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Abstract
We propose a new algorithm in the two-sided marriage market wherein both sides
of the market propose in each round. The algorithm always yields a stable matching.
Moreover, the outcome is a Rawlsian stablematching if the number ofmen andwomen
is equal. Lastly, the algorithmcanbe computed in polynomial time and, fromapractical
standpoint, can be used in markets where fairness considerations are important.

Keywords Two-sided matching · Fair procedure · Deferred acceptance algorithm

Mathematics Subject Classification C72 · C78 · D41

1 Introduction

In a classical two-sided marriage market, the celebrated Deferred Acceptance Algo-
rithm (DAA henceforth) due to Gale and Shapley (1962) proved that there always
exists a stable matching—amatching for which no man-woman pair would leave their
current partner to match with each other. DAA is a simple iterative algorithm in which
one side of the market proposes to the other. The DAA is strategy-proof for the propos-
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ing side, and in environments like school choice, the student-proposing mechanism
Pareto-dominates all other stable matching(s). However, the asymmetry in propos-
als, whereby one side proposes while the other can only passively accept or reject,
translates into an asymmetry of outcomes—the resulting stable matching is the most
favorable stable outcome for the proposing side. This property can be problematic in
markets where fairness considerations are important. This can be said for allocation
mechanisms that go from task allocation platforms to dating apps. As (Knuth 1997)
suggests:

The different algorithms considered until now favor men, and if we interchange
the roles of men and women, they would become favorable to women. Such
injustice is too shocking for the present day. Can we, therefore, find a solution
that treats both sexes fairly?

Notwithstanding the unfairness embedded in the DAA, one of its appeals is its
simplicity. This raises a natural question: can we devise a simple iterative algorithm
in which both sides of the market make proposals, and the resulting outcome is stable
but, hopefully, non-extremal?

To this end, we propose an algorithm in which both sides propose in each round
and generates a stable matching. There are three reasons why we view our algorithm
as an attractive alternative. First, the algorithm is “procedurally fair”—it treats both
sides of the market equally [see (Klaus and Klijn 2006) e.g.]. Second, in markets with
an equal number of men and women where people prefer being matched to someone
over remaining single, it produces a Rawlsian stable matching—a stable matching
with minimum regret.1 In fact, even if the number of men and women is unequal, the
outcome of our matching is Rawlsian in “regular markets.” A market is regular if,
for every unstable matching, we can find at least one blocking pair such that both the
agents of this blocking pair are matched to someone in any stable matching. While
this requirement may be harder to verify, it is only a sufficient condition for obtaining
a Rawlsian matching.

Third, the algorithm is computationally efficient—i.e., it can be run in polynomial
time. The main contribution of the paper is to provide a procedurally fair algorithm
with the iterative nature of DAA to produce a stable matching while allowing both
sides of the market to make proposals.

It is well-known that in markets with even a slight imbalance between the number
of men and women, there is essentially a unique stable matching (Ashlagi et al. 2017)
if the market is sufficiently large. Therefore, given any sufficiently large market, our
algorithmproduces aRawlsian stablematchingwith probability close to one regardless
of whether the market is regular or not.2

1 Regret of a matching is defined as the highest regret of a matched agent in a given matching. Notice that,
in defining the Rawlsian criterion, we focus only on the set of matched agents. We argue that this is a more
reasonable definition of the Rawlsian criterion since the set of matched agents is the same across every
stable matching (Roth and Sotomayor 1990). This concept coincides with the minimum regret matching
proposed by Stant Selkow (Knuth 1976).
2 Of course, any algorithm that produces a stablematchingwould trivially obtain aRawlsian stablematching
with probability close to 1 in large markets with an unequal number of men and women, due to uniqueness
of a stable matching in such markets. However, the outcomes can be extremal matchings depending on
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1.1 Related literature

We are, obviously, not the first ones to address the asymmetry in DAA,wherein it picks
the extreme points of the set of stable matchings depending on who the proposing
side is. There are, primarily, two approaches to this problem. First is the idea of
procedural fairness proposed by Klaus and Klijn (2006). They discuss how well-
known randomized procedures such as Employment by Lotto proposed by Aldershof
et al. (1999), or Random Order Mechanism by Ma (1996), that is based on (Roth and
Vate 1990), achieve ex-ante fairness. While our algorithm is also procedurally fair in
the sense of Klaus and Klijn (2006), a key distinction between the earlier procedures
and the one we propose is the nature of the algorithm itself; that is, due to both sides
proposing in every round, the outcomes tend to be at the center of the stablematchings’
lattice rather than at the extremes (Example 4). This is also bolstered by the fact that
our algorithm picks one of the Rawlsian stable matchings in regular markets, unlike
these algorithms.

