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Abstract. In this paper, we study the thermodynamic properties of spin-1/2 antiferromagnetic Heisenberg
ladders by means of the stochastic series expansion quantum Monte Carlo technique. This includes the
thermal properties of the specific heat, uniform and staggered susceptibilities, spin gap, and structure
factor. Our numerical simulations are probed over a large ensemble of random realizations in a wide range
of disorder strengths r, from the clean (r = 0) case up to the diluted (r → 1) limit, and for selected choices
of number of legs Ly per site. Our results show some interesting phenomena, like the presence of crossing
points in the temperature plane for both the specific heat and uniform susceptibility curves which appear
to be universal in r, as well as a variable dependence of the spin gap in the amount of disorder upon
increasing Ly.

1 Introduction

Understanding the effect of quenched randomness on
zero- and finite-temperature properties of spin mod-
els is one of the most intriguing problems in theoret-
ical physics. Recent model systems including quenched
randomness that are under investigation include the
spin-1/2 Heisenberg spin chains [1,2], the spin-1/2
J − Q model on the square lattice [3], and quantum
spin chains with power-law long-range antiferromag-
netic couplings [4]. Low-dimensional spin systems have
also been at the centre of intense investigation due
to the development of advanced theoretical, computa-
tional and experimental methods that paved the way for
new results [5–9]. Among the wealth of low-dimensional
systems, quantum spin systems with antiferromagnetic
interactions share plentiful physical properties, even in
one dimension. For example, Haldane’s conjecture that
antiferromagnetic spin chains with integer spin values
exhibit a gapped spectrum has been backed up by solid
theoretical [10], numerical [11], and experimental [12]
studies. It is worth noting here that the spin-1/2 Heisen-
berg coupled chains with an even number of legs have a
finite spin gap (Δ) to the lowest triplet excitation. Also,
some ladder systems have an exponentially decaying
spin-spin correlation function and uniform susceptibil-
ity, manifesting the existence of a spin gap [13,14]. The
width of the spin gap for a two-leg ladder spin system
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with the isotropic coupling constant J can be roughly
estimated as Δ ∼ 0.5J via quantum Monte Carlo tech-
niques [15]. What is more, the value of the spin gap
can be modified or even completely eliminated in var-
ious ways, among others, by the choice of a different
lattice topology [16,17], the diffusion of disorder in the
spin–spin coupling [18], or the application of an exter-
nal magnetic field [19].

Different ladder models have been studied in the lit-
erature, such as spin-ladder systems with dimerization
[20–23], zig-zag ladders [24,25], and mixed ladders [26–
28]. The presence of quenched randomness is expected,
in most cases, to have a significant effect on the thermal
and magnetic properties of the system, even at the low
disorder limit. Weakly disordered anisotropic spin-1/2
ladders have been handled perturbatively [29] and criti-
cal properties of strongly disordered systems have been
analyzed benefiting from the strong disorder (density
matrix) renormalization-group method [16,30,31].

Modern quantum Monte Carlo techniques are pow-
erful and robust tools for the study of disordered
spin-ladder systems. For instance, the stochastic series
expansion quantum Monte Carlo technique has already
been successfully used to investigate the spin-1/2 Hei-
senberg ladders under the presence of quenched bond
randomness [32], indicating that neighboring bond
energies change sensitively with the position of disor-
der in the spin-spin coupling term. Furthermore, in Ref.
[33], some unusual and interesting effects of disorder on
collective excitations have been reported with the cal-
culation of the ground-state dynamic structure factor
for a ladder system with bond disorder along the legs
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and rungs of the ladder. More recently, the thermody-
namic properties of a two-leg quantum spin-ladder sys-
tem including quenched bond randomness only along
the rung direction of the system have been discussed
[34], for varying values of the system parameters.

