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Abstract—Point cloud registration suffers from repeated pat-
terns and low geometric structures in indoor scenes. The recent
transformer utilises attention mechanism to capture the global
correlations in feature space and improves the registration
performance. However, for indoor scenarios, global correlation
loses its advantages as it cannot distinguish real useful features
and noise. To address this problem, we propose an image-
geometry-assisted point cloud registration method by integrating
image information into point features and selectively fusing
the geometric consistency with respect to reliable salient areas.
Firstly, an Intra-Image-Geometry fusion module is proposed
to integrate the texture and structure information into the
point feature space by the cross-attention mechanism. Initial
corresponding superpoints are acquired as salient anchors in the
source and target. Then, a selective correlation fusion module is
designed to embed the correlations between the salient anchors
and points. During training, the saliency location and selective
correlation fusion modules exchange information iteratively to
identify the most reliable salient anchors and achieve effective
feature fusion. The obtained distinctive point cloud features allow
for accurate correspondence matching, leading to the success
of indoor point cloud registration. Extensive experiments are
conducted on 3DMatch and 3DLoMatch datasets to demonstrate
the outstanding performance of the proposed approach com-
pared to the state-of-the-art, particularly in those geometrically
challenging cases such as repetitive patterns and low-geometry
regions.

Index Terms—multimodal point cloud registration, low-
geometry area, repetitive patterns

I. INTRODUCTION

W ITH the pervasion of 3D capturing sensors, the ac-
quisition of point clouds has become more convenient

than ever. Many industries benefit from the utilization of
point clouds, such as autonomous driving [1]–[3], robotics
[4], virtual reality [5], and shape modeling [6]. Since the
view range of 3D sensors is usually limited, it is often
required to register partial point clouds into a complete view
in the applications. Thus, point cloud registration has become
a fundamental problem for many tasks and draws a lot of
attention in recent years [7]–[9].
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Traditional point cloud registration mainly relies on cor-
respondence search and transformation estimation iteratively
using classical optimization strategies [10]–[12]. Although the
traditional registration methods generalize well to unknown
scenes, they are prone to be affected by noise, outliers,
partial overlap, and various densities. Such imperfections are
prevalent in real-scanned point clouds.

With deep learning flourished, correspondence search can
be obtained by the learned features [13], [14] and the trans-
formation is achieved by one-step estimation (e.g. RANSAC
[15] ) without iteration. Based on learned features, a set of
keypoints in the source and target point clouds are detected
and matched to perform registration [13], [16]. However, as
repetitive patterns and low-geometry areas are very common
and sometimes occupy the majority of the areas in certain
scenes, the extracted features are lack of discriminative power.
In such cases, it is non-trivial to extract accurate point corre-
spondences between the source and target point clouds. As
shown in Figure 1, the source and target contain multiple
sofas which are similar in appearance in the non-overlapping
areas. The repetitive patterns are prone to produce incorrect
correspondences. Also, accurate correspondences are hard to
acquire for the low-geometry parts in the overlap region, such
as floors that are composed of flat and smooth surface, as
few geometric features can be extracted. These issues pose
great challenges for locating accurate point correspondences
for reliable registration and they are particularly prominent in
indoor scenarios.

Recent methods in both 2D and 3D domains are proposed
to enhance the discriminative power of feature representation.
GeoTransformer adopts attention mechanism to merge global
contexts into features for better superpoint matching [17]. Yu
et al. aggregate the features of original points and superpoint
for better region matching [18]. Zhang et al. propose a Gated
NetVLAD by adopting a gating scheme to automatically esti-
mate the weight for each residue vector [19]. However, weak
geometry and repetitive patterns commonly occupy a major
proportion of the point clouds, especially for indoor scenarios.
Merely relying on geometry information is insufficient to
extract accurate and distinct features for reliable registration
in those challenging cases.

Thus, in this paper, we propose a multimodal point cloud
registration framework that jointly adopts the image and
geometry information to enrich the point cloud feature. To
further enhance the discriminative power of point features, a
selective correlation fusion module is proposed to merge the
geometric correlations like the distance and angles concern-
ing the reliable salient regions. Specifically, with the input
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image and point cloud, the image and point cloud features
are extracted by the image backbone and KPConv. During
feature extraction, the point clouds are downsampled into
superpoints and the associated features are jointly learned.
In order to improve the richness of features, an Intra-Image-
Geometry (IIG) fusion module is designed to fuse the image
and geometry information. In the IIG fusion module, the 2D
image and 3D point clouds are first aligned by projecting
the point clouds on the 2D plane with the extrinsic camera
parameters. Due to sparsity, each superpoint corresponds to
an image patch on the 2D plane. Within each superpoint, the
features of pixels in the corresponding patch are fused into
the superpoint geometric features by the attention mechanism.
In this way, the geometric features are enriched by the image
information. Based on the image-enriched superpoint features,
a saliency location module is then applied to select a set
of reliable superpoint correspondences in the overlap region
as salient anchors in the source and target point clouds.
Non-maximum suppression is utilised to ensure the salient
anchors are sparsely distributed and representative. Given
the salient anchors, it is possible to enhance the superpoint
feature for accurate matching by selectively fusing correlations
between the superpoints and the salient anchors. The corre-
lations including the superpoint-anchor distances and angles
are incorporated by the structure cross-attention technique.
To capture the most effective salient anchors in the overlap
features which later become distinct through selective fusion,
the positions of salient anchors and superpoint features are
iteratively updated. This iterative process plays a crucial role
in obtaining accurate superpoint correspondences. Finally, the
point correspondences are established to generate the final
transformation by the pose estimator.

We list our contributions as follows:
• We propose a multimodal point cloud registration frame-

work, named IGReg, that enhances point cloud features
by merging image textures and selectively fusing the
correlations between superpoints in an iterative manner.

• An attention-based Intra-Image-Geometry (IIG) fusion
module is designed to fully merge the image and point
cloud information without introducing extra noise.

• A selective correlation fusion (SCF) method is proposed
to incorporate the correlations between the anchors and
superpoints for feature enhancement.

The remainder of this research is organized as follows. The
related work is discussed in Section II. Section III presents the
proposed method in detail. The experimental evaluation results
are demonstrated in Section IV. And Section V concludes the
paper.

II. RELATED WORK

Feature-based Registration. The methods with feature-
based registration mainly focus on four aspects: feature ex-
traction, keypoint detection, outlier removal, and pose estima-
tion. Qi et al. propose PointNet and PointNet++ successively
[20], [21]. Although they provide a reference for the feature
extraction of point clouds, these two methods do not consider
the geometric structure features of point clouds. Deng et

(c) Geo Patch Correspondences (d) Geo Point Correspondences

(b) Ours Point Correspondences(a) Ours Patch Correspondences

Low-geometry areas in the overlap region

(c) Geo Patch Correspondences (d) Geo Point Correspondences

(b) Ours Point Correspondences(a) Ours Patch Correspondences

Repetitive patterns in the non-overlapping region

Fig. 1. The patch and point correspondences of the proposed method and
GeoTransformer in the geometrically challenging cases: (1) Repetitive patterns
(sofa parts) in the non-overlapping areas and (2) Low-geometry areas (floor
parts) in the overlap region. Green lines are correct correspondences and red
lines are incorrect ones.

