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We study the optimal placement of wind
turbines within a windfarm to maximize
the power produced by mapping the sys-
tem to a Quadratic Unconstrained Binary
Optimisation (QUBO) problem. We inves-
tigate solving the resulting QUBO prob-
lem using the Variational Quantum Eigen-
solver (VQE) on a quantum computer sim-
ulator and compare the results to those
from two classical optimisation methods:
simulated annealing and the Gurobi solver.
The maximum grid size we study is 4 × 4,
which requires 16 qubits.

1 Introduction

With the climate crisis and the continuous goal to
reduce our emissions, there is a clear motivation
for extracting the maximum amount of energy
from renewable sources. The use of renewable en-
ergy sources will minimize our negative effect on
the environment and lead to a more sustainable
future.

One key renewable energy source is wind.
There are many challenges to making it an eco-
nomically viable and reliable energy source [1]. In
this paper, we focus on using quantum computers
to solve one specific problem towards maximizing
the energy extracted from the wind. There are
currently limitations on the available quantum
computing hardware that we will discuss later.
There have been a number of reviews of the use
of quantum computing to solve problems in re-
newable energy [2, 3, 4]. There has been a recent
review on using quantum computers to solve op-
timisation problems [5].

Energy from the wind is extracted using wind
turbines. Typically, wind turbines are combined
together to form windfarms. The spatial layout
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of the turbines in the windfarm will change the
maximum amount of energy that the windfarm
can produce. There is a long history of using op-
timization techniques [6, 7] to find the best loca-
tions for the turbines in the windfarm to produce
the maximum amount of power.

The number of turbines in the windfarms in-
creases to maximize the power produced. For ex-
ample, China is building a windfarm with 3500
turbines [8]. As the number of turbines increases,
the complexity of the optimization problem grows
exponentially. This motivates the study of im-
proved optimization algorithms for finding the
best layout of turbines in a windfarm. Re-
cently, one form of the Windfarm Layout Op-
timization (WFLO) problem has been rewritten
as a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem [9] that can be solved on
a quantum computer.

There are currently two dominant types of
quantum computers. One is based on quantum
circuits. For example, IBM and Google have
constructed quantum computers based on this
paradigm. The current largest real-world quan-
tum computer is IBM’s Osprey [10], which has
433 qubits. One way to solve QUBO problems
using a quantum circuit computer is to use a Vari-
ational Quantum Eigensolver (VQE).

Other types of quantum computers are quan-
tum annealers (QA) [11]. Quantum annealers
are built to solve QUBO problems. D-WAVE’s
Advantage is the largest real-world QA, having
5000+ qubits (although not all connected) [12]. A
new system in the coming years which promises to
have 7000+ qubits [13] is currently under devel-
opment. Fujitsu’s Digital Annealer can also solve
QUBO problems using specialized hardware [14].

Another important practical issue is that quan-
tum error correction is not implemented on exist-
ing quantum computers. We are currently in the
noisy intermediate-scale quantum (NISQ) [6] era.
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Any algorithm should be resilient to decoherence.
Practical algorithms in the NISQ era typically
run on hybrid systems made from a combina-
tion of classical and quantum computers. We will
postpone the study of the effect of the additional
problems, such as decoherence and quantum er-
rors which occur when running on real quantum
hardware, to later work.

In this paper, we investigate using quantum op-
timisation algorithms to solve the WFLO prob-
lem mapped to a QUBO problem using the
qiskit package [15] from IBM, running on a clas-
sical simulator. The solution method uses the
Variational Quantum Eigensolver (VQE), so it is
an appropriate method for the NISQ era of quan-
tum computing [16]. This work is a necessary first
step to solving the WFLO problem using quan-
tum computers. The next steps are studying the
introduction of quantum noise and errors in the
simulator, and finally using a real quantum com-
puter.

Senderovich et al. [9] developed the formalism
to convert a WFLO problem into a QUBO prob-
lem. They compared solving the resulting QUBO
problem using classical methods and the Fujitsu
Digital Annealer. Our contribution is to investi-
gate solving the QUBO problem mapped from a
WFLO using a simulator of a circuit-based quan-
tum computer.

Apart from the importance of solving the
WFLO problem in order to produce more elec-
tricity from a windfarm, there is another motiva-
tion for this study. QUBO problems are one of
the main problems that can be solved by quan-
tum annealers such as those sold by D-Wave and
Fujitsu [17]. Once our project is running on
quantum computing hardware, the solution of
WFLO problems may be an interesting test case
for comparing the performance of adiabatic and
circuit-based quantum computers. Previous work
has shown the difficulty in comparing the per-
formance of classical computer and adiabatic an-
nealers in solving QUBO problems [18, 19, 20, 21].

In this work we have used the circuit model of
quantum computing as the basis of the calcula-
tion. The next step in the project will be to run
the code on quantum computers and we will then
be able to compare the performance on circuit
and quantum-based systems.

2 Windfarm Layout Optimisation

Choosing the placement of turbines within a
windfarm, or WFLO [6] is selecting the locations
of the turbines in order to maximize the power
output, with respect to certain constraints. These
constraints include the maximum number of tur-
bines we can use, as well as the minimum distance
that we must have between them due to their ro-
tors. We use the simplifying assumption that the
turbines can be placed only on a discrete grid.

