Balancing Wargames through
Predicting Unit Point Costs

George E.M. Long
Queen Mary University of London
g.e.m.long@qmul.ac.uk

Abstract—In tactical wargames, such as Warhammer 40K,
two or more players control asymmetrical armies that include
multiple units of different types and strengths. In these type of
games, unit are assigned point costs, which are used to ensure
that all players will control armies of similar strength. Players are
provided with a total budget of points they can spend to purchase
units that will be part of their army lists. Calculating the point
value of individual units is a tedious manual process, which often
requires long play-testing sessions and iterations of adjustments.
In this paper, we propose an automated way of predicting these
point costs using a linear regression approach. We use a multi-
unit, turn-based, non-balanced game that has three asymmetric
armies. We use Monte Carlo Tree Search agents to simulate the
players, using different heuristics to emulate playing strategies.
We present six different variants of our unit-point prediction
algorithm, and we show how our best variant is able to almost
reduce the unbalanced nature of the game by half.

Index Terms—wargames, automatic game balancing, game
testing

I. INTRODUCTION

Wargames are a game genre where players control armies to
act out a battle or war, usually played on a detailed map under
a set of rules to see if their strategies influence the game’s
outcome. [1] These games have different levels of scope, the
most common being the tactical level and the strategy level. At
the tactical level, the scenario focuses on an individual battle
and players command individual units. At the strategic level,
decisions are made pertaining to the entire theatre of war.

One of the most important aspects of these wargames is
balance. There is no agreed upon definition for Game Balance,
but in it’s most basic form it can be described as “tuning
a game’s rules, levels, difficulty, numbers, algorithms, etc.
to achieve the desired goals”. [2] In strategy games such as
wargames, there are several points of view on the ideal balance
goal. A common goal is having a simple 50%-50% winrate,
where every army would have an equal chance of winning.
Another viewpoint is intransitive superiority, a rock-paper-
scissors style in which each army counters another (while itself
being countered by a different army). [3] In this paper, we have
chosen the more traditional 50%-50% balance goal, without
imposing any limitation to any others.

An aspect of balancing in the strategy layer is unit costs.
Wargames often operate with an element of scarcity, with unit

979-8-3503-2277-4/23/$31.00 ©2023 IEEE

Diego Perez-Liebana
Queen Mary University of London
diego.perez@qmul.ac.uk

Spyridon Samothrakis
University of Essex
ssamot@essex.ac.uk

costs being one way to enforce this. For example, a common
army budget in Warhammer 40k [4] is a thousand points, and
each unit included in the army (and the optional equipment
added to them) has a point cost. This ensures that armies
fighting against each other will be of a similar strength and
also adds an element of strategy to the game, as players must
optimise the point costs of their armies to create the strongest
army at the budget level.

Unit costs are considered one of the hardest parts of
balancing in wargames. As described in Tabletop Wargames:
A Designers’ and Writers’ Handbook: “There are essentially
three things to grasp about points values - (i) they don’t work,
(i1) nevertheless we have to have them and (iii) even so they
can’t really be reduced to a mathematical formula.” [5].

Some wargames, such as Song of Blade and Heroes [6],
use a mathematical formula to calculate unit costs. However,
this is often impractical for wargames with more complexity.
In these games, these points are chosen by estimating a value
after an initial playtest, and then tuning this value through
many more tests. This is a lengthy and tedious process that
often gives an inaccurate value that can allow overpowered
units to slip through and help form dominant strategies.

Artificial intelligence has been proposed as a method to
automate some of the balancing process over the years, with
promising results [7]. However, to the authors’ knowledge,
there has not been any work on how it can be used to help
estimate point costs in wargames. In this paper, we propose
a method to automatically predict the point costs for units.
This provides an interesting challenge, as wargames are often
extremely complex, with asymmetric armies, variable terrain,
and intricate unit designs creating a large problem area to
explore. We see that our approach has some novel features over
traditional automated balancing methods. Since it attempts to
achieve balance in the game without modifying any of the rules
or unit parameter values, it can be used to balance already
published games. This may be useful for players and design-
ers, as modifications can be proposed to correct potentially
unbalanced aspects of the game after the game is finished.
In addition, it could be used to determine alternative rule-
sets for games in scenarios such as tournaments, where highly
balanced rules or corrections on these are often required.

The main contribution of this paper is the a new algorithm
that allows unit costs to be predicted by performing linear
regression. The method uses data collected from observing

the output of two agents playing a bespoke made wargame,
simulating multiple army configurations and compositions. We
validate these predicted point costs by incorporating them into
an army generation process and calculate the new balance of
the game. Our results show that the proposed algorithm is able
to reduce the imbalance in the game by half.

Section II introduces the background of this work, with
regards to wargames and Al for game balancing. Section III
introduces the framework and game used in this paper, as well
as the main method (Monte Carlo Tree Search) used for the
testing agents. Section IV introduces our proposed method and
Section V discusses our experimentation work and results. We
conclude with a summary of our findings and possibilities for
future work in Section VI

II. BACKGROUND

This background section will give an overview of the topics
of wargames and how artificial intelligence is used in game
balancing. It will briefly discuss the history of these topics,
relevant aspects, and how they can be applied in our work.