al. propose PPFNet [22]. The point pair feature (PPF) is
combined with PointNet to improve the robustness of features
against noise. The 3DFeatNet proposed by Yew and Lee et al.
utilises a weakly supervised deep network to solve the difficult
problem of accurate labeling of point cloud data and improve
feature quality [23]. Gojcic et al. propose 3DSmoothNet,
which utilises the Siamese network architecture to encode
smoothed density value voxelization (SDV) [24]. Wang et
al. design the edge convolution (EdgeConv) operation and
construct DGCNN to capture topological information between
points [25]. Thomas et al. propose KPConv to simulate oper-
ations in 2D convolutions to better capture local geometric
information [26]. The 3DMatch network proposed by Zeng et
al. takes voxels as input and utilises 3D convolutional neural
networks to learn local geometric features [27]. Choy et al.
propose FCGF which adopts sparse 3D convolution instead of
traditional 3D convolution to alleviate the problem caused by
point cloud sparsity [14]. SpinNet restricts the z-axis degrees
of freedom through the estimated reference axis and uses
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spherical voxelization to eliminate the XY plane rotational de-
grees of freedom to extract features with high robustness [28].
D3feat proposed by Bai et al. uses a U-Net network composed
of KPConv to detect keypoints while extracting point cloud
features and uses a density-invariant saliency score to alleviate
the effect of density on saliency [13]. Huang et al. improve the
probability of correct detection by detecting the possibility of
points in overlapping regions while extending the task to low-
overlapping scenes [29]. Bai et al. propose PointDSC that adds
the spatial geometric consistency constraints in the traditional
method to the network and uses the neural network to extract
the features of the correspondences, to select a set of spatially
consistent point pairs [30]. DCP (deep closest point) and
DeepVCP estimate relative pose by weighted confidence [31],
[32]. While IDAM (iterative distance-aware similarity matrix)
and DGR (Deep global registration) use weighted SVD to
solve rigid transformations by selecting high-confidence point
pairs [33], [34]. Although the aforementioned methods make
efforts to extract robust and descriptive point cloud features.
However, they often only consider the self-point cloud when
embedding structures, which is insufficient for point clouds
with low-geometry areas and repetitive patterns.

Direct Registration Methods. PointNetLK calculates the
Jacobian matrix with the relative pose obtained by PointNet
and the inverse compositional formula, and finally uses a
differentiable Lucas & Kanade (LK) algorithm to calculate the
rigid transformation [35]. Deng et al. input the PPF feature and
point cloud into the PPF-FoldNet and PC-FoldNet networks
respectively to obtain a new feature including the structure
and pose, and used RelativeNet to predict the relative pose
[36]. PCRNet uses a network similar to Siamese to predict the
transformation matrix after splicing the global features of the
two point clouds [37]. FMR draws on the idea of PointNetLK,
utilises the reversible property of rigid transformation, and
uses the encoder-decoder structure to supervise global features
[38]. Xu et al. propose OMNet to predict overlapping masks
of source and target point clouds in an iterative process,
estimating rigid transformations from the global features of
both through MLPs [39]. However, the direct registration
approaches are usually limited in processing real scenes.

Multimodal Point Cloud Registration. Recent work starts
to utilise images to assist point cloud registration. IMFNet
merges the image and point cloud features using attention
techniques [40]. ImLoveNet exploits an intermediate image to
assist in obtaining accurate overlap region between the source
and target point clouds [41]. However, without alignment
between the 2D and 3D information, noise is fused to degrade
the performance. PCR-CG firstly extracts the potential 2D
correspondences predicted by image matching methods and
then explicitly lifts the color signals into the 3D presentation
with KPConv bottleneck [42]. Although PCR-CG uses an
explicit 2D-3D projection method to reduce the introduction
of noise, the approach is limited by the performance of
image matching methods and is prone to being misguided by
incorrect 2D prior information, which is fatal in low-overlap
rate scenarios.

III. THE PROPOSED METHOD

A. Problem Statement

Given two point clouds P = {pi ∈ R3 | i = 1, . . . , N} and
Q = {qi ∈ R3 | i = 1, . . . ,M} and their corresponding
images IP ∈ RW×H and IQ ∈ RW×H from different
viewpoints with a partial overlap in a scene, our goal is to
solve a transformation Trans ∈ SE(3) which aligns the point
clouds into a unified coordinate system. The transformation
consists of two parts: rotation R ∈ SO(3) and translation
t ∈ R3. They can be obtained by the formula:

argmin
R,t

∑
(pxi

,qyi
)∈C

∥qyi
− (R · pxi

+ t)∥22, (1)

where (pxi
,qyi

) belongs to the correspondence set C and
represents the point-wise correspondence between the source
and the target point clouds. Thus the problem of solving the
transformation is turned into the problem of finding the correct
correspondence set C.

B. Method Overview

As shown in Figure 2, the whole IGReg framework consists
of the following parts: (1) feature extraction part where point
clouds and images are input into backbones to extract point
and image features and the point clouds are downsampled into
superpoints; (2) the IIG fusion part where the superpoints are
projected to corresponding image patches and the attention
mechanism is used to fuse the image and superpoint features
for enrichment; (3) the selective correlation fusion part where
the anchor location and correlation fusion (i.e. the distance
and angles) iteratively interact and finally the most reliable
correlations are integrated into the superpoint features; (4)
matching & registration with the enhanced features.

C. Image and Point Cloud Feature Extraction

We first feed the original source and target point cloud
P ∈ R|P|×3 and Q ∈ R|Q|×3 into the shared KPConv
backbone network, by which the raw point clouds are sampled
into superpoints, denoted as P̂ = {p̂i}|P̂|

i=1 and Q̂ = {q̂j}|Q̂|
j=1

respectively, and superpoint features are extracted, represented
as FP̂ ∈ R|P̂|×C and FQ̂ ∈ R|Q̂|×C . The downsampling
and feature extraction process can be formulated as f :(
R|P|×3,R|Q|×3

)
→

(
R|P̂|×C ,R|Q̂|×C

)
, where C is the

superpoint feature dimension.
We adopt the ResUNet-50 [43] backbone to extract image

features. For the source and target images IP ∈ RW×H and
IQ ∈ RW×H , the acquired features are represented as FIP ∈
RW×H×C and FIQ ∈ RW×H×C .

D. Intra-Image-Geometry Fusion Module

As point clouds only contain geometry information, it is
nontrivial to distinguish different objects with similar struc-
tures. Thus, we propose an Intra-Image-Geometry (IIG) Fusion
Module to integrate image and geometry information to enrich
the point cloud features.
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Fig. 2. Overview of the proposed registration method. Feature extraction is first performed to acquire the superpoint features and image features. Then
the Intra-Image-Geometry Fusion (IIG Fusion) is proposed to integrate geometry information and corresponding image to enrich the point cloud features.
Next the Selective Correlation Fusion Module (SCF Module) consists of Salient Anchor Location and Correlation Fusion Module. Specifically, the anchor
location module is to capture the salient anchors with rich and discriminative geometric and image information. The Correlation Fusion Module integrates
the structure information between salient anchors and superpoints for feature enhancement. The enhanced feature and the anchor positions are updated in an
iterative manner to acquire the most effective anchors and distinct features. In the superpoint matching stage, superpoint correspondences are obtained under
the guidance of enhanced superpoint features. In the point matching stage, the superpoint correspondences are extended to the point correspondences within
the region and then the final transformation is obtained.

Projection. As the source and target point clouds are par-
tially overlapped and sometimes with extremely low overlap.
The integration of global image information like IMFNet [40]
introduces noise. Thus, we first project the point cloud onto
the 2D plane to locate a rough alignment. Given the ith 3D
point pi in the point cloud, its pixel position (wi,hi) in the
image can be located with Eq. 2,

(wi,hi, 1) = h(Kint · (Rext · pi + text))) (2)

where (Rext, text) is the extrinsic camera parameters in-
cluding the rotation and translation matrices; Kint ∈ R3×3

is the intrinsic camera parameters; and h(·) represents the
homogeneous function. As the superpoint is downsampled
from the original points, each superpoint can be aligned with
a set of image pixels which are denoted as an image patch.

