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HRTF upsampling with a generative adversarial
network using a gnomonic equiangular projection
Aidan O. T. Hogg , Mads Jenkins, He Liu, Isaac Squires , Samuel J. Cooper , and Lorenzo Picinali

Abstract—An individualised head-related transfer function
(HRTF) is very important for creating realistic virtual reality
(VR) and augmented reality (AR) environments. However,
acoustically measuring high-quality HRTFs requires expensive
equipment and an acoustic lab setting. To overcome these
limitations and to make this measurement more efficient
HRTF upsampling has been exploited in the past where a
high-resolution HRTF is created from a low-resolution one.
This paper demonstrates how generative adversarial networks
(GANs) can be applied to HRTF upsampling. We propose
a novel approach that transforms the HRTF data for direct
use with a convolutional super-resolution generative adversarial
network (SRGAN). This new approach is benchmarked against
three baselines: barycentric upsampling, spherical harmonic (SH)
upsampling and an HRTF selection approach. Experimental
results show that the proposed method outperforms all
three baselines in terms of log-spectral distortion (LSD) and
localisation performance using perceptual models when the input
HRTF is sparse (less than 20 measured positions).

Index Terms—generative adversarial network, head-related
transfer function, super-resolution, upsampling, interpolation.

I. INTRODUCTION

REMOTE interaction has grown in use in recent years,
however, there are still many unsolved problems with

remote connectivity. A common issue is the lack of immersive
audio in these virtual interactions. Immersive audio is what
people experience in their everyday lives; some sounds are
close, some are far away, some are moving, some are static,
and all come from different directions. The loss of the
acoustic spatial dimension, as well as the physical interactions
with sound, can lead to the frustration people often feel
when communicating remotely (e.g. [1]). This is immediately
apparent in online meetings when multiple participants try
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to speak simultaneously or struggle to hear what others are
saying. This problem worsens when some participants are
present in person and others online. However, this need not be
the case, and realistic immersive audio attempts to contribute
to solving this problem by making the transition from real to
virtual audio seamless.

Furthermore, improvements to online communication are
not the only aim. In recent years, the prevalence of virtual
reality (VR) and augmented reality (AR) devices, as well as
three-dimensional (3D) video games, auditory displays and
hearing assistive devices [2], has led to a demand for more
realistic 3D audio rendering. Therefore, the need for better
immersive audio solutions is becoming increasingly relevant
to the modern world.

One way to achieve high realism in immersive audio is to
place the listener in the centre of a large spherical loudspeaker
array and play different sounds from different directions in
space. Unfortunately, although this solution works well in an
acoustic lab and could be used in cinemas and other large
venues, it is not practical beyond these controlled settings.
It is also costly and only works well for the small number of
participants at the centre of the array. A more practical solution
exploits the fact that humans have two auditory sensors (i.e.
two ears); in theory, we should only need two speakers (i.e.
in-ear headphones) to generate the correct sound at those
sensors, performing what is commonly referred to as binaural
(i.e. involving the two ears) spatialisation.

A. The matter of individualisation

The main challenge with binaural spatialisation is
understanding how sounds at the entrance of the two ear canals
can be realistically generated to mimic real-world 3D audio
accurately [3] and, more specifically, how this can be adapted
for individual listeners. This individualisation has resulted in
a large amount of research focusing on head-related transfer
functions (HRTFs), which capture the filtering effects related
to the anatomy of different listeners. This filtering is caused
by the sound wave being reflected and scattered off the head,
torso, and pinnae before it enters the ear canal of a given
listener. HRTFs are, therefore, able to capture interaural (i.e.
the difference heard between the listener’s two ears) and
monaural localisation cues [4]. It is customary to refer to
HRTF when considering the impulse response (IR) in the
frequency domain and head-related impulse response (HRIR)
in the time domain. In this paper, we also use the term HRTFs
to refer to the complete set of IR measurements corresponding
to a full set of source positions around each listener.
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It has been shown in the past that using non-individualised
HRTFs can significantly affect the individual’s sound source
localisation accuracy [5]–[7] as spectral cues are highly
dependent on the listener’s anatomy, particularly the shape
of their pinnae [8]. This non-individualisation can also
affect perceptual attributes such as externalisation, immersion,
colouration, realism and relief/depth [9]–[11]. Furthermore,
the choice of HRTF can significantly impact an individual’s
ability to understand speech in a cocktail party scenario [12].

As a result, capturing individual listeners’ personalised
HRTF remains an important area of active research. It
has been shown in the past that many approaches can be
deployed for this task of HRTF individualisation, including
acoustic measurements [13], 3D scans [14], modelling the
morphological geometric information of the listener’s ears
[15], [16] and selecting the best-fitting HRTF from a database
of already-measured ones. This best-fitting HRTF selection
is often made using morphology-based methods [17], [18]
or perceptual-based methods (e.g. using individual preference
[19] and/or localisation accuracy [20], [21]). An overview of
some of the most common methods can be found in [22].

The acoustic measurement [23] is still considered the gold
standard of these different approaches. The downside to
performing this acoustic measurement is the expensive custom
setup required and the time it takes. This is because numerous
IRs need to be measured around the individual, with numbers
ranging anywhere from 200 to 3000 [13]. This process can be
sped up by taking advantage of interlaced sine sweeps [24],
but this often only makes the elevation measurements faster.
Other methods do exist [25], [26] that aim to improve the time
performance of the HRTF measurement, but the equipment
specifications and cost are usually very high.

B. Spatial upsampling of HRTFs

To reduce the time required and the complexity of the
HRTF setup and to make the method scalable, spatial
upsampling methods have been proposed in the past that
can generate high-resolution HRTFs, i.e. HRTFs that contain
many (normally over 300) IRs from many directions, from
low-resolution HRTFs, i.e. HRTFs that include very few IRs
from very few directions [27]. This process is commonly
referred to as HRTF upsampling and can be achieved using
various approaches.

The most common HRTF upsampling method is barycentric
interpolation [28]–[30]. This method has been shown to
produce good results when the HRTFs contain a relatively
large number of IRs [31], for example, with an angular
distance of 10-15°between measurements; however, it becomes
much less reliable when interpolating sparser measurements
(e.g. each 30-40°). Another common approach is spherical
harmonic (SH) interpolation [32]–[36], but again results in
poor reconstruction when the low-resolution HRTF input
is spatially sparse. This is because these methods rely
on averaging between existing data points based on prior
information. For example, barycentric interpolation uses the
three nearest neighbours around the point to be interpolated
to calculate the weighted average. Therefore, as the distances

between the neighbours grow larger, the upsampling becomes
more and more inaccurate.

