of the Q1-net and Q2-net. Each pair of output
nodes represents a pair of angles (,)Q Q1 2 of the discretised C-space pattern. The number
of nodes in the output layers, ~s , defines the pattern’s resolution. An additional subnet,
W-net, can be added, if the manipulator’s links have a certain width. The output of this
subnet describes the width of the C-space pattern at the discrete configurations (,)Q Q1 2
(see Section 2.8.1).

In contrast to most other works (i.e.: [Bishop95, Hush93, Musavi92, Miller90]) which
commonly suggest the use of a Gaussian function for the hidden layer nodes, a second order
dilated B-spline function [Brown94] is employed:

f ()=

- + 1 if x

- + 1 if x

 otherwise

-1
-1

-1
-1k

l k
l k

r k
r k

x

x

x

σ
σ

σ
σ

,
,

,
,

⋅ ≤

⋅ >

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

1

1

0

,

(2.6-2)

where σl k k kc c, = − −1
 and σr k k kc c, = −+1 are the distances to the left and right

neighbouring centres, respectively.

2 Workspace to C-space Transformation 37

As shown in Figure 2.6-2 the basis function f(⋅) has a triangular shape. Due to the fact
that the slopes to either side can be controlled separately, a non-symmetrical receptive field
can be obtained. The basis function of each centre has its zero crossings at the closest
neighbouring centres, thus, any input value to the network excites one or, at the most, two
nodes of the hidden layer. The activity of the nodes is between zero and one, and performs a
linear interpolation of those input values which are in-between two centres. The closer the
input is to a centre, the larger is the activity of the node. The sum of the activities of excited
centres is always one; all other centres output the value zero (see Figure 2.6-2). Generally, the
network forms a linear combination of the piece-wise linear basis functions resulting in an
overall nonlinear performance. (Compare to the fuzzy-based approach described in
Chapter 4.) Experiments with other radial basis functions (Gaussian functions) have been
carried out, but the second order B-spline function proved to produce the best results.

 input signal

0.75node activity 0 0.25 0 0 0 0 0 0

 hidden layer

0.25

0.75

insertion of
a new node

receptive field
-l1 l2 +l1 l2

centres ck in the

d

d~

Figure 2.6-2: The dilated B-spline basis functions of the hidden layer nodes distributed
over the input space. The receptive field of each node has a triangular shape with zero
crossings at neighbouring centres. The figure also shows the insertion of a new node
occurring during training (see Section 2.6.2).

2.6.2 The Training of the Network: Insertion of Nodes
The main purpose of the four-phase training method suggested in this section is to

reduce the interpolation error between the network response, which is caused by an unknown
input stimulus, and the corresponding calculated C-space pattern. This is done by inserting
new nodes into the hidden layer wherever the mid-point interpolation error is above a
predefined threshold T (see also [Althoefer95c]).

At the start of phase one, the hidden layer of the network comprises a small number of
nodes, which, in our experiment, is ~k = 5 (see also Section 2.5). The centres of these nodes,
ck , are set to equidistant d-values in the range [| | | |,| | | |]l l l l1 2 1 2− + . That is, the number of nodes
defines the resolution with which the input space is discretised. The resolution of the input
space is denoted ~k . In phase two, the weights of the output layer nodes are trained using the
least-means-square algorithm [Hush93, Musavi92] to match the C-space patterns for obstacle
primitives at distances d c c ck= 1 2, , , ~" .

In phase three, intermediate input values of d (that is, values which had not been used
for training yet) are presented to the network. The response of the network to those intermedi-
ate inputs is compared to calculated C-space patterns. This test is a simple method to find the
approximate maximum interpolation error for intermediate patterns.

2.6 A Radial Basis Function Network for the Workspace to C-space Transformation38

Figure 2.6-3: This figure shows the error of Q2-net during training. The error of Q1-net
has a similar characteristic. Every second error value along the d-axis describes the net
error for trained patterns (as indicated by black circles in subfigure b)). These error
values are very low and stay low at any iteration. Intermediate error values represent the
net error for unknown input stimuli (as indicated by grey circles in subfigure b)). During
the training new nodes are inserted wherever the error is above the given threshold T.
This process increases locally the resolution of the input space along distance d and
reduces the error for unknown patterns. The number of the output nodes is denoted
with s. Subfigures a) to f) depict the net error after 1, 2, 3, 5, 7, and 9 iterations,
respectively.

2 Workspace to C-space Transformation 39

In phase four, a new node is inserted into the hidden layer wherever the error between
network response and calculated C-space pattern is greater than a predefined threshold T (in
this case: T = 0.1). The slopes of the new node and the neighbouring nodes are again adjusted
in such a way that zero crossings are at the new neighbours (see Figure 2.6-2). The insertion
of nodes increases locally the resolution of the input space.

Phases two to four are repeated until the interpolation error is below threshold T
everywhere (see Figure 2.6-3).

The experiments conducted have shown that the summed error of the output nodes is re-
duced rapidly during phase two after only a few tens of iterations [Althoefer95c]. As
expected, the responses to trained values of d match the calculated ones very accurately. The
responses to intermediate input values show deviations, or peaks, especially when d is close to
l1 where small changes in d lead to big changes in angle q2 (see Figure 2.6-3). The error peaks
diminish as training evolves.

The proposed training algorithm is especially suitable for the training of C-space
patterns of physical manipulators. In case of a real manipulator, the C-space patterns are not
analytically computed, but measured and stored as discrete values (as described in
Section 2.8.1). If after one training cycle is complete the error for a particular d-value does not
go below the desired threshold T, a new C-space pattern has to be recorded and the network is
trained again. This means that training can be started with only a small set of training pairs.
After each training cycle, the network’s performance dictates for which values of d, new C-
space patterns have to be recorded to reduce the error. Thus, the process of measuring the C-
space patterns for the physical manipulator, is reduced to those instances where data actually
is needed.

2.7 A Three-link Manipulator

l1

l3

l2

A

C
B

 x

 y

Figure 2.7-1: This figure depicts the planar workspace of a revolute manipulator.
Obstacles, “A”, “B” and “C”, are discretised by pixels. Each pixel represents an obstacle
primitive which is transformed into a C-space pattern. The robot manipulator is a
simulated arm with three stick-like links. Length of the links: l1

 = 4 units, l2
 = 2 units,

l3
 = 1 unit.

2.7 A Three-link Manipulator40

This section shows the application of the neural-network-based transformation for a
planar stick-like manipulator with revolute joints. Two neural networks have been trained on
the C-space patterns of the two subarms S1 and S2 of this manipulator. The construction of the
subarms is explained in Figure 2.5-2.

The manipulator is placed in a workspace with three obstacles (see Figure 2.7-1). Each
obstacle is comprised of discrete pixels which are separately transformed by the neural
network (see Figure 2.6-1). Only those obstacle pixels along the perimeter of the three
obstacles, “A”, “B” and “C”, have to be transformed into the configuration space. It has been
shown that the C-space patterns that correspond to those pixels which surround an obstacle
also engulf the corresponding C-space obstacle (see Section 2.4.1 and [Newman91]).

Although the shown workspace is constructed by hand it approximates well a workspace
representation which has been acquired by a CCD-camera (see figures in Section 2.8.3.1). The
path planning experiments (Chapter 3) which employ the workspace to C-space
transformation method described here showed that the manipulator successfully moved
around the workspace obstacles.

C-space pattern of
subarm S2

C-space pattern of
subarm S1

horizontal strips

vertical strips

q1 (×π)

q3 (×π)

q2 (×π)

A

C B

B

Figure 2.7-2: This figure shows the three-dimensional configuration space of the
manipulator in the workspace scenario shown in Figure 2.7-1. Each workspace pixel has
been transformed into a C-space pattern. The areas denoted “A”, “B” and “C” represent
the C-space obstacles which correspond to the three obstacles in Figure 2.7-1. C-space
obstacle “B” continues from the right side to the left side of the diagram due to the
modulo-2 property of this C-space (see shaded area in this figure). Horizontal straight
strips are caused by collisions of obstacles with link K1 (which is the first link of subarm
S1). Vertical straight strips are caused by collisions of obstacles with link K2 (which is
the first link of subarm S2). The s-shaped patterns due to collisions of subarm S2 “grow”
out of the s-shaped C-space patterns of subarm S1, as indicated in the left part of the
figure.

2 Workspace to C-space Transformation 41

2.8 Real-world Applications

2.8.1 C-space Patterns for a Physical Manipulator
So far in this thesis, the workspace to C-space technique has been investigated for

manipulators with links that have zero width. The use of point and line robots can be justly
criticised as non-real, non-physical. To confirm that the concept developed so far can be
applied to a real device, the workspace to C-space transformation technique is applied to a
physical manipulator. The manipulator in use is the MA2000 which is an experimental
manipulator with three main joints waist, shoulder and elbow and an additional joint which
affixes a link called finger to the end of the elbow link. A depiction of this manipulator type is
presented in Appendix A-1 and Figure 2.8-1. The focus in this section is on the C-space
transformations for the shoulder, elbow and finger of the MA 2000 manipulator (see
Figure 2.8-1). For the following considerations, the finger joint is fixed to a constant
configuration of 0, thus, forming link L1 of subarm S1. Link K1 of subarm S1 is link l1 (see
also Section 2.5). C-space patterns for this subarm can be found in Appendix A-2. Subarm S2

consists of links l1 and l2. C-space patterns for subarm S2 are depicted in Appendix A-3.

manipulator support
x

y
shoulder
link l1

obstacle rod

x

y

simplified subarm S1

ground

L f l l1
2 3= (,)elbow

link l2

finger l3

K l1
1= 230 mm

250 mm

10 mm

base

overhanging
 back

Figure 2.8-1: The experimental manipulator MA2000 equipped with three planar links
l l l1 2 3, , . The origin of the workspace is placed in the centre of the first joint axis (base).
The depiction of the MA 2000 is developed from a camera snapshot which has been
applied to an edge-detection process and some image enhancing processes.

In order to apply the point obstacle to C-space pattern transformation technique
(Sections 2.5 and 2.6) to a physical manipulator, C-space patterns at increments of d have to
be generated. For this particular experiment, an apparatus was constructed which allows the
acquisition of C-space patterns for point-sized obstacles in varying distances to the
manipulator’s first joint (workspace origin). The acquisition of a C-space pattern is achieved
by manually moving the manipulator in such a way around a thin cylindrical rod (diameter:
3 mm) so that there is at all times at least one contact point between the rod and the

2.8 Real-world Applications42

manipulator. The rod represents the obstacle point. During motion, the manipulator’s internal
joint sensors are constantly read and the acquired angular values are stored by the connected
computer system. The result is a list of elements. Each element denotes all those joint angles
which represent an almost-collision with the rod, or in other words, the perimeter of a C-space
pattern. The acquisition process is repeated for obstacle rods at different distances from the
workspace origin. The collected data is used for the training of the radial-basis-function
network (Section 2.6.2). Examples of the acquired C-space patterns are depicted in
Figure 2.8-2. A collection of all recorded C-space patterns for this manipulator type can be
found in Appendix A-2.

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 208 mm)

collisions
with K1

collisions
with “back”
of L1

collisions
with L1

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 278 mm)

collisions with L1

Figure 2.8-2: The measured C-space patterns of links K1 = l1 and L1 = f(l2/l3) of the
MA 2000. In the left figure, the obstacle rod is close to the manipulator’s base and,
hence, there are collisions with link K1 (shaded area) as well as link L1. The right figure
shows an example where only link L1 collides with an obstacle which is out of the reach
of link K1. The perimeters of the C-space patterns are composed of discrete points which
are linked up with straight lines in this figure.

The recorded C-space patterns are further processed, as follows. For each C-space
pattern, the centre line is computed. The centre line is composed of discrete points which are
in the centre (along the Q2-axis) of those pixels which denote the upper and lower boundary of
each C-space pattern. The centre line is described by the two vectors, Q1 and Q2. Additionally,
for each element of Q1 and Q2 the width of the C-space pattern along the Q2-axis is calculated
and stored in a third vector, W (see Figure 2.8-3). The number of elements per vector is a
constant value for all C-space pattern (here: ~s = 25). This value represents the resolution of
the output space (see Sections 2.5 and 2.6) . The contents of these three vectors were used as
training data for the RBF-network (see Section 2.8.3.1). Figure 2.8-3 compares the measured
C-space patterns with those reconstructed using the three vectors Q1, Q2 and W. As one can
see in the right part of the figure, the approximated pattern matches the measured one well. In
the left figure, the approximation is good for those parts of the pattern which are outside the
marked collision area of link K1 and the back of L1. Inside this area, the centre line has no
meaning, since all angles Q1 and Q2 which are members of this area are treated as forbidden
configurations.

2 Workspace to C-space Transformation 43

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 208 mm)

measured

reconstructed

centre line

width

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 278 mm)

measured

reconstructed

centre line

width

Figure 2.8-3: The measured C-space patterns of links K1 and L1 of the MA 2000.
Additionally to the recorded patterns, the centre lines are depicted. The grey area in the
left figure represents an approximation for the C-space region caused by collisions
between obstacle point and link K1 as well as the back of link L1. C-space patterns
calculated here make use of this approximation. The perimeters of the C-space patterns
and the centre lines are composed of discrete points which are linked up with straight
lines in this figure. The curve called “width” describes the distance between the centre
line and the perimeter of the C-space pattern and is used as a further “pattern” for the
training of the network.

Note, the presented technique is particularly suitable for manipulators with links which
extend only in one direction from the joints (like for example the stick-like manipulator). The
elbow link of the MA 2000 does not satisfy this requirement. However, collisions due to the
overhanging “back” of this link (see Figure 2.8-1) can be treated as part of the collision area
produced by the shoulder link, as shown in Figure 2.8-3 (left). This approach increases the
size of the C-space pattern slightly, and in some rare occasions a possible trajectory close to
the shoulder link might not be found. Nonetheless, because forbidden areas are increased, the
occurrence of a collision with the corresponding workspace obstacle (here: the rod) is
prevented.

The C-space patterns here describe the collisions of links with a small circular obstacle
(diameter: 3 mm). The size of this circular obstacle is greater than the size of the point
obstacles (approx. 0.5×0.5 mm2) in workspace which are depicted by pixels in the images
acquired by the camera used in the experiments of Section 2.8.3.1. Any of those image pixels
are transformed into a C-space pattern which actually corresponds to the circular obstacle of
3 mm. Thus, a safety margin of about 1 mm is added.

The tracing of the obstacle rod was repeated for many distances in the range of the
manipulator. For each of the recorded C-space patterns, the centre line was extracted. The
results are shown in Figure 2.8-4 and Figure 2.8-5. Additionally, the widths of the C-space
patterns have been calculated (see Appendix A-2).

2.8 Real-world Applications44

268258248228208188 218168158 238 d/mm

Figure 2.8-4: Centre lines of C-space patterns. The centre lines only represent collisions
between link L1 of the MA 2000 and obstacle points P at distances d. Even though the
obstacle points are in the range of link K1, collisions with this link which produce vertical
strips are dealt with at another stage.

408388368348328308298288278 548508468438 d/mm

Figure 2.8-5: Centre lines of C-space patterns which are caused by obstacle points
outside the range of link K1.

Similar measurements have been carried out for subarm S2 of the manipulator.
Subarm S2 consists of the elbow link and the finger. A complete set of the measured C-space
patterns for subarm S2 can be found in the Appendix A-3. The C-space patterns of subarm S2

can be used to construct three-dimensional C-space patterns by “combining” the earlier ones
into the C-space patterns of subarm S1, as described in Section 2.5.

The RBF-network (Section 2.6) has been successfully trained on the depicted C-space
patterns (Figure 2.8-4 and Figure 2.8-5) and the corresponding “pattern” of width values (see
for example Figure 2.8-3). Each such pattern was discretised by ~s = 25 values. The number of
patterns (see Figure 2.8-4 and Figure 2.8-5) used for training the network was ~k = 14 (see also
Section 2.6.1). That is, every second C-space pattern of the depicted C-space patterns has been
used for training, while the other C-space patterns have been used to test the response of the
network to unknown data (Section 2.6.2). The error of the network was in the worst case far
below the given threshold T = 0.1. The memory storage of the network weights required a
surprisingly small amount of 12 kB only. Branicky et al. reports memory requirements of
123 kB to store the database for C-space patterns of point obstacles [Branicky90]. They do not
report about the error of their technique for unknown obstacle points.

The network-based transformation technique has been used to produce the configuration
space depicted in Figure 2.8-6 and Figure 2.8-11. The timing considerations in Section 2.8.2
are based on the network-based transformation of workspace obstacle points into C-space
patterns for the MA 2000.

2 Workspace to C-space Transformation 45

2.8.2 Timing Considerations
Configuration spaces produced by multiple computations of the workspace to C-space

transformation technique (Section 2.6) are used as input for the path planner described in
Chapter 3. To do so, such a configuration space is loaded into a square map (Figure 2.8-6).
Those map nodes which denote collisions (grey areas in Figure 2.8-6) are set to one constant
value, while nodes which denote free space (white areas in Figure 2.8-6) are kept on a
different value (see Chapter 3). In this way the grid-based path planner which is connected to
the map is informed about the manipulator’s workspace and can plan a path in the free areas
of the configuration space (see Chapter 3 and Section 2.8.3).

Since the generated C-space patterns are composed of a sparse collection of points, it is
not sufficient to only mark the corresponding map nodes as forbidden, but also to mark those
nodes which lie between. It is essential to construct closed boundaries which enclose the C-
space obstacle completely. Gaps in the boundaries could result in paths which wrongly
penetrate the C-space obstacles.

Two methods can be thought of. Firstly, if the number of points along the perimeter of
the pattern is so high that the distance between two discrete pattern points is smaller than the
distance of the grid nodes, no further calculation is necessary and boundary gaps will not
occur. Secondly, if, due to the sparse representation of the discrete patterns, the distance
between pattern points is larger, an additional algorithm has to be invoked to close the gap. In
the programs used here, extra obstacle nodes are introduced along a straight line connecting
those nodes which correspond to pattern points.

The C-space boundary (see Figure 2.8-6) is overlaid in a separate process. It describes
the perimeter of the manipulator’s workspace and is independent of dynamic changes in the
workspace. The C-space boundary has been constructed by moving the manipulator in an
empty workspace. During the manipulator’s motion, its joints’ parameters were continuously
recorded. Collisions between links, between links and manipulator support as well as between
links and work bench define the boundary.

The experiments have been carried out on an IBM-compatible PC with a Pentium90. All
programs have been written and executed in the software package MATLAB 4.0. The used
version of MATLAB interprets the program code. Equivalent programs executed in compiled
form are reported to be 100 to 200 times faster (see [Matlab96] and Chapter 3).

Using the suggested workspace to C-space transformation technique (Section 2.6), the
speed of transformation is approximately a linear function of the number of points to be
transformed [Newman91]. The experiments showed that the transformation time varies
between 0.01 and 0.06 sec./point. The higher of the two times occurred in workspace
scenarios where due to collisions of link K1 vertical C-space strips had to be calculated in
addition.

The time needed to store the calculated configuration space into a discrete grid turned
out to be long compared to the time needed for the workspace to C-space transformation (see
pg. 45). The storing time is proportional to the number of transformed obstacle points and,
increases linearly with the square-root of the number of grid nodes. For example, in a 50×50
grid, in a 150×150 grid and in a 400×400 grid, it took 0.125 sec., 0.199 sec. and 0.3575 sec.,
respectively, to store one C-space pattern of one obstacle point. Recently conducted
experiments indicate that by improving the program code the execution time for placing
patterns in the grid can be reduced by a factor ten.

2.8 Real-world Applications46

-500 0 500

-500

-400

-300

-200

-100

0

100

200

300

400

500

x/mm

y/mm

C

A

B

(a)

 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1q2 (×π)

q1 (×π)

C-space boundary

(b)

-0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

q2 (×π)

C

B

q1 (×π)

C-space boundary

A

(c)

 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

q2 (×π)

C A

B

q1 (×π)

C-space boundary

(d)

Figure 2.8-6: (a) The MA 2000 in a workspace with work bench, manipulator support
and three obstacles. (b) The C-space boundary which describes collisions between links,
between links and manipulator support as well as between links and work bench. (c) The
C-space patterns. (d) Schematic depiction of the C-space map; the grey and the black
areas denote obstacle regions.

The presented technique is especially suitable to transform changes in the environment
which are for example due to a few moving obstacles in an otherwise static environment.
Instead of recalculating the configuration space for the entire workspace, only those moving
obstacles have to be transformed. The C-space obstacles corresponding to the workspace
obstacles in Figure 2.8-6 were computed in 1.7 seconds, while the time to store them in a
150×150-grid took 26.14 seconds (see also pg. 45). The shown workspace obstacles
comprised a total of 116 individual obstacle points. In this example the static environment is
the C-space boundary which is mapped into the grid in a separate step. A comparison with the
results achieved in Chapter 3, Section 3.6 showed that the time needed for planning a path in

2 Workspace to C-space Transformation 47

the 150×150-grid is around 90 seconds. Hence, the workspace to C-space transformation
technique is well suited as an input to the resistive-grid-based path planner.

Assuming a realistic acceleration by a factor 100, when running the compiled version of
the program, the time to transform an obstacle point and placing the corresponding C-space
pattern in a 150×150-grid would be around 0.002 seconds. The C-space obstacles
corresponding to all workspace obstacles in Figure 2.8-6 could be carried out in about 0.25
seconds. Thus, the configuration space which corresponds to a workspace with three moving
obstacles could be refreshed at around 4 Hz.

It is difficult to compare results of different researchers, because the transformation
process, especially with regards to a real-world problem, depends on many factors, such as
computing power, programming language, program details, manipulator type, grid resolution,
etc. Often not all this data is made available in a publication. Even if this is the case, the same
conditions cannot be reproduced due to differences in available equipment. Newman and
Branicky report that the update of the configuration space for a single moving obstacle
primitive was executed in the worst case in 0.03 seconds [Newman91, Branicky90]. This
computation was carried out on a 16-bit computer (MC68020) running at 16.7 MHz. Their
configuration space had a resolution of 128×128 [Newman91]. The experiments described
here were conducted on an IBM-compatible PC with a Pentium90, which is a 32-bit
processor. The transformation of a single moving obstacle point into a similarly sized grid
(150×150 nodes) can be done in only 0.002 sec (assuming the acceleration factor 100 as
explained in the above paragraph). This means, the workspace to C-space transformation for a
real manipulator can be carried out 15 times faster.

The above values are only approximate and shall give an idea on the speed of the
proposed technique. Presumably, the execution time can be drastically reduced employing
advanced and especially adapted programming techniques. Furthermore, time-critical parts of
the program can be coded in assembler.

The suggested technique would show its power if implemented in a parallel computer
system. The most obvious approach would be to make available an individual processing unit
for every image pixel to be transformed. This would make the transformation time
independent of the number of obstacle points. In this aspect, the technique here is superior to
any other method where each transformation is applied to complete workspace obstacles, and,
thus, cannot easily divided into parallel routines [Lozano87, Latombe91]. The implementation
of the look-up list as a neural network implies the possibility of further parallelisation. Every
network node can be substituted by a separate processor. This would improve the
transformation time per obstacle point. This aspect is especially worth considering, due to the
on-going development in the area of hardware-implemented neural networks [Roska96,
Koch96, Beiu96, El-Mousa96].

2.8.3 A Real-World Planning System
This section suggests a complete system to solve the FindSpace and FindPath problems

(Section 2.2) for a manipulator [Jaitly96b]. The system is capable of planning a trajectory for
a real two-link manipulator in a workspace cluttered with obstacles. In a first step, a
description of the manipulator’s workspace which is acquired by means of a CCD camera is
transformed into a configuration space representation (FindSpace). In a second step, the
configuration space is loaded into a discrete map in which path planning is carried out

2.8 Real-world Applications48

(FindPath). The system combines the techniques presented in this chapter and in Chapter 3.
An overview of the system which constructs the C-space is depicted in Figure 2.8-7.

START

Rasterscan the image and find possible obstacles

Follow perimeter of obstacle

Discard

END

YesNo

Yes

No

is it
valid

?

is it
end of
image ?

Preprocessing of the image

Convert to
info

input
node

Q1net

Q2net

 hidden layer

output
layerθ

Shift pattern
by θ

d

θ

2-dim.

C-space pattern

place pattern
in C-space

discretised

Overlay
collisions with
first link and

, d

Wnet

Figure 2.8-7: Flowchart of image pre-processing and neural network.

The emphasis of this section is on the acquisition of the workspace representation and
its communication with the C-space transformation process [Althoefer95c, Jaitly96b]. The
core of this process is the RBF neural network (described in 2.6) which is trained to react to a
stimulus with a C-space pattern (see also [Althoefer95c]). This stimulus is a scalar
representing the distance between obstacle point and manipulator. The real-world experiments
show that the transformation of all obstacle points into the corresponding C-space patterns
produces a configuration space in which path planning can be carried out successfully
[Althoefer95c].

2.8.3.1 Image Processing

The image of the workspace of a planar manipulator with two revolute joints (angular
parameters: q1, q2) is acquired by a CCD camera which is positioned perpendicular to the
workspace (Figure 2.8-8). The obstacles are extracted from the background and discretised
into a set of pixels employing a sequence of image processing steps (for details see
[Jaitly96b].

After grabbing the image by a CCD camera (Figure 2.8-8) the image is smoothed using
a lowpass spatial filter. This removes random, uncorrelated noise from the image. In the
following image enhancing steps, edge information is extracted (Figure 2.8-9 (a)), and the
image is thresholded to binarize it and separate the background from the manipulator and all
obstacles present. The image of the manipulator, whose position is known, is automatically set
to zero and hence removed from the image (Figure 2.8-9 (b)). A thinning algorithm is used to
produce a silhouette representation of all obstacles present. Furthermore, all remaining “white
speckles”, due to noise, are eliminated using a noise removing algorithm [Jaitly96b].

2 Workspace to C-space Transformation 49

CCD Camera
Obstacles

Planar Workspace
Manipulator

z x

y

Figure 2.8-8: Manipulator and workspace viewed by the CCD camera.

Link 2

Link 1

Joint 1

Joint 2

y

x

(a)

Obstacle 1
Obstacle 2

Obstacle 3
Obstacle 4

Obstacle 5

(b)

y

x

Figure 2.8-9: (a) Edge information of image in Figure 2.8-8, (b) thresholded image with
manipulator removed. The origin of the workspace is set to be in the centre of the first
joint.

2.8 Real-world Applications50

Obstacle 5Obstacle 5

Figure 2.8-10: Result of the fast edge following algorithm. The obstacle perimeters are
extracted and divided into equidistant pixels.

Then, a fast edge following process using heuristics is applied to the image to extract
obstacle perimeters. Details of this method can be found in [Martelli76, Jaitly96b]. After this
process each obstacle is represented by equidistant points on the perimeter of the obstacle.
Figure 2.8-10 shows the equidistant points representation of the perimeter of obstacle 5. Each
of these points can be interpreted as an obstacle pixel.

The aforementioned image processing took approximately 2-3 seconds for the five
obstacles shown in Figure 2.8-9. Most of the time was spent on the thinning of the obstacles
(carried out on a serial computer), while the other processes which were carried out on a
specialised imaging Transputer board (with a frame grabber, a 2D-hardware convolver and
two frame buffers on it) were completed in a fraction of a second [Jaitly96c].

The distance between manipulator and pixel is calculated and individually fed to the
neural network (see following section and [Althoefer95c]). The distance between two obstacle
points in workspace (corresponding to two pixels in the image) is smaller than the diameter of
the obstacle rod which has been used for the generation of C-space patterns (Section 2.8.1).
This assures that although each obstacle is represented by discrete pixels, the corresponding
C-space patterns overlap sufficiently to form a complete C-space obstacle. If the distance
between obstacle points is to high other techniques have to be involved which assure that C-
space obstacles with no gaps are constructed (see for example Chapter 3, Section 3.5).

2.8.3.2 Input to the Radial-Basis-Function Network

The RBF network, as described in Section 2.6, is trained to react to the distance value
derived from the image processing stage of the system with the corresponding configuration
space pattern. The network’s output is three-dimensional: two vectors describe the (Q1, Q2)-
configurations of the C-space pattern, while the third vector describes the width of the C-
space pattern at each of these configurations. The third vector incorporates the links’ width
which make the C-space patterns expand from s-shaped lines to s-shaped areas. These patterns
describe collisions between pixels and the second link. Collisions of the first link result in
straight vertical strips and are simply overlaid. Since, the network output is only based on the
distance of a pixel, the pattern is to be shifted by the angular position which the pixel has in
relation to the x-axis to determine its final location in configuration space (see [Althoefer95c,
Newman91, Meyer88] and Section 2.4.2). Owing to the interpolation capabilities of the net,
unknown patterns are constructed with a low error. The union of the perimeter pixels
transforms into the discrete boundary of the corresponding C-space obstacle and multiple
network operations are carried out to transform complex obstacles [Newman91, Althoefer95c
and references therein].

2 Workspace to C-space Transformation 51

The discrete C-space depicted in Figure 2.8-11 (a) corresponds to the workspace
scenario shown in Figure 2.8-9 (b). The C-space patterns computed by the neural network
have been placed into the discrete C-space map by linking up the points of the pattern with
straight lines, as described in Section 2.8.2. The map containing the configuration space acts
as input to a path planner (see Figure 2.8-11). The trajectory planned by the resistive grid has
been applied to a model of the manipulator to depict the functioning of the complete system
(see also Chapter 3). The complete transformation process including the image pre-processing
is depicted in Figure 2.8-7.

0 0.5 1 q1 (×π)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

start
goal

4
5

2

3
5

5

1

path

(a)

C-space boundary

 -500 0 x/mm

-500

-400

-300

-200

-100

0

100

200

300

400

joint 1

4

1
2

3

5
start

goal

y/mm

(b)

Figure 2.8-11: (a) The grey areas are the C-space obstacles which correspond to the
workspace obstacles shown in Figure 2.8-9 (b). The union of the C-space obstacles
represents the “forbidden region” not allowed to be entered by the point robot. To
demonstrate the purpose of the suggested system, a path has been planned in C-space.
The employed planner is based on the neuro-resistive grid. The grid size is 150×150
nodes. For further details, refer to Chapter 3. (b) The path values found in C-space
(Figure 2.8-11 (a)) are applied to the manipulator. Each fifth step along the trajectory has
been depicted.

2.9 Summary
Path planning in configuration space of a manipulator presupposes the transformation

from workspace into configuration space. This chapter presents a neural-network-based
technique to transform the representation of single obstacle points into their C-space
counterparts named C-space patterns. Multiple of these transformations allow the construction
of the configuration space for complex workspace scenarios. The transformation technique
has been developed for two-link, stick-like arms which is explained as a fundamental structure
of more complex manipulator types.

It has been shown that the technique can be applied to manipulators with different kind
of joint types, such as revolute joints, prismatic joints as well as a mixture of the two. The
usage of the configuration space for path planning is especially a sensible approach for
manipulators with a low degree of freedom. Although this chapter presents a general method

2.9 Summary52

which can be used to compute the configuration space for n-link manipulators, the
dimensionality problem will hamper an implementation for manipulators with a high degree
of freedom. Nevertheless, an expansion of the proposed technique for manipulators with more
than two links can be easily implemented either in a recursive fashion or in a parallel
computer system.

The experimental section of this chapter shows that the proposed technique can be
applied to real manipulators. The construction of the C-space patterns for two-link subarms of
the experimental manipulator, MA 2000, has been demonstrated. Moreover, the feasibility of
the technique as part of a complete path planning system for a real-world problem has been
proved.

The radial-basis-function neural network used for the transformation process learns the
highly non-linear mapping between obstacle points and C-space patterns. A training technique
was introduced which adds new network nodes where necessary. The interpolating
capabilities of the network allow the construction of those C-space patterns, which occur in
response to unknown input stimuli, with only a small error. The training pairs used consisted,
on the one hand, of scalar values representing the distance between manipulator and obstacle
point and, on the other hand, of three vectors describing the corresponding C-space pattern.
Two vectors represent the discrete centre line of each pattern, while the elements of the third
one describe the width of the pattern. The memory requirements to store the weights of the
network are particularly small. The network’s output can be used as an input for the resistive-
grid-based planning strategy proposed in Chapter 3. The network provides a discrete C-space
pattern with a resolution of 25 separate configurations. This resolution was sufficient for all
the experiments conducted in Chapter 3.

Chapter 3

A Neuro-Resistive Grid for Path Planning

This chapter describes the functioning of a neural-based resistive grid and its application
to manipulator path planning (Section 3.1). Its relation to other work is summarised
(Section 3.2). A novel update algorithm which allows a fast computation of an activity
distribution in the grid providing collision-free paths has been proposed (Section 3.5). This
fast update algorithm makes use of a resistive-grid-based approach especially suitable for path
planning with strong real-time constraints. The neuro-resistive grid has been successfully
applied to real-world manipulators (see Figure 3.6-1 and Section 3.6.1) as well as to simulated
manipulators (Section 3.6.2). An extensive comparison to other planning and search
techniques shows that the new algorithm is superior in many manipulator path planning
applications (Section 3.7). The chapter concludes with a summary of the main aspects of the
grid-based planning technique (Section 3.8).

3.1 Problem Definition and Overview of the Algorithm
In today’s industrial production processes, path planning is still in its infancy. Most

processes are predefined and exact trajectories are provided which explicitly describe any part
of the manipulator’s motion required for the task to be carried out. The standard procedure is
to move the manipulator along the desired trajectory and to record the joint positions which
are measured by the manipulator’s internal sensors at each time step. Then during operation,
the recorded sequence of joint positions is replayed. This basic path planning method is
especially useful, when the same motion pattern has to be carried out many times, as it is the
case with the assemblage or welding of production goods (as for example cars, electronic
equipment, etc.) which passes by the manipulator on a conveyor belt. Since this kind of
manipulator system only accommodates internal sensors, it is not aware of the environment
and cannot react to possible, but unintentional changes. Thus, such a production process has to
be planned precisely and objects to be handled by the manipulator have to appear always at
exactly the same position prior to the execution of the programmed motion. A slight deviation
of the predefined object positions or manipulator trajectory can lead to damage of the goods as
well as the manipulator.

To improve the industrial manufacturing process but especially to open up new areas of
applications, manipulators with a more autonomous behaviour are needed. New areas are for
example: manipulation of hazardous material, support for disabled people, automated
cleaning, painting tasks, etc. In those cases, it is often not possible to predict the exact location
of all objects involved in the imagined task. Then, a path planning strategy should be invoked
which computes a feasible path shortly before the task is executed. An important means for
such a planner is its ability to acquire information about the environment.

External sensors, such as vision-based systems, ultra-sonic sensors or laser scanners, can
be used to accomplish this task. Since the acquisition of environmental data is not in centre of
the attention of this thesis, it is assumed that a pre-processing step generates a suitable
presentation of the workspace (see [Jaitly96b, Latombe91, Siemiatkowska94, Lozano87]).
Sensoric equipment produces imprecise, vague or erroneous data (see for example
[Latombe91, Lee96, Indyk94]). However, in this chapter, it is assumed that the data acquired

3.1 Problem Definition and Overview of the Algorithm54

by the sensors is exact, thus, it is assumed that the robot moves in an environment where the
obstacle positions are known.

A basic problem that often occurs in manipulator path planning is to move the
manipulator from an initial position to a goal position. At the goal position the manipulator is
usually supposed to carry out a task, as for example to pick up an object, release an object
from the gripper, affix the object in the gripper to another object, set a welding point etc. After
the task is finished, the present position can be considered as an initial position for a
subsequent planning task. In contrast to other planning tasks which involve the tracking of a
path (for example path welding), in this thesis the exact trajectory of the path from the initial
to the goal position is considered a secondary aspect. However, one important constraint is
influential on the construction of the path: the presence of obstacles. If there is an obstacle or a
set of obstacles in the workspace, the path planner must assure that the constructed path leads
the manipulator through obstacle-free regions. Although the aspect of planning paths which
are collision-free is in the centre of this chapter, the proposed up-date algorithm has been
developed to produce solutions in short time. The attention in this chapter is not on finding the
shortest path between a given start and goal location. Furthermore, aspects which evolve
around the dynamics of manipulators are not treated here.

Thus, the centre of attention will be on planning strategies that are based on the
kinematic path planning problem which can be described as follows: find a path that leads the
robot from an initial configuration to a goal configuration avoiding any collision between the
robot and obstacles in the robot’s reach, and, furthermore, indicate if such a path cannot be
found by the planning strategy [Latombe91].