Image-geometry fusion. Given the superpoints P̂ in the
source point cloud and its corresponding image patches IP̂
as an example, the cross-attention technique is adopted to
extensively merge the pixel feature into the superpoints. Af-
ter the projection model, the feature vector of superpoints

and image patches is unsqueezed to FP̂ ∈ RN×1×C and
FIP̂ ∈ RN×Kp×C . FP̂ is the feature of superpoints and
FIP̂ is the feature of corresponding pixels. Each superpoint
is related to Kp pixels and N is the number of superpoints.
FP̂ is considered as the query array QA ∈ RN×1×C . FIP

is regarded as key array KA ∈ RN×Kp×C and value array
VA ∈ RN×Kp×C . C is the feature dimension. The weight
matrix W ∈ RN×Kp = softmax(QAKA

T

√
C

) represents the
weight of each pixel’s texture information that could contribute
to describing the corresponding superpoint. Mathematically,
the superpoint texture feature F ∈ RN×C can be calculated
with:

F = MLP (W ∗VA) (3)

Finally, we concatenate the texture feature F and geometric
feature FP̂ to fuse multimodal information. Mathematically,
the fused encoder feature FIP̂ is calculated as

FIP̂ = (FP̂
ij)cat(Fij),∀i ∈ [1, N ] ,∀j ∈ [1, C] (4)
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E. Selective Correlation Fusion Module (SCF Module)

1) Salient Anchor Location.: With the enriched features
for superpoints, we can locate the sparse and shape-preserved
anchor correspondences between the source and target point
clouds. Once reliable anchor correspondences are obtained,
they can be used as references to embed the correlations
into each superpoint feature. In this way, the mismatching of
those ambiguous superpoints can be eliminated. Thus, in this
Salient Anchor Location module, our goal is to obtain those
superpoints with discriminative features as salient anchors.
Since the anchors should be consistent in the feature space
of both source and target point clouds in order to embed
consistent geometric information into point cloud features,
the resultant salient anchors should be located in the overlap
region.

Given the image-geometry fused superpoint features (i.e.
FIP̂ ∈ R|P̂|×C and FIQ̂ ∈ R|Q̂|×C) of source and target
point clouds, the initial anchor correspondences can be chosen
as those with high confidence in the similarity matrix S
that is computed with L2 norm. As shown in Figure 2,
in order to obtain the structure-preserved anchor correspon-
dences that are distributed sparsely, we abandon the traditional
top-K selection way that consecutively chooses the several
highest-confidence superpoint matches to avoid the positions
of picked anchor correspondences are concentrated. Instead,
Non-Maximum Suppression (NMS) [44] is adopted to ensure
the spatial uniformity and sparsity of selected anchor cor-
respondences. The similarity scores between the superpoints
of source and target point clouds are computed and ranked
from the highest confidence to the lowest. Non-Maximum
Suppression is applied with the fixed radius of rnms around
each superpoint. After choosing the highest-confidence super-
point, all the correspondences within the Euclidean distance
of rnms are removed. In the remaining superpoints, we pick
the highest-confidence correspondence as the second anchor
correspondence and remove those located within the radius
of rnms. The process is repeated until we acquire K initial
anchor correspondences which are defined as follows.

Ĉ = {(âxk
, b̂yk

) ∈ R1×6 | k = 1, . . . ,K}, (5)

where the anchor point âxk
is in correspondence with b̂yk

,
xk ∈ {1, . . .

∣∣∣P̂∣∣∣} and yk ∈ {1, . . .
∣∣∣Q̂∣∣∣} and K is the total

number of anchor correspondences. The whole process of
anchor location is illustrated in Algorithm 1.

2) Correlation Fusion Module: In this part, we first
perform internal structure embedding within each point cloud.
In order to enhance the discriminative ability of the superpoint
features, we further selectively integrate the correlations be-
tween the anchors and superpoints at the stage of interaction
between source and target point clouds.

Internal Structure Embedding of Superpoints. The inter-
nal structure within the point cloud contains abundant context
information and can benefit the descriptive ability of super-
point features. Here, we adopt the self-attention mechanism to
help perceive the context information and embed the internal
structure into superpoint features.

Algorithm 1: Salient Anchor Location
Input: radius parameters r, similarity matrix S,

number of anchor correspondences K
Output: Ĉ = {(âxk

, b̂yk
) | k = 1, . . . ,K}

1 Ĉ = ϕ
2 while k ∈ {1, 2, ...,K} do
3 Sx,y = max(S);
4 Ĉ = Ĉ ∪ (âx, b̂y);
5 for i ∈ {1, 2, ..., row(S)} do
6 if ||âx − p̂i||2 < r then
7 remove(Si,−)
8 end
9 end

10 for j ∈ {1, 2, ..., col(S)} do
11 if ||b̂y − q̂j ||2 < r then
12 remove(S−,j)
13 end
14 end
15 end
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Fig. 3. The computation graph of self-attention (a) and cross-attention (b).

The source point cloud is taken as an example to explain
the embedding process. Given a superpoint p̂i in the source,
the superpoint-wise distance embedding from p̂i to another
superpoint p̂j is computed using Eq. 6:

E
P̂(i,j)
sa = Wdf(d(p̂i, p̂j)/σd), (6)

where p̂j ∈ P̂ − {p̂i} is the superpoint except p̂i; d(p̂i, p̂j) =
∥p̂i − p̂j∥22; f(·) represents a sinusoidal function that maps a
scalar to a high-dimensional feature; and σd is a coefficient to
adjust distance sensitivity. It is usually set between 0.1m and
0.5m.

Given the superpoint feature FP̂ and the distance embed-
ding EP̂

sa, the self-attention technique is used to merge the
superpoint features and the superpoint-wise distance. Each
superpoint and the superpoint-wise distance can be regarded
as the token and relative positional embedding respectively
in self-attention. Three learnable matrices Wq,Wk, and Wv

are utilised to map each token FP̂ to its own query, keys, and
values which are denoted by FP̂

q ,F
P̂
k , and FP̂

v , respectively.
Wg is used to map EP̂

sa to EP̂
g . Then FP̂

q , FP̂
k , and EP̂

g

are used to calculate the attention matrix Score. Adding
superpoint-wise distance can help the information fusion pay
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attention to the position of each token. The calculation of each
value in the attention matrix is as described in Eq. 7:

Score(i,j) =
FP̂i

q · (FP̂j

k +E
P̂(i,j)
g )T

√
C

(7)

The output of superpoint feature merged with the geometric
information FP̂ is calculated by

FP̂ = softmax(Score) · FP̂
v (8)

In order to express the above calculation process more
clearly, we use Fig.3 (a) to show the calculation graph of self-
attention.

Correlation Fusion between Anchors and Superpoints.
In the process of interacting the information across two point
clouds, instead of aggregating all the correlations between
superpoints, we selectively embed the correlations with respect
to the selected anchors to further enhance the distinctiveness
of superpoint features. There are several advantages of embed-
ding the correlations with respect to salient anchors rather than
all the superpoints: 1) In the case where some similar scenes
of source and target are not in the overlapping area and the
overlap ratio is rather low, interacting all the superpoint infor-
mation across two point clouds unavoidably introduce noise
and disturbance; 2) Selectively embedding the correlations
between sparse and correct anchors and superpoints is useful
to avoid the symmetric, upside-down and front-and-back flip
problems in the low-geometry areas; 3) The computational
cost is largely reduced. The process is shown in Fig. 3 (b). The
features and correlations of the source and target superpoints
are explicitly fused using a cross-attention mechanism.

For a superpoint p̂n in the source, the anchor point set
is denoted as {âi}Ki=1. We calculate the correlations of the
distance between the superpoint and the ith anchor point using
Eq. 9.

