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Abstract:   

The aim of this paper is to conduct a comparative analysis of three environmental approaches in the 
context of a bank production framework, considering the presence of nonperforming loans (NPLs). 
Specifically, we examine banks' inefficiency levels using the "by-production technology," "joint-weak 
disposable technology," and "material balanced technology." To ensure comparability within a directional 
slack inefficiency framework, we propose a two-step procedure. The study is based on a sample of 379 
prominent banks operating in the United States from 2003 to 2017. Our findings reveal that the material 
balance and by-production technologies result in estimated inefficiency measures with higher sensitivity 
compared to the estimator utilizing the joint-weak disposable technology. Additionally, we identify 
distinct properties among the estimators, emphasizing their unique characteristics for modeling 
nonperforming loans. Finally, our paper sheds light on the differences between the three estimators in 
relation to banks' inefficiency levels, considering the incorporation of nonperforming loans in the 
production process. 
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1. Introduction 

Efficiency measurement in the banking sector has been extensively studied for over three decades, 

particularly using data envelopment analysis (DEA) [8,10,11]. However, a persistent challenge in this 

field is the incorporation of non-performing loans (NPLs) into the bank's production function [21]. 

According to Drake [9] the inclusion of NPLs when modeling bank production process via DEA is 

essential for a more realistic assessment of bank efficiency1. 

Traditionally, DEA studies are based on environmental and natural resource economics to model 

NPLs within the bank production framework. In this context, NPLs are considered as an undesirable 

output, akin to pollutants, while net loans and securities are regarded as desirable outputs. The exploration 

of undesirable outputs within the DEA framework dates back to the late 1980s, with seminal works by 

Färe et al. [13] examining economic activities involving by-products. Following these pioneering studies, 

further contributions by Chung et al. [6] and Färe et al. [14] introduced the concept of weak disposability 

(WD) within the production possibility set. This assumption implies that the reduction of undesirable 

outputs is only achievable if desirable outputs are proportionally reduced, without any jointness between 

the two. While the WD assumption is widely adopted in modeling undesirable outputs [11], scholars have 

cautioned about the application of WD under variable returns to scale (VRS) and non-decreasing returns 

to scale (NDRS) assumptions [12, 33].  

These potential shortcomings, however, have been tackled by the works of Kuosmanen [30], 

Kuosmanen and Podinovski [32] and Kuosmanen and Matin [31]. Based on the WD assumption, the 

studies provided an alternative setting when modeling undesirable outputs in the production process. 

Specifically, they provide a formulation of WD that allows for non-uniform abatement factors and 

 
1 For intriguing applications and modeling approaches related to the subject matter, please refer to the studies conducted by 
Mehdiloo and Podinovski [38], Xie et al. [50], and Jin et al. [29]. 
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preserves the linear structure of the model, asserting that the conventional specification of WD under the 

VRS assumption leads to underestimation of the abatement possibilities. 

At this point it must be emphasized that different approaches have been proposed to address the modeling 

of undesirable outputs, including transformations that convert undesirable outputs into desirable outputs 

[5, 45, 47]. Some studies have even considered undesirable outputs as inputs in the production process 

[26, 36, 37, 41]. However, these methodological treatments have faced criticism for deviating from the 

standard axioms of the physical law of production theory and for disregarding the direct links between 

desirable and undesirable outputs with input factors [12]. 

Conversely, Førsund [15], Murty et al. [39], and Dakpo et al. [7] have proposed approaches that 

consider undesirable outputs as freely disposable inputs or having weak disposability with null-jointness. 

These approaches avoid trade-offs among inputs, desirable outputs, and undesirable outputs. To address 

the challenges associated with modeling undesirable outputs, Murty et al. [39] introduced a by-production 

approach based on the costly disposability (CD) assumption. This framework treats undesirable outputs 

as a separate sub-technology, operating independently from the desirable output sub-technology. By 

considering the CD assumption, the model accounts for the distinct nature of undesirable outputs and their 

impact on overall estimated production efficiency. 

Another notable methodological framework, the material balance approach, draws from the laws 

of thermodynamics and has been explored by Rødseth [44]. Under this approach, weak-G disposability of 

inputs and outputs is assumed, adhering to the summing-up condition, which mandates that increases in 

desirable outputs resulting from increased input usage or reduced desirable outputs must correspond to 

increases in undesirable outputs during disposal. Furthermore, an extension of the weak-G disposability 

has been introduced by Hampf and Rødseth [28] based on the notion of generalized weak G-disposability 

assumption.  
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When considering the modeling of NPLs within the context of bank efficiency under the 

assumption of weak-G disposability from a mathematical programming perspective, it assumes that the 

technology and production possibilities vary for each individual bank. However, such an outcome may 

not reflect a realistic scenario especially in cases when attempting to assess the sources of differing 

efficiency levels. These efficiency variations could be due to disparities in input-output combinations or 

disparities in the technology set. 

In contrast, the concept of generalized weak G-disposable technology, as introduced by Hampf 

and Rødseth [28], provides a solution to this potential shortcoming. The adoption of weak G-disposable 

technology, takes into account the input qualities of all banks and forms a convex hull of the combined 

quality-specific technology sets. Consequently, the adopted generalized weak G-disposable technology 

encompasses a convex meta-technology that incorporates both the technical and quality differences among 

banks [28, p. 613]. Building upon the work of Hampf and Rødseth [28], our approach incorporates 

Material Balance (MB) based frontier models tailored to our specific context. These models utilize 

material flow coefficients, which, in our context, serve as representations of banks' Non-Performing Loans 

(NPLs) factors. These factors play a crucial role in calculating the risk associated with banks, stemming 

from the transformation of their inputs into desired outputs2. 

These NPLs factors essentially encapsulate the distribution of loan quality issued by banks. When 

we refer to 'loan quality,' we are alluding to the standards and criteria applied by bank managers when 

approving specific loans. These stringent selection processes aim to safeguard the bank against potential 

losses by minimizing or, ideally, avoiding the creation of NPLs [20, 22]. 

 
2These coefficients capture the distribution of loan quality, allowing for the modeling of input heterogeneity based on banks' 
quality characteristics. Importantly, following Hampf and Rødseth [28], these factors are not considered additional inputs, 
avoiding dimensionality-related issues in the banks' production process. The variability in coefficients across banks introduces 
diversity in the technology set's properties among assessed banks.  
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It's worth noting that these NPLs factors are incorporated to account for variations in banks' input 

heterogeneity, which in turn captures banks' distinct quality characteristics. Importantly, as emphasized 

by Hampf and Rødseth [28], these factors are not considered additional inputs in our model. Therefore, 

they do not directly influence or enter into the banks' production process. This approach mitigates any 

issues related to the dimensionality of the model. Furthermore, given that these coefficients vary among 

different banks, the properties of the technology set also exhibit variability across the banks under 

evaluation. This variance reflects the inherent diversity in how banks manage and assess their loan 

portfolios, contributing to a more nuanced and accurate evaluation of each institution's performance. 