The second approach regarding fairness is based on the outcomes. For example,
Gusfield (1987) provides a polynomial time algorithm to compute a Rawlsian stable
matching in markets with an equal number of men and women.We do not impose such
a requirement. Also (Knuth 1976) presents two algorithms to compute Rawlsian (or
minimum regret) matchings by choosing arbitrary pairs. In both cases, the algorithm
resolves to choose an agent at random after a series of non-random instances. None of
the algorithms allowsmen andwomen to propose simultaneously. Our algorithm com-
bines these two approaches by proposing a procedurally fair algorithm that produces
a Rawlsian stable matching in markets studied by Knuth (1976) and Gusfield (1987).
We do this by suitably modifying the DAA’s most appealing feature—simplicity due
to its iterative nature—while allowing both sides to make proposals in each round to
tackle the asymmetry. Also, Romero-Medina (2005) defines an Equitable Set to cap-
ture fairness.3 His proposed procedure is closer to the Random Priority mechanism
due to Ma (1996) as he takes as primitive a random ordering over agents while we
require no such order. Also, Masarani and Gokturk (1989) show the impossibilities of
obtaining a fair stable matching, based on a Rawlsian notion of fairness. This would
seem to contradict our algorithm. However, in their paper, the Rawlsian criterion is
defined over the set of all the matchings, not just stable matchings.

In a contemporaneous paper, Dworczak (2021) proposes an iterative algorithm,
Deferred Acceptance with Compensation Chains (DACC), in which both men and
women make proposals. While similar in motivation, the key difference from our
algorithm is that his procedure makes the agents propose in a pre-determined order (as
opposed to simultaneously in our algorithm). Moreover, by varying the initial order,

the algorithm when the number of men and women is equal. In contrast, our algorithm would produce
a Rawlsian stable matching in such cases. Therefore, the probability that our algorithm does not pick a
Rawlsian stable matching vanishes in large markets for any number of men and women, so long as they are
sufficiently large.
3 The equitable set also focuses on the Rawlsian criterion. The Rawlsian criterion in these papers is defined
over the set of all the agents, unlike ours. This seemingly minor distinction is important in markets where
merely one agent can render all the matchings equally “unfair” according to his criterion. Lastly, whether
this algorithm can be executed in polynomial time is unclear. See (Romero-Medina 2001) as well for another
related algorithm.
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DACC can obtain all the stable matchings, while, in general, we obtain a strict subset
of stable matchings.

Ma (1996) proposes a procedure wherein we start with a Random Priority over
agents. Following the priority, we start with an empty match and add agents one by
one to thematching, satisfying all the blocking pairswithin thematch. That is, blocking
pairs outside the agents not added so far are ignored. While this procedure does not
distinguish between sexes, it can result in situations where, even in markets with an
equal number of men and women, it can select only the extremal stable matchings
while not selecting the Rawlsian ones. In contrast, in such markets, our algorithm will
pick a strict subset of stable matchings that do not involve any extremal matchings if
the Rawlsian matching(s) are non-extremal (See Sect. 4.1).

Using another approach, Teo and Sethuraman (1998) and Sethuraman et al. (2006)
establish the existence of the median stable matching(s), which is appealing from a
fairness perspective. However, the main issue with median stable matching is that, if
it can be computed efficiently, then computing the number of stable matchings can
also be done efficiently; and the latter is known to be a computationally hard problem
(Cheng 2010).

Cheng et al. (2011) propose a concept of Center Stable Matchings that are stable
matchings whose maximum distance to any stable matching is as small as possible.
These matchings are close to median stable matchings and can also be computed
efficiently. However, primarily median stable matchings or center stable matchings
are fair due to the properties of the stable matchings themselves. Our approach to
fairness through the proposed algorithm focuses on the procedural fairness of the
mechanism itself. In that sense, our algorithm is more like the mechanism due to (Ma
1996).

For the problem of school choice, when schools carry out their matching inde-
pendently, Manjunath and Turhan (2016) propose a new mechanism to avoid wasted
seats: a Matching and Rematching mechanism that yields a solution different from
the two extremes. The outcome of their mechanism requires the coordination of the
different school districts. The outcome need not be a stable matching and depends
on the number of iterations for which the procedure is executed. Moreover, it is also
not gender-neutral. Finally, the outcomes of algorithms such as one due to (Ma 1996)
or Manjunath and Turhan (2016), when applied to all possible orders or partitions of
agents, do not coincide with all the possible matchings that our algorithm generates.

The paper is organized as follows. Section2 introduces the model and notation.
Section3 presents our algorithm and main results. Section4 presents examples of
the algorithm. Section5 presents results on computational complexity, and Sect. 6
concludes.

2 Model

Let M and W denote two finite sets of men and women. Let A := M ∪ W stand
for the set of all agents. A generic agent in M(W ) will be denoted by m(w). When
the distinction is immaterial, we will denote an agent by i . Let O(i) = W ∪ {i} if
i ∈ M and O(i) = M ∪ {i} if i ∈ W ; denote the opposite side for agent i . Let
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N := max{|M |, |W |}. For the sake of presentation, we assume that |M | = |W | and
j �i i for all j ∈ O(i)\{i} and for all i . That is, any agent prefers being matched to
someone over remaining single.4

Each agent i ∈ A is endowed with a preference relation, �i over O(i). �i is a
binary relation that is complete, reflexive, transitive, and antisymmetric (strict).