When a turbine is downstream (meaning that
it is behind the other turbine with respect to the
wind direction) from another within its cone, it
will have reduced power output compared to if it
is out in the open. This effect is called the wake of
a turbine. The key issue in the placement of the
wind turbines in the windfarm is to minimize the
lost energy due to the wakes from the turbines.

The Sum-of-Squares (SS) model for wake
speeds [22] best captures the effect of these wakes.
However, the formulation leads to intractable op-
timisation problems. To combat this, we use
a simplified model, the Linear Superposition of
Wakes (LS) [23]. This allows us to map the prob-
lem to a Quadratic Unconstrained Binary Opti-
misation (QUBO) problem, which can then in
turn be optimized using various quantum (and
classical) methods.

3 Windfarm layout as a Quadratic Un-
constrained Binary Optimisation prob-
lem

A QUBO problem is defined as:

argmin
x

fQ(x), (1)

where,

fQ(x) := xT Qx =
q∑

i,j=0
Qijxixj (2)

x ∈ Bq = {0, 1}q.
Many combinatorial optimization problems can

be formulated as QUBO problems. For exam-
ple, the reconstruction of the tracks of charged
particles can be computed by solving a QUBO
problem [24]. QUBO is a class of NP-hard prob-
lems [25]. It is not expected that the solution
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of QUBO problems will be in the BQP complex-
ity class (problems that can be solved in poly-
nomial time on quantum computers). QUBO
problems are normally formulated in an uncon-
strained way. However, constraints can be in-
cluded by introducing penalties in the form of
large additive constants when the conditions are
violated. We follow the mapping of the WFLO
problem to a QUBO problem that was developed
by Senderovich et al in Ref. [9].

We will simplify the land that the farm is on
to a square grid of length lgrid. There are in total
l2grid spots on which a turbine could be placed.
These will be labelled as they are in Fig. 1. The
indicator of the presence of a turbine on site q is
xq where q ∈ {1, ...l2grid}. Cartesian coordinates
of the grid are shown in Fig. 2.

There are two constraints that we impose on
this simplified model of a windfarm, which are:

1. There can be no more than m turbines on
the grid.

2. Each turbine must be at least distance ξ
apart from one another.

1
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Figure 1: Labelling of sites on a lgrid = 4 windfarm grid.
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Figure 2: Coordinates of sites on a lgrid = 4 windfarm
grid.

A wake can be defined by three parameters:
the angle α (degrees) that the wind is coming

from with respect to the west counted clockwise,
x, the maximum distance that is affected by the
wake and r is the radius with which it spreads out
per unit distance, away from the turbine causing
the wake. These physical factors are problem-
specific. For our model, we say that if a grid
location is at all within the wake, it is entirely
within its wake. We denote a wake starting at
position i as w(i, x, r; α).

Figure 3: Turbine on location 15 or (1,4), D =
{0, 12ms−1, 1}.

Figure 4: Turbine on location 23 or (2,2) and 34 or (3,3),
D = {0, 12ms−1, 1}.
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Figure 5: Turbine on location 27 or (2,6), D = Second
Mosetti.

Figure 6: Turbine on location 35 or (3,4) and 76 or (7,5),
D = Second Mosetti.

To visualize the wakes from some turbines in
the wind, they are plotted on a lgrid = 10 grid
(that is bigger than used in the simulations) with
the parameters: x = 3, r = 1. Fig. 3 and Fig. 5
show a configuration of the wakes from one tur-
bine. Fig. 4 and Fig. 6 show a configuration of
the wakes from two turbines. If one of the tur-
bines is in the wake of another turbine, then it
will see a reduced wind velocity and thus produce
less power. The algorithm’s goal is to place wind
turbines in locations that have the windspeeds
maximized.

3.1 Model
To ensure that the model is more realistic, the
system includes several wind regimes. Each pos-
sible wind regime is defined as, d := {αd, vd, pd}.
αd is the angle at which the wind comes in, vd

is the free wind speed, i.e. the wind speed that
powers a turbine not in the wake of another. pd is
the probability that we would expect to encounter

this wind regime. We denote the set of possible
wind regimes in our system as D. To clarify this,
D is a collection of d’s, with

∑
d∈D pd = 1

The particular model that we are using is the
Linear Superposition (LS) of wakes. This model
is useful as it can be transformed into a QUBO
problem. The power output for a system of q sites
within this model is computed as:

ELS =
∑
d∈D

q∑
i=1

pd

1
3v3

d −
∑
j∈wi

1
3
(
v3

d − u3
ij

) ,

(3)
where wi is shorthand for the wake at i, and uij is
the reduced windspeed at site j, caused by being
in the wake of i. If j is in the wake of i, uij can
be calculated as in,

uij = vd

(
1 − 2a

(1 + αT (δ/r)2)2

)
. (4)

This is the Jansen wake model [26], where a is
the axial induction factor, currently set to 0.1,
and δ = ||i − j||2. When we control the distance
which the wake can go back (x), as well as its
radius per distance (r), we can calculate αT using
Eq. 5.

αT = 1
x

(r − rt) , (5)

where rt is the turbine radius which must be set.
For this work, we set rt = 0.33 [27]. We note
that rt and a from Eq. 4 carry units, and change
in real systems dependent on the size and energy
output of the turbines. The values which have
been chosen are arbitrary; they do not relate to
any real-life system - this is a simplified model.