In this framework, we attempt to provide here an
additional insight into some critical aspects of dis-
ordered quantum spin-ladder systems, not fully con-
sidered previously. Therefore, the goal of the present
study is threefold: (i) Monitor the trend of the crossing
points of the specific heat and uniform susceptibility
curves, (ii) scan the response of the spin-gap parame-
ter, and (iii) scrutinize the low-temperature behavior of
the staggered susceptibility and structure factor, while
increasing the number of legs of the spin-ladder sys-
tem and for different values of the disorder parameter.
Whenever it is possible, we compare our results with the
main outcomes of Ref. [34]. Before going on further, we
would like to underline that the existence of the crossing
point phenomenon, observed also in the present work,
is one of the most interesting and puzzling effects in
strongly correlated electron systems. Up to now, and
to the best of our knowledge, no unified mechanism
for this phenomenon has been proposed. However, it
is generally believed that crossing points occur in cer-
tain systems that are in the vicinity of a quantum or a
second-order phase transition, or some physical systems
showing magnetic instability, such that their properties
are prominently sensitive to changes in thermodynamic
variables, such as the magnetic field and the tempera-
ture.

The structure of the paper is as follows: In Sect. 2
we briefly describe the model and the implementation
of the stochastic series expansion quantum Monte Carlo
method. In Sect. 3 we provide the simulation details and
the physical observables studied here. The numerical
results are presented and analyzed in Sect. 4. Finally,
Sect. 5 contains a summary and a brief outlook.

2 Model and methods

2.1 Antiferromagnetic spin-1/2 random-bond
Heisenberg spin ladders

We introduce the Hamiltonian of the quantum spin-
ladder model in a general framework to align with the
formulation of the stochastic series expansion technique
for convenience. Namely, the following Hamiltonian

H =
Nb∑

b

JbSi(b) · Sj(b) (1)

describes spin models that include a number of bonds
Nb with site index i(b) and spin operators Si(b) inter-
acting with coupling strength Jb. For the present spin-
ladder system with N sites, we consider all spin-spin
interactions between nearest neighbors to be antiferro-
magnetic (Jb > 0). Note that for the bonds connecting

Fig. 1 An example of the quenched bond-disorder config-
uration on a quantum spin-ladder system. The couplings J1

and J2 along the rungs are depicted by solid blue and red
dotted lines, respectively. The interactions J are represented
by solid black lines

the spins along the legs of the spin ladder, we have
Jb = J . The bonds located at the rungs of the system
are randomly selected from a uniform bimodal distri-
bution of the form

P(Jb) =
1
2
[δ(Jb − J1) + δ(Jb − J2)], (2)

where (J1 + J2)/2 = 1 and J1 > J2 > 0 following
previous practice [34–37]. The present study concerns
only the case of 50%/50% weak/strong bonds follow-
ing the traditional bond disorder implementation com-
monly used in the case of classical Ising ferromagnets
with disorder [38]. With the help of the usual control
parameter r = (J1 − J2)/2 that reflects the strength
of the bond randomness on the rungs of the system we
define J1 = 1 + r (> 1) and J2 = 1 − r (< 1). An
example of the quenched bond disorder in the system
is shown in Fig. 1. For r = 0 the clean spin-ladder sys-
tem is recovered, whereas the case r = 1 corresponds to
the bond diluted case among the rungs of the system
and is therefore beyond the scope of this study.

2.2 Stochastic series expansion quantum Monte
Carlo method

Within the framework of the stochastic series expan-
sion technique for the isotropic S = 1/2 Heisenberg
antiferromagnetic model, it is possible that bond oper-
ators can be disentangled into diagonal (H1,b) and off-
diagonal (H2,b) terms as follows

H1,b =
(

1
4

− Sz
i(b)S

z
j(b)

)
(3a)

H2,b =
1
2

(
S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b)

)
. (3b)

Benefiting from equation (3), we can thus rewrite
Hamiltonian (1) as

H = −
Nb∑

b

Jb (H1,b − H2,b) + const. (4)

123



Eur. Phys. J. B (2024) 97 :34 Page 3 of 8 34

We note here that the constant energy term is not nec-
essary for the implementation of the algorithm (yet, it
should be added when calculating the energy).