More recently, machine learning (ML) methods have started
to become the focus of research on HRTF personalisation. In
the past, ML techniques have been shown to be effective at
estimating HRTFs from just the anthropometric measurements
of the listener. In [37], a deep neural network (DNN)-based
approach is used to synthesise a personalised HRTF using the
anthropometric features of the user and was able to achieve
a performance of 3.2 dB log-spectral distortion (LSD). This
approach consisted of using the encoder part of an autoencoder
to reduce the dimensionality of the raw HRTFs, which can
be used as a set of input features for training. This aims
to minimise overfitting as HRTF datasets are usually small.
The decoder part of the autoencoder then estimates the HRTF
magnitudes using the output of a DNN that is trained to output
the latent representation given the anthropometric features
and the target azimuth. This type of approach is explored
further in [38], where two autoencoders are exploited: one
that reduces the dimensionality of a feature vector containing
the azimuth and anthropometric parameters and another that
reduces the dimensionality of the magnitudes of the full
HRTF measurement. These two autoencoders are combined to
estimate the HRTF magnitudes from anthropometric features
and achieve a performance of 4.3 dB LSD.

It has also been shown in the past that autoencoders can
be used to upsample low-resolution HRTFs. In [39], a method
is proposed that uses an autoencoder and is an extension of
a regularised linear regression (RLR) approach that makes
use of the spherical wavefunction presented in [40]. This
method’s key feature is that it decomposes HRTFs into source
position-dependent and source position-independent factors,
i.e. the spherical wavefunction expansion and expansion
coefficients, respectively. The autoencoder is conditioned on
source positions and obtains the source-position-independent
representation by using an aggregation module between the
encoder and decoder, aggregating latent variables of a given
source position. This approach was able to notably achieve
4.4 dB in LSD when upsampling from 9 to 440 positions.
Other ML methods also exist that are able to perform the
task of HRTF upsampling, including [41], which exploits a
deep belief network (DBN). This method accomplishes an
LSD average of less than 3 dB; however, results are only
given for upsampling from 125 source positions to 1250,
which is still relatively dense. Another method in [42] uses
a convolutional neural network (CNN) and has been shown to
yield a good performance of 4.4 dB LSD when upsampling
from 23 positions to 1250 and 3.8 dB when upsampling from
105 positions. However, in this case, the sphere is sliced into
planes to create a two-dimensional (2D) representation rather
than considering the sphere as a whole. ML techniques have
also been used in the past as part of a postprocessing step of
the spherical harmonic transform (SHT) interpolation [43].

C. HRTFs and GANs - our proposed solution

The main advantage of ML approaches over traditional
upsampling is that they can extrapolate patterns from the data
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rather than these patterns being hard-coded, making it possible
to recreate the missing information in the sparse measurements
using the knowledge learnt from a training set that contains
many high-resolution HRTFs. The aim of this paper is to
investigate the use of generative adversarial networks (GANs)
to tackle the HRTF upsampling problem, explicitly looking at
very sparse HRTF measurements and offering insight into the
practicality of this approach. In the past, GANs have been
successfully applied to many audio applications, including
WaveGAN [44], which applies GANs to the unsupervised
synthesis of raw-waveform audio. GANs were also used in
[45] for speech super-resolution, which aims to upsample a
given speech signal by generating the missing high-frequency
content. These applications of GANs are motivated by the
fact that GANs have been successfully applied to the task
of upsampling photos [46], [47] and astronomical images
[48] and are often referred to as super-resolution generative
adversarial networks (SRGANs). SRGANs [49] are a family
of ML models characterised by the use of two networks
that compete in an adversarial manner. These models have
been shown to work well on upsampling very low-resolution
images; however, apart from a pilot study [50], they have not
been exploited for the task of HRTF upsampling.

A novel approach is proposed here using the SRGAN
framework, as introduced by [47], to allow the generation of
accurate high-quality HRTFs from sparsely measured ones,
thus making this personal acoustic data available faster and at
a lower cost, albeit requiring a small number of measurements
anyway. The paper builds on a pilot study that was undertaken
in [50], which explored using an SRGAN for upsampling
HRTFs across single planes in space, e.g. the horizontal,
median and vertical planes. This limitation is overcome in the
study presented here, where the full 3D HRTF is employed for
the SRGAN training and prediction. The next steps to further
validate this technique, extend it, and ultimately integrate it
within a tool to be openly released are outlined at the end of
the paper.

The first challenge that was tackled was to transform
the original HRTF data into something more suitable
for the SRGAN, and this was achieved through various
transformations and resampling operations. The main
transformation is that of a gnomonic equiangular projection
[51]–[53], often referred to as a cubed sphere. The reason
this type of projection was selected is that it does not
produce singularities at the poles [54], and the distortion is
quasi-uniform over the whole sphere [55].

The transformed HRTF was then used to train the SRGAN,
for which an updated loss function was actually designed.
Finally, an evaluation was carried out by spatially upsampling
a certain number of low-resolution HRTFs and comparing the
results with various benchmark techniques (e.g. barycentric
and spherical harmonics interpolations). The comparison relied
on both signal-level metrics and model-based perceptual
evaluations.

This paper is structured as follows: Section II introduces
the method, including the pre- and post-processing steps
along with the GAN architecture. Section III explains the
experimental setup, that is, the data used, how the GAN

was trained, and an explanation of the baselines that were
used for comparison. In Section IV, spectral and perceptual
model-based results are presented. Finally, Section V provides
the conclusions drawn.

II. METHOD

A. Data pre-processing

SRGANs have been shown to perform well on the task of
upsampling images. The main challenge when it comes to
upsampling HRIRs is that the data occupies an extra dimension
in space compared to a 2D image. Another issue is that CNNs
are designed for applications using uniformly spaced data
(such as the pixels in conventional 2D images). In contrast, the
IRs in an HRIR are spaced non-uniformly on the surface of a
sphere. In particular, HRIRs often contain no measurements at
lower elevations, and the number of measurements is denser
around the horizontal plane.

Various approaches exist for processing non-uniformly
distributed spatial data, such as graph neural networks (GNNs)
[56]. However, in order to exploit the vast literature that
exists for the upsampling of images, in this study, we apply a
pre-processing step to convert the spherical data into a form
that a standard CNN can process.

Two main steps are required to convert the HRIR data into a
format that can be exploited by a CNN architecture. First, the
spherical HRIR data needs to be projected onto a 2D surface
to remove the extra dimension (see Section II-A1). Second,
an interpolation is utilised to shift the irregularly spaced IRs
onto an evenly spaced Cartesian grid (see Section II-A3). This
strategy has the advantage of mapping any HRIR dataset to
the same cartesian grid, and as a result, any dataset can be
deployed for training and testing the SRGAN [57].