The path planning strategy presented here is based on a neural implementation of a
resistive grid. Resistive grid approaches commonly make use of the configuration space (C-
space) in which each of the robot’s configuration is represented by a point in a co-ordinate
system spanned by the robot’s parameters (see for example [Bugmann95, Althoefer95e,
Newman91, Latombe91, Lozano87], Chapter 2 and Section 3.6). Thus, path planning for a
complex robot structure is converted to path planning for a single point. While the robot is
shrunk to a point, workspace obstacles transform into forbidden regions in configuration
space, also called C-space obstacles. In most of the experiments described in this chapter, the
workspace obstacles have been transformed into their configuration space representation using
the method described in Chapter 2 (see also [Latombe91, Newman91, Branicky90]). The
resistive grid generates a discrete harmonic function over the free areas of the C-Space. On
this function an ascent along the maximum gradient can be performed to guide the robot point
around obstacles towards the highest potential, the goal configuration.1

Simulations and real-world experiments have been carried out to show the feasibility of
the proposed approach. The main emphasis was on the use of the resistive grid based method
as a path planner for the major links of a planar robotic manipulator in varying environments.
Some planning tasks make it necessary that initial and goal configuration are computed from
given end effector positions using inverse kinematics. This problem has not been discussed in
this chapter; in all cases it was assumed that the manipulator’s initial and goal configuration
were known.

1 It should be apparent that min [f(x)] = -max [-f(x)]. Hence one can restrict one’s concerns to either
maximisation or minimisation problems. In this thesis, the goal state is always clamped to the
maximum value, while the start state as well as any state which is not the goal one are on a lower
value. Thus, any path is found by ascending along the potential’s gradient.

3 A Neuro-Resistive Grid for Path Planning 55

The neuro-resistive grid has been also successfully applied to autonomous agents in
two-dimensional ([Bugmann94, Bugmann95]) and three-dimensional workspaces (see
Section 3.6.3).

3.2 Related Work

3.2.1 Resistive Grids for Path Planning
Only recently, resistive grids were discovered as a tool to solve the path planning

problem in robotics [Connolly90, Bugmann95, Tarassenko91, Kim91]. To use a resistive grid
as a path planning tool for robots has been firstly suggested by Connolly et al. [Connolly90,
Connolly93]. In their papers, they employ a resistive grid to compute harmonic functions
which are solutions to Laplace’s equation (see Eq. (3.4-14)). Given certain boundary
conditions, harmonic functions have no local extrema over the area of interest, and are
therefore well suited for global planning tasks.

The work of Connolly et al. is based on a discrete configuration space of a robot. The
grid is a collection of nodes which are laterally connected via resistors. Each grid node
represents one unique configuration. The node which represents the goal configuration and
those nodes which represent the forbidden or obstacle regions are clamped to two differing
potentials. Thus, goal node and obstacle nodes represent the unconnected boundary of the
grid. This kind of boundary condition is named the Dirichlet boundary condition (see
Section 3.4.4). The grid, described by Connolly et al., is emulated on a serial computer. The
distribution of the potential over the unclamped nodes has been computed using the Gauss-
Seidel update method [Connolly90]. Connolly et al. show how -after the potential distribution
due to an external input representing goal and obstacles has reached its converged state- a path
can be found by following the steepest gradient. This path leads from any point in the
obstacle-free area to the goal node [Connolly90].

In response to the papers of Connolly et al., Tarassenko and his colleagues published
their experiences with and thoughts about resistive grids [Tarassenko91]. Their main point of
criticism is related to Connolly’s choice of boundary condition. In contrast to the use of the
Dirichlet boundary condition, where the current enters the grid at the goal node and leaves it
via the nodes which correspond to obstacles, the Neumann boundary condition dictates that
the current enters via the goal node, but leaves via the start node, while obstacles are
represented by regions which are insulated from the rest of the state space (see Section 3.4.4).
Tarassenko et al. show that by using the Dirichlet boundary condition, the grid potential
decreases exponentially as the distance to the goal increases, while a grid due to Neumann’s
boundary condition experiences a mainly linear decrease of the potential [Tarassenko91]. A
more detailed description of the two boundary conditions will follow in Section 3.4.4.

Apart from computer simulations, researchers have also constructed VLSI
implementations of the resistive grid and similar networks [Tarassenko91, Marshall94,
Mead88, Roska96]. Those fundamental experiments are promising, since a hardware grid can
generate a harmonic function in very short time. The necessary time is in the order of micro
seconds [Roska96, Koch96]. Since a VLSI-grid allows a very fast construction of a potential
distribution, the path planning time would mainly depend on the speed of constructing the C-
space representation, feeding this representation into the grid as well as reading the found
trajectory back. These pre- and post-processing operations are usually carried out on digital
computers and tend to have much longer processing times.

3.2 Related Work56

Today’s achievements in the field of hardware grids are still very limited. The
developed grids are only two-dimensional (see also [Tarassenko91, Marshall94, Mead88,
Roska96, Koch96] and Section 3.2.3). With the ongoing advances in chip integration, three-
dimensional VLSI grids (or two-dimensional ones which are interconnected in a three-
dimensional fashion (see also [Ritter92])) of reasonable resolution will be available in the
future. Global path planning in a three-dimensional grid applied to manipulators with three
degrees of freedom or to the three major links of a manipulator with a higher degree of
freedom than three will have a strong impact. Main problems in this field are the connections
to the (computer) peripherals and the high interconnectivity inside the grid.

3.2.2 The Hopfield Network
The resistive grid is in its structure very similar to the Hopfield network (see

Figure 3.2-1). This network is a lattice of nodes which are interconnected via weights. In
contrast to the resistive grid where the resistors have only positive values, the weights in the
Hopfield network can have positive or negative values exercising an excitatory or inhibitory
influence on the lateral nodes. In the original Hopfield network, every node is connected with
every other node and these nodes have a binary transfer function. During operation, an
external stimulus is presented and the Hopfield network (like the resistive grid) iterates into a
final state.

I1

In

I2

Figure 3.2-1: Structure of a Hopfield network (after [Cichocki94]).

Hopfield applied the magnetic behaviour of spin glasses to neural networks which
consist of recurrent binary neurons [Cichocki94]. Most importantly, Hopfield transferred the

3 A Neuro-Resistive Grid for Path Planning 57

concept of the energy function which is associated with the behaviour of the spin glass models
to his neural network model. The model states that a dipole can only change its spin if this
change results in a reduction of the system’s energy [Nauck94]. Thus, the model reduces its
energy until a minimum is reached. This can be proved investigating the system’s energy
function, also called Lyapunov function (see Appendix B, Section 3.4.5 and [Kosko92,
Cichocki94, Aiyer90, Kelly90]).

Since Hopfield’s first model, many modifications of the original model have been
proposed [Cichocki94 and references therein]. Besides the analogue models, time-discrete
Hopfield networks have been proposed in the literature [Cichocki94 and references therein,
Bose96 and references therein]. The following sections will focus on the time-discrete type,
since the experiments and simulations carried out during this research have been done on a
serial computer system. Nevertheless, many of the aspects described here also valid for
network models implemented on a parallel processing system or in hardware.

3.2.3 Cellular Neural Network
The cellular neural network (CNN) is a special case of the Hopfield network. In contrast

to the original Hopfield network which is completely interconnected, a cellular neural network
is a network structure in which each node is only connected to a local neighbourhood of
nodes. The CNN has usually a dimensionality of two and the number of neighbours is
normally four or eight [Bose96]. The nodes of a CNN as suggested by Chua et al. (see
[Bose96 and references therein]) are analogue and all connections between nodes are
symmetric. As for the Hopfield network, the stability of the CNN can be proved by employing
an appropriately defined Lyapunov function [Bose96, Aiyer90, Kelly90]. A starting condition
at each node triggers the response dynamics of the CNN, and it eventually develops into a
stable state (see [Bose96], Section 3.4.5 and Appendix B).

Due to its “planar” structure, the CNN is very suitable for VLSI implementations. The
two-dimensional CNN can be viewed as a non-linear filter which is already in use to solve
different kinds of image-processing problems, for example, noise removal, shape extraction,
edge detection and similar [Roska96, Bose96]. Complex image processing tasks have been
reported to be carried out in about 1 to 5 µs [Koch96, Roska96].

Computer implementations of the CNN structure have been also used for mobile robot
navigation [Siemiatkowska94, Siemiatkowska94b]. The computer-emulated network type
proposed by Siemiatkowska is a two-dimensional lattice and represents a point-like mobile
robot in its environment. The network is used to plan a path in the robot’s vicinity which is
scanned by ultra-sonic sensors [Siemiatkowska94b]. Each node or cell in this particular
implementation of a two-dimensional CNN is laterally connected to neighbouring cells. The
cell which represents the goal location of the robot is considered to be the source for a
diffusion process and is clamped to a large positive value. Obstacles are clamped to zero. An
update rule is applied to calculate the spreading of the diffusion over the obstacle-free areas of
the lattice. Informally, at each iteration, the current cell activity becomes a percentage of the
largest activity in the neighbourhood. The iteration process is stopped when either the
diffusion has reached the current robot location or all obstacle-free areas have been
investigated without reaching the current robot position. When a passable connection between
start and goal exists a gradient ascent from start location to the goal location can be performed
to generate a path. This method is free of local extrema up to the resolution of the lattice.
Kanaya et al. proposed a hardware implementation of a CNN which is used to plan paths for
mobile robots [Kanaya94].

3.2 Related Work58

An approach based on the principles of Hopfield networks has been described by
Glasius et al. [Glasius94]. Their network is very similar to a cellular neural network as well as
the neuro-resistive grid. It consists of neurons which are connected to local neighbours in a
lateral fashion. In their paper, the network is applied to solve the path planning for a point-like
mobile robot and a “stick-like” two-link manipulator in environments cluttered with obstacles.
Goal state and obstacle states are clamped to a positive value and zero, respectively. The used
update equation is the same as used for the neuro-resistive grid (see Eq. (3.4-11)). Their paper
focuses on the dynamics of Hopfield networks. It shows that the particular neural network
converges to one stable final state and therefore is appropriate to solve global planning
problems. The presented proof of convergence can be also applied to the neuro-resistive grid
(see [Glasisus94] and Appendix B).

3.2.4 Dynamic Programming
Similar to resistive grid approaches, dynamic programming can be considered to be a

particular approach to solve different kinds of optimisation problems, such as path planning,
graph search, travelling salesman, logistics, equipment replacement and investment
optimisation [Cooper81]. The principle of dynamic programming or the principle of
optimality were first developed and introduced by Bellman [Bellman57]. Dynamic
programming is usually applied to optimisation problems in systems which progress through
consecutive stages. The task is to find an optimum sequence of stages which connects a given
start state with a goal state. The quality of the sequence is reflected by an overall cost (or
reward). The sequence with the minimum cost (or maximum reward) is the optimum route
(see also footnote on page 54).

Finding the optimum sequences of stages, is a sequential process which is based on a
decision to be made at every stage. At each stage the system is said to be in a certain state and
depending on this state a decision can be made. Each state is associated with a set of available
decisions which depend on the actual state the system is in. A decision carried out results in a
change from the actual state the system is in into a new state. This transformation from one
state to another is associated with a local cost to be paid.

Employing a dynamic programming approach, usually a look-up table or list is built
which contains a cost value for each state of the state space (see Figure 3.2-2). The
construction of this look-up table begins at the goal state. This state is special, since once this
state is reached, no further transition takes place, therefore, the goal state is also called
absorbing state [Cooper81]. Each state which is a neighbouring state to the goal state is
associated with a cost. In a next step, states are considered which are neighbours to the
neighbours of the goal state. The cost value of such a state is the accumulation (for example a
sum or a product) of their local costs and the previously calculated total costs of the states
surrounding the goal state. For each state, only the minimum cost is stored in the look-up
table. The process of assigning a minimum total cost is continued until every state has been
visited. Thus, on completion of the look-up table, each state is assigned with a value which
denotes the minimal cost along subsequent states towards the goal state. This description
reflects the recursive nature of dynamic programming, since the total cost assigned to any
state depends on the total costs assigned to states visited beforehand. In other words
[Cooper81]: “An optimal policy has the property that whatever the initial state and the initial
decision are, the remaining decisions must constitute an optimal policy with respect to the
state which results from the initial decision.”

3 A Neuro-Resistive Grid for Path Planning 59

Once the look-up table is built, a sequence with minimum cost from any state to the goal
state can be found easily. At each transformation from one state to another the chosen
subsequent state should be the one with the minimum total cost. A very good introduction to
the principles of dynamic programming can be found in [Cooper81]. For a mathematical
treatment of dynamic programming and application examples, refer to [Bellman57,
Bellman62].

Goal

 -5 -4

 -4 -4 -3

 -3 -2 -3

 -2 -2

 -1

 -1 -2 -2

 -1

 -9

 -8 -7 -6 -5

 -1

 -5

 -6

 -8

 -7

 -9

 -4 -3

 -8

 0

-99 -99

-99

-99

-99-99Start

Figure 3.2-2: The figure depicts the cost look-up table for a point-sized robot in a two-
dimensional environment. The table is generated by a dynamic programming approach.
The total cost assigned to each position (state) is the sum of the local cost (which is
always -1 in the obstacle free regions) and the minimum cost of neighbouring states. The
value -99 is assigned to the obstacles. This value is more negative than the accumulated
cost of any obstacle-free state. Thus, a state representing an obstacle will never be
considered as an obstacle-free state. The hatched squares denote a path from the chosen
start position to the goal position.

The A*-algorithm which is often used in robotics to solve search graph problems is
based on dynamic programming. The main difference of the A*-algorithm in contrast to the
general dynamic programming approach is that the A*-algorithm does not assign to every
possible state a cost value but terminates as soon as the start state is encountered during the
construction of the look-up table. The A*-algorithm will be discussed in further depth in
Section 3.7.3.

The aforementioned approaches, namely the resistive grid based approach [Connolly90,
Tarassenko91, Bugmann95, Althoefer95e], the Hopfield-network-based approach [Glasius94]
and the CNN-based approach [Siemiatkowska94b], which have been suggested for robot path
planning can be viewed as particular implementations of dynamic programming. In each case,
a topological discrete map is formed which describes the configuration space of a robot in its
environment. Each node in the map represents a state of the robot. The transition from one
state to another is combined with a weight or cost which represents the Euclidean distance
between those two states. In each case, a table or list is generated in where costs accumulate.
In the approach chosen by Siemiatkowska, the accumulation of costs is not done in an additive
manner but by means of a product rule. In the resistive grid and the Hopfield approach, the
activity or total cost of one state is achieved by averaging over the activities of neighbouring
states (further explanations will follow in Section 3.4).

Approaches based on dynamic programming commonly construct a look-up table of
costs as described above (see also Section 3.7.3). In contrast to this method, resistive grid
based approaches and similar approaches often use update methods which are iteratively
applied to the nodes representing the states. The iterative procedure is repeated until

3.3 Path Planning in the Configuration Space60

convergence or some other criterion is satisfied. The activity distribution which is yielded
resembles a look-up table of costs (see Section 3.7).

From the observations made, it seems that all described approaches follow the same
principles and can be explained with the theory of dynamic programming. However, in the
literature all these approaches have been separately treated as completely different and no
attempt has been undertaken to show the strong similarities. To further analyse these aspects
and to construct a general framework which include all aforementioned approaches seems to
be an interesting area of research, but is beyond the scope of this thesis.

3.3 Path Planning in the Configuration Space
Over the last three decades, many path planning strategies were developed. These

strategies are usually split into two stages. In the first stage, a graph is constructed which
represents the collision-free space or free space. Examples include the visibility graph
method, the Voronoi diagram, the free way method, the cell decomposition method. In a
second stage, the constructed graph is searched for a collision-free path from a start to a goal
location. Methods commonly used to accomplish this task are the A*-algorithm (see
Section 3.7.3) and other map searching algorithms. These search methods are mostly global
planning strategies which find a path if such exists. For a good historical review of motion
planning strategies for mobile robots and articulated manipulators, refer to [Latombe91].

All the aforementioned path planning strategies have in common that in their basic form
they can be easily applied to a point-sized robot. Hence, with the development of a new tool to
represent the robot and its surrounding environment, those strategies gained in importance.
This tool was the so-called configuration space (C-space) whose principles are described in
Chapter 2 (see as well [Lozano83, Latombe91]).

Conceptually, the configuration space (C-space) approach by itself represents the robot
and workspace, rather than providing a feasible path for the robot. Thus, path planning in
configuration space is usually comprised of two stages: the identification of those robot
configurations which do not result in a collision, called FindSpace, and subsequently the
search for a path within this representation which connects start and goal configuration, called
FindPath. While the first stage was dealt with in Chapter 2, this chapter discusses the problem
of finding a path in the constructed configuration space.

The main drawback of employing the C-space for the solution of path planning
problems is that the C-space increases exponentially with the robot’s degree of freedom. This
causes problems in terms of memory and computing time. Nevertheless it has been already
shown that paths can be planned for manipulators with six degrees of freedom on a single
processor [Ralli96], and with the advent of highly parallel machines this method will gain
ground, especially, when discretised C-spaces are used and path planning strategies like the
resistive grid are applied to these C-spaces. This is because these strategies are readily
implementable and highly prallelisable. In view of the dimensionality problem, many
techniques have been developed which make use of the C-space idea, but employ heuristics to
reduce the dimensionality. These techniques aim at constructing a C-space representation
which does not make use of all possible degrees-of-freedom of the robot. Examples can be
found in [Latombe91, Gupta92, Lozano87] (see also Chapter 2). Despite the advantageous
reduction of the C-space complexity, those techniques do not necessarily find a path under any
possible condition and are therefore not global anymore. However, the resistive-grid-based

3 A Neuro-Resistive Grid for Path Planning 61

approach proposed in this chapter can be used as a FindPath strategy in these simplified C-
spaces.

3.4 The Neuro-Resistive Grid

3.4.1 Implementation of the Neuro-Resistive Grid
The neuro-resistive grid is a collection of N nodes which are distributed over a state

space (see [Bronshtein85]). Thus, the grid can be seen as a discretisation of a state space
where each node represents one individual state. In most of the applications investigated in
this thesis, the neuro-resistive grid is used to do path planning in a discrete configuration
space (joint space) of robotic manipulators. The neuro-resistive grid is based on the work
described in [Bugmann94, Bugmann95, Bugmann96, Althoefer95d, Althoefer95e]. The
neuro-resistive grid has been also applied to path planning for mobile robots (see
[Bugmann94, Bugmann95] and Section 3.6.4) as well as the control of the inverted pendulum
[Bapi95, D'Cruz96].

30

10

20

30

10

20

00

Neuro-Resistive Grid

Spatial Memory

Figure 3.4-1: This figure shows the neural implementation of a 2-dimensional resistive
grid. The neuro-resistive grid is one-to-one connected to the layer which contains the
spatial memory.

The location of a node in the co-ordinate system of the grid corresponds to one
individual robot configuration. Usually, the nodes are arranged in an n-dimensional lattice
whose Cartesian co-ordinates describe the joint parameters. The dimensionality n of the grid is
the same as the one of the underlying configuration space. The lattice represents a
topologically ordered map [Glasius94, Ritter92]. Instead of a Cartesian co-ordinate system,
other map types can be used to achieve a discrete and topologically ordered description of the
configuration space. Maps which are built by Kohonen networks have been used to construct

3.4 The Neuro-Resistive Grid62

configuration space representations and can be also used as input to the resistive grid
[Glasius94 and references therein, Ritter92, Coolen91].

In the grid, each grid node i is connected via resistors to nodes in the local
neighbourhood. Although different connectivity schemes are conceivable, the focus in this
thesis is on two different schemes. Firstly, each node is connected to the closest horizontal and
vertical neighbours (see Figure 3.4-1 and Figure 3.4-3), and secondly, each node is connected
to the closest horizontal and vertical as well as the closest diagonal neighbours (see
Figure 3.6-5). The latter of the two schemes allows the production of smoother paths, since
the diagonal shortcut is also possible. Depending on the chosen scheme each node has either
four or eight neighbours in a 2-dimensional grid. Along the edges of the resistive grid, nodes
have fewer neighbours. Usually, the resistor values depend on the number of neighbours and,
hence, the resistors connected to edge nodes should be appropriately adapted. This aspect is
not further investigated here, since in all experiments the configuration space is bounded, that
is edge nodes are clamped to zero and are not influenced by their neighbours.

Each node in the grid receives inputs from the lateral neighbours as well as from one
node which is situated in the spatial-memory layer which is also called input map
(Figure 3.4-1). The spatial memory is a collection of nodes which merely buffers the current
configuration space constellation. Any node which represents a forbidden state (part of a C-
space obstacle) has the activity “-1”. The node which corresponds to the goal configuration is
set to “+1”. The rest of the nodes in the spatial memory has activity “0” and describe the C-
free space. Those activities which describe goal and obstacles constrain the behaviour of the
nodes in the neuro-resistive grid as described in the following (see also [Bugmann95]).

Each node i in the resistive grid is a processing unit whose output signal or activity vi is:

v f w v Vi ij j i
j
j i

N

= +
=
≠

∑()
1

, (3.4-1)

where wij is the weight matrix describing the connection between neighbouring nodes
(details: see Section 3.4.2), vj is the output of node j, f is the activation function of node i, N is
the number of nodes in the grid, and Vi is the external input from the spatial-memory layer. If
the external signal Vi describes a forbidden state, the output of node i in the resistive grid
saturates to “0” and node i acts as a current sink. If the external signal Vi describes a goal, the
output of node i in the neuro-resistive grid saturates to “1” and node i acts as a current source.
Those nodes in the spatial memory which are set to “0” have no influence on the
corresponding nodes in the resistive grid and are called unclamped nodes. Goal and obstacle
nodes in the grid are called clamped nodes.

Any activation function f(x) which satisfy the following conditions can be used: The
activation function f(x) has to increase strictly monotonically, saturate at “1” for large positive
values of x, saturate at “0” for large negative values of x, and the output must be zero for x = 0.
Two possible activation functions are (see also Figure 3.4-2):

f x
x

kx x
x

() =
<

≤ ≤

>

⎧

⎨
⎪

⎩
⎪

0 0
1

1 1

 if
 if 0

 if
,

(3.4-2)

f x
x

kx x() tanh()=
<

≥

⎧
⎨
⎩

0 0
0

 if
 if

(3.4-3)

3 A Neuro-Resistive Grid for Path Planning 63

where k represents the gain of the activation function. Other sigmoidal functions which
satisfy the above requirements can be also used [Bugmann95]. Gain k is not allowed to exceed
a certain limit to ensure stability and convergence (see Section 3.4.5). The first function will
be referred to as the linear saturating activation function, and the second one will be referred
to as the tanh-activation function.

-4 -2 0 2 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.4-2: The linear saturating function (left) and the tanh-function (right). Both
function are used as activation functions in the neuro-resistive grid. For details see text.

3.4.2 Functioning of the Resistive Grid
Path planning in the resistive grid can be carried out by applying a voltage at the goal

configuration and a different voltage at all those nodes which represent forbidden areas2. In
the grid, a potential distribution occurs which depends on goal and obstacle configurations.

Kirchhoff’s Law can be used to derive the set of equations describing the potential
distribution in the resistive grid. The calculation of the activity or the potential of any node i,
i N= 1,..., in the resistive grid is based on Kirchhoff’s Current Law which states that the sum
of currents entering a node i is zero (see also [Cichocki94]:

i I C
v
tj

j
j i

N

i i
i

=
≠

∑ + − =
1

0 0
∂
∂

,
(3.4-4)

where ij, j N= 1,..., , is the current flowing from node i to node j, Ii is the external

current source, vi is the potential at node i, and the term C
v
ti
i

0

∂
∂

 describes capacitive effects

due to the switch-on transient (see Section 3.4.5). Eq. (3.4-4) represents a set of linear
equations which can be rewritten using Ohm’s Law:

2 This corresponds to the Dirichlet boundary condition. The differences between the two commonly
used boundary conditions, which are named Dirichlet and Neumann boundary condition, are
explained at a later stage of this chapter (Section 3.4.4).

3.4 The Neuro-Resistive Grid64

C
v
t

v v
R

Ii
i j i

ijj
j i

N

i0
1

∂
∂

=
−

+
=
≠

∑ = − + +
=
≠

∑v w v
R

Ii i j
ijj

j i

N

i
~ 1

1
,

(3.4-5)

where vj is the potential of node j which is connected to node i via resistor Rij, and
~w

Ri
ijj

j i

N

=
=
≠

∑ 1
1

 represents the sum of the reciprocal of the resistors connected to node i.

Eq. (3.4-5) can be reorganised as follows:

τ
∂

∂i
i

ij j
j
j i

N

i i

v
t

w v V v= + −
=
≠

∑
1

,
(3.4-6)

where

w
R

R

R
wij

ij

ijj
j i

N
ij

i

=

=
≠

∑

1
=

1
1

1

~
(3.4-7)

represents a weight parameter which connects node i with node j,

τ i
i

i

C
w

= 0
~ , and V

I
wi

i

i

= ~ represents an external voltage supply. A more detailed explanation on

the values of weight wij will be given at a later stage of this section.

While Eq. (3.4-6) describes the analogue model in the time continuous case, the
equation system can also be solved in the discrete time domain using the following recursion
formula which is also known as Gauss-Seidel iteration or successive relaxation method:

v v v v
t

w v V vi
k

i
k

i
k

i
k

i
ij j

k

j
j i

N

i i
k() () () () () ()[]+

=
≠

= + = + + −∑1

1
Δ

Δ

τ
(3.4-8)

For Δt = τi, follows:

v w v Vi
k

ij j
k

j
j i

N

i
() ()+

=
≠

= ⋅ +∑1

1
,

(3.4-9)

where v v ki
k

i
() ()= τ with sampling period τ (see [Cichocki94, Reimer86, Connolly90]).

Eq. (3.4-9) describes the grid update where every node is updated simultaneously and
synchronously. In this case, the index order does not matter. The sequential update rule to
calculate the activity distribution in the grid is as follows:

v w v w v Vi
k

ij j
k

j

j

ij j
k

j i

N

i
() () ()+ +

=

−

= +

= ⋅ + ⋅ +∑ ∑1 1

1

1

1
. (3.4-10)

Here, the update order has influence on the propagation of the activity distribution, since
those values which had been already “processed” during the update cycle enter again the
equation [Reimer86]. In Eq. (3.4-10), nodes are updated in the order 1,..., N . Eq. (3.4-10)

3 A Neuro-Resistive Grid for Path Planning 65

produces a faster spread of the activity distribution than Eq. (3.4-9). The update order has a
strong influence on the speed with which the activity spreads over the grid. This issue which
is a central point of this chapter will be discussed in detail in Section 3.5.

Eqs. (3.4-9) and (3.4-10) can be also expressed in matrix form which represents the
iteration rule independent of the update order:

v w v V() ()k k+ = ⋅ +1 , (3.4-11)

where

w =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w w w
w w w

w w w

N

N

N N NN

11 12 1

21 22 2

1 2

!

!

" " # "

!

 representing the interconnection matrix,

[]v () () () (), ,...,k k k
N

kv v v= 1 2 and []V = V V VN1 2, ,..., .

The interconnection matrix w contains the weights between the nodes of the entire grid.
The matrix is symmetric (wij

 = wji) and any connection between two nodes is excitatory
(wij

 > 0). The matrix’s main diagonal is set to zero (wij
 = 0), since no feedback from node i to

itself is considered. Moreover, a weight wij is set to zero, if there is no connection between
node i and j. Matrix w is a general description of the connections in the resistive grid. This
description is independent of the dimensionality of the grid. Thus, Eqs. (3.4-9) and (3.4-10)
are valid for grids with n dimensions. However, in the programs used for the experiments (see
Section 3.6), a neighbourhood template which moves along the grid nodes during the update
process defines which nodes are neighbours to the present node i (see Table 3.4-1). Node i is
the node whose activity becomes the average of the activities of the nodes defined in the
template. Thus, in the used programs the matrix w is not computed explicitly.

wk-1,l-1 wk,l-1 wk+1,l-1
wk-1,l 0 wk+1,l

wk-1,l+1 wk,l+1 wk+1,l+1

Table 3.4-1: Two-dimensional neighbourhood template where each node is connected to
eight neighbours. Indices k and l represent the location of node i in the two-dimensional
grid. The index increment and decrement by 1 indicate the location of the nearby
neighbours.

In the resistive grid as proposed here, the activity of any node is only influenced by a
small number of nodes in the near neighbourhood, thus (see as well [Glasius94, Bugmann95])

w
w d d j i

ij
ij ij=

∧ ≠⎧
⎨
⎩

$ $ if <
 otherwise 0

,
(3.4-12)

where weight $wij represents an element of the neighbourhood template (see
Table 3.4-1). The value of each element depends on the Euclidean distance $dij between node i
and node j as well as on the number of nodes in the range described by the value d,

3.4 The Neuro-Resistive Grid66

$

$

$w
d

dij
ij

ij
j Ni

=

∈
∑ ,

(3.4-13)

where $Ni represents the set of influential neighbours of node i. The number of nodes
which are influential on node i depends on the number of nodes node i is connected to via a
resistor (see also Section 3.4.4). Eq. (3.4-13) also assures that the sum of all weights
connected to a node is always 1 (see also Section 3.4.5). For example, in a 2-dimensional grid
where the nodes are placed in equidistant positions along the two axes and d is chosen to be
1.5, each node i has eight neighbours. For this case, Eq. (3.4-13) produces two different
weight values, one for connections between nodes in vertical and horizontal direction and
another for connections between nodes in diagonal direction:

$ &whor ver = ⋅ + ⋅
=

1
4 1 4 2

 0.104, $wdiag = ⋅ + ⋅
=

2
4 1 4 2

 0.146.

Experiments showed that choosing the average of the two weights, which is 1/8, leads to
a similar activity distribution in the grid and produces the same path (see also [Glasius94]).

3.4.3 Harmonic Functions
A resistive grid can be used to approximate the calculation of harmonic functions on a

confined, connected region Ω∈ Rn . Such a solution can be found on a computer employing an
iterative process where at each iteration the potential at each node i in the region Ω is
substituted by the average potential of its neighbours (see previous section).

A harmonic function in Ω satisfies Laplace’s Equation

Δφ
∂ φ
∂

= =∑
2

2
1

0
xkk

n

=
,

(3.4-14)

which describes physical phenomena like the distribution of an electrical field in a
charge-free space or a current flow through a conductive medium (see [Connolly90,
Connolly93, Ramo94]). Eq. (3.4-14) imposes that the electrical field or current is free of any
source or sink in the internal region Ω. Thus, maximum and minimum are on ∂ Ω which is the
usually unconnected boundary of region Ω. Furthermore, the solution is unique [Ramo94] and
depends only on the shape of boundary ∂ Ω [Glasius94]. From the above considerations
follows that the resistive grid is well suited to solve the path planning problem in robotics
providing always a collision-free path from a start state to a goal state, if such path exists.

In the discrete case, one considers a set of discrete grid nodes which represent the
discrete counterpart to the continuous medium [Bronshtein85]. Hence, continuity is assumed
from node to node. Each node can be assumed to be situated on the crossing point of parallel
and perpendicular lines placed equidistantly in a rectangular co-ordinate system. Other
homogeneous grid shapes are possible but not further discussed in this thesis (see
[Bronshtein85]). For example in a 2-dimensional homogeneous grid where v x yi i(,)
represents a discrete regular sampling of φ and each node is connected to four neighbours (see
also Figure 3.4-3), the first partial derivative of v x yi i(,) with respect to x can be calculated

3 A Neuro-Resistive Grid for Path Planning 67

(see also [Bugmann95]). Note that in the following equations node distance a has to be
sufficiently small to allow the approximations carried out:

∂φ

∂

(,)
lim

(,) (,) (,) (,)x y
x a

v x y v x y
a

v x y v x y
a

i j i j i j i j i j
=

→

−
≈

−+ +

0
1 1 (3.4-15)

and

∂φ

∂

(,)
lim

(,) (,) (,) (,)x y
x a

v x y v x y
a

v x y v x y
a

i j i j i j i j i j
=

→

−
≈

−− −

0
1 1 ,

(3.4-16)

where a is the node distance in x- and y-direction. The second derivative can be derived
by differentiating Eqs. (3.4-15) and (3.4-16),

∂ φ

∂

2

2
1 1

2

2(,) (,) (,) (,)x y
x

v x y v x y v x y
a

i j i j i j i j
≈

− ++ − .
(3.4-17)

The second partial derivative with respect to y can be obtained in the same way. The
sum of the two partial derivatives gives (compare to Eq. (3.4-14)):

Δφ
∂ φ

∂

∂ φ

∂
(,)

(,) (,)

(,) (,) (,) (,) (,)
.

x y
x y
x

x y
y

v x y v x y v x y v x y v x y
a

i j
i j i j

i j i j i j i j i j

= + =

≈
+ + + −+ − + −

2

2

2

2

1 1 1 1
2

0

4

(3.4-18)

The same result can be achieved, if a Taylor expansion is carried out (see for example
[Connolly90, Noble64]). Eq. (3.4-18) can be rearranged into:

v x y
v x y v x y v x y v x y

ai j
i j i j i j i j(,)

(,) (,) (,) (,)
≈

+ + ++ − + −1 1 1 1
24

.
(3.4-19)

If distance a has the value 1, Eq. (3.4-19) goes over into Eq. (3.4-1).

The above equations hold only for topologically ordered grids where nodes are only
connected to nearby neighbours and any connection does not intersect with any other
connection (see also Section 3.5.4). Thus, these grids can be seen as a discrete representation
of an Euclidean space. Step size a might vary as a function of space but has to be sufficiently
small to allow the approximations carried out in Eqs. (3.4-15), (3.4-16) and (3.4-17). Note that
Laplace’s equation is only valid when the grid (whether the physical or the computer
implemented one) has settled into its final potential or activity distribution. In the computer
implemented resistive grid the activity of each node changes with each iteration until no
further change occurs in the limit of the computer’s precision. Then the grid has converged.
For this limiting case only, Laplace’s equation is satisfied and no local extremum can occur in
the internal region of Ω.

If the update process is interrupted before the activity for all nodes has stabilised, the
distribution is not a solution to Laplace’s equation but to Poisson’s equation according to
which the second derivative in space is equal to a time depending function (see [Bugmann95,
Noble64]). In the unconverged grid, the statements made above do not necessarily hold, thus,

3.4 The Neuro-Resistive Grid68

uniqueness and the min-max principle cannot be presumed. For further details see
Section 3.5.3.

3.4.4 Boundary Conditions - Dirichlet vs. Neumann

Solutions of Laplace’s equation have to satisfy conditions on the boundary ∂ Ω of region
Ω (see [Bronshtein85]). The most commonly used boundary conditions are the Dirichlet- and
the Neumann-boundary conditions.

If the Dirichlet-boundary condition is used, the boundary ∂ Ω is set to some fixed values.
This approach has been adopted for the neuro-resistive grid described here. In the grid these
values are fixed potentials. For example obstacle regions are set to 0V and the goal is set to
1V (see Figure 3.4-3). Other boundary values are possible; the only condition is that the
values for goal and obstacle have to be different. Obviously if goal and obstacle boundary
values were equal, an activity distribution with values different from goal and obstacle values
could not develop, since this would violate Laplace’s equation which demands that minimum
and maximum have to be on the borders. In case of the Dirichlet boundary condition,
obstacles can be seen as zero-voltage borders (see Figure 3.4-3).

+1V (GOAL)

STARTSTART
vi,j-1

vi-1,j vi+1,j

vi,j+1

vi,j

+1V (GOAL)

vi,j-1

vi-1,j vi+1,j

vi,j+1

vi,j

Figure 3.4-3: This figure shows the structure of a resistive grid due to the Dirichlet
boundary condition (left) and the Neumann boundary condition (right). In this example
the connectivity scheme is chosen where each node is connected to four neighbouring
nodes.

In case of the Neumann boundary condition, the boundary ∂ Ω is equal to defined
derivatives of the values which occur in the internal region. In the resistive grid, this
corresponds to insulating the obstacle regions from the internal region. Thus, obstacles
become zero-current borders. If the Neumann boundary condition is applied, the start and
goal nodes are clamped to two different potentials (here: 0V and 1V, respectively) (see
Figure 3.4-3).

Although the same update algorithm is used for iteratively calculating the potential
distribution in a resistive grid employing any of the two boundary conditions, there is a subtle
difference. The difference can be seen by analysing Eq. (3.4-13). For the Dirichlet boundary
condition, the output of obstacle node i is clamped to zero. The weights wij are independent of

3 A Neuro-Resistive Grid for Path Planning 69

the obstacle configuration. For the Neumann boundary condition the weight parameters have
always to be adapted to the obstacle constellation surrounding the node to be updated.
Obstacle nodes which surround node i are isolated from the latter. Thus, there is no resistor
connection between node i and its obstacle neighbours. This in turn means, that the number of
nodes having influence on node i is reduced and the weight factor $wij in Eq. (3.4-13) changes.