A. Wargames

As hinted at in the name, modern wargames are derived
from simulations of war, which were used to teach military
strategy and tactics to officers. Over time these simulations
became more popular in militaries around the world, and as
people became fond of them, versions of these games for
casual players began to emerge. These casual games such as
Tactics [8] or Risk [9] evolved into two separate categories,
Board Wargames and Miniature Wargames.

Our work focuses on Miniature Wargames, known for their
miniature figures, which represent individual units on the
battlefield. These units have aforementioned point costs that
are ideally equivalent to their strength in the game. Stronger
units will have more influence in the battle and will have
higher point costs. These point costs are independent of any
other factors, and while it is likely that a unit’s usefulness will
change based on the contexts of battle (e.g., a powerful unit
with low health might be stronger paired with a support unit
to reinforce it), its point cost will stay the same.

As mentioned in the Introduction, armies have point budgets
to ensure that two armies will be of a similar power level.
The collection of units that make up the army is known in the
wargaming community as the army list. These army lists are
often exploited to give the player an advantage, with players
incorperating units into their army which are stronger than
their point costs suggest.

There have been some games with calculable point costs.
To elaborate on the example of A Song of Blade and Heroes
from the introduction, a unit’s point cost can be calculated by
w, where C'is the combat power of the unit, () is its
quality, and S are the costs of any special aspects (e.g. traits).
In the context of Song of Blade and Sorcery, this equation
works because units only have two unique values. However,
in more complex wargames such as Warhammer [10] where
units have numerous attributes and traits, it quickly becomes

unfeasible to have a simple equation to calculate the point
costs for every unit in a wargame.

B. Artificial Intelligence in Game Balancing

The use of artificial intelligence in game balancing has been
of interest for a long time in academia, with plenty of research
on the topic [11]-[13]. However, this research usually focuses
on using an agent to modify set parameters in the game and
then evaluating how they change the win rate. For example,
when describing their integrated balancing framework [14],
the authors identified which parameters need to be balanced
through expert knowledge gained from multiple play tests.
In a wargame with lots of units and variability, it may not
be feasible to identify which units are unbalanced, or the
parameters that need to be tweaked, therefore, an automated
process for calculating unit effectiveness is required.

Previous work has been done on evaluating the balance of
alternative sets of rules for chess. [15]. One of the ways in
which it achieves this is by working out the values of chess
pieces and how they change depending on the variant. The
results are interesting, as they show that unit costs can be
estimated. However, chess is a symmetrical game with low
variance, and thus calculating costs in a wargame will be a
much harder task. In addition to this, there has been work on
using a NEAT neural network to create weightings for units to
include in enemy waves in Tower Defence games. [16] This
is very interesting, however, these weights depend on which
towers are currently in play, which is hard to translate to point
costs as they are independent of any other factor.

Another area of interest is M. Stanescu’s work on using
the Lanchester Laws to predict battle outcomes [17]. These
laws serve as a way of estimating which team will win a
battle based on their strength and unit numbers, with the
Square Law stating that the numbers of units in an army are
more influential than strength. These work well in the strategy
layers of games as a factor of whether to engage in a battle;
however, our work takes place in the tactical layer, where the
assumptions used in the laws make it too weak to use as a
factor in consideration for predicting outcome.

III. FRAMEWORK
A. Stratega

Stratega' is a recently developed general framework for
turn-based and real-time strategy games. This framework
allows the user to define new strategy games in YAML format.
These definitions include multiple aspects of modern strategy
games, such as complex rules, different winning conditions,
terrain types, customisation of units and buildings, intricate
actions, technology trees, and build orders [18]. Stratega
incorporates a forward model, which permits, during the
decision making process of their agents, advancing the game
state by supplying actions. This allows the implementation of
Statistical Forward Planning agents, such as Monte Carlo Tree
Search and Rolling Horizon Evolutionary Algorithms [19].

Thttps://github.com/GAIGResearch/Stratega

Fig. 1. Wizard Wars being simulated in Stratega.

B. MCTS

Monte-Carlo Tree Search (MCTS) [20] is a highly selective
best-first search method that builds an asymmetric search tree
across several iterations. In each of them, the tree balances
between the exploitation of the most promising actions and
the exploration of moves that have been tried less often.
This balancing is managed by its tree policy, for instance
UCBI1 [21], which balances the exploitation term Q(s, a) (the
average of rewards observed after applying action a in state s)

1\}1(13{\;) (N (s) is the number of

times state s has been visited, N(s,a) is the number of times
a has been applied to s). C' is a parameter, the exploration
constant, which determines how much weight should be put
on the exploration component.

The algorithm, in its default version, adds a node to the
tree for every iteration, from which it performs a uniformly
random Monte Carlo simulation until game end or a predeter-
mined depth is reached. MCTS has been applied to multiple
domains [20] [22], including strategy games [23], and has
shown its use in complex and dynamic environments due to
its capacity to quickly re-plan and adapt to unseen states.

and the exploration term C' x

C. Wizard Wars

Wizard Wars is a simple war game designed in Stratega
as a test for the algorithm proposed in this paper. The game
is played automatically by MCTS agents. It uses a turn-based
combat system without stochastic elements. Units take actions
to perform moves in the game. All units have a move and
attack action; certain units have additional actions. Units also
have action points, with each non-move action taken costing
one of these points, which are refreshed at the beginning of
each turn. Each team has one king unit. To win the game, they
have to kill the opponents king, while losing if their kings dies.