In addition to these two steps, the phase and interaural
time differences (ITDs) were disregarded by taking the HRIR
into the frequency domain, referred to as the HRTF, and
only considering the magnitude component from each IR
in the HRIR. These additional simplifying pre-processing
steps can be performed because the up-sampled HRTFs
can be effectively reconstructed using a minimum-phase
approximation and a simple ITD model [30]. However, it
should be noted that such simplifications could have an impact
on certain perceptual features of the HRTFs [58]. For this
reason, future advancements in this technique should aim to
include phase information when performing the upsampling.

1) Gnomonic equiangular projection: A gnomonic
equiangular projection [59] is used to project the locations
of the IRs, seen in Fig. 1(a), in the HRIR to a cube, shown
in Fig. 1(b), which can then be flattened as shown in
Fig. 1(c). This process creates five panels where identical
local curvilinear coordinates are constructed for each panel
[51]. It should be noted that the 6th (bottom) panel is removed
as it contains no IR measurements as the HRIRs are usually
not measured below the listener. More information about this
choice can be found later on.
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(a) Original positions of the IRs.
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(c) Flattened cube of projected positions of the IRs
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(b) Gnomonic equiangular projected positions of the IRs.
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(d) Barycentric interpolation of flattened cube projected positions of the IRs.

Fig. 1. The four steps that project the impulse response (IR) locations for a given head-related transfer function (HRTF) in the ARI dataset onto a flattened
uniform cube.

The gnomonic equiangular projection [59] transforms the
location of any point on the sphere into Cartesian coordinates
x and y using

x = r

(
θ − (n− 1)

2
π

)
, (1)

y = r arctan

[
tan(ϕ) sec

(
θ − (n− 1)

2
π

)]
. (2)

where n represents the equatorial panel on the horizontal
plane that the point on the sphere would map onto, which
is determined based on the original elevation and azimuth and
can only take the values 1, 2, 3 and 4. However, the location
of any point on the top of the sphere, i.e. when n = 5, is
mapped to Cartesian coordinates x and y using

x = r arctan
(
sin(θ) cot(ϕ)

)
, (3)

y = r arctan
(
− cos(θ) cot(ϕ)

)
, (4)

where θ, ϕ and r correspond to the azimuth, elevation and
radius of each point on the original sphere. More precisely,
the azimuth θ is defined as the angle between the projection of

the source direction in the horizontal plane and the front axis
in the range of [π, −π] going from left to right, and elevation
ϕ is defined as the angle between the horizontal plane and the
position of the source.

2) Interaural time difference removal: Due to the anatomy
of the head, sounds from different directions will inevitably
arrive with different time delays. These delays are referred
to as the ITDs. These delays can be removed and then
reconstructed after the upsampling has occurred using a simple
ITD model. [58].

In this paper, a Kalman filter [60] is used to detect the onset
of each IR in the HRTFs so that the ITD can be removed.
This onset detection method is similar to that of [61], [62]
and works on the assumption that the amplitude behaviour of
the noise floor is predictable and, therefore, if the error in the
prediction is large, then the amplitude could not be predicted,
and the onset of IR has occurred.

The amplitude of the IR, xn, for the time index, n, is
modelled here as a random walk with zero-mean, normally
distributed increments such that

xn = xn−1 + w, w ∈ N (0, σ2
w) , (5)
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where the amplitude at n deviates from the amplitude at n− 1
with a variance of σ2

w, and x0 is defined as zero. Observations
of the IR, zn, are modelled conditionally on xn as

zn = xn + v, v ∈ N (0, σ2
v) , (6)

where the measurement noise, v, in this case, models the
uncertainty in the observations.

The Kalman filter estimates the system’s state and then
acquires feedback from noisy measurements using a prediction
and update step. The predicted amplitude estimate, x̂n|n−1,
and predicted estimate variance, Pn|n−1, are given by

x̂n|n−1 = x̂n−1|n−1 , (7)

Pn|n−1 = Pn−1|n−1 + σ2
w . (8)

The updated amplitude estimate, x̂n|n, and updated estimate
variance, Pn|n, are given by

x̂n|n = x̂n|n−1 +Kn(zn − x̂n|n−1) , (9)

Pn|n = (1−Kn)
2Pn|n−1 +K2

nσ
2
v . (10)

Where the innovation variance, Sn, and optimal Kalman gain,
Kn, are given by

Sn = Pn|n−1 + σ2
v , (11)

Kn =
Pn|n−1

Sn
. (12)

The error between measurement and prediction can, therefore,
be calculated as

ỹn|n = zn − x̂n|n . (13)

If this error, ỹn|n, is above a threshold, η, then that implies that
the error is large and the value, xn, could not be predicted. This
is indicative of the onset of the IR, which is not predictable by
the Kalman filter. Therefore, once the onset has been located,
the IR is trimmed before and after the onset so that all the IRs
in the HRTF possess the same delay, thus removing the ITD.

3) Barycentric interpolation: The gnomonic equiangular
projection (shown in Fig. 1(c)) has transformed the 3D space
into a 2D plane; however, the issue of the measurements being
spaced at irregular intervals still remains as the Cartesian
points lie along curves. This is a problem as the convolution
kernels used by the CNN require a uniform grid to function
correctly. Therefore, barycentric interpolation [30] is used to
project the data onto a regular Cartesian grid. For simplicity,
the barycentric interpolation is performed on the sphere of IRs
before the IRs are mapped using the gnomonic projection.

In previous work using barycentric interpolation [30], the
three nearest measurement points to the interpolated point
are calculated. However, suppose the measurement points are
not evenly spaced, which is the case here. In that case,
this can lead to the issue of the three selected measurement
points not forming a spherical triangle around the point to
be interpolated. Therefore, to solve this problem, we take
the three closest measurement points, forming a spherical
triangle around the point to be interpolated. This is similar
to [31], which proposes a barycentric interpolation among
the HRIRs at the points of a 3D tetrahedron conformed by
four measurement points which surround the point to be
interpolated.

First, in order to perform barycentric interpolation, it is
necessary to find the three closest points that form a spherical
triangle (P1, P2 and P3) around the interpolated point (Pi),
where a spherical triangle can be defined as a curved surface
on a sphere which is bounded by the arcs of three great circles.
Second, the barycentric coordinates α, β, and γ need to be
calculated. These coordinates represent the ratio of the areas
of the three smaller triangles (PiP2P3, P1PiP3, and P1P2Pi)
relative to the larger triangle (P1P2P3), such that α+β+γ = 1.
The coefficients α, β, and γ correspond to weights applied
to the IRs at points P1, P2, and P3, respectively. Ultimately,
these coefficients will be used to find the interpolated HRIR
for point Pi.