The QUBO formulation for this problem is
then:

argmin
x

(−f(x)), (6)

f(x) =
∑
d∈D

m∑
i=1

pd

1
3v3

dxixi −
∑
j∈wi

1
3
(
v3

d − u3
ij

)
xixj

 .

(7)
This is the unconstrained version of the prob-

lem, i.e. the optimal solution will always be a
turbine on every site. We now must add the con-
straints in the form of an energetic penalty.

g(x; λ1, λ2) = λ1

l2grid∑
i=1

xi − m


2

+λ2
∑

||i−j||2<ξ

xixj

(8)
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The term which is multiplied by λ1 in Eq. 8 lim-
its the number of total turbines and the second
term pertains to the minimum distance. The val-
ues of λ1, λ2 have to be large enough so that the
constraints are met. The full QUBO problem is:

argmin
x

(−f(x) + g(x; λ1, λ2)) (9)

The problem from Eq. 9 can then be written in
the form of a weight matrix Q from Eq. 2:

Qij =


−1

3
∑

d pdv3
d + λ1(1 − 2nm) if i = j

−1
3
∑

d pd

(
v3

d − u3
ij

)
+ 2λ1 if i ̸= j

(10)
Here, we have neglected the proximity constraints
term as we do not include this in our simulations.
This can often lead to dense matrices, with all
entries nonzero. We note here that q = l2grid is
the number of variables/qubits.

4 Classical methods
As a baseline comparison to the use of quantum
computers to solve QUBO problems we also in-
vestigated two classical optimization techniques.

Gurobi is a set of solver packages that can be
used in many different programming languages to
solve linear and quadratic optimization problems.
The package uses several different optimization
techniques, choosing the best depending on the
problem at hand. Examples of the algorithms
that are made use of are: simplex and parallel
barrier, further details can be found in Ref. [28].
In this work we used Gurobi to solve our QUBO
problem, which is a special case of quadratic opti-
mization. Gurobi has been used as a comparison
to using quantum and digital annealers to solve
different types of QUBO problems [29, 30].

Simulated Annealing [31] (SA) is a standard
approach to finding the optimum of a function
which has many local minima in a huge search
space. It is particularly useful for searching in
discrete spaces [32]. The algorithm searches the
space via random fluctuations, controlled by a
probability to transfer between states which is a
function of temperature. SA has been used to
find solutions to various NP-complete combina-
torial problems such as the Travelling Salesman
Problem (TSP) [33], Minimum Linear Arrange-
ment (MLA) [34] and instances of the Packing
Problem (PP) [35].

5 Variational Quantum Eigensolver
The Variational Quantum Eigensolver (VQE) is
a hybrid quantum-classical algorithm for finding
the lowest eigenvalue of a Hamiltonian that is in
the form of a Pauli string [36]. For further details
about the VQE see Ref. [37]. The VQE is an al-
gorithm that has shown great promise in making
use of current NISQ computers. It uses a small
parameterized quantum circuit to calculate the
expected value of the Hamiltonian with respect
to the parameters (θ). A classical optimization
routine is then used in order to best choose θ so
that we minimize this value.

The VQE uses the inequality,

EH
min ≤ ⟨0|U †(θ)HU(θ)|0⟩, (11)

and the variational principle in order to find a
tight upper bound on the lowest eigenvalue, EH

min,
of a Pauli string matrix, H which are defined as
follows,

H =
∑

γ

hγPγ (12)

Pγ =
q⊗

i=0
σmi (13)

Where mi ∈ {0, 3} tells us the Pauli matrix and q
is the number of qubits. The two Pauli matrices
that we make use of in this problem are:

σ0 =
(

1 0
0 1

)
= I2, (14)

and

σ3 =
(

1 0
0 −1

)
. (15)

The parameter values are then chosen by a clas-
sical optimization routine to minimize this value.

min
θ

⟨0|U †(θ)HU(θ)|0⟩ (16)

There are two main features of the VQE that
we must design and control in order to make use
of it efficiently. These are: the design of the pa-
rameterized circuit (the ansatz ) and the choice of
optimization routine. Our choice of ansatz must
create states which have sufficient overlap with
solution space in order to be able to find the mini-
mum. When using the VQE to solve QUBO prob-
lems this is fairly trivial as one parameter on each
qubit would be sufficient (we are only looking for
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basis states). However, the choice of optimiza-
tion routine is certainly non-trivial and is vital in
order to best make use of the algorithm. In this
work we examine the effectiveness of three differ-
ent optimization routines: Powell’s gradient-free
conjugate search method (PO), Constrained Op-
timization by Linear Approximation (COByLA)
and Bayesian Optimization (BO).

5.0.1 Powell optimization

PO is a widely known standard optimization rou-
tine for finding the global minimum of a func-
tion where we do not know/cannot calculate the
derivatives. It works well for the VQE (in small
parameter spaces) but requires the system to use
a high shot 1 count in order to not be too greatly
affected by the quantum measurement noise.

For this work, we make use of
scipy.optimize.minimize’s option ‘powell’.

