
https://doi.org/10.1177/01655515231188341

Journal of Information Science
﻿1–22
© The Author(s) 2023

Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/01655515231188341
journals.sagepub.com/home/jis

A deep CNN architecture with novel 
pooling layer applied to two Sudanese 
Arabic sentiment data sets

Mustafa Mhamed
School of Information Science and Technology, Northwest University, China; College of Information and Electrical Engineering, China Agricultural 
University, China

Richard Sutcliffe
School of Information Science and Technology, Northwest University, China; School of Computer Science and Electronic Engineering, University of 
Essex, UK

Husam Quteineh
Business and Local Government Data Research Centre, School of CSEE, University of Essex, UK

Xia Sun
School of Information Science and Technology, Northwest University, China

Eiad Almekhlafi
School of Information Science and Technology, Northwest University, China

Ephrem Afele Retta
School of Information Science and Technology, Northwest University, China

Jun Feng
School of Information Science and Technology, Northwest University, China

Abstract
Arabic sentiment analysis has become an important research field in recent years. Initially, work focused on Modern Standard Arabic 
(MSA), which is the most widely used form. Since then, work has been carried out on several different dialects, including Egyptian, 
Levantine and Moroccan. Moreover, a number of data sets have been created to support such work. However, up until now, no 
work has been carried out on Sudanese Arabic, a dialect which has 32 million speakers. In this article, two new public data sets are 
introduced, the two-class Sudanese Sentiment Data set (SudSenti2) and the three-class Sudanese Sentiment Data set (SudSenti3). 
In the preparation phase, we establish a Sudanese stopword list. Furthermore, a convolutional neural network (CNN) architecture, 
Sentiment Convolutional MMA (SCM), is proposed, comprising five CNN layers together with a novel Mean Max Average (MMA) 
pooling layer, to extract the best features. This SCM model is applied to SudSenti2 and SudSenti3 and shown to be superior to the 
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baseline models, with accuracies of 92.25% and 85.23% (Experiments 1 and 2). The performance of MMA is compared with Max, Avg 
and Min and shown to be better on SudSenti2, the Saudi Sentiment Data set and the MSA Hotel Arabic Review Data set by 1.00%, 
0.83% and 0.74%, respectively (Experiment 3). Next, we conduct an ablation study to determine the contribution to performance 
of text normalisation and the Sudanese stopword list (Experiment 4). For normalisation, this makes a difference of 0.43% on two-
class and 0.45% on three-class. For the custom stoplist, the differences are 0.82% and 0.72%, respectively. Finally, the model is 
compared with other deep learning classifiers, including transformer-based language models for Arabic, and shown to be comparable 
for SudSenti2 (Experiment 5).

Keywords
Arabic dialects; Arabic text preprocessing; convolutional neural network; neural networks; pooling layer; sentiment analysis; 
sentiment data set; Sudanese

1. Introduction

Sentiment analysis is an important field because it enables us to discover voices and opinions relating to topics of interest 
in a particular context, for example, views about political issues in elections or opinions about products or ways of provid-
ing services [1]. With the emergence of participatory web services in areas such as education and health, there is a need for 
sentiment analysis in identifying problems and hence upgrading quality standards. Recently, the spread of Arabic content, 
especially on social media, and the application of artificial intelligence and deep learning in analysing Arabic sentiments, 
has led researchers to delve deeper into Arabic text. Initially, this work has been carried out on Modern Standard Arabic 
(MSA). However, more recent work has also been concerned with the regional Arabic dialects that are often used in eve-
ryday informal communications.

The World Arabic Language Dialects map1 indicates 21 Arabic dialects and shows the different regions of the world in 
which they are spoken. This can give us hints about how dialects are related to each other. Table 1 (derived from istizada.
com2) shows the number of speakers for eight of the most important dialects. As can be seen, Sudanese Arabic is the fifth 
most widely spoken dialect, with 32 million speakers. This is why we have concentrated on Sudanese in this work.

There are a significant number of variations between dialects and MSA in terms of language:

•• MSA has a dual form of short vowel, omitted in written text, in addition to the singular and plural vowel forms, for 
masculine and feminine [2]. Dialects often do not create such uniqueness between the sexes; instead they have an 
open system which is more complex than MSA, allowing the prefix and suffix to be attached to a base, and pro-
nouns to function as indirect objects.

In the Arabic language, diacritics3 are not normally used. However, they can be found in certain contexts such as poetry, 
religious texts, including the Quran and Hadiths of the Prophet, and textbooks for teaching Arabic at a beginner’s level.

According to Almekhlafi et al., for example, كتب أحمد can have three meanings in MSA when we apply different dia-

critics:  َُكَتبَ أَحْمدmeans ‘Ahmed wrote’,  َُكُتبُ أَحْمدmeans ‘Ahmed’s books’4 and  َُكُتبَِ أَحْمدmeans ‘Ahmed was written’ [3].

Similarly, Hadj et al. [4] state that diacritics are used in educational and religious literature to clarify ambiguity, modify 
the melody and ensure the correct interpretations.

•• The Arabic language is rich in its vocabulary and due to the common use of some subvocabulary in a particular 
region, these words may make this subvocabulary a characteristic dialect [5]. Moreover, because of the interaction 
between civilisations, some vocabulary from other languages has entered Arabic [6]. For instance, words from 
Spanish and French are used in the Moroccan dialect, while in the Sudanese dialect, some Turkish and English 
words appear. Examples are shown in Table 2.

•• There are differences in the conjugation of verbs, even though the root is retained [7]. For example, in MSA, the 
verb conjugation for the root ع -ب is ل -   but in different Arabic dialects, it can have different forms, for ,يلعب 
example, بلعب - بيلعب – يلعب. 

                                                         
[8]

During the spread of Arabic, different regions had their own spoken languages (e.g. Berber in North Africa and Coptic 
in Egypt and Sudan). When Arabic was introduced to these regions, most of the original languages fused with it, creating 
different dialects. Over the centuries, each of these communities underwent different transitions as they were exposed to 
different linguistic influences [9].
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Sudanese vocabulary is mostly inspired by MSA, but with important Greek, Turkish and English modifications to the 
phonology. The morphology of Sudanese words shares many features with MSA, but the method of dialectical inflexion 
is more complicated than MSA in some respects [8].