In addition,  it must be mentioned that the adopted model, based on Hampf and Rødseth [28], 

serves as an extension of the MB approach initially introduced by Rødseth [44] and later refined by Hampf 

and Rødseth [27]. This model takes into consideration heterogeneous risk factors. In Rødseth's [44] work, 

the MB condition was applied within the framework of weak G-disposability, which is related to the 

concept of weak disposability. Under the weak G-disposability axiom, risk factors are treated as constants 

when defining a bank's technology. This assumption implies that loan quality remains constant across the 

evaluated banks. However, one might argue that this assumption could be unrealistic, as it depends on the 

specific conditions under which each bank operates. Therefore, we propose that, instead of adhering solely 

to the weak G-disposability axiom, it would be more appropriate in the context of bank production to 

adopt the concept of generalized weak G-disposability. This approach provides a more suitable framework 

for modeling a bank's production function.  

Several studies have examined the modeling of banks' production function and have treated NPLs 

differently when estimating banks' performance. In the case of the Japanese banking sector, Fukuyama 

and Weber [23, 24] utilized the directional distance function (DDF) and a directional network slack-based 

inefficiency model, assuming weak disposability, to measure the efficiency of Japanese banks. Similarly, 
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Barros et al. [2] used weak disposability to model NPLs in a non-radial directional distance function when 

investigating the performance of the Japanese banking sector. On the other hand, Akther et al. [1] applied 

a directional network slack-based inefficiency model, assuming weak disposability, to model NPLs in the 

Bangladesh banking industry. It seems that the most prevalent approach to modeling NPLs in the bank 

production process is the weak disposability assumption. Specifically, Wang et al. [49] employed an 

additive two-stage DEA model to analyze the Chinese banking sector, while Fukuyama and Weber [24] 

used a dynamic network efficiency model for the Japanese banking industry. Zhu et al. [52] used a non-

radial Luenberger productivity estimator, and Lozano [35] used a network slacks-based inefficiency model 

to analyze the Chinese banking sector, both assuming weak disposability when modeling NPLs as bad 

outputs. It is evident that the weak disposability assumption is the dominant modeling approach for bad 

outputs in various DEA settings. This includes studies by Fukuyama and Matousek [18], Fukuyama and 

Weber [25], Fukuyama and Matousek [19], Partovi and Matousek [40], Yu et al. [51], and Fukuyama et 

al. [20] among others. However, only a few studies have utilized the costly disposability property 

introduced by Murty et al. [39] to model NPLs [17, 21], and Fukuyama et al. [22] is the only study that 

employed the material balanced approach [28, 42, 43, 44] to model the bank production process. 

Our paper makes a significant contribution to the existing literature on DEA bank efficiency 

measurement by providing a unified framework3 that models banks' production process in the presence of 

NPLs (Non-Performing Loans). Specifically, we propose a methodological framework based on the joint 

weak disposable technology referred to as "K," which was introduced by Kuosmanen [30], Kuosmanen 

and Podinovski [32], and Kuosmanen and Matin [31]. Additionally, we employ the by-production 

technology, denoted as "MRL," proposed by Murty et al. [39], and the material balanced technology, 

 
3 The term "unified framework" refers to a framework that integrates and combines various DEA models into a coherent system 
for the purpose of comparing how these models handle the negative or "bad" outputs in the production processes of banks. 
Essentially, it means that different DEA models are being brought together into one comprehensive framework to facilitate a 
comparative analysis. 
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denoted as "HR," which utilizes the G-weak disposability assumption introduced by Hampf and Rødseth 

[28], in order to accurately model banks' production process when NPLs are present. 

Furthermore, we apply all three approaches to a sample of large U.S. banks to compare and analyze 

the estimated levels of bank performance using the three different estimators. To the best of our 

knowledge, this study is the first to compare the most widely used methodological framework, weak 

disposability, for modeling NPLs against two new and promising approaches: by-production and material 

balance technology. Interestingly, the material balanced approach, despite its popularity in environmental 

economics, has not received attention in the context of bank efficiency measurement with NPLs, even 

though it possesses several advantages over the weak disposability assumption.4  As a result, to our 

knowledge is one of the few studies to apply the material balance approach in order to measure banks’ 

production process. 

The structure of our paper is as follows: Section 2 presents the variables and general modeling 

setting, while Section 3 describes a unified framework that allows for the comparison and application of 

the three approaches. In Section 4, we present our empirical findings, and finally, the concluding section 

summarizes our paper. 

2. Description of Data and Model Specification 

Our study uses a balanced panel consisting of 379 prominent banks in the United States, covering 

the period from 2003 to 2017 (5,685 observations). To gather the necessary data, we extracted information 

from the quarterly balance sheets of all banks in our sample, utilizing the Consolidated Report of 

Condition and Income, commonly referred to as Call Reports. These reports were obtained from the 

 
4 The MB framework presents two main advantages. Firstly, it provides the flexibility to modify the axioms of the neo-classical 
production model, ensuring consistency between the economic model and the materials balance principle. Secondly, it allows 
for the incorporation of heterogeneity in banks' input quality, as discussed by Hampf and Rødseth [27, 28]. 
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Federal Financial Institutions Examination Council (FFIEC), specifically the FFIEC031 reporting forms5, 

which encompass banks with both domestic and foreign offices.6  Within our research, we examine 

different variables involved in the production process of banks, namely total fixed assets (reported in the 

FFIEC031 reporting form as: “premises and fixed assets”) , the number of employees (reported in the 

FFIEC031 reporting form as: “number of full-time equivalent employees at end of current period”), total 

deposits (reported in the FFIEC031 reporting form as: “Deposits: Total (sum of items 1 through 6)”), non-

performing loans- NPLs (reported in the FFIEC031 reporting form as: “Total loans and lease finance 

receivables: Non-accrual”), total securities (reported in the FFIEC031 reporting form as: “Total held-to-

maturity securities + Total available-for-sale securities”) and total loans (reported in the FFIEC031 

reporting form as: “Total loans and leases”). Descriptive statistics for the variables used in our analysis 

are presented in Table 1. The trend lines presented in Table 1 demonstrate that, on average, banks have 

observed an upward trend in their total fixed assets, total deposits, total loans, and total securities over the 

analyzed period. However, starting from 2012, there has been a decline in the number of employees and 

NPL levels. This finding indicates that banks have made efforts to control costs, especially in the aftermath 

of the Global Financial Crisis, by managing their NPL levels and reducing expenses through a decrease 

in employee numbers. 