5.0.2 COByLA

COByLA is a trust region based, surrogate-
assisted method for finding the global minimum
of a function. Similar to PO, COByLA requires
sufficient shots in order to not be too greatly af-
fected by the noise; however, it is more resilient
than PO. COByLA has been used for the VQE
several times within the literature. Liu, et al. [38]
used it as a test for their Layer-VQE (L-VQE) ap-
proach to generating ansatz, and Tim Schwägerl,
et al. [39] used it to minimize a QUBO prob-
lem for reconstructing particle track results from
a Large Hadron Collider (LHC). COByLA has
shown good promise for this black-box optimiza-
tion.

For this work, we make use of
scipy.optimize.minimize’s option ‘COBYLA’.

5.0.3 Bayesian Optimization

BO is a surrogate-assisted method for finding
the global minimum of a function, which mod-
els the underlying function as a Gaussian Pro-
cess Regression (GPR) and then updates this
model based on samples, according to Bayes’ the-
orem [40, 41, 42, 43] We follow the work using BO
for the VQE [43], where the authors made use
of the Noisy Expected Improvement acquisition

1Number of calls of the quantum circuit to gain one
expected value evaluation.

function. BO has also been used for other Vari-
ational Quantum Algorithms (VQAs), such as
solving a MAXCUT problem with the Quantum
Approximate Optimization Algorithm (QAOA)
[44]. It has also been used for generative mod-
elling, where combinations of Pauli gates are used
rather than parameterized gates, to implement
a training algorithm on the canonical Bars-and-
Stripes data set. Instead of iterations, unique cir-
cuits at every step are used, see Ref. [45]. As well
as these quantum examples, BO has been exten-
sively studied in the field of hyperparameter op-
timization for machine learning (e.g. Ref. [46],
[47], [48]).

For this work, we use a BO that we have coded.
The definitions that we use are the same as pre-
sented in Ref. [43]. It uses the periodic kernel,
for K parameters, defined as,

kP (θ1, θ2) = σ2
K∏

i=1
exp

−2
l2

sin2

π

∣∣∣∣∣θ1
i − θ2

i

p

∣∣∣∣∣
2
 ,

(17)
where σ is the expected variance of the GP, l is
the length scale over which we would expect data
points to be correlated and p is the period of the
underlying function.

We make use of Expected Improvement (EI)
as the acquisition function. If we define our best
guess so far to be Emin = min(E1, ...En), EI is
defined as,

aEI(θ) = Eθ[max(0, Emin − E(θ))] (18)

Where Eθ[·] is evaluated over all the possible E(θ)
from the surrogate model.

Expected Improvement can be used in its ex-
plicit closed form which is,

aEI(θ) = (Emin − E(θ)) Φ
(

Emin − E(θ)
∆E(θ)

)
+ ∆E(θ)ϕ

(
Emin − E(θ)

∆E(θ)

)
.

(19)
Where Φ is the Normal cumulative distribution
function and ϕ is the corresponding probability
density function. We find the minimum of aEI

using Powell’s algorithm.
Bayesian optimization uses very few shots

when compared to the other methods, as it takes
into account the noise on the measurement. It is,
however, extremely computationally expensive.
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5.1 Mapping QUBO to the VQE
We can use the VQE to solve QUBO problems
using the transformation

xi 7→ 1
2
(
σi

0 + σi
3

)
, (20)

where σi
3 denotes the Pauli-Z spin matrix acting

on the ith qubit. We then find the groundstate
eigenvalue of the Hamiltonian

H =
q∑

i,j=1
Qij

1
4
(
(σi

0 + σi
3)(σj

0 + σj
3)
)

. (21)

We then take the parameters that gave us this
groundstate, measure then the produced state in
the σ⊗q

3 basis, and the state with the highest like-
lihood of being measured, which also meets our
constraints, is our solution.

Since our Hamiltonians only consist of σ0 and
σ3 terms, they are diagonal, hence we only need
one parameter per qubit in order to map a suf-
ficient amount of the space to receive the opti-
mum. However, to aid the classical optimizer in
the noisy space of quantum measurements, q lay-
ers of rotation and entangling CNOT gates will
be used.

We note here that due to the density of the
weight matrix Q defined in Eq. 10, the Hamil-
tonian is very dense, often containing q2 nonzero
terms. This means that this is a worst-case sce-
nario in terms of stress on the VQE.

5.2 Dimensionallity Expressivity Analysis
When using variational quantum circuits, some-
thing that we often look at is Dimensionallity Ex-
pressivity Analysis (DEA) [49]. This is a method
by which we can determine if the parameters of
the gates are independent or redundant. The
methodology behind this can be found in Ref.
[50].

DEA is more applicable when we are looking
at more complex systems, i.e. when we are not
only searching for basis states and thus need to
be able to span a subset of the whole space.

If we do carry out this analysis on our cir-
cuit, we see that all the parameters are non-
redundant, given we do not start the optimiza-
tion process with any parameter values equal to
(2k + 1)/4 · π and (2k)/4 · π for k = {0, 1}. In
order to ensure this, the parameter values are uni-
formly randomly generated in the region [0, 2π),
using numpy.random.uniform.

Further details about DEA are included in Ap-
pendix A.

5.3 Conditional Value at Risk

A recent development in the usability of the VQE
to solve combinatorial optimization problems is
to use the Conditional Value at Risk (CVaR)
technique from finance. Full details of CVaR-
VQE and its advantages can be found in Ref. [51].
In this reference, CVaR was used with regard to
the sample mean, but in this work we apply it to
the expected value.