Table 3 illustrates the differences between MSA and Sudanese dialect by means of some examples.
First, MSA ‘اليوم’ (‘today’) corresponds to Sudanese ‘الليلة’ (literally ‘night’). Even though the word is derived from 

‘night’ in MSA, it nevertheless means ‘day’ in Sudanese. Here, the word meaning is completely reversed. Second, ‘room’ 
in MSA is ‘الغرفة’ while in Sudanese, it is ‘الأوضة’. Many such nouns are expressed differently. Another example is the 
names of popular foods and beverages, such as ‘coffee’ (MSA ‘قهوة’ and Sudanese ‘جبنة’). Verbs can also differ; the verb 
‘find’ in MSA is ‘تجد’ while in Sudanese, it is ‘تشوف’. Generally, we can see many differences in vocabulary as well as 
variations in grammar and means of expression.

Following a thorough study of such dialect differences, we have created two data sets based on social media posts, built 
a convolutional neural network (CNN)–based model for sentiment analysis and applied it to the data sets (Figure 1). The 
main contributions of this work are as follows:

•• We create a two-class Sudanese sentiment data set (SudSenti2) from Facebook and YouTube.
•• We build a three-class Sudanese sentiment data set (SudSenti3) from Twitter.
•• We design a Sudanese stopword list and use it for text normalisation in the preprocessing phase.
•• We offer free access to the data sets and analyses.5

•• We propose a model called Sentiment Convolutional MMA (SCM) which is a five-layer CNN incorporating our 
Mean Max Average (MMA) pooling layer.

Table 1.  Dialects of Arabic (derived from istizada.com).

Dialect Areas spoken Number of speakers

Egyptian Egypt 64,500,000
Gulf Bahrain, Kuwait, Oman, Qatar, Saudi 

Arabia, UAE
36,056,000

Sudanese Sudan, Southern Egypt 31,940,300
Hassaniya Mauritania, southern Morocco, south 

western Algeria, Western Sahara
8,842,800

Levantine Lebanon, Jordan, Palestine, Syria 36,188,500
Maghrebi Algeria, Libya, Morocco, Tunisia 32,608,700
Mesopotamian/Iraqi Iraq, eastern Syria 15,655,900
Yemeni Yemen, Somalia, Djibouti, southern Saudi 

Arabia
14,360,000

UAE: the United Arab Emirates.

Table 2.  Dialect variation (based on Oueslati et al. [10] with Sudanese additions).

MSA word Dialectical word Arabizi Country English equivalent

حلو/جميل
Jameel

حلو 7elew Lebanon Nice

حلو 7ilew Saudi

حلو 7low/hlow Tunisia

سمح Samh Sudan

جدآ
Jiddan

كتير ktir Lebanon A lot, too much

وايد wayed Emirate

أوي 2awi Egypt

كيتير kityer Sudan

برشا barcha Tunisia

دراجة
Darraja

بسكلات besklet Tunisia Bicycle

درافة darraga Egypt

عجلة Ajala Sudan

MSA: Modern Standard Arabic.
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•• We apply SCM to SudSenti2 and Sudesenti3, as well as to existing MSA and Saudi data sets, with good results.
•• We compare the proposed MMA pooling layer to the standard pooling layer used in other works and show that it 

gives the best performance.
•• We carry out an ablation study to demonstrate the effect of using text normalisation and the Sudanese stopword list.
•• We compare SCM with other machine learning (ML), deep learning methods and Arabic transformer models such 

as ARBERT and MARBERT. SCM gives a high classification performance.
•• Finally, we fine tune the best-performing transformer, MARBERT, with our hyperparameters, resulting in enhanced 

accuracy.

This article is organised as follows. Section 2 reviews previous work on sentiment analysis for Arabic. Section 3 
describes the creation of the SudSenti2 and SudSenti3 data sets. Section 4 outlines the proposed model architecture. 
Section 5 presents our experiments, including preprocessing steps, experimental settings, baselines, results and discus-
sion. Finally, section 6 draws conclusions and suggests future work.

2. Related work

As we have mentioned, the Arabic language is very widespread in the world and is spoken in many dialects. Some of these 
have already been the subject of sentiment analysis research (Table 4). Here, we discuss which dialects have been studied, 
what data sets were used and what sentiment analysis techniques were adopted (for a recent review of Arabic sentiment 
analysis, please also refer to Alharbi et al. [11]).

Tabii et al. [14] used Naїve Bayes (NB), Maximum Entropy (ME) and Support Vector Machines (SVMs) on two 
data sets, the Moroccan Sentiment Analysis Corpus (MSAC) [25], comprising tweets from Twitter and comments from 

Table 3.  Examples of differences between MSA and the Sudanese dialect.

English language Standard Arabic Sudanese dialect

Be careful today don’t go out of the 
room.

كن حذراً اليوم لا تخرج من الغرفة . اعمل حسابك الليلة ما تطلع من الأوضه .

Keep going down this road until you find 
a pharmacy.

يق حتي تجد صيدلية . إستمر في السير في هذا الطر أمشي دوغري لغاية تشوف اجزخانة .

Quit drinking too much coffee because it 
is not good for your health.

اترك شرب ا�لكثير من القهوة لأنها غير مفيدة لصحتك . سيب الجبنة ا�لكتيرة ما كويسة لجسمك .

MSA: Modern Standard Arabic.

Table 4.  Previous work on sentiment analysis for different Arabic dialects.

Paper Arabic dialect Split Model Result

Alwehaibi and Roy [12] Saudi (2C) 80 + 20 LSTM-RNN 93.5%
Alahmary and Al-Dossari [13] Saudi (3C) 90 + 10 CNN 86.54%
Tabii et al. [14] Moroccan (2C) 90 + 10 Majority Voting 83.45%
Lulu and Elnagar [15] Egyptian, Iraqi and Levantine (3C) 80 + 10 + 10 LSTM 71.4%
Al-Saqqa et al. [16] Jordanian (2C) 90 + 10 Ensemble 93.4%
Al Omari et al. [17] Lebanon (2C) 80 + 20 LR 89.80%
Abdelli et al. [18] Algerian (2C) 85 + 15 SVM 0.86%
Mulki et al. [19] Tunisian (2C) 80 + 10 + 10 Deep-LSTM 90.00%
Mulki et al. [19] JEG, TAC and TSAC (2C) 90 + 10 Tw-StAR 82.08%
Abdel-Salam [20] ArSarcasm 70 + 10 + 20 MHLCG 95.5%
Abdul-Mageed et al. [21] Arabic corpus 80 + 10 + 10 Transformer 95.00%
Mhamed et al. [22] Egyptian, MSA (2C)(n-C) 80 + 10 + 10 MC1, MC2 92.96%
Al-shaibani et al. [23] Modern Standard Arabic 85 + 15 BiGRU 94.32%
Addi and Ezzahir [24] Modern Standard Arabic 80 + 20 RF + SMOTE 96.00%

LSTM-RNN: Long-Short Term Memory Recurrent Neural Network; CNN: Convolutional Neural Network; LR: Logistic Regression; SVM: Support 
Vector Machine; Tw-StAR: Tweets-Sentiment Analysis of Arabic; MHLCG: Multi-Headed-LSTM-CNN-GRU; MC1: Multiple Classification 1; MC2: 
Multiple Classification 2; BiGRU: Bidirectional Gated Recurrent Unit; RF + SMOTE: Random Forest + Synthetic Minority Oversampling Technique.