ρi = d(p̂n, âi), (9)

The f(·) function is then used to map the anchor-superpoint
distance to high-dimensional features like self-attention. Then,
according to the anchor correspondence scores, they are
weighted and added to form the anchor-superpoint distance
embedding:

Edp̂n
ca =

K∑
i=1

Wdf(ρi/σd), (10)

where EdP̂n
ca is the anchor-superpoint distance embedding; K

is the number of anchor points in the source point clouds;
Wd ∈ RC×C is the projection matrix of the distance embed-
ding; σd is used to adjust distance sensitivity as above.

Besides the correlation of distance, the angles between the
superpoints and the anchors are also fused into the features. As
shown in Figure 4, we take the superpoint p̂n as the vertex.
The vertex and two anchor points compose the superpoint-
anchor angles and are defined as:

θk(p̂n, â
l, âs) = deg(âl − p̂n, â

s − p̂n), (11)

where θk represents the kth anchor-superpoint angle; âl de-
notes the lth anchor in the source and l = {1, 2, ...,K}; âs

denotes the sth anchor and s = {1, 2, ...,K}; deg(·) is the
degree function that calculates the degree of angles.

After acquiring the anchor-superpoint angles, we use the
sinusoidal function f(·) to map it to a high-dimensional
feature. Then the confidence score weighted sum is used to
obtain the anchor-superpoint angle embedding.

Eap̂n
ca =

C2
K∑

k=1

Waf(θk(p̂n, â
l, âs)/σθ), (12)

where Wa is the projection matrix for the angle embedding;
the K is the number of anchor points and C2

K represents the
number of combinations; σθ is a coefficient to adjust angle
sensitivity and is usually set between 5◦ and 25◦.

Then, we sum the anchor-superpoint distance EdP̂n
ca and

anchor-superpoint angle EaP̂n
ca to get the final geometric

embedding feature of the superpoint using Eq. 13.

Ep̂n
ca = Edp̂n

ca +Eap̂n
ca . (13)

The above anchor-superpoint geometric structure embed-
ding process is shown in Figure 4, the computed distances
and angles between the salient anchors and superpoints are
first obtained and summed up to merge the geometric infor-
mation, forming the final geometric embedding. For the target
superpoints, the geometric embedding, denoted as Eq̂m

ca , can
be obtained in the same way.

With the extracted superpoint features Fp̂n and Fq̂m with
KPConv and the geometric embedding Ep̂n

ca and Eq̂m
ca in the

source and target point clouds, we fuse them using the cross
attention technique. We map Fp̂n , Fq̂n to Fp̂n

q ,Fq̂n

k , and Fq̂n
v

with matrices Wq,Wk, and Wv respectively. Wg is used to
map Ep̂n

ca and Eq̂m
ca to Ep̂n

g and Eq̂m
g as follows.

Fp̂n
q = Wq · Fp̂n ;Fq̂m

k = Wk · Fq̂n ;

Fq̂m
v = Wv · Fq̂n ;Ep̂n

g = Wg ·Ep̂n
ca ;

Eq̂m
g = Wg ·Eq̂m

ca ,

(14)

where Wq , Wk, Wv and Wg ∈ RC×C are the projection
matrices for queries, keys, values, and geometric structure
embeddings respectively. The attention score ScoreQ̂→P̂

(n,m) can
be obtained with Eq. 15.

ScoreQ̂→P̂
(n,m) =

(Fp̂n
q +Ep̂n

g ) · (Fq̂m
q +Eq̂m

g )
T

√
C

. (15)

After interacting with the information using cross-attention,
the enhanced superpoint feature of the source point cloud F̄p̂n

can be calculated using Eq. 16.

F̄p̂n = softmax(ScoreQ̂→P̂
(n,m)) · F

q̂m
v . (16)

Given a superpoint q̂m in the target point cloud, we can fol-
low the above-mentioned cross-attention process and acquire
the enhanced feature F̄q̂m .

With selective correlation fusion, we integrate the geometry
consistency with respect to the salient anchors into the point
cloud features. In this way, the features of those areas with
weak geometry and repetitive patterns can be discriminative
and can further improve the matching accuracy.
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Fig. 4. An illustration of the correlation fusion and its computation.

3) Iterative-Optimization based Salient Anchor Updating
(IOSAU) : As aforementioned, descriptive features are ben-
eficial to locate the most distinctive anchors, and embedding
the geometry of the distinctive anchors makes the superpoint
features more discriminative. However, in the initial stage,
the neural network is not well-trained and the initial anchor
correspondences are not accurate and sparsely distributed
enough, causing the anchor-superpoint geometry embedding
cannot to capture structure information sufficiently.

In order to achieve accurate correlation fusion, we propose
to update the anchor and the superpoint correspondences in
an iterative manner. The ground-truth superpoint matches can
promote obtaining salient anchors which are beneficial to
obtain precise superpoint correspondences in turn. During the
iteration, the initial wrongly-selected anchor correspondences
have a less adverse effect on the features due to inconsistency.
In contrast, the correct anchor correspondences with consis-
tency are gradually enhanced during multiple iterations.

Given the initial superpoints P̂ , Q̂ and the corresponding
image fused superpoint features FIP̂ , FIQ̂ of the input point
clouds, the initial anchor correspondences Ĉ are acquired by
inputting them into the anchor location module. The geometric
correlations of initial anchor correspondences and superpoints
are incorporated using self and cross-attention mechanisms
through selective correlation fusion module and the enhanced
superpoint features F̄IP̂ and F̄IQ̂ are acquired. To update
the anchor positions, the enhanced features concatenating
superpoint coordinates are re-input into the anchor location
and selective geometry embedding modules.

F. Matching and Registration
1) Superpoint Matching.: After the final superpoint features

F̄IP̂ and F̄IQ̂ are obtained, we first normalize them and
calculate the similarity matrix Ŝ = F̄IP̂(F̄IQ̂)T /

√
C. In

this way, the problem of finding accurate superpoint cor-
respondences is transformed into an optimal transportation
problem. It is worth noting that some superpoints have no
corresponding relationship, so we add a row and a column to
the matrix Ŝ as slack entries like CoFiNet [18]. Then we use
the Sinkhorn algorithm to optimise the entire matrix Ŝ. We
select K correspondences with the highest scores as the final
superpoint matching result:

ŜC =
{
(p̂xi , q̂yi) | Ŝ(xi,yi) ∈ topk(Ŝ)

}
, (17)

where the topk(Ŝ) is the function that returns the largest K
entries in the matrix Ŝ; and xi and yi represent the i-th item
corresponding to the index in the source point cloud and the
target point cloud respectively.

Algorithm 2: IOSAU

Input: superpoint feature FIP̂ and FIQ̂, number of
iterations k

Output: superpoint correspondences ŜC
1 while i <= k do
2 Ĉ = Anchor Location(FIP̂ , FIQ̂)
3 FIP̂ , FIQ̂ = Correlation Fusion(FIP̂ , FIQ̂, Ĉ)
4 end
5 F̄IP̂ = norm(FIP̂ ); F̄IQ̂ = norm(FIQ̂)
6 superpoint similarity matrix Ŝ = F̄IP̂(F̄IQ̂)T /

√
C

7 Ŝ = Sinkhorn(Ŝ)

8 ŜC =
{
(p̂xi , q̂yi) | Ŝ(xi,yi) ∈ topk(Ŝ)

}
2) Point Matching: After getting the superpoint correspon-

dence, we use the decoder module of the backbone to decode
the superpoint features, which are symmetric to the encoder
process. In order to get point matching, we compare the point
correspondences score matrix S within each superpoint corre-
spondence based on the decoded point features. For the point
correspondence score matrix S within the superpoints, we use
the Sinkhorn algorithm to obtain the point correspondence set
P̂Ci. A point match is achieved when its matching score is
the kp largest items in both row and column:

P̂Ci =
{
(pxi

,qyi
) | S(xi,yi) ∈ topk(S)

}
. (18)

3) Transformation Estimation: Traditional point cloud de-
scriptors usually cannot capture distinct enough features. Thus
the acquired point correspondences often have a large number
of outliers. In order to get accurate transformation, RANSAC
is regarded as a robust estimator to compute the pose from
the set of point correspondences with a high rate of out-
liers. However, RANSAC suffers from slow convergence. To
achieve accurate and efficient transformation estimation, we
first acquire the high-confidence region matches based on
the proposed geometry-embedded features and then the point
correspondences for the target and source point clouds are
captured within the region matches. Thus, without removing
the outliers like RANSAC, we estimate the transformation
without iteration. For a region match, the rotation R and
translation t using the ith superpoint correspondence can be
computed as Eq. 19.