For a Hamiltonian containing K terms, we de-
fine the energy measurements to be Hγ . In this
notation, the coefficients and normalisation with
regards to the shot count have been included in
Hγ . Our usual objective function is,

VQE →
K∑

γ=1
Hγ (22)

If we now order the measurements so that Hk ≤
Hk+1, the CVaR adaptation is to then introduce
a new parameter: 0 < α ≤ 1 such that,

CVaR-VQE →
⌈αK⌉∑
γ=1

Hγ (23)

In this way, we truncate our measurements to
only include the terms which greatest contribute
to our minimization. By changing this value we
can more quickly find the state which gives us our
minimum.

Note that the minimum value of CVaR-VQE
is not necessarily equal to the minimum of the
VQE, but the correct solution can be the same.

6 Design of the tests of the algorithms

We have tested the power produced by the dif-
ferent methods for grids of size lgrid = 4. This
was the maximum system size that we could run
on quantum simulators using the resources avail-
able to us. By exhaustive search of all the pos-
sibilities we found the maximum power for the
grid with lgrid = 4. The WFLO problem has
many local optima, so we run each algorithm 36
times from different initial conditions. To check
the scaling of the performance of the different al-
gorithms, we run the quantum simulators with
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lgrid = 2 to lgrid = 4, and the classical optimizers
with lgrid = 2 to lgrid = 10.

Justification for 36 being a sufficient sample
size can be found in Appendix B.

6.1 Test model
In order to test these different algorithms, we will
use the following parameter values (the Mosetti
benchmark cases are from Ref. [6]),

D = Mosetti second benchmark case
x = 1, r = 1.5, m = 4, ξ = 0

where x is the maximum distance that is affected
by the wake and r is the radius with which it
spreads out per unit distance away from the tur-
bine causing the wake. m is the maximum num-
ber of turbines allowed, and ξ is the minimum
distance allowed between turbines. In this work
we have set ξ to zero so that turbines may be on
adjacent sites. Due to our limited ability to sim-
ulate large quantum systems, we will be looking
at a very small grid with lgrid = 4. This means
that there will be 16 possible positions for the
turbines, and so will need 16 qubits.

Mosetti’s second benchmark case is defined as:

D = {{10k, 12ms−1, 1/36}}36
k=0 (24)

= {{0, 12ms−1, 0.028}, ..., {350, 12ms−1, 0.028}}
(25)

This can be visualized as the distribution shown
in Fig. 7. Here, each box represents a windspeed
of 12ms−1.

6.2 Computational details of simulations
The quantum simulations were run using IBM’s
qiskit:0.39.2 package for python [15].

Both PO and COByLA were utilized via
scipy.optimize.minimize - using the methods
‘powell’ and ‘COBYLA’ respectively as part of
the scipy library [27]. BO was coded up for this
work, using a heavily modified version of the
code used in [52], where we no longer make use of
sklearn.gaussian_process.GaussianProcess-
Regressor. This had problems when using the
periodic kernel, and so a self-made algorithm
was required.

SA was implemented using the package
pyqubo [53, 54]. This library has an inbuilt an-
nealer by using

neal.SimulatedAnnealingSampler() once the
system has been turned into a QUBO problem
via model.to_qubo(). Pyqubo has a wrapper to
the D-Wave Ocean SDK, so we are ready to run
on the D-wave systems.

Gurobi was implemented using the gurobipy
package [28]. Gurobi was used with an academic
license through the University of Plymouth.

As well as the previously mentioned meth-
ods, we also investigated qiskit’s built-
in VQE QUBO solver. This uses their
SamplingVQE function, and then performs a
MinimumEigenOptimizer over it in order to find
the groundstate. The ansatz used is the same as
the one described in Sec. 5.1. This method acts as
a control, as it is the VQE method with no statis-
tical noise present. We use COByLA as the classi-
cal optimization routine for this method. Details
about this method can be found in Ref. [55].

All of the simulations for the results provided
below were run using the computational facili-
ties of the High Performance Computing Centre
located at the University of Plymouth [56]. The
CPUs were dual node Intel Xeon E5-2683v4 CPU
each with 16 cores. Task farming was used to run
the simulations using all the cores.

7 Results

7.1 How solutions are selected

For both the Gurobi solver and quantum anneal-
ing, the selection of the solution is trivial as it will
be the final binary string on which the algorithm
lands.

However, for the VQE this is less obvious.
Once the optimization process has finished, we
are given a set of parameters which corresponds
to the quantum circuit gates. We then input
these values back into the circuit, and measure
in the σ3 basis on all qubits; this produces a dis-
tribution over all possible basis states. From this
distribution, we then take the state which has the
highest probability and only has four |1⟩ terms.
We only accepted solutions which have exactly
the correct number of turbines, which is four for
our test case.
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7.2 Discussion about the degeneracy of solu-
tions

As for many other QUBO problems, there are
many degenerate optimal solutions. For the case
lgrid = 4, there are 79 unique optimal solutions
out of 1820 binary vectors which meet the con-
straints and 65536 total possible binary strings
of length 16. A list of all optimal solutions can
be found in Appendix C. Each of these optimal
solutions gives us a power output of 2304.0 kW.