� denotes the strict part of �. Finally, �:= (�i )i∈A is called a preference profile.
An instance of a marriage market is a tuple (M,W , (�i )i∈A).

A bijection μ : A → A is called a matching if μ(i) ∈ O(i) for all i ∈ A, and
μ(i) = j �⇒ μ( j) = i .M denotes the set of all possible matchings. Also,μ(i) = i
means that i is single or unmatched. Say that a matchingμ ∈ M is individual rational
if μ(i) 	= i �⇒ ¬(i �i μ(i)) for all i . We define the following notions of stability.

Definition 1 Amatchingμ is stable if it is individually rational and there is no (m, w) ∈
M × W , such that w �m μ(m) and m �w μ(w). If such a (m, w) exists, then we say
that (m, w) is a “blocking pair” for μ.

As it is well known, Gale and Shapley (1962) shows that a stable matching exists
using the DAA. The set of stable matchings is a complete lattice.5 In particular,
the men- (women)-proposing DAA produces the stable matching most preferred by
men (women). Roughly, in a men-proposing DAA, men propose in each round, and
women can choose only from the men who propose to them. This passive role played
by women, where they cannot initiate proposals themselves, leads to an extreme
outcome—men-proposing DAA selects the stable matching most preferred by men.
However, given the appeal of the DAA—a simple iterative procedure that produces
a stable matching—the natural question that motivates us is the following: Can we
have an iterative algorithm, along the lines of the DAA, in which both sides propose
in each round and we obtain something non-extremal?6 With this motivation, we pro-
vide an algorithm in which both sides propose in each round and the result is a stable
matching—a “Rawlsian” one.

A few simple definitions will be useful in presenting the algorithm. First, let us
define the regret of agent j 	= i for agent i to mean the position that j occupies in i ′s
preference ordering. Formally, ρi ( j) := |{k : k �i j}|. The reason to call this regret
is that ρi ( j) > ρi (k) �⇒ k �i j . We will sometimes refer to ρi ( j) as the rank of
agent j in i ′s preference list.
Definition 2 For any k ∈ N, k−truncated preferences of �, denoted by �k , are pref-
erences with the following two properties:

1. For each i ∈ A and j, l 	= i such that max{ρi ( j), ρi (l)} ≤ k, j �i l ⇔ j �k
i l.

2. For each i ∈ A and j 	= i such that ρi ( j) > k, i �k
i j .

For a matching μ, we say that (m, w) is a “�k blocking pair” if w �k
m μ(m) and

m �k
w μ(w).

4 Our algorithm produces a stable matching even if we relax these two. We need an additional condition
specified after Theorem 1 to obtain a Rawlsian stable matching.
5 To be precise, it is a complete lattice under two natural orders: �M and �W . We say that μ �M μ′ iff
μ 	= μ′ and μ(m) �m μ′(m) for all m ∈ M . We define �W similarly. See (Roth and Sotomayor 1990) for
more details.
6 As mentioned in Sect. 1.1, several papers address a similar question.
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Table 1 Preferences for
Example 1

�m1 �m2 �m3 �m4 �w1 �w2 �w3 �w4

w1 w2 w3 w4 m2 m3 m4 m1

w2 w3 w4 w1 m3 m4 m1 m2

w3 w4 w1 w2 m4 m1 m2 m3

w4 w1 w2 w3 m1 m2 m3 m4

Simply speaking, �k is a truncation of � that looks only at the top k agents for each
i ∈ A.

Now, we define a k−stable matching and a k−stable submatching.

Definition 3 Say that an individually rational matching μ ∈ M is “k − stable” if it is
a stable matching with respect to �k . Also, say that a matching μ ∈ M is “k−stable
with active agents in V ⊂ A”, if, for every �k blocking pair (m, w) of μ, {m, w} 	⊂ V

Definition 4 Given an individually rational matchingμ and a number k ∈ N, such that
μ(i) 	= i �⇒ ρi (μ(i)) ≤ k, μ′ is called “a submatching” of μ if, μ′(i) 	= i �⇒
μ′(i) = μ(i). μ′ is called k−stable submatching of μ with active agents in V ⊂ A, if
μ′ is a submatching of μ that is k−stable with active agents in V .

3 The algorithm

A broad overview of our algorithm is as follows. In any Round k, we start with an
existing match. Agents propose to either their top k agents if they are unmatched,
or to those sets of agents weakly better than their current match. Based on these
proposals, for each agent, we compute the set of mutually proposing agents—the set
to whom (s)he proposes and from which (s)he also receives a proposal. Using these,
we construct a graph with nodes as agents and edges given by each agent, pointing to
his/her top mutually proposing agent. This graph contains cycles. We form a tentative
match by randomly breaking these cycles in favor of men or women, and we remove
those sets of agents to redraw the graph. Once the graph is empty, we check whether
the tentative match is stable with respect to the truncated (top k agents) preferences.
If yes, we move to the next round; and otherwise, we construct a stable (with respect
to the truncated preferences) matching before proceeding to the next round. We stop
the algorithm if, at any point, the tentative matching is stable.