Mhamed et al.	 5

Journal of Information Science, 00(0) 2023, pp. 1–22 © The Author(s), DOI: 10.1177/01655515231188341

Facebook and YouTube. SVM was the best single classifier, measured by accuracy (82.5%). The best ensemble classifier 
combined SVM, NB and ME classifiers with majority voting (83.45%).

Lulu and Elnagar [15] utilised Long-Short Term Memory (LSTM) [26,27], CNNs, Bidirectional Long-Short Term 
Memory (BLSTM) and Convolutional Long-Short Term Memory (CLSTM) on three Arabic data sets, Arabic Online 
Commentary (AOC) [28], Egyptian (EGP), Gulf including Iraqi (GLF) and Levantine (LEV). Results show that LSTM 
attained the highest accuracy (71.4%), followed by CLSTM (71.1%) and BLSTM (70.9%). It can be observed that the 
CNN model suffered from overfitting problems as shown by the difference between the cross-validation and test results.

Al-Saqqa et al. [16] applied NB, SVM, Decision Trees (DTs) and K-Nearest Neighbour (KNN) algorithms on four 
Arabic data sets – Opinion Corpus for Arabic (OCA) [29], MSA, Crawler tweets 2014 data sets [30] and the Large-scale 
Arabic Sentiment Analysis Data set (LABR) [31]. The aim was to determine the emotions of the Arabic text, using meth-
ods based on bigrams and voting combinations. Accuracy was 93.4%, better than the individual classifiers.

Figure 1.  Overall description of work.

Figure 2.  Overall description of data set collection.
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Al Omari et al. [17] used Logistic Regression (LR) with a Term Frequency–Inverted Document Frequency (TF-IDF) 
weighting model for feature extraction, on Arabic Services Reviews in Lebanon (ASRL) collected from Google reviews 
and the Zomato website in the Lebanon dialect. For positive classifications, P = 0.88 and R = 1.00, and for negative, 
P = 0.80 and R = 0.80. Thus, the positive result is better than the negative. Abdelli et al. [18] utilised SVM and LSTM on 
both Modern Arabic and the Algerian dialect [32]. The results for SVM and LSTM on the Algerian data set were 86% and 
81%, respectively.

Alwehaibi and Roy [12] applied a Long-Short Term Memory Recurrent Neural Network (RNN) (LSTM-RNN) on the 
AraSenTi data set which comprises tweets written in MSA and Saudi dialect, manually annotated for Sentiment. Arabic 
word embeddings used Word2Vec, GloVe and Fasttext [33]. The LSTM-RNN model achieved 93.5% accuracy.

Alahmary and Al-Dossari [13] built another Saudi corpus, this time with three classes, produced using a semi-auto-
matic annotation method starting with NB, followed by hand correction. They then applied SVM, LSTM, BLSTM and 
CNN classifiers. The highest performance was CNN (86.54%).

Jerbi et al. [34] used RNN, LSTM, BLSTM and Deep-LSTM [35] on the Tunisian Sentiment Analysis Corpus 
(TSAC). Deep-LSTM had the highest accuracy (90.00%). Mulki et al. [19] experimented with the effect of Named Entity 
Recognition (NER), using SVM and NB on four Arabic data sets, Jordanian Egyptian Gulf (JEG), Tunisian Arabic Corpus 
(TAC), Tunisian Election Corpus (TEC) [36] and TSAC [37]. The highest accuracy recorded was on TSAC (82.8%).

Abdel-Salam [20] applied Multi-headed-LSTM-CNN-GRU (MHLCG) and MARBERT on ArSarcasm-v2 [38]. 
Accuracies were 95.5% and 94.4%, respectively. MHLCG was more effective than the MARBERT model based on BERT 
and transformers.

Abdul-Mageed et al. [21] introduced the ARBERT and MARBERT deep bidirectional transformers and applied them 
to various Arabic tasks. Performance on the binary TwitterSaad6 was the best with an accuracy of 95.00%. The Arabic 
sentiment tweets data set (ASTD) (three-class) [39] and Blog Posts Sentiment Corpus (BBN) (three-class) [40] scores 
were 78.00% and 79.00%, respectively.

Mhamed et al. [22] presented a comprehensive new Arabic preprocessing approach, and then designed two architec-
tures, MC1 and MC2. On the difficult ASTD data set [39], for the four-class task, accuracy was 73.17%, on three-class, 
it was 78.62%, and on two-class, it was 90.06%. On the large two-class Arabic Twitter Data For Sentiment (ATDFS) data 
set [41], their model worked effectively, with a performance of 92.96%.

Al-shaibani et al. [23] use an RNN-based approach on a data set of Arabic poems (55,440 verses and 14 m). A five-layer 
Bidirectional Gated Recurrent Unit (BiGRU) gave the best performance (94.32%).

Addi and Ezzahir [24] applied SVM, NB and Random Forest (RF) with two techniques – under-sampling and over-
sampling. They used the Hotel Arabic Reviews Data set (HARD) – Imbalanced [42]. RF with Synthetic Minority 
Oversampling (SMO) gave the best accuracy (96.00%).

Here, we create two Sudanese Arabic sentiment data sets, one two-class and one three-class. After detailed preproc-
essing, we apply the proposed classifier SCM + MMA and compare its performance with ML, NN classifiers and Arabic 
transformers.

3. Data set creation

In this work, two new data sets for Sudanese are proposed. The SudSenti2 was created from Facebook and YouTube 
(Figure 3). The SudSenti3 was created from Twitter posts (Figure 4).

3.1. SudSenti2 data set

The following steps were carried out (Figure 2):

1.	 Texts were collected from Facebook7 and YouTube.8

2.	 All texts matching one of the following queries were downloaded, using the Orange Data Mining software:9  
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Table 8. Counts of words from two Sudanese wordlists which are present in the SudSenti2 and SudSenti3 datasets.

SudSenti2 SudSenti3
Wiki*** Count 52 55
Wiki Total 82 82
Proportion 63.41% 67.07%
Mo3&& Count 132 129
Mo3 Total 248 248
Proportion 53.22% 52.01%

and R = 1.00, and for negative, P = 0.80, and R = 0.80.
Thus the positive result is better than the negative.