Some of these degeneracies are due to the fact
that there are optimal solutions for the conditions
in smaller system sizes. The ‘smaller’ solutions
can then be embedded in the larger systems. No
solutions exists with output 2304.0 kW for lgrid ≤
2.

Figure 7: 2nd Mosetti benchmark case wind regime dis-
tribution. Each bar represents a windspeed of 12 ms−1.

Figure 8: Heatmap of ⟨X⟩ values for the degenerate
solutions with maximum power. All the values sum to 4
(the number of turbines).

Another way in which we could study a struc-
ture in the optimal solutions is to look at their av-
erage placement locations. If we label a solution

matrix to be Xi
∗, this is a binary matrix which is

representative of the solution grid. We can map
from solutions by using the labelling as in Fig. 2.
We can then calculate the average placement as:

⟨X⟩ = 1
#solutions

∑
i

Xi
∗ (26)

The results from this can be seen in Fig. 8, note
here that the sum of these should equal four as
this is the maximum number of turbines, but the
numbers have been limited to three d.p. for ease
of viewing. From this, we see that there are more
optimal solutions with turbines in the outer cor-
ners of the grid. This makes sense physically with
the wind regime used, as it maximizes the dis-
tance between any two turbines and thus mini-
mizes any possible wake effects.

7.3 Discussion of the results

We found that the Powell optimization method
in the simulations produced results in a reason-
able amount of time for lgrid = 2 and lgrid = 3
cases. However, the Powell method failed at do-
ing this for lgrid = 4. This was due to requiring a
large shot count and also requiring many function
evaluations to be effective. We only present re-
sults using the two surrogate model-based meth-
ods, COByLA and BO, and the two classical al-
gorithms.

Fig. 9 reports the results for the power output
from the different algorithms investigated for the
lgrid = 4 case. Each of the methods was run 36
times and the boxplots show the spread of these
results. The x-axis shows the names of the differ-
ent methods, the number under the name of the
VQE method is the CVaR α value.

From Fig. 9 we can draw a few conclusions.
The Gurobi method with the default starting
guess outperforms all the other methods, consis-
tently reaching the optimal solution every time.
This is also true for the noiseless COBYLA-VQE
method from qiskit. We also see that the differ-
ent VQE methods provide similar quality of re-
sults to one another, which are also comparable
to SA.

We see that each of the COBYLA-CVaR meth-
ods is able to reach the optimal solution. We also
see that using α < 1 has little effect on the qual-
ity of results. We see that the Bayesian-CVaR
has very comparable results.
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Figure 9: Each value along the x-axis represents the different methods. The box plots show the power obtained
from running the problems 36 times. The red dashed line is the optimal solution power output, found through an
exhaustive list search. The Gurobi method and Qiskit Optimization may look empty, but there is a line at the optimal
- it was able to achieve this every run. The circle points which are not within the boxes are outlier points.
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Method Average output result
(% of optimal)

COByLA-1.00 95.5
COByLA-0.75 94.7
COByLA-0.50 94.5
COByLA-0.25 95.2

Bayes-1.00 93.3
Bayes-0.75 94.2
Bayes-0.50 94.6
Bayes-0.25 93.4

Table 1: Average output power from solutions of differ-
ent VQE-based methods as a percentage of the optimal
power output.

Tab. 1 shows the average power output of each
of the methods as a percentage of the optimal
power output. We see that each of these methods
do perform very well on average; with the lowest
average output being 93.3% of the maximum.

7.4 Timing the results

As well as looking at the quality of results, we are
also interested in how long the algorithms take to
achieve their results.

In order to test this, we have used Python’s
time package to take a total time measurement
from start to end of the whole process. The re-
sults from this can be shown in Tab. 2

From these results, we can easily see that the
simulated quantum system takes far more time
than the other two algorithms. However, what is
of more interest to us is the scalability of these re-
sults, i.e. how much slower they get as we increase
the system size. We can study this by looking at
the coefficients of LogLog plots of the timings.

The time to solve the QUBO problem is ex-
pected to depend on the system size exponen-
tially. However, as we only have three data
points, we parameterize the time to solution as
a polynomial with coefficient α.

Time to solve ∝ (V )α

Where V = l2grid is the system volume. Fig. 10
shows the log of time taken to solution versus the
log of the system volume. The timings are in
Table 3. The results from all four algorithms in
Fig. 10 have similar slopes.

We find that: Gurobi ∼ O(V 4.24), SA ∼
O(V 4.51), COByLA ∼ O(V 4.57) and Bayesian

∼ O(V 3.89). These values are calculated by lin-
early fitting the LogLog data from timing each al-
gorithm twelve times and taking the mean. This
is interesting as while Gurobi and SA are the true
algorithms, the quantum method is a simulation,
and thus we would expect that the real quantum
circuit would reduce this time.

Very interestingly, using Bayesian optimiza-
tion even on the simulator scales better than all
the other methods, having the lowest polynomial
scaling; this does come with the caveat that the
pre-factor is much larger than the other systems.
We can look at this more closely by searching for
the intersection point of the Bayesian and Gurobi
timing lines, this is shown in Fig. 11. We can esti-
mate that the simulated Bayesian-CVaR method
would be faster than the Gurobi method for a sys-
tem volume of ≈ 1015, which is a square of sides
length ≈ 31622776.