Figure 1 shows a game of Wizard Wars being played. The
grid layout used in the game is visible, as are the units. Grid
stacking is not possible, with only one unit allowed per tile.
The move action allows the unit to change position on the
grid. They can move as many tiles non-diagonally as they
have movement points, which are refreshed each turn.

[[Race and Attributes | Unit Types |
Dwarf Melee Ranged Support Elite
Health 4 1 4 10

Action Points 2 1 2 3
Movement Points 2 1 2 2
Attack Damage 3 5 2 4
Attack Range 1 4 1 1
Armour 2 0 2 4
Abilities Rf Rf
EIlf Melee Ranged Support Elite
Health 4 4 3 7
Action Points 3 2 2 3
Movement Points 3 5 2 4
Attack Damage 3 3 2 6
Attack Range 2 2 2 1
Armour 1 0 0 2
Abilities AP HI AP
Orc Melee Ranged Support Elite
Health 6 4 3 8
Action Points 2 2 2 3
Movement Points 3 2 2 3
Attack Damage 4 3 2 5
Attack Range 1 2 2 1
Armour 0 0 0 2
Abilities wC Da Cs WwC
TABLE T

AN ENUMERATION OF THE ATTRIBUTES OF EACH ARMY’S UNITS.

Attacking in Wizard Wars is quite simple: units use their
attack action on an opposing unit. The damage dealt is then
calculated as D — A, where D is the unit’s attack damage and
A is the opponent’s armour. The resulting value (if positive)
is then subtracted from the opponent’s health. If this health
drops to O or below, the unit is removed from play.

There are three armies in the game: Elves, Dwarves, and
Orcs. Each of these armies contains four units: Melee units,
which focus on being the front line in battle; Ranged units,
which provide damage from a safe distance; Support units,
who are weak in combat but provide useful abilities for the
army; and Elite units, extra powerful entities with their stats
representing their armies’ style.

Table I contains the attributes and abilities for the units
of each army. Each army has a specific style, which is
reflected in their units. The Dwarves have slower movement,
but more health and armour which allow them to employ a
defensive style. The Elves have ranged units with great speed
to manoeuvre around the battlefield. The Orcs have high attack
damage to attack the opponent head on. These values were all
chosen by hand, without any play testing done. Outlined below
are the definitions of the abilities displayed in the table.

o Rf - Reinforces a chosen unit by giving them +2 armour
(3 tile range) (3 turn cool down).

o AP - Unit’s attacks ignore armour (passive ability)

o HIl - Heals a chosen unit, giving them +3 health (3 tile
range) (3 turn cooldown).

e WC - Gives the unit +1 attack damage and movement
points for 2 turns (self-only) (3 turn cooldown).

o DA - Modifies the attack damage and range of a unit by
-1 for 2 turns. Units with 0 attack range cannot attack (2
tile range) (3 turn cooldown).

e Cs - Curses an enemy causing them to lose 1 health per
turn for 4 turns (3 tile range) (3 turn cooldown).

These asymmetric qualities between the armies lead to
diverse strategies being possible, with no clear way of seeing
which armies or individual units will be particularly dominant.
This provides a good test bed for our algorithm.

IV. METHOD

To demonstrate how these point costs can be accurately
predicted to create more balanced wargames, we describe
our proposed point discovery methods and how they can be
integrated with the framework.

A. Point discovery methods

We define the problem of discovering the point cost as
the problem of identifying the weight each unit contributes
to victory, assuming that the relationship is linear over all
possible opponent armies. For each individual opponent army
list m € M, we thus have Equation 1:

11 11 11 1.1
(wozjo + wizj + wykjy + ... + Wy,) —

2 2 2.2 2 92 2 2\ _ o«
(wizsy + wiz + wixd, + ... + wihTh,) = Yin

(D

where the weights w; represent the point cost of unit [for

the army j. The inputs z are the number of units of each
type (up to n types of Player 1 and up to m types for Player
2). Each battle fought results in the data sample <. The sets
X ={Xo,.... Xpn—1} and Y = {yo,..,yn—1} are our inputs
and outcomes, respectively, and form our dataset D. Note that
game outcomes can be 1, 0, and 0.5 for win, loss and draw
respectively, but we are not binding the linear equation at all.
The actual point cost is the expected value of the weights of
an army against all armies M, E ;[w]. We proceed to calculate
this quantity by having multiple armies play against each other
using the Wizard Wars rule set implemented in Stratega (with
MCTS agents) and getting the empirical average. Note that
though the elements of the set Y are all either 0, 0.5 or 1
(i.e., loss/draw/win), we do not use logistic regression, but
different forms of linear regression, to do the calculations,
as the coefficients of logistic regression are somewhat harder
to interpret (being log-odds). Note, however, that arguably
logistic regression might prove more accurate/correct for the
problem we are setting to solve, but we stick with linear
regression in the paper because of ease of interpretability.