According to the stochastic series expansion quantum
Monte Carlo protocol [39–41], the partition function of
the system can be Taylor expanded with a chosen spin
basis as follows

Z =
∑

α,SL

(−1)n2βn (L − n)!

L!

〈
α

∣∣∣∣∣

L−1∏

p=0

Jb(p)Ha(p),b(p)

∣∣∣∣∣ α

〉
.

(5)

The summation appearing above refers to all configura-
tions α and all possible operator strings SL, including
the unit operator H0,0 to ensure that the length of the
strings is fixed and also a unit bond coupling for con-
venient implementation; for this extra index, we have
J0 = 1. Here, n is the number of non-unit operators in
the string, while n2 denotes the number of off-diagonal
operators. Finally, as usual, β is the reduced inverse
temperature. Since the present system includes random
bonds among the rungs, the non-zero weights are bond-
dependent for an allowed spin configuration. Hence, the
weight W (α, SL) can be expressed in the following man-
ner

W (α, SL) =
(

β

2

)n (L − n)!
L!

L−1∏

p=0

Jb(p). (6)

3 Numerical simulations and observables

3.1 Simulation details

Using the above scheme we generated numerical data
for the quenched random-bond spin-ladder system for
different system sizes at a wide temperature spectrum
and for several values of the disorder strength param-
eter within the range r = {0 − 0.9}. As already men-
tioned above, our geometrical setup consists of Lx ×Ly

systems, where Lx defines the linear dimension along
the legs of the lattice and is fixed at Lx = 256 during
all simulations. We note in passing that we have per-
formed some additional test simulations using Lx values
up to 512 to identify possible finite-size and crossover
effects in the observed quantities. However, our analy-
sis, not shown here for brevity, disclosed that the results
are almost Lx-independent so the considered Lx = 256
dimension is enough for an accurate determination of
the properties. Ly now stands for the number of legs
of the ladder system. In fact, one of the most inter-
esting aspects of the physics of quantum Heisenberg
ladders is that their low-energy properties are distinct
when comparing even and odd Ly values [42]. It is well-
known that there is a spin gap for the case of even
Ly values, while ladder systems having odd Ly values
are gapless [39]. In this framework, we only studied
systems with Ly = {2, 4, 6}. Closing, some numerical

details: We performed simulations over 500 indepen-
dent random realizations for each pair of (r, Ly) val-
ues. We applied boundary conditions which are peri-
odic along the legs and free along the rungs of the spin
ladder. In our protocol, the first 105 Monte Carlo steps
were discarded during the thermalization process and
numerical data were collected and analyzed during the
following 5×105 Monte Carlo steps. We note in passing
that the simulation time needed for a single realization
on a node of a Dual Intel Xeon E5-2690 V4 processor
was approximately 30 minutes for the largest system
size (Lx = 256, Ly = 6) and the minimum tempera-
ture value that we have reached during the simulations.
Finally, errors were estimated using the standard jack-
knife method [43,44].

3.2 Observables

The specific heat C of the system is straightforward
to estimate with the help of the number of non-unit
operators n in the operator sequence [39]

C =
〈
n2

〉 − 〈n〉2 − 〈n〉 . (7)

Also, by constructing estimators from the Kubo inte-
gral, we gain access to static susceptibilities via [39]

χAB =
∫ β

0

dτ 〈A(τ)B(0)〉 . (8)

Here the integrand denotes the ensemble average of
an imaginary time-dependent product with operators
A(τ) = eτH A(0) e−τH . For the case of diagonal oper-
ators A and B with eigenvalues a(k) and b(k), respec-
tively, the static susceptibility is retrieved by includ-
ing eigenvalues from all propagated states, as follows
[45,46]