In [30], elevation (ϕ) and azimuth (θ) are treated as
Cartesian coordinates, and the following formulas are used
to find the ratio of the areas

α = (ϕP2−ϕP3 )(θPi−θP3 )+(θP3−θP2 )(ϕPi−ϕP3 )
(ϕP2−ϕP3 )(θP1−θP3 )+(θP3−θP2 )(ϕP1−ϕP3 )

, (14)

β = (ϕP3−ϕP1 )(θPi−θP3 )+(θP1−θP3 )(ϕPi−ϕP3 )
(ϕP2−ϕP3 )(θP1−θP3 )+(θP3−θP2 )(ϕP1−ϕP3 )

, (15)

γ = 1− α− β . (16)

Then, in order to treat elevation and azimuth as spherical
coordinates rather than Cartesian coordinates, L’Huilier’s
Theorem [63] is used. L’Huilier’s Theorem states that the
surface area of a spherical triangle is given by A = r2E,
where r is the radius of the sphere, and E is the excess angle.
The excess angle, E, is defined by

E = 4× arctan


√√√√√√tan

(1
2
s
)
tan

(1
2
(s− a)

)
× tan

(1
2
(s− b)

)
tan

(1
2
(s− c)

)
 , (17)

where a, b, c represent the side arc lengths of the triangle
calculated using the haversine distance between two points on
a sphere and s = (a + b + c)/2. The equations (14) to (16)
can then be modified using (17) to use spherical coordinates
to obtain the new weights

α =
EPiP2P3

EP1P2P3
, β =

EP1PiP3

EP1P2P3
, γ = 1− α− β . (18)

4) Magnitude spectrum extraction: After removing the
ITD, the HRIRs are interpolated for each point of interest,
Pi, using the barycentric coordinates α, β, and γ (see
Section II-A3) along with

HRIRPi = αHRIRP1 + βHRIRP2 + γHRIRP3 . (19)

Following interpolation, the HRIR is transformed into
the HRTF via the discrete Fourier transform (DFT). The
magnitude of the HRTF is then used as an input to the GANs.

B. GAN architecture

In this work, a GAN architecture [49] is used to generate
high-resolution HRTFs, HHR, from their low-resolution
counterparts, HLR. This is achieved through a supervised
learning approach where the network has access to the
high-resolution HHR target during training.
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(a) (b)

Fig. 2. Each face of the gnomonic equiangular projection (in green) is
padded with data from the adjacent faces (in red). This is displayed both for
the 3D cube (a) and for the flattened 2D surface (b). In the corner, the value
is ambiguous, therefore, values are taken from the top panel [64].

To generate the low-resolution HLR, the high-resolution
HHR is downsampled by a factor of r. The dimensions of
HHR are B ×X ×W ×H , where B, X , W and H represent
respectively the number of frequency bins, the number of
cube sphere panels, the height of each cube sphere panel,
and the width of each cube sphere panel. Therefore, after
downsampling, considering that we are using X = 5 panels for
this implementation, the dimensions of HLR are B×5×W

r ×H
r .

It is important to note that the downsampling is only spatial;
therefore, only W and H are downsampled by r. In contrast,
frequency resolution and the number of cube sphere panels
remain the same.

The GAN architecture that is exploited in this paper is
similar to that of [47] and is commonly referred to as
SRGAN. The SRGAN architecture relies on two networks
competing in a minimax game, with the generator consisting
of residual layers followed by upsampling layers with a
low-resolution image as the input and the discriminator taking
a high-resolution input and then performing a series of
convolutions. This network was chosen as the foundation for
this work as it has proven successful at a diverse range of
super-resolution tasks. The novelty in this work is that the
2D convolutional layers are adapted to be able to handle the
gnomonic equiangular projection input data where one set of
weights is learned for the equatorial panels (n = 1 to 4) and
a separate set of weights is learned for the top panel (n = 5),
i.e. the convolution takes an input of size B × 1 × W

r × H
r

and learns two sets of weights, one for the top panel and a
shared weight set for the equatorial panels. This differs from
previous approaches that learn a single set of convolutional
weights for all panels of the gnomonic equiangular projection,
e.g. [64]. In addition, a novel gnomonic equiangular projection
padding layer is added before each convolutional layer in
the discriminator and generator models; this layer pads each
panel in the gnomonic equiangular projection based on its
adjacent panels, as shown in Fig. 2. In the corner, the value
is ambiguous, therefore, values are taken from the top panel
(see Fig. 2(b)). The GnomonicProjConv layer is defined as
the gnomonic equiangular projection padding layer followed
by the adapted convolutional layer.

In cases where there is no adjacent face, i.e. the lower edge
of the equatorial panels, that edge is just padded by repeating

the values that are closest to that edge. Note that because
the padding is added repeatedly throughout the generator and
discriminator networks, the networks can learn from points
that stretch around the corners of the gnomonic equiangular
projection.

GANs consist of a discriminator network D, shown in
Fig. 3(a), which is optimised alongside a generator network G,
shown in Fig. 3(b), in an alternating manner to find a solution
to the adversarial minimax problem

min
G

max
D

EHHR∼ptrain(HHR)[logD(HHR)]

+EHLR∼pG(HLR)[log (1−D(G(HLR)))] .
(20)

1) Generator network: In this work, network G aims to
generate high-resolution HRTFs from low-resolution HRTF
inputs. The network G consists of B identical residual
blocks, each containing two convolutional layers. A batch
normalisation layer follows each of these convolutional layers.
These batch normalisation layers are followed by a PReLU
activation layer [65] after the first batch normalisation and an
element-wise sum after the second batch normalisation. These
element-wise sum units function as an additive residual (skip)
connection.

To increase the HRTF ’s resolution, R upsampling blocks
are added after. Each block has an upsampling factor of
2; therefore, the number of needed blocks, R, is related
to the downsampling factor, r, using r = 2R. The spatial
upsampling is performed via a standard pixel shuffle operation,
which compresses channels and expands spatial extent by
rearranging pixels. This is mathematically equivalent to, but
more computationally efficient than, a transposed convolution.

Another convolutional layer then follows these upsampling
blocks before a final activation layer. The primary requirement
of the activation layer is that the output is constrained to be
positive, as the magnitude responses contained in an HRTF
cannot be negative. There are multiple candidates for this,
such as ReLU and Sigmoid. However, in this work, a softplus
activation was selected as it is smoother near the origin than
a ReLU and has shown better stabilisation and performance
properties [66], [67].

2) Discriminator network: In this work, network D aims
to discriminate whether an HRTF is real or generated by the
network G. The network D consists of eight convolutional
layers that are immediately followed by batch normalisation
with the exception of the first layer.