Ri, ti = argmin
R,t

|ŜCi|∑
j

wj

∥∥R · pxj
+ t− qyj

∥∥2
2
, (19)

where ˆSCi is the ith superpoint correspondence; |ŜCi| repre-
sents the number of point correspondences in the superpoint;
(pxj

,qyj
) ∈ Ĉi denotes the jth point correspondence, and wj

is the weight.
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After calculating the transformation matrices using all the
superpoints, the final transformation is obtained using Eq. 20:

R, t = argmax
Ri,ti

|PC|∑
k=1

[∥Ri · pk + ti − qk∥22 < τa], (20)

where (pk,qk) are the kth point correspondences in the point
correspondence set PC and the τa is the threshold.

G. Loss Functions

The training loss function L consists of two parts: the loss
for supervising the superpoint matching Lc, and the loss for
supervising point matching Lf .

Superpoint Correspondence Loss. We follow [9] to em-
ploy a deformed circle loss to supervise the superpoint match-
ing. For a superpoint in the point cloud, we first construct
a local patch around the superpoint using the KNN search
strategy. The overlap rate between the superpoints in the
source and target point clouds is computed as follows. After
the ground-truth transformation is applied, if the distance from
one point in the source patch to its nearest neighbour in
the target patch is less than a threshold, i.e. 0.05m in our
method, these two points are considered as overlapped. If
the proportion of overlapped points in the source and target
patches is greater than 10%, we regard the pair of superpoints
as overlapped. Otherwise, the superpoint pairs are treated as
negative. Second, we select all superpoints with at least one
positive relationship in P to form a basic set Pp. For each
superpoint p̂i ∈ Pp, positive superpoints in Q form the εip set,
and negative superpoints form the εin set. Finally, the deformed
circle loss on P is defined as:

LP
c =

1

|Pp|
∑

p̂i∈Pp

log[1 +
∑

q̂j∈εip

eλ
j
iβ

i,j
p (dj

i−∆p)

·
∑

q̂k∈εin

eβ
i,k
n (∆n−dk

i )],
(21)

where dji represents the Euclidean distance in the feature space
and is calculated with

∥∥∥FP̂i − FQ̂j

∥∥∥
2
; given the overlap ratio

oji between superpoints p̂i and q̂j , λj
i is denoted by λj

i =
√

oji .
Like [9], the positive margins ∆p and the negative margins ∆n

are set to 0.1 and 1.4 respectively. At the same time, for each
sample, its positive weight βi,j

p = γ
(
dji −∆p

)
and negative

weight βi,k
n = γ

(
∆n − dki

)
are calculated separately. LQ

r is
defined in the same way with LP

r .
The final superpoint matching loss consists of two parts LP

r

and LQ
r . It is defined as Eq. 22.

Lc =
(
LP
c + LQ

c

)
/2. (22)

Point Correspondence Loss For point matching, we use
the negative log-likelihood function [45] to supervise the
assignment matrix corresponding to each superpoint. In the
training phase, we select Ng ground-truth superpoint matches
and calculate the ground-truth point correspondences set Mi

in the corresponding patches. Then we divide the unmatched
points in the two patches into two sets of Ii and Ji. The

loss function for point correspondences within the region
corresponding to the selected ith superpoint is defined as:

Li
f = −

∑
(x,y)∈Mi

logSi(x, y)−
∑

x,mi∈Ii

logSi(x,mi + 1)

−
∑
y∈Ji

logSi(ni + 1, y),

(23)

where Si(x, y) represents the similarity between the xth and
the yth points within the ith superpoint correspondence.

The final fine correspondences loss function averages the
point correspondences losses of the selected Ng superpoints
and is defined in Eq. 24:

Lf =
1

Ng

Ng∑
i=1

Li
f . (24)

IV. EXPERIMENTS

In this section, extensive experiments are conducted to
evaluate the effectiveness of our research. The experimental
implementation details are first described in Sec. IV-A. Follow-
ing current multimodal point cloud registration methods [42],
our research is compared with state-of-the-art approaches on
the datasets of 3DMatch [27] and 3DLoMatch [29]. Besides,
to demonstrate the generalisability of IGReg, we directly apply
the model trained on 3DMatch on the TUM RGB-D SLAM
dataset and further evaluate the performance [46]. Finally,
in Sec. IV-D, the ablation study is designed to verify the
effectiveness of each module of the method.

A. Implementation Details

To extract the feature of the image, we first resize the RGB
image to the resolution of 240 × 320 pixels. ResUNet-50 is
used to extract the image features. The implementation is
based on PyTorch [47] and trained on double NVIDIA RTX
A5000 GPUs with an initial learning rate of 1e-4. The batch
size is set to 1. The entire network structure is trained with
Adam optimizer and its weight decay is set to 1e-6. For the
dataset of 3DMatch and 3DLoMatch, each epoch decays at
the rate of 0.05, and the number of epochs is set to 40. A 4-
stage KPConv backbone is used in 3DMatch and 3DLoMatch.
We select 3 anchor correspondences in the experiments. As
for the distance sensitivity σd and the angle sensitivity σθ

in the selective geometry embedding module, we set them to
0.2 and 15◦ respectively. Each attention module contains 4
attention heads. RANSAC, weighted SVD, and LGR are used
for registration estimation.

B. Multimodal 3DMatch and 3DLoMatch Datesets

Both 3DMatch and 3DLoMatch are RGB-D datasets. Each
point cloud is reconstructed from 50 consecutive frames with
an RGB and a depth image. We select the first frame RGB
image to construct the multimodal datasets that consist of
paired images and point clouds that depict the same scenes.
3DMatch [27] consists of 62 scenes, in which 46 scenes are
used for training, 8 scenes are used as a validation set, and
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TABLE I
COMPARISONS OF OUR METHOD AND THE ADVANCED METHODS ON THE

3DMATCH AND 3DLOMATCH. THE EVALUATION RESULTS OF ALL
METHODS ARE OBTAINED BY THE RANSAC ALGORITHM.

# Samples 3DMatch 3DLoMatch
5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%)↑

FCGF [14] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [13] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [28] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [29] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [48] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [18] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer [9] 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3
IGReg 98.7 98.7 98.4 98.4 98.4 88.8 88.8 88.5 88.6 88.5

Inlier Ratio(%)↑

FCGF [14] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [13] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [28] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [29] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [48] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [18] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer [9] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
IGReg 71.3 78.2 82.9 84.8 86.1 42.2 48.1 54.2 57.0 58.9

Registration Recall (%)↑

FCGF [14] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [13] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [28] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [29] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [48] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [18] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer [9] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
IGReg 93.6 93.2 92.4 92.1 91.3 76.4 75.8 75.0 74.5 72.8

the remaining 8 scenes are used as the test set. For 3DMatch,
the overlap rate of any to-be-registered point clouds is above
30%, and for 3DLoMatch [29], the overlap rate is between
10% and 30%.