χAB =

〈
β

n(n + 1)

[(
n−1∑

k=0

a(k)

) (
n−1∑

k=0

b(k)

)

+
n−1∑

k=0

a(k)b(k)

]〉
. (9)

For the total magnetization M , Eq. (9) reduces to the
uniform susceptibility χu with a(k) = b(k) = M ,

χu = β
〈
M2

〉
. (10)

A low-temperature form of the uniform susceptibility of
the spin-ladder system with an even number of rungs
Ly is given by [39]

χu =
a√
T

e−Δ/T , (11)

where Δ is the well-known spin gap that can be
extracted by linearization of Eq. (11) and making use

123



34 Page 4 of 8 Eur. Phys. J. B (2024) 97 :34

of a least-squares fit—typically and as it will be shown
below, ground-state values of Δ are obtained while
varying (r, Ly) parameters.

In addition to the physical observables introduced
above, we also scrutinized in this work the thermal vari-
ations of the staggered susceptibility χs and structure
factor S. For the staggered magnetization Ms, Eq. (9)
with a(k) = b(k) = Ms(k) provides the staggered sus-
ceptibility

χs(π, π) =

〈
β

n(n + 1)

⎡

⎣
(

n−1∑

k=0

Ms(k)

)2

+
n−1∑

k=0

M2
s (k)

⎤

⎦
〉

.

(12)

Finally, the staggered structure factor can be computed
via

S(π, π) = N〈M2
s 〉, (13)

where N = Lx × Ly the total number of spins on the
system.

4 Results

We start the presentation of our results with Fig. 2,
showcasing the effects of disorder on the specific heat
C of the system for the three selected values of Ly con-
sidered in this work. As it is evident from all panels, the
specific-heat maxima decrease with increasing values of
the disorder-strength ratio r for all given values of Ly.
In fact, the broad maxima of the curves shift towards a
higher temperature regime and become flatter as r gets
larger. Interestingly, the considered system has a partic-
ular temperature point where the specific-heat curves
intersect, taking the same value independent of r, but
dependent on Ly. The inset in all three panels highlights
the fine sweeping around these points and the verti-
cal dashed lines mark their positions in the tempera-
ture axis, denoted as (T/J)(C)

cross. To obtain the crossing
points for the specific-heat curves we used numerical
data obtained for six [r, r + 0.4] pairs of the disorder-
strength ratio, where r = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We
quote the estimates (T/J)(C)

cross = 0.946(3), 1.004(1),
and 1.018(2) for Ly = 2, 4, and Ly = 6, respectively.
Our analysis indicates that upon increasing Ly the loca-
tion of the crossing point shifts to higher temperatures.
Note that the results obtained here for the case with
Ly = 2 agree nicely within error bars with those from
the analysis of Ref. [34].

We would like to underline that for this class of mod-
els including randomness on the local bonds, the pres-
ence of crossing points has been identified and studied
in the context of experimental [47–50] and theoretical
[51–53] systems. What is more, their physical origin has
been scrutinized in detail for lattice models and contin-
uum systems [47], and a wealth of numerical outcomes

Fig. 2 Specific-heat curves vs. temperature for a wide
range of the disorder parameter r and three values of Ly.
The insets are an enlargement of the intersection area (see
also the discussion in the main text)

has been obtained in particular for the case of the half-
filled Hubbard model at all dimensions [48]. Based on
these studies one may safely conclude that the specific-
heat values at these distinctive points are characterized
by an almost universal value of ∼ 0.34/kB , whereas the
corresponding temperatures are different at all dimen-
sions. It is also worth stressing here that, for the present
system, the rate of change in the specific-heat values as
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Fig. 3 Same as in Fig. 2, but for the uniform susceptibility
curves

a function of the disorder parameter changes its sign
at the intersection leading to a total entropy change of
zero. Thereby, the crossing point of the specific heat
may be also considered as an inflection point.