Most experiments described in this thesis have been based on a resistive grid applying
Dirichlet’s boundary condition. A comparison in computing time showed that a Dirichlet grid
is about 1.5 times faster than a grid using the Neumann boundary condition to produce a path.
This is due to the fact that the weight factor has to be recalculated at every iteration, if the
Neumann boundary condition is applied, while it stays constant for the Dirichlet boundary
condition (see also [Bugmann95]). This difference in speed was found using the standard
division commands as they are provided by higher programming languages to divide the sum
of neighbouring activities by the number of neighbours. The calculations in a Dirichlet grid
could be further accelerated, if fast shift operations were used to achieve the division by four
or eight.

A further disadvantage of the Neumann condition is that the grid has to be recalculated,
if the start position changes. In contrast, the grid’s potential distribution due to Dirichlet’s
boundary condition can be reused to compute paths from any starting position in the grid to
the goal as long as obstacles and goal stay unchanged.

It has been reported that the use of the Dirichlet boundary condition can fail when long
paths have to be calculated because the precision of the computer system might not be
sufficient [Tarassenko91]. Using the Dirichlet boundary condition, the potential decreases
mainly exponentially as the distance to the goal increases. This effect is especially observed in
long, narrow corridors. The required computing precision is proportional to the corridor’s
length divided by its width [Tarassenko91]. Thus, the computer’s precision must be high to be
able to recognise the marginal potential difference between two adjacent nodes which are in a
narrow corridor and far from the goal node. In case the Neumann boundary condition is
applied, the potential decay appears to be linear over wide regions. Only near goal and start
can a stronger decrease be observed (see Figure 3.4-5 and [Tarassenko91]).

Tarassenko et al. suggest the use of the Neumann boundary condition to avoid the
exponential decay of the potential (see [Tarassenko91]). Especially, in a hardware
implementation the possible precision of the grid is limited by the analogue gates which read
the potential at the nodes. Today’s precision of gates in analogue computers for an affordable
large scale implementation is between 5 to 8 bits [Kramer96]. Thus, for a hardware
implementation, it is more advisable to use the Neumann boundary condition. Obviously, the
considerations made earlier regarding the different computational speeds updating a grid with
one or the other boundary conditions do not apply to a hardware implementation.

In a grid with the Dirichlet boundary condition, the total cost is a product of individual
costs along any path, while in a grid with the Neumann boundary condition, the total cost is a
sum of individual costs along any path. To understand the effects of the potential decay, one
can imagine a small corridor which is only one node wide and flanked by obstacle regions as
shown in Figure 3.4-4. In the following considerations, each node is assumed to have four
neighbours to which it is connected by four resistors. Other connectivity schemes would
produce similar results.

3.4 The Neuro-Resistive Grid70

If the Dirichlet boundary condition is applied, the potential drops at each node along the
corridor by a certain factor. This factor can be calculated by formulating the problem as a
linear difference equation of second order [Reimer86]:

a a a
a a a

k k k

k k k

+ +

+ +

= ⋅ + ⋅

⇔ = ⋅ −
1 2

2 1

1 4 1 4
4 ,

(3.4-20)

where k = 0, 1, ..., m and m is the number of nodes in the corridor. The solution of this
equation is ak = c⋅λk (λ ≠ 0), where c is a real constant and λ is one of the solutions of the
characteristic polynomial:

λ λ2 4 1 0− + = . (3.4-21)

The numerical solution is λ = 0.26794919. Since Eq. (3.4-20) is homogeneous, the
solution found is only correct for node activities which are infinite far away from the sink.
However, the solution is a good approximation also for the inhomogeneous case considered
here (see Figure 3.4-4 and [Reimer86]).

goal (1V)
(source)

0.250.2679 0.2679 0.26670.2679

start

goal (1V)
(source)

start (0V)
(sink)

1/m1/m 1/m 1/m1/m

ak+1 a0akak+2
am

Figure 3.4-4: Corridors in resistive grids. In the case of the Dirichlet boundary condition
(top), the accumulation of the costs is done using a multiplicative factor (shown in the
dotted-bordered boxes). This factor converges for increasing distance from the start node.
In the case of the Neumann boundary condition (bottom), the costs accumulate in an
additive fashion (shown in the grey-shaded boxes). The value depends on the distance
between goal and start node. Here, the goal node is m nodes apart from the start node.

The activity at any node k is ak ≈ c⋅(0.26794919)
k. Assuming that the activity at the

source node is 1, the activity of node k can be also expressed as follows:

3 A Neuro-Resistive Grid for Path Planning 71

ak m k≈ −

1
0 26794919(.)

. The smallest positive number which can be processed on a computer

with 64-bit floating point precision is 5×10-324. (This value is based on experiments carried
out in MATLAB on a Pentium90.) This means that narrow corridors, which are only one unit
wide, should not be longer than approx. 564 units to assure that the gradient between two
nodes at the very end of the corridor can be determined.

If the Neumann boundary condition is applied, the entire current flows along the
corridor and the voltage decreases linearly. If there are m identical resistors between sink and

source node, the voltage drop at each node is
source_ potential sink_ potential−

m
 which is a

constant value (see Figure 3.4-4). In summary, longer paths can be computed in a grid due to
Neumann’s boundary condition than in a grid due to Dirichlet’s boundary condition (see
[Tarassenko91, Bugmann95]).

The exponential decay in Dirichlet grids did not cause any problems in any of the
conducted experiments (see Section 3.6). An extreme case was investigated where an obstacle
constellation was chosen which forced the moving robot point along a very long trajectory.
(The grid’s resolution was 400×400 nodes, the path between start and goal was 844 units long
and the Dirichlet boundary condition was used.) Even then it was possible to read the activity
distribution near the start node and to exploit the gradient to construct a path. In view of the
fact that the activity distribution can be computed faster in a grid using the Dirichlet boundary
condition than in one using the Neumann boundary condition, the former is to be preferred for
a computer-based grid implementation to solve the kinds of planning problems described here.

0

10

20

30

0

10

20

30
0

0.2

0.4

0.6

0.8

1

goal

 0

10

20

30

0

10

20

30

0.2

0.4

0.6

0.8

1

start

goal

Figure 3.4-5: This figure shows the potential distribution in a resistive grid due to
Dirichlet’s (left) and Neumann’s (right) boundary condition. Both grids were updated
until convergence.

The activity distributions in 30×30-grids using Dirichlet’s and Neumann’s boundary
conditions, respectively, are shown in Figure 3.4-5 (left) and (right). In both cases the edges of
the grids are set to be obstacles. No further obstacle are introduced in this example. In both
grids a positive value of 1 is applied at the source state representing the goal configuration of
a planning problem. In the Neumann case a sink clamped to value 0 is introduced which
represents the start configuration. It can be clearly seen that the activity distribution in

3.4 The Neuro-Resistive Grid72

Figure 3.4-5 (left) has an exponential decay, while the decay of the activity distribution in the
grid which is displayed in the right half of Figure 3.4-5 is linear over wide regions.

In both grids, a path has been planned from the start state to the goal state. For
comparison the start state chosen in both grids is the one that corresponds to the state which
represents the sink in the Neumann grid (see Figure 3.4-6). Beginning at the start node, the
search procedure chooses at each iteration the node of the four neighbours with the highest
activity. This process is continued until the goal node is found. Obviously, the results are quite
different in each of the two boundary conditions. While stream lines in a Neumann grid tend
to “move” along the obstacle boundaries, the Dirichlet grid provides a path which keeps
distance to the obstacles (see also [Bugmann95]).

5 10 15 20 25 30

5

10

15

20

25

30

goal

start

 5 10 15 20 25 30

5

10

15

20

25

goal

start

Figure 3.4-6: (left) Equi-potential lines in a grid due to the Dirichlet boundary condition.
(right) Equi-potential lines in a grid due to the Neumann boundary condition. Each node
in both grids has been iterated until convergence.

Both paths in Figure 3.4-6 have the same Manhattan-distance length and are the shortest
ones in this discretised world (see also Section 3.7.3). Obviously, many shortest paths of the
same length can be found in this example. The underlying idea is that the gradient between
two nodes represents the flow of current. Following this flow of current or stream line leads
inevitably to the source or goal. It is important to note that the found path is only an
approximation of the actual current flow, since the gradient of the potential is equal to the
current flow only in a continuous and homogeneous medium (see Section 3.4.3). At a later
point in this chapter, an example will be discussed which shows that in non-homogeneous
grids the calculation of the potential distribution only is not sufficient to calculate a feasible
path (see Section 3.5.4).

3.4.5 Convergence Criterion for the Neuro-resistive Grid
The question remains whether the neuro-resistive grid emulated on a digital computer

will always converge to one unique solution. Local extrema might occur while iterating the
grid. Using an approach commonly applied to Hopfield neural networks, it will be shown that
the grid always converges to one unique activity distribution which only depends on the

3 A Neuro-Resistive Grid for Path Planning 73

obstacle distribution and the goal position. It will be also shown which steepness the transfer
function f of the grid nodes is allowed to take on in order to assure convergence.

For the time-discrete Hopfield network as well as for the computer emulated resistive
grid, the update algorithm to calculate the activity distribution over the lattice can be
implemented as a procedure based on the relaxation method which allows the solution of a set
of nonlinear equations in an iterative fashion [Connolly90, Bronshtein85, Althoefer95e,
Bugmann95]:

v w v V() ()()k kf+ = ⋅ +1 . (3.4-22)

If function f is set to be linear with gain 1, Eq. (3.4-22) goes over into Eq. (3.4-11).

Global stability of a system which is defined by differential or difference equations can
be proven using the Lyapunov function. The Lyapunov function produces a scalar which
describes the behaviour of the whole system at any time. Global stability means that the
system converges to a stable equilibrium. Hopfield showed that the stable states of the system
described by Eq. (3.4-22) are the local minima of the following Lyapunov function
[Cichocki94 and references therein]:

L v w v v v V f x dxij j i
j

N

i i
i

N

i

N v

i

N
i() ()= − − +

= ==

−

=
∑ ∑∑ ∫∑1

2 1 11

1
01

.
(3.4-23)

To see whether the Lyapunov function has a local minimum, the change of the
Lyapunov function ΔL has to be examined. It can be shown that for a certain relation between
the eigenvalues of the interconnection matrix and the slope of the activation function, ΔL is
always negative and therefore the Lyapunov function has at least one local minimum:

min

1
λ

 has to be greater than max(())ʹf x . (3.4-24)

where λmin is the most negative eigenvalue of interconnection matrix w, and ʹf x() is the
slope of the activation function. A detailed description of this proof can be found in
Appendix B.

The above inequation is sufficient to prove that the neuro-resistive grid will converge.
Additionally, if and only if the Hessian matrix of the Lyapunov function is positive definite
then the Lyapunov function itself is strictly convex and the grid converges to one unique
solution [Glasius94]. The following inequality can be obtained (For details see Appendix B):

max

1
λ

≥ ʹmax(())f x
(3.4-25)

where λmax is the most positive eigenvalue of interconnection matrix w, and ʹf x() is the
slope of the transfer function. Combining Eqs. (3.4-24) and (3.4-25), one obtains:

 = min max

1
λ

λ λ λ≥ ʹmax(()), max{ , }f x
(3.4-26)

3.5 Enhanced Activity Propagation74

If Eq. (3.4-26) is satisfied, the Lyapunov function is strictly convex and the resistive grid
will always evolve into a unique final solution which only depends on the shape of the
obstacle regions and the location of the goal state. This solution has only one global
extremum.

If the linear saturating activation function as given in Eq. (3.4-2) is used, the first
derivative ʹf x() is the constant k and the reciprocal of the most negative eigenvalue of matrix
w has to be greater than this constant k [Glasius94]. For the activation function generally used
in Hopfield networks (tanh, linear, signum, sigmoidal) an estimation can be made for
() ()f − ʹ1 ξ which ensures that the Lyapunov function has a local minimum. If f(x) is a non-
linear function which is increasing monotonously until saturation, 1 λmin has to be greater than
the maximum slope of f(x). If the activation function is the tanh-activation function as given in

Eq. (3.4-3), it follows that ʹ =f x
k

kx
()

cosh ()2 which has its maximum at ʹ = =f x kmax ()0 0

(like in the linear case).

After choosing a value for k, the weight values of matrix w have to be adjusted in such a
way that all the eigenvalues of matrix w satisfy Eq. (3.4-26). The number of non-zero
elements per row or column in matrix w is equal to the number of non-obstacle neighbours
any node is connected to. The maximum of this number is obviously given by the chosen
connectivity scheme which defines how many neighbours a node can have at most. It can be
shown that the largest possible eigenvalue occurs in the absence of obstacles. The eigenvalue,
then, is equal to the sum of weights in a row or column of the interconnection matrix w (see
[Bronshtein85, Glasisus94 and references therein]).

If, for example, k is chosen to be 1 and the connectivity scheme in a 2-dimensional grid
connects node i to the four nearest neighbours (left and right, above and below), the sum of
weights in a row or column must be smaller or equal k = 1 to satisfy Eq. (3.4-26). In the limits
of Eq. (3.4-26), the weights can be set to ¼ (see [Bronshtein85]). In other words, it has to be
assured that the sum of all non-zero elements in each row or column does not exceed the value
1. Thus, weight values for the connections in the resistive grid chosen according to Eq. (3.4-
26) (as well as smaller positive values) assure that the grid converges to one unique solution.

3.5 Enhanced Activity Propagation
This section presents a novel update algorithm for the neuro-resistive grid emulated on

digital computers [Althoefer95e]. The proposed update algorithm propagates the nodes’
activities to and fro thereby generating within only a few sweeps a well-spread “potential”
distribution suitable to perform a gradient search for path planning in configuration space. In
accordance to the particular behaviour of this algorithm, it is named To&Fro algorithm.
Applied to the specific problem of manipulator path planning in configuration space, this
algorithm turns out to be particularly fast.

3.5.1 Methodology
In principle, there are many different ways to solve the linear equation system of the

resistive grid. Analytical solutions are only feasible in a space where the boundaries of the
forbidden areas can be modelled by simple mathematical functions (as for example done in
[Tarassenko91, Wolff68]). Since the boundaries of the configuration spaces discussed here
have complicated shapes (see for example Figure 3.6-1 and Figure 3.6-2), analytical solutions

3 A Neuro-Resistive Grid for Path Planning 75

are not considered. Numerical methods include direct methods as well as iterative methods.
Direct methods are usually not feasible because they are very memory expensive [Reimer86]
and, thus, not applicable to grids with a high resolution. Iterative methods can cope with big
grid sizes and provide “good” solutions after only a few iterations (see following sections).
Iterative methods are said to be fast especially when the number of iterations is much smaller
than the number of nodes (see [Reimer86]).

The update rule given in Eq. (3.4-11) allows the calculation of the potential or activity
distribution in a computer emulated grid or neural network. So far, the sequence in which the
nodes shall be updated in order to provide quickly a satisfactory activity distribution has not
been discussed in detail. In view of the path planning problem under study, a satisfactory
distribution of activity is one which allows performance of a gradient ascent from a start state
to a goal state while avoiding obstacle regions. In this chapter, there is more interest in finding
a practical solution to the path planning problem in as short a time as possible than in finding
the activity distribution which most accurately resembles the potential distribution in a
physical resistive grid. In other words, the emphasis here is rather on finding a collision-free
path than on describing the effects of a physical phenomenon.

An update sequence will be proposed which is especially adapted to the problem of path
planning for robotic manipulators. This sequence makes use of the fact that the set of possible
paths from a start to a goal configuration is in many applications of a relatively simple nature.
Labyrinth-like problems which are for example possible in mobile robot applications do not
normally occur (see [Millan92, Bugmann95]).

Figure 3.5-1: Pseudo-code of the To&Fro algorithm. Once the start state has an activity
greater than zero, the activity distribution has spread far enough to construct a path
towards the goal state. If after the settling of the activities the start node’s activity still
remains on zero, no path exists at the chosen grid resolution.

The C-Space of a manipulator is described by its variable parameters θ1, θ2, ..., θn. The
C-Space is represented by a discrete grid where each grid node is connected via resistors to
the neighbours. Two different connectivity schemes have been investigated: firstly, each node

INITIALISATION
all obstacle nodes are clamped to zero
goal node is clamped to 1
initial condition: all “free” nodes are set to zero

LOOP until node activities have settled
{ FOR each of the 4 corners of the resistive grid DO

{ FOR all columns from the corner to opposite corner in horizontal direction DO
{ FOR all nodes in the column from the side of the corner to opposite side DO

{ update node as described in Eq. (3.4-11)
}

}
check whether start state has an activity greater than 0 and BREAK
}

}

3.5 Enhanced Activity Propagation76

has vertical and horizontal neighbours only, secondly, in addition to the vertical and
horizontal neighbours each node has diagonal neighbours.

Theoretically, after an infinite number of updates, each node’s activity would be equal
to the average activity of the neighbours it is connected to. It has been reported that this state
can be reached after N 2 updates (see [Cichocki94]). A grid with this activity distribution
approximates the potential distribution in a physical resistive grid after reaching equilibrium.
However, it appears that for manipulator path planning it is not necessary to find the final
solution and, the number of updates per node necessary to find a collision-free path is
surprisingly small.

1

43

2

Figure 3.5-2: Depiction of the update procedure according to the To&Fro algorithm in a
two-dimensional grid. The four different sweep procedures are repeatedly applied to the
grid in the order 1-2-3-4. Each individual sweep procedure begins updating in a different
corner of the grid. This is denoted by the thickest arrow. Subsequent updates are
symbolised by arrows which shrinking width. Nodes are always updated in vertical
direction from the arrows end to its tip.

As shown in Chapter 2, for a two-link manipulator, an obstacle point colliding with link
l2 transforms into an s-shaped obstacle area in C-Space (see Figure 3.6-5). Any of those C-
Space obstacles evolves around the centre line where θ2 = 0. It can be observed that the
expansion in vertical direction is much greater than the expansion in horizontal direction. This
argument is also valid for obstacles which cause a collision with the first link or both links.
Furthermore, a similar comment applies for more complex obstacles, because any workspace
obstacle can be represented by a set of obstacle points (see Chapter 2 and [Newman91,
Althoefer95e]).

3 A Neuro-Resistive Grid for Path Planning 77

The main key to the proposed To&Fro algorithm is that the evolution of the activity
distribution is strongly influenced by the order in which the nodes are updated. Due to the
predominance of the C-Space obstacle expansion in the vertical direction, it is most effective
to update the nodes along the same direction propagating the potential distribution to and fro
(see also [Hockney88]). This is outlined in Figure 3.5-1 for a two-dimensional grid using
Dirichlet’s boundary condition. This figure depicts the To&Fro algorithm in a pseudo-code.

The update procedure is visualised in Figure 3.5-2. It can be seen that for each of the
four sweeps the nodes are always updated in the same direction - either from top to bottom or
bottom to top. A complete update cycle is finished after four sweeps. Due to the fact that these
sweep procedures change in direction, the activity distribution “bounces” to and fro.
Alternative ways of updating the grid (change of direction after a column is completed,
vertical and horizontal update directions) have been investigated. Those update methods did
not provide satisfactory activity distributions in a short time.

A similar update rule (as depicted in Figure 3.5-2) can be used for a grid due to
Neumann’s boundary condition. In this case goal and start are clamped to the activity values 1
and 0, respectively. Obstacles nodes are insulated from nodes representing free space, thus, in
the calculation only weights are considered which connect the actual node to unclamped nodes
(see Section 3.4.4). A slight variation to the above given algorithm (Figure 3.5-1) is necessary
to check whether the activity distribution has spread far enough. Since the start node is
clamped to 0 and therefore will never change its activity, the neighbourhood of the start node
has to be inspected for a rise in activity.

If no path can be found, because none exists at the chosen grid resolution, a different
way has to be applied to terminate the update process. One possible way is to terminate the
update process once the grid’s activities have converged. As shown later, only a small number
of updates is necessary to generate an activity distribution to find a path, if such path exists.
Extensive experiments showed that if after a few updates per node, no path can be found, it
can be assumed that no path exists.

3.5.2 Higher Dimensions
Although the focus in this part of the chapter is on path planning for a two-link

manipulator, the presented update method can be expanded to higher dimensions. Similar
considerations regarding a fast spreading of the activity distribution have to be made.

For the experiments with the three-link manipulator, single sweeps of the
aforementioned To&Fro algorithm have been applied to the C-space of links l1 and l2 while
the angle of link l3 is kept fixed. This process is repeated for discrete values of the joint of link
l3 changing its angle values from the most negative angle value to the most positive one and
vice versa (see Figure 3.5-3). Thus, the process of spreading the activity distribution in a two-
dimensional space is elevated and lowered repeatedly along the axis of the third dimension to
accomplish the activity distribution in a three dimensional space. When one complete update
cycle has finished, each node has been updated eight times. The process stops, once a path has
been found or after a certain number of iterations have been carried out without success.
Experimental studies carried out in the following sections, showed that usually a path could be
constructed before a complete update cycle was finished. (A complete cycle consists of the
eight sweeps as shown in Figure 3.5-3.)

3.5 Enhanced Activity Propagation78

1 432

5 876

(c)
(b)

(a)

Figure 3.5-3: Update order in a three-dimensional space. The bold arrows (a) indicate the
update process along the first column. The slim horizontal arrows (b) indicate how the
column-wise update process proceeds along the two-dimensional space. The vertical
arrows (c) depict the continuation of the update process in the third dimension. Numbers
indicate the sweep order.

The update method can be also extended to be applied to three-dimensional
manipulators. For example, the three-dimensional configuration space of a three-link
manipulator whose shoulder and elbow link pivot around parallel axes and which are
perpendicular to the axis of the waist joint can be built by a collection of two-dimensional
configuration spaces [Newman91, Branicky90]. In case the waist joint is a revolute one (for
example PUMA series and MA 2000), the two-dimensional configuration space of shoulder
and elbow link is rotated around its y-axis. In case the waist joint is a prismatic one (for
example SCARA robots) the two-dimensional configuration space of shoulder and elbow link
is piled up -one on top of the other- along a z-axis which is perpendicular to the x-axis and y-
axis of the two-dimensional C-spaces (see Figure 3.6-17). Obviously, the constructed three-
dimensional configuration space has great similarity to the one of the planar three-link arm.
Hence, the update method can be also applied to three-dimensional arms.

3.5.3 Global Extremum and Collision-free Path
The following description shows that the activity distribution due to an interrupted

update procedure does not produce local extrema (here: local maxima3). The description will
focus on a grid employing Dirichlet’s boundary condition. (A detailed investigation of a grid
due to Neumann’s boundary condition has not been carried out, but the conducted
experiments show the same overall behaviour.) The goal node is constantly hold at activity 1,
while obstacle nodes are clamped at all times to activity 0. Only unclamped nodes can change
their activity during the update process. The update algorithm used is the To&Fro algorithm.
For simplicity, only grids are considered where nodes are connected via resistors to their two
horizontal as well as their two vertical neighbours.

For the investigation of the events in the grid during updating, two aspects are
important: the initial condition, and the update rule. Initially, only the goal node is set to an

3 In all conducted experiments, the goal is set to a positive value which is desired to be the one and
only maximum. If a local maximum would occur, a path to the goal might be missed. However,
multiple minima may appear but do not prevent the path searching algorithm from finding a path to a
global maximum.

3 A Neuro-Resistive Grid for Path Planning 79

activity of value one, while all other nodes are set to zero. The update rule given in Eq. (3.4-
11) is applied to every node of the grid. This rule adds up the activities of neighbouring nodes
and divides this sum by the number of neighbours. The result which represents the average of
the neighbour’s activities becomes the new activity of the node being momentarily updated.

When the update algorithm sweeps the first time over the grid, nodes which are visited
before the neighbourhood of the goal node is reached do not change their activity, since the
average of zero remains zero. Once the nodes in the neighbourhood of the goal node are
reached, these nodes will experience a rise in activity. The activity of unclamped nodes which
are visited thereafter until the current update cycle is finished will also rise. Only those
unclamped nodes which are in the “shadow” of obstacle regions will not change their
activities. When the To&Fro algorithm is employed, the update direction is reversed at the end
of each cycle (see Figure 3.5-4) and the activity of the nodes is propagated against the
previous direction and so on. This local averaging process can be seen as a spatial low pass
filtering which smoothes the contour of the activity distribution which consists initially of a
single peak (goal) in an otherwise completely flat region (initial condition) (see also
Figure 3.5-4 (a)).

The To&Fro algorithm changes the activity of a node into an activity which is average
among the activities of the neighbours. This means that whenever node i is updated its activity
is smaller than the maximum neighbouring activity and greater than the minimum
neighbouring activity, or, if all neighbours have zero activity, the activity of node i remains
also zero. Clearly, the activity of node i never exceeds or falls short of neighbouring activities.
Since all unclamped nodes have initially zero activity and the goal node has a positive activity
the outcome of node updates in the first sweep will cause an activity increase in those nodes
which are updated after the goal node has been updated. In subsequent sweeps, the averaging
process will increase the activity of unclamped nodes. At no time a decrease in activity can
occur. During the repeated update process, the node activities rise until convergence is
reached. At this point, each unclamped node’s activity is the average of neighbouring
activities and no further change takes place.

Before convergence, the activity of an unclamped node i is the average of its
neighbours’ activities only in that moment when the node is updated. Since the update process
proceeds, neighbours of node i will be updated and change their activity after node i has been
updated. Due to these changes node i no longer has an activity which is average among the
neighbouring activities until node i is updated again in the next sweep. Since any node can
only experience a rise in activity, a yet not-updated node whose neighbourhood has been
already updated can only develop into a local minimum (discontinuity), but not a local
maximum (see also Figure 3.5-4). Thus, whenever the update process is interrupted, any of
those nodes which have already experienced a rise in activity has at least one neighbour with a
higher activity than its own (see also Figure 3.5-4). A path search algorithm which follows the
greatest gradient will reach the global maximum (goal) without getting stuck.

How such a discontinuity develops can be understood by examining Figure 3.5-4 c1)
and c2). The activity spreads column-wise from the back to the front of the grid beginning
with the column indicated by the arrow. Although the updating is carried out along a column,
the activity can spread along rows because the connections to horizontal neighbours assure
that the activity in an adjacent column is dragged along. When an obstacle region is reached,
the horizontal spread is hindered and the spreading of the activity on the other side of the
obstacle region develops independently.

3.5 Enhanced Activity Propagation80

The node where the discontinuity occurs is marked in Figure 3.5-4 c1) and c2).
Figure 3.5-4 c1) shows the prevailing activity distribution when the second sweep reaches the
obstacle region. The activity distribution produced by the first sweep is depicted by shaded
areas in Figure 3.5-4 c1).

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

Start

Obstacle

a)

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

Start

Obstacle

b)

2
4

6
8

10
2

4

6

8

10

0

0.5

1

c1)

Goal

discontinuity

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

c2)

discontinuity

Start

(See caption next page)

3 A Neuro-Resistive Grid for Path Planning 81

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

Start

d)

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

e)

Start

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

Start

f)

2
4

6
8

10
2

4

6

8

10

0

0.5

1

Goal

Start

g)

Figure 3.5-4: Activity distribution in a 10×10-grid. The used update algorithm is the
To&Fro algorithm. The update direction is indicated by bold arrows. Each node is
connected to four neighbours. Additional to the obstacle region depicted in a) and b), all
edges are clamped to zero. The initial activity distribution is shown in a). The activity
distribution is shown after b) 1 sweep, c1) and c2) 2 sweeps, d) 3 sweeps, e) 4 sweeps, f)
5 sweeps, g) 39 sweeps. Due to the discontinuity which stays up to the fourth sweep
(visible in c) - e)), the found path is not the shortest one. The To&Fro algorithm would
already terminate after two sweeps because the start node sensed an increase in activity.
After 5 sweeps (shown in f)) the discontinuity is smoothed out and the activity
distribution resembles a distribution where the maximum change in activity is virtually
zero (see g)). The path shown in f) and g) has the smallest Manhattan distance. Note: the
activity is depicted in a logarithmic scale. Further details see text.

The activity of the marked node is the average of the two vertical neighbours which are
both obstacles (above: the lower end of the obstacle region, below: the grid edge) and the two
horizontal neighbours which are not obstacles. Since in this case the update process develops
column-wise from right to left, the activity of the neighbour which is on the left of the marked
node is still zero (see Figure 3.5-4 c1)). The marked node’s activity changes to a quarter of the
right neighbour’s activity, since all other neighbours have zero activity in this moment. The
next column update increases the left neighbour’s activity. Since the update process continues
to the left, the marked node is not further updated during this round. Clearly, at the end of the

3.5 Enhanced Activity Propagation82

second sweep the activity of the marked node is not the average of the neighbours activities.
Despite the problem of discontinuity only local minima can occur - but no local maxima.

Note that sweeps three and four do not produce further discontinuities, but make the
discontinuity (which was produced during the second sweep) wander along the grid until it is
remedied with the fifth sweep. The comparison between Figure 3.5-4 f) and g) shows that
after five sweeps only the activity distribution has more or less reached the final contour
(convergence). The final contour of the grid’s activity is depicted in Figure 3.5-4 g) where the
change in activity became virtually zero.

In such an activity mountain, a path can be found by following the maximum gradient.
Thus, beginning at any node in the grid, the neighbouring node with the highest activity
among the set of neighbours indicates always the next step on a collision-free path. Since as
shown in the previous paragraphs no local maxima can occur, the path will lead to the goal.
As it can be seen from Figure 3.5-4, the found path is not necessarily the shortest one (see also
Section 3.7.3).

The path is collision-free at all times because from any unclamped node whose activity
has already risen above zero the path is constructed along a neighbour with a higher activity -
never towards one with a lower activity. Thus, obstacle nodes, which are kept on zero activity,
will never be crossed.

3.5.4 A Non-Topologically-Ordered Grid
In this section, a resistive grid is investigated whose nodes are connected via resistors

with varying resistances. In this grid, connecting resistors or weights do not necessarily
describe the Euclidean distance. Those weights define generally a cost which has to be paid in
order to traverse from one node or state to another. Furthermore, nodes which are connected
to each other do not need to be neighbours in the Euclidean sense. Any sequential
optimisation problem can be formulated as such a grid structure (see also [Cooper81,
Bellmann57]).

A non-topologically-ordered grid does not approximate a continuous medium and
Laplace’s equation is not necessarily satisfied. A similar argument applies to grids whose
node distances are so large that the approximation in Eqs. (3.4-15), (3.4-16) and (3.4-17)
cannot be carried out without producing an intolerably large error. In any case, Kirchhoff’s
current law is still valid and Eq. (3.4-11) can be still used to compute the activity distribution.

In such a grid the difference between the potentials of two nodes connected to each
other via a resistor does not represent the current flowing. Thus, stepping from one node to the
neighbour with the highest activity (as done in previous sections) does not necessarily produce
the desired path. To incorporate the different costs into the search, the current through the
resistors connecting the actual node to its neighbours has to be calculated prior to each
transition. The largest current indicates which way to go, since the current is larger the smaller
the cost or resistor is.

To describe the properties of such a grid, the example depicted in Figure 3.5-5 is
discussed. In contrast to earlier investigations, nodes are connected by weights of different
values. As usual, the goal node is connected to a high potential and functions as a source,
while the start node representing the sink is grounded. This approach resembles a grid using
Neumann’s boundary condition. The grid has been updated until convergence using the update
rule given in Eq. (3.4-11). Figure 3.5-5 clearly indicates that following the gradient of

3 A Neuro-Resistive Grid for Path Planning 83

potentials would lead to a path with a higher cost than the one chosen along the calculated
current values.

0V

81.8A1V

90.9A

27.3A

90.9A

1×10-4Ω

9.1A

0.091V

0.182V

1×10-3Ω1×10-3Ω

1×10-3Ω

1×10-4Ω

1
6

5

0.636V

0.273V

1×10-3Ω
36.4A

4

3

2

Start

Goal

36.4A
1×10-3Ω

Figure 3.5-5: A non-topological ordered grid. The rectangular boxes represent resistors
or costs of transition. Note: the resistance of the resistors between nodes 6 and 3 as well
as between nodes 2 and 3 are ten times smaller than the resistance of the other labelled
resistors. Furthermore, the resistors between nodes 1-5, 5-3 and 4-6 are cut out and these
connections have therefore an infinite resistance. The path with the minimal overall cost
goes along nodes 6-3-2-1, indicated by the grey resistors. This path has been found by
following the maximum current flow. If the potentials had been exploited for solving this
problem, the found path would wrongly lead along nodes 6-5-4-1 (indicated by arrows),
which has a higher overall cost.

3.5.5 Soft Safety Margin
A variation of the resistive-grid method which calculates the flow of current through its

resistors (Section 3.5.4) can be used to add a soft safety margin around obstacles. A safety
margin is usually applied in path planning problems where the position of the obstacles is only
known up to a certain precision.

In most applications, the obstacle regions are simply expanded in size to achieve a
safety margin. In other words, obstacles are replaced by larger obstacles. Any trajectory found
by a path planning strategy in such an environment keeps a minimum distance towards the
original obstacles. The disadvantage of this approach is that some of the expanded obstacle
regions might merge with others thereby blocking a possible passage in the original
environment. In some instances, it may be useful to plan a path through such a gap. In this
case, the robot could for example move fast in areas outside the safety margin, and slow down
while traversing the gap. The movement through the gap could be supported by external
sensors.

The method suggested here assures, on the one hand, that the found trajectory keeps a
minimum distance to those obstacle regions which are surrounded by obstacle-free areas. On
the other hand, in narrow but passable gaps between two obstacle regions where the safety

3.6 Experiments84

margins of two obstacles merge the planner is able to penetrate the area of the safety margin
and traverse the gap. This is achieved by using a resistive grid with resistors whose resistance
near to obstacles is higher than those in the obstacle-free areas. The result is that most of the
current flows through the low-resistance resistors for most parts of the grid. However, gaps
between obstacles are still passable, as the current can still flow through the high-resistance
resistors.

5 10 15 20

2

4

6

8

10

12

14

16

18

20

start

goal
5

10
15

20

5

10

15

20

0.2

0.4

0.6

0.8

1

Figure 3.5-6: The soft safety margin in a resistive grid. The safety margins (high resistor
values) are depicted by the grey areas in the workspace on the left. The grid size is
20×20. The To&Fro algorithm produced after 7 sweeps an activity distribution which
could be exploited for constructing the shown path. The ascent towards the goal was
undertaken by following the maximum current. The right subfigure shows the final
activity distribution. Note that the z-axis has a logarithmic scale. For further explanations
see text.

Figure 3.5-6 (left) depicts an example for a point-sized robot in an environment
cluttered with obstacles. The two line obstacles on the left have no safety margin. The
obstacles in the centre and on the left of the workspace are surrounded by safety margins
represented by resistors with a high resistance (grey regions). The safety margin is one unit
wide. In this experiment the ratio between resistor values inside the safety margins and those
in the obstacle-free areas was set to 25:1. Further experiments carried out showed that other
ratios lead to the same result.

 As one can see from Figure 3.5-6 (left), the found trajectory comes close to the lower
left obstacle which has no safety margin, but the trajectory stays clearly outside of the safety
margins of the other two obstacles, and successfully traverses the gap between the two line
obstacles on the right of the workspace.

3.6 Experiments

3.6.1 Real-World Experiments with the MA 2000 Manipulator
This section describes the real-world experiments carried out. The manipulator in use is

the MA 2000 which is an experimental manipulator with three main joints: waist, shoulder
and elbow. Further details on this manipulator are given in Appendix A-1. This section

3 A Neuro-Resistive Grid for Path Planning 85

focuses on planning a path from a given start to a given goal configuration for the shoulder
and elbow links of the MA 2000 manipulator. This is a planar planning problem as the axis of
these two joints are parallel. The elbow link is extended by a further link, named finger. The
joint of the finger is fixed to a constant configuration of 0 for the following considerations.

All experiments had been carried out on an IBM-PC-compatible with a Pentium90. The
software package MATLAB has been used to speed up the production of a representative
graphical display of the activity distribution in the grid. All the programs have been encoded
in the programming language which is part of MATLAB. Since this MATLAB version
(Version 4.0) does not compile but only interprets the program code, the running time of the
programs is very long, a fact that does not allow a meaningful comparison to algorithms
generated by other researchers.

For this reason the core of the update routine has been converted into a program written
in the programming language C. The core of the update routine is outlined in Section 3.5. The
compiled C programs have been also run on a Pentium90. This has been done to achieve a
better idea of the possible speed of the proposed update algorithm. Of course a routine written
in Assembler would provide further improvement in terms of speed. This applies especially to
the resistive grid using Dirichlet’s boundary condition because a division by four or eight can
be accomplished by fast shift operations.