3.1 An example

Example 1 Below is a simple example of a market in which one could expect to obtain
an outcome different than the DAA outcome should the two sides be allowed to make
proposals in each round (Table 1). �

The DAA outcomes are:

{(m1, w1), (m2, w2), (m3, w3), (m4, w4)} and {(m1, w4), (m2, w1), (m3, w2), (m4, w3)}.
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Imagine a procedure whereby the agents from both sides of the market make pro-
posals to a set of agents in every round. If there is no agent to whom they are proposing
and who is also proposing to them, then they expand their proposing to set of agents
in the following round. They start by proposing to the top agent according to their
preferences and then expand the set of agents they propose to progressively.

In the first round, all the agents propose to their top choice, and no pair of agents
is “mutually proposing.” For example, m1 proposes to w1, while w1 proposes to m2,
and so on. In the following round, for example, m1 proposes to w1 and w2. However,
w1 proposes to m2 and m3, while w2 proposes to m3 and m4. It is easy to see that
there are no two agents who propose to each other in this round, either.

Let us move to round 3. Consider agentm1. He proposes tow1,w2 andw3. Observe
that w2 proposes to m3, m4 and m1, while w3 proposes to m4, m1 and m2. That is,
m1 is interested in being matched with two agents who are also interested in being
matched with m1. Those two agents are w2 and w3. m1 would prefer being matched
to w2 over w3. But observe that w2 also has two mutually proposing agents (m1 and
m4), and she prefers m4 over m1. Continuing this way, if we look at the top agent for
each person from the list of their mutually acceptable agents in this round, we obtain
a cycle as below.

m1 → w2 → m4 → w1 → m3 → w4 → m2 → w3 → m1

The outcome depends on breaking this cycle in favor of either the men or the
women; we obtain the following two matches respectively:

{(m1, w2), (m2, w3), (m3, w4), (m4, w1)} or {(m1, w3), (m2, w4), (m3, w1), (m4, w2)}

The algorithm we propose makes this simple idea from the above example formal
and solves a complicated cycling problem that can often arise in markets with arbitrary
preferences. However, at the core, the motivation and the essence are embodied in this
simple example.

3.2 ProcedureH

We now begin a formal description of our algorithm. To this end, we first describe
a procedure H that forms an important ingredient of the algorithm, and then we will
describe the RO mechanism due to Ma (1996).

Given an arbitrary matching μ, a subset of agents V ⊂ A, and a number k ∈ N,
define, for each i ∈ V ,

Si,V ,k :={ j ∈ V : ρi ( j) ≤ k, j �i μ(i)}
Ti,V ,k :={ j ∈ V : j ∈ Si,V ,k, i ∈ S j,V ,k}.

As we shall see in the description of the algorithm, Si,V ,k is the set of agents from
set V that agent i proposes to in round k, and Ti,V ,k is the set of mutually proposing
agents for i . That is, these are agents from set V that i proposes to and also receives
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a proposal from. For each i ∈ V such that Ti,V ,k 	= ∅, define,

αi,V ,k := { j : j �i j ′,∀ j, j ′ ∈ Ti,V ,k, j
′ 	= j}.

In words, αi,V ,k is the most preferred agent of i who also proposes to i . Since the
preferences are strict, αi,V ,k is a singleton.
We will use some simple graphs in H. To this end, suppose that we have a directed
bipartite graph G = (V , E) with the following properties:

(i) V ⊂ A is the set of nodes, and E is the set of directed edges, such that if
(i, j) ∈ E , then exactly one of (i, j) is a man and the other is a woman.

(ii) (i, j) ∈ E if and only if j = αi,V ,k . That is, j is i ′smost preferred agent amongst
those who also propose to i . Notice that, if i has an incoming edge, it means
that the set of agents that propose to i , and i proposes to them is nonempty.
Since the preferences are strict, there is a unique most preferred agent from this
set according to i . Therefore, the outdegree (number of outgoing edges) of i is
exactly 1.

First, we claim that such a graph will contain disjoint cycles if E is nonempty. To
see why there will be disjoint cycles if E is nonempty, start with some node, say m1,
with an outgoing edge to w1. Since w1 must have exactly one outgoing edge, we have
found a cycle if it is m1. Otherwise, let it be m2. Since the number of agents is finite,
we must eventually form a cycle. That the cycles will be disjoint is immediate because
any node has an outdegree of, at most, 1.

Definition 5 Consider a cycle C = {m1 → w1 → m2 → w2 . . . wk → m1} and a
matching μ. We refer to the following operation as: “resolve a cycle in favor of men
given a matching μ.”

Input: μ,C .
Output: μ′.

1. Set μ′ = μ.
2. For each i ∈ C , set μ′(i) = i and μ′(μ(i)) = μ(i). And, for each j such that

μ( j) ∈ C , set μ′( j) = j .
3. For each (m, w) ∈ C such that m → w, set μ′(m) = w,μ′(w) = m. In words, if

there is an edge from m to w, we match m and w.

Similarly, if, for every edge (w,m) in C , if we match m and w, we refer to that as
“resolving a cycle in favor of women given a matching μ.”