Abdelli et al. 3 utilized SVM and LSTM on both
Modern Arabic and the Algerian dialect38. The results
for SVM and LSTM on the Algerian dataset were 86%
and 81% respectively.

Alwehaibi and Roy 17 applied an LSTM Recurrent
Neural Network (RNN) (LSTM-RNN) on the AraSenTi
dataset which comprises tweets written in MSA and
Saudi dialect, manually annotated for Sentiment.
Arabic word embeddings used Word2Vec, GloVe and
Fasttext34. The LSTM-RNN model achieved 93.5%
accuracy.

Alahmary and Al-Dossari 13 built another Saudi
corpus, this time with three classes, produced using a
semi-automatic annotation method starting with Naıve
Bayes followed by hand correction. They then applied
SVM, LSTM, Bi-LSTM, and CNN classifiers. The
highest performance was CNN (86.54%).

Jerbi et al. 28 used RNN, LSTM, Bi-LSTM, and
Deep-LSTM55 on the Tunisian Sentiment Analysis
Corpus (TSAC). Deep-LSTM had the highest accuracy
(90.00%).

Mulki et al. 39 experimented with the effect of Named
Entity Recognition (NER), using SVM, and NB on
four Arabic datasets, Jordanian Egyptian Gulf (JEG),
Tunisian Arabic Corpus (TAC), Tunisian Election
Corpus (TEC)49, and Tunisian Sentiment Analysis
Corpus (TSAC)32. The highest accuracy recorded was
on TSAC (82.8%).

Abdel-Salam 1 applied Multi-headed-LSTM-CNN-
GRU (MHLCG) and MARBERT on ArSarcasm-v222.
Accuracies were 95.5% and 94.4%, respectively. MHLCG
was more effective than the MARBERT model based on
BERT and transformers.

Abdul-Mageed et al. 4 introduced the ARBERT
and MARBERT Deep Bidirectional transformers and
applied them to various Arabic tasks. Performance on
the binary TwitterSaad‖ was the best with an accuracy
of 95.00%. The ASTD (3-class)40 and BBN (3-class)46
scores were 78.00% and 79.00%, respectively.

Mhamed et al. 33 presented a comprehensive new
Arabic preprocessing approach, then designed two
architectures, MC1 and MC2. On the difficult ASTD

dataset40, for the 4-class task, accuracy was 73.17%, on
3-class it was 78.62%, and on 2-class it was 90.06%. On
the large 2-class ATDFS dataset15, their model worked
effectively, with a performance of 92.96%.

Al-shaibani et al. 10 use an RNN-based approach
on a dataset of Arabic poems (55,440 verses and 14
meters). A five-layer Bidirectional Gated Recurrent Unit
(BiGRU) gave the best performance (94.32%).

Addi and Ezzahir 6 applied SVM, NB, and Random
Forest (RF) with two techniques, under-sampling and
over-sampling. They used the Hotel Arabic Reviews
Dataset (HARD) – Imbalanced21. RF with Synthetic
Minority Oversampling (SMO) gave the best accuracy
(96.00%).

Here we create two Sudanese Arabic sentiment
datasets, one 2-class and one 3-class. After detailed pre-
processing, we apply the proposed classifier SCM+MMA
and compare its performance to ML, NN classifiers, and
Arabic transformers.

3 Dataset Creation
In this work, two new datasets for Sudanese are
proposed. The 2-class Sudanese Sentiment Dataset
(SudSenti2) was created from Facebook and YouTube
(Figure 3). The 3-class Sudanese Sentiment Dataset
(SudSenti3) was created from Twitter posts (Figure 4).
3.1 SudSenti2 Dataset
The following steps were carried out (Figure 2):

1. Texts were collected from Facebook∗∗ and
YouTube††.

2. All texts matching one of the following queries
were downloaded, using the Orange Data Mining
software‡‡: غني‘ بلد السودان ’, كعك‘ تقاسم ام التنمية والتطور
في مستقبلا السلام يساعد هل ’, السودان‘ في المختلفة الثقافات تنوع ’.
This resulted in 4,544 matching posts.

∥https://www.kaggle.com/datasets/mksaad/
arabic-sentiment-twitter-corpus
∗∗https://www.facebook.com/SudanLovers/
††https://www.youtube.com/watch?v=h5tBHZZ4UCY&t=1s
‡‡https://orangedatamining.com/

Prepared using TRR.cls

هل يساعد السلام مستقبلا في التطور والتنمية ام تقاسم كعك
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Addi and Ezzahir 6 applied SVM, NB, and Random
Forest (RF) with two techniques, under-sampling and
over-sampling. They used the Hotel Arabic Reviews
Dataset (HARD) – Imbalanced21. RF with Synthetic
Minority Oversampling (SMO) gave the best accuracy
(96.00%).

Here we create two Sudanese Arabic sentiment
datasets, one 2-class and one 3-class. After detailed pre-
processing, we apply the proposed classifier SCM+MMA
and compare its performance to ML, NN classifiers, and
Arabic transformers.

3 Dataset Creation
In this work, two new datasets for Sudanese are
proposed. The 2-class Sudanese Sentiment Dataset
(SudSenti2) was created from Facebook and YouTube
(Figure 3). The 3-class Sudanese Sentiment Dataset
(SudSenti3) was created from Twitter posts (Figure 4).
3.1 SudSenti2 Dataset
The following steps were carried out (Figure 2):

1. Texts were collected from Facebook∗∗ and
YouTube††.

2. All texts matching one of the following queries
were downloaded, using the Orange Data Mining
software‡‡: غني‘ بلد السودان ’, كعك‘ تقاسم ام التنمية والتطور
في مستقبلا السلام يساعد هل ’, السودان‘ في المختلفة الثقافات تنوع ’.
This resulted in 4,544 matching posts.

∥https://www.kaggle.com/datasets/mksaad/
arabic-sentiment-twitter-corpus
∗∗https://www.facebook.com/SudanLovers/
††https://www.youtube.com/watch?v=h5tBHZZ4UCY&t=1s
‡‡https://orangedatamining.com/

Prepared using TRR.cls

 This resulted in 

4544 matching posts.
3.	 Three judges were chosen to classify the posts. All were university teachers who were native speakers of Sudanese 

Arabic. All judges judged all posts.
4.	 Posts which were not considered Sudanese by at least two of the three judges were deleted.
5.	 Each post was then classified as negative, positive or neutral (Neutral posts were subsequently deleted.). A text is 

considered positive if it contains joyful, happy or amusing vocabulary, or if there is a positive emoji, or if there is 
more than one emotion, but the positive feeling is dominant. A text is negative if it contains negative, disappointed, 
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sad or disturbing vocabulary, or if there is a negative emoji, or if there is more than one feeling and the negative 
emotion is dominant. Finally, a text is considered neutral if it not clearly positive or negative.