In Table 3.6-1 the running times for different grid sizes are depicted. One sweep
represents one of the four update cycles according to the To&Fro algorithm (see Figure 3.5-2).
During one sweep every node is updated once. The running times of the corresponding
MATLAB program are shown for comparison purposes. Table 3.6-1 shows that the C-
program is 180 to 200 times faster than the MATLAB program4. Table 3.6-1 also reveals that
the running times are approximately proportional to the number of nodes in the investigated
grids (see also Figure 3.6-4).

grid size number
of nodes

time per sweep in seconds time in seconds

C-program
8 neighbours

MATLAB
8 neighbours

MATLAB
gradient search

50×50 2500 0.009 1.8 0.16
75×75 5625 0.021 4.26 0.17

100×100 10000 0.036 7.47 0.22
125×125 15625 0.056 12.06 0.33
150×150 22500 0.088 17.96 0.44
180×180 32400 0.126 26.67 0.55
300×300 90000 0.375 71.69 1.87

Table 3.6-1: Comparison of running times. Obviously, the times are proportional to the
number of nodes. The update algorithm encoded in C is 180-200 times faster than the
MATLAB version. The time spent on searching the gradient of the activity distribution to
find a path is negligibly small.

Columns 3 and 4 in Table 3.6-1 show the times needed to built the activity distribution
in the grid of varying sizes. It has been found that the time necessary to carry out the gradient

4 Informative material published by MATLAB states that their newly developed compiler speeds up
programs by a factor of 100 to 200 [Matlab96].

3.6 Experiments86

search to construct the path after the To&Fro algorithm has finished is only a fraction of the
update time (see last column of Table 3.6-1).

For the experiments described here, a path was planned for the two-link combination of
the MA 2000’s shoulder and elbow links in a planar workspace with three point-sized
obstacles. The origin of the workspace is at the centre of the axis of the shoulder joint. The
location of the three point obstacles are, as follows (see also Figure 3.6-1 and Figure 3.6-2):
A: (xA, yA) = (176.9722, 212.7059) mm, B: (xB, yB) = (108.8051, 358.9412) mm, C: (xC, yC) =
(-255.6265, 116.3235) mm.

The C-space patterns corresponding to these obstacle points were calculated using the
method described in Chapter 2. For an overview of the C-space patterns of the MA 2000 (see
Appendices A-2 and A-3). The C-space patterns are loaded into a map which represents the
configuration space in discrete form. In the following experiments, the map as well as the
resistive grid are quadratic arrays of varying sizes.

Any node in the map representing a forbidden configuration is set to the value -1; any
node representing C-free space is set to 0. The goal configuration is set to 1. Each node of the
map is connected to a node in the resistive grid at the same location (see Figure 3.4-1). The
resulting configuration space is depicted in Figure 3.6-1 and Figure 3.6-2. In addition to the
three C-space obstacles, the C-space boundary which describes the possible workspace of the
manipulator has been set to the obstacle value -1. The workspace of the manipulator has been
determined by moving the manipulator in an obstacle-free environment. Configurations which
represent collisions with the base of the manipulator, the workbench, and between links
represent the C-space boundary (see Figure 3.6-1, Figure 3.6-2 and Chapter 2).

In Figure 3.6-1 a resistive grid with a size of 300×300 nodes is shown. The To&Fro
algorithm has generated an activity distribution indicated by the dotted equi-potential lines. In
these experiments each node is connected to eight neighbours. The figure also depicts the
found path from the start configuration (θ1start, θ2start) = (0.5792, 0.064)⋅π to the goal
configuration (θ1goal, θ2goal) = (-0.111, -0.1796)⋅π. The s-shaped C-obstacle regions are
successfully bypassed. Figure 3.6-2 shows a 50×50 grid which is applied to the same obstacle
scenario. In contrast to Figure 3.6-1, goal and start configuration are swapped.

Figure 3.6-1 and Figure 3.6-2 show that the number of sweeps does not only depend on
the obstacle constellation but also on the location of goal node in the grid. The To&Fro
algorithm sweeps over the configuration space regardless of the position of start and goal
node. The earlier the goal node, which represents the source, is “reached” by the update
algorithm, the faster the distribution spreads over the grid. An improved version of the
To&Fro algorithm could take the location of the goal node into account and begin updating at
this location.

3 A Neuro-Resistive Grid for Path Planning 87

C-space boundary

goal

start

A

B
C

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ2 (×π)

θ1 (×π)

-500 0

0

200

400

y/mm

x/mm
-400

-200

500

start

goal

A

B

C

Figure 3.6-1: (top) Trajectory found by the To&Fro algorithm in a 300×300 grid. The
resolution per joint is 1.2°. To calculate the activity distribution the routine needed seven
sweeps which took 502.45 sec. under MATLAB. (bottom) Each tenth step along the
trajectory of the MA 2000 model has been depicted. The actual locations of the obstacles
are at the endpoints of the arrows.

3.6 Experiments88

start

goal

C-space boundary

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ2 (×π)

θ1 (×π)

A

B
C

-500 0

0

200

400

y/mm

x/mm
-400

-200

500

goal

start
A

B

C

Figure 3.6-2: (top) Trajectory found by the To&Fro algorithm in a 50×50 grid. To
calculate the activity distribution the routine needed five sweeps which took 9 sec. under
MATLAB. In contrast to Figure 3.6-1 goal and start a swapped. (bottom) Every step
along the trajectory of the MA 2000 model has been depicted. The actual locations of the
obstacles are at the endpoints of the arrows.

3 A Neuro-Resistive Grid for Path Planning 89

log(vi⋅const)

θ2 (×π) θ1 (×π)

Figure 3.6-3: Three-dimensional depiction of the activity distribution in the 50×50-grid
(see Figure 3.6-2).

Since the goal and start location are swapped in the two experiments above, the number
of sweeps is seven (Figure 3.6-1) and five (Figure 3.6-2), respectively. The execution time
under MATLAB was 502.45 seconds in the 300×300-nodes grid and 9 seconds in the 50×50-
nodes grid. In view of Table 3.6-1, this means the path could be calculated in approximately
2.6 seconds (300×300 nodes) and 0.04375 seconds (50×50 nodes) executing a compiled C-
program on a Pentium90. The sequence of configurations which comprise the found path are
applied to a model of the manipulator as shown in Figure 3.6-1 (bottom) and Figure 3.6-2
(bottom).

grid size no. of
nodes

8 neighbours 4 neighbours

start-goal goal-start start-goal goal-start
swps total

time
swps total

time
swps total

time
swps total

time
50×50 2500 5 9 7 12.6 6 10.755 8 14.34
75×75 5625 5 21.3 7 29.82 6 24.593 8 32.79

100×100 10000 5 37.35 7 52.29 6 43.83 8 58.44
125×125 15625 5 60.3 7 84.42 6 69 8 92
150×150 22500 5 89.8 7 125.72 6 98.7 8 131.6
180×180 32400 5 133.34 7 186.676 6 143.6 8 191.2
300×300 90000 5 358.49 7 501.886 6 406.793 8 542.39

Table 3.6-2: Execution times for grids of different sizes under MATLAB. The “total
time” includes the path finding time. In the “start-goal” columns, the start- and goal-
configuration are as follows: (θ1start, θ2start) = (-0.111, -0.1796)⋅π; (θ1goal, θ2goal) =
(0.5792, 0.064)⋅π. In the “goal-start” columns, those values are swapped.

3.6 Experiments90

time
in
sec.

100

200

300

400

500

600

8 neighbours*

(5 sweeps)

8 neighbours†

(7 sweeps)

4 neighbours†

(8 sweeps)

0 2 4 6 8 10 x 104

number of nodes

grid size

150x150
125x125

300x300180x180

50x50

100x100

4 neighbours*

(6 sweeps)

Figure 3.6-4: Performance of the To&Fro algorithm. Execution time vs. number of
nodes. The execution time increases linearly with time. The execution time depends also
on the position of goal and start node (* (θ1start, θ2start) = (-0.111, -0.1796)⋅π;
(θ1goal, θ2goal) = (0.5792, 0.064)⋅π, † start and goal are swapped).

Further experiments have been carried out and the results are summarised in
Table 3.6-2. The tests showed that a valid path could be found after each node has been
updated a constant number of times, for updates as in Eq. (3.4-11). The number of sweeps
depends on the connectivity scheme as well as on the location of the goal node. Obviously, the
number of sweeps does not depend on the size of the grid. Further tests carried out confirm
that in any tested environment the number of updates per node using the To&Fro algorithm is
below 7 for the grid with 8 neighbours and below 8 for the grid with 4 neighbours. The time
to accomplish one sweep is more or less the same for both connectivity schemes, but the 8-
neighbourhood connectivity scheme saves one sweep in any start-goal constellation (see
Table 3.6-2). It has not been investigated whether a further increase of neighbours (above
eight, see [Boult90]) is beneficial in terms of time and, if so, what the optimum number of
neighbours is to update the grid in minimum time.

Although the number of sweeps does not change if the grid size is increased, the
computational effort increases linearly with an increasing number of nodes. Figure 3.6-4 and
Table 3.6-2 clearly indicate that the To&Fro algorithm is of O(N) in time where N is the
number of nodes in the grid.

3 A Neuro-Resistive Grid for Path Planning 91

A manipulator experiment which is similar to the above has been carried out (see
[Althoefer95e]). The found path has been applied to the physical manipulator, the MA 2000,
proving the feasibility of the presented method in a real-world application. The activity
distribution of the resistive grid depicted as equi-potential lines is shown Figure 3.6-5. The
resulting motion of the manipulator is presented in Figure 3.6-6. This figure has been
constructed from snapshots taken by a camera during manipulator motion. The three-
dimensional activity distribution of the resistive grid is depicted in Figure 3.6-7.

A B C

C-Space
boundary

start

goal
0

0.2

0.4

0.6

−0.6

−0.2

−0.4

−0.6 −0.4 −0.2 0 0.2 0.4

Θ2∗π

Θ1∗π

equi-potential
lines

resistornode

Figure 3.6-5: A gradient ascent performed on the potential distribution generated by the
resistive grid guides the robot point from start to goal avoiding C-Space obstacles which
correspond to the obstacles “A”, “B” and “C” in Figure 3.6-6. The C-Space boundary is
caused by collisions between the manipulator and the base as well as the work bench (see
Figure 3.6-6). Inset: grid structure (see text for details).

3.6 Experiments92

C

B

A

goal

start

manipulator
-x

y

link l2

link l1

obstacle
point

ground
base

Figure 3.6-6: Depiction of the manipulator (MA 2000) following the path which is
generated by the resistive grid shown in Figure 3.6-5.

θ2(×π) −0.4−0.200.4
θ 1(×π)0.2

−0.5
0

1

goal

start

log(vi⋅const)

Figure 3.6-7: A 3D-depiction of the activities vi in the resistive grid after five updates per
node.

The activity distribution of the grid due to the To&Fro algorithm which interrupts the
update algorithm once the start node perceives a change in activity does not resemble the

3 A Neuro-Resistive Grid for Path Planning 93

potential distribution in a physical resistive grid. The activity distribution due to the To&Fro
algorithm has been compared to a distribution in a converged grid. Figure 3.6-8 (right) shows
the activity distribution of a grid where each node does not experience any further change in
activity. Convergence was reached after 159×4 = 636 sweeps, where each sweep goes into a
different direction as described in the To&Fro algorithm. The update process was stopped
when no grid node changed its activity any further. The maximum change that occurred in the
grid before program termination was 2.2959⋅10-41. To build the converged activity distribution
took about 130 times longer than using the early interrupting To&Fro algorithm.

path after 7 single
sweeps (To&Fro)

start

goal

C-space boundary

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ2 (×π)

θ1 (×π)

A

path after random
update

B
C

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

theta1*pitheta2*pi

Figure 3.6-8: (left) Comparison of paths found in a converged grid and in a grid whose
activity distribution is due to the early interrupting To&Fro algorithm. The grid size is
50×50. The To&Fro algorithm needed five sweeps to produce the shown path. (right)
The activity distribution of the converged grid. To build the shown activity took about
130 times longer than using the To&Fro algorithm. Note that the z-axis is in a
logarithmic scale.

Connolly et al. report that the time needed to calculate a zero error solution (converged
grid) in a 55×44-nodes grid was 74 seconds. For this solution, 639 iterations were required
[Connolly90]. Although the configuration space in their experiment differs from those
investigated in this thesis, it can be assumed that the use of the early terminating To&Fro
algorithm would provide a big reduction in planning time.

Furthermore, comparing the path found by the To&Fro algorithm with the one found in
a converged grid5, it can be seen that in many cases the differences are minute (see
Figure 3.6-8). Also the activity distribution shows only minor differences. From this can be
concluded that after only a few sweeps the activity distribution constructed by the To&Fro
algorithm represents in many cases a good approximation of the fully converged grid (at least
along the constructed path, since other areas are not necessarily updated yet).

5 In this chapter, grids which are considered to have converged are those grids where the maximum
change of activity is below 10-5.

3.6 Experiments94

2000

4000

6000

8000

10000

12000

time
in
sec.

grid size20x20
50x50

75x75 150x150125x125100x100

Figure 3.6-9: Convergence times versus different grid sizes. The update process was
interrupted when the maximum change of activity was below 1×10-5.

Obviously, the experiments presented here do not suffer from the discontinuity
problems discussed in Section 3.5.3. If such problems occurred, the activity distribution
would not resemble in all areas an activity distribution found in a converged grid. However,
finding a collision-free path is not thus hindered. Further experiments carried out showed that
in contrast to the linear increase of time for the To&Fro algorithm, the time to find a
converged solution is of O(N 2) (see Figure 3.6-9). This goes along with the estimate given in
[Cichocki94]. The To&Fro algorithm provides an activity distribution which allows the
construction of a path after a fraction of the updates necessary to build a distribution which
approximates the one of a physical grid. This fact makes this novel approach very attractive
for robot path planning.

3.6.2 A Planar Three-Link Manipulator
This section describes experiments with “stick-like” planar manipulators as introduced

in Chapter 2. This manipulator has three links with revolute joints. Each link has zero width.
Link l1 is 4 units long, link l2 is 2 units long and link l3 is 1 unit long. As in the previous
sections, path planning in the resistive grid from a given start to a given goal configuration is
investigated. Here, the co-ordinates of the 3-dimensional resistive grid describe a 3-
dimensional discrete configuration space. For all following experiments in this section, the
number of nodes in the neighbourhood of one node is six: two vertical neighbours, two
horizontal neighbours and two neighbours above and below. All experiments have been
carried out on an IBM-PC-compatible with a Pentium90 using the software package
MATLAB. Again, running times are approximately 180 to 200 times slower than in the
corresponding compiled C-programs.

In the 3-dimensional grid, eight sweeps are necessary to complete an update cycle
according to the To&Fro algorithm described in Section 3.5.2. This means that each node is
updated eight times per complete cycle. As it is the case with the two-dimensional problem,

3 A Neuro-Resistive Grid for Path Planning 95

the running times are approximately proportional to the number of nodes in the grids (see also
Figure 3.6-4).

In the first experiments described here, a path was planned for the three links (l1, l2, l3)
of the stick-like manipulator in a planar workspace with two obstacles as shown in
Figure 3.6-12. The origin of the workspace is at the centre of the axis of the first link’s joint.

goal

A

θ3 (×π)

θ1 (×π)
θ2 (×π)

B

goal

A

B

θ3 (×π)

θ1 (×π)
θ2 (×π)

Figure 3.6-10: (top) Path found after 5 sweeps; (bottom) Path found after 1400 sweeps.
The obstacles, start and goal configuration were the same in both experiments . The start
configuration is hidden behind C-space obstacle “A”.

3.6 Experiments96

goal A B

start

goal
A

B

start

Figure 3.6-11: This figure shows the discrete configuration space as it is applied to the
resistive grid. A different view point as in Figure 3.6-10 were chosen to show both start
and goal. The top figure shows the path found after 5 sweeps and the bottom figure after
1400 sweeps. Comparing the two paths found by the different methods, it seems as if in
the converged grid the path keeps great distance to the obstacle regions. This fact leads to
a rather complicated manipulator motion, as shown in Figure 3.6-12 (right).

3 A Neuro-Resistive Grid for Path Planning 97

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6y

x

start

goal

AB

 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6y

x

start

goal

AB

Figure 3.6-12: These figures show the workspace obstacles and the manipulator in
motion. (left) Trajectory after 5 sweeps; (right) Trajectory after 1400 sweeps.

Each of the obstacles is described by a number of pixels. The C-space patterns
corresponding to these pixels were calculated using the method described in Chapter 2. The
calculated C-space patterns are loaded into a map which represents the configuration space in
discrete form and each of the map nodes is connected to the corresponding node of the
resistive grid (Section 3.4.1). In this experiment, no collision between links was assumed. The
working range of each joint was restricted to [-π, +π] by clamping the nodes along the grid
edges to zero activity. The grid size for all experiments was 36×36×10. The following values
were chosen as start- and goal-configuration, respectively: (θ1start, θ2start, θ3start) =
 (0.4, 0.0, -0.4)⋅π and (θ1goal, θ2goal, θ3goal) = (-.01, -0.1, 0.8)⋅π (see Figure 3.6-10 and
Figure 3.6-11).

The path shown in Figure 3.6-12 (left) was found after only 5 single sweeps. The
execution time under MATLAB was 179.77 seconds. Applying the factor which has been
found in view of Table 3.6-1, the path could be found in approximately one second using the
corresponding C-program.

Figure 3.6-13 and Figure 3.6-14 depict the activity distribution of the resistive grid after
different update repetitions. Figure 3.6-13 shows the activity distribution using the To&Fro
algorithm terminating after only five sweeps. Figure 3.6-14 shows the distribution in a
converged grid.

3.6 Experiments98

C-space
Obstaclesgoal area

A
θ3

θ1
θ2

B

False colour code
black: vi = 0 (obstacles) blue: 10-11 < vi ≤ 10-4

green: 0< vi ≤ 10-14 magenta: 10-4 < vi ≤ .05
red: 10-14 < vi ≤ 10-11 yellow: 1 > vi >.05

Figure 3.6-13: Depiction of the activity in a 3-dimensional resistive grid after 5 updates
per node. The variable vi represents the activity of node i.

3 A Neuro-Resistive Grid for Path Planning 99

C-space
Obstaclesgoal area

A

θ3

θ1
θ2

B

False colour code
black: vi = 0 (obstacles) blue: 10-11 < vi ≤ 10-4

green: 0< vi ≤ 10-14 magenta: 10-4 < vi ≤ .05
red: 10-14 < vi ≤ 10-11 yellow: 1 > vi >.05

Figure 3.6-14: Depiction of the activity in a 3-dimensional resistive grid after
172×8 = 1400 updates per node. The variable vi represents the activity of node i.

3.6 Experiments100

A further experiment was carried out where one obstacle was placed in the
manipulator’s workspace (see Figure 3.6-16). Since this obstacle is only represented by two
pixels the corresponding C-space obstacle is very sparse (see Figure 3.6-15 (left)). To assure
that the resistive grid does not construct a path through the C-space obstacle by mistake, the
found C-space obstacle has been surrounded by a min-max-box (see Figure 3.6-15 (left)).

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

θ1(×π)θ2(×π)

θ3(×π)

start

goal

 1

36

1

36

10

θ3

θ1
θ2

start

goal

Figure 3.6-15: (left) C-space obstacle with bounding box. (right) Discrete representation
of the bounding box.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6y

x

start

goal

obstacle
points

Figure 3.6-16: Depiction of the manipulator moving around obstacle points in workspace.

In this section, the To&Fro algorithm has been employed to build up the activity
distribution in a three-dimensional configuration space. Path planning was successfully
carried out after only a few update sweeps. Although the method has been only applied to
rather simple obstacle constellations, it would find a solution for any possible constellation. In
case a complex obstacle constellation is given, this would only require more updates to assure
that the activity distribution spreads to a start node which is very distant to the goal node or
very much secluded by obstacles.

3 A Neuro-Resistive Grid for Path Planning 101

3.6.3 A Three-dimensional SCARA Manipulator

-6 -4 -2 0 2 4 6

-5

0

5

1

2

3

4

5
2

1

3

x

y

z

start
config.

goal
config.

vertical
axis

Figure 3.6-17: A three-dimensional SCARA manipulator whose task is to move from the
start configuration under the shelf (shaded area) to the goal configuration above the shelf.
The labelled arrows next to the links indicate the order of motion. The configuration
space has been computed layer by layer employing the transformation technique
described in Chapter 2. Each configuration space layer was placed in a 20×20 two-
dimensional grid. These grids were combined to form a 5×20×20-grid which was then
updated as shown in Section 3.5.2.

To solve a path planning problem for a three-dimensional SCARA manipulator whose
two revolute links move in a two-dimensional horizontal plane which is elevated and lowered
along a vertical axis (Figure 3.6-17), a three-dimensional resistive grid has been used to
compute the path. The three-dimensional configuration space has been constructed by
computing two-dimensional C-spaces for each of the five horizontal layers in z-direction
(Figure 3.6-17) employing the technique described in Chapter 2 (see also [Newman91]).

3.6.4 A Mobile Robot in a 3D-Workspace
This section shows the use of the resistive-grid planner to solve a 3D mobile-robot path-

planning problem.

3.7 Comparative Studies102

start

goal

Floor 1

Floor 2

Fl. 3

Floor 4

Floor 5

Figure 3.6-18: This figure shows the 3-dimensional workspace of a point robot.
Obstacles are depicted by black rectangles. The path is planned using a 3-dimensional
resistive grid. The point robot can move between 5 different floors. The stars show the
path found by the resistive grid from start to goal. Whenever the robot changes from one
floor to another, arrows are used to depict this change. Note that even though start and
goal are on the same floor (Floor 3) and a possible path exists on this floor, a shorter path
is found by the resistive grid going via other floors. The curvy lines are the equi-potential
lines which develop around the goal node. The boundary condition is the Dirichlet one.
The To&Fro algorithm was used for updating the grid.

3.7 Comparative Studies

3.7.1 Comparisons to Other Update Rules
Apart form the resistive grid approach which makes use of the update rule described in

Eq. (3.4-11), other update equations which compute an activity distribution over a state space
are conceivable. Two update equations which can be found in the literature are presented here
[Cooper81, Siemiatkowska94b] and compared to the resistive grid approach. Both update
equations are based on the theory of dynamic programming [Bellman57, Cooper81]. The first
uses an additive cost function, while the second uses a product cost function. The latter has
been also employed by Siemiatkowska et al. for mobile robot path planning. They describe

3 A Neuro-Resistive Grid for Path Planning 103

their approach as a diffusion process [Siemiatkowska94b]. Instead of using an iterative
method, as suggested in this chapter, to spread the activity distribution, Siemiatkowska et al.
make use of an approach which is similar to the building of a cost-function tree as described
for the A*-algorithm in Section 3.7.3.

In the approaches based on dynamic programming, each transition from one node to
another is assigned with a local cost. The goal is set to a high value, here: 1. Obstacles are set
to a low value, here: 0. In case of the additive function, any free node’s activity changes
during the update process to a new activity which is the result of the subtraction of a constant
from the maximum of the neighbours’ activities (In this experiment the additive constant was
chosen to be -0.001). In case of the product function, any free node’s activity is substituted by
the product of a constant and the maximum of the neighbours’ activities (In this experiment
the factor was chosen to be 0.8). Note, that in the approach which uses the additive cost
function the constant has to be chosen carefully to assure that under no circumstances a node
is assigned an activity which represents obstacles. Otherwise, originally obstacle-free nodes
are interpreted as obstacle nodes.

In all four cases the To&Fro algorithm has been employed to spread the activity. The
update process is interrupted once the activity has spread to the start node.

start

goal

C-space boundary

A

B
C

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ2 (×π)

θ1 (×π)

Dynamic
Programming

Dirichlet Neumann

Figure 3.7-1: Comparison of paths found by four different approaches: a) resistive grid
using Dirichlet’s boundary condition, b) resistive grid using Neumann’s boundary
condition, c) dynamic programming using an additive cost function, d) dynamic
programming using a product cost function. The paths found by c) and d) are identical. In
all cases the To&Fro algorithm was used to spread the activity. The update process was
interrupted when the start node or its neighbours experienced a rise in activity.

3.7 Comparative Studies104

In this particular experiment, the number of neighbours per node were four. Path finding
was not restricted along horizontal and vertical neighbours only, but was additionally allowed
to proceed along diagonal neighbours. However, in all four cases the path had a length of 67
units and proceeds along a very similar course. It shows that the updating times are very
similar. The resistive grid with the Dirichlet boundary condition performs slightly faster than
the other approaches, while the grid using the Neumann boundary condition is the slowest.
Note that in all four cases the especially adapted To&Fro algorithm has been used to spread
the activity distribution. If a different update sequence is used, the execution times can be
much higher as shown in Section 3.7.2.

θ1 (×π)θ2 (×π)

vi

θ1 (×π)θ2 (×π)

vi

Figure 3.7-2: (left) Activity distribution found in the resistive grid using the Dirichlet
boundary condition (execution time: 9.06 sec.); (right) Activity distribution found in the
resistive grid using the Neumann boundary condition (execution time 17.41 sec.).

θ1 (×π)θ2 (×π)

vi

θ1 (×π)θ2 (×π)

vi

Figure 3.7-3: (left) Activity distribution found by the dynamic programming algorithm
with the additive cost function (execution time 14.15 sec.); (right) Activity distribution
found by the diffusion algorithm (product cost function) (time 12.8 sec.).

3 A Neuro-Resistive Grid for Path Planning 105

3.7.2 Comparison to Other Update Sequences
Other sequences for updating the rule in Eq. (3.4-11) have been investigated. These

update sequences do not make use of the specific shape of the C-space patterns occurring
during manipulator path planning. The investigated sequences are the unidirectional and the
random update. These update methods were found to be much slower than the proposed one
(see Table 3.7-1). Whichever of the two update sequences one uses, they take about 7 to 8
times longer than the To&Fro algorithm to construct an activity distribution along which a
path can be found. All update sequences shown in Table 3.7-1 are “sweeping” the entire grid
independent of the locations of start, goal and obstacles. They are of order O(N) in time.

path after 7 single
sweeps (To&Fro)

start

goal

C-space boundary

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ2 (×π)

θ1 (×π)

A

path after random
update

B
C

start

A

B
C

goal

θ1 (×π)θ2 (×π)

log(vi×const.)

Figure 3.7-4: Activity distribution in a resistive grid which had been randomly updated.
The grid size is 50×50. The shown distribution was reached after 80.74 sec.

3.7 Comparative Studies106

In contrast to the random update, the To&Fro algorithm produces quickly a distribution
which is well-spread over the whole resistive grid (see Figure 3.6-7 for comparison), while the
path found by the random update procedure was very jagged (see Figure 3.7-4).

random update unidirectional update To&Fro

average update time in sec. sweep direction time in sec. time in sec.
71.46 1 78.38 9

(averaged over 12 2 74.54
experiments) 3 66.02

4 61.76

Table 3.7-1: Comparison of different update orders. The chosen grid size was 50×50. The
update process was in any case terminated once the start node experienced a rise in
activity. The execution times were determined from routines running under MATLAB.

3.7.3 Comparison to the A*-Algorithm
The shortest path is the one with the minimum overall cost. In a discrete grid where

nodes are placed equidistantly to each other and every node-to-node connection is associated
with the same weight parameter, the shortest path between a start point and a goal point is the
path with the shortest Manhattan (or city-block) distance. The shortest path in the Euclidean
sense cannot be calculated, employing an optimisation process which “knows” only about
discrete steps in horizontal and vertical direction. Obviously, due to the nature of discrete
distances, there may be many different routes that have the same overall cost and the same
length [Boult90].

The A*-algorithm is a dynamic programming method (see Section 3.2.4). Although, it is
usually used for graph searching (in the visibility graph, cell decomposed maps, etc.), it can be
also applied to the presented problem, since path planning in a discrete configuration space
can be also viewed as graph search problem. Each node in the grid can be viewed as node in a
graph. Each node is connected via arcs to neighbouring nodes. Each arc is assigned with a
certain cost which is associated with the “difficulty” to cross the arc and which is here
proportional to the Euclidean distance between two connected nodes.

Beginning with the start node, the A*-algorithm calculates the minimal cost between
adjacent nodes and start node. This process is continued by visiting the adjacent nodes and
calculating for each of those the minimal costs between their neighbours and the start node.
This process is further continued and a tree is built in which each visited node is assigned with
a pointer to its neighbour which has the minimal cost to the start node. During this process,
nodes might be found that point to the “wrong” neighbour while another neighbour has a
smaller cost due to a “newly” found path segment which provides now a less costly
connection to the start node. (This is similar to the discontinuity problem discussed in
Section 3.5.3.) Then the wrong pointer is redirected to the neighbour with the smallest cost.

In contrast to other dynamic programming methods (see Section 3.2.4), the A*-
algorithm does not assign a pointer to every node, but only to those nodes it visits until a
solution which connects start with goal is found. The A*-algorithm terminates when finding
the goal node or after all nodes have been visited and the goal node was not among those. The
found path is the least costly path between start and goal node. In the path planning problem
discussed here, the found path represents the shortest path. As already stated, there may be

3 A Neuro-Resistive Grid for Path Planning 107

two or more different routes that have the same overall cost in this discretised state space
[Boult90].

start goal A* start goal A*
co-ordinates (time in seconds) co-ordinates (time in seconds)

18, 18 2,2 4.45 2,2 18, 18 4.5
18, 18 4,4 4.23 4,4 18, 18 4.34
18, 18 6,6 3.63 6,6 18, 18 4.23
18, 18 8,8 2.75 8,8 18, 18 4.23
18, 18 10,10 1.76 10,10 18, 18 4.23
18, 18 12,12 0.83 12,12 18, 18 3.03
18, 18 14,14 0.33 14,14 18, 18 0.98
18, 18 16,16 0.11 16,16 18, 18 0.22
18, 18 18,18 0 18,18 18, 18 0

To&Fro
(time in seconds)

To&Fro
(time in seconds)

any distance 0.27 any distance 0.83

Table 3.7-2: Comparison of running times under MATLAB for the A*-algorithm and the
To&Fro algorithm in an obstacle-free grid. The different start and goal nodes are
described by their grid co-ordinates.

The A*-algorithm has been compared to the To&Fro algorithm. In the experiment here,
both algorithms have been applied to find a path between a start node and a goal node in an
obstacle-free state space only confined by edges which are clamped to zero. The grid size was
20 by 20 nodes. Each node is connected to four neighbours. Path searching is restricted along
horizontal or vertical directions.

Different start and goal nodes have been assigned (see Table 3.7-2). It can be seen that
the A*-algorithm’s search time depends on the distance between start and goal, while the
To&Fro algorithm is independent of this distance. Especially for long distances the To&Fro
algorithm is superior to the A*-algorithm.

The A*-algorithm has been also applied to the manipulator planning problem which had
been employed already in earlier experiments. The results for a 50×50-grid with the 4-
neighbourhood scheme are shown in Figure 3.7-5. Again, path finding is only allowed along
vertical and horizontal neighbours. Two experiments have been carried out. The first is
depicted in Figure 3.7-5. For the second experiment goal and start position were swapped. In
both cases, the To&Fro algorithm found a path in shorter time. (First experiment: To&Fro
algorithm - 14.61 sec., A*-algorithm - 19.96 sec.; second experiment: To&Fro algorithm -
11.03 sec., A*-algorithm - 29.8 sec.) The difference in time is presumably related to the way
the activity distribution or the cost-look-up table is built. The effectiveness and speed of the
To&Fro algorithm is due to its simplicity. A fast average mechanism sweeps over the entire
grid regardless of goal location or obstacle constellation. The A*-algorithm, on the other hand,
makes use of complicated routines which spread over the obstacle-free areas of the grid by
“wandering” along the outside of obstacles and placing nodes according to their distance to
the goal into a tree-like list. The building of this list seems to be time consuming.

The drawback of the resistive grid using the early interrupting To&Fro algorithm is that
it does not always find the shortest path (see Section 3.5.3). However, in the experiments here
the length of the path obtained by all three approaches (A*-algorithm, To&Fro algorithm,

3.8 Summary108

converged grid) was the same (102 units). This means that in these experiments the resistive-
grid-based approach found a shortest path. The difference between the obstacle constellation
shown here and discussed in Section 3.5.3 is that in the experiments here the activity
distribution cannot spread around any obstacle from two sides and thereby form a
discontinuity. Even if the path found by the resistive grid is a sub-optimal in terms of length, it
is always a collision-free path which guides the arm successfully to the goal location.

start

goal

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
θ2 (×π)

θ1 (×π)

A

C

converged
grid

To&Fro
7 sweeps

A*

Figure 3.7-5: Comparison of three planning strategies: To&Fro algorithm, converged grid
and A*-algorithm. In this grid of size 50×50, each node is connected to four neighbours
and path search is restricted to vertical and horizontal directions. The start- and goal-
configuration are (θ1start, θ2start) = (0.5792, 0.064)⋅π and (θ1goal, θ2goal) = (-0.111, -0.1796)⋅π.
Further details see text.

3.8 Summary
In this chapter the application of a computer-emulated neuro-resistive grid to solve the

global manipulator path planning problem has been investigated.

The neuro-resistive grid incorporates ideas of the conventional resistive grid as well as
Hopfield neural network type. Resistive grids have been only recently introduced as means for
path planning [Connolly90, Tarassenko91]. So far resistive grids for path planning have been
investigated on a theoretical level and on the base of simulations [Bugmann95, Connolly90,
Tarassenko91]. Neural-network-based approaches have been applied to simulated robotic
problems [Glasius94] and to mobile robots [Siemiatkowska94b, Kanaya94]. Among other

3 A Neuro-Resistive Grid for Path Planning 109

things, this chapter expands on this and shows the feasibility of the suggested method in real-
world manipulator applications.

A new update algorithm, the To&Fro algorithm, has been proposed which rapidly
generates an activity distribution over the obstacle-free areas of a manipulator’s configuration
space. This activity distribution can be exploited to construct a path from a start node to a goal
node by following the greatest gradient. The update process is terminated when the activity
distribution has reached the start node. It has been shown that the new algorithm spreads the
activity distribution in the grid approximately eight times faster than other update sequences
found in the literature [Cichocki94, Glasius94]. Moreover, the execution time for the To&Fro
algorithm increases only linearly with the number of grid nodes while the time necessary to
reach a converged grid is of O(N 2), where N is the number of grid nodes [Cichocki94,
Connolly90]. This aspect makes the To&Fro algorithm very suitable for path planning with
strong real-time constraints.

A converged resistive grid approximates the calculation of harmonic functions on a
confined, connected region satisfying Laplace’s equation [Connolly90, Ramo94, Noble64].
The solution found in a converged grid is unique (see [Ramo94]) and depends only on the
shape of the boundary [Glasius94]. This chapter has shown that the To&Fro algorithm,
although it does not satisfy Laplace’s equation due to its early termination of the update
process, produces also a local-extrema-free activity distribution which is well suited to solve
the path planning problem in robotics always providing a collision-free path from a start state
to a goal state - if such path exists.

A comparison between the two boundary conditions showed that a computer-emulated
grid with Dirichlet’s boundary condition produces a suitable activity distribution faster than a
grid with Neumann’s boundary condition.

The To&Fro algorithm has been also compared to the A*-algorithm, which is a global
graph search method often employed in robotic planning tasks to find a shortest path
[Latombe91, Cires96]. The To&Fro algorithm, whose execution time is to a great extent
independent of the location of obstacles regions, goal node and start node, is faster than the
A*-algorithm in C-space constellations where the goal is very distant to the start. Although a
path found by the To&Fro algorithm is in some situations not a shortest one, it is always
collision-free. Considering that the focus of this chapter was on finding collision-free paths in
short time, the To&Fro algorithm outperforms the A*-algorithm.

A further extension to the basic neuro-resistive grid has been developed which allows
path planning in non-homogenous and non-topologically ordered graphs and can also be used
to apply soft safety margins to obstacle regions. In metric maps the gradient between two
nodes can be usually derived by computing the difference between the activities of two nodes.
In grids where the weight factors or resistors between nodes are not constant, the gradient is
the division of activity difference and the connecting weight factor. Incorporating this aspect,
the resistive grid has been successfully applied to a general graph search problem and to a
robot planning problem where obstacle regions have been expanded by a soft safety margin.

Chapter 4

Fuzzy-Based Navigation and Obstacle Avoidance for
Robotic Manipulators

This chapter describes a novel navigation and obstacle avoidance method for robotic
manipulators, called here fuzzy navigator, which is based on fuzzy logic. In contrast to the
global planning strategy presented in the previous chapter, obstacle avoidance as well as local
navigation methods are methods in which calculations are not based on the entire state space
but only on a confined region surrounding the actual state. Local methods like the one
suggested here outperform global methods in many situations and applications. Owing to their
simplicity and hence their short response time, local methods are especially suitable in on-line
applications with strict real-time requirements. Furthermore, these methods allow obstacle
avoidance in uncertain environments and can be used in safety critical applications. In contrast
to many global planning strategies, they can control autonomous robots and robotic
manipulators with a high degree of freedom (DOF). The main disadvantage of these local
methods when compared to a global planning strategy is that they can get stuck in dead-lock
situations, thus, their inability in some cases to recognise a possible solution to a problem.