For example, given a cycle m1 → w1 → m2 → w2 → m1, we can resolve it in two
ways. We can either match {(m1, w1), (m2, w2)} or {(m1, w2), (m2, w1)}.
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Fig. 1 Example of a graph of H

Now, we describe the procedure H below.

Algorithm 1: Procedure H

input : μ, V , k
output: μ′, V ′

1 initialization: Let μ′ = μ. Draw a graph G = (V , E) where (i, j) ∈ E iff
j = αi,V ,k .

2 if E = ∅, then
3 V ′ = ∅;
4 else
5 for Each cycle C in G, do
6 Resolve C in favor of either men or women with probability 1

2 each.;
7 Let the output matching be μ′ ;
8 V ′ = V ′\C ;
9 end

10 end

Notice that k is not used anywhere in H. However, recall that the graph G is drawn
by computing Si,V ,k and Ti,V ,k for each i . Computing those objects requires a number
k.

Example 2 (Example of procedure H) As a simple example, suppose that, for some
k and an empty matching μ (all agents are single), we obtain the graph in Fig. 1 in
running H(μ, A, k). �

There are two cycles here: (m1 → w1 → m2 → w2 → m1) and (m4 → w4 →
m4). We first unmatch everyone involved in any cycle. Thereafter, we resolve each
cycle randomly in favor of either the men or the women. Regardless of howwe resolve
the cycle involving m4 and w4, we obtain the match μ′(m4) = w4 and μ′(w4) =
m4. For the first cycle, say we resolve it in favor of the women. Then, we obtain,
{(m1, w2), (m2, w1)} as the two new matches in μ′. Finally, since m3 and w3 are not
involved in any cycle, we set V ′ = {m3, w3}.

3.3 The algorithm

We call steps 3–16 above a “Round k.”
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Algorithm 2:Main
input : An instance of a marriage market: M,W , �.
output: A matching.

1 initialization: Set μ(i) = i for all i , and k = 1;
2 while k ≤ N do
3 Set V = A;
4 repeat
5 (μ′, V ′) = H(μ, V , k);
6 μ = μ′, V = V ′;
7 until V = ∅;
8 if μ is k−stable, then
9 k = k + 1 ;

10 else
11 Let μ′ be some k−stable submatching of μ within V = {i : μ′(i) 	= i};
12 μ = RO(μ′, M,W , �k , k). Set V = A, k = k + 1;
13 end
14 if μ is stable, then
15 Terminate with output μ
16 end
17 end

Algorithm 3: The RO mechanism

input : μ′, M,W , �k , k
output: μ

1 Set V = {i : μ′(i) 	= i}, R = A\V ;
2 repeat
3 Pick an agent i ∈ R randomly and set V = V ∪ {i}, R = A\V ;
4 repeat
5 V ′ = V ;
6 (μ′′, V ′) = H(μ′, V ′, k);
7 μ′ = μ′′;
8 until μ′ is k−stable with active agents in V ;
9 until R = ∅;

10 μ = μ′

As we show in Lemma 2 in the appendix, step 12 above is the “Random Order
Mechanism” (RO mechanism henceforth) due to Ma (1996). We use it to generate
a k−stable matching in case the procedure H fails to produce a k−stable matching.
We now describe the RO mechanism in Algorithm 3. The original version of the RO
mechanism starts with an empty matching, and agents are “made active” in random
order. From among the active agents, we form a stable matching. After doing so, we
make the next agent active. In the above algorithm, rather than starting with an empty
matching, we start with a k−stable submatching. Thereafter, we make agents active in
random order and apply H repeatedly to obtain a k−stable matching with an updated
set of active agents.7

7 The original ROmechanism is not stated in terms ofH. However, the procedure described here converges
to produce a k−stable matching, and it is essentially the same as the original RO mechanism illustrated
formally in Lemma 2 in the Appendix.
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3.3.1 Properties of the algorithm

The Algorithm 2 is well-defined and produces a stable matching. In particular, it
produces a Rawlsian stable matching, which we define formally below. For any stable
matching μ, define the regret of a matching μ as

f (μ) := max{ρi (μ(i)) : i ∈ A such that μ(i) 	= i}

f (μ) is the regret of the agent with the maximum regret. Notice that we focus only on
agents who are matched in defining the Rawlsian score. Since the set of single agents
is identical across all stable matchings [Theorem 2.2, (Roth and Sotomayor 1990)],
to consider the well-being of the single agents in comparing two stable matchings is
unappealing. ARawlsian stable matchingμ is a stable matching withminimum regret,
i.e., μ is a Rawlsian stable matching if f (μ) ≤ f (μ′) for all stable matchings μ′.

Theorem 1 For every instance of the stable marriage problem, Algorithm 2 terminates
to produce a stable matching. Moreover, the output is a Rawlsian stable matching.

Proof To prove that the algorithm terminates amounts to proving that steps 4 − 7 in
Algorithm 2 do not cycle for any k. This is proved in Lemma 1 below.