6.	 Judges worked independently. If at least two of the three judges classified a post as negative, it was judged nega-
tive sentiment and similarly for positive sentiment. Neutral posts were deleted from the collection, resulting in a 
two-class data set.

7.	 By following the above procedure, 4000 posts were selected from the original 4544. The final SudSenti2 data set 
contains 2027 positive posts and 1973 negative posts.

3.2. SudSenti3 data set

The following steps were carried out to produce the three-class data set:

1.	 All Twitter messages matching one of the four search strings listed above were downloaded using the Twitter API. 
This resulted in 8021 posts.

2.	 The same three judges classified the posts as for SudSenti2.
3.	 Posts not considered Sudanese by at least two of the three judges were deleted.
4.	 Each tweet was classified as positive, negative or neutral. SudSenti3 is thus a three-class data set.
5.	 Judges worked independently. Posts classified positive by at least two judges were considered positive and the 

same for negative and neutral. Posts where there was no majority judgement were eliminated.
6.	 By following the above procedure, 7109 tweets were selected from the original 8021. The resulting SudSenti3 data 

set contains 2523 positive posts and 2639 negative posts.

Figure 3.  Total numbers of tweets for each class in SudSenti2.

Figure 4.  Total numbers of tweets for each class in SudSenti3.
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3.3. Data set statistics

The details of the SudSenti2 and SudSenti3 data sets are shown in Table 7, including the number of instances for the two 
corpora, the numbers of tokens and types and the final size. Figure 5 shows a visualisation of the data sets.

The data are collected from Sudanese sources, but how much of it is really Sudanese? To provide an initial answer to 
this question, we chose two sources of Sudanese wordlists and computed the proportion of the words in those lists which 
are present in the two data sets. The results are in Table 8.

Table 5.  Preprocessing steps.

Text After preprocessing

شعر المواكب زاد جمر مصيبهم تعسرو ″ من شعر المواكب : ” بل زاد جمر مضَُِيهِّمِ فتسعرَّوا
عااااااجل جدآ , هسي أنباء عن تأجيل مباراة القمة السوداني الي ملعب الخرطوم 5:30 عصرآ السوداني ملعب الخرطوم القمة  أنباء تأجيل مباراة  عاجل 
ok طالما معونه @ 100 دايريييين حقنا دقــــــيـــــق نـــــــــــــعوســـــــــــــه برانا !! طالما معونه دايرين حقنا دقيق نعوسة برانا

Table 6.  Examples from the Sudanese stopword list.

حسة , حسع , اسي , هسه , هسي , هسع Now

هدا This

إنحنا We

كلو Everything

هنديلـكم  , هنديلـكن  Them (men), them (women)

 Them (medium group), this (one person close), that (one male person far), that (one female دييكه , داك  ,دة , ديلـكم
person far)

He, she (faraway whom you know) هنداك , هنديك

وين Where

Table 7.  Statistics of the SudSenti2 and SudSenti3 data sets.

SudSenti2 SudSenti3

Number of tweets 4000 7109
Number of tokens 38,721 105,069
Number of types 13,483 21,447
Size 13.8k 21.8k

Figure 5.  Visualisations of the Sudanese data sets.
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Based on the latest statistics, the number of Internet users in Sudan is about 13.70 million users, equivalent to 28% 
of the total population.10 In public life, the dialect is split into generations of adults and young people. When it comes 
to how different generations utilise the Internet, many people still choose not to use social media to express themselves. 
Therefore, since some have lately continued to add numerous phrases to the dialect on different social media platforms 
and blogs, it is clear that the dialect is evolving with time. The above-mentioned factors provide a barrier to calculating a 
specific digital percentage across all social media platforms.

Due to the lack of resources for the sites that contain the vocabulary of Sudanese dialects, the Wikipedia11 was chosen, 
which contains sources and references for the content of the vocabulary of the dialect. It also contains an overview of the 
Sudanese dialect, its origin and importance in different parts of the country and its impact on neighbouring countries. The 
site contains examples of nouns and verbs, including some popular and traditional foods and also explains the vocabulary 
meanings and the origin of each word. However, the vocabulary is not huge and focuses on matters related to heritage, 
civilisation, arts and culture, among others.

The second site,12 one of the available dialect resources, was chosen because it also contains the vocabularies of 
nineteen dialects, including the Sudanese dialect. The vocabulary contains nouns, verbs and general terms and descrip-
tions used by young people, concerning markets, sports and so on. While it contains a larger vocabulary compared with 
Wikipedia, it does not comprehensively cover all fields.

As can be seen in Table 8, 63.41% of the Wikipedia words are in SudSenti2 and 67.07% are in SudSenti3. The figures 
for the Arabic Dictionary are 53.22% and 52.01%. Given that our data sets are not that large, and taking into account the 
points made above, these figures seem acceptable.

4. Proposed approach

4.1. Text preprocessing

1.	 The following information is removed from each post: URL links, account name, description, time of data crea-
tion, followers, profile image URL, location, screen name, favourites and friends.

2.	 @date and @time symbols are removed.
3.	 Punctuation marks and diacritics are removed [43], as shown in Table 5 (line one).
4.	 Strip elongation is carried out, changing ‘نـــــــــــــعوســـــــــــــه’ into ‘نعوسة’.

5.	 Heh normalisation is carried out [44], for example, ‘ة’ becomes ‘ه’. Similarly for Yeh normalisation, ‘ي’ to ‘ى’, 
Caf normalisation, ‘ك’ to  ‘كـــ’, Hamza normalisation, ‘ئ’ or ‘ئ’ to ‘ء’ and Alef normalisation, ‘آ’ or ‘أ’ to ‘إ’.

6.	 Redundant letters like ‘عااااااجل’ are removed (see Table 5, line two).
7.	 Numbers and non-Arabic letters are removed (Table 5, line three).
8.	 Stopwords are removed (Table 5, line two).

A stopword list has been produced containing MSA and colloquial Arabic stopwords used in Sudan. The list contains 
269 words and 2095 characters (Table 6).

4.2. Text encoding

Input layer: in order to start, let us assume that the input layer receives text data as X x x xn( 1, 2,..., ), where x x xn1, 2,...,  
is the number of words with the dimension of each input term m. Each word vector would then be defined as the dimen-
sional space of Rm. Therefore, Rm n×  will be the input text dimension space.

Word embedding layer: let us say the vocabulary size is d for a text representation in order to carry out word embedding. 
Thus, it will represent the dimensional term embedding matrix as Am d× . The input text X xI( ), where I n=1,2,3,..., ,  
X m nεR ×  is now moved from the input layer to the embedding layer to produce the term embedding vector for the 
text. For the dialects, we use TF-IDF, and for MSA, we implemented the AraVec [45] word embedding pre-trained by 
Word2Vec [46] on Twitter text.