Figure 11: Extrapolation of time taken for Gurobi and
Bayesian Optimization in order to find the point at which
Bayesian would be faster.

7.5 Conclusions

The VQE-based solver of the WFLO problem
finds good solutions when a sufficient number of
measurements have been performed. The Gurobi
optimizer always finds the optimal solution, and
it outperforms the noisy VQE-based method.
This is not surprising, as Gurobi has been de-
veloped to specifically solve linear and quadratic
programming problems, of which QUBO is a spe-
cial case. We have only investigated small sys-
tem sizes and it would be interesting to compare
the results from the VQE algorithm running on a
quantum computer. There are many benchmark-
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lgrid Gurobi [s] Simulated Annealing [s] COByLA-CVaR [s] BO-CVaR [s]
2 - - 19.74 250.11
3 0.09 0.04 561.78 5741.43
4 1.11 0.85 11546.10 55454.77
5 3.91 3.31 - -
6 14.51 11.49 - -
7 107.11 106.62 - -
8 374.72 377.49 - -
9 983.27 985.57 - -
10 2240.78 2220.44 - -

Table 2: Average time in seconds taken for the different algorithms.

Figure 10: LogLog plots of the time taken for the different methods over different system sizes.

Method Gradient Intercept
Gurobi 4.24 -5.18

Simulated Annealing 4.51 -5.67
CVaR-VQE using COByLA 4.57 -1.50

CVaR-VQE using BO 3.89 0.04

Table 3: Coefficients of linear fits for LogLog timings.
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ing studies that compare different algorithms to
solve the WFLO problem use a grid with 100
points, which would require 100 qubits in our ap-
proach. Solving the WFLO on a quantum com-
puter would require many more than 100 qubits
when error correction is used.

It is interesting to see that the scaling of the
time taken with system size had similar expo-
nents between the Gurobi and the VQE-based
method running on the quantum simulator. From
our results, the performance of the VQE method
critically depends on the performance of the op-
timizer that runs on the classical computer and
this will have to be tuned for good performance.

For WFLO problems, it is useful to use multi-
objective optimisation [7]. For example, max-
imize the power and minimize the cost. The
QUBO formalism has recently been extended to
include multiple objectives [57]. This would be
an interesting area to explore in the future.

We are encouraged by the results we have ob-
tained on the quantum computing simulator to
study the algorithms on real quantum computers.
Next, we will study the resilience of the imple-
mented methods against quantum errors on the
simulators. It will be interesting to compare the
performance on circuit-based quantum comput-
ers to those from adiabatic quantum systems.

Recent work has studied the iteration complex-
ity of Variational Quantum Algorithms in a noisy
environment [58].

There has also been a generalization of CVaR-
VQE proposed, called the Filter-VQE (F-VQE).
F-VQE uses a technique based on filtering oper-
ators to achieve faster and more reliable conver-
gence to the optimal solution[59].

When dealing with high gate count variational
circuits, we encounter exponentially vanishing
gradients or barren plateaus [60]. There has been
recent work [61] in methods to overcome this
problem by utilizing parallel running optimiza-
tion routines (particles), and moving these parti-
cles when they encounter regions of vanishing gra-
dient or when the gradient is dominated by noise.
We plan to investigate these new techniques in
the future, as well as studying the influence of
quantum errors.
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Appendix

A Dimensionallity Expressivity Analysis

A way in which we can analyse the system and improve our results is to carry out expressivity analysis
on the circuit matrix. For an objective function F

(−→
θ
)
, we can then perturb θk by δθk to produce

F
(−→

θ + êkδθk

)
= f . If we can also have F

(−→
θ +

∑
i ̸=k êiδθi

)
= f , θk is redundant. In order to do this

analysis, we are using the method that is described by Lena Funcke, et al in Ref. [50]. The method is
as follows:

1. This can be checked by considering the real partial Jacobians Jk of C (C is the matrix of the
circuit applied to the state |0⟩⊗q):

Jk(θ) =
(

Re(∂1C)...Re(∂kC)
Im(∂1C)...Im(∂kC)

)

Here it is key to understand that ∂kC is itself a 2q × 1 vector, and thus Jk is a 2q+1 × k matrix,
where we start with k = 1 for the first parameter.

2. We then check the rank of the matrix Jk for each k, and if adding a new parameter does not
increase the rank, the parameter must be redundant.

In order to efficiently check the rank of Jk, we consider the matrix Sk = J∗
k Jk. Thus if we check that

Sk is invertible we know that all the parameters are independent (i.e., not redundant).

B Justification for thirty-six samples

When gathering results for this work, we chose 36 samples for each of the methods. In this section
we will look at one particular method, being COBYLA with the CVaR α = 0.25. We take a much
larger sample (284) and compare the averages. By doing this we can see that 36 samples shows similar
features and is thus sufficient to draw conclusions from.