B. Least squares / bounded optimisation

There are multiple ways to calculate the weights w from
the data. In our first method, which we label bounded least
squares, we take all the games played between two armies and
optimise the weights in a straightforward linear optimisation
setting, as implemented in SciPy (https://scipy.org/). The loss
function is the standard mean squared error, in our case
mse(X,Y) = le):(|1 (9 —v:)?. We then solve as in Equation 2.
Note that we set the optimisation bounds such that no unit
from the first army can have a negative point cost and no
unit in the opponent army should have a positive point cost.

Player 1

army list 1 army list 2
Player 2 army list 1 (R%’ *R%) (R%, *R%)
army list 2 | (R}, —R3) | (R3,—R2)

TABLE II

AN EXAMPLE OF THE DEFINED ZERO SUM ASYMMETRIC FORMAL GAME.
EACH GAME RESULTS IN REWARDS (R, —R) FOR EACH PLAYER.

Intuitively, this binds the solution to only positive unit costs
for each army.

minimise 0.5mse(X,Y)

2
subject to w* > 0,w? <0, @

In Equation 2, w! refers to the weights of the first army,
while w? of the second army.

C. Elastic net CV

Our second effort involves solving a constrained linear
optimisation problem, this time without setting bounds to w,
but penalising high L1 and L2 norms. This is generally known
as an elastic net and aims to achieve both sparsity in w
and keep the w low. We discover the optimal « and {1,440
in Equation 3 through cross-validation, and use scikit-learn’s
implementation [24].

manimise 1/(2 - Nsamples) - mse(X,Y)
o Wpaio - Jwl|y 3)
+0.5 - a - (1= yatio) - ||w]|3

As in bounded least squares, there is the danger that certain
units will have negative weights w. We solve this by either
artificially setting the minimum of each w to 0 for each army-
list combination (which we term bounded elastic net) or after
taking the average for all armies (which we call elastic net).

D. Normal form game / linear programming

The problem, as defined above, encodes the implicit idea
that both players will more or less choose their army lists
randomly. This is, however, likely not the case. Both players
will try to select an army list that best corresponds to their
opponent losing and them winning. As such, one can model
the whole procedure of choosing army lists as a zero sum,
normal form, asymmetric game. Each possible army list is
defined as an action/strategy, with each army corresponding
to each player. This formal game can be seen in Table II

The formal game is then solved using a standard linear
programming solver, as implemented in OpenSpiel [25]. This
results in a mixed strategy profile for each player. Given
that not all possible games have necessarily been played (it
is computationally too expensive to play all 65536 possible
games in a reasonable amount of time), we eliminated all
impossible army lists that have not been compared against.
We then sampled from the mixed policy all the army lists that
have not been dominated (i.e. the support of the army has not

TABLE III
THE WEIGHTING OF EACH FACTOR PER HEURISTIC (FROM 0-1)

Factor Defensive Balanced — Aggressive
Player Army Size 1 0.5 0.25
Player Army HP 1 0.5 0.25
Player King HP 1 0.5 0.25
Opponent Army Size 0.25 0.5 1
Opponent Army Health 0.25 0.5 1
Opponent Kings HP 0.25 0.5 1
Units in Range of Support 0.5 0.5 0.5
Mean Distance from Opp King 0.25 0.5 1

been zero) to generate hypothetical games based on army lists
the players would have used. Note that given that not all army
list combinations may have taken place in the actual data, our
solution should be considered an approximation. We term the
army lists that resulted from this process as equilibrated.

E. Algorithms for Unit Cost Prediction

The weights w produced were then used as the point values
for the units. Six different methods were used, least squares
(LS), elastic net (E), and bounded elastic net (BE) were the
three baseline methods we used. We also used equilibrated
data on these three methods (ELS, EE and EBE, respectively).

With these point costs calculated, new simulations were
run for each method used. The army lists chosen for these
simulations used a point budget system similar to ones used
in aforementioned games like Warhammer. Each army gets a
point budget, with any unit added to the army list taking point
away from the budget based on its cost until the budget is
exhausted and new units cannot be added.

V. EXPERIMENTAL RESULTS

This section will discuss how the experiments were setup,
provide an analysis of the point costs predicted by each
method, and how using these predicted costs to generate army-
lists impacts the balance of the game by examining win-rates.

A. Heuristics

As our method uses data provided by simulations of Wizard
Wars, it is important that it represents a variety of play-styles,
as otherwise there is the risk that it balances towards only one
strategy. To account for this, we include multiple heuristics
that the MCTS agent can use.

To this end, we created a base heuristic which evaluates
several factors to decide how advantageous the chosen game
state is. Then, we differentiated three heuristics representing
different play-styles (Aggressive, Balanced and Defensive).
The results of the heuristics are normalised for use by MCTS,
so they will be between O (worst state) and 1 (best state).

The factors included in the heuristic evaluation were:

o The current size of the player / opponent army.

o How much current HP the player’s / opponent’s army has.
o The current HP of the player / opponent’s king.

o How many player units are in range of a support.

o The mean distance of the player’s non-supportive units
from the opponent’s kings.

Table III shows the weights for each of these factors for each
one of the heuristics. The factors considered are normalised in
[0, 1], and multiplied by their weights in a linear combination
fashion to produce the reward for the MCTS agent.