The representation of the input text X x x xn
m n( , ,..., )1 2 εR ×  as numerical word vectors is then fed into the model. x x xn1 2, ,...,  

is the number of word vectors with each dimension space Rm in the embedding vocabulary.

4.3. MMA pooling

In CNNs, the pooling function is essential for extracting the specific features from the feature map. The aim of pooling is 
to determine the output of Yk , the pooling Pk  for k K=1, ,... , where the set of activations in Pk  is represented as c cPk1 | |,...,  
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and | |Pk  denotes the number of activations. By collecting the outputs of all the pooling regions, the pooling feature map 
E e ek= 1,...,  is obtained. We will start with a quick overview of standard pooling strategies (Figure 6).

Max pooling [47]: this takes the biggest activation in the pooling region

Max k KK
i Pkci

= =
ε
max, 1,...,for

	 (1)

Max pooling is ideal for extracting local characteristics from a feature map, such as edges, lines and textures.

Average pooling [48]: this calculates the mean value of activities in the pooling region

A g
P

c k KK
k i Pk

iv =
1

| |
, 1,...,

ε
∑ =for 	 (2)

By smoothing the pooling region in this way, it is possible to extract global characteristics.

Min pooling [49]: this calculates the minimum value of activities in the pooling region

Min k KK
i Pkci

= =
ε
min, 1,...,for 	 (3)

Our proposed MMA pooling (Figures 7 and 8) calculates the mean of the max value and the average value

MMA
P

c

k K

K

i Pkci
k

ii Pk

=









∑(max )ε ε

1

| |

2
=1,...,for

	 (4)

MMA aims to combine the advantages of max pooling and average pooling.

4.4. Proposed approach

SCM (Figure 9) consists of an embedding layer containing max-features = num-unique-word, embedding size [128, 300] 
with max-len [150, 80, 50]. After that, there are four CNN layers with filters, respectively, of [512, 256, 128, 64]. Kernel-
size = 3, padding = ‘valid’, activation = ‘ReLU’ and strides = 1. These are followed by the proposed MMA pooling function, 
one-dimensional (1D) pool size = 2, then dense = 32 and activation =‘ReLU’, then dropout 0.5, then batch normalisation 

Figure 6.  Standard pooling layers.
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and another dropout 0.5, then flatten and finally a softmax layer. This is fully connected to predict the sentiment between 
three classes (positive, negative, neutral) or two classes (positive, negative).

5. Experiments

Our experiments include four aspects (Figure 1):

1.	 Preprocessing the data sets and checking the steps.
2.	 Utilising existing ML and deep learning methods to verify performance.
3.	 Applying the proposed method.
4.	 Analysing results.

5.1. Data sets

For sentiment classification on Sudanese Arabic text, ML and deep learning models are trained using the new SudSenti2 
and SudSenti3 data sets introduced in section 3. SudSenti2 consists of two classes – 2027 positive tweets and 1973 nega-
tive tweets. SudSenti3 consists of three classes – 2523 positive tweets, 2639 negative tweets and 1947 neutral tweets.

Figure 7.  Mean max average (MMA).

Figure 8.  Proposed MMA on Arabic text.
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For the Saudi dialect, we use the Saudi Sentiment Data set (SSD) [50].13 SSD consists of two classes – 2436 positive 
tweets and 1816 negative tweets.

For sentiment classification in MSA, the models are trained using the HARD14 produced by Elnagar et al. [42]. It is 
a rich data set, with more than 370,000 reviews expressed in MSA. Here, we utilised two classes – 5857 positive tweets 
and 6353 negative tweets.

Table 9 shows the details of the data sets.

5.2. Experimental settings

We used ML algorithms and deep learning models for training with all the Arabic sentiment data sets for two-way and 
three-way classifications. The ML algorithms were NB [51], LR [52], SVMs [53] and RF [54].

Deep learning models include RNN [55], CNN [56], CNN-LSTM [57]15 and the proposed method. For the SudSenti2 
and SudSenti3 data sets, we split the data into 80% training, 10% validation and 10% testing.

For the SSD and HARD data sets, we applied the proposed approach and existing deep learning models. The settings 
for the experiments are shown in Table 10.

5.3. Experiment 1: two-way sentiment classification

The aim was to evaluate the proposed SCM + MMA model in two-way sentiment classification, working with the 
SudSenti2, SSD and HARD data sets. SudSenti2 was introduced in section 3. As baselines, there are four ML models 
(LR, RF, NB, SVM) and three NN models (RNN, CNN, CNN-LSTM). The configuration of SCM + MMA is shown in 
Table 10. Ten-fold cross-validation was used for all models and the average performance reported. The results are shown 
in Table 11.

On SudSenti2 (Sudanese dialect), the best model is SCM + MMA (accuracy 92.25%). The best ML baseline was RF 
(87.12%) and the best NN baseline was CNN-LSTM (89.00%).

On the SSD data set (Saudi dialect), the best model is SCM + MMA (84.02%) and the best baseline is CNN-LSTM 
(83.55%). Finally, on the HARD data set (MSA), the best model is again SCM + MMA (88.37%) as against the best 
baseline, CNN (87.06%).

In summary, the experiment showed that the proposed model performed well on two-class data sets.

5.4. Experiment 2: three-way sentiment classification

The aim was to evaluate SCM + MMA once again, this time on the new three-way Sudanese data set, SudSenti3 (sec-
tion 3). Three-way classification is known to be a harder task than two-way, particularly as the neutral class can contain 
examples with both positive and negative aspects, a factor which may confuse the model. As baselines, there are three 
NN models (RNN, CNN, CNN-LSTM). The configuration of SCM + MMA was the same as in Experiment 1 (Table 10) 

Figure 9.  SCM model architecture.
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Table 8.  Counts of words from two Sudanese wordlists which are present in the SudSenti2 and SudSenti3 data sets.

SudSenti2 SudSenti3

Wiki*** count 52 55
Wiki total 82 82
Proportion 63.41% 67.07%
Mo3&& count 132 129
Mo3 total 248 248
Proportion 53.22% 52.01%

Table 9.  Data sets for our experiments.

Data sets Positive tweets Negative tweets Neutral tweets Total

SudSenti2 (2C) 2027 1973 – 4000
SudSenti3 (3C) 2523 2639 1947 7109
SSD (2C) 2436 1816 – 4252
HARD (2C) 5857 6353 – 12,210

SudSenti2: two-class Sudanese Sentiment Data set; SudSenti3: three-class Sudanese Sentiment Data set; SSD: Saudi Sentiment Data set; HARD: 
Hotel Arabic Reviews Data set.