Metrics. As with previous work, we mainly use 3 evaluation
indicators to evaluate our methodology, Inlier Ratio (IR), Fea-
ture Matching Recall (FMR), and Registration Recall (RR).
Specifically, IR represents the percentage of correspondences
whose residual error is less than a certain threshold in the
case of a real transformation, which is generally taken at
τ1 = 10cm. FMR represents the proportion of point cloud
pairs whose IR metrics are greater than a certain threshold,
τ2 = 5%. RR represents the ratio of registered point clouds
whose RMSE is less than 0.2m.

Comparisons to the State-of-the-Art. The experimental
results of running RANSAC on 3DMatch and 3DLoMatch
are shown in Table I. Following [29], we run RANSAC-50k
to evaluate the transformation matrix under four sampling
conditions of 250, 500, 1000, 2500, and 5000, respectively.
For Feature Matching Recall, IGReg achieves the highest
performance that reaches over 98.0% of all cases of sampled
points on 3DMatch. Inlier Ratio improves by 1% ∼ 4.9% on
3DMatch and 1.2% ∼ 8.0% on 3DLoMatch, compared to the
state-of-the-art GeoTransformer. For Registration Recall, with
5000 sampled points, our method achieves 93.6% on 3DMatch
and 76.4% on 3DLoMatch, both surpassing the previous
methods. This demonstrates that the proposed multimodal

point cloud registration approach, i.e., IGReg, can achieve
accurate point correspondences and effectively improve the
registration results.

TABLE II
REGISTRATION RESULTS WITH DIFFERENT POSE ESTIMATORS ON

3DMATCH (3DM) AND 3DLOMATCH (3DLM).

Model Estimator # Samples RR(%) Times(s)
3DM 3DLM Model Pose Total

FCGF [14] RANSAC-50k 5000 85.1 40.1 0.119 12.394 12.513
D3Feat [13] RANSAC-50k 5000 81.6 37.2 0.060 10.267 10.327
SpinNet [28] RANSAC-50k 5000 88.6 59.8 97.808 0.788 98.596
Predator [29] RANSAC-50k 5000 89.0 59.8 0.079 15.434 15.513
CoFiNet [18] RANSAC-50k 5000 89.3 67.5 0.259 5.321 5.580
Geo [9] RANSAC-50k 5000 92.0 75.0 0.184 4.805 4.989
IGReg RANSAC-50k 5000 93.6 76.4 0.205 3.910 4.115

FCGF [14] weighted SVD 250 42.1 3.9 0.119 0.009 0.128
D3Feat [13] weighted SVD 250 37.4 2.8 0.060 0.009 0.069
SpinNet [28] weighted SVD 250 34.0 2.5 97.808 0.008 97.816
Predator [29] weighted SVD 250 50.0 6.4 0.079 0.010 0.089
CoFiNet [18] weighted SVD 250 64.6 21.6 0.259 0.004 0.263
Geo [9] weighted SVD 250 86.5 59.9 0.184 0.004 0.188
IGReg weighted SVD 250 87.1 57.3 0.205 0.004 0.209

CoFiNet [18] LGR ALL 87.6 64.8 0.259 0.242 0.501
Geo [9] LGR ALL 91.5 74.0 0.184 0.115 0.299
IGReg LGR ALL 93.5 75.1 0.205 0.141 0.346

To further analyse the effectiveness of our method, we
follow GeoTransformer to test the performance using different
pose estimators, i.e., the RANSAC-50K, weighted SVD and
local-to-global registration (LGR). It can be seen that IGReg
achieves the best performance over all three different pose
estimators on the 3DMatch dataset. For the time efficiency,
we compare the average model time for feature extraction,
the pose time for transformation estimation and the total time
in Table II. We can see that our model time is slightly longer
than GeoTranformer as additional image features are extracted
using ResUNet50 and merged into geometric features with
transformer, which consumes more time. However, the total
time of our method based on the Ransac pose estimator is
the shortest. This verifies that the correspondences located
with our method are more accurate and the RANSAC can
converge more quickly. For weighted SVD and LGR, our com-
putation time is also comparable with GeoTransformer. Thus,
by adding the image information for feature enhancement, we
can achieve accurate and efficient registration.

Comparison with multimodal point cloud registration
methods. As our method is based on geometry and image,
we also compare our method with the current multimodal
methods which are PCR-CG [49] and IMFNet [40]. As shown
in Table III, our method outperforms PCR-CG, which proves
that utilising the cross-attention mechanism to fuse the image
and point cloud feature is more reasonable than initializing
the point cloud feature as image features in an explicit way. In
addition, our method also outperforms IMFNet mainly because
there is no projection module in IMFNet so the points can not
find the correct pixels to enhance the features.

Comparison of the repetitive patterns. In Figure 5, it can
be seen that our approach can achieve accurate registration.
The GeoTransformer finds incorrect superpoint and point
correspondences in the non-overlap regions while our method
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Fig. 5. Visual comparison of our method and GeoTransformer on the 3DLoMatch. The registration results, superpoint (patch) correspondences, and point
correspondences are compared. Red lines are incorrect correspondences while green lines are correct ones.

TABLE III
COMPARISON WITH MULTIMODAL POINT CLOUD REGISTRATION.

Model 3DMatch 3DLoMatch
FMR RR FMR RR

IMFNet [40] 98.5 91.0 80.5 48.4
PCR-CG [49] 97.4 89.4 80.4 66.3
IGReg 98.7 93.6 88.8 76.4

can remove all the incorrect correspondences. 3DLoMatch are
indoor scenarios that contain a large number of repetitive
walls, tables, and floors. These objects contain repetitive
patterns like planes that have similar appearances to objects
of different categories. Existing feature extraction methods
cannot differentiate these areas, thus, as shown in the third
row of column (e) in Figure 5, some superpoints of the table
plane are in correspondence with those patches of the floor.
In contrast, we enhance the geometry feature with image
information and selective correlations with respect to the
salient anchors, the features of appearance-similar patches and
points can be differentiated. All the incorrect correspondences
in the non-overlapping areas of our method are removed,
which is also demonstrated by columns (f) and (h).

With the feature extracted by the proposed method, our
results can also remove the incorrect correspondences outside
the overlap region. When the non-overlapping but similar
regions account for a large proportion, the correct matching is
often suppressed for existing methods. For example, in the
third row of Figure 5, in GeoTransformer, the superpoints
and points that belong to the same category but not in the
overlap region are incorrectly located as correspondences. In
contrast, our method makes the features of similar regions in
non-overlapping areas different after the geometric embedding
based on anchor correspondences. Thus, we can find accurate
correspondences even though non-overlapping of similar re-
gions accounts for a large proportion.

Comparison of the low-geometry areas We also show the
registration results on low-geometry overlap areas in Figure

(a) Ground truth (b) Ours (c) GeoTransformer (d) Another perspective of (c)

90°

30°

45°

Fig. 6. The comparison of registration on low-geometry areas against
GeoTransformer. The red frames represent the low-geometry overlap areas.

6. Low-geometry overlap areas are widespread in real scenes
such as the upright plane in the first two rows and horizontal
planes in the third row. Finding correct correspondences within
these low-geometry areas is non-trivial. It can be seen that
the registration of the state-of-the-art GeoTransformer suffers
from the front-back and upside-down flip problem shown in
columns (c) and (d). This is because the geometric structures
within the low-geometry areas are so weak that few features
can be extracted to get accurate correspondences. With our
proposed selective geometry embedding with respect to the
salient anchors, our method can achieve superior performance.