Two dense layers finally follow these convolutional
layers, and then a Sigmoid activation function provides the
discriminator network’s output. Apart from the last layer, a
leaky rectified linear unit (ReLU) is used as the activation
function throughout, just as in [68]. The Leaky ReLU
activation function is similar to that of the PReLU activation
function in that both of them are defined as

f(x) = max(ax, x) , (21)

but in the case of the leaky ReLU activation function, a is a
hyper-parameter that is set prior to training, while for PReLU
a is a parameter that is learned during training [65].
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Fig. 3. The architecture of the discriminator and generator networks, where each convolutional layer contains k kernels, n feature layers, and s stride.
Acronyms: Leaky rectified linear unit (Leaky ReLU), parametric rectified linear unit (PReLU).

C. Cost functions

The total loss function lUS used in the generator network
is key to its performance. This function is a weighted sum
of the content loss lUS

C , which compares the upsampled
generator output to the high-resolution ground truth, with
an adversarial loss lUS

A , which measures how frequently
the generator successfully fools the discriminator network.
Therefore, lUS is defined as

lUS = λC × lUS
C + λA × lUS

A , (22)

where multipliers λC and λA represent the weight assigned to
lUS
C and lUS

A .
1) Content loss: The content loss, lUS

C , is the combination
of the LSD metric and the interaural level difference (ILD)
metric defined as

lUS
C = LSD + ILD . (23)

The LSD metric [69] is used in order to score the difference
between the target spectrum HHR and the generated spectrum
HUS.

LSD = 1
N

∑N
n=1

√
1
B

∑B
b=1

(
20 log10

|HHR(fb, xn)|
|HUS(fb, xn)|

)2

, (24)

where |HHR(fb, xn)| and |HUS(fb, xn)| represent the
magnitude responses of the high-resolution and up-sampled
HRTF sets, B is the number of frequency bins in the HRTF,
N is the number of locations, fb is the frequency, and xn is
the location.

The ILD metric [35], [70] is defined as

ILD =
1

N

∑N

n=1

1

B

∑B

b=1

∣∣∣∣∣
(
20 log10

|HLeft
HR (fb, xn)|

|HRight
HR (fb, xn)|

)

−
(
20 log10

|HLeft
US (fb, xn)|

|HRight
US (fb, xn)|

)∣∣∣∣∣
, (25)

where |HLeft(fb, xn)| and |HRight(fb, xn)| represent the
magnitude responses of the left and right ear, respectively.

The LSD and ILD metrics then are both z-score normalised
where the mean and standard deviation for both the ILD and
LSD were calculated by comparing each HRTF in the training
set to every other HRTF. The LSD and ILD are then summed
to form the content loss function, lUS

C . This normalisation is to
avoid either the LSD or ILD dominating the gradients during
backpropagation if its loss is significantly greater.

2) Adversarial loss: The original GAN loss is used as
the adversarial loss component of the total loss outlined in
[49], which relates the generator network’s training to the
discriminator’s output. The adversarial loss is defined over all
training samples, M , as the binary cross-entropy loss

lUS
A = − 1

M

[∑M

m=1

(
ym log

(
D(G(Hm

LR))
)

+ (1− ym) log
(
1−D(G(Hm

LR))
))] , (26)

D. Data post-processing

To carry out some of the evaluations described in
the following sections, the full HRTFs needed to be
reconstructed, including the additional phase information
that was disregarded in the pre-processing step. This
phase information was removed on the assumption that
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(a) Original. (b) 1280 Target. (c) 320 → 1280.

(d) 80 → 1280. (e) 20 → 1280. (f) 5 → 1280.

Fig. 4. The source positions for each downsampling factor.

the up-sampled HRTFs can be reconstructed using a
minimum-phase approximation and a simple ITD model.

This minimum-phase approximation is achieved by
calculating the minimum-phase function, m(ω), which can
be uniquely determined by the magnitude spectrum of each
transfer function, H(ω), at every source position in the HRTF
through the Hilbert transform [71]

m(ω) = H {− ln(|H(ω)|)} , (27)

where H {·} denotes the Hilbert transform, and ω represents
the frequency bin.

The simple model used to calculate the ITDs is based on
the radius, r, of the listener’s head (set to 8.75 cm, which
corresponds to an average adult head size), the speed of sound,
c, (approximately 343 m/s) and the interaural azimuth, θI , (in
radians, from 0 to π

2 for sources on the listener’s left, and from
π
2 to π for sources on the listener’s right) using

ITD =
r

c

(
θI + sin(θI)

)
,

where θI = arcsin
(
sin(θ) cos(ϕ)

)
.

(28)

It should be noted that a final interpolation could
also be performed to map the points generated from the
gnomonic equiangular projection back to an even spherical
distribution. The main reason why this final interpolation is
not performed is because it is unnecessary. As sofa files are
all measured on different grids, most, if not all, software
that utilises sofa files re-interpolates them onto a uniform
grid [30] before deployment. In the proposed method, the
grid of the upsampled HRTFs is very dense. Therefore, any
re-interpolation that may take place in spatial acoustic software
would only introduce errors that would not be perceived
perceptually.

III. EXPERIMENTAL SETUP

A. Data

The network was trained and validated on the HRTF
dataset measured in Austria by the Acoustic Research Institute
(ARI) and, throughout this paper, will be referred to as
the ARI HRTF database [72]. The dataset contains HRTF
measurements on 221 subjects for both the left and right

ear (442 HRTF in total for both ears), making it one of
the largest measured HRTF datasets available. Each measured
HRTF contains IRs for 1550 directions around the listener;
these range from 0◦ to 360◦ in terms of azimuth and from
-30◦ to 80◦ in terms of elevation (a measurement for the
top position was not available in this specific dataset). The
number of measurements near the horizontal plane was of
a higher density, which is common in HRTF measurement
systems to reflect that humans can localise sounds in this
space more accurately. The ARI HRTF dataset is read using the
Hartufo toolkit [73], [74], which was developed for HRTF
data management with a specific focus on deep learning.

After processing all HRTFs in the ARI HRTF dataset as
described in Section II-A, the 442 HRTFs are split so that
352 HRTFs are used for training and 90 HRTFs are used
for validation. This represents an 80-20 split between training
and validation sets where the left and right ear for the same
individual are not split between sets, i.e. a subject may not
contribute one ear to training and another ear to the validation.
This ensures that the generator network is tested on unseen
data from a given individual.