Table 10.  Experimental settings.

Setting Value(s)

Embedding size {300}
Pooling {2}
Batch-size {32}
Kernel-size {3}
Number-classes {2, 3}
Epoch {5, 10, 20, 50, 100, 200}
Optimiser Adam
Learning rate {0.001}

Table 11.  Experiment 1: accuracy of ML and NN sentiment classifiers on two-class data sets.

Models Accuracy (%) 

  SudSenti2 data set (2C) SSD data set (2C) HARD data set (2C)

LR 86.04 – –
RF 87.12 – –
NB 81.45 – –
SVM 86.23 – –
RNN 80.75 74.03 62.86
CNN 87.75 82.49 87.06
CNN-LSTM 89.00 83.55 85.22
SCM + MMA 92.25 84.02 88.37

LR: logistic regression; RF: random forest; NB: NaÏve Bayes; SVM: support vector machine; RNN: recurrent neural network; CNN: convolutional 
neural network; LSTM: long-short term memory.
SudSenti2 is our new two-class data set for Sudanese, created from Facebook and YouTube (section 3). SCM + MMA is the proposed model.

except that there were three outputs, not two. Once again, 10-fold cross-validation was used for all models. The results 
are shown in Table 12.

The best-performing model is SCM + MMA (85.23%). The best ML baseline is LR (79.37%) and the best NN baseline 
is CNN (83.61%).
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5.5. Experiment 3: evaluation of MMA pooling

A key part of the proposed SCM + MMA model is the MMA pooling layer. The aim of this experiment, therefore, was to 
compare MMA with three commonly used pooling layers – Max, Avg and Min. First, in two-way classification, the per-
formance of SCM + Max, SCM + Avg and SCM + Min was compared with SCM + MMA on SudSenti2, SSD and HARD 
(compare with Experiment 1). Fifteenfold cross-validation was used and the average performance reported. Results are 
shown in Table 13. SCM + MMA is the best-performing model on all three data sets (SudSenti2 92.75%, SSD 85.55%, 
HARD 90.01%). The best baseline pooling layer varies between Avg and Max by data set (SudSenti2: Avg 91.75%; SSD: 
Max 84.72%; HARD: Max 89.27).

Second, in three-way classification, the performance of SCM + Max, SCM + Avg and SCM + Min was compared with 
SCM + MMA on SudSenti3 (compare with Experiment 2). Fifteenfold cross-validation was again used. Results are shown 
in Table 14. Once again, SCM + MMA is the best-performing model (84.39%) with the best baseline being Max (84.11%).

In conclusion, the MMA pooling layer performs well compared with Max, Avg and Min.

5.6. Experiment 4: ablation study

We started with the proposed SCM + MMA model whose performance was reported in Table 11 (two-class) and Table 12 
(three-class). First, the normalisation steps were removed and the training repeated. Second, the Sudanese stopword list 
was removed. In each case, 10-fold cross-validation was used, and the average performance was reported. The results are 
shown in Table 15 and Figure 10.

Normalisation aims to clean noise and spaces and to transform every letter into its standard form without affecting its 
meaning or content [43]. When we removed the normalisation steps, it affected the two-class and three-class data sets. For 
SudSenti2, the accuracy reduces from 92.25% to 91.82%, for SSD, it reduces from 84.02% to 83.73%, for HARD from 
88.37% to 87.96% and for SudSenti3 from 85.23% to 84.78%. The differences are −0.43%, −0.29%, −0.41% and −0.45%, 
respectively. The results suggest that text normalisation can result in a small performance improvement.

Table 12.  Experiment 2: accuracy of NN sentiment classifiers on the SudSenti3 three-class data set, created from Sudanese 
Twitter posts (section 3).

Models Accuracy (%)

  SudSenti3 data set (3C)

LR 79.37
RF 78.24
NB 74.19
SVM 79.29
RNN 77.07
CNN 83.61
CNN-LSTM 81.01
SCM + MMA 85.23

LR: logistic regression; RF: random forest; NB: NaÏve Bayes; SVM: support vector machine; RNN: recurrent neural network; CNN: convolutional 
neural network; LSTM: long-short term memory.
SCM + MMA is the proposed model.

Table 13.  Experiment 3: accuracy of the SCM model with different pooling layers.

Models Accuracy (%)

  SudSenti2 data set (2C) SSD data set (2C) HARD data set (2C)

SCM + Max 90.62 84.72 89.27
SCM + Avg 91.75 84.02 87.80
SCM + Min 90.00 83.78 88.70
SCM + MMA 92.75 85.55 90.01

SCM: sentiment convolutional MMA.
The task is two-class sentiment classification, applied to the SudSenti2, SSD and HARD data sets. MMA is the proposed pooling layer.
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When we removed the Sudanese stopword list, it also affected the four data sets. For SudSenti2, the accuracy reduces 
from 91.82% to 91.00%, for SSD, it reduces from 83.73% to 83.22%, for HARD from 87.96% to 87.40% and for SudSenti3 
from 84.78% to 84.06%. The differences are −0.82%, −0.51%, −0.56% and −0.72%, respectively. We also note that the 
differences with the Sudanese data sets were higher than for SSD and HARD. The Sudanese stopword list assists with 
noise reduction, which indicates that it is an important step for preprocessing.

5.7. Experiment 5: Arabic transformer models evaluated on Sudanese data sets

We trained ARBERT16 and MARBERT17 transformers on the SudSenti2 and SudSenti3 data sets. Tenfold cross-validation 
was used with each transformer, and the average performance was reported. Results are in Table 16 and Figure 11.

For SudSenti2, accuracies were 90.12% and 91.11%, respectively. For SudSenti3, they were 85.09% and 86.83%. 
MARBERT had the best performance among the transformers, so we fine-tuned it with our hyperparameters, enhancing 
the performance on SudSenti2 to 92.14% and on SudSenti3 to 88.44%. Recall that the performance of the proposed model 
SCM + MMA was 92.25% on SudSenti2 and 85.23% on SudSenti3 (Tables 10 and 11).

First, we conclude that transformers can be successfully applied to our data sets, returning excellent results. Second, 
MARBERT gave the best performance compared with previous ML and deep learning baselines for the Sudanese data 
sets in Tables 11 and 12. For SudSenti2, MARBERT + FT accuracy was 92.14% (Table 16) compared with 89.00% with 
CNN-LSTM (Table 11). The proposed model SCM + MMA showed comparable performance (92.25%), a good result for 
a CNN-based model. For SudSenti3, MARBERT + FT accuracy was 88.44% (Table 16), better than 83.61% with CNN 
(Table 12). SCM + MMA scored 85.23%, falling short of MARBERT + FT.