 

 

 

 

 
5 A sample of a FFIEC031 reporting form can be found at: https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC031_202309_f.pdf.  
6Note that for our calculations banks’ production variables are deflated in 2015 prices using the GDP deflator. 
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Table 1: Descriptive statistics 

    

Total Fixed Assets 

(in 000’s USD) 
Number of 
Employees  

Total Deposits (in 
000’s USD) 

Total Securities (in 
000’s USD) 

Total Loans (in 
000’s USD)  

Non-performing 
loans (in 000’s USD) 

 Trend 
      

2003 mean 13,164,931.92 2,986 5,778,576.10 2,023,983.78 6,728,772.29 69,158.18 

 std 87,962,349.43 17,886 28,177,836.92 10,803,749.24 38,430,742.39 579,224.95 

2004 mean 16,498,600.77 3,472 7,268,536.13 2,566,910.98 8,509,517.08 60,625.78 

 std 114,981,281.24 21,750 40,118,167.63 15,809,849.37 50,191,081.80 486,562.02 

2005 mean 17,887,603.77 3,613 7,876,051.06 2,461,568.03 9,299,157.81 65,163.14 

 std 122,003,922.33 22,644 42,086,891.29 15,196,133.26 53,859,087.36 505,662.90 

2006 mean 20,224,613.05 3,829 8,380,540.24 2,747,977.37 10,356,437.68 72,076.43 

 std 143,521,046.73 24,591 44,796,019.66 17,799,766.99 61,776,130.42 543,456.21 

2007 mean 23,067,888.15 4,024 9,016,600.36 2,752,909.14 11,967,909.63 144,819.41 

 std 166,944,972.62 26,714 49,530,501.04 17,011,992.59 74,264,512.11 967,396.08 

2008 mean 27,143,673.49 4,423 11,796,267.31 3,648,724.81 14,161,389.06 422,933.66 

 std 189,422,590.64 28,215 69,893,029.40 23,560,069.82 87,373,424.55 2,906,732.78 

2009 mean 27,460,357.36 4,359 12,431,164.02 4,517,574.91 13,263,535.43 800,509.40 

 std 193,422,935.63 27,466 72,642,062.80 30,431,637.09 80,982,926.87 5,775,485.00 

2010 mean 27,962,926.14 4,415 12,687,669.78 4,599,909.94 13,572,834.65 728,936.64 

 std 198,450,871.79 28,009 74,814,692.56 30,567,846.95 84,369,724.09 5,368,496.30 

2011 mean 28,606,499.48 4,505 14,004,739.75 4,893,315.60 13,807,268.56 659,856.41 

 std 199,097,545.13 28,347 82,434,257.56 31,163,776.06 84,267,350.16 5,110,881.97 

2012 mean 29,730,862.19 4,470 15,170,789.03 5,064,027.24 14,256,782.56 599,688.70 

 std 205,863,974.37 27,711 89,622,835.17 32,615,808.75 85,481,251.50 4,841,352.29 

2013 mean 30,162,688.35 4,357 15,852,292.88 5,038,836.62 14,502,866.42 448,292.25 

 std 207,054,177.12 26,581 94,429,872.30 31,535,128.49 85,802,815.08 3,532,838.37 

2014 mean 31,758,076.15 4,278 16,845,791.69 5,527,040.90 15,038,944.96 343,447.59 

 std 214,573,919.31 25,630 98,884,818.05 34,601,999.63 85,678,932.20 2,631,154.90 

2015 mean 31,962,068.97 4,235 17,767,858.33 5,813,343.53 15,843,146.23 282,473.03 

 std 208,855,812.12 24,921 102,368,281.32 35,782,682.64 88,895,549.46 2,074,052.48 

2016 mean 33,861,043.97 4,280 19,064,365.76 6,204,599.02 16,786,815.63 258,256.30 

 std 218,889,117.19 24,789 109,052,191.03 38,304,508.02 92,746,824.66 1,765,501.34 

2017 mean 35,088,118.02 4,301 19,787,369.20 6,254,238.49 17,580,713.75 224,392.99 

  std 224,278,901.58 24,597 112,028,345.96 38,340,395.91 95,584,736.64 1,516,592.06 

 

 

 

 



10 
 

  Moreover, Table 2, presents the pre-mentioned variables in the three applied specifications. Let  𝐱 

＝(𝑥ଵ, . . , 𝑥ே) and 𝐲 ＝൫𝑦ଵ,…,𝑦ெ ൯ be two standard (or basic) inputs and outputs. In addition, we have 

additional variables: NPL (bad output) and its linked Total Loan variable. In this study, the linked Total 

Loan variable, which is responsible for the production of nonperforming loans, play two different roles 

depending upon the three different modeling approaches (K, MRL, and HR).  The linked Total Loan 

variable is a good output 𝑦்௅ in the K approach, but it is a linked-input 𝑥்௅ in the MRL and HR approaches.  

Hence, 𝑦்௅ and 𝑥்௅ do not appear simultaneously for any of the approaches adopted in this study (see 

Table 2)7.   

Table 2: Model description 

Modeling specification 𝐱 𝐲 𝑥்௅ 𝑦்௅ 𝑁𝑃𝐿 

HR (material balance 
technology) 
 and MRL (by-production 
technology) 
 

Total Fixed Assets, 
Number of 
Employees 

Total Deposits, 
Total Securities 

Total Loans  NPLs 

K (joint weak disposable 
technology) 
 

Total Fixed Assets, 
Total Deposits, 

Number of 
Employees 

Total Securities  Total 
Loans 

NPLs 

 

3. Methodological framework 

Let ൫𝐱௝ , 𝐲௝ , 𝑁𝑃𝐿௝ , 𝑦௝
்௅൯ be observed values for bank 𝑗 = 1, … , 𝐽.  The K production possibility set8 is 

written as 

 
7 Note that in HR and MRL modeling approach, we consider total loans as inputs and total deposits as outputs. This selection 
of total loans and total deposits as primary factors in our model aligns with the value-added approach, as established by seminal 
works such as Berger et al. [4] and Berger and Humphrey [3]. In this approach, both liabilities and assets are regarded as pivotal 
elements contributing value to the functioning of a bank. As articulated by Sealy and Lindley [46, p.1254], the production 
process of banks can be conceptualized from a macroeconomic perspective, focusing on the banking system's overall impact 
on the economy. In this context, loans and investments are regarded as inputs, while deposits represent the output in the banking 
production framework. 
8The K production possibility set is based on the joint weak disposability proposed by Färe and Grosskopf [12], which uses a 
uniform abatement factor for all banks.  Kuosmanen [30] suggested to use un-uniform abatement factors across firms, which 
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𝑇୏ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