This chapter is organised as follows: Aspects of local navigation and a general
description of the proposed navigation method are presented in Section 4.1. The potential field
method and other obstacle avoidance methods which had been influential to this work are
outlined in Section 4.2. Section 4.3 gives a detailed description of the fuzzy-based navigation
and obstacle avoidance method for robotic manipulators. The technique has been applied to
simulated manipulators as well as to a real one, as shown in Sections 4.4 and 4.5, respectively.
Initial experiments regarding the training of the fuzzy navigator are described in Section 4.6.
Section 4.7 concludes this chapter.

4.1 Problem Definition and System Overview
Local navigation and obstacle avoidance become a necessary engineering task when the

path cannot be computed prior to the robot motion either because of unforeseeable changes in
the environment or missing information about obstacle locations.

Traditionally, obstacle avoidance and local navigation techniques are part of multi-
layered planning systems. Each layer represents a functional module carrying out a specific
task. The modules have usually functions, such as task planning, global path planning,
obstacle avoidance, motor control. A possible approach is a top-to-bottom hierarchical
structure where modules on a higher level control those on a lower level [Althoefer94b].
Those planning systems provide the robot with great independence. The users of such systems
do not need to know about the detailed commands sent to the robot’s actuators. Instead, they
only need to provide a general and abstract task the robot is supposed to carry out. In a self-
reliant manner, the system turns the user command into the appropriate robot motion. This
process involves interpreting the task and transforming it into locations which have to be
reached during execution of the task. This, in turn, demands a global path planning strategy to
be invoked and to plan routes between those locations, thereby avoiding obstacles in the given
workspace. Obstacle avoidance and local navigation techniques are then used to adapt the
planned path to changes in the environment.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 111

The output of the global planner can be interpreted as a sequence of path segments or
via-points. Usually simple trajectories, such as straight lines, connect these via-points.
Changes in the environment may cause a straight connection from start to end of the path
segment to be inaccessible at certain times. Thus, one via-point after another is given to the
local navigator and its task is to traverse towards the next via-point thereby avoiding any
obstacle. Since the navigator cannot foresee all possible situations which will be encountered
by the robot, the navigator must be able to abstract and generalise [Tschichold96,
Sulzberger93]. Highest priority is usually given to obstacle avoidance, thus, even though the
goal or via-point cannot be reached, the robot stays away from obstacles.

While path planning and obstacle avoidance in regard to mobile robots is commonly
only concerned about the control of a single object, manipulators consist of a chain of objects
and for each such object or link it must be guaranteed that no collision with obstacles occurs
at any time. Thus, the obstacle avoidance technique must provide a collision-free route for all
links. Since the motion of some links does not occur independently of the motion of other
links, these interactions have to be taken into account by the obstacle avoidance technique
(see also Section 4.3.2). The envisaged fuzzy-based technique can be also utilised in cases
where the path planner or an operator (via teach pendant) provides a desired end effector
motion [Risse95]. In such an implementation example, the technique shows a purely obstacle
avoidance behaviour clearly supporting the global planning strategy provided by the operator.

In all situations where obstacle avoidance or navigation problems have to be solved,
sensors play a key role. Multiple sensors are commonly used to provide the planning system
with sufficient information about the environment. Examples include cameras, encoders on
steering and drive mechanisms, inertial navigation systems, close contact sensors, acoustic and
optical sensors, infrared and laser rangefinders [Brooks86, Latombe91, Drews92, Lee96,
Freund96]. Since the focus in this chapter is on the algorithm which provides obstacle avoidance
and local navigation, the properties of sensors (such as errors in sensor readings, sensor data
fusion, etc.) are not further investigated here. In this chapter, the models used for sensors (for
example, ultra-sonic sensors mounted on the manipulator links [Risse95]) are assumed to work
without error and therefore, provide at all times an exact picture of the environment.
Nevertheless, the great robustness which the fuzzy control system has shown during
experimental studies suggests that data which is produced by real sensors could be also dealt
with in a satisfactory way.

The navigation technique presented in this chapter is based on fuzzy logic. A fuzzy logic
system or fuzzy system is a universal approximator which provides a rule-based mapping
between the input and the output space, while classical approaches make use of analytical
functions to solve the navigation problem (see for example Section 4.2.1). In this particular
application, the input space is defined by axes which represent the distances to nearby
obstacles (for example acquired by ultra-sonic sensors) as well as the error between actual and
desired goal configuration. The output or command space is defined by axes which represent
the command variables. These are commands which drive the actuators of the manipulator
links. The suggested system is divided into separate fuzzy-units which control each
manipulator link individually. Thus, each of these fuzzy units reacts with a single output
variable, the new actuation command for the corresponding link. The actuation command is
computed in response to the unit’s inputs which induce i) a repelling influence based on the
link’s distance to nearby obstacles and ii) an attracting influence based on the difference
between the link’s actual state and its target state.

4.1 Problem Definition and System Overview112

The mapping provided by the fuzzy system is usually based on the knowledge of a
human expert. The expert knowledge can be used by the system designer to construct the
fuzzification stage, and the defuzzification stage as well as the rule base (for further details see
Section 4.3.3). In other words, the designer sculpts a function by adjusting a set of parameters
in order to approximate a desired mapping. These parameters can be further refined by trial
and error (see Section 4.4) or by neural network training techniques (see Section 4.6 and
[Kosko92, Tschichold96b, Keerthi95, Berenji92, Jang92]).

The response of the fuzzy navigator is a reactive one and generates an actuator
command at each iteration. Each command generation is carried out irrespectively of past or
future events; only the currently available data inputs are considered. Thus, path planning
which produces a sequence of path segments is not carried out by the fuzzy navigator. In the
case of robot navigation in a cluttered environment, the ideal mapping leads the robot to the
target without causing collisions with obstacles. The actual mapping implemented in the fuzzy
system will always be an approximation to this ideal one. This is due to the fact that the
mapping is confronted with a variety of different tasks. The main design considerations in
regard to the navigation problem can be described as follows: The mapping has to react
properly to a local constraint, like for example increasing the distance to an obstacle if the
distance falls short of a given threshold. However, it is not sufficient to optimise the mapping
for one particular instant, since during motion the robot is faced with many different situations
which demand a variety of different reactions. Thus, the designer’s task is to tune the system
in such a way that the fuzzy mapping integrates the different aspects of the control problem at
hand in the best possible way.

The fuzzy navigator presented here is especially adapted to the underlying problem of
steering a robotic manipulator as opposed to steering a mobile robot which can be viewed as a
single moving object. The motion of the links of a non-branching manipulator cannot be dealt
with in a completely separate fashion because the motion of some links influence the motion
of others. To meet these requirements, those fuzzy units, which are connected to distal links1,
communicate information about their relation to their nearby environment to units of proximal
links1 (for further details, see Section 4.3.2).

There are many aspects that make the fuzzy system proposed here superior to other
navigation techniques or path planning strategies. Its short response time allows the fuzzy
navigator to provide quickly a new actuator command and makes it therefore suitable for on-
line implementation. Dynamic and uncertain environments can be successfully dealt with. In
contrast to global path planning methods [Althoefer95e, Bugmann95, Lozano87], the fuzzy-
based system is not plagued by the curse of dimensionality and can be applied to manipulators
with a high degree of freedom (DOF). In the particular fuzzy implementation each link is
controlled by a separate fuzzy unit. Any unit has three inputs at the most (see Section 4.3.2).
Thus, the number of rules increases linearly with the degrees of freedom.

The suggested system is mainly meant to be implemented on-line. Nevertheless, it can
also be implemented as an off-line planning strategy. In this case, the fuzzy navigator
constructs a trajectory for a simulation model of the real manipulator in a simulated
environment which represents the real workspace. The segments of the trajectory that is found
can be then applied to the real manipulator. The advantage of this method is that when the
method fails due to a dead-lock situation, other methods can be introduced to escape such a

1Distal links are links which are close to the end effector; proximal links are links which are close to
the base.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 113

situation without actually moving the real manipulator. Methods to escape a dead-lock, such
as explorative random search, reversed start-goal location, etc., would produce undesirable
manipulator movements if applied to the real arm. Compared to a global planner like the one
presented in Chapter 3, the fuzzy navigator has a further advantage, namely it makes use of a
workspace representation. Thus, the time expensive generation of a C-space representation is
not necessary and in most situations the fuzzy controller would provide a solution faster.

The use of universal approximators, such as neural networks and fuzzy systems, to solve
local navigation problems for mobile robots was investigated recently by many researchers
(see for example [Reignier93, Tschichold96, Hoffmann96, Sharkey96]. These reactive or
behaviour-based systems commonly incorporate two main types of behaviour: obstacle
avoidance and goal directed behaviour. At different locations one property becomes more
dominant than the other. For example the obstacle avoidance behaviour is strong when an
obstacle is close, and weaker when no obstacle is in the vicinity of the robot. These two
different behaviours compete with each other in the parallel processing systems and, thus, the
final decision is based on multiple input signals. The rule base, which essentially defines the
transfer function of the fuzzy system, differs from neural networks and analytical methods in
that it is readable and can be easily adapted to the underlying problem.

The increasing interest in applying manipulators in safety critical areas (for example
human support through robots, handling of expensive and fragile goods, etc.), has prompted
an increasing demand for reliable and explainable control systems [Helliwell95, Morgan95,
Redmill95]. To cope with specific safety requirements appropriate rules can be added to the
rule base of a fuzzy controller.

It appears that fuzzy logic has not been previously applied to the obstacle avoidance
problem for robotic manipulators. The novel conceptual approach which is proposed in this
chapter will offer a new perspective to the field of collision avoidance and navigation in the
area of robotic manipulators.

4.2 Local Navigation in Context

4.2.1 Artificial Potential Fields
In developing the presented technique, an obstacle avoidance method which is based on

an artificial potential field was most influential [Khatib85, Khatib86, Reignier93]2. Khatib
made use of two artificial potential fields whose gradient produce forces which can be applied
to a robot. One potential field produces a strong repelling force in the vicinity of obstacles
while a second one produces an attracting force which influences the entire free space and
reaches its maximum at the target location. The two independent fields are superimposed. The
resulting force can be obtained by calculating the gradient of the superimposed fields. At any
point in space, the direction of this force represents the most promising direction of motion
[Latombe91].

2 Note, this method is different from the resistive-grid approach presented in the previous chapter.

4.2 Local Navigation in Context114

qinit

qgoal

qinit

qgoal

obstacles

qgoal

qinit

a)a)

e) f)

d)c)

b)

Figure 4.2-1: An example of Khatib’s potential field method. Subfigure a) depicts the
initial and the goal configuration of a robot in a configuration space with two obstacles.
Subfigure b) and c) show the attractive and the repelling field, respectively. Subfigure d)
shows the superposition of the two fields. The found path and the equi-potential lines of
the potential field are depicted in subfigure e). Subfigure f) shows an example of a local-
minimum (dead-lock) situation where the method fails. (after [Latombe91])

Most potential field methods in configuration space are based on the following equation:
! !

F q U q() ()= −∇ , (4.2-1)

where F(q) represents the force at configuration q and ∇U denotes the vector gradient
of the potential field U at q [Latombe91]. The potential field U is the superposition of the two
basic potential functions:

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 115

U q U q U qatt rep() () ()= + , (4.2-2)

where the attracting function is given by Uatt and associated with the target
configuration, while the repelling one is given by Urep and associated with the C-obstacle
region. Thus, the resulting force is

F q F q F q U q U qatt rep att rep() () () () ()= + = −∇ − ∇ , (4.2-3)

where Fatt and Frep are denoted as the attracting and the repelling force, respectively.

Different potential functions are in use. The main purpose of the repelling force is to
create a blocking shield around the C-obstacles which keeps the robot from crossing. While
the attracting force is preferred to be effective in the entire C-free region, the repelling force
should be restricted to the vicinity of the C-obstacle regions so that the robot particle is not
affected when it keeps a sufficient distance (see [Khatib86, Latombe91]).

The above method is most easily applied to a small-sized robot in its workspace (see
Figure 4.2-1) or a point-sized “C-space” robot in its configuration space. Nevertheless, the
method has been also applied to multi-link manipulators in workspace. Then the potential
fields are applied to so-called control points along the manipulator’s links (for details see
[Khatib86]).

The potential field method is especially useful when applied to a robot in its workspace
because a time costly workspace to C-space transformation is thus avoided. However, when a
C-space representation is available, it is probably less time-costly to plan a path employing a
global planning strategy, such as the resistive grid (see Chapters 2 and 3). The potential field
method might outperform the global planner if no local minimum occurs between start and
goal but when the method is stuck in a local minimum (as for example shown in Figure 4.5-2)
further strategies (e.g. random search) have to be employed to free the robot. In this case the
potential field method might lose out against the global planner in terms of time. These
comments apply not only to the potential field method, but to any local navigation technique.

4.2.2 An Overview of Fuzzy-Based Navigation Techniques for Mobile
Robots

The application of fuzzy-based systems to robots has recently attracted a great deal of
interest in those research communities which focus on the development of intelligent and
autonomous mobile robots [Reignier93, Tschichold96, Roth93, Maier95, Song92, Maties94,
Hoffmann96, Skubic93, Mitchell96]. Robots steered by commands from a fuzzy navigator
have been also described as behaviour-based or reactive systems which are derived from the
subsumption architecture proposed by Brooks [Brooks86].

The simplicity of the problem (a mobile robot is often represented by a single point),
facilitates the conduct of experimental studies on a simulation basis. The problem of
navigating a multi-link manipulator through an environment cluttered with obstacles is by far
a more demanding task. However, the fuzzy-based system presented here shows similarities to
systems utilised for the navigation and obstacle avoidance of mobile robots.

4.2 Local Navigation in Context116

In [Kosko92], Kosko et al. describe the application of a fuzzy controller to reverse a
truck to a predefined docking position. The output variable of the fuzzy controller is the
steering angle of the truck. The inputs represent the truck angle and the truck position in
respect to the desired landing point at the docking ramp. Kosko et al. compare their approach
to the well-known neural-network-based approach of controlling a truck backer-upper by
Widrow et al. [Nguyen90]. Kosko’s simulation results show that the fuzzy controller is
superior to the neural controller. The fuzzy controller used different rule bases; one was built
up using common sense, while others were built employing different training methods (for
details, see [Kosko92]). The fuzzy controller provided a smooth path in every experiment,
while the neural controller, which was trained using the time consuming backpropagation
algorithm, backed up the truck occasionally along an irregular path. Furthermore, the neural
controller is reported to be computationally heavier than the fuzzy controller. While the neural
network had to carry out multiplications, additions and logarithms, the fuzzy controller made
do with comparisons and additions [Kosko92]. More importantly, the functioning of the fuzzy
controller can be interpreted and specific adjustments can be made at any stage. The neural
network’s black box behaviour prevents the user from investigating the network’s weight
matrix, and changes of the weights can be only achieved by going through further training
cycles.

Tschichold-Gürman developed a neural network architecture, called RuleNet, and an
expansion on that, called Fuzzy RuleNet. The latter combines aspects of neural networks and
fuzzy logic. Fuzzy RuleNet has properties similar to those of a fuzzy-based system, but its
structure is similar to the one of a feedforward radial-basis-function network (see also
Chapter 2). The hidden nodes of the Fuzzy RuleNet behave like the fuzzification stage in a
fuzzy controller, while the output nodes provide the defuzzification. Like any feedforward
neural network, the weights of the Fuzzy RuleNet can be adapted to the environment using a
learning algorithm. The method suggested by Tschichold-Gürman has been tested in robot
simulations as well as in real-world applications [Tschichold96, Vestli94]. Tschichold-
Gürman et al. applied the Fuzzy RuleNet to different types of mobile robots, each one
equipped with a computer system and sensors (such as laser rangefinder, ultra-sonic and infra-
red sensors, and bumpers). To cope with different environments and changing tasks, they
propose a global architecture which has in its core a situation-based behaviour selector.
Depending on the sensory input and the required task, the selector chooses a behaviour
module which is a neuro-fuzzy controller trained to react appropriately to the given
circumstances [Tschichold96, Tschichold96b].

Other fuzzy-based navigators which provide a mobile robot with an actuation in reaction
to the nearby environment can be found in literature. Examples of these methods can be found
in [Reignier93, Roth93, Maier95, Song92, Mitchell96, Hoffmann96].

The fuzzy controller proposed in this chapter is based on the principles of the fuzzy
controller developed by Mamdani and Sugeno [Mamdani81a, Sugeno84, Nauck94]. Recent
advances with regard to fuzzy control in general as well as with regard to the training and
tuning of fuzzy controllers can be used to further improve the proposed fuzzy navigator (see
for example [Hoffmann96, Kosko92, Berenji92, Jang92, Reigner94]).

4.2.3 Unreachable Situations and Local Minima
The fuzzy navigator can get stuck in certain situations. In these dead-lock situations, the

manipulator is not able to reach the desired goal configuration. These situations are similar to
local minima in potential fields (see Figure 4.2-1). Nevertheless, it has been shown that if the

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 117

state space to be searched is non-maze-like (as described in [Millan92]), elaborate path
planning skills are not necessary and simple navigation techniques are in most cases
successful [Millan92]. For the purposes of this chapter a non-maze-like workspace for a
robotic manipulator is considered to be a space in which from any start to any goal
configuration a path can be found that has a trajectory with parameters changing only in a
monotonically increasing or decreasing manner. This assures that the manipulator will always
reach its goal configuration. However, experiments showed that this restriction may be too
strict, since more distal links do perform back-up movements when controlled by the
proposed fuzzy navigator.

Different strategies have been suggested to overcome these dead-lock situations. One of
them makes use of so-called via-points. These via-points can be provided for example by a
human operator or a global planner [Tschichold96]. The path between two via-points is
expected to be free of local minima. Other methods suggest the use of additional strategies,
like random search, to escape those minima [Barraquand91, Latombe91]. However, the
occurrence of these situations and local minima remains an issue, especially in the area of
local navigation. An example of a such a situation which brings the navigator into a dead-lock
situation is depicted in Figure 4.5-2.

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic
Manipulators

4.3.1 Introduction to Fuzzy Control
Fuzzy logic is a well established method that has been already used to solve a number of

control problems. It has been successfully applied to low-level motor control, the truck
backer-upper problem [Kosko92, Higgins94], ship heading control [Brown94], behaviour
based navigation for mobile robots [Tschichold96, Reignier93, Maier95, Song92], fuzzy-
controlled object slipping by a manipulator gripper [Schmidt95], car traction control
[Schuster94], communication systems [Kartalopoulos96], biotechnological processes
[Serac96] as well as to the well-known inverted pendulum problem [Kosko92]. Fuzzy systems
have also been implemented in a variety of industrial products. No indication could be found
in the literature that suggests the use of fuzzy logic to solve the obstacle avoidance problem
for robotic manipulators.

Fuzzy controllers are a means to control analogue processes. They are especially
applicable when these processes are not easily described using conventional analytical tools,
but can be described in form of rules based for example on the knowledge of a human expert.
Obviously, humans are able to control many complicated systems without making explicit
mathematical models of the system [Nauck94, Palm91b]. Thus, it is more sensible to model
the behaviour of a human who controls a process than to model the process analytically as
usually done in classical control. Observing the behaviour of human operators and
interviewing them about their knowledge often allows the derivation of linguistic rules which
can be used to form the rule base, also called the knowledge repository, of a fuzzy controller
[Cox92]. Fuzzy controllers are characterised by a few parameters, impose a low
computational burden, and produce multi-dimensional mappings from a set of input variables
to one output variable or a set of output variables [Reignier93].

Fuzzy controllers are based on the fuzzy set theory proposed by Zadeh (see [Zadeh96,
Kosko92, Droesser94]). Fuzzy set theory attempts to generalise the binary viewpoint which

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic Manipulators118

has been the base of the classical set theory [Kosko92]. Classical set theory says that an object
is either member of a set or not. Fuzzy set theory generalises by proposing fuzzy sets. An
object can belong to a fuzzy set to a certain degree. The degree of membership can vary
between 0 and 1. Hence, an object with a membership degree of 1 belongs completely to a
fuzzy set, while another object with a membership degree of 0 does not. In addition, all
intermediate degrees of membership for an object belonging to a fuzzy set are possible. This
theory allows the partitioning of a variable space into fuzzy sets. Any signal out of the
variable space belongs more or less to at least one fuzzy set which can be described by a
linguistic term. This procedure is called fuzzification (see also Section 4.3.3).

The principles of fuzzy control were for the first time described by Mamdani who
developed a type of fuzzy controller named after him [Mamdani81a, Mamdani81b]. Many
fuzzy controllers based on this controller type have been developed since (see for example
[Kosko92, Sugeno84, Nauck94, Tschichold96]).

+ Decision
LogicFuzzifier Defuzzifier

Physical Device

Sensors Actuators

not fuzzy not fuzzy

Fuzzy Contoller

Input +
-

Figure 4.3-1: General depiction of a fuzzy control system.

The overall fuzzy control scheme is quite similar to a conventional control system, as it
can be seen in Figure 4.3-1. This figure shows a feedback controller which steers a physical
device, for example a robot. In contrast to classical controllers which usually make use of a
mathematical algorithm, the fuzzy controller consists of three main sections: the fuzzifier, the
decision logic and the defuzzifier. The controller considered in this thesis is based on the fuzzy
controller suggested by Sugeno (see [Nauck94, Palm91b, Sugeno84]). In the Sugeno
controller, the fuzzification of the output signal is omitted and the defuzzification stage is
replaced by a weighted sum. Due to its computational efficiency, the Sugeno controller is
commonly preferred to the Mamdani controller in real-time applications [Nauck94]. The
remaining paragraphs of this section describe the functioning of this controller type. An
illustrative description of the original Mamdani controller can be found for example in
[Kosko92, Cox92].

The fuzzifier converts the input space, which usually describes the actual state of the
device with reference to a desired state, into a fuzzy representation. In a robot navigation
problem two input signals acquired by sensors are used to describe the device’s state. The first
signal is the difference between the actual state and the desired state of the device, ν , while
the second input signal informs about the distance between links and obstacles, µ (see

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 119

Section 4.3.3 and [Althoefer96, Althoefer96c]). The fuzzifier partitions the space of an input
signal into a number of fuzzy sets. In the case of the robot navigation problem, the input
describing the difference between actual configuration and desired configuration is partitioned
as follows: “far left”, ”close left”, ”contact”, “close right”, “far right” (see Figure 4.3-2),
while the input describing the distance between robot and obstacle is partitioned as follows:
“far left” , ”left” , ”close left”, “close right”, “right”, “far right”. Each of these fuzzy sets is
sensitive to a range of input values and the degree of membership defines how much a
particular signal value is part of a fuzzy set (see Section 4.3.3). The fuzzy sets are usually
defined by functions which are non-zero in a small area only (for example triangular (Figure
4.3-2), trapezoidal or Gaussian functions are often used). The overlapping of different fuzzy
sets allows the continuous approximation of input signals. This also means that one input
signal can activate more than one fuzzy set. (Note, the similarity to the radial-basis-function
network described in Chapter 2.)

degree of membership

1
far left close left far rightclose rightcontact

0 difference

Figure 4.3-2: Five fuzzy sets partition one of the input spaces of the control system. The
shown space represents the difference between actual and target configuration of the
robot; in a similar way fuzzy sets can be set up to describe the distance between robot
and obstacle (see also Figure 4.3-3).

 µ
 ν

far left left close left close right right far right

far left left
small

right big right very
big

left very
big

left big left big

close left left
small

right very
small

right big left big left big left small

contact nil nil right
small

left small nil nil

close right right
small

right big right big left big left very
small

right
small

far right right big right big right very
big

left very
big

left big right
small

Table 4.3-1: The fuzzy rule base for robot navigation. The two inputs, µ and ν, represent
the fuzzy sets which describe the distance between robot and obstacle, and the difference
between actual and goal configuration, respectively. The outputs of the base are the
actions. The rule base defines a fuzzy association between outputs and paired inputs.

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic Manipulators120

In a second stage, the output of the fuzzifier is presented to the decision logic. The
decision logic comprises a rule base where outputs are associated with paired input fuzzy sets
(see Figure 4.3-3 and Table 4.3-1). The rule base here is a two-dimensional look-up table
whose elements are different scalar values representing actions, such as “left big”, “left small”,
“nil”, “right small”, “right big”, etc. Employing the robot navigation example once more, one
rule might be: IF target is far right AND obstacle is close left THEN move right big. Thus, the
decision logic generates a specific action which should be carried out on occurrence of certain
signals at the inputs. The degree to which an input signal is member of a fuzzy set decides to
what extent the connected rule or action is activated (see Section 4.3.3). As the fuzzy system
is a parallel processing paradigm, more than one rule can be active at one time.

Finally, the multiple outputs of the decision logic (more than one cell in the look-up
table of fuzzy rules may be active) have to be combined to achieve a crisp output signal
[Kosko92, Droesser94]. In the Sugeno controller, the final output is the sum of the outputs of
the decision logic weighted by the sum of the outputs of the fuzzifier (see also Section 4.3.3
and [Nauck94]). The final output signal usually drives an actuator which forces the device to
change from its actual state into a new state.

µ(d)

far left close leftleft far rightrightclose right

0

j

dj
crisp input 1

ν

1
far left close left far rightclose rightcontact

0

(Δθ)j

Δθjcrisp input 2

0.7

0.3

0.9

far l.

contact

clse l.

far l.

clse r.

far r.

 = 0.44
(0.63*0.5) + (0.27*0.3)

0.63 + 0.27
(crisp output)

rule base in decision logic

0.1

0.1

0.0

-0.1

-0.3

-0.3

-0.3

-0.3

-.001

0.0 -0.1 0.1

-0.5

-0.3

0.3

0.5

-0.3

0.3

-0.5

0.5 0.3

0.3

0.0 0.0

0.3

0.1

-0.1

-0.1

.001

0.3

 left
 clse l. clse r.

 right
 far r.

0.9*0.3=0.27

0.9*0.7=0.63

Figure 4.3-3: Schematic depiction of fuzzification stage, decision logic and
“defuzzification” of a fuzzy controller used for the robotic navigation task. The two
inputs (“difference between actual and target position” (ν) and “distance to obstacle
position” (µ)) are partitioned into a number of fuzzy sets. Two exemplary input values
are indicated by “crisp input 1” and “crisp input 2”. These input values activate the
corresponding fuzzy sets (shaded fuzzy sets) which are then combined using the fuzzy
product operator. In the next step, two actions in the two-dimensional rule base (shaded
squares) are activated. These two actions are combined (weighted sum) to produce one
crisp output. The crisp output represents an actuator command which lies between
“right very big” (0.5) and “right big” (0.3). (Further explanations, see Section 4.3.3.)

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 121

4.3.2 Manipulator-Specific Implementation Aspects
This section focuses on the application of the suggested navigation technique to non-

branching manipulators with revolute joints (see Figure 4.3-4). Those types of manipulators
(for example PUMA series, SCARA design, etc.) are utilised in many industrial applications.

The technique consists of separate fuzzy-based obstacle avoidance units, each
controlling one individual link, l j nj , ,..., = 1 . Each unit has two main inputs: 1) the distance
between the link and the nearest obstacle, d j , and 2) the difference between the current link
configuration and the target configuration, θ θ θj j t et j− =, arg Δ . The output variable of a unit
is the motor command, τ j . All these variables can be positive as well as negative, thus, they
do not only inform about the magnitude, but also about the sign of displacement relative to the
link - left or right. The motor command which can be interpreted as an actuation for the link
motor is fed to the manipulator at each iteration (see Figure 4.3-4).

For the calculation of the distance the only obstacles considered are those which fall into
a bounded area surrounding each link and moving along with it. In this implementation, each
such area is chosen to be of rectangular size. The area is as long as the link and reaches up to a
predefined horizon on the left and right of the link (see Figure 4.3-4). This area can be seen as
a simplified model for the space scanned by ranging sensors (for example ultra-sonic sensors)
attached to both sides of a link [Risse95]. In case a three-dimensional manipulator has to be
navigated in a three-dimensional environment, ranging sensors have to be mounted in such a
way that they scan a cylindrical volume around each link. Of course, other shapes to describe
the two-dimensional scan areas are conceivable. It is for example advisable to deal with the
blind zones near the joints when the magnitude of the angles is large so as to assure that small
moving obstacles are not missed by the algorithm [Risse95]. The wrong interpretation of the
manipulator as an obstacle can be eliminated by examining the robot’s kinematic [Risse95].
This problem is not considered here, since this chapter mainly deals with the investigating of
the principles of the fuzzy-algorithm.

Besides an input from ultra-sonic sensors, a camera can be used to acquire the
environment. Either a stationary camera or a set of cameras which oversee the entire
workspace can be utilised (see Chapter 2 and [Jaitly96b, Ritter92]). Additionally or
alternatively, a camera system which is mounted on the manipulator links can be used. If the
manipulator is only equipped with a camera system that is attached to its links, it is important
that the images provide a picture of the whole workspace. When only a look-ahead camera is
attached, environmental changes behind the camera cannot be perceived and dealt with.

The task of a fuzzy unit is to provide a control function which produces an appropriate
motor command from the given inputs. In broad lines, the control function can be described as
follows: on the one hand the function has to lead the corresponding link to its attracting
endposition; on the other hand it has to force the link to back up when approaching an
obstacle which conveys a repelling influence. The fuzzy-rule-base (which represents the
control function in a fuzzy unit) is built up by using common sense rules which are then
refined by trial and error. In the case of the obstacle avoidance problem, the rule base has to
evaluate the interaction of those competing inputs which are often contradictory in their
character and produce an appropriate decision about the future action (motor command).

In this particular implementation, at each iteration the distance of the nearest obstacle on
the left (d jleft

) and on the right (d jright
) of link l j are fed sequentially into the fuzzy unit (see

Figure 4.3-4 and also [Hoffmann96, Risse95]). This process could be also carried out in a

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic Manipulators122

parallel fashion where two equivalent fuzzy controllers compute the response for the left and
the right obstacle separately. The resulting two motor commands are superimposed, hence,
both obstacles influence the final motor command which is applied to the link. The use of this
method guarantees that the repulsion caused by one obstacle on one side of the link does not
result in a collision with a nearby obstacle on the opposite side (see also Section 4.4.1,
[Risse95 and references therein]). Only those obstacles are considered which are the nearest
on the left and right.

In addition, fuzzy units of distal links communicate information about the distance to
their nearest obstacles on the left and right to units of more proximal links (see Figure 4.3-4).
Once sent to fuzzy units of more proximal links, this information can be used by the decision
process of those units to slow down or even reverse the motion of the more proximal links.
Without this propagation of information the control strategy might fail in situations where one
obstacle is “known” only to a fuzzy unit of a distal link, while proximal links continue their
motion based on their local environment dictating an adverse motion for the rest of the arm.
This is especially important, since the same change of angle occurring at a proximal link and
at a distal link produces a different velocity at the manipulator’s tip. Thus, the motion of a
proximal link might not be sufficiently compensated by an adverse motion at a more distal
link.

Fuzzy units are only fed with the distance values of those obstacles which are inside the
scan range. If no obstacle is detected inside a scan range, the fuzzy unit is informed of an
obstacle which is far left or far right, respectively.

d

Link τ

Link

1

τ2

Fuzzy Unit
Link

Fuzzy Unit

Fuzzy Unit

τ3

θ

θ

θ3

1

2

l

d

obstacle

1

2
l2

1

l3

l 3

l 1

l 2

revolute joint

d3right

left

left
,dΔθ2 2left ,d2right

,dΔθ1 1left ,d1right

,dΔθ3 3left ,d3right

Figure 4.3-4: This figure shows a three-link planar robotic manipulator connected to
fuzzy units. The shaded areas depict the regions which are “scanned” for the occurrence
of obstacles. Each fuzzy unit receives via one input the difference between target and
actual configuration, and via a second input, two values in a sequential way representing
the distance between corresponding link and the nearest obstacle on the left and right of
this link. If no obstacle is detected inside the scan area, the fuzzy unit is informed of an
obstacle in the far distance. Additionally, proximal units are informed about obstacles in
the vicinity of more distal links. Further explanations, see Figure 4.3-5, Sections 4.3.2
and 4.3.3.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 123

Section 4.3.3 provides a general and theoretical treatment of the proposed fuzzy control
system. This elementary approach assumes that for each newly added link the number of
inputs of the more proximal fuzzy units increases by one. Assuming, that each fuzzy input is
partitioned into five fuzzy sets, the most distal link has two inputs. (Via the first input, the unit
receives in a sequential way the two values describing the link-to-right-obstacle distance and
the link-to-left-obstacle distance, respectively. Via the second input, the unit receives the
actual-to-target-configuration difference.) For a complete rule base, 5×5 = 25 rules would be
need. The unit for the next link, ln-1, has one further input (which describes the link-to-
obstacle distances for the previous link, ln) and its rule base would already consist of
5×5×5 = 125 rules. In a three-link system, the fuzzy unit responsible for the most proximal
link would have a rule base with 5×5×5×5 = 625 rules, and so forth. This leads to a
dimensionality problem. Hence, in the practical implementation presented in Section 4.4.2,
the unit of a proximal link receives besides its two local inputs a third input which represents
the smallest distance of all the more distal links to their obstacles on the left and on the right,
respectively. In a sense, the fuzzy units of more proximal links are provided with a reduced
information about the obstacle-to-link relation of the distal links. This approach allows the
application of the fuzzy navigator to manipulators with a high degree of freedom. It limits the
number of inputs per fuzzy unit to three, and, hence, the number of rules in the total system
increases linearly with the number of links.

4.3.3 The Fuzzy Algorithm
While the previous section suggested a more practical implementation of the fuzzy

navigator overcoming dimensionality problems, this section describes the navigator and its
components in a more general and theoretical fashion.

τ1j

τrj

τ2j

Σ

∗

∗

∗

dn

dj

Δθj

normalisation

τj
dj+1min(dj+1 ,..., dn)

Figure 4.3-5: A more neural-network-like depiction of the controller used in the fuzzy
unit of link lj ,j = 1, ..., n (n is the number of links). The unit is influenced by obstacle-to-
link distance values of link lj as well as by obstacle-to-link distance values of links lj+1 ,...,
ln . In Section 4.3.2, the obstacle-to-link distance values of links lj+1 ,..., ln were for
practical reasons combined into a single value describing the minimum of these
distances, as indicated on the left hand side of this figure.

The first input of each fuzzy unit is the difference between the actual angle and the
target angle, θ j -θ j, target = Δθ j ∈

 Θ j , j =1,...,n (n is the number of links). The value, Δθ j
 , is

positive if the target is on the right, and negative if the target is on the left. The second input

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic Manipulators124

receives values describing the distance between link lj and the nearest obstacles on the left and
right in the “scanned” region, d Dj j∈ . An obstacle on the left produces a negative distance
value, while an obstacle on the right produces a positive one. The single output is the motor
command, τ j j∈Τ . A positive motor command moves the link to the left and a negative one
to the right (see also [Althoefer96]).

Each universe of discourse Dj can be partitioned by fuzzy sets µ µ1
() (),...,j

p
j
j

. Each of the
sets µ~

() , ~ ,...,p
j

j jj
p p = 1 represents a mapping µ~

()
p

j
j jj

d D(): [,]→ 0 1 by which d j is associated
with a number in the interval [,]0 1 indicating to what degree d j is a member of the fuzzy set.
Since d j is a signed value, “close_left”, for example, may be considered as a particular fuzzy
value of the variable distance and each d j is assigned a number µclose_left () [,]d j ∈ 0 1 which
indicates the extent to which that d j is considered to be close_left [Mamdani81a]. In an
equivalent way, fuzzy sets ν ν1

() (),...,j
q

j
j

 can be defined over the universe of discourse Θ j . In
contrast to the Mamdani controller, the Sugeno controller [Nauck94] has an output set which
is not partitioned into fuzzy sets (see also Figure 4.3-5). Thus, the rule conclusions merely
consist of scalar actions τ ~ , ~ ,... ,r j jj

r r= 1 (rj is the number of rules in the fuzzy unit of link lj).

There is a variety of functions employed to represent fuzzy sets. Here, asymmetrical
triangular functions which allow a fast computation, essential under real-time conditions, are
utilised to describe each fuzzy set µ~

() , ~ ,...,p
j

j jj
p p = 1 (see Figure 4.3-3 and [Althoefer96]). The

parameters, mlp
j
j

~
() , mrp

j
j

~
() , which are the x-co-ordinates of the left and right zero crossing

respectively, and mcp
j
j

~
() , which describes the x-co-ordinate where the fuzzy set becomes one,

define the triangular functions:

() ()()
() ()()

µ ~
()

~
()

~
()

~
()

~
()

~
()

~
()

~
()

~
()

()
min ,

min ,
p
j

j

j p
j

p
j

p
j

j p
j

j p
j

p
j

p
j

j p
jj

j j j j

j j j j

d
d ml mc ml d mc

d mr mc mr d mc
=

− − ≤

− − >

⎧

⎨
⎪

⎩⎪

 if

 if

0

0
.