Third, MARBERT + FT was shown to make a difference of up to 1.03% (two-class) and 1.61% (three-class), which 
indicates the effectiveness of FT. Fourth, transformers are often better than earlier approaches to Arabic sentiment analy-
sis. However, there are some exceptions. For example, Abdel-Salam [20] obtained a better performance than MARBERT 
using an MHLCG and the ArSarcasm-v2 data set. Moreover, when Abdel-Salam applied MARBERT to ASTD-3, the 
result was 78% which is slightly lower than Mhamed et al. [22] who obtained 78.62%.

Table 14.  Experiment 3: accuracy of the SCM model with different pooling layers.

Models Accuracy (%)

  SudSenti3 Data set (3C)

SCM + Max 84.11
SCM + Avg 83.26
SCM + Min 82.70
SCM + MMA 84.39

SCM: sentiment convolutional MMA.
The task is three-class sentiment classification, applied to the SudSenti3 data set. MMA is the proposed pooling layer.

Table 15.  Experiment 4: ablation study to show the effects of text normalisation and the stopword list.

Models Accuracy (%) 

  SudSenti2 SSD HARD SudSenti3

  Data set (2C) Data set (2C) Data set (2C) Data set (3C)

SCM + MMA 92.25 84.02 88.37 85.23
  Without normalisation  

SCM + MMA 91.82 83.73 87.96 84.78
  Without normalisation, 

stopword list
 

SCM + MMA 91.00 83.22 87.40 84.06
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Finally, while MSA has a substantial overlap with dialects, MSA-based transformer models do not necessarily capture 
dialectal nuances [58]. As a result, the proposed SCM + MMA model, which is based on CNNs, still compares well with 
MARBERT when applied to the SudSenti2 data set (Experiment 1 vs Experiment 5).

5.8. Accuracy during training

Figure 12 shows the accuracy and validation accuracy of the NN baseline models and the proposed method with the 
SudSenti2 data set. After 50 epochs, the SCM + MMA model shows the highest performance, reaching 92.25%. Figure 13 
shows the same information for the SSD data set (SCM + MMA reaches 84.02%) while Figure 14 is for the HARD data 
set (SCM + MMA reaches 88.37%).

Figure 15 shows the accuracy and validation accuracy for the NN models and the proposed model with the SudSenti3 
data set. After 50 epochs, SCM + MMA reaches 85.23%.

Figure 10.  Ablation study.

Figure 11.  Accuracy of SCM + MMA and Arabic transformers on the Sudanese data sets.

Table 16.  Experiment 5: accuracy of the transformer models with SudSenti2 and SudSenti3.

Models Accuracy (%)  

  SudSenti2 data set (2C) SudSenti3 data set (3C)

ARBERT 90.12 85.09
MARBERT 91.11 86.83
MARBERT + FT 92.14 88.44
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For two-way classification, Figures 16–18 show the validation accuracy during training for the SudSenti2, SSD and 
HARD data sets. For three-way classification, Figure 19 shows the validation accuracy during training for SudSenti3. We 
note that the proposed method was stable over epochs for training and validation with different data sets.

6. Conclusion and future work

In this article, we first presented two new sentiment data sets for the Sudanese dialect of Arabic. SudSenti2 was collected 
from Facebook and YouTube, while SudSenti3 was based on Twitter tweets. Following a discussion of Arabic preproc-
essing methods appropriate to sentiment classification, we proposed a new model for this task, SCM. This includes four 
convolutional layers plus MMA, our proposed pooling layer. In two-way sentiment classification using the SudSenti2 
(Sudanese), SSD (Saudi) and HARD (MSA) data sets, SCM gave good performance relative to ML and NN baselines and 
was comparable with Arabic transformer models. In three-way classification using SudSenti3, MARBERT + FT was the 
highest performing and was superior to SCM.

Concerning pooling, the proposed MMA approach was compared with Max, Avg and Min baselines and shown to 
perform better than them in both two-way and three-way classifications. Finally, we conducted an ablation study, which 
demonstrated that text normalisation and the Sudanese stopword list make small contributions to performance.

In future work, we plan to use an attention mechanism as part of a more complex deep learning method, to extract 
features from a huge corpus covering all Arabic sentiment dialects. We also aim to customise a new regulariser to enhance 
performance and optimise the loss function.

Figure 12.  Accuracy and validation accuracy with the SudSenti2 data set.

Figure 13.  Accuracy and validation accuracy with the SSD data set.
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Figure 15.  Accuracy and validation accuracy with the SudSenti3 data set.

Figure 14.  Accuracy and validation accuracy with the HARD data set.

Figure 16.  Validation accuracy with the SudSenti2 data set.
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Figure 17.  Validation accuracy with the SSD data set.

Figure 18.  Validation accuracy with the HARD data set.

Figure 19.  Validation accuracy with the SudSenti3 data set.
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Notes

  1.	 https://www.importanceoflanguages.com/arabic-dialects/
  2.	 https://istizada.com/complete-list-of-arabic-speaking-countries-2014/
  3.	 https://en.wikipedia.org/wiki/Arabic_diacritics
  4.	 We quote this example exactly from the original, although the case marker may not be correct.
  5.	 https://github.com/mustafa20999/Sudanese-Arabic-Sentiment-Datasets
  6.	 https://www.kaggle.com/datasets/mksaad/arabic-sentiment-twitter-corpus
  7.	 https://www.facebook.com/SudanLovers/
  8.	 https://www.youtube.com/watch?v=h5tBHZZ4UCYt=1s
  9.	 https://orangedatamining.com/
10.	 https://datareportal.com/reports/digital-2021-sudan
11.	 *** https://ar.wikipedia.org/wiki/%D9%84%D9%87%D8%AC%D8%A9_%D8%B3%D9%88%D8%AF%D8%A7%D9%86%D

9%8A%D8%A9
12.	 && https://en.mo3jam.com/dialect/Sudanese
13.	 https://www.kaggle.com/snalyami3/arabic-sentiment-analysis-dataset-ss2030-dataset
14.	 https://github.com/elnagara/HARD-Arabic-Dataset
15.	 https://www.kaggle.com/monsterspy/conv-lstm-sentiment-analysis-keras-acc-0-96
16.	 https://github.com/UBC-NLP/marbert
17.	 https://github.com/Jabalov/Arabic-Dialects-Identification/blob/main/Notebooks/MARBERT-FineTuning.ipynb
18.	 https://github.com/mustafa20999/Sudanese-Arabic-Sentiment-Datasets
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