B. Training
The high-resolution 1280 target is generated by

pre-processing the ARI HRTF dataset (which contains
1550 positions for each listener) into 5 panels, which contain
16 by 16 source positions (i.e. 1280 positions = 5 × 16 × 16,
shown in Fig. 1(d)) where the Kalman filter parameters where
set to η = 5×10−3, σ2

w = 1×10−4, σ2
v = 400 and the IRs

where trimmed to 10 samples before the onset and to a length
of 128 samples.

To obtain the low-resolution HRTF inputs from the
high-resolution targets, the HRTFs are downsampled by
selecting one IR in every r. This means each high-resolution
HRTF target, generated from the gnomonic equiangular
projection, whose dimensions are 256 × 5 × 16 × 16, are
downsampled to 256 × 5 × 16

r × 16
r to create each input.

In the case where only 5 source positions are available, the
centre position of each panel is selected with coordinates (8,8).
Therefore, the generator network aims to preserve the points of
the low-resolution HRTF given at the input while interpolating
all the other points to match the target.

It should be noted that the 256 dimension refers to the
concatenation of the two left and right ear 128-point IRs.
Fig. 4 shows the positions of the sources for r values
2 (320 → 1280), 4 (80 → 1280), 8 (20 → 1280),
16 (5 → 1280). These positions were selected using the
torch.nn.functional.interpolate function, where
the ‘scale factor’ was set to r. The high-resolution
HRTF target of 1280 positions (i.e. 5× 16× 16) was selected
as it is comparable to the 1550 positions measured in the ARI
HRTF dataset.

It should also be noted that the 128-point fast Fourier
transform (FFT) magnitude inputs are also not scaled or
normalised, as the LSD metric used in the content loss for
the generator, G, requires non-normalised magnitudes.

The GANs hyperparameters were adjusted in order to find
the best-performing model in terms of the cost function on
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TABLE I
THE HYPERPARAMETER VALUES SELECTED FOR THE FOUR NETWORKS

WITH DIFFERENT UPSAMPLING FACTORS.

Hyperparameter Upsample Factor [No. orginal → No. upsampled]
320 → 1280 80 → 1280 20 → 1280 5 → 1280

No. Epochs 300 300 300 300
LR - Generator 2.0×10−4 8.0×10−4 2.0×10−4 2.0×10−4

LR - Discriminator 1.5×10−6 1.5×10−6 1.5×10−6 1.5×10−6

Content Weight (λC) 0.1 0.01 0.001 0.01
Adversarial Weight (λA) 0.001 0.1 0.001 0.01

the training data. To achieve this hyperparameter tuning, a
grid search was deployed using [75], where the search space
consisted of ‘Learning rate (LR) - Generator’: {2.0×10−4,
4.0×10−4, 6.0×10−4, 8.0×10−4}, ‘LR - Discriminator’:
{1.5×10−6, 3.0×10−6, 4.5×10−6, 6.0×10−6}, ‘Number of
epochs’: {300, 250, 200, 150}, ‘Adversarial weight (λA)’:
{0.1, 0.01, 0.001}, ‘Content weight (λC)’: {0.1, 0.01, 0.001}.
This resulted in a variation of 15.5% in terms of the cost
function with the selected values for each of the four networks
given in Table I. Various batch sizes were also explored
informally; a relatively small batch size of 8 was found to
give the best performance.

The model was trained using the Adam optimiser [76],
with hyperparameter values of β1 = 0.9 and β2 = 0.999.
In training, D and G were alternately updated with different
frequencies to improve stability, with D being updated four
times for every G update. This was found by informally
testing different ratios inspired by [77]. The kernel weights
were initialised using Kaiming initialisation [65]. This model
was implemented using a PyTorch framework with custom
modules for gnomonic equiangular projection padding and
convolution layers and trained on an NVIDIA Quadro RTX
6000 graphics processing unit (GPU).

C. Convergence

In Fig. 5, the convergence of both the generator and the
discriminator networks is given for the 20 → 1280 network.
It should be noted that owing to the fact that a GAN consists of
two networks competing against each other, an improvement
in the generator will lead to a higher loss in the discriminator
and vice versa. Hence, both networks converge to a stable
value over time (although this is not expected to be zero).
It can also be seen in Fig. 5 that the generator network can
converge quicker than the discriminator. Although not shown
here, similar loss curves can be observed for the three other
networks (5 → 1280, 80 → 1280 and 320 → 1280).

D. Baselines

Three baseline methods have been used as a benchmark for
the comparison of the results from the experimental evaluation.

1) Baseline-1 - SH interpolation: An approach that
has shown to yield good performance in the domain
of HRTF upsampling is SH interpolation. It works by
projecting the HRTF onto a set of spherical basis
functions, known as spherical harmonics, which produces
a continuous representation of an HRTF [78]. This work
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Fig. 5. Illustrative example of overall loss curves for 20 → 1280 network.

uses a magnitude-corrected and time-aligned SH interpolation
presented in [36] as a baseline.

2) Baseline-2 - Barycentric interpolation: The most
common method for upsampling is that of barycentric
interpolation, which is used in this section as a baseline and
described in Section II-A3. It should be noted, however, that
the approach in Section II-A3 is modified when the number
of source positions is only 5 in the low-resolution HRTF.
This is because if no triangle can be formed around the point
to be interpolated, which is sometimes the case at this low
resolution, then the three closest points need to be used instead.

3) Baseline-3 - non-individual HRTF selection:
As mentioned in Section I, instead of interpolating a
low-resolution HRTF, we can just select an HRTF from a
database. In this baseline, instead of randomly selecting an
HRTF, two HRTFs are selected from the training dataset
based on their average LSD error when comparing them
against all other HRTFs in the training set. The subject whose
HRTF produces the lowest average LSD error is considered
the most generic (Selection-1), and the subject whose HRTF
produces the largest average LSD error is considered the
most unique (Selection-2). It must be highlighted, however,
that this selection is only based on the LSD, and not all LSD
errors have the same perceptual relevance.

IV. EXPERIMENTAL EVALUATION

This section will compare four different levels of SRGAN
upsampling against the two baselines described earlier for 45
test subjects. These upsampling levels include 320, 80, 20 and
5 source positions to 1280 source positions.

The complete SRGAN implementation and pre-processing
code to reproduce these results are available at [79].

A. LSD metric evaluation

The LSD metric, defined in (24), can be calculated for every
measurement source position and then averaged over all the
source positions. Table II and Fig. 6 show the average results
for this LSD evaluation over the 45 subjects in the test set.
In Fig. 6, it is clear to see the benefit of using the proposed
SRGAN over the barycentric interpolation (Baseline-2) when
the input HRTF is spatially sparse. The SRGAN outperforms
the barycentric method when the input contains 20 or fewer
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TABLE II
A COMPARISON OF THE MEAN LOG-SPECTRAL DISTORTION (LSD) AND
(STANDARD DEVIATION (SD)) ERROR ACROSS ALL SOURCE POSITIONS
FOR DIFFERENT UPSAMPLING FACTORS. THE ‘BEST’ PERFORMANCE OF

EACH UPSAMPLING FACTOR HAS BEEN HIGHLIGHTED.