(4.3-1)

As commonly done, the triangular functions are continued as constant values of
magnitude 1 at the left and right side of the interval:

() ()()µ1
1

1 1 1 1

1
0

()
()

() () () ()()
min ,

j
j

j
j

j
j j j

j
jd

d mc
d mr mc mr d mc

=
≤

− − >

⎧
⎨
⎪

⎩⎪

 if
 if

(4.3-2)

and

() ()()µ p
j

j
j p

j
p

j
p

j
j p

j

j p
jj

j j j j

j

d
d ml mc ml d mc

d mc
()

() () () ()

()
()

min ,

if
=

− − ≤

>

⎧
⎨
⎪

⎩⎪

 if

0

1
.

(4.3-3)

Equivalently, the fuzzy sets can be defined for Δθ j . The fuzzy sets µ µ1
() (),...,j

p
j
j

 and
ν ν1

() (),...,j
q

j
j

 as functions of the two inputs d j and Δθ j are depicted in Figure 4.3-3.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 125

Additionally to the two inputs d j and Δθ j , each fuzzy unit (apart from the most distal
one) uses the distance fuzzy sets of more distal links µ µ~

()
~
(),...,p

j
p
n

j n+

+

1

1 for decision making to
assure that proximal links are slowed down, in case a more distal link is about to collide with
an obstacle. Thus, each unit uses the following fuzzy sets: µ~

() , ,p
k
k

k j j n = , ...,+1 and ν~
()
q

j
j

.
Each of the fuzzy sets µ~

()
p

k
k

 and ν~
()
q

j
j

 are associated with linguistic terms Ap
j
j

~
() and Bq

j
j

~
()

respectively. Thus, for link l j the linguistic control rules R Rj
r

j
j1

() (),..., , which constitute the rule
base, can be defined as:

Rr
j

j p
j

n p
n

j q
j

rj j n j j
~
()

~
()

~
()

~
()

~: ...IF is AND AND is AND is THEN d A d A B Δθ τ , (4.3-4)

where ~ , ... ,r rj j= 1 and rj is the number of rules for the fuzzy unit of link lj and τ ~rj is a
numerical entry in the rule base used in the defuzzification process (see Eq. 4.3-6). The most
popular methods to calculate the fuzzy intersection (fuzzy-AND) are the minimum and
product operators. If the minimum operator is used, the minimum of the inputs is chosen. If
the product operator is chosen, inputs are multiplied with each other. While the result of the
first approach contains only one piece of information, the second approach produces results
which are influenced by all inputs [Brown94].

Here, the fuzzy intersection is calculated by using the product operator:

using the

product operator

σ µ µ ν θ

µ µ ν θ

~ ~ ,~
()

~ ,~
()

~ ,~
()

~ ,~
()

~ ,~
()

~ ,~
()

() ... () ()

() ... () ()
r p r

j
j p r

n
n q r

j
j

p r
j

j p r
n

n q r
j

j

j j j n n j j

j j n n j j

d d

d d

= ∩ ∩ ∩

= ∗ ∗ ∗
⎛
⎝
⎜ ⎞

⎠
⎟

Δ

Δ .
(4.3-5)

Finally, in the fuzzy controller here, the output of the unit is given by a weighted
average over all rules (see Figure 4.3-5 and [Althoefer96, Nauck94]):

 τ

σ τ

σ
j

r r
r

r

r
r

r

j j

j

j

j

j

j
=

⋅
=

=

∑

∑

~ ~
~

~
~

1

1

 .

(4.3-6)

Although the above control type is different from the Mamdani controller, the same
results can be achieved employing a centroid defuzzification applied to a output fuzzy set with
singletons, as for example done in [Schmidt95].

Changing the number of fuzzy sets, the parameters, mlp
j
j

~
() , mrp

j
j

~
() , mcp

j
j

~
() , as well as the

values of the weights τ ~rj
 are different ways of adapting the fuzzy-system to the underlying

control problem. As an example, the control rules for the most distal link, ln , of a manipulator
are depicted in Table 4.3-2. A schematic depiction of the fuzzy control unit of link ln−1 is
shown in Figure 4.3-6. The number of fuzzy sets which fuzzify d j and Δθ j are chosen to be
six and five respectively. All other parameters have been refined by trial and error (see
Sections 4.4.1 and 4.4.2).

4.3 Fuzzy Navigation and Obstacle Avoidance for Robotic Manipulators126

ν
µ

n
n

\ far left left close left close right right far right

far left left small right big right very
big

left big left big left big

close left left small right very
small

right very
big

left big left big left small

contact nil nil right small left small nil nil

close right right
small

right big right big left very big left very
small

right
small

far right right big right big right big left very big left big right
small

Table 4.3-2: The fuzzy rule base for the most distal link ln . It has two inputs, µn and νn ,
and a corresponding weight value τ ~rj

 for each input pair. The experiments showed that

the performance of the system is very robust against minor changes of most of the
weights. The depicted rule base has been used to control link l2 in the two-link-
manipulator experiment shown in Figure 4.4-1 and Figure 4.4-2.

nµ

νn -1

active input area

µn -1

fuzzy-unit of link ln -1

left
small

right
big

left left nil right right
bigsmall

actions τ
nr~ -1

activatedleft
very big

right
very big

obstacle
close left

target
close left

far left

close right
obstacle

tables
one of the

of actions

Figure 4.3-6: Schematic depiction of the fuzzy unit for link ln−1. The fuzzy sets µn−1 and
νn−1 describe the attracting and repelling “force” on link ln−1 , respectively. The fuzzy sets
µn represent the influence of the more distal link ln reflecting its distance to nearby
obstacles. The overall motor command τ n−1 is a combination of the activated
actions τ ~r n−1 which are represented by small black boxes in the table of actions. In this
three-dimensional look-up table, there are as many two-dimensional tables of actions as
there are fuzzy sets µn ; only one of those tables is shown.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 127

The performance of the fuzzy units can be studied by investigating their transfer
functions. The transfer function of a fuzzy controller in the fuzzy-unit for the second link is
depicted in Figure 4.3-7. Figure 4.3-7 shows the controller’s output versus varying signals at
the two inputs. The wing-shaped pattern represents the controller output for different obstacle-
to-link distances for obstacles which are on the right side of the link. The transfer function
with respect to an obstacle on the left (not shown) has a centre of inversion symmetry
relationship to the transfer function generated by an obstacle on the right. Note that in most of
the experiments conducted here the output of one fuzzy controller is superimposed onto the
output of a second fuzzy controller which deals with the nearest obstacle on the opposite side
of the link (see Figure 4.3-7 (right)).

-0.5

0

0.5

leftbleftb

lefts
leftbb

leftbb

leftb

rights

nil

target
on the
right

target
on the

leftobstacle
on the
right

obstacle
on the

left

Output of
single
fuzzy

controller

bb = very big, b = big, s = small

0.1

-0.1

2
0.2

-0.2

0.0.40.40.40.40.4

0.1

0

-0.4

-0.2

0.2

Output
of fuzzy

unit

0.4

-0.1

2

-2

0.2

-0.2

target
on the
right

target
on the

leftobstacle
on the
right

obstacle
on the

left

Figure 4.3-7: (left) The transfer function of a fuzzy controller in the fuzzy unit of link l2.
The patches denote the action values of the rule base. (right) The transfer function of the
fuzzy unit of link l2 where both fuzzy controller outputs are superimposed. One of these
controllers suggests an action to be taken in response to an obstacle on the right, while
the other suggests an action to be taken in response to an obstacle on the left. The grey
partition separates the input space for obstacles on the right from the input space for
obstacles on the left.

To generate the depiction of the transfer function in Figure 4.3-7 (left), the distances to
the obstacle on the right are varied over the range of the input space. The grey patches indicate
the area where certain rules are active. The linguistic terms which are written next to the
patches are taken from the right part of Table 4.3-2. Three areas of the wing-shaped pattern
describing the fuzzy controller’s output can be well distinguished (Figure 4.3-7 (left)):

• (right part of the transfer function) It can be seen that the controller is constantly
providing a positive output which represents an actuator command “move to the left”
if the target is “left” or “far left”. This response is independent of the distance to the
obstacle on the right. Such a response is anticipated since a movement to the left is
not hampered by an obstacle on the right.

• (middle part of the transfer function) Near the target the output is more or less zero. An
obstacle which is “close right” provides a small repelling influence.

• (left part of the transfer function) When the target is on the right side of the link, the

4.4 Computer Simulations128

obstacle avoidance behaviour of the fuzzy controller becomes obvious. Even though
the target is on the right and the obstacle is “close right” or “right”, the controller
advises a movement to the left. Only when the obstacle is “far right”, the controller
allows “right small” movements. In this way it is assured that obstacles are avoided,
and a target which is on the same side like an obstacle will be only reached if this
obstacle is far away.

Similar arguments apply to the transfer function produced by an obstacle on the left. The
investigation of these graphs can be used to show the performance of the controller and allow
the designer of the fuzzy controller to find errors and conduct further refinement.

The transfer function of a fuzzy unit (depicted in Figure 4.3-7 (right)) is the result of the
superimposition of the transfer functions of two fuzzy calculations - one dealing with the
nearest obstacle on the right and the other dealing with nearest obstacle on the left. To allow a
graphical representation, the output of the fuzzy unit can depend only on two inputs (here:
target-to-actual-configuration difference and only one obstacle-to-link distance), thus, it was
assumed that there is only one obstacle on one side of the link and no obstacle on the opposite
side. This situation occurs when there are only obstacles on one side of the link in the scanned
area surrounding the link. However, even in this case, both fuzzy controllers are active, since
the fuzzy calculation which deals with the side where no obstacle is situated, generates signals
according to the rules for obstacles which are “far right” and “far left”, respectively (see Table
4.3-2). Although Figure 4.3-7 describes a special case, further experiments have been carried out
where one obstacle changed its distance, while another on the other side of the link kept constant
distance to the link. The resulting diagrams were very similar to Figure 4.3-7.

4.4 Computer Simulations

4.4.1 Two-Link Manipulator
The method as described in Section 4.3 has been applied to a two-link planar

manipulator with stick-like links (see Figure 4.4-1, Figure 4.4-2 and Figure 4.4-3). The
manipulator has a total length of seven units where link l1 is 4 units long and link l2 is 3 units
long. The ratio of the two links is 4/3. The links of the robot arm have zero width. In most of
the experiments, the rule bases have been set up using common sense and refined by trial and
error.

Obstacles are represented by the union of discrete obstacle points along the obstacle’s
perimeters (see also Chapter 2). Each obstacle point is described by its xy-co-ordinates. In the
examples, the obstacles are represented by the corner points only. In Chapter 2, it was shown
how an obstacle image taken by a camera can be appropriately processed by some image
techniques to produce discrete bitmap-like representation of the obstacle’s perimeter. This
approach could be also employed here to achieve an input for the fuzzy-navigator. The
processing time of the fuzzy controller does not strongly increase with an increasing number
of obstacle points, since after finding the closest points on the right and on the left, the
subsequent calculations only consider these two points. Determining which are the closest
obstacle points takes only a fraction of time compared to the calculation in the fuzzy
controller.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 129

-8 -6 -4 -2 0

-6

-4

-2

0

2

4

6
start config.

goal
config.

obstacle

l1

l2

3

1

5

4

2

rule base for link l2
µ 2

ν 2

far left left clse left clse right right far right

far left 0.100 -0.300 -0.500 0.300 0.300 0.300
left 0.100 -0.001 -0.500 0.300 0.300 0.100

contact 0.000 0.000 -0.100 0.100 0.000 0.000
right -0.100 -0.300 -0.300 0.500 0.001 -0.100

far right -0.300 -0.300 -0.300 0.500 0.300 -0.100

x

y

Figure 4.4-1: A two-link manipulator controlled by the fuzzy-based strategy. In this case,
the rule base was only coarsely designed; this resulted in an aggressive motion
performance where link l2 tries to reach its goal configuration quickly. The continuing
tendency of link l2 to reach its goal configuration and its backing-up near obstacles is
obvious.

-8 -6 -4 -2 0 2-8

-6

-4

-2

0

2

4

start
config.

goal
config.

obstacle

l1

l2

x

y

Figure 4.4-2: The trajectory depicted here was found using the same rule base as in
Figure 4.4-1. This shows that a fuzzy controller designed for and improved in a particular
environment is also able to cope with new environments and new start and goal
configurations.

4.4 Computer Simulations130

One of the experiments carried out using the fuzzy-navigator is shown in Figure 4.4-1.
The linguistic terms used are depicted in Table 4.3-2 and the corresponding numerical values
are shown at the bottom of Figure 4.4-1. The figure shows how the two-link manipulator
moves from the given start to the given goal configuration. Obstacles are avoided
successfully. Figure 4.4-1 also clearly shows the influence more distal links have on the more
proximal ones. Each time, link l2 leaves the influence of an obstacle, not only link l2 but also
link l1 makes bigger forward steps. Obviously, the emphasis of investigation was on situations
which result in a solution to be found by the proposed fuzzy navigator. Here, it was especially
the intention of the author to show that those solutions are paths which are collision-free. In most
of the experiments employing a well-adjusted rule base, this was the case. However, other
experiments have been carried out where obstacles were in the range of link l1 and no path
connecting start and goal existed. In those cases, the arm kept trying to reach the goal
configuration, but the repelling influence of the obstacle in the way prevented this, and the arm
started slightly oscillating in a safe distance to the obstacles (see also Figure 4.5-2).

Figure 4.4-2 reveals the generalisation capability of the fuzzy navigator. Even though
the same rule base as in Figure 4.4-1 has been employed, the navigator manages to move the
manipulator in a different environment without causing a collision.

All experiments described in this chapter were carried out on an IBM-compatible PC
with a PENTIUM90. To construct the above path, the fuzzy-algorithm run under MATLAB
needed approximately 9.5 seconds. The path consists of 39 single steps. Thus, each iteration
took in average 0.24 seconds if run under MATLAB. In view of the considerations made in
Chapter 3 and announcements by [Matlab96], this value might be considerably reduced, if the
program is run in compiled form (reduction by a factor 100 to 200 is achievable). Hence, the
response time of the fuzzy controller might be reduced to about 1.2 or 2.4 ms. This makes the
fuzzy controller suitable for real-time applications.

goal
config.

start
config.

obstacle

l2

x

l1

-8 -6 -4 -2 0 2

-6

-4

-2

0

2

4

6

y

Figure 4.4-3: The two-link manipulator with a more refined rule base.

The fuzzy-navigator used for the experiment shown in Figure 4.4-1 makes use of an
“aggressive” rule base which attempts to “push” link l2 towards the final position as quickly as
possible. This means that in obstacle-free areas, the links make big steps towards the goal

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 131

configuration. A less aggressive rule base was used for the experiment shown in Figure 4.4-3.
The rule base of this experiment has smaller action values for those rules which are active
when target and obstacles are far. On the one hand, this rule base produces a smoother path
and keeps in general a greater distance to obstacles; on the other hand, more steps are needed
to reach the goal configuration, as it can be seen especially at the end of the path where link l2
takes a lot of small steps to reach its goal configuration.

-8 -6 -4 -2 0 2

-6

-4

-2

0

15 4 3

2

goal
config.

start
config.

x

y
l1

l2

obstacle

rule base for link l2
µ 2

ν 2

far left left clse left clse right right far right

far left 0.010 -0.100 -0.100 0.100 0.100 0.300
left 0.010 -0.001 -0.100 0.100 0.100 0.300

contact 0.000 0.000 -0.001 0.001 0.000 0.000
right -0.300 -0.100 -0.010 0.100 0.001 -0.010

far right -0.300 -0.100 -0.010 0.100 0.100 -0.010

Figure 4.4-4: In contrast to previous experiments where the influence of the nearest
obstacle on the left and the nearest obstacle on the right were superimposed only the
nearest obstacle is considered here. This approach tends to produce strong oscillations, if
a link is situated between two obstacles (compare to Figure 4.4-1). The oscillation can
become so strong that collisions with obstacles occur as shown in the inset where link l2

enters the shaded obstacle. Numbers in the inset denote the order of movements. The rule
base for link l2 is quite different from the one shown in Figure 4.4-1. This is mainly
because in the earlier experiments, the final output of a fuzzy unit was influenced by
obstacles on both sides. Too strong actions in the rule base here may result in a collision,
since there is no compensation from the other side. The rule base for link l1 needed only
minor modifications.

In the above experiments, the influence of the obstacle which is located on the right of a
link as well as the one on the left have been superimposed to calculate the final actuator
command for the link. In the next experiment only the influence of one obstacle or, to put it
better, one obstacle point has been considered. At each iteration, the distances to all obstacles

4.4 Computer Simulations132

in the scan area of a link (Figure 4.3-4) are calculated. Only the one with the smallest value is
used as input to the fuzzy-unit, thus, no superimposition is carried out.

This approach works successfully in those cases where obstacles are only on one side of
the link. In cases where the link tries to navigate between two obstacles, the method can
produce oscillations as depicted in Figure 4.4-4. These findings have been also reported by
Maciejewski et al. (see [Risse95 and references therein]). The oscillations are caused by the
repulsion of the link by the nearest obstacle into the vicinity of the opposite obstacle which
then becomes the nearest one and repels the link again towards the first obstacle. This process
is repeated until the navigator manages to move the manipulator out of the gap. Depending on
the size of the gap, the manipulator start configuration and, especially, the rule base, this
oscillation can mount up and a link can be driven into an obstacle (shown in the inset of
Figure 4.4-4). The superimposition of the left and right obstacle’s fuzzy-controller output (as
described in Section 4.3.2) reduces the strength of oscillations, since both obstacles contribute
to the actuator command.

In this case, the fuzzy-algorithm run under MATLAB needed approximately 12.5
seconds to move the manipulator from start to goal configuration. The path consists of 77
single steps. Thus, each iteration took in average 0.16 seconds. Although the response time is
shorter than the one of the above discussed experiments, there is a great amount of oscillations
at the beginning of the path, and the controller needs a lot of small adjustments to move the
arm out of the gap between the two upper obstacles. This results in an overall longer time for
the entire path.

4.4.2 Three-Link Manipulator
In this section, the fuzzy-based algorithm has been applied to a three-link manipulator.

The three-link arm has a total length of 8.5 units where link l1 is 4 units long, link l2 is 2.5
units long and link l3 is 2 units long. Again, links of the robot arm have zero width. The
algorithm makes use of the superimposition of the influence of the left and right obstacle. The
rule bases have been set up using common sense and refined by trial and error.

-10 -8 -6 -4 -2 0 2-10

-8

-6

-4

-2

0

2

4

6

8

goal
config.

start
config.

obstacle

x

l2

l1

l3

y

Figure 4.4-5: The application of the fuzzy-based strategy to a three-link manipulator.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 133

To construct the above path, the fuzzy-algorithm which run under MATLAB needed
approximately 23 seconds. The path consists of 49 single steps. Thus, each iteration took in
average 0.47 seconds if run under MATLAB. Assuming a reduction by a factor 100 to 200,
the response time of the fuzzy controller might be reduced to about 2.3 or 4.7 ms. These
values achieved for a three-link manipulator are still good enough for real-time applications.

As only links with zero inertia are considered in all the above simulations, the applied
motion command is an instantaneous angular step which modifies the previous velocity
without time delay. Nevertheless, it has been shown that the technique can also be applied to a
physical manipulator by appropriately adjusting the parameters to cope with the manipulator’s
dynamics (see also Section 4.5.2). To improve the performance of the system, higher order
signals (velocity, acceleration) can be incorporated in the rule base.

The strategy has shown a very robust and stable performance. It produced in most
experiments a collision-free path although these experiments were conducted in different
simulation workspace scenarios. An appropriate rule-base could be easily designed, even
without detailed knowledge of the particular obstacle avoidance problem.

x

y

s t a r t
c o n f .

Iterations i=1,...,8, 9,10, 11, 12,13,

g o a l
c o n f .

14,...,18, 19,...,28, 29,30, 31,...,56.

Figure 4.4-6: This figure shows a three-link manipulator which moves from a start
configuration to a goal configuration avoiding moving obstacles. To show that the
manipulator successfully “out-manoeuvres” the obstacles, the sequence of motion has
been depicted in a series of figures. Squares represent obstacles; past obstacles are
depicted with dotted lines The upper obstacle performs a linear motion on which a
random movement is superimposed. The lower obstacle performs a purely random
motion (see also [Althoefer96c]).

4.4 Computer Simulations134

4.4.3 Moving Obstacles
The described algorithm has been also applied to the three-link manipulator in dynamic

environments (see Figure 4.4-6 and [Althoefer96c]). Even though the rule base was
constructed during a trial-and-error procedure in a static environment, the proposed fuzzy
algorithm behaved correctly when confronted with moving obstacles. The sequences of
motion depicted in the subfigures of Figure 4.4-6 demonstrate that at each iteration i the
manipulator attempts to reach the target configuration, but is repelled by any obstacle in the
way. It can be seen that the moving obstacle even forces the manipulator to move backwards
(see Figure 4.4-6).

4.4.4 Safety Aspects
In applications where the manipulator interacts with humans or expensive equipment,

safety constraints have to be imposed to prevent damage. In those cases a fuzzy approach, as
suggested here, is suitable because in contrast to neural networks, the rule-based fuzzy
approach convinces with its transparency and allows the designer to shape the decision
process by altering rules individually so as to achieve a specific performance. Although, a
well-tuned fuzzy-navigator produced in most environments a collision-free path, it cannot be
guaranteed that no collision will occur in any situation. To improve the safety of the navigator,
one can either add a mechanism which is on a higher hierarchical level and decides to take on
appropriate measures to deal with a safety-critical situation. Alternatively, certain “dangerous”
situations can be individually described and an appropriate motor command can be integrated
into the navigator’s the rule bases (Table 4.4-1). It may be necessary to appropriately adjust
the defuzzification, to make sure that the safety commands are effective at all times and not
overruled by other rules.

ν
µ

n
n

\ far
left

left close
left

collision close
right

right far
right

far left left
small

right big right
very big

STOP left big left big left
big

close
left

left
small

right very
small

right
very big

STOP left big left big left
big

contact nil nil right
small

STOP left small nil nil

close
right

right
big

right big right
big

STOP left very
big

left very
small

right
small

far right right
big

right big right
big

STOP left very
big

left big right
small

Table 4.4-1: The fuzzy rule base for a two-link manipulator. An extra column is added to
Table 4.3-2. This column is active, if a collision occurs. A specific command can be
invoked to deal with this safety-critical situation. In this example, a collision would lead
to a immediate shut down of the manipulator links. The detection of such a safety-critical
situation could be performed by special sensors, like bumpers for example.

Furthermore, it has been shown that in man-machine applications, as opposed to
industrial ones, precision requirements are commonly lower than the demand for simplicity
and a fast response time (see also [Morasso95, Zicky95]). Since the presented algorithm has a
short feedback loop, a quick reaction to a changing environment is provided.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 135

4.5 Fuzzy Navigation for the MA 2000 Manipulator

4.5.1 Simulated MA 2000 and Comparison to the Resistive Grid Approach
Prior to the real-world experiments (described in Section 4.5.2), the fuzzy-based

navigation algorithm has been applied to the simulated version of the MA 2000-manipulator.
This simulated version of the MA 2000 has two links, l1 and l2, which represent the shoulder
and elbow link of the MA 2000, respectively. Link l1 is connected via a revolute joint to a
fixed base and link l2 is connected via a second revolute joint to link l1. The axes of the two
joints are parallel. The vector model of the MA 2000 has been appropriately scaled to fit into
simulation environments used in previous sections.

-8 -6 -4 -2 0 2
-8

-6

-4

-2

0

2

4

6

start
config.

goal
config.

obstacle

x

y

l1

l2

rule base for link l2
µ 2

ν 2

far left left clse left clse right right far right

far left 0.100 -0.150 -0.300 0.150 0.150 0.150
left 0.100 -0.001 -0.300 0.150 0.150 0.150

contact 0.000 0.000 -0.100 0.100 0.000 0.000
right -0.150 -0.150 -0.150 0.300 0.001 -0.100

far right -0.150 -0.150 -0.150 0.300 0.150 -0.100

Figure 4.5-1: The MA2000-manipulator steered by the fuzzy navigator. The manipulator
has been appropriately scaled in size (keeping the proportions of the manipulator) to fit
into the previously used simulation environment. Only slight changes were necessary to
adapt the rule base of the stick-like arm to control the MA 2000 (compare tables in this
figure and in Figure 4.4-1). The fuzzy unit for link l1 has been taken over without
changes.

The experiment here demonstrates the robustness of the developed algorithm. Only
minor changes were necessary to adapt the fuzzy base, which had been set up for the stick-like
arm (Section 4.4.1), to the MA 2000-shaped arm. This is remarkable considering the fact that
the MA2000-manipulator has a greater link width and a different ratio between the links l1 and
link l2 when compared to the stick-like arm. In fact, the fuzzy sets for the input space have
been taken over without any change. The rule base for link l1 has been also taken over without
any change. The principal structure of the rule base for the second link remained also
unchanged; some adjustments to the action values had to be applied. Thus, the rule base for
link l2 is still the same as shown in Table 4.3-2. The difference lies in the different values
chosen to define the actions in the rule base. In general, the action values for the control of the
MA 2000 are lower than those chosen for the stick-like arm (compare the tables in Figure 4.4-
1 and Figure 4.5-1). The fuzzy-algorithm run under MATLAB needed 9 seconds, to construct
the path in Figure 4.5-1. Since the path consists of 44 single steps, each iteration takes in
average 0.2 seconds to run under MATLAB. The response time of the fuzzy controller might

4.5 Fuzzy Navigation for the MA 2000 Manipulator136

be reduced to about 1 ms if run as a compiled program. This is virtually the same value found
for the two-link stick-like manipulator in Section 4.4.1.

The experiment depicted in Figure 4.5-1 is only a simulation where the manipulator
instantaneously changes position. Thus, the given time of 9 seconds does not include the
travel time of a real manipulator but is merely a sum of response times. If the fuzzy system
were to be applied to the real arm, the time to traverse the whole path would alter and
probably increase because the output of the fuzzy system depends on the feedback signals
from the sensors and, therefore, depends on the properties of the particular manipulator
(inertia of the links, actuator torque, friction in the gearboxes of the joints etc.).

-8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

start
config.

goal
config.

obstacle

l1l2

y

x -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

start
config.

goal
config.

obstacle

l1l2

y

x

-8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

start
config.

desired
goal

config.

obstacle

l1l2

x

final config.
6

y

 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

start
config.

obstacle

l1l2

y

x

goal
config.

Figure 4.5-2: (top left) The manipulator is steered by the fuzzy navigator (total planning
time: 6.3 seconds); (top right) The manipulator path is determined using the To&Fro
algorithm described in Chapter 3 (grid size: 150×150, total planning time: 59 seconds);
(bottom left) The manipulator is again steered by the fuzzy navigator. In this experiment,
the fuzzy navigator gets trapped in a dead-lock situation and stops prematurely at the
configuration denoted “final configuration”; (bottom right) In contrast to the navigator
approach, the grid allows the computation of a path from start to goal (grid size:
150×150, total planning time: 60 seconds).

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 137

Although in these experiments the algorithm has not been applied directly to the real
MA 2000 manipulator, the found path can be recorded and then applied to the real
manipulator. Thus, the navigator here can be used as an off-line planning device. This fact
also allows a comparison to the resistive-grid-based planning method presented in Chapter 3
(see Figure 4.5-2). Using the fuzzy navigator, the time to move the manipulator from start to
goal in the experiment depicted in Figure 4.5-2 (top left) is 6.3 seconds (The same rule bases
as in the experiment of Figure 4.5-1 were used.)

In Chapter 3, it has been found that the resistive grid needs not more than seven updates
per node to construct a path in a very cluttered environment. Since the chosen example is of
simple nature (for example link l1 needs not to back up (Figure 4.5-2 (top right)) or only
slightly (Figure 4.5-2 (bottom right)) three updates are sufficient to solve the two shown
problems. Depending on the grid size, the time spent on updating an entire grid three times is
13 seconds (for a 75×75-grid) and 54 seconds (for a 150×150-grid (Figure 4.5-2 (top right and
bottom right)), respectively. However, the planning time employing the resistive grid
approach depends additionally on the workspace to C-space transformation (Chapter 2),
placing the C-space obstacles in the grid (Chapter 2) and the gradient ascent in the updated
grid (Chapter 3). Thus, the total time to plan this path increases to about 17 seconds in a
75×75-grid and about 60 seconds in a 150×150-grid, respectively. From this follows, that in
this two-dimensional example the planning time using the fuzzy navigator or the resistive grid
approach is of the same order. Note, however, that the computation time in the grid increases
exponentially with the dimension (Chapter 3). This is not the case, if the fuzzy navigator is
used (Sections 4.3.2 and 4.4.2).

In contrast to the resistive grid approach, the fuzzy navigator may get stuck in certain
situations (see Figure 4.5-2 (bottom left) and (bottom right). However, the figure clearly
shows that the navigator does not attempt to move the arm over the obstacle between link l2
and target. This means that the system generates a collision-free path from start to goal in a
large number of circumstances. However, even if it is trapped in a dead-lock, it behaves well
and does not cause collisions with obstacles. If no valid path exists, the system behaves as if it
were stuck in a dead-lock.

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

start
config.

goal
config.

obstacle

l1

l2

x/m

y/m

 -0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

start
config.

goal
config.

obstacle

l1l2

x/m

y/m

Figure 4.5-3: Depiction of the motion of the real manipulator.

4.6 Reinforcement Learning138

4.5.2 Real-World Results
Initial real-time experiments have shown that the fuzzy navigator can be also successfully

applied to a physical manipulator, the MA 2000 manipulator. The fuzzy navigator was
implemented on the Transputer network (see Chapter 1 and [Althoefer94b]) that communicates
with the MA 2000 [Zavlangas96]. In these real-time experiments, the navigator has been
implemented in its basic form to investigate its properties in a real-world setting and to show its
feasibility. In order to quickly acquire results, not all of the features described in previous
sections have been implemented yet.

Firstly, the fuzzy-based technique has been applied only to the second link (elbow link),
while the first link (shoulder link) moves with constant increments of its joint angle towards
the goal configuration, assuming there are no obstacles in its range. The fuzzy unit of the
elbow link receives at its two inputs the difference between actual and goal configuration as
well as the signed distance between link and nearest obstacle. Secondly, the superimposition
of the influence from the nearest obstacle on the right onto the nearest one on the left has not
been considered here. The parameters for the fuzzy unit of the elbow link have been set up
using the rule base constructed during the simulation experiments as a starting point and have
been improved by trial and error.

The fuzzy navigation for the MA 2000 has been tested in a variety of environments
including environments with moving obstacles. The results of two experiments are depicted in
Figure 4.5-3. The model of the MA 2000 has been used to depict the motion of the real arm.
That is, the sequence of angular values of the real arm’s motion has been stored during the
real-time experiment and was then applied to the robot’s model. Further results are described
in [Zavlangas96].

4.6 Reinforcement Learning
Even though the previous sections have shown that the fuzzy controller is capable of

avoiding obstacles in both simulated (see Section 4.4) and real (see Section 4.5.2)
environments, there are several reasons why the system needs to be made adaptive.

• The iterative process of finding the appropriate rule base by trial and error is time
consuming.

• The rule base is different for different robot-arms and there is no simple relationship
between the rules effective for one robot arm compared to another. (E.g. a long and
narrow compared to a wide and short link.)

• The optimal fuzzy rule-base varies with the environment in which the arm is set to
operate; compare for instance an environment that is sparsely populated with
obstacles to a densely populated one.

• The learning scheme should be a general mechanism by which soft constraints on the
operation of the arm can be introduced to allow continuous learning.

The aim of this section is to add an adaptation mechanism that meets these aims to the
fuzzy navigator. In order to achieve any real gain in comparison to the trial and error
development of the navigator, this adaptation process should perform a minimal amount of
extra computations. Such considerations as well as the lack of advance knowledge of the
obstacle locations rule out a supervised learning rule. Hence, a on-line reinforcement learning
rule will be utilised (see [Mahadevan92, Sutton91, Gullapalli94, Millan92, Keerthi95]).

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 139

The adaptive algorithm is based on an actor-critic model. These models divide an
adaptive controller in two parts. The first is the actor which performs actions in response to
input from the environment. Depending on the changes in the environment after an action, the
critic will send a reward (or punishment) signal to the actor to change its rule base such that
the action will be more (or less) likely in the future. Here, the actor is the fuzzy controller and
the critic is the new mechanism which adapts the fuzzy rule base. The critic receives
information from the sensors and can be loaded with different rules that determine whether a
sensory input represents a desirable situation or not.

The actor in the adaptive controller for a single link is identical to the controllers for one
link in previous sections. It determines its actions on the basis of the distance to the nearest
obstacle dj and the target Δθ j . The critic can determine whether to punish or reward an action
by inspecting the manipulator’s performance. At each training step only the active rules are
adapted with a reinforcement rule, while those rules which did not contribute to the particular
movement remain unchanged. Three performance criteria are used for training: (1) distance
between the link and obstacles, (2) the speed of the link and (3) the unlimited rotation of link
l2 around the end of link l1:

(1) Whenever the distance between link and obstacle falls below a given threshold, the
action values of those active (= responsible) rules which proposed a movement
towards the obstacle are decreased by a small amount (punishment), while those
which propose a movement away from the obstacle are increased (reward). Once the
navigator is trained and keeps the manipulator in sufficient distance to obstacles, the
learning rule becomes inactive.

(2) The training with respect to the manipulator’s speed is split into two parts: the
controller is trained to avoid both very large and very small changes in the position of
the manipulator. The first rule is useful to avoid big sudden jerks of the manipulator
link. The second is active when the link virtually does not move at all. Again, active
rules which support the desired performance are increased, those which are opposing
it are decreased. Both rules are inactive when the manipulator performs correctly. A
moderate speed is the desired aim of this training part.

(3) An unlimited rotation of link l2 around link l1 is not desired, since the motion of the
links of the MA 2000 is limited to a range of approximately ±0.75⋅π and the learning
experiments are expected to be transferred to the real-system. Thus, whenever the
link l2 tends to “collide” with link l1 the rule base is appropriately altered. Again, an
action which favours a motion in the expected direction (towards a stretched
configuration of link l2) results in the increase of the value, while an action which
suggests the opposite motion (towards a collision with link l1) is decreased. This rule
is active only if the angle of link l2 is greater than 0.64⋅π or smaller than -0.64⋅π.

The training here applies to the actions values in the rule base only. The fuzzification in
the fuzzy navigator is carried out employing common sense and is not the target of the
training method used here. For the following investigations a two-link stick-like arm as
described in Section 4.4.1 was used. As in the previous section, only one link, viz. l2, was
controlled by a fuzzy unit, while link l1 moved with constant steps to its goal configuration.

The above training strategies were used in the experiments which are presented in
Figure 4.6-1. The influence or strength of the individual strategies were adjusted during many
training runs until a satisfactory performance and a stable rule base developed. While
conducting the experiments it became obvious that all three training criteria influenced the

4.6 Reinforcement Learning140

rule base of the controller. Moreover, the combined influence of all three criteria provided the
desired manipulator performance, while changing the strength of one of them could lead to
undesired values in the rule base. Training to achieve a goal directed behaviour was not
investigated in these initial experiments, still the manipulator reached in most cases the goal
configuration.

-8 -6 -4 -2 0 2

-6

-4

-2

0

2

6
1st cycle

start
config.

goal
config.obstacle

l1

l2

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
2nd cycle

goal
config.

start
config.obstacle

l1

l2

x

y

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
3rd cycle

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
4th cycle

x

y

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
5th cycle

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
6th cycle

x

y

(see caption next page)

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 141

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
7th cycle

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
8th cycle

x

y

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
9th cycle

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
10th cycle

x

y

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
199th cycle

start
config.

goal
config.obstacle

l1

l2

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
200th cycle

goal
config.

start
config.obstacle

l1

l2

x

y

Figure 4.6-1: Training of the fuzzy controller in the fuzzy unit of link l2. The training is
shown at different training cycles. After about ten cycles the initially untrained rule base
stabilised. Note that in every second training cycle start and goal configuration were
swapped to train the rule base for obstacles and target configurations on both sides.