In analogy to Fig. 2, we present in Fig. 3 the uni-
form susceptibility (χu)-curves. Several comments are
in order at this point:

1. At high temperatures, χu curves obtained for vary-
ing values of r are almost identical and the typical
Curie behavior is present in the system for all values
of Ly.

2. In contrast to C, the broad maxima of χu shift to a
lower temperature regime with increasing r, also for
all values of Ly.

3. Similarly to the observations recorded in Fig. 2, there
exist crossing points in the χu curves; see the cor-
responding insets of Fig. 3 for a zoom in of the
criss-crossing area. To determine these points in χu

we followed the procedure outlined above for the
case of the specific heat. We quote the estimates
(T/J)(χu)

cross = 1.083(3), 1.103(4), and 1.112(2) for
Ly = 2, 4, and Ly = 6, respectively.

4. Even though the crossing temperatures obtained
for the specific heat and uniform susceptibility (see
Figs. 2 and 3) are slightly different from each other
for a given Ly value, the general shift trend to higher
temperatures with increasing Ly values is evident.
We underline here that the absolute difference

∣∣∣∣∣

(
T

J

)(χu)

cross

−
(

T

J

)(C)

cross

∣∣∣∣∣ −→ 0,

as Ly increases so that these discrepancies can be
possibly attributed to the presence of finite-size
effects.

5. Finally, an exponentially decreasing shift is notice-
able at the relatively low-temperature regimes for all
Ly and r values considered which clearly manifests
the presence of a spin gap [42].

Figure 4 now displays the rescaled uniform suscep-
tibility of the system, −T ln (T 1/2χu), for all studied
values of r and Ly at the low-temperature regime,
i.e., (T/J) ≤ 10−1. The solid and dashed lines are
fits of the form (11) within the temperature range
5 × 10−2 ≤ (T/J) ≤ 10−1 where a clear linear response
is observed. These extrapolations allow us to retrieve
the spin-gap values Δ as (T/J) → 0. The relevant r-
dependence of the spin-gap values for varying values
of Ly is sketched in Fig. 5. Remarkably, while inspect-
ing Fig. 5 we deduce that when the amount of disorder
among the rungs gets more robust, the spin-gap val-
ues tend to decrease, leading to an increment in the
slopes of the relevant lines as shown in Fig. 4. The most
pronounced effect is found for the case Ly = 2 where
the spin gap shows an almost linear dependence in r.
Additionally, our simulation results suggest that upon
increasing Ly the impact of the disorder on the spin gap
becomes less significant and, for the case with Ly = 6,
almost irrelevant; see the red curve in Fig. 5 where Δ
appears as almost constant. As it is well-known from
previous studies [13,55], for a larger number of legs the
drop in the uniform susceptibility sets in at smaller tem-
perature values and is steeper. Hence, the spin gap is
expected to decrease with increasing Ly and the effect
of randomness among the rungs of the system on the
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Fig. 4 Spin-gap fit lines of the form (11) for the clean case
and all disorder ratios studied in this work for Ly = 2 (a),
Ly = 4 (b), and Ly = 6 (c)

spin gap becomes trivial. We stress that our numerical
estimates of Δ for the clean (r = 0) cases are in good
agreement also with previous works [39,56].

Along with the specific-heat and uniform susceptibil-
ity curves that show crossing points as detailed above,
we have also considered in the last part of this sec-
tion the staggered susceptibility (χs(π, π)) and struc-
ture factor (S(π, π)) curves for the same set of sys-
tem parameters. Our numerical results (not shown here
for brevity) indicate that: (i) both quantities do not