Lemma 1 For every instance of a marriage market, Algorithm 2 reaches Step 8 for
every k. That is, steps 4 − 7 in Algorithm 2 do not cycle for any k ∈ N.

Proof Notice that we start with V = A. If E is empty, then we set V = V ′ = ∅ and
proceed. If not, then any iteration of H resolves all the cycles. Moreover, the output
V ′ is a strict subset of V . Therefore, eventually, we must reach a situation where E is
empty, and therefore, V is empty. Hence, we go to Step 8. ��

If the algorithm terminates with k = N , then we have a stable matching because
N−stablematchings and stablematchings are equivalent by definition. If we terminate
for k < N , then the stopping condition establishes that μ is stable.

Therefore, we need to only prove that μ is a Rawlsian stable. To this end, suppose
that μ is not a Rawlsian stable matching. Thus, ∃ a stable matching μ′ such that
r ′ := f (μ′) < f (μ). Let us consider what happens in Round r ′. Since the algorithm
did not terminate in Round r ′, the output in this round, say μ′′ is r ′−stable but is
not stable. Since μ′ is stable, it is also r ′−stable. The following claim will help us
complete the proof.

Claim 1 There is at least one blocking pair in μ′′, (m, w), such that both m and w are
matched to someone in μ′′.

Proof By Theorem 2.22 of Roth and Sotomayor (1990), the set of agents who are
single is the same across all the stable matchings. Therefore, if we view the truncated
market with preferences given by �r ′

, then we know that the set of matched agents
in μ′ and μ′′ is the same as both are r ′-stable. At the same time, since μ′ is a stable
matching,we also have, from the same theorem, that the set ofmatched agents inμ′ and
any other stable matching is the same. Therefore, the set of matched agents in μ′′—an
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unstable matching—and any other stable matching is the same. Since the number of
men and women is equal, and every agent prefers being matched to remaining single,
all the agents are matched in μ′ and μ′′. Therefore, there is a blocking pair, (m, w),
in μ′′ such that both the agents are matched to someone in μ′′. ��

Consider a blocking pair, (m, w), in μ′′. The fact thatm, w are matched and form a
blocking pair means that ρw(m) ≤ r ′ and ρm(w) ≤ r ′. Therefore, μ′′ is not r ′-stable,
a contradiction. ��

Notice that we used the fact that the number of men and women is equal only in the
last step of the proof. We can, therefore, relax that requirement to define the notion of
a regular market.

Definition 6 For an instance of a marriage market, let S be the set of agents matched
in any stable matching. We say that an instance of a matching market is regular if, for
every unstable matching, there is at least one blocking pair, such that both the agents
of the blocking pair belong to S.

It is easy to see that, if the market is regular, then the outcome is a Rawlsian stable
matching, as the reasoning in Claim 1 shows.

While the condition of regular market in Definition 6 may be hard to verify at
times, it is only a sufficient condition for obtaining a Rawlsian matching. Moreover,
as mentioned in the Introduction, large markets with unequal numbers of men and
women essentially have a unique stable matching as shown by Ashlagi et al. (2017).
Discussion: Intuitively, ours is a greedy algorithm: it produces a k−stable submatching
for each k, and k is incremented if the outcome is unstable with respect to the original
preferences. This is also the reason why it produces a Rawlsian stable matching. A
readermaywonder, then, if the sole goal is to produce aRawlsian stablematching, why
not simply run a DAA for each k instead of our algorithm, which is ostensibly more
complicated.8 There may, indeed, be several ways to produce a k−stable submatching
if the goalwere to obtain aRawlsian stablematching thisway.However, themotivation
of our exercise was to construct a “DAA-like” procedure wherein both sides of the
market propose in each round. This was, in part, motivated by the remark due to
Knuth (1997) mentioned in the introduction. Apriori, it is unclear how one can devise
such a procedure and ensure that it does not cycle.We show that this is, indeed, feasible.
As a byproduct, we obtain that the outcome is a Rawlsian stable matching.

4 Some examples

Example 3 Here is a slightly more complicated example than Example 1 (Table 2). �

Notice that m4 and w1 appear as each other’s top preference. Therefore, they will
be matched in the first round, and that match will never be broken. We will, therefore,
exclude them in writing the Si,V ,k’s and the Ti,V ,k’s for each round.

Round 1 In the first round,

8 We thank an anonymous referee for this suggestion.
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Table 2 Preferences �m1 �m2 �m3 �m4 �w1 �w2 �w3 �w4

w2 w3 w1 w1 m4 m3 m4 m3

w3 w4 w3 w4 m1 m4 m1 m2

w1 w1 w4 w2 m3 m1 m2 m4

w4 w2 w2 w3 m2 m2 m3 m1

Table 3 Table for Si , Ti and
αi,V ,k for Round 2

Agent Si Ti αi,V ,k

m1 w2, w3 w3 w3

m2 w3, w4 w4 w4

m3 w1, w3

w2 m3,m4

w3 m4,m1 m1 m1

w4 m3,m2 m2 m2

Table 4 Table for Si , Ti and
αi,V ,k for Round 3

Agent Si Ti αi,V ,k

m1 w2, w3 w2, w3 w2

m2 w3, w4 w4

m3 w1, w3, w4 w4 w4

w2 m3,m4,m1 m1 m1

w3 m4,m1 m1

w4 m3,m2 m3,m2 m3

Ti =∅,∀i ∈ {m1,m2,m3, w2, w3, w4} , Tm4 = {w1} , Tw1 = {m4}
and μ = {(m4, w1)} .