4.6 Reinforcement Learning142

Training occurred every time the arm moved. As shown in the following figures, at
every instance of the manipulator motion the whole training procedure was applied. This
means that the fuzzy navigator was trained approximately 50 times between start and goal. If
after 50 iterations the goal was not reached, the training was interrupted and a new training
cycle was started. Every second training cycle start and goal configuration were swapped. This
was done to train the fuzzy controller in both directions.

Figure 4.6-1 shows that already after ten complete training cycles a convincing
performance was achieved, although each rule of the initial rule base was set to a small
constant value of 0.001. After these ten cycles were complete, training continued but the
performance of the manipulator changed only marginally and the actions of the rule base
experienced only minor changes. That is, the rule base stabilised.

A second experiment was conducted where the same training strategies were used, but
the initial rule base was built using common sense. This experiment was meant to check
whether the training provides improvement and at the same time keeps the overall structure of
the original rule base.

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
1st cycle

start
config.

goal
config.obstacle

l1

l2

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
2nd cycle

goal
config.

start
config.obstacle

l1

l2

x

y

-8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
199th cycle

start
config.

goal
config.obstacle

l1

l2

x

y

 -8 -6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6
200th cycle

goal
config.

start
config.obstacle

l1

l2

x

y

Figure 4.6-2: Training of the fuzzy controller in the fuzzy unit of link l2. Here the rule
base was initially constructed using common sense. The training is shown at different
training cycles. Only small changes in the manipulator motion from the beginning of the
training to its end can be seen. Again, in every second training cycle start and goal
configuration were swapped.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 143

Figure 4.6-2 shows the manipulator motion at the beginning and end of the training. The
base stabilised after only a few training cycles and did not change very much while the
training continued. In general, the manipulator motion has changed only slightly from the first
to the last training cycle. When steered by the original controller, link l2 of the manipulator
came occasionally close to obstacles (see Figure 4.6-2 (top)). This aspect has been dealt with
successfully as shown in Figure 4.6.2. (bottom). Whether the other two strategies were active
is difficult to say by looking at the manipulator motion. It is possible that the original motion
did not fall in the range of these two strategies. The comparison of the two rule bases (initial
and after training) clearly shows that the influence of the learning process was only in places
(see Table 4.6-1 and Table 4.6-2). Although this training brings about a continuous change of
the action values, they are still interpretable. For example, “-0.6238” represents an actuator
command which is “bigger right” than “-0.4188”.

µ 2

ν 2

far left left clse left clse right right far right

far left 0.1000 -0.3000 -0.5000 0.3000 0.3000 0.3000
left 0.1000 -0.0010 -0.5000 0.3000 0.3000 0.1000

contact 0.0000 0.0000 -0.1000 0.1000 0.0000 0.0000
right -0.1000 -0.3000 -0.3000 0.5000 0.0010 -0.1000

far right -0.3000 -0.3000 -0.3000 0.5000 0.3000 -0.1000

Table 4.6-1: Initial rule base based on common sense rules.

µ 2

ν 2

far left left clse left clse right right far right

far left 0.1182 -0.4188 -0.6238 0.3000 0.3000 0.3000
left 0.0644 -0.4099 -0.6365 0.3001 0.3117 0.1096

contact -0.0258 -0.4052 -0.2634 0.1619 0.3904 0.1265
right -0.1000 -0.3032 -0.3000 0.6093 0.3546 -0.0562

far right -0.3000 -0.3000 -0.3000 0.5018 0.2391 -0.1787

Table 4.6-2: Rule base after 200 training cycles.

It seems that the learning method is a valuable tool to adapt the actions of a common-
sense rule base or a pre-trained rule base to a particular environment.

One very important problem has been neglected so far: how will the navigator perform
if confronted with a new environment. As one could see in earlier sections, the rule base using
common sense action values was able to cope with different and even dynamic environments.
Initial experiments in this direction indicate that the fuzzy controller trained from scratch is
able to cope with slight changes in the environment, but encounters problems when
confronted with completely new environments. Here, obstacle avoidance is no problem, while
reaching the goal configuration is. This might be due to the fact that goal-reaching was not
part of the training agenda.

In a further experiment, the adaptive navigator was applied to the MA 2000
manipulator. To avoid damage of equipment, the learning took place on a simulated arm in an
environment modelled after the real environment. The training approach here has been
expanded by an extra strategy which punishes the rule base for not reaching the goal. After 50

4.7 Summary and Discussion144

training cycles, the simulated arm achieved a reasonable performance and the controller was
transferred to the real arm. Although the simulated manipulator and the environment were a
good model of the real world, and the simulated manipulator moved without collision from
start to goal after training was completed, problems occurred when the trained rule base was
applied to the physical device. Again, obstacle avoidance was carried out successfully by the
navigator, but near the goal configuration link l2 started to oscillate and performed several up-
and-down movements before stopping at the desired goal configuration.

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

y

x/m

y/m

start
config.goal

config.

obstacle

 -0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

y

x/m

y/m

goal
config.

start
config.

obstacle

Figure 4.6-3: A typical training sequence where the fuzzy navigator “learns” to steer the
MA 2000 collision-free through its workspace. Randomly moving obstacles as well as
randomly changing start and goal configurations are used to help the controller adapt to
different environments (generalisation). These training snapshots were taken after 29
(left) and 30 (right) training cycles, respectively. The right figure shows that the arm can
start oscillating near the goal configuration.

These first results are very promising, when one takes into consideration the fact that the
action values in the rule base were generated entirely by a learning algorithm. Future work
should aim on the incorporation of the training into the real-world system. This would allow
the navigator to adapt the manipulator’s motion to changes in the environment in real-time.

4.7 Summary and Discussion
This chapter presented a novel fuzzy-based algorithm able to generate collision-free

paths for robotic manipulators. The proposed control system is divided into separate fuzzy-
units which provide actuator commands to the individual links of the manipulator. Each
fuzzy-unit receives at its inputs signals which represent firstly the distance between link and
nearby obstacles and secondly the difference between actual configuration and target
configuration. The fuzzy-rule-bases were generated using common sense rules which were
then refined by trial and error as well as by means of a learning algorithm. Two main
considerations were taken into account in the construction of the rule base of such a fuzzy
unit: on the one hand, the rule base has to exert a strong repelling influence on the link when it
approaches an obstacle and, on the other hand, to impose an attracting influence which
emanates from the target configuration. The rule base has to evaluate the interaction of the
often contradictory inputs and produce an appropriate motor command. Thus, it combines a
goal-directed behaviour with an obstacle-avoidance behaviour.

4 Fuzzy-Based Navigation and Obstacle Avoidance for Robotic Manipulators 145

In contrast to mobile robots which can be considered as single moving objects,
manipulators consist of multiple moving objects which influence each other. In the case of a
non-branching manipulator with a fixed base, the motion of proximal links obviously
influences the more distal ones. In this application, fuzzy-units of proximal links are not only
informed about obstacles in their vicinity, but also about obstacles in the vicinity of more
distal links. Thus, an obstacle near to a distal link also provides a repelling influence to more
proximal links. This reduces the likelihood that distal links whose motion strongly depends on
the motion of proximal links collide with their nearby obstacles.

The presented fuzzy navigator may be improved by increasing the information transfer
between distal and proximal links. In addition to the information passed from units of distal
links down to units of proximal links informing about the distance between links and
obstacles, the units of distal links could also inform the units of proximal links about their
inability of reaching the goal configuration (unreachable situation or dead-lock). Thus, in a
dead-lock situation, proximal links may continue their motion even though they have reached
their goal configuration, in order to help distal links to leave the dead-lock area and reach their
goals.

In the experiments carried out, the fuzzy controller has been applied to different
manipulators in a variety of environments. It was shown that the fuzzy controller can cope
with dynamic environments. Furthermore, the rule bases which had been developed for a
particular manipulator type needed only minor changes to be able to successfully steer another
manipulator with different proportions.

The proposed fuzzy system can be considered as a reactive system. Once the rule base is
constructed, the system is equipped with a set of instructions which enable it to deal with
many obstacle constellations. Although the fuzzy system is able to construct paths from a start
to a goal configuration, planning as discussed in the previous chapter is not carried out.
Planning a path presupposes global spatial knowledge which the fuzzy navigator does not
have. It only can plan one step ahead. At each iteration, it makes a guess as to which is the
best actuating command to be sent to the manipulator so that the manipulator’s state is altered
in such a manner that it comes closer to the goal state. Any state change experienced by the
manipulator is interpreted by the fuzzy navigator as a new environmental situation to which
the navigator reacts with a new actuating command. The experiments conducted show that the
fuzzy navigator provides collision-free paths in many cases, even though the navigator is a
simple reactive mechanism with only a small rule base.

Despite its local nature the fuzzy-based system can outperform a global planning
strategy in many applications. The main advantage over the global planner is that the fuzzy
system can be implemented on-line. This allows the fuzzy system to adapt to changes in the
environment caused for example by moving obstacles. Since the environment is newly
conceived at each iteration, any change occurring in this environment is easily incorporated
into the next computation. Global planning strategies are usually hampered by lengthy
computation times and therefore can not adapt to fast changes occurring in the robot’s
workspace.

Moreover, the fuzzy system in its presented form does not suffer from the curse of
dimensionality observed in most planning strategies. Thus, it can be applied to manipulators
with a high degree of freedom. The main drawback of the suggested strategy is that it can get
trapped in particular obstacle constellations (dead-lock). Solutions for this problem are
discussed in Chapter 5.

4.7 Summary and Discussion146

The rule-based fuzzy approach convinces with its transparency and allows the designer
to shape the decision process by altering rules individually so as to achieve a specific
performance. There has been an increased interest in combining fuzzy systems with neural
networks because fuzzy neural systems merge the advantages of both paradigms. On the one
hand, parameters in fuzzy systems have clear physical meanings and rule-based and linguistic
information can be incorporated into adaptive fuzzy systems in a systematic way. On the other
hand, there exist powerful algorithms for training various neural network models. The
successful introduction of learning techniques to fuzzy-based algorithms which control mobile
robots has been reported in literature [Kosko92, Tschichold96, Hoffmann96]. One of these
techniques, reinforcement learning, has been applied to the fuzzy-system described here.

The learning method is used to either generate a rule base from scratch or refine a
coarsely set-up rule base. In the training phase, the manipulator or - to avoid damage - its
simulated counterpart is steered by the fuzzy-algorithm through different environments. If the
initial rule base has been set up by employing common sense rules, training times are shorter
than in cases neural networks are employed where training begins always at a random state.
During training the fuzzy-controller adapts to the given environment and its rule base is still
interpretable.

Chapter 5

Conclusions and Future Work

5.1 Conclusions
The thesis has proposed and verified the suitability of novel motion planning strategies

for robotic manipulators.

Building on and complementing each other, the neural-network-based workspace to C-
space transformation and the fast path planning strategy based on the neural resistive grid
have been shown to produce good manipulator trajectories. This approach to motion planning
always finds a path when one exists. It is hampered by the dimensionality problem of C-
spaces which increase exponentially with the degree of freedom and lengthy computations
prior to the robot movement, the latter making them able to perform satisfactorily only in
static or slowly changing environments. The fuzzy navigator has been introduced as a
technique capable of tackling these issues. Although this local navigation technique can get
caught in so-called dead-locks caused by particular obstacle constellations, it has many
advantages: it adapts to fast changes in the environment, does not suffer from the curse of
dimensionality, and outperforms a global planning strategy in many applications its main
advantage being its on-line implementation.

The following sections discuss the main points of the research work presented.

5.1.1 Workspace to C-space Transformation for Robotic Manipulators
The neural-network-based transformation technique presented in this thesis has been

shown to be a suitable tool to construct the configuration space of robotic manipulators. The
technique has been successfully applied to manipulators with revolute and prismatic joints.
The basic transformation technique developed for two-link arms has been expanded to
compute the C-space patterns for planar manipulators with n revolute joints. Experiments
conducted using the MA 2000 manipulator proved the technique’s real-world feasibility.

The radial-basis-function neural network used for the transformation process has been
shown to learn the highly non-linear mapping between obstacle points and C-space patterns.
The interpolating capabilities of the network allow the construction of those C-space patterns,
which occur in response to unknown input stimuli, with only a small error. The memory
requirements to store the weights of the network were particularly small compared to those
reported in [Newman91, Branicky90]. Although the focus in Chapter 2 was on planar
manipulators, the technique can be applied to three-dimensional manipulators as shown in
Chapter 3.

5.1.2 A Neural Resistive Grid for Path Planning
The use of a computer-emulated neuro-resistive grid to carry out manipulator path

planning in C-space has been proposed and investigated. The To&Fro algorithm introduced in
Chapter 3 has been proved to rapidly generate an activity distribution in the grid suitable for
path planning. This activity distribution has its unique maximum at the node representing the
goal configuration and following the greatest gradient from a start node results in a collision-

5.1 Conclusions148

free path ending at the goal configuration.

The update sequence of this algorithm is especially adapted to the shape of the C-space
obstacles usually occurring in a manipulator’s C-space and spreads the activity in the obstacle-
free regions of the C-space approximately eight times faster than conventional update
sequences described in literature [Cichocki94, Glasius94]. Early termination is another
important feature of the To&Fro algorithm. The algorithm terminates once the start node or
one of its neighbours experiences a rise in activity - long before the nodes’ activities converge.
For example, the number of updates per node in a two-dimensional grid necessary is a
constant value: five to seven. The number of total updates necessary increases linearly with
the number of grid nodes. Comparing the latter aspect with the fact that the number of updates
necessary to yield a converged solution increases with the square of the number of nodes,
clearly shows the suitability of the To&Fro algorithm for path planning.

The path found in an activity distribution due to the early interrupting To&Fro algorithm
is free of local extrema, and therefore, a collision-free path is found if such path exists. The
algorithm is resolution-complete, that is, it always provides a collision-free path from a start
state to a goal state, if such path exists.

Two different boundary conditions, the Dirichlet and the Neumann boundary condition,
have been investigated. It has been shown that a computer-emulated grid due to the Dirichlet
boundary condition provides more quickly a solution suitable for path planning than a grid
which is updated employing the Neumann boundary condition.

The To&Fro algorithm has been also compared to the A*-algorithm [Latombe91]. The
To&Fro algorithm has been shown to be faster than the A*-algorithm in many situations.
Although the To&Fro algorithm does occasionally generate a path which is not the shortest
one, the path is always collision-free. In many path planning problems finding a path in short
time is preferable to the more time-expensive search for the shortest path. Since the centre of
investigation of this chapter was on finding collision-free paths in short time, the To&Fro
algorithm can be said to provide better results than the A*-algorithm.

The grid-based strategy has been extended to carry out path planning in non-
homogenous and non-topologically ordered graphs. This extension can also be used to add
soft safety margins around obstacles. This safety margin assures that the robot keeps in most
situations at least a minimum distance to the obstacles; only where the safety margins of
obstacles merge it is soft, i.e. penetrable, allowing the robot to move through narrow gaps.

The application of the neuro-resistive grid to a physical manipulator, the MA 2000, has
been successfully carried out. The experimental studies clearly showed the feasibility of the
suggested method in real-world applications.

If a discrete representation of a state space, as for example a discretised C-space, a
topologically ordered map or any kind of graph, is available, the resistive grid using the
described To&Fro algorithm is probably one of the fastest of the global planning methods to
calculate a path. This is the case for resistive grids which are run on computers, and especially
for those implemented in specialised hardware. Thus, the neuro-resistive grid presents a strong
alternative to other methods which are still in use in the robotics research community (e.g. the
A*-algorithm or potential field methods combined with random search mechanisms).

5 Conclusions and Future Work 149

5.1.3 Fuzzy-based Navigation and Obstacle Avoidance for Robotic
Manipulators

A novel fuzzy-based technique able to navigate a robotic manipulator collision-free in
static as well as dynamic environments has been presented. The proposed technique can be
seen as a composition of separate mechanisms, called fuzzy-units, which steer the manipulator
links individually. Each fuzzy-unit comprises a fuzzy-controller whose rule base is set up to
exert impelling forces which depend on the local environment of the link. Two main
components of these forces can be distinguished. The first force component pushes the link
towards the target configuration while the second component makes the link dodge obstacles.
Thus, the rule base combines a goal-directed behaviour with an obstacle-avoidance behaviour
by appropriately evaluating the interaction of the two aforementioned aspects of navigation.

Early experiments showed that the control of the manipulator links in a completely
independent fashion was not suitable. It has been found that the fuzzy units which control
proximal links have to be informed about obstacles in the vicinity of distal links. Thus, an
obstacle near a distal link influences the fuzzy units of proximal links in such a way that the
latter ones change their motion appropriately. This reduced the likelihood that distal links
whose motion strongly depends on the motion of proximal links collide with their nearby
obstacles.

Furthermore, it has been found that the fuzzy units should not base their decision on a
single nearest obstacle only, but on the two nearest obstacles which are on the left and right of
a link. To achieve this, the fuzzy units calculated separately a solution for both obstacles.
These outputs were then superimposed and applied to the actuator of the corresponding link.
This approach was particularly useful in situations where manipulator links were situated in a
narrow gap between obstacles. When using the approach without superimposition the links in
the gap tended to oscillate, while the improved approach provided smooth manipulator
movements.

The fuzzy-based technique has been successfully applied to different manipulators
operating in real as well as simulated environments. The technique has been proved to work
without complications in a variety of dynamic as well as static environments. It has been also
shown that the rule bases set up for a particular manipulator type needed only minor changes
to be able to successfully manoeuvre a manipulator with different proportions. Occasionally,
the manipulator did not reach the desired goal configuration due to a dead-lock situtation,
however, in most experiments carried out the navigator steered the manipulator successfully
around obstacles.

In most of the experiments shown the rule bases of the fuzzy units were generated using
common sense and then improved by trial and error. The rule-based approach convinced with
its transparency. A specific performance for each fuzzy unit was easily produced by altering
rules individually. In later experiments an on-line reinforcement learning mechanism had been
introduced to automatically adapt the fuzzy rules to certain constraints, such as keeping a
minimum distance to obstacles, limited angular step width, avoiding collision between links,
etc. All experiments involving learning indicated that the proposed learning mechanism
converged to a stable solution. The learning mechanism has been used to generate a rule base
from scratch as well as to refine a rule base which had been coarsely set-up by common sense.
The latter approach was particular promising, because only a short training time was necessary
to achieve an improved rule base. Since the learning mechanism works on-line a continuous

5.2 Future work150

adaptation to changes in the environment is possible. At all times the commands of the rule
bases were interpretable.

5.2 Future work
The results produced by the investigation in this thesis of the resistive-grid-based

method and the fuzzy-based navigator provide a solid basis for further research and can be
used as a spring-board for moving to new directions.

5.2.1 Hybrid System
The next step in the search for more efficient path planning strategies could be the

combination of the motion planners described in this thesis with aim to create a versatile
planning system. The following approaches can be envisaged.

One possibility is to design a planning system with modules on different hierarchical
levels [Althoefer94b]. One could imagine a low-level module to be a fuzzy-based navigator
(Chapter 4) which receives signals from a global planning module on a higher level in the
hierarchy. The planning module could be based on the workspace-to-C-space-transformation
technique of Chapter 2 and the neuro-resistive grid strategy of Chapter 3. Before the
manipulator motion takes place, the planning module computes a manipulator trajectory
which can be seen as a sequence of via-points from a start to a goal configuration. These via-
points are sequentially fed to the navigation module which provides a secure path from one
via-point to the next. Since the latter module works on-line, changes in the environment can
be dealt with.

Alternatively, a path planning approach could be imagined where the fuzzy navigator
and neuro-resistive grid collaborate - each compensating for the others handicap. Initially, the
navigator attempts to move the simulated counterpart of the manipulator from a start to a goal
configuration. Whenever a dead-lock or unreachable situation is encountered, the simulated
manipulator performs random movements in the vicinity of the dead-lock and a C-space map
is constructed in which configurations which are safe and those which result in collisions are
registered. Then, the neuro-resistive grid can be invoked to plan a path in this map to leave the
area of the dead-lock. From there the navigator can take over control again. The two
techniques can alternate until the goal configuration in the simulator has been reached and the
found path can be applied to the physical manipulator. On the one hand, this approach offers a
solution to the dead-lock problem of the fuzzy navigator. On the other hand, the C-space maps
constructed during the operation of this approach are confined to a small subspace of the
complete C-space and, thus, the dimensionality problem is avoided.

Another hierarchical approach could be envisaged which makes use of two fuzzy-based
systems on different hierarchical levels. The fuzzy system on the more local level could be
based on the fuzzy navigator described in Chapter 4. The fuzzy system on the higher level
could be a planning mechanism whose rules reflect a more general and abstract knowledge
about the obstacle distribution in the manipulator’s workspace in order to deal with the dead-
lock situation of the low-level navigator. A rule in such a fuzzy planner could be for example
as follows: “If target is behind obstacle which is near second link and first link is already in
goal configuration, move first link over the goal configuration”. The rules of the high-level
fuzzy planner could be developed during test runs in different environments. Whenever the
low-level navigator gets stuck in a new dead-lock, a new rule has to be added to the rule base
of the high level fuzzy planner. The process of adding new rules may be automated. It has to

5 Conclusions and Future Work 151

be tested, whether this approach is capable of dealing with any obstacle constellation. The
approach would definitely represent an improvement over the original fuzzy navigator on its
own.

Another way of improving the fuzzy navigator could be to increase the information
transfer between distal and proximal links. In the described navigator system (Chapter 4),
units of distal links provide units of proximal links with information about the distance
between links and obstacles. In an advanced approach the units of distal links could also
inform the units of proximal links about their inability of reaching the goal configuration
(unreachable situation or dead-lock). If such a situation occurs, proximal links may continue
their motion even though they have reached their goal configuration, so that distal links can
leave the dead-lock area and reach their goals. This advanced approach will help to reduce the
number of dead-locks.

5.2.2 Implementational Aspects
In this thesis, all algorithms introduced were implemented on single-processor

machines. However, due to their structure an efficient implementation of the algorithms in
parallel can be easily realised.

The algorithm described in Chapter 2 transforms pixels representing a workspace
obstacles into a C-space representation. One could imagine a multi-processor machine where
each obstacle pixel is processed in parallel by individual processing units. Thus, the
transformation time would only depend on the time necessary to transform a single pixel and
not on the number of obstacle points in the workspace. To achieve a fast mapping into a
discrete C-space, memory should be shared by the processing units allowing parallel writing
access to the memory. A further acceleration in terms of speed could be achieved by
processing the C-space patterns of the subarms of a manipulator in parallel as outlined in
Chapter 2. Also, the neural network used for the transformation could be implemented on a
parallel processing computer.

The resistive grid approach presented in Chapter 3 is especially suited for an
implementation in VLSI. Experiments and investigations in this area show that processing
times in the order of micro seconds can be achieved [Roska96, Koch96]. The main problems
to be solved in this area are the high interconnectivity in the grid to compute high dimensional
configuration spaces as well as the connection to the computer periphery which writes to and
reads from the hardware grid. The on-going research in the fields of VLSI implementations of
neural networks [Roska96] and image processing methods [Koch96] may very well contribute
to the area of path planning in robotics.

Also the fuzzy navigator proposed in Chapter 4 can be implemented on a parallel
processing machine. Each fuzzy unit which controls an individual manipulator link could be
processed by a separate processor. Each processor should do a two-step computation. In the
first step, each of these fuzzy processors should calculate the distance between link and
nearest obstacle(s), since fuzzy processors of proximal links incorporate the link-to-obstacle
distance of distal links in their calculation and this is the only dependence between the fuzzy
processors. In the second step, all processors can compute independently and in parallel the
appropriate motor command. Moreover, each fuzzy unit might be broken down into subunits.
For example the fuzzyfication of the different inputs might be carried out in parallel.

5.2 Future work152

5.2.3 Sensors
The main focus in this thesis was on the development and investigation of planning and

navigation techniques for robot manipulators. In order to create an autonomous robot system,
it is essential that this is system is able to acquire information about the robot’s environment.
A variety of sensors have been developed over the years which are suitable for different
manipulator tasks [Indyk94, Latombe91]. Most promising is the use of camera systems for
manipulator path planning tasks. In this thesis, initial experiments have been carried out
successfully employing a camera which acquires the two-dimensional workspace of a planar
manipulator (Chapter 2). A next step could be to tackle the problem of moving a three-
dimensional manipulator in a three-dimensional workspace. To solve this problem one could
use a multi-camera system which oversees the manipulator’s workspace [Ritter92]. This
multi-camera system could be supported by one or more cameras mounted on the manipulator.
Here, the main problems are the transformation of the multiple two-dimensional camera
outputs into a three-dimensional representation and the correct identification of hidden
obstacles or hidden obstacle parts. Promising techniques have been suggested to deal with the
latter problem in environments where mainly known objects occur by using a library of
objects to improve the identification of obstacles [Jaitly96, Jaitly96c].

To turn the fuzzy-based navigation system of Chapter 4 into a real-world application,
ultra-sonic scanners could be mounted on the manipulator links as proposed in [Risse95]. This
sensor system is especially suitable for this kind of problem, since only the information in the
vicinity of the manipulator is needed and usually a detailed representation of the environment
is not necessary.

5.2.4 Transformation of Complex Obstacle Primitives
The process of the workspace to C-space transformation, may be accelerated by

transforming complex obstacle primitives such as lines, planes, circular obstacles and
combinations of these primitives [Newman91, Branicky90]. To achieve this, known complex
obstacles which are present at pre-known locations and orientations, can be grouped in
libraries. Prior to the transformation, the obstacles in the workspace representation are
matched against library models. The library models with descriptors similar to those of the
workspace obstacles and a sufficient level of confidence for a match are chosen [Jaitly96].
The output of the matching process describes obstacles in terms of distance, size and
orientation. A network trained to react to such features with the appropriate C-space pattern is
capable of transforming a complex obstacle in a single computation. However, it has to be
tested whether this more sophisticated approach will result in a reduction in transformation
time when compared to the obstacle point transformation, since the computational load is now
increased on the imaging side of the overall transformation process.

Appendix A

This appendix shows the manipulator (MA2000) which had been used throughout the

thesis for the real-world experiments. Furthermore, it shows the recorded C-space patterns for

shoulder and elbow link (finger fixed) and the C-space patterns for elbow link and finger

(shoulder link fixed).

Appendix A-1

Finger (l3)

Elbow link (l2)

Shoulder link (l1)

Axis of joint g1

Axis of joint g3

Axis of joint g2

Fig. A-1.1: The manipulator MA2000. The active joints are denoted with g1, g2 and g3.
Their axes are parallel to each other.

Appendix A-1154

250
mm

270°

180°

270°

480
mm

230
mm

100
mm

Fig. A-1.2: Fully extended position and maximum travel of the MA 2000 (after
description by TecQuipment).

Appendix A 155

Appendix A-2
The following figures show C-space patterns due to collisions between an obstacle rod

and the perimeter of the shoulder (l1) and elbow link (l2) of the MA2000-manipulator at
increments of distance d. For all these measurements, the joint connecting the finger to the
elbow link has been kept at 0°. The measurements have been carried out by moving the two
active links of the MA2000-manipulator around the obstacle ensuring that at all times some
point of the manipulator was in contact with the obstacle.

The obstacle rod has a diameter of 3 mm. The distance between the centre of the axis of
joint g1 and the centre of the rod is shown in the header of each figure. For obstacles in the
range d=[278 mm, 548 mm], there are collisions with link l2 only. For smaller values of d
(d=[159 mm, 273 mm]) there are collisions with link l1 and l2.

Each figure shows the recorded C-space pattern, the centre line as well as the distance in
vertical direction between the centre line and the recorded C-space pattern (dotted). The grey-
shaded blocks describe areas which include collisions due to link l1 and collisions due to the
back of link l2. In the path planning experiments described in this thesis, those areas are set to
forbidden regions.

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Q2 (×π)

C-obstacle (distance: 548 mm)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 508 mm)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 468 mm)
Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
q2 (×π)

C-obstacle (distance: 438 mm)

q1 (×π)

Q2 (×π)

Q1 (×π)

Appendix A-2156

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
q2 (×π)

C-obstacle (distance: 408 mm)

q1 (×π)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 388 mm)

q1 (×π)

q2 (×π)Q2 (×π)

Q1 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
q2 (×π)

C-obstacle (distance: 368 mm)

q1 (×π)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 348 mm)
q2 (×π)

q1 (×π)

Q2 (×π)

Q1 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 328 mm)
q2 (×π)

q1 (×π)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 308 mm)
Q2 (×π)

Q1 (×π)

Appendix A 157

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 298 mm)
q2 (×π)

q1 (×π)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 288 mm)
q2 (×π)

q1 (×π)

Q2 (×π)

Q1 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 283 mm)
q2 (×π)

q1 (×π)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 278 mm)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 273 mm)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 268 mm)

Q2 (×π)

Q1 (×π)

Appendix A-2158

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 263 mm)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 258 mm)

Q2 (×π)

Q1 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 253 mm)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 248 mm)

Q2 (×π)

Q1 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 238 mm)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 228 mm)

Q2 (×π)

Q1 (×π)

Appendix A 159

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 218 mm)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q1 (×π)

Q2 (×π)
C-obstacle (distance: 208 mm)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 188 mm)

Q2 (×π)

Q1 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 168 mm)

Q2 (×π)

Q1 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q1 (×π)

q2 (×π)
C-obstacle (distance: 158 mm)

Q2 (×π)

Q1 (×π)

Appendix A-3160

Appendix A-3
The following figures show C-patterns due to collisions between an obstacle rod and the

perimeter of the elbow link (l2) and the finger (l3) of the MA2000-manipulator at increments

of distance d. The shoulder link has not been considered in these measurements. The

measurements have been carried out by moving the two active links of the MA2000-

manipulator around the obstacle ensuring that at all times some point of the manipulator was

in contact with the obstacle.

The obstacle rod has a diameter of 3 mm. The distance between the centre of the axis of

joint g2 and the centre of the rod is shown in the header of each figure. For obstacles in the

range d=[269 mm, 319 mm], there are collisions with link l3 only. For values of d=[229 mm,

259 mm] there are collisions with link l2 and l3. For values of d=[49 mm, 199 mm] there are

collisions with link l2 only.

Each figure shows the recorded C-space pattern, the centre line and the distance in

vertical direction between the centre line and the recorded C-space pattern (dotted). The grey-

shaded blocks mark those areas which describe collisions due to link l2.

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 319 mm)

Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 309 mm)

Q3 (×π)

Q2 (×π)

Appendix A 161

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 299 mm)

Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 289 mm)

Q3 (×π)

Q2 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 279 mm)

Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 269 mm)

Q3 (×π)

Q2 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 259 mm)

Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 249 mm)

Q3 (×π)

Q2 (×π)

Appendix A-3162

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 239 mm)

Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

q2 (×π)

q3 (×π)
C-obstacle (distance: 229 mm)

Q3 (×π)

Q2 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 199 mm)

q2 (×π)

q3 (×π)

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 179 mm)

q2 (×π)

q3 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 159 mm)

q2 (×π)

q3 (×π)

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 139 mm)

q2 (×π)

q3 (×π)

Appendix A 163

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 119 mm)

q2 (×π)

q3 (×π)

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 109 mm)

q2 (×π)

q3 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 99 mm)

q2 (×π)

q3 (×π)

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 89 mm)

q2 (×π)

q3 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 69 mm)

q2 (×π)

q3 (×π)

 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle (distance: 49 mm)

q2 (×π)

q3 (×π)

Appendix A-3164

The following figures show C-obstacles due to collisions between a circular obstacle

and the perimeter of link l3 of the MA2000-manipulator at increments of distance d. Those

recordings have been carried out to show that in principle it is possible to record and store the

C-space patterns of more extended obstacles. As described in earlier sections link l3 has been

moved around the obstacle keeping contact with it at all times.

The obstacle has a diameter of 37 mm. The distance between the centre of the axis of

joint g2 and the centre of the obstacle is shown in the header of each figure.

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle of disk (distance: 289 mm)

q2 (×π)

q3 (×π)Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle of disk (distance: 299 mm)

q2 (×π)

q3 (×π)Q3 (×π)

Q2 (×π)

-0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle of disk (distance: 309 mm)

q2 (×π)

q3 (×π)Q3 (×π)

Q2 (×π)
 -0.6 -0.4 -0.2 0 0.2 0.4-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C-obstacle of disk (distance: 319 mm)

q2 (×π)

q3 (×π)Q3 (×π)

Q2 (×π)

Appendix B 165

Appendix B

Convergence in the Resistive Grid

Laplace’s equation describes how physical phenomena like for example the electric field
and current flow behave in a continuous medium. Harmonic functions are solutions to
Laplace’s equation. Given appropriate boundary conditions, these harmonic functions produce
a distribution surface which has only one global fixpoint (extremum). Since a resistive grid
represents a discrete version of the continuous medium, the distribution after convergence also
has only one global fixpoint.

The question remains whether a neuro-resistive grid or a similar neural network type
emulated on a digital computer will always converge to one solution. This mainly depends on
the slope of the activation function in each network node. Local minima or oscillations might
occur while iterating the network. It will be shown, here, for which slopes in the activation
function the network evolves into a stable activity distribution.

The following section will focus on the time-discrete type, since all of the experiments
and simulations during this research have been carried out on a serial computer system.

The update algorithm for the evolution for the time-discrete Hopfield network as well as
the computer emulated resistive grid can be implemented as a procedure based on the
relaxation method which allows to solve a set of nonlinear equations in an iterative fashion.
Here, the update formula is given in the matrix form:

()u wu I() ()k kf+ = −1 , (B-1)

where f is the activation function, and

[]u = u u uN1 2, , ... , ,

u u() ()k k= τ with sampling period τ,

w =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w w w
w w w

w w w

N

N

N N NN

11 12 1

21 22 2

1 2

!

!

" " # "

!

 represents the interconnection matrix and

[]I = I I IN1 2, , ... , represents the external input.

Activation function f is a monotonically increasing function which is restricted to the
range [0,1]. The interconnection matrix w defines the weight values between nodes. Those
nodes which are not connected to each other are described by a zero weight value in matrix w.
For further details regarding the update rule, see Chapter 3.

Global stability of a system which is defined by differential or difference equations can
be proven using a Lyapunov function (see [Kosko92]). The Lyapunov function is a scalar
which describes the entire system’s energy at any time. Global stability means that the system
converges to a stable equilibrium. Hopfield showed that the stable states of the system

Appendix B166

described in Eq. (B-1) are the local minima of the following Lyapunov function [Cichocki94
and references therein]:

L w u u u I f x dxij j i
j

N

i i
i

N

i

N u

i

N
i() ()u = − − +

= ==

−

=
∑ ∑∑ ∫∑1

2 1 11

1
01

.
(B-2)

The value of the integral depends on the specific shape of the activation function. To see
whether the Lyapunov function has a local minimum (sufficient condition) the change of the
Lyapunov function has to be calculated. The activity of each node changes from ui to
u u ui

k
i

k
i

() ()+ = +1 Δ at some time t k= +()1 τ [Cichocki94]:

ΔL L Lk k() () ()() ()u u u= −+1 . (B-3)

Thus:

ΔL w u u u u I u u f x dxij i
k

j
k

i
k

j
k

i j

N

i i
k

i
k

i

N

u

u

i

N

i
k

i
k

() () () ()() () () ()

,

() ()
()

()

u = − − − − ++ + + −∑ ∑ ∫∑
+1

2
1 1 1 1

1

!
=
=

− + − +∑ ∑ ∫∑ −
+

()
() ()()

,
()

()

w w
w u u u u I u f x dx

ij ji

ij i j
k

i j
i j

N

i i
i

N

u

u

i

N

i
k

i
k1

2
2 1

1

Δ Δ Δ Δ .
(B-4)

The integral in Eq. (B-4) can be expanded in Taylor series about ui
k()+1 :

()

()

f x d x f x d x

f x d x u u

f x d x u u

u u

u

i
k

i
k

i
k

i
k

i
k

i
k

i
k

− −

− +

− +

=

+
ʹ

⋅ −

+
ʺ

⋅ −

∫ ∫

∫

∫

+

+

1
0

1
0

1
0

1

1
0

1 2

1

1

1
2

() ()

() ()

() ()

() ()

()
() ()

() ()

ξ

(B-5)

with ξ ∈ +[,]() ()u ui
k

i
k 1 .

Rearranging Eq. (B-5), one gets:

[] []f x dx f x u f x u

f u u f u

u

u u
i i

i
k

i i

i
k

i
k

i
k

− − −

− + −

= − ʹ

= − ʹ

+ +

∫ 1 1
0

1
0

2

1 1 1 2

1 1 1
2

1
2

() () () ()

() () () .