Method Upsampling [No. orginal → No. upsampled]
320 → 1280 80 → 1280 20 → 1280 5 → 1280

SRGAN 3.28 (0.13) 4.86 (0.24) 4.99 (0.27) 5.30 (0.35)

SH 3.54 (0.15) 4.94 (0.20) 5.90 (0.25) 10.36 (0.74)
Barycentric 2.50 (0.20) 3.71 (0.22) 5.18 (0.23) 7.30 (0.33)

Selection-1 6.96 (0.47)
Selection-2 8.20 (0.61)

320 )1280 80 )1280 20 )1280 5 )1280 HRTF
SelectionUpsample Factor
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Fig. 6. Log-spectral distortion (LSD) error comparison.

different IR source positions. The most striking result is
upsampling 5 positions to 1280 positions (5 → 1280 network),
where the barycentric method only achieves an LSD error
of 7.30. This makes sense as barycentric interpolation can
only average the three closest IRs, enclosing the interpolated
point. The further away these closest points are that form
the enclosing triangle, the more inaccurate the barycentric
approach becomes.

In terms of the SH interpolation baseline (Baseline-1), it
performs slightly worse than barycentric interpolation across
all upsampling factors and never outperforms the SRGAN.
This result is likely due to the distribution of the source
positions not being uniformly spaced around the sphere after
the gnomonic equiangular projection. It is expected that the
performance of SH and barycentric interpolation will be
comparable as both methods effectively rely on a weighted
sum of existing points to generate new ones having no prior
knowledge of the HRTF data.

The results of HRTF selection (Baseline-3) are also
shown to give poor performance in terms of LSD error
when compared against the proposed method and barycentric
interpolation (Baseline-2). What is interesting is that the
HRTF Selection-1 method slightly outperforms barycentric
interpolation when only 5 source positions are used as the
low-resolution input (with a mean LSD error of 6.96 for
Selection-1 compared with 7.30 for barycentric), however, as
is expected, Selection-2 does perform worse (where the mean
LSD error is 8.20 for Selection-2 compared with 7.30 for
barycentric).

TABLE III
THE MEAN AND (STANDARD DEVIATION (SD)) VALUES OF THE

MODEL-BASED PERCEPTUAL EVALUATION ACROSS THE SUBJECTS IN THE
TEST SET FOR THE DIFFERENT UPSAMPLING FACTORS. THE ‘BEST’

PERFORMANCE OF EACH UPSAMPLING FACTOR HAS BEEN HIGHLIGHTED.

Method Upsampling [No. orginal → No. upsampled]
320 → 1280 80 → 1280 20 → 1280 5 → 1280

SRGAN 0.46 (4.66) 2.73 (6.82) 1.06 (10.02) -0.70 (8.33)

SH -0.39 (4.38) -1.92 (4.54) -4.17 (5.02) -28.61 (17.55)
Barycentric 1.17 (3.84) 1.57 (4.32) 2.22 (8.36) -2.54 (23.84)

Selection-1 2.05 (17.17)
Selection-2 22.18 (21.75)

Target 0.86 (3.74)

(a) Polar accuracy error comparison.

Method Upsampling [No. orginal → No. upsampled]
320 → 1280 80 → 1280 20 → 1280 5 → 1280

SRGAN 8.64 (2.78) 9.83 (3.25) 16.53 (4.59) 11.28 (3.60)

SH 8.43 (2.89) 10.10 (2.99) 16.04 (3.66) 19.17 (8.25)
Barycentric 8.50 (2.68) 9.15 (2.73) 13.79 (3.76) 24.65 (7.28)

Selection-1 22.36 (7.59)
Selection-2 22.17 (12.14)

Target 7.99 (2.76)

(b) Quadrant error comparison.

Method Upsampling [No. orginal → No. upsampled]
320 → 1280 80 → 1280 20 → 1280 5 → 1280

SRGAN 32.96 (1.83) 35.46 (1.73) 36.50 (1.65) 36.03 (1.87)

SH 33.02 (2.04) 33.83 (2.21) 34.71 (2.24) 41.98 (2.52)
Barycentric 32.61 (1.70) 33.75 (1.68) 38.24 (1.36) 41.79 (1.22)

Selection-1 38.89 (2.43)
Selection-2 39.90 (2.32)

Target 32.11 (2.10)

(c) Polar root mean square (RMS) error comparison.

To better understand where these errors occur for the
proposed SRGAN and barycentric interpolation, an illustrative
example of a random individual in the test set (SubjectID
868) is given in Fig. 7, where the LSD errors for all the
interpolated source positions are shown for the different levels
of upsampling. The LSD errors for Baseline-3 are also given
in Fig. 8 for the same subject.

It can be seen in Fig. 7(a) for upsampling factor 320 → 1280
that the source positions with larger errors over 7 dB are
the same for both methods. However, as the input becomes
more spatially sparse, the errors between both methods start
to diverge, which can be seen in Fig. 7(b) and Fig. 7(c).
This is due to the fact that barycentric interpolation is
unable to interpolate source positions that are not close to
measured points. On the other hand, the proposed SRGAN
has learnt general patterns across the training data and the
relationships between these and the low-resolution input. It is,
therefore, able to perform equally across all source positions
regardless of where they are located and their proximity to
measurement points. This is most clearly seen when comparing
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Fig. 7. Comparison of the proposed super-resolution generative adversarial network (SRGAN) (top) and barycentric (bottom) in terms of log-spectral distortion
(LSD) errors at different levels of upsampling SubjectID 868 (all source positions). The original source positions before interpolation are outlined with a black
circle.
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Fig. 8. The log-spectral distortion (LSD) of Basline-2 showing the comparison between Selection-1 and Selection-2 for SubjectID 868 (all source positions).

the SRGAN approach in Fig. 7(b) and Fig. 7(c). The errors
are almost identical across all source positions (see also
Table II), although the number of original points has been
reduced by a factor of four. In contrast, when comparing the
barycentric interpolation for the same upsampling levels, the
errors increase substantially from Fig. 7(b) to Fig. 7(c) at the
points where the input measurements have been discarded (e.g.
above and below the equator).

B. Model-based perceptual evaluation
In this section, we use a Bayesian model, Barumerli2022,

introduced in [80], to compare the localisation performance.