At this point, we set k = 2.

Round 2 Let us present a table for Si , Ti and μi for each agent in this round (Table
3).

Therefore, at the end of this round, agentsm3 andw2 are unmatched. The allocation

μ = {(m1, w3), (m2, w4), (m4, w1), (m3,m3), (w2, w2)}

is 2-stable but it is not stable; it can be blocked by (m1, w2). Hence, we proceed to
k = 3.

Round 3 Let us look at a similar table as above in this round (Table 4).
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Table 5 Preferences �m1 �m2 �m3 �m4 �w1 �w2 �w3 �w4

w1 w2 w3 w4 m4 m3 m2 m1

w2 w1 w4 w3 m3 m4 m1 m2

w3 w4 w1 w2 m2 m1 m4 m3

w4 w3 w2 w1 m1 m2 m3 m4

Therefore, at the end of this round, agentsm2 andw3 are unmatched. The allocation

μ = {(m1, w2), (m3, w4), (m4, w1), (m2,m2), (w3, w3)}

is not 3-stable, as it can be blocked by (m2, w3). At this point, we apply the RO
mechanism due to Ma (1996). We start with a 3-stable submatching. Notice that μ is
a 3-stable submatching (of itself, in fact; see Definition 4), as there are no blocking
pairs involving any agent who is matched. Hence, we are now ready to start the RO
mechanism.

We have, V = {m1,m3,m4, w1, w2, w3} in the ROmechanism given in Algorithm
3, and R = {m2, w3}.We pick one agent randomly—say,m2—and set V ′ = V ∪{m2}.
Notice that μ is 3-stable with active agents in V ′. Therefore, H(μ, V ′, 3) produces
μ′ = μ.We go back to Step 3 in the ROmechanism (Algorithm 3). The only remaining
agent is w3. Therefore, we now have V = A. It is easy to check that H(μ, V , 3) =
μ′ := μ∪{(m2, w3)}. This is a 3-stable and a stablematching. Therefore, the algorithm
terminates with the output.

μ = {(m1, w2), (m2, w3), (m3, w4), (m4, w1)}

It can be checked that this is also a Rawlsian matching.

4.1 Difference between the output of Algorithm 2 and themedianmatching and
the ROMechanism

Example 4 The following example is due toKnuth, reproduced in Roth and Sotomayor
(1990) (Table 5).

We enumerate all the stable matchings in Table 6.
The median stable matching of Teo and Sethuraman (1998) is matching either 4 or

7. The RO Mechanism due to Ma (1996) generates any matching except for 4, 5, 6,
and 7. Our algorithm can produce any matching out of 4, 5, 6, and 7.

5 Computational complexity

TheMedian Stable Matching of Teo and Sethuraman (1998) is a very appealing solu-
tion concept when fairness concerns matter. However, computing the median stable
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Table 6 All the stable matchings
w1 w2 w3 w4

1 m1 m2 m3 m4

2 m2 m1 m3 m4

3 m1 m2 m4 m3

4 m2 m1 m4 m3

5 m3 m1 m4 m2

6 m2 m4 m1 m3

7 m3 m4 m1 m2

8 m4 m3 m1 m2

9 m3 m4 m2 m1

10 m4 m3 m2 m1

matching(s) is NP-hard (Cheng 2008). On the other hand, Theorem 2 below shows
that Algorithm 2 can be executed in polynomial time. Therefore, our algorithm is a
practically feasible alternative in markets where fairness considerations are important.

Theorem 2 Algorithm 2 can be executed in polynomial time.

Proof Weneed, atmost, N rounds to end the algorithm. Each round has an execution of
procedureH, potentially N number of times.H involves computing Ti,V ,k to construct
the graphG.Ti,V ,k canbe computed inO(N 3). Following the constructionof the graph,
we need to enumerate the cycles, which is the same as enumerating all the strongly
connected components. This can be done using Tarjan’s algorithm inO(|V | + |E |) =
O(N ). The elimination of cycles can be repeated within a particular execution of
H. Every iteration removes at least two agents by forming a match between them.
Therefore, steps 4 − 7 have a complexity of O(n4). Checking for stability or k-
stability has a O(N 2) complexity. Moreover, if the output is not k-stable, we run the
ROmechanism that uses a k-stable submatching as an input. Such submatching can be
obtained by removing any agent involved in a blocking pair with aO(N 2) complexity.
After that, the RO mechanism can be run in polynomial time as mentioned in Cheng
(2016). ��

6 Conclusion

Motivated by the asymmetry in DAA, we have proposed an alternative algorithm
in the classical two-sided marriage market. The algorithm has the flavor of a DAA
but attempts to correct the asymmetry in the outcomes by allowing both sides of
the market to make proposals. We show that we can still retain the simplicity of
the DAA in constructing such a procedure and obtain a stable matching. More impor-
tantly, allowing both sides to make proposals results in a Rawlsian stable matching—a
well-established criterion of fairness in numerous settings—with certainty in regular
markets, and with probability close to one in large markets. Finally, practical con-
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siderations are paramount when one proposes a new algorithm in these contexts. On
this matter, the fact that the algorithm can be executed in polynomial time makes it
a compelling alternative in markets where the designer considers the fairness of the
procedure and the outcomes as important.
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Appendix

A Proof of the ROMechanism

Claim 2 If μ is k−stable with active agents in V , then the graph of H(μ, V , k) has
the following properties.

1. Any agent with μ(i) 	= i is involved in a cycle of length two, i → μ(i) → i . And,
2. Any agent with μ(i) = i has an outdegree of 0.

Proof Consider any agent i such that μ(i) 	= i . Then, μ(i) ∈ Ti,V ,k . If αi,V ,k 	= μ(i),
then ∃ j such that j �k

i μ(i) and i �k
j μ( j). Therefore, (i, j) is a �k blocking pair.

Therefore, μ is not k−stable, a contradiction. Therefore, i → μ(i) → i in the graph
of H(μ, V , k).

For any agent i such that μ(i) = i , if Ti,V ,k 	= ∅, then ∃ j such that j �k
i i and

i �k
j μ( j). But then, (i, j) constitute a �k blocking pair for μ, i.e., μ is not k−stable;

a contradiction.
��

Lemma 2 Algorithm 3 produces a k−stable matching.

Proof Consider a matching μ′ that is k−stable with to active agents in V . Consider
some man, wlog, m ∈ R := A\V . Then, in step 7 of Algorithm 3, we draw a graph G
with notes V ′ := V ∪ {m}, and edges as described in map H. We have the following
three cases in the structure of this graph, denoted by G = (V ′, E).

Case 1. Tm,V ′,k = ∅.
Case 2. Tm,V ′,k 	= ∅, and (m, w), (w,m) ∈ E such that μ′(w) = w.
Case 3. Tm,V ′,k 	= ∅ and (m, w), (w,m) ∈ E with μ′(w) = m′ ∈ M .

The reason why we can have at most these three cases follows from Claim 2 which
says that the graph of H(μ′, V , k) contains only two cycles of the matched agents
in μ′. If Tm,V ′,k 	= ∅, then m has an outdegree of 1. Moreover, if (m, w) ∈ E , then
m �w μ′(w). Since μ′ was k− stable with active agents in V , �i ∈ V such that
i �w μ′(w). Therefore, (w,m) ∈ E .
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In Case 1, we obtain μ′′ = μ′ that is k−stable, and hence we reach step 8 of
Algorithm 3.

In Case 2, we obtain μ′′ = μ′ ∪ {(m, w)}. Moreover, μ′′ is k−stable. If not, a
blocking pair must involvem. Let (m, w′) be such a blocking pair. But then,w′ �m w.
Therefore, (m, w) /∈ E , a contradiction.

In Case 3, m displaces some m′ that was matched in μ′. The difference between μ′
and μ′′ is the following:
1. m′ is single in μ′′ while he is matched in μ′.
2. (m, μ′(m′)) are matched in μ′′.
If μ′′ is k−stable, we reach step 8.

Claim 3 μ′′ is k−stable with active agents in V ′\{m′}.
Proof Suppose there is some blocking pair (m′′, w′′). Suppose that m′′ 	= m. First,
w′′ 	= μ′(m′), as that would mean that m′′ �μ′(m′) m. Therefore, m could not have
matched w′′ with H. If both (m′′, w′′) were single in μ′, then μ′ could not have been
k−stable. If one or both of them were matched to someone in μ′, that match remains
unchanged in μ′′ since w′′ 	= μ′(m′) and m′′ 	= m. Therefore, μ′ could not have
been k−stable with active agents in V . Therefore, any blocking pair in μ′′ with active
agents in V ′\{m′}must involvem. Therefore, w′′ �m μ′(m′) andm �w′′ μ′(w′′). But
then, (m, μ′(m′) /∈ E as m would point to his favorite mutually proposing agent, a
contradiction. ��

Therefore, ifμ′′ is not k− stable with active agents in V ′, the only possible blocking
pairs it can involve contain m′. At this point, the algorithm returns to step 5. We draw
a graph of H(μ′′, V ′, k). Similar to before, the graph has three possible cases with
m replaced by m′. We can continue this way to obtain a sequence μ′ =: μ0, . . . μn ,
each involving one and only man being displaced in the previous match. Every such
operation strictly improves one woman, and, at no point in the sequence does any
woman become worse off. Therefore, this sequence must terminate in finite time. As a
result, μn is k− stable with active agents in V ′, i.e., we reach Step 8. At this point, we
include another agent (if available) from among R = A\V ′. Therefore, when R = ∅,
we obtain a k− stable matching with active agents in A. ��
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