The initial 36 samples taken were:
2136.54, 2118.96, 2202.69, 2220.27, 2220.27, 2220.27, 2268.84,
2220.27, 2286.42, 2220.27, 2136.54, 2118.96, 2118.96, 2220.27,
2101.38, 2202.69, 2220.27, 2286.42, 2202.69, 2286.42, 2304.0,
2118.96, 2286.42, 2118.96, 2118.96, 2136.54, 2136.54, 2268.84,
2118.96, 2118.96, 2101.38, 2286.42, 2220.27, 2286.42, 2202.69,
2118.96

The extra 284 samples taken were:

2251.25, 2202.69, 2185.11, 2185.11, 2136.54, 2136.54, 2286.42,
2118.96, 2268.84, 2304.0, 2202.69, 2136.54, 2220.27, 2268.84,
2101.38, 2118.96, 2268.84, 2220.27, 2220.27, 2202.69, 2202.69,
1933.92, 2118.96, 2202.69, 2268.84, 2220.27, 2220.27, 2220.27,
2268.84, 2220.27, 2185.11, 2136.54, 2118.96, 2202.69, 2251.25,
2304.0, 2052.82, 2118.96, 2286.42, 2136.54, 2118.96, 2220.27,
2118.96, 2118.96, 2268.84, 2304.0, 2101.38, 2268.84, 2286.42,
2035.23, 2304.0, 2202.69, 2118.96, 2304.0, 2202.69, 2017.65,
2268.84, 2220.27, 2136.54, 2304.0, 2202.69, 2118.96, 2268.84,
2136.54, 2136.54, 2202.69, 2118.96, 2035.23, 2202.69, 2304.0,
2118.96, 2220.27, 2136.54, 2185.11, 2118.96, 2220.27, 2251.25,

Accepted in Quantum 0000-00-00, click title to verify. Published under CC-BY 4.0. 16



2220.27, 2304.0, 2202.69, 2202.69, 2220.27, 2268.84, 2304.0,
2185.11, 2136.54, 2202.69, 2118.96, 2185.11, 2220.27, 2118.96,
2118.96, 2268.84, 2220.27, 2185.11, 2136.54, 2251.25, 2304.0,
2268.84, 2202.69, 2220.27, 2185.11, 2202.69, 2118.96, 2220.27,
2220.27, 2220.27, 2286.42, 2268.84, 2220.27, 2185.11, 2202.69,
2101.38, 2202.69, 2220.27, 2202.69, 2304.0, 2304.0, 2220.27,
2202.69, 2220.27, 2286.42, 2220.27, 2118.96, 2118.96, 2220.27,
2202.69, 2035.23, 2118.96, 2202.69, 2286.42, 2118.96, 2101.38,
2118.96, 2202.69, 2304.0, 2136.54, 2304.0, 2185.11, 2202.69,
2286.42, 2101.38, 2202.69, 2220.27, 2220.27, 2220.27, 2220.27,
2220.27, 2136.54, 2220.27, 2101.38, 2220.27, 2286.42, 2118.96,
2220.27, 2220.27, 2286.42, 2220.27, 2136.54, 2136.54, 2268.84,
2101.38, 2202.69, 2101.38, 2035.23, 2220.27, 2136.54, 2202.69,
2136.54, 2286.42, 2185.11, 2286.42, 2220.27, 2118.96, 2118.96,
2220.27, 2202.69, 2202.69, 2118.96, 2118.96, 2118.96, 2202.69,
2220.27, 2202.69, 2220.27, 2202.69, 2286.42, 2118.96, 2202.69,
2136.54, 2220.27, 2268.84, 2118.96, 2251.25, 2286.42, 2136.54,
2136.54, 2286.42, 2286.42, 2220.27, 2202.69, 2286.42, 2136.54,
2220.27, 2202.69, 2220.27, 2118.96, 2202.69, 2304.0, 2220.27,
2202.69, 2304.0, 2286.42, 2304.0, 2286.42, 2101.38, 2220.27,
2101.38, 2220.27, 2202.69, 2202.69, 2220.27, 2035.23, 2304.0,
2304.0, 2202.69, 2118.96, 2185.11, 2202.69, 2220.27, 2118.96,
2101.38, 2202.69, 2268.84, 2304.0, 2202.69, 2017.65, 2118.96,
2286.42, 1933.92, 2304.0, 2118.96, 2202.69, 2286.42, 2220.27,
2136.54, 2136.54, 2185.11, 2017.65, 2185.11, 2220.27, 2202.69,
2118.96, 2136.54, 2118.96, 2220.27, 2017.65, 2251.25, 2136.54,
2202.69, 2035.23, 1933.92, 2136.54, 2017.65, 2220.27, 2118.96,
2101.38, 2220.27, 2286.42, 2118.96, 2286.42, 2220.27, 2286.42,
2220.27, 2286.42, 2202.69, 2268.84, 2101.38, 2251.25, 2220.27,
2035.23, 2286.42, 2202.69, 2202.69

The sample mean of the 36 initial samples is: 2193.1, and the sample mean of the extra is: 2192.4. We
can see that these are similar values (0.03% difference), and so we are able to draw conclusions about
the method’s effectiveness on average by only taking 36 samples. This is very useful as minimizing
time and resource waste is an important factor when carrying out simulations.

C Degeneracy of solutions

Below is a list of all possible optimal solutions for the problem defined in Sec. 6.1.
(0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
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(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0),
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),
(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0),
(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),
(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),
(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1),
(0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1),
(0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1),
(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
(0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1),
(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1),
(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0),
(1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1),
(1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1),
(1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0),
(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1),
(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1),
(1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
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(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0),
(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1),
(1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0)
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