൮

𝐱,
𝐲

𝑁𝑃𝐿
𝑦்௅

൲ ∈ ℝା
ேାெାଵାଵ

ተ

ተ

ተ

𝐱 ≥ ∑ 𝐱௝൫𝛿௝ + 𝜓௝൯
௃
௝ୀଵ

𝐲 ≤ ∑ 𝐲௝൫𝛿௝ + 𝜓௝൯
௃
௝ୀଵ

𝑦்௅ ≤ ∑ 𝑦௝
்௅𝛿௝

௃
௝ୀଵ

𝜃୏ ∙ 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿௝  ∙ 𝛿௝
௃
௝ୀଵ

∑ ൫𝛿௝ + 𝜓௝൯
௃
௝ = 1,   𝜃: free

𝛿௝ ≥ 0, 𝑗 = 1, … , 𝐽;    𝜓௝ ≥ 0,   𝑗 = 1, … , 𝐽⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 

(1) 

 

where  

𝜃୏ = min

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜃 > 0

ተ

ተ

  𝐱 ≥ ∑ 𝐱௝൫𝛿௝ + 𝜓௝൯௃
௝ୀଵ ;    𝐲 ≤ ∑ 𝐲௝൫𝛿௝ + 𝜓௝൯௃

௝ୀଵ

𝑦்௅ ≤ ∑ 𝑦௝
்௅𝛿௝

௃
௝ୀଵ

− ∑ 𝑁𝑃𝐿௝  ∙ 𝛿௝
௃
௝ୀଵ + 𝜃 ∙ 𝑁𝑃𝐿 = 0

∑ ൫𝛿௝ + 𝜓௝൯
௃
௝ୀଵ = 1,   𝜃: free

𝛿௝ ≥ 0, 𝑗 = 1, … , 𝐽;    𝜓௝ ≥ 0,   𝑗 = 1, … , 𝐽 ⎭
⎪⎪
⎬

⎪⎪
⎫

 

 

 

(2) 

 

The Kuosmanen technology has the following disposability properties9: 

Strong disposability of 𝐱:   

 (𝐱, 𝐲, 𝑦்௅ , 𝑁𝑃𝐿) ∈ 𝑇୏ and (𝐱ො, 𝐲, 𝑦்௅, 𝑁𝑃𝐿) ≥ (𝐱, 𝐲, 𝑦்௅ , 𝑁𝑃𝐿)   ⇒  (𝐱ො, 𝐲, 𝑦்௅, 𝑁𝑃𝐿) ∈ 𝑇୏   

Strong disposability of 𝐲 and 𝑦௕:   

 (𝐱, 𝐲, 𝑦்௅ , 𝑁𝑃𝐿) ∈ 𝑇୏ and (𝐱, 𝐲, 𝑦்௅, 𝑁𝑃𝐿) ≥ (𝐱, 𝐲ො, 𝑦ො்௅ , 𝑁𝑃𝐿)   ⇒  (𝐱, 𝐲ො, 𝑦ො்௅, 𝑁𝑃𝐿) ∈ 𝑇୏   

Joint weak disposability between 𝑁𝑃𝐿  and 𝑦்௅ : 

(𝐱, 𝐲, 𝑦்௅, 𝑁𝑃𝐿) ∈ 𝑇୏ and  1 ≥ 𝜗 ≥ 0  ⇒  (𝐱, 𝐲, 𝜗𝑦்௅ , 𝜗 ∙ 𝑁𝑃𝐿) ∈ 𝑇୏ 

 
specification is adopted in this study.  See Färe and Grosskopf [12] and Kuosmanen and Podinovski [32] for some interesting 
discussion on this issue.     
9Throughout the paper, we assume the production technologies satisfy non-emptiness, closedness, output boundedness, no free 
lunch, convexity, bad output essentiality and input essentiality, in addition to the relevant disposability properties.  Note that 
different approaches adopt different disposability properties as stated in this section.  
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Next we turn to two technologies: Murty et al., [39] (MRL) technology and Hampf and Rodseth [28] (HR) 

technology. In these two technologies the loan variable is treated as an input 𝑥்௅, which is linked to NPL.  

The MRL technology, implementing by-production, consists of two sub-technologies, the technology is 

defined as the intersection of the two sub-technologies:  

𝑇୑ୖ୐ = 𝑇ଵ ሩ 𝑇ଶ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
ேାெାଵାଵ

ተ

ተ

ተ

𝐱 ≥ ∑ 𝐱௝
௃
௝ 𝜆௝

ଵ;    𝐲 ≤ ∑ y௝𝜆௝
ଵ௃

௝ୀଵ

𝑥்௅ ≥ ∑ 𝑥௝
்௅௃

௝ 𝜆௝
ଵ

∑ 𝜆௝
ଵ௃

௝ୀଵ = 1;   𝜆௝
ଵ ≥ 0, 𝑗 = 1. . , 𝐽

 𝑥்௅ ≤ ∑ 𝑥௝
்௅௃

௝ 𝜆௝
ଶ 

𝜃୑ୖ୐ ∙ 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿௝𝜆௝
ଶ௃

௝ୀଵ

∑ 𝜆௝
ଶ௃

௝ୀଵ = 1; 𝜆௝
ଶ ≥ 0, 𝑗 = 1. . , 𝐽

𝑠௫೅ಽ,మ
≥ 0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 

(3) 

 

where  

𝑇ଵ =

⎩
⎨

⎧
൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
ேାெାଵାଵተተ

𝐱 ≥ ∑ 𝐱௝
௃
௝ 𝜆௝

ଵ;    𝐲 ≤ ∑ y௝𝜆௝
ଵ௃

௝ୀଵ

𝑥்௅ ≥ ∑ 𝑥௝
்௅௃

௝ 𝜆௝
ଵ

∑ 𝜆௝
ଵ௃

௝ୀଵ = 1;   𝜆௝
ଵ ≥ 0, 𝑗 = 1. . , 𝐽⎭

⎬

⎫
 

𝑇ଶ =

⎩
⎨

⎧
൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
ேାெାଵାଵተተ

 𝑥்௅ ≤ ∑ 𝑥௝
்௅௃

௝ 𝜆௝
ଶ 

𝜃୑ୖ୐ ∙ 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿௝𝜆௝
ଶ௃

௝ୀଵ

∑ 𝜆௝
ଶ௃

௝ୀଵ = 1; 𝜆௝
ଶ ≥ 0, 𝑗 = 1. . , 𝐽⎭

⎬

⎫
 

𝜃୑ୖ୐ = min{θ|  (𝐱, 𝐲, 𝑥்௅, 𝜃 ∙ 𝑁𝑃𝐿) ∈ 𝑇୑ୖ୐} (4) 

The third approach, defined relative to the HR technology, considered in this paper is the one which is 

constructed under the assumption of different qualities across banks based on the following property:   

𝑠ே௉௅ = 𝛼ௗ ∙ 𝑠௫೅ಽ
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where  𝛼ௗ is the NPL-specific proportional factor and 𝑠ே௉௅ and 𝑠௫೅ಽ
 are the slack constraints associated 

with the nonperforming loans and the nonperforming loans-generating input.  Hampf and Rodseth [28] 

provide the d-quality specific technology: 