In addition to the heuristics, the MCTS agents also used
an opponent model to predict the actions of the opposing
player. This model is based on the opponent trying to attack
the player’s lowest health unit, with it’s units moving towards
it and attacking if they are in range.

B. Experimental Setup

For each run of experiments, two runs were computed: the
first provided training data for the methods, the second to
validate the effectiveness of each linear regression method.

Each game was played on a simple rectangle grid-based map
of 5 x 13 squares. No special terrain was included, and the
units starting positions were randomly allocated within reason
(e.g. melee units will be on the front line, ranged units at the
back). For the training run, units were randomly chosen for
inclusion in the army list, with the constraint of having 0 - 3
units of each type in the list.

For the validation run, the points predicted by each method
were used to choose which units to include in the army list.
Each army had a budget of 60 points; this value was chosen
to keep the army sizes consistent with the size of the map.
Units were added to the list by sampling with replacement.
Units with a point cost of 0 or less were not able to be chosen
(since it meant that the method considered them useless), and
up to 5 units of each type can be included in the list. The army
list generator will attempt to use all of its budget; however,
there are chances where this is not possible, and instead it will
try to use as much of its budget as possible.

Both players used Stratega’s built-in MCTS agent, with
the aforementioned heuristic and opponent model. It had a
computational budget of 300 ms per move, a rollout length
of 20, and an exploration constant of \/2. These values were
tuned through trial and error. Each turn had a time limit of 10
seconds and a total turn limit of 50 turns. After 50 turns, the
game would end and count as a draw for each player.

For the results, we have defined a metric to gauge the
accuracy of the predicted point costs. We refer to this as the
Balance Loss, abbreviated as B L, which can be defined as the
standard deviation of the win rates for each matchup. A value
of 0 represents a perfectly balanced game where each match-
up has 50-50 odds of winning, and increasing values increased
balance inequality for our scenario (we are balancing towards
50-50, however, for future work we would like to try use an
intransitive superiority balancing style).

C. Training Run Configuration

To provide training data for the methods, 1,200 (2,400 if
against the same army e.g, Orc vs. Orc) army list pairs were
generated for each match-up (Dwarf vs. Elf, EIf vs. Dwarf,
Orc vs. Dwarf, Dwarf vs. Orc, Orc vs. Elf, EIf vs. Orc,

[[Race / Method Unit Types | TABLE V
Dwarf Melee Ranged Support Elite THE FIRST ARMY’S WIN-RATE AND STANDARD ERROR FOR EACH METHOD
Least Squares (LS) 7 12 5 13 AND THE BALANCE LOSS (BL).
Elastic-Net (E) 6 12 4 13 E vs D - ELF VS DWARF E vs O - ELF vS ORC O vs D - ORC vS ELF
Bounded Elastic-Net (BE) 6 12 4 13
Equil. Least Squares (ELS) 2 7 3 10 Method EvD EvO OvD BL
Equil. Elastic-Net (EE) 2 5 3 7
Equil. Bounded Elastic-Net (EBE) 2 5 3 7 Uncosted 53% (0.003) 39% (0.003) 59% (0.003) 9.03
- LS 46% (0.006) 35% (0.006) 54% (0.006) 10.13
E:fast S TS N{‘(’)‘ee R’i'gged S“é’p"” E;’;e E 44% (0.006) 34% (0.006) 52% (0.006) 10.58
Elastic-Net (E) 10 9 3 7 BE 43% (0.006) 35% (0.006) 52% (0.006) 10.18
Bounded Elastic-Net (BE) 0 9 3 i ELS 48% (0.006) 48% (0.006) 43% (0.005) 4.86
: EE 40% (0.005) 42% (0.006) 41% (0.005) 9.65
Equil. Least Squares (ELS) 5 4 4 11 EBE 40% (0.005) 41% (0.006) 42% (0.005) 9.84
Equil. Elastic-Net (EE) 5 4 3 9
Equil. Bounded Elastic-Net (EBE) 5 4 3 9
Orc Melee Ranged Support Elite
Least Squares (LS) 10 12 6 16 TABLE VI
Elastic-Net (E) 9 12 6 16 THE WIN-RATE’S AND STANDARD ERROR VS. THE SAME FACTION
Bounded Elastic-Net (BE) 9 12 6 16 D v D - DWARF VS DWARF EVE - ELE VS ELF O vV O - ORC VS ORC.
Equil. Least Squares (ELS) 4 6 6 11
Equil. Elastic-Net (EE) 3 5 4 9 Method DvD EVE OovO
Equil. Bounded Elastic-Net e 13, > 4 2 Uncosted 61% (0.002) 56% (0.003) 55% (0.003)
THE POINT COSTS OF EACH UNIT FOR THE THREE ARMIES AS PREDICTED LS 62% (0.006) 60% (0.006) 54% (0.007)
BY THE SIX LINEAR REGRESSION METHODS (EQUIL. = EQUILIBRATED). EE 233’ Eggggg 2;? Egggg ng’ Eggg;g
(2 . 0 . 0 .
ELS 58% (0.005) 60% (0.006) 58% (0.006)
EE 55% (0.006) 57% (0.006) 57% (0.005)
EBE 54% (0.006) 59% (0.006) 57% (0.005)

Dwarf vs. Dwarf, Elf vs. Elf, Orc vs. Orc), giving in total
14,400 army lists per run. Each of these pairs was played by
every heuristic combination (e.g., Aggressive vs. Balanced),
resulting in 172,800 games per run. Each run took around 24
hours to complete in a High-Performance Computer.

