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CHAPTER 136 

ESTIMATION OF PEAK WAVE STRESSES IN 
SLENDER COMPLEX CONCRETE ARMOR UNITS 

Gary L. Howell1 

Hans F. Burcharth 2 

Joon P. Rhee 3 

1 INTRODUCTION 

Recent methods for the structural design of concrete armor units divide the forces into 
static loads, impact loads, and wave or pulsating loads. Physical model technology is 
being developed at several laboratories to measure wave loads on model armor units. 
While this technology represents significant progress, structural designers require a 
maximum stress value to design armor units. Rubble mound breakwaters are structures 
with both random loading and random boundary conditions, such that a single set of 
stress measurements cannot characterize the loading. This paper presents a method to 
determine a design stress for wave induced loads based on the design wave height, a 
designer specified exceedance probability, and a site specific parameter, ks, which can 
be empirically determined from physical model measurements. The methodology was 
developed from analysis of many field measurements of wave loads on 38-tonne dolosse 
armor units at Crescent City, California. 

2 PROTOTYPE MEASUREMENTS 

Steel bars with strain gages were cast at the shank-fluke interface of the dolosse during 
construction. The bars were sized and arranged so the strains could be used to estimate 
the gross structural moments and torque about the shank-fluke section. Strains were 
sampled and converted to digital data at a 500 Hz rate and later reduced to 50 Hz. 
Details of the instrumentation can be found in Howell (1986). 

The measurements were made during the winters of 1987 and 1988. The experimen- 
tal design and examples of the prototype data are shown in Howell (1988). The dolos 
records during storms which occurred March 12-15, November 29-30, and December 1, 
5, 6, 1987, and January 9-11, 14-16, 1988 were selected for this analysis. Low wave 
conditions were represented by data from December 11-14, 1987. The significant wave 
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Figure 1: Time Series of Moments and Principal Stress 

height for the data set ranged from 0.9 m. to 5.0 m. and the maximum wave height was 
9 m. The water depth at the toe of the structure is 10 m. with a typical tidal range of 
2 TO. The structure has an average slope of 1:5. More than 1600 records of 30-minute 
dolosse response were analyzed from 14 dolosse. The sample dolosse were grouped on 
the top layer from approximately 1 unit length downslope from the mean water line to 
3 unit lengths above the mean water line. 

3    ANALYSIS 

Define <Ti as the principal tensile stress, at the shank-fluke interface of the dolos armor 
unit, which can be computed from measurements of moments and torques as shown 
by Burcharth and Howell (1988). For the wave induced portion of the total load, the 
required value for design is the maximum principal stress measured from the mean or 
static stress. 
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umaj can be interpreted as the maximum tensile stress, due to waves, at any point 
on the surface of the shank-fluke cross-section. Figure 1 shows example time series 
of moments, torque and the computed a\. <Jmax is the maximum of this time series 
occurring in the half-hour interval. In general <Jmax will vary over a wide range de- 
pending upon breakwater characteristics, dolos boundary conditions, and sea state. 
The variability due to all but breakwater characteristics was examined statistically. 

Consider amax for all dolosse and all storms grouped into bins of constant -ffi/io- 
Within each bin, the distribution of amax was found to be well described by a Rayleigh 
distribution using the mean amax, omax as the single parameter. Figure 2 shows an 
exceedance probability distribution plot for measured values together with the Rayleigh 
exceedance probability for H\/w in the range 3.5 to 4.5 m. Figure 3 shows the range 
4.5 to 5.5 m. The distribution of maximum stress for other ranges of wave height were 
similarly represented by a Rayleigh distribution of 'amax- 

Figure 4 shows a plot of ~omax computed from measured data vs. the -ffiym bin 
used for the computation. The best fit linear correlation coefficient is 0.976. The best 
fit linear line passing through the origin has a slope within 10% of the best fit line. 
Assuming a zero intercept constraint based on physics the slope is defined as ks, the 
wave stress constant, such that 

"moi = «» "l/10 

Note that since both a and II ideally scale by length, ks should be model scale 
invariant. A non-dimensionalized form of ks can be given by 

O-rnax _  ^#1/10 

hg{p - pw) h 

where h is the dolosse length, p is the dolos density, pw is the density of water, and 
g is the acceleration of gravity. 

4     Comparison to Physical Model Measurements 

The results from the prototype data indicate that the wave induced stresses for an 
individual dolos may vary due to many factors. The variation results from the random 
boundary conditions and random nature of the waves. However, the empirical analysis 
presented above indicates that for a population of dolosse, the statistical description of 
the response may be well defined, at least for the case of a site specific prototype break- 
water. This possibility has potential for simplifying the use of a hydraulic breakwater 
model to estimate wave induced stresses on armor units. 

Two problems have limited the use of hydraulic models for this task. First the 
development and verification of a model dolos unit which accurately measures stresses 
at small scale has required considerable effort due to the very small strains which must 
be measured. Second, the best method of applying the model scale measurements to the 
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The average of the highest one-tenth stress by experiment = 23.52 
The average of the highest one-tenth stress by Rayleigh = 25.68 

Figure 2: Cumulative Exceedance Probability of amax for -ffi/io = 3.5 — 4.5m 
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The average of the highest one-tenth atresa by experiment =  32.92 
The average of the highest one-tenth stress by Rayleigh = 36.01 
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Figure 3: Cumulative Exceedance Probability of amax f°r #1/10 = 4.5 — 5.5 m 
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Figure 4: amaxvs.H1/i0. The dashed line is the best line through the origin and the 
solid line is the best fit line. 
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Figure 5: Scatter Plot of cmax from the model test of Crescent City breakwater. The 
mean values for each bin are shown along with the corresponding prototype values. 
(Markle, 1990). 

prototype has not been determined. Stresses measured for a dolos in the model, may 
not be applicable to units placed in different positions during prototype construction. 

It was therefore proposed that intercomparison of model and prototype be made 
based on the empirical parameter ks rather than deterministic comparison of the 
stresses from individual units. To test the validity of this approach a physical model of 
the as built Crescent City Breakwater was constructed and tested with instrumented 
model dolos armor units at CERC by Markle (1990). 

The model was exposed to the same storms as used for the above analysis of proto- 
type data. Data from the model were analyzed using the same procedure as described 
above. Figure 5 shows a scatter plot of amax from the model along with the amax val- 
ues from the prototype. The Wmax values from the model data exhibit good agreement 
with the prototype values. Figure 6 shows an exceedance probability distribution plot 
for measured values together with the Rayleigh exceedance probability for #i/io in the 
range 5 to 6m. It can be seen that like the prototype, the model data are well described 
by the Rayleigh distribution. 

5    RESULT 

These results suggest that a physical model can be used to measure wave induced 
stresses without considering boundary conditions of units in a deterministic way. Also 
if the linear relationship between ks and Hy/10 

is confirmed by additional tests, it may 
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Figure 6: Cumulative Exceedance Probability of amax from the model tests for Hyi10 — 
5-6 m. (Markle, 1990) 

be possible to limit tests in the future to the minimum required to estimate a linear 
function with zero intercept. 

If for a given breakwater model, ks can be determined by measurements from model' 
dolosse for a range of dolos boundary conditions and wave heights, then a amax can be 
determined for the wave load portion by substitution into the Rayleigh p.d.f. to obtain 

\j -lnP(omax)k,sHxii = 1.13 

where the designer specifies P{umax) the probability of exceedance. This amax can 
then be combined with the static stress design value for input into the structural design 
process. 
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