Qualitative results. We also show more registration re-
sults with the single modal GeoTransformer and multimodal
IMFNet on 3DMatch and 3DLoMatch in Figure 7. The input
source and target point clouds, the ground-truth registration,
the registration results of GeoTransformer, IMFNet and our
method are presented in columns (a) to (e) respectively. We
can see that our approach is robust to these challenging cases
where a large amount of appearance-similar areas exist under
different overlap ratios. These qualitative results further verify
the effectiveness of our method.
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overlap:42.8%

overlap:12.5%

overlap:22.7%

overlap:14.2%

overlap:43.5%

overlap:27.2%

(b) Ground truth(a) Input (d) GeoTransformer (e) Ours(c) IMFNet

overlap:29.6%

Fig. 7. The visualization of registration results of IMFNet (multimodal),
GeoTransformer (single modal) and the proposed IGReg. Examples in the
first three rows are from 3DMatch whose overlap ratio is larger than 30%
and examples in the remaining rows come from the 3DLoMatch where the
overlap ratio is lower than 30%.

C. The Generalization of IGReg

In this section, we further demonstrate the generalisability
of the proposed method by experimenting on the TUM RGB-
D SLAM dataset [46] which is an indoor dataset proposed
by the TUM Vision Group. Following [50], we choose 8
sequences for testing IGReg. For sequences “xyz”, “360”,
“teddy”, “desk” and “plant” captured with camera 1, we select
one in every 5 frames for registration. For sequences “dishes”,
“coke” and “flower bouquet” captured with camera 2, we
select one in every 20 frames for registration. Like the previous
methods, we normalize the point clouds by aligning their
centroids and applying the scaling operation to ensure the
diagonal length of the bounding box equals 1.

Metrics. Following [50], the result of IGReg is evaluated
using the Root Mean Square Error (RMSE) metric. The metric
measures the accuracy of the estimated transformation (R, t)
and is computed as the following:

RMSE =

√
1

N

∑
pi∈P

∥R · pi + t−R∗ · pi − t∗∥22 (25)

where (R∗, t∗) is ground-truth transformation and pi is the
ith point of point cloud P .

Registration Results. We directly use the model trained
on 3DMatch without fine-tuning and evaluate its performance
on the TUM RGB-D SLAM dataset to show how well the
proposed IGReg model can generalize to unseen data. The
registration results are summarised in Table IV. We report the
average and median RMSE of each sequence along with the
mean value of them. IGReg achieves the minimal average and
median RMSE of all sequences. For the mean value of average
RMSE, IGReg is 0.82 lower than the second ranked method
DGR [34]. Besides, on the challenging sequences captured
from camera 2, the average RMSEs of our method are all
below 1.2. The results indicate that IGReg still performs well
when it is applied on unknown scenes, showing the proposed
method has a good ability to generalise to data that comes
from independent sources.

TABLE IV
REGISTRATION RESULTS ON EIGHT SEQUENCES FROM THE TUM RGB-D

SLAM DATASET.

Method xyz 360 teddy desk plant dishes coke flower mean

Average RMSE (×10−2)↓

ICP [51] 2.1 5.1 2.1 2.3 1.6 3.7 3.1 2.7 2.8
AA-ICP [52] 2.1 5.1 2.1 2.3 1.6 3.7 3.1 2.7 2.8
Sparse ICP [53] 1.6 4.8 1.8 1.8 0.88 3.9 3.3 3.2 2.66
Robust ICP [50] 0.5 2.2 1 1.2 0.65 3.2 2.4 2.4 1.69
Symmetric ICP [54] 1.2 1.8 1.1 1.7 0.7 3.8 3.4 3.3 2.13
GMM-Reg [55] 4.4 6.3 3.2 5.7 2.7 3.7 3.1 2.4 3.94
CPD [56] 4.6 5.3 2.2 2.1 1.4 3.4 2.6 2.3 2.99
Teaser++ [57] 3.4 20 11 8 6.1 21 23 20 14.06
DCP [31] 6.5 10 6.6 7 5.6 7.4 7.5 6.3 7.11
DGR [34] 0.6 1.4 1 1.2 0.71 2.6 2.1 1.9 1.44
IGReg 0.2 0.3 0.44 0.4 0.29 1.15 1.05 1.1 0.62

Median RMSE (×10−2)↓

ICP [51] 0.89 4 1.4 1.2 1.1 2.8 2.5 2.2 2.01
AA-ICP [52] 0.9 4 1.4 1.2 1.1 2.8 2.5 2.1 2.0
Sparse ICP [53] 0.86 3.7 1.1 1.1 0.67 3.6 3 3 2.13
Robust ICP [50] 0.43 0.75 0.76 0.77 0.56 2.6 2.1 1.8 1.22
Symmetric ICP [54] 0.44 0.73 0.82 0.7 0.59 3 2.9 3 1.52
GMM-Reg [55] 3.7 4.6 2.6 4.6 2.1 2.7 2 1.8 3.01
CPD [56] 3.6 3.3 1.5 1.8 1.1 2.7 1.8 1.8 2.2
Teaser++ [57] 2 14 3.2 2.5 2.4 15 21 11 8.89
DCP [31] 5.4 9.9 5.5 6 4.9 6 6 5.7 6.18
DGR [34] 0.53 0.86 0.84 0.96 0.65 1.7 1.2 1.1 0.86
IGReg 0.17 0.23 0.35 0.32 0.27 0.66 0.5 0.77 0.42

D. Ablation Experiment

In this section, we design ablation experiments to analyse
the effectiveness of hyperparameters and modules in our
network. The datasets used for these ablation experiments are
3DMatch and 3DLoMatch, and the methods for evaluating the
transformation matrix are both LGR.

Effect of each component in IGReg. As the proposed
IGReg consists of the Intra-Image-Geometry (IIG) fusion
module and the selective correlation fusion (SCF) module. We
firstly evaluate the effect of each component in Table V.

To investigate the effectiveness of the SCF module, we
remove it and fuse global correlations into the superpoint
features. As shown in the first row of Table V, the Patch Inlier
Ratio (PIR), IR, and RR decreases by 6.4%, 4.5%, 2.9% on
3DMatch and 6.7%, 4.7%, 0.5% on 3DLoMatch respectively.
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TABLE V
ABLATION EXPERIMENTS ON EACH COMPONENT IN IGREG.

Model
3DMatch 3DLoMatch

PIR FMR IR RR PIR FMR IR RR

w/o SCF Module 78.3 98.7 65.0 90.6 45.8 88.2 37.2 74.6
w/o IIG Fusion 86.5 98.3 70.9 91.7 55.7 86.5 44.1 75.1
IGReg 84.7 98.7 69.5 93.5 52.5 88.8 41.9 75.1

(c) Ground truth(a) Target (e) IGReg w/o IIG (f) IGReg(d) IGReg w/o SCF(b) Source

Fig. 8. More intuitive explanation of different modules of our method.

Without SCF module, the global correlation merges ambiguous
geometry-texture information and results in registration failure.
The results demonstrate that our SCF module can effectively
enhance the feature distinctiveness and further improve the
validity of point cloud registration.

Then we remove the IIG fusion module from the IGReg. In
this way, our method is modified to be single modal. Following
previous works like Predator [29], RR is the main metric
which corresponds to the actual aim of point cloud registration.
It is defined as the fraction of scan pairs from which the
correct transformation parameters are found. As shown in
Table V, with image information, IGReg gains 1.8% in RR
on 3DMatch and keeps 75.1% on the 3DLoMatch. To explain
the effectiveness of the IIG Module and SCF module more
intuitively, we compare the registration results of three settings
in Figure 8: (1) IGReg without the SCF module, (2) IGReg
without IIG module and (3) IGReg. As shown in column (e)
of Figure 8, if we remove the texture information, the points
with similar geometry will be registered. For example, the floor
parts in the first row are aligned incorrectly. When the SCF
module is removed, only the image features are fused with
the geometry information. The correlation with respect to the
salient anchors in the overlap region is not considered, which
results in some confusing parts being wrongly registered. In
the 5th example of column (d) in Figure 8, the indistinctly red
cabinet door parts are aligned, acquiring wrong registration
results. After we adopt both the SCF and IIG modules, all these
repetitive patterns and low geometry parts can be registered
correctly, which verifies the effectiveness of our proposed

modules.