D. Validation Run Configuration

For the validation run, the amount of games played was the
same; however, this was now divided by which method’s point
costs were used to generate the army list pair, resulting in 200
pairs per combination of armies, heuristics, and method.

E. Point-Cost Prediction

Table IV shows the point costs predicted by each method,
and we can see that some trends emerge. In terms of the overall
points predicted, the values chosen by the methods make
intuitive sense: the elite units have the highest point cost for
each army, which is sensible as they are the most numerically
powerful. The melee and ranged units have the next highest
point costs, with the stronger unit varying per army. Finally,
the support units have by far the lowest predicted point costs,
which could suggest that their abilities are not as useful in the
game compared to the raw stats of the other units.

In terms of the methods themselves, we can see that there
are three groupings of points. All three of the basic non-
equilibrated methods seem to converge to similar values, with
only a couple of points differing between them. This may
suggest that with the large amount of training data provided,
the different ways these methods come to point costs have a
negligible difference. This may also present a ceiling for these
basic methods, with additions needed to provide better results.

This contrasts to the equilibrated methods, where the least-
squares and elastic-net methods predict different point costs;
this is most likely due to the equilibration process. It is also

interesting to see that there were no different predicted point
costs between the bounded / non-bounded elastic net pairs;
this suggests that none of the units had a point cost less than
zero; from this we can infer that every unit was considered at
least somewhat useful by the methods.

In terms of the per army point costs, there are some
interesting predictions. For Dwarves, there is only a 1-point
difference between its elite and ranged unit in the basic meth-
ods, compared to the other two armies which have sizeable
differences between the elite and non-elite units. This suggests
that the Dwarven elite unit has less influence on victory
compared to the elite units of the other armies. Looking at
the stats, we can see that it only has an attack damage of
4, lower than both the other elites and the Dwarven ranged
unit. This could indicate that attack damage is a particularly
valuable stat in Wizard Wars. It is also interesting to see that,
with the exception of the equilibrated least squares (ELS)
method, the Dwarves have lower point costs for every unit
except the ranged compared with other armies, from this it
may be inferred that these methods see the Dwarven army as
overall less strong than the other counterparts.

Compared to the Dwarves, the basic methods determine
similar point costs across the board for Elves and Orcs,
with only minor differences between them. Comparing them
directly to each other results in only a few differences in points
per unit type, this could indicate that these methods see these
two armies as being similar in power level.

F. Win-Rates

From Table V we can see that the balance loss of the
uncosted simulations (i.e. The Training Run) is 9.03, which

provides a baseline to compare our results to. Considering the
fact that no play-testing was involved in the creation of Wizard
Wars, this is a relatively low balance loss, and suggests that in
the original implementation the game is relatively balanced.

Out of the 6 methods, Equilibrated Least Squares manages
achieve a more balanced game than the baseline. It manages
to reduce the balance loss by almost half to a value of 4.86.
Looking at the win-rates for this method, we can see that the
Elf vs. Dwarf and Elf vs. Orc match-ups are extremely close
to the ideal win-rate of 50%, with only the Orc vs. Dwarf
match-up being relatively unbalanced at 43% in favour of the
Dwarves. However, it is still an improvement compared to
the baseline of 59%. None of the other methods manage to
do achieve better balance than the baseline, however they all
manage to get relatively close. Looking at the win-rates of
the methods and the point costs predicted, we can see some
patterns which may indicate why this has occurred.

For the basic methods from the win-rates we can see that
the loss of balance is most likely caused by the elves under-
performing relative to the other armies. As mentioned before,
these methods predicted almost identical points for the Elves
and Orcs, which contrasts to the baseline win rate of the EIf
vs. Orc of just 39% in favour of the Orcs. This suggests that
these methods predicted the Elven units to be much stronger
than they actually are, which is also reinforced by them losing
against the Dwarves when it was a previously winning match-
up for them. On the other hand, the Orc vs Dwarf match-
up becomes more balanced with these methods, which may
indicate that the points predicted for the Dwarves and Orcs
are much more accurate.

The Equilibrated Elastic-Net methods perform better than
the basic methods; however, they still under-perform compared
to the baseline. Looking at the win-rates we can see that
the Dwarves perform much better compared to the baseline,
winning both their match-ups where they lost both before. This
is most likely the biggest loss of balance for these methods,
and looking at the point costs we can see that they have
lower point costs compared to the other armies, which suggests
that the methods are underestimating the performance of the
Dwarven units. The Elves perform slightly better against the
orcs than the baseline, with their slightly lower point costs
reflecting this, however, they are still not optimal.

In addition to the win-rates of the army playing against
different armies, we also collected results on the army playing
against itself (with different choices of units). Table VI shows
us these win rates. Immediately we can see that for all factions,
Player 1 leads against Player 2, this informs us that there is
most likely a first-turn bias in the game. In addition, none
of the methods manage to mitigate this first turn advantage,
which suggests that point costs alone might not be able to
eliminate this bias, thus changes to the rules of the game might
be needed to address this issue.