𝑇ୌୖ,ௗ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
ேାெାଵାଵ

ተ

ተ

𝐱 ≥ ∑ 𝐱ௗ௝𝜆ௗ௝
௃
௝ ;   𝐲 ≤ ∑ 𝐲ௗ௝𝜆ௗ௝

௃
௝ୀଵ  ; 

𝑥்௅ − 𝑠௫೅ಽ
= ∑ 𝑥ௗ௝

்௅𝜆ௗ௝
௃
௝ ;  

 𝑁𝑃𝐿 − 𝑠ே௉௅ = ∑ 𝑁𝑃𝐿ௗ௝𝜆ௗ௝
௃
௝ୀଵ ; 

𝑠ே௉௅ = 𝛼ௗ ∙ 𝑠௫೅ಽ
;     ∑ 𝜆ௗ௝

௃
௝ୀଵ = 1;   

  𝜆ௗ௝ ≥ 0  (∀𝑑, ∀𝑗);  𝑠௫೅ಽ
≥ 0;    𝑠ே௉௅ ≥ 0⎭

⎪
⎪
⎬

⎪
⎪
⎫

 

 

 

 

Considering 𝑑 = 1, . . , 𝐷 different qualities, the HR technology is defined by the union of the d-quality 

sub-technologies 

𝑇ୌୖ = convex ራ 𝑇ୌୖ,ௗ

஽

ௗୀଵ

 
 

(5) 

Applying (5) with appropriate adjustments, Hampf and Rodseth [28] presents the following NPL-𝑥்௅ 

oriented Farrell-like efficiency measurement (see Appendix for details):  

𝜃ୌୖ = min{θ|  (𝐱, 𝐲, 𝜃 ∙ 𝑥்௅ , 𝜃 ∙ 𝑁𝑃𝐿) ∈ 𝑇ୌୖ}

= min

⎩
⎪
⎨

⎪
⎧

θ
ተ

ተ

𝐱௢ ≥ ∑ 𝐱௝
௃
௝ୀଵ 𝜆௝;    𝐲௢ ≤ ∑ 𝐲௝𝜆௝

௃
௝ୀଵ ; 

 

𝜃 ∙ 𝑥்௅ = ∑ 𝑥௝
்௅𝜆௝

௃
௝ୀଵ ; 

 𝜃 ∙ 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿௝𝜆௝
௃
௝ୀଵ

∑ 𝜆௝
௃
௝ୀଵ = 1;  𝜆௝ ≥ 0, 𝑗 = 1, … , 𝐽;   𝜃: free⎭

⎪
⎬

⎪
⎫

 

 

(6) 

 

Regarding 𝑇୑ୖ୐ and 𝑇ୌୖ, we present below the following assumptions  (A) of strong disposability: 

Strong disposability of 𝐱 for h=MRL, HR:   

(𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ∈ 𝑇௛ and (𝐱ො, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ≥ (𝐱, 𝐲, 𝑥்௅ , 𝑁𝑃𝐿)   ⇒  (𝐱ො, 𝐲, 𝑥்௅ , 𝑁𝑃𝐿) ∈ 𝑇௛       (A1) 
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Strong disposability of 𝐲 for h=MRL, HR:   

(𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ∈ 𝑇௛ and (𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ≥ (𝐱, 𝐲ො, 𝑥்௅ , 𝑁𝑃𝐿)   ⇒  (𝐱, 𝐲ො, 𝑥்௅ , 𝑁𝑃𝐿) ∈ 𝑇௛      (A2) 

The following properties differ between  𝑇୑ୖ୐ and  𝑇ୌୖ. 

Reverse disposability of 𝑥்௅ for 𝑇୑ୖ୐:  

(𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ∈ 𝑇୑ୖ୐ and (𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ≥ (𝐱, 𝐲, 𝑥ො்௅ , 𝑁𝑃𝐿)   ⇒  (𝐱, 𝐲, 𝑥ො்௅, 𝑁𝑃𝐿) ∈ 𝑇୑ୖ୐ (A3) 

Reverse disposability of  NPL for 𝑇୑ୖ୐ : 

(𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ∈ 𝑇୑ୖ୐ and ൫𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿෣൯ ≥ (𝐱, 𝐲, 𝑥்௅ , 𝑁𝑃𝐿)   ⇒  ൫𝐱, 𝐲, 𝑥்௅ , 𝑁𝑃𝐿෣൯ ∈ 𝑇୑ୖ୐ (A4) 

Joint weak disposability10 between 𝑥்௅ and 𝑁𝑃𝐿 for 𝑇ୌୖ:  

(𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ∈ 𝑇ୌୖ and 1 ≥ 𝜃 ≥ 0  ⇒   (𝐱, 𝐲, 𝜃𝑥்௅, 𝜃 ∙ 𝑁𝑃𝐿) ∈ 𝑇ୌୖ        (A5) 

Moreover, 𝑇ୌୖ satisfies the weak G-disposability11: 

(𝐱, 𝐲, 𝑥்௅, 𝑁𝑃𝐿) ∈ 𝑇ୌୖ and 𝑠ே௉௅ = 𝛼 ∙ 𝑠௫೅ಽ
 ⇒   ൫𝐱, 𝐲, 𝑥்௅ − 𝑠௫೅ಽ

, 𝑁𝑃𝐿 − 𝑠௫೅ಽ
൯ ∈ 𝑇ୌୖ          (A6) 

where 𝑠௫೅ಽ
 and 𝑠ே௉௅ are associated to the slacks of 𝑥்௅ and 𝑁𝑃𝐿, respectively. 

We adopt a two-step procedure for each approach using a nonparametric (DEA) method by considering 

the importance of nonperforming loans in bank production with respect to the K, MRL and HR approaches.    

In our bank production setting, the relation between the NPL variable and its linked variable (output or 

input) is a key point that we wish to focus on, and hence we consider minimization of NPL in Step 1.  

Then we consider projection points on the standard inputs 𝐱 and outputs 𝐲 in Step 2. 

 
10 The joint disposability properties for 𝑇ୌୖ  and for 𝑇୏ are different because the production variables are different. 
11 Here 𝛼 not 𝛼ௗ because the quality of NPLs is not considered. 
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Step 1. Estimate equations (2), (4) and (6), i.e., obtain :  𝜃୏, 𝜃୑ୖ୐ and 𝜃ୌୖ.  