TABLE VI
ABLATION EXPERIMENTS ON EACH PART IN IIG FUSION MODULE.

Model
3DMatch 3DLoMatch

PIR FMR IR RR PIR FMR IR RR

w/o Projection 83.4 98 68.8 89 51.4 87.6 41.2 73.1
w/o CA Fusion 83.9 98.4 69.4 92.1 52.3 88.1 41.5 72.8
IGReg 84.7 98.7 69.5 93.5 52.5 88.8 41.9 75.1

Effect of projection and cross-attention in IIG fusion
module. During the IIG fusion stage, the module is mainly
composed of the projection part which performs 2D-3D align-
ment and the cross-attention part which fuses the multimodal
features. We conduct ablation studies on these two parts to
validate the effectiveness.

To evaluate the projection part, we compare it with a
projection-free method, which fuses features of the point cloud
and the whole image information directly with transformer just
like IMFNet. However, the projection-free approach incorpo-
rates redundant feature information and involves ambiguity in
the latter point cloud registration task, as it reports the lowest
registration recall in the first row of Table VI.

For the sake of sufficiently utilising image features to
enhance point cloud features, we explore different fusion
methods and conduct ablation studies on these strategies. We
replace the cross-attention based fusion with the average fusion
as shown in the second row in Table VI. We use average
pooling to process the features of pixels within the corre-
sponding superpoint region, and then add the average feature
to the geometry feature. It can be seen that average fusion
can not deal with multimodal features effectively, especially
in the low-overlap point cloud registration task. With cross
attention technique, we can fuse multimodal features in a more
reasonable way, which outperforms other fusion strategy.

Effect of anchor location in SCF module. As shown in
Table VII, the anchor location module can effectively enhance
the role of geometric embedding and further improve the
results of point cloud registration. Compared with the anchor
location module by selecting the top−k correspondences, the
anchor location module with NMS can improve the FMR and
RR by 0.4% and 1.9% on 3DMatch respectively. It can also
slightly improve the RR on 3DLoMatch by 0.3%. When using
the top-k method to select anchor correspondences, there may
be multiple anchor points close to each other so that these
anchor points cannot preserve the structure of point clouds,
which weakens the geometric embedding effect of the selective
geometry embedding module.

TABLE VII
ABLATION EXPERIMENTS OF THE ANCHOR LOCATION.

Model
3DMatch 3DLoMatch

PIR FMR IR RR PIR FMR IR RR

top-k 86.7 98.3 70.9 91.6 55.3 89.3 43.8 74.8
NMS 84.7 98.7 69.5 93.5 52.5 88.8 41.9 75.1
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Effect of iterative-optimization based salient anchor
updating (IOSAU). As shown in Table VIII, on 3DMatch,
the RR of iteration=2 is 2.8% higher than that of iteration=1,
and the performance of iteration=3 is lower than 0.7% of the
RR of iteration=2. We analyse that as the iteration increases,
the sampling of the anchor point is in some different areas.
The anchor point is inevitably concentrated when the overlap
rate is low. After the anchor point is concentrated, the em-
bedded features lose their differences, leading to a decline in
performance. This point can be verified from the 3DMatch
experiment in Table VIII. When the overlap rate is high, the
distribution of anchor points is relatively even and does not
cause performance degradation. Here, we also evaluate the
time consumption of each iteration in Table VIII. It can be
seen that using two iterations can achieve the best trade-off
between accuracy and time efficiency. Thus, we choose to
iterate twice for the interaction between the salient location
and the selective correlation fusion module.

TABLE VIII
ABLATION EXPERIMENTS OF THE NUMBER OF ITERATIONS.

Iteration 3DMatch 3DLoMatch Model
PIR FMR IR RR PIR FMR IR RR time(s)

1 84.3 98.6 69.0 90.7 52.0 88.8 41.5 74.8 0.183
2 84.7 98.7 69.5 93.5 52.5 88.8 41.9 75.1 0.205
3 87.9 98.8 71.6 92.8 56.5 88.5 44.2 74.8 0.229

Effect of the number of anchor point. We analyse that
when the number of anchor points is 1, all superpoints on
the sphere with anchor points as the radius have the same
geometric constraints. When the number of anchor points is
2, the anchor points of two spherical circles have the same
constraint condition, which makes the feature distinction lose
the distinguishing ability in terms of symmetry. Therefore,
we start the comparison experiment when the number of
anchor points equals 3. It can be seen from table IX that the
registration recall decreases as the number of anchor points
increases. Thus, in the experiment, we select the number of
anchors as 3.

TABLE IX
ABLATION EXPERIMENTS OF THE NUMBER OF ANCHOR POINTS.

Numbers 3DMatch 3DLoMatch
PIR FMR IR RR PIR FMR IR RR

3 84.7 98.7 69.5 93.5 52.5 88.8 41.9 75.1
4 87.1 98.7 71.0 91.6 55.8 88.5 43.9 75.0
5 85.4 98.4 69.6 90.4 53.5 87.6 42.1 74.3

We also visualize the location of anchor points in the
source and target in Figure 9. The blue spheres are the anchor
location before we perform IOSAU and it can be seen that the
initial anchors are located randomly in the whole point clouds.
After completing iteration based optimization updating, we can
see that the updated anchors (orange spheres) are located in
overlapping areas shown as the yellow parts. In this way, the
correlations of superpoints with respect to salient anchors are
correct and can improve the distinction of features.

Source Target

Source Target

Source Target

Source Target

Fig. 9. Visualization of the location of anchor points in the source and
target point clouds before and after iteration-based optimisation salient anchor
updating (IOSAU). The blue spheres are the initial anchors before IOSAU.
The orange ones are the salient anchors after IOSAU. We can see that through
IOSAU, the salient anchors are located in the overlap areas (yellow regions).

We provide the ablation study of feature matching recall
(FMR) and inlier ratio (IR) under different inlier distance
thresholds in Figure 10. The blue lines and the yellow lines
represent the performance on two datasets of 3DMatch and
3DLoMatch, respectively. We can see that FMR and IR contin-
uously grow with the increase of the inlier distance threshold.
For a fair comparison with current classical approaches, such
as D3Feat [13], Predator [29] and GeoTransformer [9], we set
the same inlier distance threshold to 0.1m.
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Fig. 10. Feature matching recall and inlier ratio under different inlier distance
thresholds.

V. CONCLUSION

In this paper, we propose a multimodal point cloud reg-
istration method based on selectively fusing the correlations
between salient anchors and superpoints. With the help of
images, the point cloud features are enriched by the proposed
IIG fusion module. Then we locate sparse and shape-preserved
salient anchors and selectively embed the correlations between
anchors and superpoints to enhance features for accurate super-
point matching. In order to fuse the most distinct information
into the feature, we also propose an iterative-optimization-
based salient anchor updating to achieve the most effective
and accurate correlation fusion. The proposed approach utilises
images to enrich point cloud features and uses salient anchors
as the medium to exchange geometric information between
source and target point clouds. The correlation information
with respect to the salient anchor correspondences enables
accurate and reliable superpoint correspondences, even for
those appearance-similar areas in the non-overlap region, and
those areas with low geometry in the overlap region.
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