G. Biased Units Experiment

In addition to our main experiment, we also conducted a
biased experiment in which we modified the values of one unit

Race / Method Unit Types
/

Dwarf Melee Ranged Support Elite
Least Squares (LS) 22 9 4 11
Elastic-Net (E) 21 8 3 10
Bounded Elastic-Net (BE) 21 8 3 10
Equil. Least Squares (ELS) 18 8 5 8
Equil. Elastic-Net (EE) 15 6 4 7
Equil. Bounded Elastic-Net (EBE) 15 6 4 7
Elf Melee Ranged Support Elite
Least Squares (LS) 10 4 5 16
Elastic-Net (E) 9 4 5 15
Bounded Elastic-Net (BE) 9 4 5 15
Equil. Least Squares (ELS) 6 3 4 8
Equil. Elastic-Net (EE) 5 3 3 8
Equil. Bounded Elastic-Net (EBE) 5 3 3 8
Orc Melee Ranged Support Elite
Least Squares (LS) 8 11 6 14
Elastic-Net (E) 8 10 5 14
Bounded Elastic-Net (BE) 8 10 5 14
Equil. Least Squares (ELS) 6 8 3 9
Equil. Elastic-Net (EE) 4 6 2 7
Equil. Bounded Elastic-Net (EBE) 4 6 2 7

TABLE VII
THE PREDICTED POINT COSTS FOR THE BIASED EXPERIMENTS.

TABLE VIII
THE WIN-RATES AND STANDARD ERRORS FOR THE BIASED EXPERIMENTS.

Method EvD EvO OvD BL
Uncosted 22% (0.008) 34% (0.008) 28% (0.008) 24.55
LS 21% (0.016) 34% (0.019) 30% (0.02) 24.51
E 18% (0.016) 30% (0.019) 24% (0.018) 28.92
BE 19% (0.017) 32% (0.02) 23% (0.018) 28.42
ELS 26% (0.018) 43% (0.02) 32% (0.02) 19.74
EE 21% (0.018) 33% (0.018) 31% (0.02) 24.28
EBE 22% (0.018) 35% (0.018) 32% (0.02) 23.17

(Dwarven Melee) to be overpowered and for another (Elven
Ranged) to be underpowered. This experiment is aimed at test-
ing the ability of our methods to identify heavily unbalanced
units. For this experiment, we only used the Balanced heuristic
and a set of 600 / 100 (Training / Validation) army list pairs
per game match-up, to total 7200 pairs per run.

Table VII shows us the predicted point costs per method. We
can immediately see that the Dwarven Melee unit has much
higher predicted point costs compared to the main experiment,
gaining a higher point cost than any of the Elite units. This
suggests that the methods find this unit to be the most powerful
unit in the game. The Elven Ranged unit also has lower point
predicted point costs compared to the main experiment, as
well as having similar costs to the support units. However, its
attributes are objectively less powerful than them (while still
being playable), which could suggest a floor of how costs can
be predicted with these methods.

Table VIII shows how these point costs have impacted the
win rates compared to the baseline. ELS again performs the
best, managing to reduce the Balance Loss to 19.74, with each
match-up becoming more balanced. However, the game is still
quite unbalanced, which could suggest that while it is able to
identify these deliberately unbalanced units, deeper changes in

the rules could be required to completely balance the game.

VI. CONCLUSIONS AND FUTURE WORK

It is our understanding that prior to this work there was
no automated method of predicting unit costs in complex
wargames. We have proposed a game agnostic algorithm that
will automatically calculate the value of units costs using
just data from game results. The initial results of our work
are promising, with the Equilibrated Least Squares algorithm
almost halving the balance loss compared to the baseline in
the main experiment, and with the deliberately unbalanced
units being detected in the biased unit experiment. It is
worth framing how this method could work in more complex
wargames: with their larger number of armies and units, the
fact that our method does not require domain knowledge is
an advantage. However, the large number of sample games
required can be considered a drawback, and to mitigate this a
way of estimating game results may be required.

We have identified two avenues through which we can
improve our approach for predicting unit point costs. The first
looks at improving the method used in the algorithm. The equi-
librated methods outperformed the basic methods; however,
it is worth seeing how they could be further improved, and
while for these methods we assume the relationship between
the win-rate and units is linear, it may be interesting to see
how using a form of nonlinear regression (e.g., from simpler
algorithms such as non-linear least squares to other approaches
like genetic programming) may change the results. The second
way we can see this is to expand on the game data we model.
Right now, the algorithm only predicts independent unit costs;
however, as mentioned previously, there are many factors that
modify the usefulness of a unit in battle. Therefore, it might be
lucrative to investigate how taking the factors (e.g. a support
unit is more useful when paired with a powerful unit for it to
help) into account may help to predict more accurate values.

Another possibility for future work is changing the balanc-
ing target. For this paper we were balancing towards every
army having a 50% win-rate, however, it would be interesting
to try an intransitive superiority approach, where choosing an
army based on game factors is vital for victory.