()

() ()

()

Δ Δ

Δ Δ

ξ

ξ

(B-6)

Inserting Eq. (B-6) in Eq. (B-4) and using Eq. (B-1), one obtains

Appendix B 167

Δ Δ Δ Δ

Δ Δ

Δ

Δ Δ

L u w u I w u u

f u u f u

u w u I

f u

f u

w u u f

i ij j
k

i
j

N

i

N

ij i j
i j

N

i
k

i i
i

N

i ij j
k

i
j

N

i
k

i
k

i

N

ij i j
i j

N

= − + −

+ − ʹ

= − + −

=

− − ʹ

∑∑ ∑

∑

∑∑

∑

− + −

− +

− +

−

()

[() () ()]

[()

()

()]

()

()

,

()

()

()

()

,

1
2

1
2

0
1
2

1
2

1 1 1 2

1 1

1 1

1

ξ

$ %&& '&&

$ %&&&&& '&&&&&

()

[() ()]

[() ()]

,

ξ

δ ξ

ξ

Δ

Δ Δ

u

w f u u

f

i
i

N

ij ij i j
i j

N

2

1

1

1
2
1
2

∑

∑= − + ʹ

= − + ʹ

−

−u w E uT

(B-7)

with δ ij being the Kronecker delta-function and E being the identity matrix.

If all the eigenvalues of a symmetric matrix are strictly positive, the matrix is positive
definite. Thus, ΔL is negative if matrix w E+ ʹ−() ()f 1 ξ is positive definite. The eigenvalues
of matrix w E+ ʹ−() ()f 1 ξ can be calculated as follows:

det(() ())w E E+ ʹ − =−f 1 0ξ λ ,

where λi are the eigenvalues of w.

Matrix w E+ ʹ−() ()f 1 ξ is positive definite, if all its eigenvalues are positive:

() () () ()
()

f f
f xi i

− −ʹ − > ⇔ < ʹ =
ʹ

1 10
1

ξ λ λ ξ ,

where ξ = f x() .

Thus, the following condition has to be satisfied:

min

1
λ

> ʹmax(())f x . (B-8)

In the case that the activation function is linear, f x kx() = , the first derivative ʹf x() is
the constant k and the reciprocal of the most negative eigenvalue of w has to be greater than
this constant k.

For the activation functions often used in Hopfield networks (tanh, linear) an estimation
can be made for () ()f − ʹ1 ξ which ensures that w E+ ʹ−() ()f 1 ξ is positive definite. If f(x) is a
non-linear function then 1 λmin has to be greater than the maximum slope of f(x). In case, the

Appendix B168

activation function is f x kx() tanh()= , it follows that ʹ =f x
k

kx
()

cosh ()2 which has its

maximum at ʹ = =f x kmax ()0 0 .

The preceding paragraphs showed that the described resistive grid/Hopfield network
converges. To show that the found solution is unique, one has to show that the Lyapunov
function is strictly convex [Glasius94]. If and only if the Hessian matrix of the Lyapunov
function is positive definite then the Lyapunov function itself is strictly convex and the
grid/net converges to one global solution.

Thus:

L w
f f u

w
f fij ij ij

i
ij ij= − +

ʹ
≤ − +

ʹ
= − +

ʹ−δ δ
ξ ξ

1 1
1(()) () ()

w
1

E, (B-9)

and for the eigenvalues follows:

max

1
λ

> ʹmax(())f x , (B-10)

where λmax is the most positive eigenvalue. If Eq. (B-10) is satisfied, the Lyapunov
function is strictly convex.

Combining Eqs. (B-8) and (B-10), one obtains [Glasisus94]:

 = max{ min

1
λ

λ λ λ> ʹmax(()), , }maxf x . (B-11)

If Eq. (B-11) is satisfied, the network or grid will converge to one unique solution.

In the resistive grid, matrix w has only elements which are zero or positive. The non-
zero elements represent the weights between neighbouring nodes. It can be shown that if there
are no obstacles in the grid, all eigenvalues are positive and the largest eigenvalue is equal to
the sum of the non-zero elements per row or column [Glasius94]. The largest eigenvalue of a
obstacle-free grid is larger than the largest eigenvalue in a grid with obstacles. To assure that
the grid converges to a stable solution, the maximum slope of the activation function f should
be smaller than the reciprocal of the sum of the non-zero elements per row or column in the
absence of obstacles (see also Chapter 3).

Bibliography

[Aiyer90] Aiyer, S.V.B., Niranjan, M., Fallside, F., “A Theoretical Investigation into the
Performance of the Hopfield Model”, IEEE Transactions on Neural Networks,
Vol. 1, No. 2, pp. 204-215, June 1990.

[Althoefer93] Althoefer, K., Fraser, D.A., Azhar, F., "Investigation of an Adaptive Neural
Network using Comdisco SPW", Proceedings of the second annual one-day
seminar of industrial case studies in DSP and Communications systems
Modelling, Comdisco Systems, June 15, 1993.

[Althoefer94] Althoefer, K., “On the C-Space Transformation for Planar Manipulators with n
links”, (not published), Dept. of Electronic & Electrical Eng., King's College,
London, 1994.

[Althoefer94a] Althoefer, K., Fraser, D.A., "On-line Neural Network Training: The
Backpropagation Algorithm under Comdisco SPW", Proceedings of the third
annual international seminar series, Alta Group of CADENCE Design Systems,
June 1994.

[Althoefer94b] Althoefer, K., “A Hierarchical Neural-Network-Based Path Planning Concept”,
MPhil to PhD Transfer Thesis, Dept. of Electronic & Electrical Engineering,
King's College, London, 1994.

[Althoefer95] Althoefer, K., Fraser, D.A., Bugmann, G., Turán, J., "The Configuration Space
Transformation for Articulated Manipulators: A Novel Approach based on RBF-
Networks", Proceedings of the Fourth International Conference on 'Artificial
Neural Networks', IEE, Cambridge, UK, pp. 245-249, June 16-28, 1995.

[Althoefer95b] Althoefer, K., Fraser, D.A., Bugmann, G., "The Configuration Space for
Manipulators computed by a Basis-Function Network", Proceedings of the
International Conference on Engineering Applications of Neural Networks,
Otaniemi/Helsinki, Finland, pp. 469-472, August 21-23, 1995.

[Althoefer95c] Althoefer, K., Fraser, D.A., Bugmann, G., Plumbley, M.D., "Asymmetric B-
Splines for the fast Calculation of C-Space Patterns of Robot Arms", Proceedings
of the 5th International Conference on Artificial Neural Networks (ICANN'95),
Vol. 2, pp. 387-392, Paris, France, October 9-13, 1995.

[Althoefer95d] Althoefer, K., Bugmann, G., "Planning and Learning Goal-Directed Sequences of
Robot-Arm Movements", Proceedings of the 5th International Conference on
Artificial Neural Networks (ICANN'95), Vol. 1, pp. 449-454, Paris, France,
October 9-13, 1995.

[Althoefer95e] Althoefer, K., Fraser, D.A., Bugmann, G., "Rapid Path Planning for Robotic
Manipulators using an emulated Resistive Grid", Electronics Letters, Vol. 31,
No. 22, pp. 1960-1961, Stevenage, UK, October 26, 1995.

[Althoefer96] Althoefer, K., Fraser, D.A., “Fuzzy Obstacle Avoidance for Robotic
Manipulators”, Neural Network World, Vol.6, No. 2, pp.131-142, 1996.

[Althoefer96c] Althoefer, K., Fraser, D.A., “Robotic Manipulators Amidst Moving Obstacles:
Fuzzy-based Obstacle Avoidance”, Proceedings of EUFIT '96 - The Fourth
European Congress on Intelligent Techniques and Soft Computing, Aachen,
September 2-5, 1996.

Bibliography170

[Azhar93] Azhar, F., Fraser, D.A., “Adaptive Robot Control using a Processor Network”,
Proceedings of EUROMICRO Workshop on Parallel and Distributed Processing,
January 29, 1993.

[Bapi95] Bapi, R., D'Cruz, B. and Bugmann, G. (1995) "Neuro-Resistive Grid Approach to
Pole-Balancing Problem", Proceedings of the International Conference on
Neural Networks (ICANN'95), Paris, France, pp. 539-544, Oct. 9-13, 1995.

[Barraquand91] Barraquand, J., Latombe, J.-C., “Robot Motion Planning: A Distributed
Representation Approach”, The International Journal of Robotics Research, Vol.
10, No. 6, pp. 628-649, December 1991.

[Barraquand92] Barraquand, J., Latombe, J.-C., “Numerical Potential Field Techniques for Robot
Path Planning”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 22,
No. 2, pp. 222-241, March/April 1992.

[Beiu96] Beiu, V., “Entropy bounds for classification algorithms”, Neural Network World,
Vol. 6, No. 4, pp. 497-505, 1996.

[Bellman57] Bellman, R.E., Dynamic Programming, Princeton University Press, Princeton,
1957.

[Bellman62] Bellman, R.E., Dreyfus, S.E., Applied Dynamic Programming, Princeton
University Press, Princeton, 1962.

[Berenji92] Berenji, H.R., Khedkar, P., “Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements”, IEEE Transactions on Neural Networks, Vol. 3, No.
5, pp. 724-740, September 1992.

[Bessiere93] Bessière, P., Ahuactzin, J.M., Talbi, E.G., Mazer, E., “The ‘Ariadne’s Clew’
Algorithm: Global Planning with Local Methods”, Proceedings of IEEE
Conference on Intelligent Robots and Systems (IROS), Yokohama, Japan, 1993.

[Bishop95] Bishop, C.M., Neural Networks for Pattern Recognition, Oxford University
Press, UK, 1995.

[Bose96] Bose, N.K., Liang, P., Neural Network Fundamentals with Graphs, Algorithms,
and Applications, McGraw-Hill, Inc., 1996.

[Boult90] Boult, T.E., “Dynamic Digital Distance Maps in Two Dimensions”, IEEE
Transactions on Robotics and Automation, Vol. 6, No. 5, October 1995.

[Branicky90] Branicky, M.S., Newman, W.S., “Rapid Computation of Configuration Space
Obstacles”, Proceedings of the 1990 IEEE International Conference on Robotics
and Automation, pp. 304-310, 1990.

[Bronshtein85] Bronshtein, I.N., Semendyayew, K.A., Handbook of Mathematics, Van Nostrand
Reinhold Company, New York, USA, 1985.

[Brooks86] Brooks, R.A., “A Robust Layered Control System For A Mobile Robot”, IEEE
Journal of Robotics and Automation, Vol. RA-2, No. 1, pp. 14-23, March 1986.

[Brown94] M. Brown, C. Harris, Neurofuzzy Adaptive Modelling and Control, Prentice Hall
International Ltd., UK, 1994.

[Bugmann94] Bugmann, G., Denham, M.J., Taylor, J.G., “Sensor and memory based path
planning in the egocentric reference frame of an autonomous mobile robot”,
Internal Report (NRG-94-01), School of Computing, University of Plymouth,
UK, 1994.

Bibliography 171

[Bugmann95] Bugmann, G., Taylor, J.G., Denham, M.J., “Route finding by neural nets”, Neural
Networks, Taylor, J.G. (editor), Alfred Waller Ltd., Henley-on-Thames, UK,
pp. 217-230, 1995.

[Bugmann96] Bugmann, G., "Value Maps for planning and learning implemented with cellular
automata ", Proceedings of the 2nd International Conference on Adaptive
Computing in Engineering Design and Control (ACEDC'96), Parmee I.C. (ed.),
pp. 307-309, Plymouth, 26-28 March, 1996.

[Chen92] Chen, N., Chung, H., “Robot Path Planner: A Neural Networks Approach”,
Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Raleigh, NC, USA, pp. 548-553, July 7-10, 1992.

[Chien95] Chien, Y.-P., Xue, Q., Chen, Y., “Configuration Space Model of Tightly
Coordinated Two Robot Manipulators Operating in 3-Dimensional Workspace”,
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, No. 4, April
1995.

[Cichocki94] Cichocki, A., Unbehauen, R., Neural Networks for Opimization and Signal
Processing, John Wiley & Sons Ltd. & B.G. Teubner, Stuttgart, Germany, 1994.

[Cires96] Cires, J., Zufiria, P.J., “The Self-organizing Map as a Perceptual Level for Mobil
Robot Control”, Proceedings of the 2nd International Conference on Engineering
Applications of Neural Networks, pp. 183-187, London, UK, 17-19 June, 1996.

[Connolly90] Connolly, C.I., Burns, J.B., Weiss, R., “Path Planning Using Laplace’s
Equation”, Proceedings of the IEEE Conference on Robotics and Automation,
Los Alamos, USA, pp. 2102-2106, 1990.

[Connolly93] Connolly, C.,I., Burns, J.B., “A model for the functioning of the striatum”,
Biological Cybernetics, 68, pp. 535-544, Springer-Verlag, 1993.

[Coolen91] Coolen, A.C.C., Kröse, B., Noest, A.J., “Neural Robot Vision and Control”,
Project proposal commissioned by the Dutch Foundation for Neural Networks,
Nijmegen, 1991.

[Cooper81] Cooper, L., Cooper, M.W., Introduction to Dynamic Programming, Pergamon
Press Ltd., 1981

[Cox92] Cox, E., “Fuzzy fundamentals”, IEEE Spectrum, pp. 58-61, October 1992.
[D'Cruz96] D'Cruz B., Bapi, R., Bugmann, G., "Neuro-resistive grid approach to trainable

controllers: A pole balancing example", Neural Computing and Application
Journal, 1996 (forthcoming)

[Drews92] Drews P., Wehninck, F.J.S., Strunz, U., Willms, K., “A sensor system for beam
tracking and geometry detection for arc-welding”, Robotersysteme, Vol.8, No.3,
pp.148-154, 1992 (in German).

[Droesser94] Drösser, C., Fuzzy Logic: Methodische Einführung in krauses Denken, Rowohlt
Taschenbuch Verlag GmbH, Hamburg, Germany, 1994 (in German).

[El-Mousa96] El-Mousa, A.H., Clarkson, T.G., “Multi-configurable pram based neuro-
computer”, Neural Network World, Vol. 6, No. 4, pp. 587-596, 1996.

[Fox92] Fox, J.J., Maciejewski, A.A., "Computing the Topology of Configuration Space",
Proceedings of the 1992 IEEE International Conference System, Man,
Cybernetics, Chicago, IL, pp. 31-36, October 1992.

Bibliography172

[Fox94] Fox , J.J., Maciejewski, A.A., ''Utilizing the Topology of Configuration Space
Real-time Multiple Manipulator Path Planning,'' Proceedings of the IEEE/RSJ/GI
International Conference on Intelligent Robots and Systems (IROS '94), Munich,
Germany, September 12-16, 1994.

[Fraser93] Fraser, D.A., Azhar, F., Althoefer, K., "On-line Adaptation in Robot Control",
Proceedings of the Third International Conference on 'Artificial Neural
Networks', IEE, Brighton, UK, pp. 205-209, May 25-27, 1993.

[Freund96] Freund, E., Dierks, F., “Map-based free navigation for autonomous vehicles”,
International Journal of Systems Science, Vol. 27, No. 8, pp.753-770, 1996.

[Glasius94] Glasius, R., Komoda, A., Gielen, S., “Neural network dynamics for path planning
and obstacle avoidance”, Neural Networks, Vol. 8., No. 1, pp. 125-133, Elsevier
Science Ltd., USA, March 1994.

[Gouzenes84] Gouzènes, L., “Strategies for Solving Collision-Free Trajectories Problems for
Mobile and Manipulator Robots”, International Journal of Robotics Research,
Vol. 3, No. 4, pp. 51-65, 1984.

[Graf88] Graf, D.H., LaLonde, W.R., “A Neural Controller for Collision-Free Movement
of General Robot Manipulators”, Proceedings of the 1988 IEEE International
Conference on Neural Networks, San Diego, California, USA, pp. I-77-84, July
24-27, 1988.

[Graham90] Graham, I., King, T., The Transputer Handbook, Prentice Hall International Ltd.,
1990.

[Gullapalli94] Gullapalli, V., Franklin, J., Benbrahim, H., “Acquiring Robot Skills via
Reinforcement Learning”, IEEE Control Systems, pp. 13-24, February 1994.

[Gupta90] Gupta, K.K., “Fast Collision Avoidance for Manipulator Arms: A Sequential
Search Strategy”, IEEE Transaction on Robotics and Automation, Vol. 6, No.5,
October 1990.

[Gupta92] Gupta, K.K., Guo, Z., "Motion Planning for Many Degrees of Freedom:
Backtracking with Sequential Search", Proceedings of IEEE Conference on
Robotics and Automation, 1992.

[Handelman90] Handelman, D.A., Lane, S.H., Gelfand, J.J., “Integrating Neural Networks and
Knowledge-Based Systems for Intelligent Robotic Control”, IEEE Control
Systems Magazine, April 1990.

[Helliwell95] Helliwell, I.S., Turega, M. A., Cottis, R. A., “Accountability of Neural Networks
Trained with ‘Real World’ Data”, in Proceedings of the International Conference
on ‘Artificial Neural Networks’, pp. 218-222, Cambridge, 26-28 June, 1995.

[Higgins88] Higgins, T.C., “Slave/Stand-Alone Transputer Board”, Masters’ Thesis at the
Dept. of Electronic and Electrical Eng., King’s College London, 1988.

[Higgins94] Higgins, C.M., Goodman, R.M., “Fuzzy Rule-Based Networks for Control”,
IEEE Transactions on Fuzzy Systems, Vol. 2, No. 1, February 1994.

[Hockney88] Hockney, R.W., Eastwood J.W., Computer simulation using particles, Special
Student Edition, 1988.

Bibliography 173

[Hoffmann96] Hoffmann, F., Malki, O., Pfister, G., “Evolutionary Algorithms for Learning of
Mobile Robot Controllers”, Proceedings of EUFIT '96 - The Fourth European
Congress on Intelligent Techniques and Soft Computing, Aachen, September 2-5,
1996.

[Hush93] Hush D.R., Horne, B.G., “Progress in Supervised Networks - What's New Since
Lippmann?”, IEEE Signal Processing Magazine, January 1993.

[Hwang90] Hwang, Y.K., “Boundary Equations of Configuration Obstacles for
Manipulators”, Proceedings of IEEE International Conference on Robotics and
Automation, pp. 298-303, 1991.

[Indyk94] Indyk, D., Velastin, S.A., "Survey of Range Vision Systems", Mechatronics, Vol.
4, No. 4, pp.417-449, June 1994.

[Jaitly96] Jaitly, R., Fraser, D.A., “Automated 3D Object Recognition and Library Entry
System”, Neural Network World, Vol. 6, No. 2, pp. 173-183, 1996.

[Jaitly96b] Jaitly, R., Althoefer, K., Fraser, D., “From Vision to Path Planning: A Neural
Based Implementation”, Proceedings of the 2nd International Conference on
Engineering Applications of Neural Networks, pp. 209-212, London, UK, 17-19
June, 1996.

[Jaitly96c] Jaitly, R., “Model-based 3D Object Recognition” (provisional title), PhD Thesis
at the Dept. of Electronic and Electrical Eng., King’s College London, 1996
(forthcoming).

[Jang92] Jang, J-S.R., “Self-Learning Fuzzy Controllers Based on Temporal Back
Propagation”, IEEE Transactions on Neural Networks, Vol. 3, No. 5, pp. 714-
723, September 1992.

[Jiang94] Jiang, K., “Planning Collision-Free Operations for Mobile Robots and
Manipulators”, PhD-Thesis, King’s College London, 1994.

[Johnson93] Johnson, J. H., Picton, P. D., Hallam, N. J., “Safety-critical neural computing:
explanation and verification in knowledge augmented neural networks”, Artificial
Intelligence in Engineering, Vol. 8, pp. 307-313, Elsevier Science Limited, 1993.

[Kanaya94] Kanaya, M., Tanaka, M., “Robot Multi-Driving Controls by Cellular Neural
Networks”, Proceedings of the Third IEEE International Workshop on Cellular
Neural Networks and their Applications, Rome, Italy, pp. 481-486, December 18-
21, 1994.

[Kartalopoulos96] Kartalopoulos, S.V., “Tutorial in application of fuzzy logic & neural networks in
communications”, Neural Network World, Vol. 6, No. 4, pp. 417-445, 1996.

[Kassim95] Kassim, A.A., Kumar, B.V.K.V., “Potential Fields and Neural Networks”, The
Handbook of Brain Theory and Neural Networks, Arbib, M.A. (ed.), MIT Press,
pp. 749-753, 1995.

[Keerthi95] Keerthi, S.S., Ravindran, B., “A Tutorial Survey of Reinforcement Learning”,
Technical Report, Dept. of Computer Science and Automation, Indian Institute of
Science, Bangalore, 1995.

[Kelly90] Kelly, D.G., “Stability in Contractive Nonlinear Neural Networks”, IEEE
Transactions on Biomedical Engineering, Vol. 37, No. 3, pp. 231-242, March
1990.

Bibliography174

[Khatib85] Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots”,
Proceedings of IEEE International Conference on Robotics and Automation, pp.
500-506, March 1985.

[Khatib86] Khatib, O., “Real-time obstacle avoidance for manipulators and mobile robots”,
The International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, Spring
1986.

[Kim91] Kim, J.-O., Khosla, P., “Real-Time Obstacle Avoidance Using Harmonic
Potential Functions”, Proceedings of the IEEE International Conference on
Robotics and Automation, Sacramento, California, USA, pp. 790-796, April
1991.

[Klawsky93] Klawsky, R.S., The Science of Virtual Reality and Virtual Environments: A
Technical, Scientific and Engineering Reference on Virtual Environments,
Addison-Wesley Publishing Company, 1993.

[Koch96] Koch, C., Mathur, B., “Neuromorphic vision chips”, IEEE Spectrum, pp. 38-46,
May 1996.

[Kosko92] Kosko, B., Neural Networks and Fuzzy Systems, Prentice-Hall International
Editions, 1992.

[Kramer96] Kramer, A. H., “Array-Based Analog Computations: Principles, Advantages and
Limitations”, Proceedings of MicroNeuro'96, Lausanne, Switzerland, IEEE
Computer Society Press, Los Alamitos, CA, pp. 68-79, 12-14 February, 1996.

[Kuperstein91] Kuperstein, M., “INFANT Neural Controller for Adaptive Sensory-Motor
Coordination”, Neural Networks, Vol. 4, pp. 131-145, Pergamon Press plc., 1991.

[Latombe91] Latombe, J.C., Robot Motion Planning, Kluwer Academic, Boston, MA, USA,
1991.

[Lee96] Lee, D., The Map-Building and Exploration Strategies of a Simple Sonar-
Equipped Mobile Robot: An Experimental, Quantitative Evaluation, Cambridge
University Press, UK, 1996.

[Lozano79] Lozano-Pérez, T. and Wesley, M.A., “An Algorithm for planning Collision-free
Paths among Polyhedral Obstacles”, Communications of the ACM, 22(10), pp.
560-570, 1979.

[Lozano83] Lozano-Peréz, T., “Spatial Planning: A Configuration Space Approach”, IEEE
Transactions on Computers, Vol. C-32, No. 2, pp. 108-120, February 1983.

[Lozano87] Lozano-Peréz, T., "A Simple Motion-Planning Algorithm for General Robot
Manipulators", IEEE Journal of Robotics & Automation, RA-3(3), pp. 224-238,
June 1987.

[Maciejewski93] Maciejewski, A.A., Fox, J.J., “Path Planning and the Topology of Configuration
Space”, IEEE Transaction on Robotics and Automation, Vol. 9, No. 4, August
1993.

[Mahadevan92] Mahadevan, S., Connell, J., “Automatic programming of behaviour-based robots
using reinforcement learning”, Artificial Intelligence, 55, pp. 311-365, Elsevier,
1992.

[Maier95] Maier, S., Hanebeck, U.D., “Fuzzy Guidance of Omnidirectional Mobile Robots
Including Sensor-Based Obstacle Avoidance”, Proceedings of the Telerobotics
Congress, Teleman - HCM, Delft University, Netherlands, July 1995.

Bibliography 175

[Mamdani81a] Mamdani, E.H., Assilian, S., “An Experiment in Linguistic Synthesis with a
Fuzzy Logic Controller”, Fuzzy Reasoning and its Applications, Mamdani, E.H.,
Gaines, B.R. (eds.), Academic Press, New York, USA, pp. 311-323, 1981.

[Mamdani81b] Mamdani, E.H., “Advances in the linguistic synthesis of fuzzy controllers”, Fuzzy
Reasoning and its Applications, Mamdani, E.H., Gaines, B.R., (eds.), pp. 325-
342, Academic Press, 1981.

[Marshall94] Marshall, G.F., Tarassenko, L., “Robot Path Planning Using VLSI Resistive
Grids”, IEE Proceedings on Vision, Image and Signal Processing, Vol. 141, No.
4, pp. 267-272, August 1994.

[Martelli76] Martelli, A., "An Application of Heuristic Search Methods to Edge and Contour
Detection", Communications of the ACM, vol. 19, no. 2, pp. 73-83, 1976.

[Maties94] Maties, V., Precup, T., Precup, D., Sipos C., “Automatic simulation of robot
obstacle avoidance using fuzzy algorithms, SINTES 7, The VII-th National
Symposium of System Theory, Robots, Computers and Process Management,
Craiova, Romania, 1994.

[Matlab96] Cambridge Control Solutions, Newton House, Cambridge Business Park, Cowley
Road, Cambridge, February 1996.

[McKerrow91] McKerrow, P.J., Introduction to Robotics, Addison-Wesley Publishers Ltd.,
1991.

[Mead88] Mead, C.A., Mahowald, M.A., “A silicon model of early visual processing”,
Neural Networks, 1, pp. 91-97, 1988.

[Mel95] Mel, B.W., “Planning Connectionist”, The Handbook of Brain Theory and
Neural Networks, Arbib, M.A. (ed.), MIT Press, pp. 741-745, 1995.

[Meyer88] Meyer, W., Benedict, P., Path Planning and the Geometry of Joint Space
Obstacles, Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 304-310, 1988.

[Millan92] Millán, J.R., Torras, C., “A Reinforcement Connectionist Approach to Robot
Path Finding in Non-Maze-Like Environments”, Machine Learning, Special Issue
on Reinforcement Learning, Vol. 8, No. 3/4, pp.139-171, May 1992.

[Miller90] Miller, W.T., An, E., Glanz, F.H., Carter, M.J., “The Design of CMAC Neural
Networks for Control”, Proceedings of Sixth Yale Workshop on Adaptive and
Learning Systems, Yale University, August 15-17, 1990.

[Mitchell96] Mitchell, R.J., Keating, D.A., Goodnew, I.C.B., Bishop, J.M., “Multiple Neural
Network Control of Simple Mobile Robots”, Proceedings of the Fourth IEEE
Mediterranean Symposium on New Directions in Control and Automation, Crete,
pp. 271-275, June 1996.

[Morasso95] Morasso, P., Giuffrida, F., Vercelli, G., Zaccaria, R., “Safety of man-robot
interaction in a domotic application”, Proceedings of the 5th International
Conference on Artificial Neural Networks (industrial section), Paris, France,
October 9-13, 1995.

[Morgan95] Morgan, G., Austin, J., “Safety Critical Neural Networks”, Proceedings of the
International Conference on ‘Artificial Neural Networks’, Cambridge, UK, pp.
212-217, 26-28 June 1995.

Bibliography176

[Musavi92] Musavi, M.T., Ahmed, W., Chan, K.H., Faris, K.B., “On the Training of Radial
Basis Function Classifiers”, Neural Networks, Vol. 5, pp. 595-603, Pergamon
Press Ltd., 1992.

[Nauck94] Nauck, D., Klawonn, F., Kruse, R., Neuronale Netze und Fuzzy Systeme, Vieweg,
Braunschweig/Wiesbaden, Germany, 1994 (in German).

[Newman91] Newman, W.S. and Branicky, M.S., “Real-Time Configuration Space Transforms
for Obstacle Avoidance”, The International Journal of Robotics Research, Vol.
10, No. 6, 1991.

[Nguyen90] Nguyen, D., Widrow, B., “The Truck Backer-Upper: An Example of Self-
Learning in Neural Networks”, Neural Networks for Control, Miller, W.T.,
Sutton, R.S., Werbos, P.J., (eds.), The MIT Press, Cambridge, USA, 1990.

[Noble64] Noble, B., Numerical Methods II: Differences, Integration and Differential
Equations, Oliver and Boyd Ltd., UK, 1964.

[Palm91b] Palm, R., “Fuzzy-Control: Grundlagen und Entwicklungsmethoden”,
Informationstechnik (it), 33, Oldenbourg Verlag, June 1991 (in German).

[Racz92] Racz, J., Mieleszczenko, W., “Mobile Robot for Inspection of Nuclear
Installations”, Archiwum Budowy Maszyn, Vol. XXXIX, pp. 79-90, 1992.

[Ralli94] Ralli, E., Hirzinger, G., "Fast Path Planning for Robot Manipulators Using
Numerical Potential Fields in the Configuration Space", Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Munich, Germany, pp.1922-1929, Sept. 12-16, 1994

[Ralli96] Ralli, E., Hirzinger, G., "A Global and Resolution Complete Path Planner for up
to 6dof Robot Manipulators", Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Minneapolis, Minnesota, USA, pp. 3295-
3302, April 23-27, 1996

[Ramo94] Ramo, S., Whinnery, J.R., Duzer, T. van, Fields and Waves in Communication
Electronics, John Wiley & Sons, Inc., 1994.

[Redmill95] Redmill, F. (editor), “Medical safety systems”, in Computing & Control -
Engineering Journal, IEE Publication, Vol. 6, No. 5, pg. 202-232, October 1995.

[Reignier93] Reignier, P., “Fuzzy Logic Techniques for Mobile Robot Obstacle Avoidance”,
Proceedings of the International Workshop on Intelligent Robotic Systems ’93,
Zakopane, pp. 187-197, July 1993.

[Reignier94] Reignier, P., “Molusc: An Incremental Approach of Fuzzy Learning”,
Proceedings of the International Workshop on Intelligent Robotic Systems ’93,
Grenoble, pp. 179-187, July 1994.

[Reimer86] Reimer, M., Höhere Mathematik IV, Lecture Script, Lehrstühle Mathematik III &
VIII, University of Dortmund, 1986 (in German).

[Risse95] Risse, W., Fink, B., Hiller, M., “Multisensor-based Control of a Redundant
SCARA Robot”, Proceedings of Ninth World Congress on the Theory of
Machines and Mechanisms, Milano, Italy, 30 August - 2 September, 1995.

[Ritter92] Ritter, H., Martinetz, T., Schulten, K., Neural Computing and Self-Organizing
Maps, Addison-Wesley Publishing Company, 1992

Bibliography 177

[Roska96] Roska, T., “Cellular Neural Networks-A Paradigm behind a Visual
Microprocessor”, Presentation at the NeuroFuzzy ’96 - IEEE European
Workshop, Prague, Czech Republic, 16-18 April, 1996.

[Roth93] Roth, H., Schilling, K., Theobald, B., “Fuzzy Control Strategies for Mobile
Robots”, Proceedings of the 9th Fachgespräch über Autonome Systems, Munich,
Germany, pp. 251-260, October 1993.

[Rucci93] Rucci, M., Dario, P., “Active Exploration in Robotic Tactile Perception”,
Proceedings of the International Workshop on Intelligent Robotic Systems,
Zakopane, pp. 212-223, 1993.

[Schmidt95] Schmidt, H., Velastin, S.A., “Fuzzy Controlled Robot Gripper System for
Slipping of Objects”, Second Latin American Seminar on Advanced Control
(LASAC 95), Santiago, Chile, 26-29 September 1995.

[Schuster94] Schuster, C., Schmitz, T., Hiller, M., “Investigation of Stability and Robustness
of a Fuzzy Traction Control System”, presented at WW Workshop on Fuzzy Logic
and Neural Networks, Nagaya, Japan, 1994.

[Serac96] Serac, A., Roth, H., “Design of a complex rule-based controller for a
biotechnological process”, Neural Network World, Vol.6, No. 4, pp. 701-709,
1996.

[Sharkey96] Sharkey, N.E., Heemskerk, J.N.H., Neary, J., “Training Artificial Neural
Networks for Robot Control”, Proceedings of the 2nd International Conference
on Engineering Applications of Neural Networks, pp. 190-196, London, UK, 17-
19 June, 1996.

[Siemiatkowska94] Siemiatkowska, B., “A Highly Parallel Method for Mapping and Navigation of
An Autonomous Mobile Robot”, Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, San Diego, California, Vol.4, pp. 2796-
2801, May 8-13, 1994.

[Siemiatkowska94b] Siemiatkowska, B., “Cellular neural network for mobile robot navigation”,
Proceedings of the Third IEEE International Workshop on Cellular Neural
Networks and their Applications, Rome, Italy, pp. 285-290, December 18-21,
1994.

[Skubic93] Skubic, M., Graves, S., Mollenhauer, J., "Design of a two-level fuzzy controller
for a reactive miniature mobile robot", Proceedings of the Third International
Conference on Industrial Fuzzy Control and Intelligent Systems, Houston, TX,
USA, December 1993.

[Song92] Song, K., Tai, J., “Fuzzy Navigation of a Mobile Robot”, Proceedings of the
1992 IEEE/RJS International Conference on Intelligent Robots and Systems,
Raleigh, NC, pp. 621-627, July 1992.

[Sugeno84] Sugeno, M., Murakami, K., “Fuzzy Parking Control of Model Car”, Proceedings
of 23rd IEEE Conference on Decision and Control, Las Vegas, USA, pp. 902-
903, December 1984.

[Sulzberger93] Sulzberger, S.M., Tschichold-Gürman, N.N., Vestli, S.J., “FUN: Optimization of
Fuzzy Rule Based Systems Using Neural Networks”, Proceedings of the IEEE
International Conference on Neural Networks, San Francisco, CA, UAS, 28
March - 1 April, 1993.

Bibliography178

[Sutton90] Sutton, R.S., “Integrated Architectures for Learning, Planning, and Reacting
Based on Approximating Dynamic Programming”, Proceedings of the Seventh
International Conference on Machine Learning, pp. 216-224, Morgan Kaufmann,
1990.

[Sutton91] Sutton, R.S., “Planning by Incremental Dynamic Programming”, Proceedings of
the Ninth Conference on Machine Learning, pp. 353-357, Morgan Kaufmann,
1991.

[Tarassenko91] Tarassenko, L., Blake, A., “Analogue computation of collision-free paths”,
Proceedings of the 1991 IEEE International Conference on Robotics and
Automation, Sacramento, CA, April 1991.

[Tschichold96] Tschichold-Gürman, N., “The Neural Network Model RuleNet and its
Application to Mobile Robot Navigation”, Special Issue of Methods for Data
Analysis of Fuzzy Sets and Systems, 1996 (in press).

[Tschichold96b] Tschichold-Gürman, N., “RuleNet: A Knowledge-Based Neural Network Model
with Application Examples in Mobile Robotics”, PhD Thesis at the Swiss Federal
Institute of Technology, ETH Zürich, Diss. ETH No. 11356, 1995

[Vestli94] Vestli, S.J., Tschichold-Gürman, N., Andersson, H., “Learning control and
localisation of mobile robots”, 10. Fachgespräch über Autonome Mobile Systeme
(AMS’94), Stuttgart, Germany, 13-14 October, 1994.

[Winkelmann96] Winkelmann, R., “Building Configuration Space for a Two-Link, Planar
Manipulator for Robot Motion Planning”, Report for ERASMUS-Project,
Department of Mechanical Engineering, King’s College London, UK, September
1996.

[Wolff68] Wolff, I., Grundlagen und Anwendungen der Maxwellschen Theorie I & II,
Bibliographisches Institut, B.I.-Wissenschaftsverlag, Mannheim/ Wien/ Zürich,
1968 (in German).

[Zadeh96] Zadeh, L., “The Pivotal Role of Information Granulation in Fuzzy Logic,
Computing with Words and Decision Analysis”, Proceedings of EUFIT '96 - The
Fourth European Congress on Intelligent Techniques and Soft Computing,
Aachen, September 2-5, 1996.

[Zavlangas96] Zavlangas, P., “Obstacle Avoidance for Robotic Manipulators Using Fuzzy
Logic”, Masters’ Thesis at the Dept. of Electronic and Electrical Eng., King’s
College London, 1996.

[Zicky95] Zicky, A., “The Model of the Video Safety System for Industrial Robots”,
(Internal Report), Central Institute for Labour Protection, Department of Safety
Engineering, Czerniakowska 16, 00-701 Warszawa, Poland, 1995.

[Zimmer94] Zimmer, U.R., Fischer, C., von Puttkammer, E., “Navigation on Topologic
Feature-Maps”, Proceedings of IIZUKA’94, Fukuoka, Japan, 1-7 August, 1994.

[Zimmer94c] Zimmer, U.R., von Puttkammer, E., “Comparing World-Modelling Strategies for
Autonomous Mobile Robots”, Proceedings of IWK’94, Ilmenau, Germany,
September 27-30, 1994.