Step 2.  Obtain the following directional slack inefficiency measures with respect to 𝐱 and outputs 𝐲: 

𝛽୏ = max ൞
ଵ

ଷ
 

൬
௦భ

ೣା௦మ
ೣ

ே
+

௦భ
೤

ା௦మ
೤

ெ
+

௦೤೅ಽ

ଵ
൰ ተቌ

𝐱 − 𝐬௫;    𝐲 − 𝐬௬  

 𝜃୏ ∙ 𝑦்௅ + 𝑠௬೅ಽ
;   𝜃୊ୋ୏ ∙ 𝑁𝑃𝐿 

 𝐬௫ ≥ 𝟎; 𝐬௬ ≥ 𝟎;  𝑠௬೅ಽ
≥ 0

ቍ ∈ 𝑇୏ 

 

ൢ  

(7) 

𝛽୑ୖ୐

= max ቐ
1
3
 

ቆ
𝑠ଵ

௫ + 𝑠ଶ
௫

𝑁
+

𝑠ଵ
௬

+ 𝑠ଶ
௬

𝑀
+

𝑠௫೅ಽ

1
ቇ ቮ ቌ

𝐱 − 𝐬௫;   𝐲 + 𝐬௬

𝜃୑ୖ୐ ∙ 𝑁𝑃𝐿;    𝜃୑ୖ୐ ∙ 𝑥்௅ − 𝑠௫೅ಽ

 𝐬௫ ≥ 𝟎,   𝐬௬ ≥ 𝟎;  𝑠௫೅ಽ
≥ 0

ቍ ∈ 𝑇୑ୖ୐ቑ 

(8) 

𝛽ୌୖ = max ቐ
ଵ

ଶ
 

൬
௦భ

ೣା௦మ
ೣ

ே
+

௦భ
೤

ା௦మ
೤

ெ
൰ ቮቌ

𝐱 − 𝐬௫;   𝐲 − 𝐬௬;

𝜃ୌୖ ∙ 𝑁𝑃𝐿;  𝜃ୌୖ ∙ 𝑥்௅;
 𝐬௫ ≥ 𝟎;   𝐬௬ ≥ 𝟎

ቍ ∈ 𝑇ୌୖ

  

ቑ  

(9) 

 where the denominator value of the first ratio in each objective function indicates the number of kinds of 

production variables and the denominator value associated with slacks is the number of slack variables 

for each production variable. For example, there are three kinds of variables (𝐱, 𝐲 and  𝑦்௅) and  N 

variables of 𝐱.    

4. Empirical Findings 

Figure 1 presents the diachronic per-year mean values of three estimators along with the associated 

uncertainties expressed as one standard deviation (1SD). The figure illustrates the directional distance 

slack inefficiency (DSI) measures under different specifications. The blue line represents the K_DSI 

estimator, which adopts the weak disposable technology based on Kuosmanen [30] and derives 

inefficiency estimates from equation 7. The red line represents the MRL_DSI estimator, which adopts the 

by-production technology based on Murty et al. [39] and derives inefficiency estimates from equation 8. 
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Lastly, the green line represents the HR_DSI estimator, which adopts the material balance technology by 

Hampf and Rodseth [28] and derives inefficiency estimates from equation 9. 

Our sample comprises 5,685 observations over the entire period. Under the K_DSI estimator, 1463 

observations are reported as fully efficient (i.e., zero inefficiency), whereas for the MRL_DSI estimator, 

387 observations are reported as fully efficient. Similarly, under the HR_DSI estimator, 846 observations 

are reported as fully efficient. Figure 1 indicates that the mean inefficiency lines for MRL_DSI and 

HR_DSI exhibit a similar average trend, while the K_DSI estimator shows a distinct trend over the 

examined period. Notably, the K_DSI estimator demonstrates fewer fluctuations compared to the other 

two estimators, which exhibit higher standard deviation (SD) values. This discrepancy in fluctuations can 

be attributed to the MRL_DSI and HR_DSI estimators incorporating banks' heterogeneities, resulting in 

varying levels of inefficiency. Conversely, the K_DSI estimator lacks such properties, resulting in lower 

inefficiency fluctuation levels. Overall, the K_DSI estimator reports lower inefficiency levels compared 

to the MRL_DSI and HR_DSI estimators. Additionally, both the MRL_DSI and HR_DSI estimators show 

a decreasing trend in banks' inefficiency levels until 2013, followed by an increasing trend. In contrast, 

the K_DSI estimator does not exhibit this fluctuating inefficiency trend over the examined period. These 

differences in estimated efficiencies were expected due to the comparison of different models for banks' 

production processes. The MRL_DSI estimator, for instance, measures bank inefficiency using two sub-

technologies: one for the treatment of desirable outputs and another for undesirable outputs (NPLs). This 

separation allows for distinct operations and impacts the inefficiency estimation. Similarly, the HR_DSI 

estimator employs the generalized weak G-disposability assumption, which incorporates banks' NPL 

factors as an outcome of transforming inputs to intended outputs. These factors represent the distribution 

of loan quality issued by banks and account for banks' input heterogeneity and quality characteristics. 
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Such specifications are not modeled under the K_DSI estimator, resulting in different inefficiency levels 

throughout the examined period. 

Figure 1: Diachronic representation of banks’ mean DSI levels 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The shaded boxes in various colors represent the uncertainty associated with the three estimated measures, 
expressed as one standard deviation (1SD). Additionally, the lines illustrate the annual mean values of the three 
estimators. 

To examine the equality of the three inefficiency distributions, we employed the bootstrapped-

based test proposed by Simar and Zelenyuk [48]. Their algorithm, based on Li's [34] work on density 

equality testing, compares distributions of efficiency scores estimated using DEA (Data Envelopment 

Analysis). Specifically, we applied "Algorithm I" from Simar and Zelenyuk [48] to assess the equality of 

inefficiency distributions for three pairs: "K_DSI against MRL_DSI," "K_DSI against HR_DSI," and 

"HR_DSI against MRL_DSI." For the pair "K_DSI against MRL_DSI," the bootstrapped-based test 
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statistic yielded a value of 2209.311, with an estimated p-value of 0.000. This result indicates that we 

reject the null hypothesis of equality between the inefficiencies of the K_DSI and MRL_DSI estimators 

at a significance level of 0.1%. Similarly, when comparing the inefficiencies of the K_DSI and HR_DSI 

estimators, the test statistic was 14952.912, with an estimated p-value of 0.000. Consequently, we reject 

the null hypothesis of equality at the 0.1% level. Additionally, when examining the inefficiency 

distributions between the MRL_DSI and HR_DSI estimators, the bootstrapped-based test statistic was 

118.8499, with an estimated p-value of 0.000. Thus, we once again reject the null hypothesis of equality 

between these two inefficiency distributions at the 0.1% level. In conclusion, all three estimators exhibit 

unequal inefficiency distributions. 

Furthermore, Figure 2 complements the analysis by presenting density plots of quantile 

inefficiency estimates for the three DSI estimators. As previously observed, the weak disposability 

assumption employed by the K_DSI estimator results in lower inefficiency scores compared to the 

MRL_DSI and HR_DSI estimators. It is crucial to note that utilizing any of the DSI estimators requires 

subjective decisions regarding the technology used to model NPLs within the bank production framework. 