We have also identified ways in which this algorithm could
be applied in the future. The first is to use it on other types
of games. Wizard Wars is a wargame, and it may be worth
seeing how our algorithm performs in games of other genres
(e.g. Trading Card Games). Also, the points predicted by our
algorithm can serve as a proxy for the power level of a unit;
therefore, it may be possible to use it as a diagnostic tool to see
which units are unbalanced, and feeding this information into
an automatic game balancing algorithm (e.g. NTBEA [26])
to create a balancing system that would modify the property
values of unbalanced units, forgoing the requirement of a
human providing expert knowledge.

VII. ACKNOWLEDGMENTS

For the purpose of open access, the author(s) has applied
a Creative Commons Attribution (CC BY) license to any

Accepted Manuscript version arising. This work was sup-
ported by the EPSRC IGGI CDT (EP/S022325/1) and utilised
QMUL’s Apocrita HPC facility.

REFERENCES

[1] J. F. Dunnigan, The Complete Wargames Handbook. 1997.

[2] A. Becker and D. Gorlich, “What is game balancing?-an examination
of concepts,” ParadigmPlus, vol. 1, no. 1, pp. 22-41, 2020.

[3] M. Preuss, T. Pfeiffer, V. Volz, and N. Pflanzl, “Integrated balancing
of an rts game: Case study and toolbox refinement,” in 2018 [EEE
Conference on Computational Intelligence and Games, 2018.

[4] Core Book. Warhammer 40,000, Games Workshop, Limited, 2020.

[5] R. Priestley and J. Lambshead, Tabletop Wargames: A Designers’ and
Writers’ Handbook. Pen & Sword Books Limited, 2016.

[6] A. Sfiligoi, J. Hartman, J. Hartman, and J. McBride, Song of Blades and
Heroes - Revised Edition. CreateSpace Ind. Publishing Platform, 2012.

[7]1 V. Volz, G. Rudolph, and B. Naujoks, “Demonstrating the feasibility of
automatic game balancing,” in Proc. of the Genetic and Evolutionary
Computation Conference, 2016.

[8] C. S. Roberts, Tactics. Avalon Game Company, 1954.

[9] A. Lamorisse, Risk. Parker Brothers, 1959.

[10] M. Ward, Warhammer Rulebook. 8th Edition. Games Workshop, 2009.

[11] H. Chen, Y. Mori, and I. Matsuba, “Solving the Balance Problem of
On-Line Role-Playing Games Using Evolutionary Algorithms,” Journal
of Software Eng. and Applications, vol. 05, no. 08, pp. 574-582, 2012.

[12] M. Morosan, Automating Game-design and Game-agent Balancing
through Computational Intelligence. PhD thesis, Univ. of Essex, 2019.

[13] F. de Mesentier Silva, R. Canaan, S. Lee, M. C. Fontaine, J. To-
gelius, and A. K. Hoover, “Evolving the hearthstone meta,” CoRR,
vol. abs/1907.01623, 2019.

[14] M. Beyer, A. Agureikin, A. Anokhin, C. Laenger, F. Nolte, J. Winter-
berg, M. Renka, M. Rieger, N. Pflanzl, M. Preuss, and V. Volz, “An
integrated process for game balancing,” in 2016 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 1-8, Sept. 2016.

[15] N. Tomasev, U. Paquet, D. Hassabis, and V. Kramnik, “Assessing game
balance with alphazero: Exploring alternative rule sets in chess,” arXiv
preprint arXiv:2009.04374, 2020.

[16] D. Hind and C. Harvey, “A neat approach to wave generation in tower
defense games,” in 2022 International Conference on Interactive Media,
Smart Systems and Emerging Technologies (IMET), pp. 1-8, 2022.

[17] M. Stanescu, N. Barriga, and M. Buro, “Using lanchester attrition laws
for combat prediction in starcraft,” 2015.

[18] A. Dockhorn, J. H. Grueso, D. Jeurissen, and D. P. Liebana, “Stratega:
A general strategy games framework.,” in AIIDE Workshops, 2020.

[19] A. Dockhorn, D. Perez-Liebana, et al., “Game state and action abstract-
ing monte carlo tree search for general strategy game-playing,” in 2021
IEEE Conference on Games (CoG), pp. 1-8, IEEE, 2021.

[20] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Transactions
on Comp. Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43, 2012.

[21] L. Kocsis and C. Szepesvdri, “Bandit based monte-carlo planning,” in
European Conf. on machine learning, pp. 282-293, Springer, 2006.

[22] M. Swiechowski, K. Godlewski, B. Sawicki, and J. Mandziuk, “Monte
carlo tree search: a review of recent modifications and applications,”
Artificial Intelligence Review, 2022.

[23] L. Xu, J. Hurtado-Grueso, D. Jeurissen, D. P. Liebana, and A. Dockhorn,
“Elastic monte carlo tree search with state abstraction for strategy game
playing,” in IEEE Conference on Games (CoG), 2022.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825-2830, 2011.

[25] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay,
J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls, S. Omidshafiei, et al.,
“Openspiel: A framework for reinforcement learning in games,” arXiv
preprint arXiv:1908.09453, 2019.

[26] K. Kunanusont, R. D. Gaina, J. Liu, D. Perez-Liebana, and S. M.
Lucas, “The n-tuple bandit evolutionary algorithm for automatic game
improvement,” in /[EEE Congress on Evolutionary Computation, 2017.