Fig. 5 Disorder-ratio dependence of the spin gap for all Ly

values considered. Lines are a simple guide to the eye, while
error bars appear smaller than the symbol sizes used

exhibit any instance of joining in the temperature plane
for all studied values of the disorder-strength ratio r,
and (ii) the structure-factor curves peak at a temper-
ature well below that of the corresponding spin gap,
an observation which is in full agreement with earlier
studies [34,56], giving further credit to the results pre-
sented in this work. In this framework, we consider it
more beneficial to present in Fig. 6 the r-dependence
of the low-temperature behavior of χs(π, π), panel (a),
and S(π, π), panel (b), for Ly = 2, 4, and 6. Note
that the numerical data were collected at the minimum
temperature value reached during our simulations, i.e.,
(T/J) = 5 × 10−2. The main aftermath from Fig. 6 is
that while the χs(π, π) and S(π, π) curves are almost
flat for a wide range of r values for the case Ly = 2,
they tend to decrease with increasing r for Ly = 4, and
this trend becomes even more prominent for Ly = 6.
Thus, in contrast to the case of the spin-gap, see Fig. 5,
here the impact of disorder becomes much more striking
with increasing Ly. To clarify this point it is possible
to say that due to the presence of a spin gap in the sys-
tem, the static structure factor is expected to remain
finite, as (T/J) → 0. With increasing Ly for a chosen r
value, the spin gap tends to decrease, and as a result of
this, S(π, π) increases. Analogous conclusions have been
reported for the case of spin-1/2 Heisenberg ladders yet
under the presence of a different type of disorder [56].

5 Summary

To summarize, we investigated the effects of quenched
bond randomness generated along the rungs of the anti-
ferromagnetic spin-1/2 Heisenberg ladders using the
stochastic series expansion quantum Monte Carlo tech-
nique. Numerical data were obtained for a wide spec-
trum of the disorder parameter r, from the clean case
(r = 0) up to the bond-dilution limit (r → 1) and
for three values of Ly of the system. Our simulations
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Fig. 6 Disorder-ratio dependence of the low-temperature
behavior of the staggered susceptibility (a) and structure
factor (b) for all Ly values considered. Lines are a simple
guide to the eye, while error bars appear smaller than the
symbol sizes used

showed that while the specific-heat maxima decrease
with increasing r values for all studied cases of Ly, the
uniform susceptibility curves appear to be almost iden-
tical, typical of the expected Curie behavior. Only in
the low-temperature regime, an increase in the χu val-
ues with increasing disorder was observed. Remarkably,
for both C and χu r-dependent curves the footprint of
some characteristic crossing points in the temperature
plane was unveiled, whose values are independent of r,
however still moderately depend on Ly. Notably, the
numerical values of the specific heat at these special
points may be considered as (nearly) universal for the
spin-ladder system under study. An analogous occur-
rence cannot be excluded also for the uniform suscepti-
bility, although there appears to be a slim dependence
of the χu values exactly at the crossing points on Ly,
possibly attributed to finite-size effects. Another impor-
tant result emerging in our study refers to the spin gap,
whose presence was revealed from the exponentially
decreasing current of the uniform susceptibility curves
at the low-temperature regime. From our analysis we
deduce that the spin gap decreases with increasing dis-
order parameter, analogously to the case of decreasing

rung coupling values in the clean system, and that upon
increasing Ly the impact of disorder becomes less sig-
nificant. Finally, we also studied the low-temperature
behavior of the staggered susceptibility and structure
factor. In contrast to the spin-gap case, the impact of
disorder in this case becomes more salient with increas-
ing Ly.

The results of this paper can be extended in several
directions:

– In terms of model systems, another fruitful platform
would be the spin-1 quantum Heisenberg ladder,
where the presence of the reported crossing points
(and possible universality) has not been yet clari-
fied.

– In terms of the diffused randomness, it would be
beneficial to consider also other types of disorder
distributions, such as bond dilution or non-magnetic
impurity atoms which could mimic some aspects of
quantum magnetic materials.

– Finally, the role of an additional external magnetic
field on the spin ladder could provide insight to
other physical phenomena, not touched upon the
current work.
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