The K_DSI estimator, for instance, generates less fluctuated inefficiency estimates due to its inability to 

directly capture banks' heterogeneities or other NPL-related factors, which are accounted for by the 

MRL_DSI and HR_DSI estimators. Consequently, the inefficiencies obtained under the MRL_DSI and  

HR_DSI estimators are higher, incorporating more uncertainty reflected in the estimated standard 

deviation values. Conversely, the MRL_DSI and HR_DSI estimators appear to be more sensitive in 

capturing structural and institutional changes in the banking industry, which subsequently affect banks' 

estimated inefficiency levels. 
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 Figure 2: Density plots of the estimated banks’ DSI levels 

 

Note : The vertical axes denote the variable names, while the horizontal axis illustrates the values associated with 
each variable. The quartiles derived signify the segmentation of the data distribution into four intervals (quartiles), 
with each interval encompassing roughly 25% of the dataset. These quartile values are dynamically computed based 
on the filtered data, excluding extreme values. 
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5. Conclusions and policy implications 

In this research study, we propose a unified framework for modeling banks' production process in 

the presence of non-performing loans (NPLs). Our analysis focuses on a sample of 379 prominent banks 

in the United States from 2003 to 2017. Firstly, we adopt the weak disposability assumption and 

incorporate heterogeneous factors across banks to model NPLs under the assumption of variable returns 

to scale [30, 31, 32]. Secondly, we employ the by-production approach, treating NPLs as a separate sub-

technology operating independently from the desirable output sub-technology [39]. Lastly, we utilize the 

material balance approach to model banks' production process [28]. Notably, while Fukuyama et al. [22] 

have applied the material balance approach to banks' production processes, it has not been implemented 

in a directional slack inefficiency framework as developed in our study. Additionally, in our study, we 

assume the generalized weak-G disposability of inputs and outputs under the material balance approach, 

accounting for the heterogeneous quality of inputs in banks' production functions [28]. 

Furthermore, this study presents a unified methodological framework for the three approaches by 

employing a two-step procedure to make the approaches comparable. To compare the three approaches, 

we first minimize banks' NPL levels and then estimate the standard slack inefficiency model with respect 

to the standard banks' inputs and outputs. This two-step procedure is implemented to incorporate the 

generalized weak-G disposability assumption proposed by Hampf and Rodseth [28]. Specifically, in the 

first step, banks are ranked based on their radial efficiency measure, minimizing their NPL levels. In the 

second step, the maximum distance of only the input and output slacks  (𝐬௫ and 𝐬௬) is calculated. 

Our empirical findings indicate that under the K_DSI estimator, the estimated bank inefficiency 

levels are lower compared to the inefficiency levels obtained from the MRL_DSI and HR_DSI estimators. 

Moreover, the MRL_DSI and HR_DSI estimators exhibit greater sensitivity compared to the K_DSI 

estimator, displaying higher fluctuations and increased uncertainty reflected in the estimated standard 



21 
 

deviation values. Each model possesses unique attributes and can be applied in different situations where 

bank performance needs to be measured within distinct institutional and macro-micro bank industry 

environments. 

In terms of analysing policy implications based on our empirical findings, we can conclude that 

the implementation of generalized weak G-disposable technology may be more suitable when modeling 

banks' production function with regards to non-performing loans (NPLs), particularly when closely 

monitoring the impact of NPL reduction policies on banks' efficiency levels in relation to factors 

contributing to NPL generation. Unlike the other two approaches, a crucial aspect of this approach is the 

consideration of weak-G disposability, specifically the "summing-up condition." As described by Hampf 

and Rødseth [27, p.142], in our MB modeling approach we assume zero abatement and, consequently, 

zero changes in the abatement of outputs (i.e., NPLs)12. In this context, the summation condition implies 

that the increases in the use of a bank's inputs and/or the reduction of the bank's good outputs must equal, 

the increases in NPLs when bank's inputs and outputs are disposed. Additionally, the application of 

generalized weak G-disposable technology encompasses all qualities of banks' inputs by forming the 

convex hull of the union of all quality-specific technology sets. Therefore, it includes all feasible 

production points within the quality-specific weakly G-disposable technologies, as well as their convex 

combinations. Consequently, it provides a convex meta-technology that accounts for both technical and 

quality differences. 

Hampf and Rødseth [28, p.615] have highlighted that the implementation of the generalized weak 

G disposability when applying the material balance approach, in a sense, models both NPLs’ generating 

 
12Note that in our analysis we assume that 𝑎 =  0 (i.e., no abatement activities). This is implied following formal derivations 
of the programming problems. However as demonstrated by Hampf and Rødseth [27] the 𝑎 > 0 case can be adapted in order 
to allow for disposal of bank’s abatement output.   
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inputs and NPLs as weakly disposable inputs. However, as in previous model (e.g., the K –model) when 

modeling NPLs and we assume a constant NPL factor for all observations, it implies an implausible trade-

off. On the other hand, when we apply the generalized weak G-disposable technology assuming 

heterogeneity among banks' NPL generation factors, we allow for a meaningful trade-off. In such 

instances, a trade-off implies that when transitioning from a high NPL factor to a lower NPL factor by 

adjusting banks' input quality (i.e., total loans - 𝑥்௅), a larger quantity of this input (i.e. 𝑥்௅) is required 

to produce a desirable bank output. 

It is crucial to note that the K_DSI estimator yields estimated levels of bank inefficiency that are 

significantly influenced by the implicit production function. For instance, it considers total deposits as 

inputs in the intermediation approach. On the other hand, the MRL_DSI and HR_DSI estimators treat 

total deposits as outputs in the value-added approach. These theoretical approaches establish the 

foundational framework for modeling the bank production process under the DEA framework, resulting 

in distinct efficiency estimates. Additionally, we acknowledge that the distribution properties of the 

analysed estimators are derived from the specific characteristics of the examined sample. However, it is 

crucial to conduct further investigations to achieve a comprehensive and conclusive understanding of the 

estimated inefficiency distributions. Despite these limitations, our study is the first to establish the 

applicability of the generalized weak-G disposability property within the directional slack inefficiency 

framework in the context of bank efficiency, in comparison with the other two established estimators. This 

opens up avenues for future research in modeling banks' production processes in the presence of NPLs. 
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Appendix A:  A procedure from Eq. (5) to Eq. (6).  

In this appendix, we show how Eq. (5) leads to Eq. (6) by following Hampf and Rodseth (2019).  