Unlike Section IV-A, where the LSD metric is used to compare
the performance of the different methods, the evaluation in this
section is able to differentiate the different techniques based
on errors that matter to human perception. This is important
as some minor errors in the LSD could significantly impact
human localisation performance. Likewise, some significant
errors in the LSD may not affect localisation performance
nearly as much. The Barumerli2022 model was chosen as
it has already been successfully employed in the past for
evaluating different binaural rendering methods [35].

The Barumerli2022 model was fed features that were
obtained from the directional transfer functions (DTFs), which
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Fig. 9. Results from the model-based perceptual evaluation.

is the directional component directly extracted from the
HRTF [81]. The model’s predefined parameters were set
to: ‘estimator’: maximum a posteriori (MAP), ‘num exp’:
300, ‘sigma itd’: 0.569, ‘sigma ild’: 1, ‘sigma spectral’: 4,
‘sigma prior’: 11.5, ‘sigma motor’: 10. The ‘targ az’ and
‘targ el’ are set to the source positions measured in the HRTF.

To perform an effective comparison, the results for the
original high-resolution measured HRTFs are provided as
the ‘Target’ results. These ‘Target’ results are the best
performance that can be achieved as they effectively compare
the localisation performance of the original high-resolution
HRTF with itself. Therefore, the proposed method and the
two other baselines must be benchmarked against the ‘Target’
performance.

The results obtained from the Barumerli2022 model are
shown in Table III with a graphical representation given in
Fig. 9. Table IVa, Table IVb and Table IVc show the mean
and SD of the polar accuracy error, quadrant error and RMS
error, respectively. These metrics [82], [83] can be defined
mathematically for N localisation trials, where each target
source direction ϕi has an associated response direction ϕ̃i,
for i = 1, 2, . . . , N . If a set of local responses is then defined
as A = {i : wrap|ϕ̃i − ϕi| < 90◦} the three error metrics are
defined as follows:

Polar Accuracy =
ϕ̃i − ϕi

|A| , (29)

Polar RMS Error =

√∑
i∈A(wrap(ϕ̃i − ϕi))2

|A| , (30)

Quadrant Error =
(
1− |A|

N

)
× 100 , (31)

where the polar accuracy shows the local response bias in the
polar angles for responses within 90◦ of the target. The polar
RMS error is the aggregated error in the polar dimension for
responses within 90◦ of the target. The quadrant error rate
corresponds to the percentage of polar errors larger than 90◦

and accounts for top-down and front-back confusions. To avoid
highly distorted polar errors on the far left and right sides of
the listener, polar and quadrant errors are only defined for
targets within a lateral angle |θ| ≤ 30◦.

It can be seen that when the input provides 320 or 80 source
positions, the SRGAN performance is comparable to SH and
barycentric interpretation, only performing marginally worse.
However, when the low-resolution HRTF contains 20 or fewer
source positions, the proposed SRGAN performs significantly
better than all baselines.

It is also interesting that the SRGAN at upsample factor
5 → 1280 outperforms the SRGAN at 20 → 1280. This is
because even though the LSD is worse when only 5 points
are used, that does not mean that those spectral differences
are perceptually relevant. This shows the need to incorporate
these perceptual models into the loss function going forward
by overcoming the need for them to be differentiable. It should
also be noted that when only 5 source positions are available,
the centre position of each panel is selected, and therefore,
the source positions are not an exact subset of the 20. This
highlights, understandably, the likelihood that certain positions
could be more meaningful for localisation when compared
with other positions.

C. Limitations and future work

While the results presented in the previous sections are
relatively positive and confirm the potential suitability of
the proposed approach for spatially upsampling very sparse
HRTF measurements, there are some evident limitations which
should be addressed in future research.

Firstly, this study didn’t assess the impact of the
pre-processing transformations on numerical and model-based
perceptual metrics. The limitation of the current method is that
to achieve optimal performance and reduce the Barycentric
interpolation errors while upsampling an existing dataset; the
approach currently relies on the model being retrained with
the input positions that are closest to any given point on the
high-resolution cartesian grid. In future work, it would be good
to explore the possibility of passing the position of each point
as an additional input feature to the model so that this retaining
is not needed.

In order to simplify the SRGAN architecture, for this first
study, we have disregarded the phase information and used
only the magnitude component of each HRTF. Upsampled
HRTFs were then reconstructed using minimum-phase
approximation and an ITD model. Future research should
explore the possibility of including phase information when
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training the network, and further evaluations should outline
how this may result in perceptually relevant improvements.

Another simplification was performed when looking at the
number of panels on which the projection was performed
during the HRTF pre-processing stages. The choice of 5 panels
was mainly dictated by the dataset used for the training. Still,
it is, of course, possible to extend this to 6 panels, therefore, to
include all HRTFs measured below the subject both as training
and output data. Future research could also look at removing
this limitation, allowing an arbitrary number (and position) of
HRTFs to be used for the upsampling (currently, this is limited
to a minimum of 5 positions, one per panel) and exploring
the impact of having non-uniform measurements as a starting
point for the upsampling process.

The design of the loss function could also benefit from
further investigations. For example, looking at the weight of
each of the two components, ILD and LSD, increasing it for
the first in lateral positions and for the second in positions on
the sagittal planes. Furthermore, perceptual models could also
be employed, but relevant challenges should be addressed first,
especially related to the computational complexity of such
models.

It is important to underline that this paper describes the
second milestone (after [50]) in the process of designing,
validating, improving and ultimately releasing this method
as an openly available tool. Research following these future
directions is already being conducted.

V. CONCLUSION

In this paper, it has been shown that an SRGAN can be
used effectively for the task of upsampling low-resolution
HRTFs. Furthermore, this work has extended the pilot study
from [50], modifying the SRGAN so that it can upsample
the HRTFs in 3D across the entire sphere. It has been
demonstrated that when the low-resolution HRTF input is
very sparse and consists of less than 20 source positions, the
SRGAN outperforms both SH and barycentric interpolation
in terms of LSD error. The same applies to localisation
performance using perceptual models when the low-resolution
HRTF contains 5 source positions. Therefore, in the case
where the low-resolution HRTF contains 320 or more source
positions, it is preferable to use barycentric interpolation;
however, if the HRTFs are very sparse and contain less
than 20 measurements, then the SRGAN approach produces
significantly lower errors. SH interpolation, on the other hand,
performs slightly worse than both barycentric interpolation and
the SRGAN, which is likely due to the distribution of the
source positions not being uniformly spaced around the sphere.
Non-individual HRTF selection also never performs best;
however, it does outperform SH and barycentric interpolation
for very sparse HRTFs, according to the employed metrics.

In order to reinforce the idea of reproducible research and
promote future development and innovation in this specific
domain, the complete SRGAN architecture and pre-processing
code can be found in our public repository [79].
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