Assuming there are d=1,…,D total loans qualities (heterogeneity of total loans across D different bank 

groups), d-quality-specific technology  𝑇ுோ,ௗ is written as  

𝑇ுோ,ௗ =

⎩
⎪
⎨

⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
଺

ተ

ተ

𝐱 ≥ ∑ 𝐱ௗ௝𝜆௝
௃೏
௝ୀଵ ;       𝐲 ≤ ∑ 𝐲ௗ௝𝜆௝

௃೏
௝ୀଵ ;  

𝑥்௅ − 𝑠்௅ = ∑ 𝑥ௗ௝
்௅𝜆௝

௃೏
௝ୀଵ ;  𝑁𝑃𝐿 − 𝑠ே௉௅ = ∑ 𝑁𝑃𝐿ௗ௝𝜆ௗ௝

௃೏
௝ୀଵ ; 

𝑠ே௉௅ = 𝛼ௗ𝑠்௅ ;     ∑ 𝜆ௗ௝
௃೏
௝ୀଵ = 1;   

  𝜆ௗ௝ ≥ 0  ;     𝑠்௅ ≥ 0;    𝑠ே௉௅ ≥ 0 ⎭
⎪
⎬

⎪
⎫

 

where 𝐽ௗ denotes the number of banks of loan quality d and 𝛼ௗ is the NPL-generating exogenous 

factor specific to group d.  This d-specific technology can be written as  

𝑇ுோ,ௗ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
଺

ተ

ተ

ተ

𝐱 ≥ ∑ 𝐱ௗ௝𝜆ௗ௝
௃೏
௝ ;      𝐲 ≤ ∑ 𝐲ௗ௝𝜆ௗ௝

௃೏
௝ୀଵ ;

𝑥்௅ = ∑ 𝑥ௗ௝
்௅𝜆ௗ௝

௃೏
௝ୀଵ ൭1 +

𝑠்௅

∑ 𝑥ௗ௝
்௅𝜆ௗ௝

௃೏
௝

൱ ; 

 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿ௗ௝𝜆ௗ௝
௃೏
௝ୀଵ ൭1 +

𝛼ௗ𝑠்௅

∑ 𝑁𝑃𝐿௝𝜆ௗ௝
௃೏
௝ୀଵ

൱ ;

 ∑ 𝜆ௗ௝
௃೏
௝ୀଵ = 1;     𝜆ௗ௝ ≥ 0  (𝑗 = 1, … , 𝐽ௗ);  𝑠்௅ ≥ 0⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

Since no single bank within group d can independently manage the relationship between non-

performing loans and total loans, we put 𝑁𝑃𝐿ௗ௝ = 𝛼ௗ𝑥ௗ௝
்௅ and hence we have 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿ௗ௝𝜆ௗ௝

௃೏
௝ୀଵ =

𝛼ௗ ∑ 𝑥ௗ௝
்௅𝜆ௗ௝

௃೏
௝ .   Consequently, we have  

𝑇ுோ,ௗ =

⎩
⎪
⎨

⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
଺

ተ

ተ

𝐱 ≥ ∑ 𝐱ௗ௝𝜆ௗ௝
௃೏
௝ ;      𝐲 ≤ ∑ 𝐲ௗ௝𝜆ௗ௝

௃೏
௝ୀଵ ;

𝑥்௅ = ∑ 𝑥ௗ௝
்௅𝜆ௗ௝

௃೏
௝ୀଵ 𝜌;   

𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿ௗ௝𝜆ௗ௝
௃೏
௝ୀଵ 𝜌;

 ∑ 𝜆ௗ௝
௃೏
௝ୀଵ = 1;    𝜆ௗ௝ ≥ 0  (𝑗 = 1, … , 𝐽ௗ);  𝜌 ≥ 1⎭

⎪
⎬

⎪
⎫
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where 𝜌 = 1 +
௦೅ಽ

∑ ௫೏ೕ
೅ಽఒ೏ೕ

಻೏
ೕ

.  Since the generalized weak G-disposable technology 𝑇ୌୖ is written as 

Eq. (5) as the convex hull, it can be written as  

𝑇ୌୖ = convex ራ 𝑇ୌୖ,ௗ

஽

ௗୀଵ

=

⎩
⎪
⎨

⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
଺

ተ

ተ

𝐱 ≥ ∑ ∑ 𝐱ௗ௝𝜆ௗ௝
௃೏
௝

஽
ௗୀଵ ;      𝐲 ≤ ∑ ∑ 𝐲ௗ௝𝜆ௗ௝

௃೏
௝ୀଵ

஽
ௗୀଵ

 𝑥்௅ = ∑ ∑ 𝑥ௗ௝
்௅𝜆ௗ௝

௃೏
௝ୀଵ 𝜌஽

ௗୀଵ ;  

𝑁𝑃𝐿 = ∑ ∑ 𝑁𝑃𝐿ௗ௝𝜆ௗ௝
௃೏
௝ୀଵ 𝜌஽

ௗୀଵ ;   ∑ ∑ 𝜆ௗ௝
௃೏
௝ୀଵ

஽
ௗୀଵ  = 1;

𝜆ௗ௝ ≥ 0  (𝑗 = 1, … , 𝐽ௗ; 𝑑 = 1, … , 𝐷);     𝜌 ≥ 1 ⎭
⎪
⎬

⎪
⎫

 

Considering ∑ 𝐽ௗ
஽
ௗୀଵ = 𝐽, this technology can also be written as 

𝑇ୌୖ =

⎩
⎪
⎨

⎪
⎧

൮

𝐱
𝐲

𝑥்௅

𝑁𝑃𝐿

൲ ∈ ℝା
଺

ተ

ተ

𝐱௢ ≥ ∑ 𝐱௝
௃
௝ୀଵ 𝜆௝;    𝐲 ≤ ∑ 𝐲௝𝜆௝

௃
௝ୀଵ ;

 

 𝑥்௅ = ∑ 𝑥௝
்௅𝜆௝

௃
௝ୀଵ  𝜌;

 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿௝𝜆௝;    
௃
௝ୀଵ 𝜌 ≥ 1;

∑ 𝜆௝
௃
௝ୀଵ = 1;  𝜆௝ ≥ 0, 𝑗 = 1, … , 𝐽⎭

⎪
⎬

⎪
⎫

 

Relative to 𝑇ୌୖ, the following nonlinear program can be constructed: 

min

⎩
⎪
⎨

⎪
⎧

𝜃
ተ

ተ

𝐱௢ ≥ ∑ 𝐱௝
௃
௝ୀଵ 𝜆௝;    𝐲௢ ≤ ∑ 𝐲௝𝜆௝

௃
௝ୀଵ ; 

 

𝜃 ∙ 𝑥்௅ = ∑ 𝑥௝
்௅𝜆௝

௃
௝ୀଵ 𝜌; 

 𝜃 ∙ 𝑁𝑃𝐿 = ∑ 𝑁𝑃𝐿௝𝜆௝
௃
௝ୀଵ 𝜌

∑ 𝜆௝
௃
௝ୀଵ = 1;  𝜆௝ ≥ 0, 𝑗 = 1, … , 𝐽;   𝜃: free⎭

⎪
⎬

⎪
⎫

 

If ρ exceeds 1, the optimal value for θ would experience a further decrease in this minimization problem. 

So we set 𝜌 = 1, leading to Eq. (6).  

 


